C. Achard, X. Qu, A. Mokhber, and M. Milgram, A novel approach for recognition of human actions with semi-global features, Machine Vision and Applications, vol.12, issue.2/3, pp.27-34, 1938.
DOI : 10.1109/TSMCC.2004.829274

J. K. Aggarwal and M. S. Ryoo, Human activity analysis, ACM Computing Surveys, vol.43, issue.3, pp.1-43, 2011.
DOI : 10.1145/1922649.1922653

R. Alami, A. Clodic, V. Montreuil, . Emrah-akin, R. Sisbot et al., Task planning for human-robot interaction objects and ambient intelligence innovative context-aware services : usages and technologies -sOc-EUSAI '05, Proceedings of the 2005 joint conference on Smart, pp.81-106, 2005.

P. Anderson-sprecher and R. Simmons, Voxel-based motion bounding and workspace estimation for robotic manipulators, 2012 IEEE International Conference on Robotics and Automation, pp.2141-2146, 2012.
DOI : 10.1109/ICRA.2012.6225256

URL : http://www.ri.cmu.edu/pub_files/2012/5/ICRA12_peter.pdf

K. Sai, . Banala, S. K. Seok-hun-kim, J. P. Agrawal, and . Scholz, Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX) IEEE transactions on neural systems and rehabilitation engineering, pp.2-8, 2009.

A. Bannat, T. Bautze, M. Beetz, J. Blume, K. Diepold et al., Artificial Cognition in Production Systems, IEEE Transactions on Automation Science and Engineering, vol.8, issue.1, pp.148-174, 1925.
DOI : 10.1109/TASE.2010.2053534

A. Bauer, D. Wollherr, and M. Buss, HUMAN???ROBOT COLLABORATION: A SURVEY, International Journal of Humanoid Robotics, vol.7, issue.01, pp.47-66, 2008.
DOI : 10.1023/A:1021386708994

H. Bay, A. Ess, T. Tuytelaars, and L. Van-gool, Speeded-Up Robust Features (SURF) Computer Vision and Image Understanding, pp.346-359, 2008.
DOI : 10.1016/j.cviu.2007.09.014

URL : http://www.cs.jhu.edu/%7Emisha/ReadingSeminar/Papers/Bay08.pdf

Y. Ari, J. A. Benbasat, and . Paradiso, An Inertial Measurement Framework for Gesture Recognition and Applications, International Gesture Workshop, pp.9-20, 2002.

Y. Bengio, Learning Deep Architectures for AI, Machine Learning, pp.1-127, 2009.
DOI : 10.1561/2200000006

URL : http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf

F. Bevilacqua, F. Guédy, N. Schnell, E. Fléty, and N. Leroy, Wireless sensor interface and gesture-follower for music pedagogy, Proceedings of the 7th international conference on New interfaces for musical expression, NIME '07, p.132, 2007.
DOI : 10.1145/1279740.1279762

URL : https://hal.archives-ouvertes.fr/hal-01161378

F. Bevilacqua, B. Zamborlin, A. Sypniewski, N. Schnell, F. Guédy et al., Gesture in Embodied Communication and Human-Computer Interaction, Lecture Notes in Computer Science, vol.5934, issue.71, p.132, 2010.

R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-schaffer et al., Andreas Grunwald , and Others. The KUKA-DLR Lightweight Robot arm-a new reference platform for robotics research and manufacturing, p.22, 2010.

M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, Actions as space-time shapes, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, pp.1395-1402, 2005.
DOI : 10.1109/ICCV.2005.28

F. Aaron, J. W. Bobick, and . Davis, The recognition of human movement using temporal templates, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, issue.38, pp.257-267, 2001.

L. Bourdev and J. Malik, Poselets: Body part detectors trained using 3D human pose annotations, 2009 IEEE 12th International Conference on Computer Vision, pp.47-54
DOI : 10.1109/ICCV.2009.5459303

M. Bregonzio, S. Gong, and T. Xiang, Recognising action as clouds of space-time interest points, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.1948-1955, 2009.
DOI : 10.1109/CVPR.2009.5206779

N. Bremard, L. Grisoni, and B. Araujo, Interaction events in contactless gestural systems, Proceedings of the 2014 International Workshop on Movement and Computing, MOCO '14, pp.166-169, 2014.
DOI : 10.1145/2617995.2618027

URL : https://hal.archives-ouvertes.fr/hal-01048558

B. Bril, Description du geste technique : Quelles méthodes ? Techniques & culture. Revue semestrielle d'anthropologie des techniques, pp.54-55242, 1984.
DOI : 10.4000/tc.1006

B. Bril and V. Roux, Le geste technique. Réflexions méthodologiques et anthropologiques, p.37, 2002.
URL : https://hal.archives-ouvertes.fr/halshs-00134368

A. Bulling, U. Blanke, and B. Schiele, A tutorial on human activity recognition using body-worn inertial sensors, ACM Computing Surveys, vol.46, issue.3, pp.1-33, 2014.
DOI : 10.1007/978-3-642-01721-6_1

C. Cadoz, Le geste canal de communication homme/machine : la communication 'instrumentale'. Technique et, Science Informatiques, vol.13, issue.1, pp.31-61, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00867517

S. Calinon and A. Billard, Stochastic gesture production and recognition model for a humanoid robot, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), pp.2769-2774, 2004.
DOI : 10.1109/IROS.2004.1389828

URL : http://www.fias.uni-frankfurt.de/~triesch/courses/260object/papers/Stochastic_Gesture.pdf

B. Chandrasekaran and J. M. Conrad, Human-robot collaboration: A survey, SoutheastCon 2015, pp.1-8, 2015.
DOI : 10.1109/SECON.2015.7132964

L. Chen, H. Wei, and J. Ferryman, A survey of human motion analysis using depth imagery, Pattern Recognition Letters, vol.34, issue.15, p.48, 2013.
DOI : 10.1016/j.patrec.2013.02.006

A. Cherubini, R. Passama, A. Crosnier, A. Lasnier, and P. Fraisse, Collaborative manufacturing with physical human???robot interaction, Robotics and Computer-Integrated Manufacturing, vol.40, pp.1-13, 2016.
DOI : 10.1016/j.rcim.2015.12.007

URL : https://hal.archives-ouvertes.fr/hal-01274730

A. Cherubini, R. Passama, A. Meline, A. Crosnier, and P. Fraisse, Multimodal control for human-robot cooperation, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2202-2207, 1925.
DOI : 10.1109/IROS.2013.6696664

URL : https://hal.archives-ouvertes.fr/lirmm-00914416

H. Herbert, . Clark, E. Susan, and . Brennan, Grounding in communication. Perspectives on socially shared cognition, pp.127-149, 1991.

J. Edward-colgate, M. A. Peshkin, and W. Wannasuphoprasit, Cobots : Robots For Collaboration With Human Operators, Proceedings of the ASME Dynamic Systems and Control Division, p.15, 1996.

M. Cooney, C. Becker-asano, T. Kanda, H. Alissandrakis, and . Ishiguro, Full-body gesture recognition using inertial sensors for playful interaction with small humanoid robot, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2276-2282, 2010.
DOI : 10.1109/IROS.2010.5650081

J. A. , C. Ramón, G. J. , G. Gómez, F. T. Medina et al., Cooperative tasks between humans and robots in industrial environments, p.24, 2012.

N. Dalal, B. Triggs, and C. Schmid, Human Detection Using Oriented Histograms of Flow and Appearance, European Conference on Computer Vision (ECCV '06), pp.428-441, 2006.
DOI : 10.1109/ICCV.2003.1238422

URL : https://hal.archives-ouvertes.fr/inria-00548587

M. Dantone, J. Gall, C. Leistner, and L. Van-gool, Human Pose Estimation Using Body Parts Dependent Joint Regressors, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.3041-3048, 2013.
DOI : 10.1109/CVPR.2013.391

URL : https://lirias.kuleuven.be/bitstream/123456789/398648/2/3601_open+access.pdf

E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, vol.4, issue.1, pp.269-271, 1959.
DOI : 10.1007/BF01386390

P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie, Behavior Recognition via Sparse Spatio-Temporal Features, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp.65-72, 2005.
DOI : 10.1109/VSPETS.2005.1570899

L. Dong, J. Wu, and X. Chen, A Body Activity Tracking System using Wearable Accelerometers, Multimedia and Expo, 2007 IEEE International Conference on, pp.1011-1014, 2007.
DOI : 10.1109/ICME.2007.4284824

Y. Du, W. Wang, and L. Wang, Hierarchical Recurrent Neural Network for Skeleton Based Action Recognition, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1110-1118, 2015.

M. Fischer and D. Henrich, 3D Collision Detection for Industrial Robots and Unknown Obstacles Using Multiple Depth Images, Advances in Robotics Research, pp.111-122, 2009.
DOI : 10.1007/978-3-642-01213-6_11

C. Fitzgerald, Developing baxter, 2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA), pp.1-6, 2013.
DOI : 10.1109/TePRA.2013.6556344

T. Fong, C. Provencher, M. Micire, M. Diftler, R. Berka et al., The Human Exploration Telerobotics project: Objectives, approach, and testing, 2012 IEEE Aerospace Conference, pp.1-9
DOI : 10.1109/AERO.2012.6187043

URL : http://www.ri.cmu.edu/pub_files/2012/3/96.pdf

H. Fujiyoshi and A. J. Lipton, Real-time human motion analysis by image skeletonization, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201), pp.15-21, 1998.
DOI : 10.1109/ACV.1998.732852

URL : http://www.ius.cs.cmu.edu/IUS/crumpet_usr0/ajl/residency/wacv98_motion_analysis_final.ps.gz

V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, Real time motion capture using a single time-of-flight camera, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.755-762, 2010.
DOI : 10.1109/CVPR.2010.5540141

D. M. Gavrila and L. S. Davis, Towards 3-D model-based tracking and recognition of human movement : a multi-view approach. In International Workshop on Automatic Face-and Gesture-Recognition, pp.272-277, 1995.

N. Gillian, B. Knapp, and S. O-'modhrain, Recognition Of Multivariate Temporal Musical Gestures Using N-Dimensional Dynamic Time Warping, NIME, pp.337-342, 2011.

N. Gillian, A. Joseph, and . Paradiso, The Gesture Recognition Toolkit, Journal of Machine Learning Research, vol.11, issue.6, pp.3483-3487, 2014.
DOI : 10.1145/1866029.1866038

URL : http://dspace.mit.edu/bitstream/1721.1/103640/1/Paradiso_The%20gesture.pdf

S. Haddadin, A. Albu-schäffer, and G. Hirzinger, Safe Physical Human-Robot Interaction: Measurements, Analysis and New Insights, Robotics research, pp.395-407, 2010.
DOI : 10.1007/978-3-642-14743-2_33

M. Hägele, W. Schaaf, and E. Helms, Robot Assistants at Manual Workplaces : Effective Co-operation and Safety Aspects, Proceedings of the 33rd ISR (International Symposium on Robotics), pp.7-11, 2002.

R. Ham, T. Sugar, B. Vanderborght, K. Hollander, and D. Lefeber, Compliant actuator designs, IEEE Robotics & Automation Magazine, vol.16, issue.3, pp.81-94, 2009.
DOI : 10.1109/MRA.2009.933629

M. Hans, B. Graf, and R. D. Schraft, Robotic home assistant Care-O-bot : pastpresent-future, Proceedings. 11th IEEE International Workshop on Robot and Human Interactive Communication, pp.380-385, 2002.
DOI : 10.1109/roman.2002.1045652

C. Harris and M. Stephens, A Combined Corner and Edge Detection. The Fourth Alvey Vision Conference, pp.147-151, 1988.

T. Helten, M. Muller, H. Seidel, and C. Theobalt, Real-Time Body Tracking with One Depth Camera and Inertial Sensors, 2013 IEEE International Conference on Computer Vision, pp.1105-1112, 2013.
DOI : 10.1109/ICCV.2013.141

E. Geoffrey, S. Hinton, Y. Osindero, and . Teh, A fast learning algorithm for deep belief nets, Neural computation, vol.18, issue.7, pp.1527-54, 2006.

G. Hoffman and C. Breazeal, Effects of anticipatory action on humanrobot teamwork efficiency, fluency, and perception of team, Proceeding of the ACM/IEEE international conference on Human-robot interaction -HRI '07, p.24, 2007.

B. Holt, E. Ong, H. Cooper, and R. Bowden, Putting the pieces together: Connected Poselets for human pose estimation, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp.1196-1201, 2011.
DOI : 10.1109/ICCVW.2011.6130386

J. Hu, S. G. Lim, and M. K. Brown, Writer independent on-line handwriting recognition using an HMM approach, Pattern Recognition, vol.33, issue.1, pp.133-147, 2000.
DOI : 10.1016/S0031-3203(99)00043-6

I. Iossifidis, C. Bruckhoff, C. Theis, C. Grote, C. Faubel et al., CORA: An anthropomorphic robot assistant for human environment, Proceedings. 11th IEEE International Workshop on Robot and Human Interactive Communication, pp.392-398, 2002.
DOI : 10.1109/ROMAN.2002.1045654

M. Jain, H. Jegou, and P. Bouthemy, Better Exploiting Motion for Better Action Recognition, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.2555-2562, 2013.
DOI : 10.1109/CVPR.2013.330

URL : https://hal.archives-ouvertes.fr/hal-00813014

S. Ji, W. Xu, M. Yang, and K. Yu, 3D Convolutional Neural Networks for Human Action Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.1, pp.221-231, 2013.
DOI : 10.1109/TPAMI.2012.59

URL : http://www.dbs.informatik.uni-muenchen.de/%7Eyu_k/icml2010_3dcnn.pdf

H. Jiang and D. R. Martin, Finding Actions Using Shape Flows, Computer Vision ? ECCV 2008, pp.278-292, 2008.
DOI : 10.1109/ICCV.2005.201

G. Johansson, Visual perception of biological motion and a model for its analysis, Perception & Psychophysics, vol.4, issue.2, pp.201-211, 1973.
DOI : 10.1007/BF00410640

H. Junker, O. Amft, P. Lukowicz, and G. Tröster, Gesture spotting with body-worn inertial sensors to detect user activities, Pattern Recognition, vol.41, issue.6, pp.2010-2024, 2008.
DOI : 10.1016/j.patcog.2007.11.016

B. Kang, S. Tripathi, and T. Q. Nguyen, Real-time sign language fingerspelling recognition using convolutional neural networks from depth map, 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), pp.136-140, 2015.
DOI : 10.1109/ACPR.2015.7486481

URL : http://arxiv.org/pdf/1509.03001

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar et al., Large-Scale Video Classification with Convolutional Neural Networks, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.1725-1732, 2014.
DOI : 10.1109/CVPR.2014.223

URL : http://www.cs.cmu.edu/~rahuls/pub/cvpr2014-deepvideo-rahuls.pdf

H. Kazerooni, J. Racine, L. L. Huang, and R. Steger, On the Control of the Berkeley Lower Extremity Exoskeleton (BLEEX), Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp.4353-4360, 2005.

Y. Ke, R. Sukthankar, and M. Hebert, Spatio-temporal Shape and Flow Correlation for Action Recognition, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
DOI : 10.1109/CVPR.2007.383512

URL : http://repository.cmu.edu/cgi/viewcontent.cgi?article=1353&context=robotics

A. G. Kirk, F. James, D. A. O-'brien, and . Forsyth, Skeletal Parameter Estimation from Optical Motion Capture Data, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.782-788, 2005.
DOI : 10.1109/cvpr.2005.326

URL : http://www.cs.berkeley.edu/b-cam/Papers/Kirk-2005-SPE.pdf

G. Knoblich, J. S. , and J. , Action coordination in groups and individuals: Learning anticipatory control., Journal of Experimental Psychology: Learning, Memory, and Cognition, vol.29, issue.5, pp.1006-1016, 2003.
DOI : 10.1037/0278-7393.29.5.1006

URL : http://wexler.free.fr/library/files/knoblich%20(2003)%20action%20coordination%20in%20groups%20and%20individuals.%20learning%20anticipatory%20control.pdf

A. Kolb, E. Barth, R. Koch, and R. Larsen, Time-of-Flight Sensors in Computer Graphics, Proc. Eurographics (State-of-the-Art Report, p.41, 2009.

K. Kosuge, M. Sato, and N. Kazamura, Mobile robot helper, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), pp.583-588, 2000.
DOI : 10.1109/ROBOT.2000.844116

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, Advances in neural information processing systems, pp.1097-1105, 2012.
DOI : 10.1162/neco.2009.10-08-881

URL : http://dl.acm.org/ft_gateway.cfm?id=3065386&type=pdf

J. Krueger, V. Katschinski, D. Surdilovic, and G. Schreck, Flexible Assembly Systems through Workplace-Sharing and Time-Sharing Human- Machine Cooperation (PISA), p.17, 2010.

J. Krüger, R. Bernhardt, D. Surdilovic, and G. Spur, Intelligent Assist Systems for Flexible Assembly, CIRP Annals, vol.55, issue.1, pp.29-32, 2006.
DOI : 10.1016/S0007-8506(07)60359-X

J. Krüger, T. K. Lien, and A. Verl, Cooperation of human and machines in assembly lines, CIRP Annals, vol.58, issue.2, pp.628-646, 1920.
DOI : 10.1016/j.cirp.2009.09.009

J. Krüger, B. Nickolay, G. Heyer, and . Seliger, Image based 3D Surveillance for flexible Man-Robot-Cooperation, CIRP Annals, vol.54, issue.1, pp.19-22, 2005.
DOI : 10.1016/S0007-8506(07)60040-7

D. Kuli´ckuli´c and E. Croft, Pre-collision safety strategies for human-robot interaction, Autonomous Robots, vol.31, issue.1, pp.149-164, 1920.
DOI : 10.1093/geronj/45.6.S229

I. Laptev and T. Lindeberg, Space-time interest points, Proceedings Ninth IEEE International Conference on Computer Vision, pp.432-439, 2003.
DOI : 10.1109/iccv.2003.1238378

I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, Learning realistic human actions from movies, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2008.
DOI : 10.1109/CVPR.2008.4587756

URL : https://hal.archives-ouvertes.fr/inria-00548659

Y. Le-cun, J. Boser, . Denker, R. Henderson, . Howard et al., Handwritten Digit Recognition with a Back-Propagation Network Advances in neural information processing systems, p.57, 1990.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, pp.2278-2324, 1998.
DOI : 10.1109/5.726791

H. Lee and J. H. Kim, An HMM-based threshold model approach for gesture recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.21, issue.54, pp.961-973, 1999.

S. Lee and Y. Sankai, Power assist control for walking aid with HAL-3 based on EMG and impedance adjustment around knee joint, IEEE/RSJ International Conference on Intelligent Robots and System, pp.1499-1504, 2002.
DOI : 10.1109/IRDS.2002.1043967

C. Lenz, M. Grimm, T. Röder, and A. Knoll, Fusing multiple Kinects to survey shared Human-Robot-Workspaces, p.22, 2012.

C. Lenz, S. Nair, M. Rickert, A. Knoll, W. Rosel et al., Joint-action for humans and industrial robots for assembly tasks, RO-MAN 2008, The 17th IEEE International Symposium on Robot and Human Interactive Communication, pp.130-135, 2008.
DOI : 10.1109/ROMAN.2008.4600655

A. Leroi-gourhan, Milieu et techniques : Evolution et techniques, Albin Michel, p.37, 1973.

J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan, uWave: Accelerometer-based personalized gesture recognition and its applications, Pervasive and Mobile Computing, vol.5, issue.6, pp.657-675, 2009.
DOI : 10.1016/j.pmcj.2009.07.007

URL : http://www.owlnet.rice.edu/%7Ezw3/files/RICE/uWave/PerCom09.pdf

K. Liu, C. Chen, R. Jafari, and N. Kehtarnavaz, Fusion of Inertial and Depth Sensor Data for Robust Hand Gesture Recognition, IEEE Sensors Journal, vol.14, issue.53, pp.1898-1903, 2014.

N. Liu, B. C. Lovell, P. J. Kootsookos, and R. I. Davis, Model Structure Selection and Training Algorithms for an HMM Gesture Recognition System . Ninth International Workshop on Frontiers in Handwriting Recognition, pp.100-105, 2004.

G. David and . Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.

C. Migniot and F. Ababsa, 3D Human Tracking from Depth Cue in a Buying Behavior Analysis Context. Number Caip, Computer Analysis of Images and Patterns, p.49, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00845548

S. Mitra, S. Member, and T. Acharya, Gesture Recognition: A Survey, IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), vol.37, issue.3, pp.311-324, 2007.
DOI : 10.1109/TSMCC.2007.893280

P. Molchanov, S. Gupta, K. Kim, and J. Kautz, Hand gesture recognition with 3D convolutional neural networks, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.1-7, 2015.
DOI : 10.1109/CVPRW.2015.7301342

C. Myers, L. R. Rabiner, and A. E. Rosenberg, Performance tradeoffs in dynamic time warping algorithms for isolated word recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.28, issue.6, pp.623-635, 1980.
DOI : 10.1109/TASSP.1980.1163491

URL : http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/173_dtw performance tradeoffs.pdf

J. Carlos-niebles, H. Wang, and L. Fei-fei, Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words, International Journal of Computer Vision, vol.25, issue.25, pp.299-318, 2008.
DOI : 10.1007/s11263-007-0122-4

A. Donald and . Norman, The way I see it : Natural user interfaces are not natural. interactions, 2010.

Ó. Ciarán, D. Conaire, P. Connaghan, N. E. Kelly, M. Connor et al., Combining inertial and visual sensing for human action recognition in tennis on Analysis and retrieval of tracked events and motion in imagery streams -ARTEMIS '10, Proceedings of the first ACM international workshop, pp.51-54, 2010.

S. Oberer and R. D. Schraft, Robot-Dummy Crash Tests for Robot Safety Assessment, Proceedings 2007 IEEE International Conference on Robotics and Automation, pp.2934-2939, 1923.
DOI : 10.1109/ROBOT.2007.363917

A. Oikonomopoulos, I. Patras, and M. Pantic, Spatiotemporal salient points for visual recognition of human actions, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.36, issue.3, pp.710-719, 2005.
DOI : 10.1109/TSMCB.2005.861864

A. M. Okamura, Methods for haptic feedback in teleoperated robot???assisted surgery, Industrial Robot: An International Journal, vol.31, issue.6, pp.499-508, 2004.
DOI : 10.1109/87.491198

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1317565/pdf

C. Plagemann, V. Ganapathi, D. Koller, and S. Thrun, Realtime identification and localization of body parts from depth images, IEEE International Conference on Robotics and Automation, vol.38, issue.48, pp.3108-3113, 2010.
DOI : 10.1109/robot.2010.5509559

URL : http://www.stanford.edu/%7Eplagem/bib/plagemann10icra.pdf

G. Pons-moll, A. Baak, T. Helten, M. Muller, H. Seidel et al., Multisensor-fusion for 3D full-body human motion capture, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.663-670, 2010.
DOI : 10.1109/CVPR.2010.5540153

URL : http://edoc.mpg.de/get.epl?fid=74705&did=537294&ver=0

R. Poppe, A survey on vision-based human action recognition, Image and Vision Computing, vol.28, issue.6, pp.976-990
DOI : 10.1016/j.imavis.2009.11.014

T. Pylvänäinen, Accelerometer Based Gesture Recognition Using Continuous HMMs, Iberian Conference on Pattern Recognition and Image Analysis, pp.639-646, 2005.
DOI : 10.1007/11492429_77

R. Lawrence and . Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, pp.257-286, 1989.

K. Rapantzikos, Y. Avrithis, and S. Kollias, Dense saliencybased spatiotemporal feature points for action recognition, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.1454-1461, 2009.
DOI : 10.1109/cvprw.2009.5206525

URL : http://www.image.ece.ntua.gr/papers/581.pdf

I. Renna, R. Chellali, and C. Achard, Combination of Annealing Particle Filter and Belief Propagation for 3D Upper Body Tracking, Applied Bionics and Biomechanics, vol.9, issue.4, pp.443-456, 2012.
DOI : 10.1155/2012/178981

M. Reyes, G. Dominguez, and S. Escalera, Featureweighting in dynamic timewarping for gesture recognition in depth data, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp.1182-1188, 2011.
DOI : 10.1109/ICCVW.2011.6130384

M. Rickert, M. E. Foster, M. Giuliani, T. By, G. Panin et al., Integrating Language, Vision and Action for Human Robot Dialog Systems, Universal Access in Human-Computer Interaction. Ambient Interaction, pp.987-995, 2007.
DOI : 10.1007/978-3-540-73281-5_108

P. Rybski, P. Anderson-sprecher, D. Huber, C. Niessl, and R. Simmons, Sensor fusion for human safety in industrial workcells, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.3612-3619, 2012.
DOI : 10.1109/IROS.2012.6386034

R. Dieter-schraft, C. Meyer, C. Parlitz, and E. Helms, Power- Mate -A safe and intuitive robot assistant for handling and assembly tasks, Proceedings -IEEE International Conference on Robotics and Automation, pp.4074-4077, 2005.

C. Olivier, U. D. Schrempf, A. J. Hanebeck, H. Schmid, and . Worn, A novel approach to proactive human-robot cooperation, ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, pp.555-560, 2005.

C. Schuldt, I. Laptev, and B. Caputo, Recognizing human actions: a local SVM approach, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., pp.32-36, 2004.
DOI : 10.1109/ICPR.2004.1334462

URL : http://www.nada.kth.se/%7Ecaputo/publik/icpr04actions.pdf

L. A. Schwarz, A. Mkhitaryan, D. Mateus, and N. Navab, Human skeleton tracking from depth data using geodesic distances and optical flow, Image and Vision Computing, vol.30, issue.3, pp.217-226
DOI : 10.1016/j.imavis.2011.12.001

P. Scovanner, S. Ali, and M. Shah, A 3-dimensional sift descriptor and its application to action recognition, Proceedings of the 15th international conference on Multimedia , MULTIMEDIA '07, p.45, 2007.
DOI : 10.1145/1291233.1291311

S. Sempena, N. Ulfa-nur-ulfa, P. Maulidevi, and . Aryan, Human action recognition using Dynamic Time Warping, Proceedings of the 2011 International Conference on Electrical Engineering and Informatics, pp.1-5, 2011.
DOI : 10.1109/ICEEI.2011.6021605

J. Shi, G. Jimmerson, T. Pearson, and R. Menassa, Levels of human and robot collaboration for automotive manufacturing, Proceedings of the Workshop on Performance Metrics for Intelligent Systems, PerMIS '12, pp.95-118, 2012.
DOI : 10.1145/2393091.2393111

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook et al., Efficient Human Pose Estimation from Single Depth Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.12, pp.2821-2840
DOI : 10.1109/TPAMI.2012.241

J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio et al., Real-time Human Pose Recognition in Parts from Single Depth Images, Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp.1297-1304, 2011.
DOI : 10.1007/978-3-642-28661-2_5

M. Siddiqui and G. Medioni, Human pose estimation from a single view point, real-time range sensor, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Workshops, pp.1-8, 2010.
DOI : 10.1109/CVPRW.2010.5543618

K. Simonyan and A. Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, p.59, 2014.

R. Socher, B. Huval, B. Bhat, D. Christopher, . Manning et al., Convolutional-Recursive Deep Learning for 3D Object Classification, Advances in Neural Information Processing Systems, pp.665-673, 2012.

H. Suk, B. Sin, and S. Lee, Recognizing hand gestures using dynamic Bayesian network, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition, pp.1-6, 2008.
DOI : 10.1109/AFGR.2008.4813342

A. Sy-bor-wang, L. Quattoni, D. Morency, T. Demirdjian, and . Darrell, Hidden Conditional Random Fields for Gesture Recognition, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2 (CVPR'06), pp.1521-1527, 2006.
DOI : 10.1109/CVPR.2006.132

K. Tang, L. Fei-fei, and D. Koller, Learning latent temporal structure for complex event detection, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.1250-1257, 2012.
DOI : 10.1109/CVPR.2012.6247808

J. Tompson, R. Goroshin, A. Jain, Y. Lecun, and C. Bregler, Efficient object localization using Convolutional Networks, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.648-656, 2015.
DOI : 10.1109/CVPR.2015.7298664

URL : http://arxiv.org/pdf/1411.4280

J. Tompson, A. Jain, Y. Lecun, and C. Bregler, Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation Advances in neural information processing systems, pp.1799-1807, 2014.

A. Toshev and C. Szegedy, DeepPose: Human Pose Estimation via Deep Neural Networks, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.1653-1660, 2014.
DOI : 10.1109/CVPR.2014.214

URL : http://arxiv.org/pdf/1312.4659

V. Vapnik, Statistical learning theory, p.55, 1998.

M. Vincze, W. Zagler, L. Lammer, A. Weiss, A. Huber et al., Towards a Robot for Supporting Older People to Stay Longer Inde-pendent at Home, 41st International Symposium on Robotics ; Proceedings of, pp.1-7, 2014.

H. Wang, A. Kläser, C. Schmid, and C. Liu, Dense Trajectories and Motion Boundary Descriptors for Action Recognition, International Journal of Computer Vision, vol.73, issue.2, pp.60-79
DOI : 10.1007/s11263-006-9794-4

URL : https://hal.archives-ouvertes.fr/hal-00803241

H. Wang and C. Schmid, Action Recognition with Improved Trajectories, 2013 IEEE International Conference on Computer Vision, pp.3551-3558
DOI : 10.1109/ICCV.2013.441

URL : https://hal.archives-ouvertes.fr/hal-00873267

H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid, Evaluation of local spatio-temporal features for action recognition British Machine Vision Association, sep, Procedings of the British Machine Vision Conference, pp.124-125, 2009.

L. Wang, Y. Qiao, and X. Tang, Action recognition with trajectory-pooled deep-convolutional descriptors, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.4305-4314, 2015.
DOI : 10.1109/CVPR.2015.7299059

URL : http://arxiv.org/pdf/1505.04868

W. Wannasuphoprasit, P. Akella, M. Peshkin, and J. Edward-colgate, Cobots : a novel material handling technology, Proceedings of IMECE, pp.171-178, 1998.

D. Weinland and E. Boyer, Free viewpoint action recognition using motion history volumes, Computer Vision and Image Understanding, vol.104, issue.2-3, pp.249-257, 2006.
DOI : 10.1016/j.cviu.2006.07.013

URL : https://hal.archives-ouvertes.fr/inria-00544629

D. Weinland, R. Ronfard, and E. Boyer, A survey of vision-based methods for action representation, segmentation and recognition, Computer Vision and Image Understanding, vol.115, issue.2, pp.224-241, 2011.
DOI : 10.1016/j.cviu.2010.10.002

URL : https://hal.archives-ouvertes.fr/hal-00640088

V. Weistroffer, Étude des conditions d'acceptabilité de la collaboration homme-robot en utilisant la réalité virtuelle, p.27, 2014.

V. Weistroffer, A. Paljic, P. Fuchs, O. Hugues, J. Chodacki et al., Assessing the acceptability of human-robot co-presence on assembly lines: A comparison between actual situations and their virtual reality counterparts, The 23rd IEEE International Symposium on Robot and Human Interactive Communication, pp.377-384, 1924.
DOI : 10.1109/ROMAN.2014.6926282

URL : https://hal.archives-ouvertes.fr/hal-01079580

G. Willems, T. Tuytelaars, and L. Gool, An efficient dense and scaleinvariant spatio-temporal interest point detector, European Conference on Computer Vision (ECCV '08), pp.650-663, 2008.
DOI : 10.1007/978-3-540-88688-4_48

L. Xia, C. Chen, and J. K. Aggarwal, View invariant human action recognition using histograms of 3D joints, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp.20-27, 2012.
DOI : 10.1109/CVPRW.2012.6239233

J. Yamato, J. Ohya, and K. Ishii, Recognizing human action in timesequential images using hidden Markov model, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.379-385

A. Yilmaz and M. Shah, Actions Sketch: A Novel Action Representation, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.984-989, 2005.
DOI : 10.1109/CVPR.2005.58

H. Zhu and C. Pun, Real-time Hand Gesture Recognition from Depth Image Sequences, 2012 Ninth International Conference on Computer Graphics, Imaging and Visualization, pp.49-52, 2012.
DOI : 10.1109/CGIV.2012.13