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Abstract

The main interest of the thesis is the long-term mechanical behavior of the

containment building of french nuclear power plants. The containment build-

ings of the power plants are biaxially prestressed concrete structures. There-

fore, we summarize the problem of interest into two following key points:

biaxiality of load and long-term delayed strain.

In order to characterize the delayed strain under biaxial load, our study

�rst concentrates on the viscoelastic Poisson's ratio of concrete. In this pur-

pose, we start by scrutinizing the de�nition of Poisson's ratio in non-aging

linear isotropic viscoelasticity. Then, from the analysis of experimental re-

sults from the literature, we can obtain the viscoelastic Poisson's ratio of

concrete. As an extension, we use micromechanics to shed some light on the

long-term creep mechanism of the C-S-H gel.

In a second step, we aim at proposing a poroviscoelastic model without

postulating a priori the classical decomposition of delayed strains. We start

by identifying the major experimental tendencies and physical phenomena

that we aim at capturing with the model. From experimental data of auto-

genous shrinkage and basic creep from the literature, we analyze the possible

physical origin of long-term autogenous shrinkage. In the end, a physics-

based poroviscoelastic model is proposed, derived from the poromechanics

theory. The prediction of the model is compared with experimental results

from literature.

Keywords: concrete, cement-based materials, micromechanics, porome-

chanics, downscaling, viscoelasticity, viscoelastic Poisson's ratio, autogenous

shrinkage, basic creep, drying shrinkage, drying creep, capillary e�ect.





Résumé

L'intérêt principal de la thèse est le comportement mécanique à long terme

des enceintes de con�nement des centrales nucléaires françaises. Les enceintes

de con�nement des centrales sont des structures en béton précontraint bi-

axialement. Nous résumons donc notre problème en deux points clés : la

biaxialité du chargement et les déformations di�érées à long terme.

A�n de caractériser les déformations di�érées sous chargement biaxial,

nous nous concentrons dans un premier temps sur le coe�cient du Pois-

son viscoélastique du béton. Dans ce but, nous commençons par examiner

minutieusement la dé�nition du coe�cient de Poisson dans le cadre de la

viscoélasticité linéaire isotrope non-vieillissante. Puis, en analysant les résul-

tats expérimentaux de la littérature, nous obtenons le coe�cient de Poisson

viscoélastique du béton. Comme extension, nous amenons une analyse mi-

cromécanique et essayons d'éclaircir le mécanisme du �uage à long terme du

gel de C-S-H.

Dans un deuxième temps, nous visons à proposer un modèle porovis-

coélastique sans supposer préalablement la décomposition classique des dé-

formations di�érées. Nous commençons par identi�er les tendances expéri-

mentales majeures et phénomènes physiques que nous voulons capturer par

le modèle. À partir des résultats expérimentaux du retrait endogène et du

�uage propre de la littérature, nous analysons l'origine physique possible du

retrait endogène à long terme. À la �n, dérivé de la théorie de la poromé-

canique, un modèle poroviscoélastique basé sur la physique est proposé. La

prédiction du modèle est comparée avec les résultats expérimentaux de la

littérature.

Mots clés : béton, matériaux cimentaires, micromécanique, poromécanique,

changement d'échelle, viscoélasticité, coe�cient de Poisson viscoélastique, re-

trait endogène, �uage propre, retrait de dessiccation, �uage de dessiccation,

e�et capillaire.





Résumé long

Plus de 70% d'électricité en France est produite par l'énergie nucléaire. De

nombreuse centrales nucléaires d'EdF ont été construites initialement pour

une durée de service de 40 ans. La plupart d'entre elles arrivent prochaine-

ment en �n de vie. Dans l'optique de vouloir évaluer et prolonger la durée de

vie de ces centrales nucléaires, on s'intéresse aux enceintes de con�nement qui

sont des structures en béton précontraint biaxialement. La précontrainte est

nécessaire pour que l'enceinte soit capable de résister à une pression interne

de 0.5 MPa en cas d'accident et maintenir son étanchéité. Or, avec le temps,

le béton �ue, et la précontrainte se relaxe. Par conséquent, l'étanchéité doit

être véri�ée. Le présent travail se focalise donc sur la déformation di�érée à

long terme des matériaux cimentaires matures sous contrainte multiaxiale.

Pour des comportements uniaxiaux, la complaisance uniaxiale est su�-

isante pour décrire le comportement du matériau. Dans le cas multiaxial,

nous avons besoin de deux paramètres viscoélastiques pour décrire le com-

portement multiaxial. Cela pourrait être, par analogie avec l'élasticité, la

complaisance uniaxiale et le coe�cient de Poisson viscoélastique. De nom-

breuses études et modèles sur la complaisance uniaxiale existent dans la

littérature. Quant au coe�cient de Poisson viscoélastique, très peu d'études

y sont dédiées. En plus, les di�érents auteurs ont rapporté ou proposé des

valeurs assez di�érentes les unes des autres. Une des raisons qui explique cette

divergence est que ces auteurs ont utilisé di�érentes dé�nitions du coe�cient

de Poisson. En viscoélasticité linéaire isotrope non-vieillissante, la dé�ni-

tion du coe�cient de Poisson n'est pas unique non plus. Donc, la première

partie de la thèse sera consacrée à la dé�nition du coe�cient de Poisson en

viscoélasticité, et à ses valeurs et évolutions pour les matériaux cimentaires.

En viscoélasticité linéaire, il est possible de dé�nir un coe�cient de Pois-

son de 7 manières di�érentes. On s'est limité à comparer les deux dé�nitions

les plus intuitives: un coe�cient de Poisson de relaxation, dé�ni comme

l'opposé du ratio entre la déformation latérale et axiale dans un test de re-

laxation uniaxiale; un coe�cient de Poisson de �uage, dé�ni comme l'opposé



du ratio entre la déformation latérale et axiale dans un test de �uage uniax-

ial. Ces deux coe�cients de Poisson ne sont pas identiques. Nous dérivons la

relation qui lie ces deux coe�cients de Poisson via la complaisance uniaxiale.

Ainsi, on démontre sans aucune hypothèse supplémentaire qu'à l'instant de

chargement les valeurs de ces 2 coe�cients de Poisson sont identiques, ainsi

que leurs dérivées. À long terme, les deux coe�cients de Poisson tendent vers

une même valeur asymptotique. Le coe�cient de Poisson de relaxation est

utilisé lorsqu'on résout un problème analytiquement en utilisant le principe

de correspondance, puisque c'est la transformée de Laplace du coe�cient de

Poisson de relaxation qui remplace le coe�cient du Poisson élastique. En

revanche, presque tous les expérimentalistes ont utilisé le coe�cient de Pois-

son de �uage car son calcul inverse à partir des mesures expérimentales est

plus simple que celui du coe�cient de Poisson de relaxation. Ensuite, nous

avons analysé les résultats expérimentaux de �uage propre sur matériaux ci-

mentaires de la littérature et avons trouvé que la di�érence entre ces deux

coe�cients de Poisson est presque négligeable. Par conséquent, dans la suite

de la thèse, on ne distingue plus ces deux coe�cients de Poisson et on le

nomme coe�cient de Poisson viscoélastique. On le calcule avec l'expression

du coe�cient de Poisson de �uage et on applique le principe de correspon-

dance.

Ensuite, nous menons une étude exhaustive des tests de �uage propre

dans lesquelles la déformation di�érée est mesurée dans plus d'une direction.

Les 63 tests sur béton et 1 test sur pâte de ciment nous montrent que le

coe�cient de Poisson à long terme de matériaux cimentaires est inférieur ou

égal à la valeur élastique. Pour la plupart des bétons, considérer le coe�cient

de Poisson viscoélastique comme constant au cours du temps est un bon

choix. Le fait que le coe�cient de Poisson à long terme est plus petit que

0.5 montre que le �uage à long terme des bétons est à la fois volumétrique

et déviatorique. Pour explorer les résultats sur coe�cient de Poisson, nous

analysons des mécanismes qui peuvent expliquer ce �uage volumétrique à

long terme.

Comme l'origine du �uage des matériaux cimentaires se trouve dans le

gel de C-S-H, nous calculons le coe�cient du Poisson du gel de C-S-H pour



chacune de 64 tests ci-dessus en trois étapes d'homogénéisation par le schéma

d'homogénéisation viscoélastique de Mori-Tanaka. Le coe�cient de Poisson

du gel de C-S-H à long terme est plus petit que 0.2 et a peu d'in�uence

sur le coe�cient de Poisson du béton. Le fait d'avoir un coe�cient de Pois-

son plus petit que 0.5 montre qu'à long terme, le �uage du gel de C-S-H

possède à la fois un composant volumétrique et un composant déviatorique.

Ensuite, di�érents mécanismes sont analysés en considérant le gel de C-S-H

comme un mélange de particules de C-S-H et de pores de gel par un schéma

auto-cohérent. Nous retenons que: lorsqu'on considère que le �uage à long

terme est dû aux particules de C-S-H, il est nécessaire que soit les partic-

ules sont sphériques et il y a un glissement et un rapprochement des feuillets

constituant les particules de C-S-H; soit les particules sont asphériques et

juste le glissement des feuillets peut être su�sant pour expliquer le �uage

volumétrique. Lorsqu'on considère que le �uage à long terme est dû aux

points de contact entre des particules, pour avoir un coe�cient de Poisson

du gel de C-S-H entre 0 et 0.2, sous hypothèse de particule sphérique, il faut

qu'il y ait à la fois glissement et pénétration des points de contact.

Après avoir clari�é le coe�cient de Poisson des matériaux cimentaires,

nous nous intéressons à la modélisation des déformations di�érées. Tous

les codes de calculs réglementaires et la plupart des modèles académiques

de la littérature décomposent la déformation di�érée du béton en quatre

composantes: retrait endogène, retrait de dessiccation, �uage propre et �uage

de dessiccation. Chacune de ces 4 composantes est calculée séparément et

la déformation totale est obtenue en faisant la somme de ces 4 composantes.

Or, cette manière de calculer néglige toutes les corrélations possible entre

les di�érentes composantes. Nous avons donc pour objectif de proposer un

modèle sans supposer a priori cette décomposition classique de la déformation

di�érée. Pour ce faire, nous allons considérer chacune de ces 4 composantes

comme une déformation viscoélastique du matériau.

Il nous a fallu, avant de proposer le modèle, véri�er l'hypothèse consti-

tuant à considérer le retrait endogène comme un phénomène de �uage sous

l'e�et capillaire dû à l'autodessiccation. En analysant toute une série de

tests sur les matériaux cimentaires faits avec ciment Portland ordinaire (45



tests de retrait endogène et 59 tests de �uage propre), nous avons calculé

une contrainte qui est nécessaire pour expliquer le retrait endogène à long

terme comme un phénomène de �uage. Cette contrainte a le même ordre

de grandeur que la contrainte capillaire estimée à partir des mesures expéri-

mentales de l'humidité relative à long terme en conditions endogènes à l'aide

de la théorie de poromécanique. Ces deux contraintes exhibent une même

tendance lorsque le rapport eau-sur-ciment du matériau décroît. Cela nous

conduit à conclure qu'on peut modéliser le retrait endogène à long terme

comme un phénomène de �uage sous l'e�et capillaire dû à l'autodessiccation.

Pour modéliser la déformation di�érée des matériaux cimentaires en vis-

coélasticité linéaire, on considère un milieu poreux, dont la porosité peut

être totalement ou partiellement saturée. La poromécanique nous permet

de prendre en compte les e�ets de l'eau dans la porosité. La complaisance

volumétrique de �uage du matériau est considérée comme une fonction log-

arithmique du temps, en accord avec la cinétique à long terme du �uage

propre. On considère que le module du �uage du matériau est une fonction

de l'humidité relative interne du matériau. Pour expliquer le �uage de dessic-

cation, nous supposons que la contrainte capillaire est transmise au squelette

solide en sa totalité dans le cas de séchage avec charge appliquée, tandis que

dans le cas de séchage sans charge, la contrainte capillaire n'est transmise

qu'en partie au squelette solide. À la �n, le modèle est calibré avec deux tests

de la littérature pour montrer qu'on peut modéliser la déformation di�érée

des matériaux cimentaires sans supposer a priori la décomposition classique

en 4 composantes indépendantes..
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Chapter 1

Context and state of the art

T
his chapter aims at presenting the context and scienti�c background

of the thesis subject and the basic notions and useful tools that are

needed in the thesis. The long-term shrinkage and creep behavior of concrete

depends on the microstructure of concrete. Hence, we start by introducing

the microstructure of concrete. The hydration model of Powers' is then pre-

sented in detail as it is going to be used in several parts of the thesis. Then,

we describe the classical decomposition of the delayed behavior of concrete,

then some observed phenomenology and some proposed physical origin for

this delayed behavior. After understanding the delayed strain of concrete, we

present three useful tools (or framework) that are necessary to model shrink-

age and creep behavior of cement-based materials. The �rst one is the theory

of isotropic linear viscoelasticity, which is well adapted to cement-based ma-

terials loaded to less than 40% of their compressive strength. The second one

is Micromechanics, called also homogenization. Concrete is a heterogeneous

multi-scale materials as it is composed of di�erent phases whose size varies

from the scale of centimeters to the scale of nanometers. Micromechani-

cal analysis, which is a tool that predicts the properties of an heterogeneous

material, is widely used to analyze mechanical behavior of cement-based ma-

terials. The third one is Poromechanics. Composed from solid phase and

pore spaces, concrete is a porous material that is submitted to mechanical
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and hydric load. Poromechanics is a powerful tool to describe the mechanical

behavior of such porous materials. Understanding these theoretical tools that

are used in modeling of delayed behavior of concrete, in �nal section we look

at the existing models in literature that predict shrinkage and creep behavior

of concrete. Emphasis are given on the following two models: B4 model of

Baºant and his collaborators and the model of Sellier and his collaborators.

The chapter is concluded and objectives of the thesis are presented in the end.

C
e Chapitre a pour objectif de présenter le contexte industriel et scien-

ti�que de la thèse ainsi que les notions de base et les outils utiles à la

thèse. Le retrait et �uage à long terme du béton dépend de la microstructure

du béton. Nous commençons donc par introduire la microstructure du bé-

ton. Le modèle d'hydratation de Powers est ensuite présenté en détail comme

il sera utilisé à plusieurs reprises dans la thèse. Ensuite, nous passons à

la déformation di�érée du béton. Nous décrivons d'abord la décomposition

classique de la déformation di�érée du béton, puis quelques observations phé-

noménologiques et des propositions sur l'origine physique du comportement

di�éré. Puis, nous présentons trois outils utiles qui sont nécessaires pour mo-

déliser le retrait et �uage des matériaux cimentaires. Le premier est la théorie

de la viscoélasticité linéaire isotrope, qui est bien adaptée aux matériaux ci-

mentaires chargés à moins de 40% de leur résistance en compression. Le

deuxième est la micromécanique, appelée aussi méthode d'homogénéisation.

Le béton est un matériau hétérogène à plusieurs échelles car il est composé de

di�érentes phases dont la taille varie de l'échelle des centimètres à l'échelle du

nanomètre. L'analyse micromécanique, un outil qui prédit les propriétés pro-

priétés macroscopiques d'un matériau hétérogène, est largement utilisée pour

analyser le comportement mécanique des matériaux cimentaires. Le troisième

est la poromechanique. Composé d'une phase solide et d'un espace poreux, le

béton est un matériau poreux soumis à une charge mécanique et hydrique. La

poromécanique est un outil puissant pour décrire le comportement mécanique

de ce type de matériaux poreux. Après avoir introduit ces outils théoriques
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qui sont utilisés dans la modélisation du comportement di�éré du béton, à

la �n du chapitre, nous examinons les modèles existants de la littérature qui

prédisent le retrait et �uage du béton. L'accent est mis sur les deux modèles

suivants : le modèle B4 de Baºant et de ses collaborateurs et le modèle de

Sellier et de ses collaborateurs. Le chapitre se termine par les objectifs de la

thèse.
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In this chapter we are going to present �rst the context of the thesis.

Then, we introduce basic notions and useful tools that are needed in the

thesis. We start by presenting the microstructure and hydration model of

cement-based material. Then, the delayed strain of cement-based materials

are presented as well as their classical decomposition. Some phenomenol-

ogy and physical origin of these delayed strains are described. Next, we

introduce the theory of non-aging linear isotropic viscoelasticity which will

be the main framework of the thesis. Short introductions also are given for

micromechanics and poromechanics. In the end, we draw a state of the art

on the models that predict the delayed strain of cement-based materials and

�nish by presenting the objectives of the thesis.

1.1 Context of the thesis

Around 75% of the electricity in France is produced by means of nuclear

energy. The initial service life of the French nuclear power plants (NPP) is 40

years and an important part of the NPPs will attain their age in the following

years. So, the extension of their service life is an economical challenge for

EDF (in French Électricité de France). The most restrictive aspect is to fully

respect the safety requirements of nuclear power stations.

In the context of extension of the service life of the current nuclear power

stations, EDF started the project VERCORS to study the behavior of the

containment buildings. This PhD thesis is a part of the VERCORS project.

The containment buildings are made with biaxially prestressed concrete

and are meant to insure the tightness. The biaxial prestress is designed so

that the containment building is able to resist an internal pressure of 0.5 MPa

in case of accident. In order to avoid tensile stresses in concrete, the applied

prestress corresponds to compressive stresses in concrete of around 8.5 MPa

and 12 MPa along vertical and orthoradial axes, respectively. However, as

time goes by, the delayed strains of concrete continue to accumulate and

the prestress may be lost. That is why the evolution of prestressing forces

with respect to time is critical for the operation of nuclear power plants and

for the extension of their service life. Consequently, a good prediction of
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the evolution of delayed strains of the containment under a biaxial stress

condition is needed.

The PhD thesis is launched in this context with the aim of better under-

standing long-term delayed strain behavior of matured cement-based mate-

rials under biaxial load.

1.2 Microstructure and hydration of concrete

Concrete is a heterogeneous materials that is composed from solid and pore

spaces. The solid phase is not homogenous and composed form various phases

depending on hydration state. The sizes of these components vary across a

wide range of scale. The pore space can contain both gas (mostly air) and

liquid (mostly water). Understanding the microstructure of concrete is im-

portant to interpret and explain the macroscopic behavior. In this section, we

present �rst the microstructure of hardened cement paste. Then, the hydra-

tion model of Powers' is explained in order to characterize the microstructure

from the composition of cement paste.

1.2.1 Phases in concrete

Concrete is a mixture of aggregates and cement paste. The aggregates com-

pose usually about 70% volume of the concrete. The size of aggregates de-

pends on the case but usually varies from tens of micrometers to tens of

millimeters. As to the cement paste, it plays the role of binder and has

microstructure that is itself multiscale and heterogeneous.

The cement paste is obtained by mixing water and cement clinker pow-

der. It is possible to add other constituent, such as silica fume, �y ashes,

slag or admixture. In this thesis we restrict ourselves on the cement pastes

made from only water and ordinary Portland cement (i.e., without supple-

mentary cementitious materials). The microstructure of hardened cement

paste depends on the mass ratio of mixed water over mixed clinker, noted as

water-to-cement ratio, and the degree of hydration, which is de�ned as the

mass ratio of reacted clinker over the total clinker of mixture. The hardened
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cement paste is composed from hydration products, unhydrated clinker and

pores space, in which we can �nd unhydrated water and air.

Hydration product of ordinary Portland cement includes calcium silicate

gel, portlandite and calcium sulfoaluminates hydrates.

The exact structure of calcium silicate hydrate (C-S-H) gel is not well

known. According to Jennings (2000), C-S-H gel is made of (approximately)

spherical C-S-H particles and porosity. Each of C-S-H particle has a layered

structure. The C-S-H particles tend to form clusters. The clusters can be

divided into two categories: low density and high density. On the contrary,

Feldman and Sereda (1968); Mehta and Monteiro (2006) consider the C-S-

H gel as an amorphous structure that contains C-S-H solid and porosity in

which we �nd water. This C-S-H solid has a surface area of 100 to 700 m2/g.

In this thesis, we adopt the same point of view as Jennings (2000): C-S-H gel

is made of spherical C-S-H particles and pores. C-S-H gel constitutes about

60% volume of the hydration product.

Portlandite is a calcium hydroxide crystal with well de�ned stoichiometry.

Portlandite tends to form large crystals with a distinctive hexagonal-prism

morphology (Mehta and Monteiro, 2006). Portlandite constitutes 20 to 25

percent of the volume of hydration product (Mehta and Monteiro, 2006).

Calcium sulfoaluminates hydrate forms hexagonal-plate crystals and oc-

cupies 15 to 20 percent of the volume of hydration product (Mehta and

Monteiro, 2006).

In addition to these hydration products, we usually have unhydrated

clinker in cement paste. In ordinary Portland cement, the size of unhydrated

clinker grain is in the range of 1 to 50 µm (Mehta and Monteiro, 2006).

1.2.2 Pore spaces and water distribution

The pore spaces in cement paste are �lled by either air or water.

According to size, the pore spaces in cement paste can be divided into air

voids, capillary porosity, gel porosity and interlayer porosity.

Air voids are the largest pores in cement paste. The size of air voids

varies from 50 to 200 µm.
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Capillary pores are much smaller than air voids. The size of capillary

pores ranges from 10 nm to 10 µm (Mehta and Monteiro, 2006).

Gel pores are smaller than capillary pores. Jennings (2000) de�nes the

space between C-S-H particles in a cluster as gel porosity. The size of gel

pores ranges from 2 nm to 10 nm.

Interlayer space is the space between the layers in a particle of C-S-H.

The size of interlayer space is around 0.1 nm to 1 nm. However, according

to their description of C-S-H gel, Mehta and Monteiro (2006) de�nes all the

spaces in C-S-H gel as interlayer space. Therefore, the so-called interlayer

space by Mehta and Monteiro (2006) includes both gel pores and interlayer

space de�ned by Jennings (2000).

In this thesis, we follow the classi�cation of Jennings (2000) and distin-

guish gel pores from interlayer space.

After classifying the pore spaces, the classi�cation of water becomes

straight forward. In fact, water is divided into four categories based on

the pores space where the water locates: capillary water, adsorbed water,

interlayer water and chemically adsorbed water.

Capillary water is the water present in capillary pores. It is called also

bulk water as this water is free from the in�uence of the attractive forces

exerted by the solid surface (Mehta and Monteiro, 2006).

Adsorbed water is the water near to the solid surface. The molecules

of this water are under the attractive forces of solid surface. It has been

suggested that six molecular layers (thickness of 1.5 nm) of water can be

physically held by hydrogen bonding (Mehta and Monteiro, 2006).

Gel water is the water that occupies the gel pores.

Inter-layer water is the water that occupies the space between the layers

of C-S-H. The interlayer water is strongly bounded by hydrogen bounding

and Mehta and Monteiro (2006) suggested that the inter-layer water should

be a monomolecular water layer.

In addition to the above categories, cement paste contain chemically com-

bined water, which is an integral part of various hydration product. Mehta

and Monteiro (2006) stated that this water is not lost on drying while Man-

tellato et al. (2015) consider that strong drying can cause dehydration of
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gypsum.

1.2.3 Drying of various types of water

As seen in the previous section, water in cement paste is subjected to various

constrains in function of the pores in which it is located. When relative

humidity decreases, the evaporation does not happen to all types of water

simultaneously. Instead, the various types of water evaporates at di�erent

stages of drying.

As soon as the relative humidity drops below 100%, the capillary wa-

ter starts to evaporate. Jennings (2000) stated that when relative humidity

decrease to around 40%, almost all of the capillary water evaporated. The

cement paste starts to lose its gel water when relative humidity drops around

40%. Around 20% of relative humidity almost all gel water and physically ad-

sorbed water is lost (Jennings, 2000). According to Jennings (2000), drying

from 20% to 0% of relative humidity causes loss of interlayer water (Jen-

nings, 2000), while Mehta and Monteiro (2006) claimed that interlayer water

(knowing that the interlayer water de�ned by Mehta and Monteiro (2006)

includes gel water de�ned by Jennings (2000)) starts to leave only when

relative humidity drop below 11%.

For the concretes that are used in nuclear industry, the relative humidity

inside the concrete drops rarely below 40%. Hence, we are limited in this

thesis only for the desiccation in which the relative humidity varies between

40% and 100%.

1.2.4 Power's hydration model

Powers' model of hydration (Powers and Brownyard, 1947) is one of the most

widely used model of hydration due its simplicity. More sophisticated models

exist in literature, for example the model of Tennis and Jennings (2000).

However, for our needs in the thesis, the model of Powers' is su�cient.

For ordinary Portland cement, knowing water-to-cement ratio w/c and

degree of hydration ξ, Powers' model can give an estimation of mass and
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volume of capillary water, physically adsorbed water, solid hydrates and un-

hydrated clinker and also the volume of chemical shrinkage. Recent measure-

ments (Muller et al., 2012) using NMR have shown that despite of simplicity,

Powers' model give a correct evaluation of the evolution of the microstruc-

ture.

Based on evaporability, Powers and Brownyard (1947) classi�ed water

into two categories: evaporable water and non-evaporable water. Based on

speci�c volume, Powers and Brownyard (1947) classi�ed water into two cat-

egories: adsorbed water and free water. Hence, in Powers' hydration model,

water in a cement paste can be classi�ed into three categories (see Fig. 1.1):

capillary water, physically adsorbed water and chemically adsorbed water.

Capillary water is free of forces from solid. It is also called free water. In

fact, this de�nition of capillary water is not totally consistent with the de�-

nition in section 1.2 since the former de�nition excludes a part of water that

is physically adsorbed on the surface of solid in capillary pores. However,

supposing that the volume of physically adsorbed water in capillary pores is

much smaller than the total volume of capillary pores, we take the amount of

capillary water computed with Powers' hydration model equal to the amount

of capillary water de�ned in section 1.2. Powers and Brownyard (1947) got

the amount of capillary water by subtracting the amount of physically ad-

sorbed water from the total amount of water loss at 105◦C. The amount wc
of capillary water is equal to total mass w of mixed water minus mass wn of

chemically adsorbed water and of wg physically adsorbed water.

Physically adsorbed water is water that is adsorbed on the surface of

solid in cement paste by surface force. It is also called gel water, which may

cause confusion with the de�nition of gel water in section 1.2. In fact, the

physically adsorbed water de�ned by Powers and Brownyard (1947) includes

four layers of water that are adsorbed to solid surface in all type of pores,

including capillary pores. Hence, using Powers' hydration model, the amount

of physically adsorbed water cannot give any information about the amount

of gel water de�ned in section 1.2. Powers and Brownyard (1947) computed

the amount of physically adsorbed water as four layers of water that is needed

to cover the surface area of hydrates. The amount wg of physically adsorbed
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water per reacted clinker is equal to 0.19 g/g (this value is valid only for

cement pastes that exchange no water with outside).

Chemically adsorbed water is the water that has chemically reacted with

clinker. It is also called non-evaporable water, water of constitution. Powers

and Brownyard (1947) measured the amount of chemically adsorbed water

by ignition at 1000◦C and found that per gram of reacted clinker, the amount

wn of chemically adsorbed water is equal to 0.23 g/g.
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Figure 1.1 � Powers' model of hydration, expressed (a) in mass, (b) in volume

In the following, the Powers' model of hydration, which is expressed in

mass relation, is going to be expressed in volume fraction (see Fig. 1.1b). In
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the initial mixture, the volume fraction p of water is:

p =
w/c

w/c+ ρw/ρc
(1.1)

w/c is the water-to-cement mass ratio; ρw and ρc are density of water and of

clinker grains, and are taken to be equal 1 g/cm3 and 3.15 g/cm3, respectively.

Powers and Brownyard (1947) measured that the volume reduction due

to the full hydration of 100 g of clinker is approximately 6.4 mL. Thus,

the volume fcs of chemical shrinkage per volume of cement paste, which

corresponds to the part of the porosity which is not �lled with water, for a

cement paste with hydration degree of ξ is:

fcs = ρc6.4(1− p)ξ/100 = 0.20(1− p)ξ (1.2)

The volume fraction fcw of capillary water reads:

fcw = p− (ρc/ρw)(0.19 + 0.23)(1− p)ξ = p− 1.32(1− p)ξ (1.3)

Taking the density of physically adsorbed water approximately equal to

the density ρw of bulk water, the volume fraction faw of physically adsorbed

water reads:

faw = 0.19(ρc/ρw)(1− p)ξ = 0.60(1− p)ξ (1.4)

Subtracting the volume of chemical shrinkage from the total volume of

reacted water and reacted clinker, we get the volume fraction fhyd,s of solid

hydrates:

fhyd,s = (1− 6.4ρc/100 + 0.23(ρc/ρw))(1− p)ξ = 1.52(1− p)ξ (1.5)

The volume fraction fck of unhydrated clinker reads:

fck = (1− p)(1− ξ) (1.6)
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In addition to the volumes of di�erent phase computed with Eqs. 1.2-1.6,

volume fraction fc of capillary pores and fhyd of bulk hydrates are useful. The

volume fraction fp of capillary pores are de�ned as the sum of the volume

fraction fcw of capillary water and fcs of chemical shrinkage:

fc = fcw + fcs = p− 1.32(1− p)ξ (1.7)

The volume fraction fhyd of bulk hydrates is equal to sum of the volume

fraction faw of physically adsorbed water and fhyd,s of solid hydrates:

fhyd = fhyd,s + faw = 2.12(1− p)ξ (1.8)

According to Powers' model, as long as there is capillary water inside

cement paste, the hydration will progress until all the capillary water is

consumed. Letting the volume fraction fcw of capillary water equal to 0,

we get the limit of hydration degree for a given water-to-cement ratio while

there is no external water supply during hydration. The limit of hydration

degree, i.e., long-term hydration degree ξp given by Powers' model reads:

ξp(w/c) =

w/c/0.42, if w/c < 0.42,

1, if w/c ≥ 0.42
(1.9)

As shown in above Eqs. 1.2-1.8, the microstructure, i.e., volume fraction

of each phase, depends not only water-to-cement ratio w/c but also the degree

of hydration ξ. Figure 1.2 displays the volume fraction of each phase as a

function of hydration degree ξ for two water-to-cement ratio, 0.3 and 0.5

respectively. As shown in Eq. 1.9, clinker cannot be fully hydrated for water-

to-cement ratio 0.3, but stops at ξp = 0.3/0.42 = 0.71 (see Fig. 1.2a).

In practice, Powers and Brownyard (1947); Jensen (1995); Flatt et al.

(2011) showed that hydration stops below a certain relative humidity. Since

the consumption of water decreases the relative humidity, hydration may

stop due to the lower relative humidity before consumption of all of the

capillary water. In other words, the long-term hydration degree is lower

than the long-term hydration degree ξp of Powers' model which is obtained
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Figure 1.2 � Volume fraction of various phases as a function of hydration
degree for cement paste with (a) water-to-cement ratio equal to 0.3(b) water-
to-cement ratio equal to 0.5.

by supposing that hydration stops when capillary water is fully consumed.

Based on experimental measurement, Waller (1999) proposed an empirical

relation for long-term hydration ξ∞:

ξ∞(w/c) = 1− exp(−3.3w/c) (1.10)

This long-term hydration degree ξ∞ is slightly lower than ξp given by

Powers' model. The microstructure of cement paste at long term is displayed

in Fig. 1.3a and. 1.3b, as a function of water-to-cement ratio, by considering

that the long-term hydration degree is ξp and ξ∞, respectively.
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Figure 1.3 � Microstructure of cement paste at long term, computed by taking
hydration degree equal to (a) long-term hydration degree ξp of Powers' model
given by Eq. 1.9; (b) long-term hydration degree ξ∞ given by Eq. 1.10.

1.3 Delayed strains of concrete

Cement-based materials deform during all their service life, due to applied

load or water exchange with outside or temperature variation. In this sec-

tion, we are going to present �rst various delayed strain under isothermal

condition. Then follow some observed phenomenology about physical origin

of each type of delayed strain.
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Loading condition
Hydric condition

No load Under load

No water exchange
with outside

Autogenous shrinkage
Autogenous shrinkage

+ Basic creep

Water exchange with
outside

Autogenous shrinkage
+ Drying shrinkage

Autogenous shrinkage
+Drying shrinkage

+Basic creep
+ Drying creep

Table 1.1 � Time-dependent strain of cement-based materials in function of
loading condition and hydric condition.

1.3.1 Classical decomposition of delayed strains of con-

crete

Conventionally, under isothermal condition, time-dependent strain of cement-

based material is decomposed into following four components (see Tab. 1.1):

autogenous shrinkage, basic creep, drying shrinkage and drying creep.

Autogenous shrinkage is the time dependent strain of a non-loaded spec-

imen exchanging no water with outside.

Basic creep is the di�erence between the strain of a loaded specimen

exchanging no water with outside and the autogenous shrinkage. The basic

creep is regarded as the strain due to the applied load.

Drying shrinkage is the di�erence between the strain of a non-loaded

specimen exchanging water with outside and the autogenous shrinkage. The

drying shrinkage is regarded as the strain due to drying of specimen.

Drying creep is the additional time-dependent strain of a loaded specimen

exchanging water with outside with respect to the sum of autogenous shrink-

age, basic creep and drying shrinkage. Drying creep is also known under the

name of Pickett e�ect as it was observed at �rst by Pickett (1942).

Many design codes (FIB, 2013; ACI Committee 209, 2008) obtain the

total delayed strain by summing the 4 components described above without

questioning the correlation between them. In the next section, we provide

some phenomenological observations related to these 4 components.

59



CHAPTER 1. CONTEXT AND STATE OF THE ART

1.3.2 Some phenomenology

As mentioned in the previous section, the classical decomposition of delayed

strain of cement-based materials neglects the correlation between the various

components. In the following, we explain the correlation between various

components via the role of hydration degree, relative humidity and structural

e�ect.

The autogenous shrinkage is in�uenced by the degree of hydration (Lura

et al., 2003; Wu et al., 2017). The specimen exchanging water with outside

does not necessarily have same hydration degree as the one kept sealed due to

the possible variation of available water for hydration. Hence, the autogenous

shrinkage of the specimen exchanging water with outside is not exactly same

as the autogenous shrinkage of the specimen kept sealed.

The delayed strain behavior of cement-based materials depend on rela-

tive humidity of the material. For the loaded specimen exchanging water

with outside, the part of strain due to load is not exactly the same as basic

creep strain of the loaded specimen exchanging no water with the outside.

This is because the creep of cement-based material depend on water con-

tent (or, relative humidity) of the material(Baºant et al., 1976; Baºant and

Chern, 1985; Abiar, 1986): If the specimen is kept sealed, i.e., there is no

exchange of water with outside, a wet specimen creeps much more than a

pre-dried specimen. Therefore, to predict the delayed strain of loaded and

drying specimen, taking same basic creep as a loaded but sealed specimen is

arguable.

The delayed strain behavior of cement-based material is submitted to

structural e�ect. For the loaded specimen exchanging water with the outside,

the part of strain due to drying is not exactly the same as the drying shrinkage

of the non-loaded specimen exchanging water with outside. This is because

the non-loaded specimen exchanging water with outside cracks due to drying

while cracking of the loaded specimen exchanging water with the outside is

limited by the load (Baºant and XI, 1994). Therefore, to predict the delayed

strain of loaded and drying specimen, taking same drying shrinkage as a

drying but non-loaded specimen is arguable.
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Figure 1.4 � Illustration of Pickett e�ect

In conclusion, the 4 component of classical decomposition are in fact

correlated.

1.3.3 Physical origin

This section is dedicated to present the physical origin of delayed strain.

The origin of autogenous shrinkage is not fully understood. Lura et al.

(2003); Lin and Meyer (2008); Stefan et al. (2009); Zhang et al. (2012);

Wu et al. (2017) consider that the autogenous is the elastic response to

the capillary e�ect due to self-desiccation of cement-based materials due to

hydration of cement. Hua et al. (1995); Luan et al. (2013) consider that the

autogenous shrinkage as viscoelastic response to the capillary e�ect due to

self-desiccation.

Drying shrinkage is considered to be caused by the capillary e�ects due

to drying of cement-based materials. Benboudjema et al. (2007); Sellier and

Bu�o-Lacarriere (2009); Grasley and Leung (2011); Sellier et al. (2016) model

the drying shrinkage as viscoelastic response of material to the capillary

e�ects while Di Bella et al. (2017) consider the drying shrinkage as elastic

strain under capillary e�ect.
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Basic creep is explained as a result of relaxation of microprestress, called

microprestress theory, by Baºant et al. (1997). In this theory, Baºant et al.

(1997) postulate that, for loading level below 40% of the strength, the origin

of the creep is the shear slip at localized overstressed creep sites, represented

by bridges across the micropores. As a result of progressive relaxation of the

shear stress at the creep sites and exhaustion of the available overstressed

creep sites causes the creep rate under a constant applied stress to decline.

Drying creep, de�ned as the extra strain of the loaded drying specimen

with respect to the sum of basic creep, drying shrinkage and autogenous

shrinkage, can be divided into two parts: the intrinsic part and the part due

to structural e�ect. In the following, whenever drying creep is mentioned,

we mean the intrinsic part.

The de�nition of drying creep due to structural e�ect is as following: the

drying is much important on the surface than in the center of specimen. In

case of drying with no load, the surface cracks whereas cracking is limited

by the load in case of drying under load. The measured strain of non-loaded

drying specimen is less than the potential strain of material (Acker, 1988;

Baºant and XI, 1994). When the specimen is loaded and cracking is limited

by the load, the supplementary part of strain is mobilized. This part of strain

is called drying creep related to structural e�ect.

The structural e�ect is not enough to explain the totality of drying creep.

The rest of drying creep is considered as intrinsic drying creep.

The origin of the intrinsic drying creep is still not known. Baºant and

Chern (1985) consider that microdi�usion of water due to drying promotes

shear slip in microprestress theory Baºant et al. (1997) so that the creep with

drying is more important. This explanation is also supported by Vlahini¢

et al. (2012) who suggest that the migration of water molecules plays a lubri-

cant role that ampli�es delayed strain. On the contrary, Sellier et al. (2016)

consider that the capillary e�ect due to drying is ampli�ed in presence of

load, which explains the drying creep.

As discussed in previous section, classical prediction method by sum-

ming up the 4 components has its shortage that is to neglect the correlation

between them. Therefore, we would like to propose a model without decom-
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posing the delayed strain to overcome the above shortage of classical model.

In the next section, we present the necessary tools that we need in the thesis.

1.3.4 Multi-axial behavior

As we are interested in mainly the containment buildings that are biaxially

prestressed concrete, we need to predict the creep of concrete under biax-

ial load. Therefore, we need to know its full 3-dimensional creep behavior.

Within the framework of isotropic linear viscoelasticity, this 3-dimensional

creep behavior is fully characterized by two creep compliances or relaxation

moduli: for instance, on top of the uniaxial creep compliance considered in

most models, we can use a viscoelastic (i.e., time-dependent) Poisson's ratio.

However, although numerous studies (e.g., (RILEM Technical Committee,

1995, 2015)) and models (e.g., FIB (2013), 1992-1-1:2005 (2004), ACI Com-

mittee 209 (2008)) are devoted to the uniaxial creep compliance, the evolution

of the viscoelastic Poisson's ratio of concrete with time has been much less

scrutinized.

A �rst issue when considering a viscoelastic Poisson's ratio is that its

de�nition is not unique. In the framework of linear isotropic viscoelasticity,

Hilton (2001) enumerated �ve di�erent ways of de�ning a time-dependent

Poisson's ratio. The most widely used two Poisson's ratios are the creep

Poisson's ratio νc and the relaxation Poisson's ratio νr, de�ned from a uniaxial

creep experiment and to a uniaxial relaxation experiment, respectively:

νc(t) = − εl(t)
εa(t)

during a uniaxial creep experiment for which σa(t) = σa0

(1.11a)

νr(t) = −εl(t)
εa0

during a uniaxial relaxation experiment for which εa(t) = εa0

(1.11b)

where εa(t) and εl(t) are the time-dependent axial and lateral strains, respec-

tively, σa(t) is the axial load, and σa0 and εa0 are constants.

These two Poisson's ratios are not equal (Tschoegl et al., 2002; Lakes and

63



CHAPTER 1. CONTEXT AND STATE OF THE ART

Wineman, 2006). However, little is known on how signi�cant the di�erence

between them is.

As to cement-based materials, Neville et al. (1983) de�ne it through a

ratio of the creep strains only, while Jordaan and Illston (1969) de�ne it

through a ratio of the total mechanical strains (which are equal to the sum

of the elastic strains and of the creep strains). For uniaxial creep tests, Neville

et al. (1983) de�ned a uniaxial creep-based Poisson's ratio as:

ν̃(t) = − εl(t)− ε
0
l

εa(t)− ε0
a

(1.12)

where εl(t), εa(t) are the total lateral and axial strain, respectively, and

where ε0
l = εl(0) and ε0

a = εa(0) are the lateral and axial elastic strains,

respectively. Thus, εl(t) − ε0
l and εa(t) − ε0

a are the lateral and axial creep

strains, respectively.

The main interest of the creep-based Poisson's ratio ν̃(t) is that only creep

strains are needed to compute it. Thus, it can be reported for any creep

experiment, even in absence of any information on the elastic properties of

the material.

For what concerns the value of the Poisson's ratio or its evolution over

time, a very large scatter is observed. For instance, with the de�nition he

chose, Neville et al. (1983) gathered the following values for the viscoelastic

Poisson's ratio: close to 0 (Ross, 1954; Furr, 1967), equal to 0.05 (Glanville

and Thomas, 1939; L'Hermite, 1959), equal to the elastic Poisson's ratio

(Duke and Davis, 1944; Polivka et al., 1963), increasing with time (Evans

and Wood, 1937), or decreasing with time (York et al., 1972). A possible

reason that could partly explain this large scatter is that the various exper-

iments gathered by Neville were performed under various �and sometimes

uncontrolled� hydric conditions. In our present work, we will focus on the

evolutions of a viscoelastic Poisson's ratio during basic creep experiments,

during which no water is exchanged between sample and environment. Such

condition is achieved either by sealing the sample (Jordaan and Illston, 1969,

1971; Kennedy, 1975; Ulm et al., 2000; Kim et al., 2005), or by controlling

the relative humidity of the environment to the same relative humidity as
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that of the sample (Gopalakrishnan, 1968).

In this thesis, we would like quantify the di�erence between the relaxation

Poisson's ratio and the creep Poisson's ratio and de�ne well the viscoelastic

Poisson's ratio that we will consider in this thesis. Then, we compare it

with alternative de�nitions found in the literature speci�c to cement-based

materials. In the end, we perform an analysis of basic creep data on concrete

from the literature, to determine how this viscoelastic Poisson's ratio evolves

with time.

1.4 Non-aging linear viscoelasticity

Concrete is an aging material, i.e., its mechanical properties depend on its

age (Mehta and Monteiro, 2006; Grasley and Lange, 2007). However, ma-

ture concrete can reasonably be considered non-aging. Also,up to about at

least 40% of its strength, concrete can reasonably be assumed to be linear

viscoelastic (Neville et al., 1983). The linearity here means that the response

to a sum of two stress (or strain) histories is the sum of the responses to each

of them taken separately, from which the Boltzmann superposition principle

is derived (Christensen, 1982).

Hence, the non-aging linear viscoelasticity would be the framework in

which we develop the model for predicting of shrinkage and creep behavior

of cement-based materials. In this section, we present �rst the constitutive

relation for an isotropic non-aging linear viscoelastic solid submitted to in-

�nitesimal strains in isothermal conditions.

One of the characteristic that we would like to include in our model

is the dependence on relative humidity of creep properties of cement-based

materials. Therefore, in second part of this section, we aim at extending the

above strain-stress relation to the case where viscoelastic behavior depends

on environmental parameters, by comparing two ways of considering the

superposition principle as already compared by Baºant (1988); Walraven and

Shen (1991).
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1.4.1 Basic constitutive relations

For an isotropic non-aging linear viscoelastic solid submitted to in�nitesimal

strains in isothermal conditions, the time-dependent state equations that link

the stress tensor σ (decomposed into the volumetric stress σv = tr(σ)/3 and

the deviatoric stress tensor s such that σ = σv1 + s, where tr is the trace

operator and 1 is the unit tensor) to the strain tensor ε (decomposed into

the volumetric strain εv = tr(ε) and the deviatoric strain tensor e such that

ε = (εv/3)1 + e) are (Christensen, 1982):

σv(t) = K(t)⊗ ε̇v(t) (1.13a)

sij(t) = 2G(t)⊗ ėij(t) (1.13b)

where t is the time since loading; ⊗ denotes for the convolution product

de�ned as f ⊗ g =
∫ t
−∞ f(t − τ)g(τ)dτ and ḟ is for derivatives with respect

to time, ḟ = df(t)/dt. Those state equations can equivalently be written as

(Christensen, 1982):

εv(t) = JK(t)⊗ σ̇v(t) (1.14a)

eij(t) =
1

2
JG(t)⊗ ṡij(t) (1.14b)

where JK(t) and JG(t) are called the bulk creep compliance and the shear

creep compliance, respectively. Creep compliances are linked to relaxation

moduli through (Christensen, 1982):

sĴK =
1

sK̂
(1.15a)

sĴG =
1

sĜ
(1.15b)
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where s is the Laplace variable and f̂(s) is the Laplace transform of a function

f(t).

Starting from the state equations 2.4a-2.4b, in uniaxial testing, we can

show that the axial stress history σa(t) and the axial strain history εa(t) are

related by (Christensen, 1982):

σa(t) = E(t)⊗ ε̇a(t) (1.16a)

εa(t) = JE(t)⊗ σ̇a(t) (1.16b)

where E(t) and JE(t) are called the uniaxial relaxation modulus and the uni-

axial creep compliance, respectively. The creep function, de�ned by JE(t)−
JE(0) is also widely used in literature (Baºant et al., 1993; Vandamme and

Ulm, 2009; Zhang, 2014).

For a uniaxial relaxation or creep test, by solving Eqs. (2.3) and Eqs.

(2.4) in the Laplace domain, we obtain an analytic expression for the uniaxial

relaxation modulus E and the uniaxial creep compliance JE in the Laplace

domain, respectively, the latter being transformed back directly (Christensen,

1982):

Ê(s) =
9K̂(s)Ĝ(s)

3K̂(s) + Ĝ(s)
(1.17a)

JE(t) =
1

9
JK(t) +

1

3
JG(t) (1.17b)
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1.4.2 Extension to the case with environment-dependent

properties

From the de�nition of compliance, we write the viscoelastic strain ε(t, t0) at

time t due to a constant stress σ0 that is applied since time t0 as following:

ε(t, t0) = σ0J(t, t0) (1.18)

where J(t, t0) is the compliance. Note that Eq. 1.18 is for 1D case for the

sake of simplicity. For the stress σ(t, t0) which stands hereby applied at

time t0 and varies over time, we can write the strain response by making

use of the principle of superposition by decomposing the stress history either

horizontally as shown in Fig. 1.5a, or vertically as shown in Fig. 1.5b.

When we follow the horizontal decomposition as in Fig. 1.5a, the strain

is the sum of the n+ 1 strain responses due to n+ 1 constant stress σ0 and

∆σi (i.e., the stress increment at time step ti) with i = 1, 2, ..., n:

ε(t, t0) = σ0J(t, t0) +
n∑
i=1

∆σiJ(t, ti) (1.19)

When the stress is di�erentiable, we can write in form of integral:

ε(t, t0) = σ0J(t, t0) +

∫ t

t0

J(t, τ)
dσ(τ)

dτ
dτ =

∫ t

−∞
J(t, τ)

dσ(τ)

dτ
dτ = J(t)⊗ σ̇(t)

(1.20)

which is the same as Eq. 2.6b.

Or, following the vertical decomposition as in Fig. 1.5b, we decompose the

stress into sum of n impulse stress σi each of which lasts from time ti to ti+1.

The strain response then can be written as the sum of n strain responses,

each of which is due to impulse stress σi:

ε(t, t0) =
n−1∑
i=0

ε(t, ti+1, ti) = −
n−1∑
i=0

σi(J(t− ti+1,v)− J(t− ti,v)) (1.21)
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Figure 1.5 � Prinple of superposition by (a) horizontal decomposition of stress
history and (b) vertical decomposition of stress history, taken from Walraven
and Shen (1991)

where σi is the mean stress at the time step i; v is the environmental pa-

rameters on which the viscoelastic properties dependent, for instance relative

humidity. When the stress is di�erentiable, we can write in form of integral:

ε(t, t0) =

∫ t

−∞
σi(τ)

∂J(t− τ,v|t−τ )
∂τ

dτ (1.22)

As shown in Fig. 1.5, when we follow the horizontal decomposition, the

dependence on environmental parameter v (e.g. temperature in Fig. 1.5)

cannot be taken into consideration as the environmental parameter is chang-

ing for each stress increment ∆σi. Hence, in order to be able to take into

account the dependence on environmental paratemeter, we follow the ver-

tical decomposition of stress history, but not the horizontal decomposition.

However, it is worth to notice that when the environmental parameter v is

constant over time, Eq. 1.22 can be reduced to Eq. 1.20 (Walraven and Shen,

1991).

In order to take into account the fact that the creep properties of cement-

based material depend on relative humidity, we will use the vertical decompo-

sition, i.e., Eq. 1.22 in our model in chapter 6. In the following, we illustrate

how to consider the environmental parameter by an example.

Let's take a material whose viscoelastic behavior depends on relative hu-

midity hr. The compliance is given by: J(t) = 1
K

+ 1
C

log(1 + t) with the

creep modulus C depending on relative humidity hr. For relative humidities
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hr between 100% and 75%, C(hr) = C0. When relative humidity hr drop

below 75%, i.e.; hr < 75%, C(hr) = C0 − α(hr − 75). Now we compute the

strain due to a constant unit stress σ = 1 applied at time t = 0. The relative

humidity hr = 100% in the beginning for time t < td and drops suddenly to

25% at time t = td and is kept constant since. Using Eq. 1.22, the strain

reads:

ε(t) =
1

K
+

∫ t

0

1

C

(
1

1 + t− τ

)
dτ (1.23)

It is important to keep in mind that using Eq. 1.23 is delicate when

the viscoelastic properties of the material depend on the environment. By

comparing three di�erent possiblities, we found that the creep compliance

C in Eq. 1.23 should be evaluated at time t − τ according to Eq. 1.22.

Evaluating the creep compliance C at time t or τ gives unphysical results.

But our comparison is not a de�nite proof of the validity of the use of Eq. 1.23

when properties are environment-dependent. How to use the correspondence

principle in general when the viscoelastic properties of the material depend on

the environment is a delicate question, which would deserve further scrutiny.

Figure 1.6 shows in the same �gure the strain response calculated from

Eq. 1.23 and the compliance at constant relative humidity at hr = 100% and

at hr = 25%, respectively.

1.5 Modeling of porous multiscale materials

As seen in section 1.2, concrete is a heterogeneous material and made of

various solid phases whose characteristic lengths vary from nanometers to

centimeters. The time-dependent properties at the scale of concrete depend

on those components that have a smaller scale than concrete. In this section,

we are going to present �rst homogenization, called also micromechanics,

which is a method to predict the properties of a heterogeneous material from

the properties of its components. In the �rst section basic procedure of

micromecanical analysis is going to be presented. Mori-Tanaka scheme and

self-consistent scheme are also going to be discussed as they are going to be
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Figure 1.6 � Strain response to a constant unit stress with various relative
humidity histories, constant or varying in time

used in the thesis. The second section is dedicated to multi-scale schemes

that are used for simulation of concrete.

As seen in section 1.2, concrete is composed from solid and pores that

are fully or partially saturated by water. Hence, concrete is subjected to

capillary e�ects and surface e�ects that is related to the movement of water

inside pores. The poromechanics suits well to study the behavior of such

a porous material. Hence, in the third section, basic idea and equations of

poromechanics are going to be presented.

1.5.1 Basics of homogenization

As mentioned above, the objective of micromechanics is to predict the prop-

erties of a composite from the properties of its components. In general,

micromechanical analysis follows three steps: de�nition of representative el-

ementary volume (REV), localization and homogenization.

In the �rst step, we de�ne REV as a volume at whose scale we are go-

ing to look for an equivalent homogenous volume that responds to a load

the same manner as the original heterogeneous material. First we de�ne the
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characteristic length d of heterogeneity and l of REV. In order to consider

homogenous behavior of REV, the characteristic length d of heterogeneity

should be much smaller than l of REV, i.e., d � l. As to the characteristic

length l of REV, it should be much smaller comparing to the characteristic

length L of structure, i.e., l � L, so that the gradient of strain and stress

�elds can be neglected over the REV. Second, we describe the internal com-

position of the REV by the geometrical shape, distribution and orientation

of each phase.

In the second step, we localize the stress or strain tensor which consists

to determine the local stress σ(x) or strain ε(x) tensor of each phase from

the applied strain E or stress Σ at the scale of VER. The vector x represents

the coordinate of the point.

ε(x) = Ai(x) : E (1.24)

where A is the fourth order strain localization tensor. Let fi denote for the

volume fraction of phase i and < z >i for volume average of quantity z over

the volume Vi of phase i, i.e., < z >i= 1/Vi
∫
Vi
zdVi, then strain localization

tensors should satisfy: ;

∑
i

fi < Ai(x) >i= I (1.25)

The third step, which is homogenization, consists to link the behavior of

the equivalent homogenous medium to the properties of heterogeneous phase

by combining the above localization, constitutive behavior of heterogeneous

phases and relation of mean values.

At the end of a micromechanical analysis, we get the sti�ness tensor Chom

of the equivalent homogenous medium as a function of sti�ness tensor Ci of

each heterogeneous phase:

Chom =
∑
i

fiCi : Ai (1.26)

For isotropic linear elastic material, the fourth order sti�ness tensor has

only two independent components: bulk modulus K and shear modulus G.
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In other words, sti�ness tensor C can be written as: C = 3KJ + 2GK, with
J and K the volumetric and deviatoric part of the fourth-order symmetric

unit tensor I, respectively. I is de�ned as Iijkl = 1/2(δikδjl + δilδjk) in which

and δij stands for the Kronecker delta. Then, the Eq. 1.26 can be reduced

to following two scalar equations:

Khom =
∑
i

fiA
sph
i Ki (1.27a)

Ghom =
∑
i

fiA
dev
i Gi (1.27b)

where Asphi and Adevi are the spherical and deviatorical part of strain local-

ization tensor Ai of phase i.

Hence, the question is to determine the strain localization tensor Ai,

i.e., Asphi and Adevi , which depends on the description of the VER and the

hypothesis that are supposed at the step of localization. In the following,

we are going present two homogenization schemes that are going to be used

in this thesis: Mori-Tanaka's scheme and self-consistent scheme. Both of

the two schemes are based on the solution of Eshelby's inclusion problem

(Eshelby, 1957). In this thesis we restrict ourselves only on the cases where

all inclusions are spherical.

The Mori-Tanaka's scheme (Mori and Tanaka, 1973) is intended for ma-

terials which are composed from a matrix that embeds inclusions inside. The

matrix phase, noted i = m for subscript, is continuous and totally incloses

each of the inclusions. The main hypothesis is that the inclusions do not

in�uence each other. Therefore, by considering each inclusion as embed-

ded into an in�nite matrix, the phase m, and making use of the solution of

Eshelby's inclusion problem, we get the strain localization tensor of Mori-
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Tanaka's scheme (Zaoui, 1999):

Asphi =
(1 + αm(Ki/Km − 1))−1∑

i

fi(1 + αm(Ki/Km − 1))−1
(1.28a)

Adevi =
(1 + βm(Gi/Gm − 1))−1∑

i

fi(1 + βm(Gi/Gm − 1))−1
(1.28b)

with αm = 3Km/(3Km + 4Gm) and βm = 6(Km + 2Gm)/(15Km + 20Gm).

For a composite made from matrix m and one type of inclusions i, insert-

ing Eq. 4.2 into Eq. 1.27, the bulk modulus Khom and shear modulus Ghom

of a composite made from an elastic matrix and elastic spherical inclusions

can be computed as following:

Khom =
(1− fi)(Km + αm(Ki −Km)) + fiKi

(1− fi)(Km + αm(Ki −Km)) + fiKm

Km (1.29a)

Ghom =
(1− fi)(Gm + βm(Gi −Gm)) + fiGi

(1− fi)(Gm + βm(Gi −Gm)) + fiGm

Gm (1.29b)

where Km and Gm are the bulk and shear modulus of matrix, respectively;

Ki and Gi are the bulk and shear modulus of inclusions, respectively; fi is

the volume fraction of inclusions.

Self-consistent scheme (Budiansky, 1965; Hill, 1965) is intended for ma-

terials in which none of the phase plays dominating a role. It is supposed

that each of the phase is surrounded by the equivalent homogenous materials

that we are looking for. Therefore, by considering each phase as embedded

into an in�nite matrix, i.e., the equivalent homogenous medium hom, and

making use of the solution of Eshelby's inclusion problem, we get the strain
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localization tensor of Self-consistent scheme:

Asphi =
(1 + αhom(Ki/Khom − 1))−1∑

i

fi(1 + αhom(Ki/Khom − 1))−1
(1.30a)

Adevi =
(1 + βhom(Gi/Ghom − 1))−1∑

i

fi(1 + βhom(Gi/Ghom − 1))−1
(1.30b)

with αhom = 3Khom/(3Khom+4Ghom) and βhom = 6(Khom+2Ghom)/(15Khom+

20Ghom).

For a composite made from phase 1 and phase 2, inserting Eq. 1.30 into

Eq. 1.27, the bulk modulus Khom and shear modulus Ghom of a composite

made from two phases can be obtained by solving the following implicit Eqs.:

Khom =
(1− αhom)(f1K1 + (1− f1)K2)Khom + αhomK1K2

(1− αhom)Khom + αhom((1− f1)K1 + f1K2)
(1.31a)

Ghom =
(1− βhom)(f1G1 + (1− f1)G2)Ghom + βhomG1G2

(1− βhom)Ghom + βhom((1− f1)G1 + f1G2)
(1.31b)

whereK1 and G1 are the bulk and shear modulus of the phase 1, respectively;

K2 and G2 are the bulk and shear modulus of the phase 2, respectively; f1

is the volume fraction of phase 1.

1.5.2 Multi-scale scheme of concrete

As presented in section 1.2, the size of component of concrete varies from cen-

timeters (size of aggregates) to nanometers (size of C-S-H particles). Hence,

micromechanical modeling of concrete is normally achieved by several steps

of homogenization. This section aims at resuming homogenization schemes

for concrete in literature.

Based on length of various phases in microstructure of concrete, researchers

adapted di�erent multi-scale scheme of concrete, depending on the problem

they want to resolve or on the method of observation they used on concrete.
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The di�erent schemes that are found in literature di�er slightly from each

other, but still can be resumed as following (in the order of from larger scale

to smaller scale):

1. At the largest scale of concrete, the aggregates are considered as spher-

ical inclusions and are embedded into a matrix made of cement paste.

Given the matrix-inclusion morphology, Mori-Tanaka scheme is used

(Bernard et al., 2003b; Pichler et al., 2007; Sanahuja et al., 2007; Pich-

ler and Hellmich, 2011).

2. At the scale below of cement paste, due to di�erent consideration of size

of clinker and portlandite, di�erent schemes are adapted by di�erent

authors:

(a) Bernard et al. (2003b) consider the cement paste as a mixture of

unhydrated clinker grains, portlandite crystals and C-S-H matrix

(including gel porosity) and used self-consistent scheme. At the

scale below of C-S-H matrix, low density (LD) C-S-H phase is

considered to be the matrix that embeds high density (HD) C-S-

H phase (see Fig. 1.7a).

(b) Constantinides and Ulm (2004) consider unhydrated clinker grains

and portlandite crystals as inclusions that are embedded in C-S-H

matrix (including gel porosity) and used Mori-Tanaka's scheme.

At the scale below of C-S-H matrix, low density (LD) C-S-H phase

is considered to be the matrix that embeds high density (HD) C-

S-H phase (see Fig. 1.7b).

(c) Sanahuja et al. (2007) consider matrix-inclusions morphology, where

the matrix and inlcusion phase are as following: the matrix is

a mixture of capillary pores and low density (LD) C-S-H phase

and used mori-Tanaka scheme; the inclusion phase is composed of

spheres, with the unhydrated clinker is the core that is coated by

a layer of high density (HD) C-S-H phase (see Fig. 1.7c).

(d) Pichler et al. (2007) consider unhydrated clinker grains, port-

landite, gypsum, ettringite, monosulfate as spherical inclusions
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Figure 1.7 � Multiscale schemes adopted by (a) Bernard et al. (2003b); (b)
Constantinides and Ulm (2004); (c)Sanahuja et al. (2007); (d) Pichler et al.
(2007); (e) Ghabezloo (2010); (f) Pichler and Hellmich (2011). MT, SC, CS
represent Mori-Tanaka scheme, self-consistent scheme and composite sphere,
respectively.
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that are embedded in a matrix of the mixture of C-S-H gel and

capillary pores. The Mori-Tanaka's scheme is used. At the scale

below, spherical capillary pores are considered as inclusions that

are embedded in C-S-H gel. At the scale below of C-S-H gel,

low density (LD) C-S-H is considered as a matrix that surrounds

high density (HD) C-S-H that is considered to be spherical (see

Fig. 1.7d).

(e) Ghabezloo (2010) consider unhydrated clinker grains, portlandite,

low density (LD) C-S-H phase and high density (HD) C-S-H phase

as same scale particles that are arranged together and used self-

consistent scheme. At the scale below, both low density (LD)

C-S-H phase and high density (HD) C-S-H phase are respectively

considered to be the mixture of C-S-H particles and gel pores. At

this scale, self-consistent scheme is used (see Fig. 1.7e).

(f) Pichler and Hellmich (2011) consider unhydrated clinker grains

as inclusions that are embedded in a matrix of hydrate foam and

used Mori-Tanaka's scheme. At the scale below of hydrate foam,

hydrates and capillary pores are considered to be particles that

arranged together and used self-consistent scheme. The hydrates

are considered to be needle-shaped while capillary pores are con-

sidered to be spherical (see Fig. 1.7f).

In conclusion, there is several types of multi-scale scheme that can sim-

ulate the mechanical behavior of concrete. At the scale of concrete, matrix-

inclusion morphology with Mori-Tanaka's scheme seems mostly appropriate.

At other scales below, depending on the authors, di�erent options are avail-

able. As the microstructure of cement-based materials is not exactly same

as the hypothesis of homogenization schemes, we cannot judge which of the

above homogenization schemes is the best.

1.5.3 Poromechanics

This chapter is intended to present basic knowledge about poromechanics

which describes the mechanical behavior of porous solids. By porous solid,
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we mean here a solid with pore networks through which �uid can �ow across.

For a porous solid, the non-loaded state is noted as reference state. At

this reference state, the volume of porous solid V0 and the volume of pore

space VV 0 are noted as reference volume of porous solid and reference volume

of pores, respectively. The porosity of porous solid is de�ned as:

φ =
VV
V0

(1.32)

where VV is the volume of pores at any state. At reference state, taking pore

volume VV 0 we obtain the reference porosity φ0.

When an isotropic elastic porous solid is submitted to a mechanical load

σ, the strain response is given by (Coussy, 2004):

σv = Kεv − bP (1.33a)

φ− φ0 = bεv +
P

N
(1.33b)

sij = 2Geij (1.33c)

where b and N are the Biot coe�cient and Biot skeleton modulus, respec-

tively; P is the pressure in pores; K and G are the elastic bulk modulus

and elastic shear modulus of porous solid, respectively; the stress and strain

components are de�ned exactly in the same way as in Eq. 2.3.

From Eq. 1.33a, we can see that the strain of porous solid is caused by

σ′v = σv + bP, (1.34)

which is de�ned as Biot's e�ective stress. When the solid phase is incom-

pressible, the Biot coe�cient of porous solid is equal to 1, from where the

e�ective stress equals to Terzaghi's e�ective stress, σ′v = σv + P .

For porous solid in which the pore space is �lled by water and air, the
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degree of saturation Sl is de�ned as:

Sl =
Vw
VV

(1.35)

When the porous solid is fully saturated, i.e., Sl=1, the pore pressure P

equals to the pressure of water P = Pw. When the porous solid is partially

saturated, i.e., Sl <1, the pore pressure P can be computed to be equal to

SlPc (Coussy, 2004) or
∫
PcdSl (Coussy et al., 2004). The latter expression

takes into account surface e�ects while the former expression neglects these

e�ects. In the thesis, as we are dealing mainly the cases where relative

humidity stays over 40%, we choose to use the former expression, P = SlPc.

The bulk modulus K, shear modulus G or Biot coe�cient b of porous

solid can be computed using micromechanics. Taking Mori-Tanaka homoge-

nization scheme, we can use Eq. 1.29 to obtain the bulk modulusK and shear

modulus G. The Biot coe�cient b, meanwhile, reads as following (Ghabezloo,

2010):

b = φAsphφ (1.36)

where Asphφ is the spherical part of strain localization tensor of pores.

When the Poisson's ratio νs of solid skeleton equals to 0.2, using the Mori-

Tanaka scheme, the bulk modulus K, shear modulus G and Biot coe�cient

of porous solid reads as following:

K =
1− φ
1 + φ

Ks (1.37a)

G =
1− φ
1 + φ

Gs (1.37b)

b =
2φ

1 + φ
(1.37c)

The micromechanical analysis can be used also to compute the Biot co-

e�cient of a porous material with double porosity which is composed from

l(l < m) porous phase, m− l solid phase and pores. It should be noted that
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the size of the pores is much larger than the size of the pores of the porous

phase. For such a material, the Biot coe�cient bhom reads:

bhom = 1−
m∑
i=1

(fiA
sph
i (1− bi)) (1.38)

where bi is the Biot coe�cient of phase i. For porous phase, the Biot coef-

�cient bi is computed from Eq. 1.36; for solid phase, the Biot coe�cient bi
equals to 1.

Coussy (2004) also extended poroelasticity to viscoelastic porous mate-

rials. When the porous solid is viscoelastic, the constitutive law in Eq. 1.33

reads as following:

σv(t) = K(t)⊗ ε̇v(t)− b(t)⊗ Ṗ (t) (1.39a)

φ(t)− φ0 = b(t)⊗ ε̇v + JN(t)⊗ Ṗ (t) (1.39b)

sij(t) = 2G(t)⊗ ėij (1.39c)

where b(t) and JN(t) are viscoelastic parameters that corresponds in elastic

case the Biot coe�cient b and the inverse of Biot skeleton modulus, 1/N ;

K(t) and G(t) are the bulk and shear relaxation modulus of porous solid,

respectively. The stress and strain components are de�ned exactly in the

same way as in Eq. 2.3.

1.6 Models for creep and shrinkage of cement-

based materials

Most of design codes predict shrinkage and creep of cement-based materials

as they have to be take into account in design. Moreover, since the physical

mechanism and in�uencing parameter of shrinkage and creep behavior is not

fully understood yet, researchers have been trying to propose new models in

order to better take into account new �ndings since decades. The prediction
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model of creep and shrinkage can be divided into two groups: the models that

follow the classical decomposition of delayed strain of cement-based materi-

als. Examples of this type of models can be found in the work of RILEM

Technical Committee (1995); Granger (1995); Le Roy (1995); Gardner and

Lockman (2001); 1992-1-1:2005 (2004); Benboudjema et al. (2005); ACI Com-

mittee 209 (2008); FIB (2013); RILEM Technical Committee (2015); and the

models that do not presuppose the decomposition of delayed strain. As far

as we know, the only model of this type is the model of Sellier et al. (2016)

and its previous version Sellier and Bu�o-Lacarriere (2009).

In the following, we present the B4 model of RILEM Technical Committee

(2015) and the model of Sellier et al. (2016) as examples of each type of model.

1.6.1 B4 Model of Baºant et al.

The B4 model of RILEM Technical Committee (2015) is fourth in a series

of progressively improved model at Northwestern University. It is based on

solidi�cation theory, theory of microporestress relaxation in nano-structure,

activation energy concept, moisture di�usion theory and damage models for

microcracking (Baºant, 1988; Baºant and Prasannan, 1989; Baºant et al.,

1997; Jirásek and Bazant, 2002). The same mathematical form as B3 model

is used. The model is formulated for 1D problem.For a specimen in reference

temperature 20◦C, time-dependent strain ε(t) is computed as following:

ε(t) =

(
1

E0

+ C0(t, t′) + Cd(t, t
′, t− t0)

)
σ0 + εd,sh(t− t0, t0) + εa,sh(t− t0, t0)

(1.40)

where t, t′, t0 are current age, age at loading and age at the start of envi-

ronmental exposure in days, respectively; σ0 is the constant load applied at

the age t′; E0, C0(t, t′), Cd(t, t
′, t − t0) are the instantaneous creep modulus

(i.e., Young's modulus) at the age of loading, basic creep function and drying

creep function, respectively; εd,sh(t− t0, t0), εa,sh(t− t0, t0) are strain due to

drying shrinkage and autogenous shrinkage, respectively.

Autogenous shrinkage is supposed to be asymptotic and evolves as a
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power function. The �nal value of autogenous shrinkage depends on water-

to-cement ratio, aggregate-to-cement mass ratio and the type of cement.

Drying shrinkage is also considered to be asymptotic. The �nal value

of drying shrinkage depends on water-to-cement ratio, aggregate-to-cement

mass ratio, the volume fraction of cement in mixture and the type of cement.

The kinetics of drying shrinkage is in�uenced by the size of sample that

in�uences the kinetics of drying.

Basic creep is considered as non-asymptotic and evolves as a logarithmic

function of time. In fact, the model supposes that the derivative of basic

creep compliance is a function of the inverse of time since loading. The basic

creep depends on also water-to-cement ratio, aggregate-to-cement mass ratio

and the type of cement.

Drying creep is considered to be asymptotic. The �nal value of drying

creep depends on water-to-cement ratio, aggregate-to-cement mass ratio and

the type of cement. The �nal value of drying creep is considered to be

proportional to the �nal value of drying shrinkage.

The model parameters are �tted to database of Northwestern University

that contains 1400 creep tests and 1050 shrinkage tests and also includes

data on 69 bridges. To predict time-dependent strain of a concrete specimen

at a given age t, the input parameters are as following: cement type, age

at loading, age when drying begins, mean cylinder compressive strength,

volume-surface ratio of specimen, cement content, water-cement mass ratio,

aggregate-cement mass ratio, applied compressive stress, admixture content.

For practical reasons in engineering design, the B4 model is also proposed

in a simpli�ed form B4s which predicts shrinkage and creep based on only

the mean strength that is required in the structure.

As to non-isothermal condition, temperature is considered to have accel-

eration or deceleration e�ects on creep and shrinkage rate. Thus, tempera-

ture e�ect is taken into account, using the concept of thermo-activation of

the process, by horizontal shift of the curves of the reference temperature in

logarithmic scale.

The B4 model predicts the long-term delayed strain of concrete rather

well as it is based on large data base that includes signi�cant number of
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long-term tests.

1.6.2 Model of Sellier et al.

Rather di�erent from the B4 model, Sellier et al. (2016) do not decompose

the delayed strain. Instead, the model is based on poromechanics, where the

e�ect of drying is integrated via the concept of e�ective stress. The e�ect of

drying also re�ects on the material properties.

The model is formulated for 3D case. In a Cartesian coordinate system

whose three axes are same as the eigen-directions of stress tensor, the e�ective

stress reads as:

∂σi
∂t

=
∂σ′i
∂t

+
∂(bSlPc)

∂t

(
1 +
| σi |
σdc

)
(1.41)

where σi is the total normal stress in the direction i; b is Biot coe�cient; Sl
is saturation degree; Pc is capillary pressure; σdc is a �tting parameter such

that the equivalent capillary pressure e�ects are doubled when the material

is subjected to a compression.

Then, elastic strain εEi due to e�ective stress σ′i in the direction i is

computed. The delayed strain is computed from the elastic strain εEi and

material creep properties. In fact, using idealized rheological model (see

Fig. 1.8), Sellier et al. (2016) decomposed the time-dependent strain εi(t)

into three parts:

εi(t) = εEi + εMi (t) + εKi (t) (1.42)

where εMi and εKi are the permanent creep and reversible creep, and corre-

spond to Maxwell chain and Kelvin chain in Fig. 1.8, respectively. Both of

the permanent creep εMi and reversible creep εMi depend on elastic strain εEi :

∂εMi
∂t

=
εEi
τMi

(1.43a)

∂εKi
∂t

=
1

τK

(
εEi
ψK
− εKi

)
(1.43b)
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where τMi and τKi are the characteristic times that are associated with per-

manent creep and reversible creep, respectively. ψK is a �tting parameter so

that the amplitude of reversible creep equals to εKi /ψ
K . The characteristic

times τMi and τKi depend on temperature and water content (hence, relative

humidity).

It is noteworthy that the decomposition of delayed strain used by Sellier

et al. (2016) is not at all the same as the classical decomposition. In the

former case, the decomposition is same for various hydric conditions and

loading condition. The delayed strain of any hydric and loading case cannot

be obtained by summing up the delayed strains of other cases.

The strain of a non-loaded specimen exchanging no water with outside,

i.e., autogenous shrinkage, is not considered in this model.

The drying shrinkage, i.e., when the non-loaded specimen is exchanging

water with outside, is the sum of elastic strain, permanent creep and re-

versible creep under the e�ective stress due to capillary pressure, which is

computed from Eq. 1.41.

The basic creep, i.e., when specimen is loaded but not exchanging water

with outside, is the sum of elastic strain, permanent creep and reversible creep

under the stress due to applied load, as e�ective stress equals to applied load

according to Eq. 1.41. Under isothermal condition, the basic creep under a

constant load evolves as a logarithmic function of time at long term.

The strain of the specimen that is loaded and exchanging water with

outside is computed by the same way as drying shrinkage and basic creep.

The only di�erence lies in e�ective stress: in this case, the e�ective stress is

greater than the sum of the e�ective stresses for the case of drying shrinkage

and basic creep, due to the �tting parameter σdc in Eq. 1.41. Therefore, the

delayed strain of the loaded specimen exchanging water is greater than the

sum of the delayed strain of a loaded specimen with exchanging no water

with outside and of a non-loaded specimen exchanging water with outside.

In other words, the drying creep (i.e., Pickett e�ect) is captured.

The model is also coupled with damage model to take into account the

part of structural e�ect in drying creep.
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Figure 1.8 � Idealized rheological model used in poromechanical model of
Sellier et al. (2016)

1.7 Conclusions and thesis outline

In this chapter, we presented �rst the microstructure and hydration model

of cement-based materials. Then, brie�y presented are the useful tools that

are going to be used in the thesis: non-aging isotropic linear viscoelasticity,

micromechanics and poromechanics.

In the thesis we aim at understanding long-term shrinkage and creep

behavior of concrete under multiaxial load without postulating the classical

decomposition of delayed strain. Concrete is regarded as poroviscoelastic

multi-scale material, on which applied are the mechanical load and hydric

load. The mechanical behavior of concrete is modeled within the framework

of non-aging isotropic linear viscoelasticity. We use the micromechanics to

interpret involving physical phenomena at microscale from the macroscopic

observations. Poromechanics is also going to be used to take into account

the e�ect of hydric load.

In order to characterize the delayed strain under biaxial load, our study

�rst concentrates on the viscoelastic Poisson's ratio of concrete. The chapters

2 and 3 are dedicated to the de�nition of Poisson's ratio in non-aging linear

isotropic viscoelasticity and experimental results in literature from which we

can obtain the viscoelastic Poisson's ratio of concrete, respectively. As an

extension, in chapter 4, we use micromechanics to shed some lights on the

long-term creep mechanism of concrete at the scale of C-S-H.
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In the second step, we aim at proposing a poroviscoelastic model without

decomposing the delayed strain. In chapter 5, we analyze experimental data

of basic creep and autogenous shrinkage from literature to �nd out possible

physical origin of long-term autogenous shrinkage. Then, based on porome-

chanics and physical phenomena, a poroviscoelastic model is going to be

proposed in chapter 6.

We end up by concluding the �ndings of the thesis work and giving some

perspectives for the future.
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Chapter 2

Poisson's ratio in linear

viscoelasticity

T
he Poisson's ratio is a well-de�ned parameter in elasticity. For time-

dependent materials, multiple de�nitions based on the ratios between

lateral and axial deformations are available. Here, we focus on the two most

widely used de�nitions in the time domain, which de�ne time-dependent

functions that we call relaxation Poisson's ratio and creep Poisson's ratio.

Those two ratios are theoretically di�erent, but are linked in an exact man-

ner through an equation that we derive. We show that those two functions are

equal at both initial and large times, and that their derivatives with respect to

time also are. Based on simple rheological models for both the deviatoric and

volumetric creep behaviors, we perform a parametric study and show that the

di�erence between those two time-dependent Poisson's ratios can be signi�-

cant. However, based on creep data available in the literature, we show that,

for cementitious materials, this di�erence can be negligible or not, depending

on the case.1

1This chapter is published as Aili, A., Vandamme, M., Torrenti, J.-M., & Masson, B.
(2015). Theoretical and practical di�erences between creep and relaxation Poisson's ratios
in linear viscoelasticity. Mechanics of Time-Dependent Materials, 19(4), 537-555.
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L
e coeifficient de Poisson est un paramètre bien dé�ni en élasticité.

Pour les matériaux dépendant du temps, il est possible de dé�nir un

coe�cient de Poisson en se basant sur les rapports entre les déformations

latérales et axiales. Nous nous intéressons ici aux deux dé�nitions les plus

utilisées dans le domaine temporel, qui dé�nissent des fonctions dépendant

du temps que nous appelons le coe�cient de Poisson de relaxation et le coef-

�cient de Poisson de �uage. Ces deux coe�cients de Poisson sont théorique-

ment di�érents, mais sont liés de manière exacte par une équation que nous

dérivons. Nous montrons que ces deux fonctions sont égales au temps initial

et à l'in�ni, et que leurs dérivées par rapport au temps le sont également.

Supposant des modèles rhéologiques simples pour les comportements déviato-

rique et volumétrique, nous menons une étude paramétrique et montrons que

la di�érence entre ces deux coe�cients de Poisson dépendant du temps peut

être signi�cative. Cependant, en se basant sur des données de �uage de la

littérature, nous montrons que, pour les matériaux cimentaires, selon le cas,

cette di�érence peut être négligeable ou non.
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For an isotropic body, the elastic Poisson's ratio ν0 is de�ned unambigu-

ously as the ratio of the lateral contraction −εl to the elongation εa in the

in�nitesimal deformation under uniaxial load, that is:

ν0 = − εl
εa
. (2.1)

By extension, for linear viscoelastic materials, we can aim at de�ning a time-

dependent Poisson's ratio (Varst and Kortsmit, 1992; Hilton, 2001; Tschoegl

et al., 2002; Lakes and Wineman, 2006; Hilton, 2011). However, such an aim

can generate some ambiguity, since Hilton (2001) enumerated �ve di�erent

ways of de�ning a time-dependent Poisson's ratio. Here, by using a direct

extension of Eq. 2.1 to a uniaxial creep experiment and to a uniaxial relax-

ation experiment, we de�ne what we will call the creep Poisson's ratio νc and

the relaxation Poisson's ratio νr:

νc(t) = − εl(t)
εa(t)

during a uniaxial creep experiment for which σa(t) = σa0

(2.2a)

νr(t) = −εl(t)
εa0

during a uniaxial relaxation experiment for which εa(t) = εa0

(2.2b)

where εa(t) and εl(t) are the time-dependent axial and lateral strains, respec-

tively, σa(t) is the axial load, and σa0 and εa0 are constants. Note that these

de�nitions are speci�c to the case of creep and relaxation with an instanta-

neous loading: indeed, even in the case of uniaxial compression only, various

load histories lead to various evolutions of the ratio of the lateral dilation to

the axial contraction over time.

With respect to the terminology used by Hilton (2001), our creep Pois-

son's ratio νc corresponds to his type I de�nition restricted to a uniaxial creep

experiment, whereas our relaxation Poisson's ratio corresponds to his type

II de�nition. These two Poisson's ratios are not equal (Tschoegl et al., 2002;

Lakes and Wineman, 2006). However, little is known on how signi�cant the

di�erence between them is. Quantifying such a di�erence is the main goal of
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this work.

Better understanding how Poisson's ratios evolve with time is relevant for

a variety of applications, among which we �nd the estimation of service life of

the containment of French nuclear power plants. Indeed, the containment of

French nuclear power plants is made of a biaxially prestressed concrete and

designed to withstand an internal pressure of 0.5 MPa in case of an accident.

In order to avoid tensile stresses in concrete, the applied prestress corresponds

to compressive stresses in concrete of around 8.5 MPa and 12 MPa along

vertical and orthoradial axes, respectively (Torrenti et al., 2014). To limit

cracking of concrete, tensile stresses should remain below the tensile strength

of concrete in case of accident. That is why the evolution of prestressing forces

with respect to time is critical for the operation of nuclear power plants and

for the optimization of their service life. Consequently, a good prediction

of the evolution of delayed strains of the containment under a biaxial stress

condition is needed.

In this chapter, starting from the basic equations of linear viscoelastic-

ity, we derive a relationship between the two time-dependent Poisson's ratios

just introduced. We speci�cally consider how their values and their deriva-

tives can be compared at short and long times. Then, a parametric study

of the di�erence between them over all times is performed, based on com-

mon rheological models. In the last section, we consider the practical case of

cementitious materials (on which creep data in both axial and lateral direc-

tions are available from the literature): for this speci�c class of materials, the

di�erence between the two time-dependent Poisson's ratios is scrutinized.

2.1 Theoretical derivations

This section is devoted to derive analytical relations pertaining to the creep

Poisson's ratio νc and the relaxation Poisson's ratio νr. First, from the basic

equations of viscoelasticity we derive expressions of the two Poisson's ratios.

Then, we derive relation between them and compare their initial and long-

time asymptotic values and derivatives with respect to time.
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2.1.1 Viscoelastic constitutive relations

We restrict ourselves to an isotropic nonaging linear viscoelastic solid sub-

mitted to in�nitesimal strains in isothermal conditions. For such a case, the

time-dependent state equations that link the stress tensor σ (decomposed

into the volumetric stress σv = tr(σ)/3 and the deviatoric stress tensor s

such that σ = σv1 + s, where tr is the trace operator, and 1 is the unit ten-

sor) to the strain tensor ε (decomposed into the volumetric strain εv = tr(ε)

and the deviatoric strain tensor e such that ε = (εv/3)1+e) are (Christensen,

1982):

σv(t) = K(t)⊗ ε̇v(t) (2.3a)

sij(t) = 2G(t)⊗ ėij(t) (2.3b)

where ⊗ denotes for the convolution product de�ned as f ⊗ g =
∫ t
−∞ f(t −

τ)g(τ)dτ and ḟ is for derivatives with respect to time, ḟ = df(t)/dt. Those

state equations can equivalently be written as (Christensen, 1982):

εv(t) = JK(t)⊗ σ̇v(t) (2.4a)

eij(t) =
1

2
JG(t)⊗ ṡij(t) (2.4b)

where JK(t) and JG(t) are called the bulk creep compliance and the shear

creep compliance, respectively. Creep compliances are linked to relaxation

moduli through (Christensen, 1982):

sĴK =
1

sK̂
(2.5a)

sĴG =
1

sĜ
(2.5b)
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where s is the Laplace variable, f̂(s) is the Laplace transform of a function

f(t).

Starting from the state equation 2.4, in uniaxial testing, we can show that

the axial stress history σa(t) and the axial strain history εa(t) are related by

(Christensen, 1982):

σa(t) = E(t)⊗ ε̇a(t) (2.6a)

εa(t) = JE(t)⊗ σ̇a(t) (2.6b)

where E(t) and JE(t) are called the uniaxial relaxation modulus and the

uniaxial creep compliance, respectively. For a uniaxial relaxation or creep

test, by solving Eqs. 2.3 and 2.4 in the Laplace domain, we obtain an ana-

lytic expression for the uniaxial relaxation modulus E and the uniaxial creep

compliance JE in the Laplace domain, respectively, the latter being trans-

formed back directly:

Ê(s) =
9K̂(s)Ĝ(s)

3K̂(s) + Ĝ(s)
(2.7a)

JE(t) =
1

9
JK(t) +

1

3
JG(t) (2.7b)

In the uniaxial relaxation test, for which εa(t) = εa0, by substituting

this condition into Eq. 2.3 and solving it in Laplace domain, the relaxation

Poisson's ratio is found:

ν̂r(s) =
3K̂(s)− 2Ĝ(s)

2s(3K̂(s) + Ĝ(s))
(2.8)

For the uniaxial creep test, for which σa(t) = σa0, Eq. 2.4 is solved directly

in the time domain, which yields an analytic expression of the creep Poisson's
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ratio νc in time:

νc(t) =
3JG(t)− 2JK(t)

2(3JG(t) + JK(t))
(2.9)

In the creep test, the ratio between the Laplace transform ε̂l of the lateral

strain to the Laplace transform ε̂a of the axial strain is evaluated and found

to be equal to −sν̂r. By transforming this equality back to the time domain

we have:

ε̂l = −sν̂rε̂a ⇒ εl(t) = −νr(t)⊗ ε̇a(t) (2.10)

Comparing Eq. 2.10 with Eq. 2.2a, and combining them with Eq. 2.6b, we

get the relation between the two Poisson's ratios:

νc(t) =
νr(t)⊗ J̇E(t)

JE(t)
(2.11)

Varst and Kortsmit (1992) also found this relation by writing the equilibrium

of a cylindrical bar subjected to a uniaxial load. Salençon (1983) also demon-

strated this relation, but in the Laplace domain. Note that this relationship

is only valid to relate the creep and relaxation Poisson's ratios as de�ned by

Eqs. 2.2a and 2.2b, respectively. In contrast, if the loading is not applied

instantaneously, then how the ratio between lateral and axial strains evolves

over time during the creep phase is related in a di�erent manner to how this

same ratio evolves over time during the relaxation phase.

2.1.2 Comparison of relaxation Poisson's ratio and creep

Poisson's ratio

Equations 2.8 and 2.9 indicate that both the relaxation Poisson's ratio νr and

the creep Poisson's ratio νc can be expressed as functions of the relaxation

moduli, even though they are de�ned with reference to a speci�c loading path.

In order to evaluate the di�erence between the relaxation Poisson's ratio νr
and the creep Poisson's ratio νc, their initial and long-time asymptotic values

are compared �rst.
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At time t = 0, the relaxation modulus and creep compliance are equal to

their elastic values, that is, K(t = 0) = K0, G(t = 0) = G0, JK(t = 0) =

JK0 = K−1
0 , JG(t = 0) = JG0 = G−1

0 . By using the initial value theorem

(Auliac et al., 2000), the value of the relaxation Poisson's ratio νr at time 0

is evaluated:

νr (0) = lim
s→+∞

sν̂r(s) = lim
s→+∞

3K̂ − 2Ĝ

6K̂ + 2Ĝ

s

s
=

3K0 − 2G0

6K0 + 2G0

= ν0. (2.12)

What concerns the creep Poisson's ratio νc, evaluating Eq. 2.9 at time t = 0

is straightforward:

νc (0) =
3JG0 − 2JK0

6JG0 + 2JK0

=
3K0 − 2G0

6K0 + 2G0

= ν0 (2.13)

Therefore, the value of both the relaxation Poisson's ratio νr and the creep

Poisson's ratio νc at time 0 is equal to the elastic Poisson's ratio ν0.

At large times (i.e., t→ +∞), the bulk and shear relaxation moduli tend

toward K∞ and G∞, respectively. Hence, an asymptotic Poisson's ratio ν∞
can be de�ned:

ν∞ =
3K∞ − 2G∞
6K∞ + 2G∞

. (2.14)

The asymptotic value of the relaxation Poisson's ratio is evaluated by using

the �nal value theorem (Auliac et al., 2000):

lim
t→+∞

νr(t) = lim
s→0

sν̂r(s) = lim
s→0

3K̂ − 2Ĝ

6K̂ + 2Ĝ

s

s
=

3K∞ − 2G∞
6K∞ + 2G∞

= ν∞, (2.15)

whereas since limt→+∞ JK(t) = 1/K∞ and limt→+∞ JG(t) = 1/G∞:

lim
t→+∞

νc(t) =
3/G∞ − 2/K∞
6/G∞ + 2/K∞

=
3K∞ − 2G∞
6K∞ + 2G∞

= ν∞. (2.16)

Therefore, both relaxation Poisson's ratio νr and creep Poisson's ratio νc tend

toward the same value ν∞ at large times.
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The relation between their derivatives with respect to time will be derived

from Eq. 2.11. The uniaxial creep compliance JE (t) is a continuous function

for times t ≥ 0, but exhibits a discontinuity at t = 0: JE(t < 0) = 0 whereas

JE(t = 0) = JE0 > 0. The existence of this discontinuity implies that the

convolution integral on the right-hand side of Eq. 2.11 is a hereditary integral.

By multiplying both sides of Eq. 2.11 by JE and simplifying the hereditary

integral, we get:

νc (t) JE (t) = νr (t) JE (0) +

∫ t

0+
νr (t− τ)

dJE (τ)

dτ
dτ . (2.17)

Di�erentiating this equation with respect to time yields:

ν̇c (t) JE (t)+νc (t) J̇E (t) = ν̇r (t) JE (0)+νr (0) J̇E (t)+

∫ t

0+

dνr(t− τ)

dt

dJE(τ)

dτ
dτ ,

(2.18)

which, after evaluation at t = 0, yields ν̇r (0) = ν̇c (0).

The relaxation Poisson's ratio νr and creep Poisson's ratio νc are known to

be bounded. In addition, in most cases, considering that, after a certain time,

those two Poisson's ratios are monotonic functions of time is a reasonable

assumption. Under such an assumption, we can therefore conclude that

their derivatives with respect to time must tend to zero, i.e.: limt→∞ ν̇r (t) =

limt→∞ ν̇c (t) = 0.

In conclusion, the initial values of the relaxation Poisson's ratio νr and of

the creep Poisson's ratio νc are equal to each other. So are their long-time

asymptotic value, their initial derivative with respect to time, and the long-

time asymptotic values of their derivatives with respect to time. However,

in spite of these similarities, over all times, those two Poisson's ratios di�er

from each other. Quantifying how di�erent those quantities are is the main

objective of the next section.
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2.2 Di�erence between relaxation and creep Pois-

son's ratios for some rheological models

This section is devoted to assessing how di�erent the relaxation Poisson's

ratio νr and the creep Poisson's ratio νc are over all times. To do so, we

perform a parametric study in which the shear and volumetric behaviors are

modeled with the most common rheological units.

Here, we consider virtual materials for which the volumetric behavior and

the deviatoric behavior are modeled with either the Maxwell unit (to model

a creep behavior that diverges with time) or the Kelvin�Voigt unit (to model

a creep behavior with an asymptotic value). All four combinations of those

units are considered (see Fig. 2.1). For simplicity, when the Kelvin�Voigt

unit is considered, then the sti�ness of the two springs it contains are set

equal to each other.
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Figure 2.1 � Rheological models used in the parametric study: (a) Both volu-
metric and deviatoric behaviors governed by the Maxwell unit; (b) Volumet-
ric behavior and deviatoric behavior governed by the Maxwell unit and the
Kelvin�Voigt unit, respectively; (c) Volumetric behavior and deviatoric be-
havior governed by the Kelvin�Voigt unit and the Maxwell unit, respectively;
(d) Both volumetric and deviatoric behaviors governed by the Kelvin�Voigt
unit.

If the bulk behavior is modeled with the Maxwell unit, then the bulk re-

laxation modulus K̂(s) in the Laplace domain and the bulk creep compliance
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JK(t) in the time domain read:

K̂ (s) =

(
s

K0

+
1

ηK

)−1

(2.19a)

JK (t) =
t

ηK
+

1

K0

. (2.19b)

In contrast, if the bulk behavior is modeled with a Kelvin�Voigt unit, the

bulk relaxation modulus K̂(s) in the Laplace domain and the bulk creep

compliance JK(t) in the time domain read:

K̂ (s) =

(
s

K0

+
s

K0 + sηK

)−1

(2.20a)

JK (t) =
1

K0

(
2− exp

(
−K0

ηK
t

))
. (2.20b)

Equivalent equations can be derived for the shear behavior.

For every combination of rheological units considered (see Fig. 2.1), by

applying the inverse Laplace transform to Eq. 2.8, in which the corresponding

time-dependent moduli have been injected, we obtain the relaxation Poisson's

ratio νr over all times. The creep Poisson's ratio νc is obtained by injecting

the corresponding creep compliances into Eq. 2.9. Details of all calculations

are provided in appendix A.

The relaxation Poisson's ratio νr and the creep Poisson's ratio νc depend

on the sti�nesses K0 and G0 of the springs, and on the viscosities ηK and ηG
of the dashpots. In fact, dimensional analysis shows that those two Poisson's

ratios νr and νc can be expressed with the following dimensionless parameters:

νc(t,K0, G0, ηK , ηG) = νc(t̃, ν0, ηK/ηG) (2.21)

νr(t,K0, G0, ηK , ηG) = νr(t̃, ν0, ηK/ηG) (2.22)
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where t̃ = tG0/ηG is a dimensionless time. This dimensional analysis de�nes

the rationale for the parametric study: For the four combinations of rheo-

logical units considered, the di�erence between the two Poisson's ratios is

studied for various values of the elastic initial Poisson's ratio ν0 ∈ [−1, 0.5]

and for a wide range of values of the ratio ηK/ηG (i.e., ηK/ηG ∈ [0.01, 100]).

Figure 2.2 displays the two Poisson's ratios νr and νc for the speci�c case of

a material whose both the volumetric and deviatoric behaviors are governed

by the Maxwell unit and for which ν0 = 0.1 and ηK/ηG = 10. We observe

that, in this case, the relaxation Poisson's ratio νr increases more rapidly and

reaches its asymptotic value earlier than the creep Poisson's ratio νc.
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Figure 2.2 � Relaxation Poisson's ratio νr(t) and creep Poisson's ratio νc(t)
for a material whose volumetric and deviatoric behaviors are governed by the
Maxwell unit and for which ν0 = 0.1 and ηK/ηG = 10.

In the following parametric study, the di�erence in the evolutions of the

two Poisson's ratios over time is characterized by two parameters: a charac-

teristic di�erence ∆ν and a retard factor f∆t that captures the retard of the

100



2.2. DIFFERENCE BETWEEN RELAXATION AND CREEP
POISSON'S RATIOS FOR SOME RHEOLOGICAL MODELS

creep Poisson's ratio νc with respect to the relaxation Poisson's ratio νr:

∆ν = νr(tm)− νc(tm) (2.23a)

f∆t =
tc
tr

(2.23b)

where tm is such that |νr(tm)− νc(tm)| = max
t
|νr(t)− νc(t)|, and tr and tc are

such that νr(tr) = νc(tc) = (ν0 + ν∞)/2.

Figure 2.3 displays the characteristic di�erence ∆ν. For a material whose

both volumetric and deviatoric behaviors are governed by the Maxwell unit

(see Figs. 2.3a and 2.1a), the characteristic di�erence ∆ν is an increasing

function of the ratio ηK/ηG and a decreasing function of the initial Poisson's

ratio ν0. For this material, the characteristic di�erence ∆ν is comprised be-

tween -0.3 and 0.3. For a material whose volumetric and deviatoric behaviors

are governed by the Maxwell unit and the Kelvin�Voigt unit, respectively

(see Figs. 2.3b and 2.1b), the characteristic di�erence ∆ν is a decreasing

function of the initial Poisson's ratio ν0. The minimum characteristic di�er-

ence is equal to −0.3 and is observed for the material for which ν0 = 0.5.

For a material whose volumetric and deviatoric behaviors are governed by

the Kelvin�Voigt unit and the Maxwell unit, respectively (see Fig. 2.1c and

Fig. 2.3c), the characteristic di�erence ∆ν is an increasing function of the

initial Poisson's ratio ν0. The maximum characteristic di�erence is equal to

0.3 and is observed for the material for which ν0 → −1. For a material whose

both volumetric and deviatoric behaviors are governed by the Kelvin�Voigt

unit (see Figs. 2.1d and 2.3d), the characteristic di�erence ∆ν is almost 0.

The observation of such a small characteristic di�erence is likely due to the

fact that we chose identical sti�nesses for the two springs of the Kelvin�Voigt

unit, for both the volumetric and deviatoric behaviors.

Figure 2.4 displays the retard factor f∆t. For a material whose both

volumetric and deviatoric behaviors are governed by the Maxwell unit (see

Figs. 2.1a and 2.4a), the retard factor f∆t is constant and equal to 1.44 for the

various values of the initial Poisson's ratio ν0 and the ratio ηK/ηG. For a ma-
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Figure 2.3 � Characteristic di�erence ∆ν between relaxation Poisson's ratio
νr(t) and creep Poisson's ratio νc(t): (a) Both volumetric and deviatoric be-
haviors governed by the Maxwell unit (see Fig. 2.1a); (b) Volumetric behavior
and deviatoric behavior governed by the Maxwell unit and the Kelvin�Voigt
unit, respectively (see Fig. 2.1b); (c) Volumetric behavior and deviatoric be-
havior governed by the Kelvin�Voigt unit and the Maxwell unit, respectively
(see Fig. 2.1c); (d) Both volumetric and deviatoric behaviors governed by the
Kelvin�Voigt unit (see Fig. 2.1d).

terial whose volumetric and deviatoric behaviors are governed by the Maxwell

unit and the Kelvin-Voigt unit, respectively (see Figs. 2.1b and 2.4b), and

for a material whose volumetric and deviatoric behaviors are governed by the

Kelvin-Voigt unit and the Maxwell unit, respectively (see Figs. 2.1c and 2.4c),

the retard factor f∆t is a monotonic function of neither the initial Poisson's

ratio ν0, nor the ratio ηK/ηG. For each of those two types of materials, the

retard factor f∆t is comprised between 1.44 and 2.08. For the material whose
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Figure 2.4 � Retard factor f∆t of the creep Poisson's ratio νc(t) with respect to
the relaxation Poisson's νr(t): (a) Both volumetric and deviatoric behaviors
governed by the Maxwell unit (see Fig. 2.1a); (b) Volumetric behavior and
deviatoric behavior governed by the Maxwell unit and the Kelvin�Voigt unit,
respectively (see Fig. 2.1b); (c) Volumetric behavior and deviatoric behavior
governed by the Kelvin�Voigt unit and the Maxwell unit, respectively (see
Fig. 2.1c).

both volumetric and deviatoric behaviors are governed by the Kelvin-Voigt

unit (see Fig. 2.1d and 2.3d), since the characteristic di�erence ∆ν between

the two Poisson's ratios is almost 0, the retard factor is not studied.

To sum up this parametric study, for some materials, the creep Poisson's

ratio νc(t) can di�er signi�cantly from the relaxation Poisson's ratio νr(t)

(see, e.g., the case of a material whose both volumetric and deviatoric be-

haviors are governed by the Maxwell unit in Fig. 2.3a). In contrast, for other

materials, the di�erence can be negligible (see, e.g., the case of a material
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CHAPTER 2. POISSON'S RATIO IN LINEAR VISCOELASTICITY

whose both volumetric and deviatoric behaviors are governed by the Kelvin-

Voigt unit in Fig. 2.3d). For all cases considered, the characteristic di�erence

∆ν between the two Poisson's ratios lies in the range [−0.3, 0.3]. In terms of

kinetics, the creep Poisson's ratio νc(t) always evolves slower than the relax-

ation Poisson's ratio νr(t): for all cases for which the di�erence between the

two Poisson's ratios is not negligible, the retard factor f∆t that we introduced

is always comprised in the range [1.44, 2.08].

2.3 Discussions

This section discusses the di�erence between the two Poisson's ratios νr and

νc, �rst in practice in the case of multiaxial creep tests on cementitious

materials, and then with respect to the elastic�viscoelastic correspondence

principle (Christensen, 1982). A brief conclusion on the di�erent usage of

the two Poisson's ratios is drawn at the end of this latter section, in which

the in�uence of the duration of the loading phase on the creep strains is also

discussed.

2.3.1 Poisson's ratio from multiaxial creep tests on ce-

mentitious materials

In order to compare the two Poisson's ratios νr and νc in practice, we consider

cementitious materials (i.e., cement paste, mortar and concrete), for which

multiaxial creep tests are available in the literature (Gopalakrishnan et al.,

1969; Jordaan and Illston, 1969; Parrott, 1974; Kennedy, 1975; Neville et al.,

1983; Bernard et al., 2003a; Kim et al., 2005). The tests here considered

characterize the so-called �basic� creep of the cementitious materials (Neville,

1995), which is measured in absence of any hydric transfer and to which

any time-dependent deformation observed on a nonloaded specimen (i.e.,

autogenous shrinkage) is subtracted.

We consider that the coordinate frame is oriented in the principal direc-

tions, which are numbered from 1 to 3. The principal stresses and strains

in those principal directions are denoted σi(t) and εi(t), respectively, with
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i = 1, 2, 3. For a multiaxial creep test, the stresses are kept constant over

time, that is, σi(t) = σi0. For such a test, the linearity of the material makes

it possible to extend Eqs. 2.2a and 2.10 to �nd out the viscoelastic stress�

strain relations valid in the case of multiaxial solicitation, expressed in terms

of either the relaxation Poisson's ratio νr(t) or the creep Poisson's ratio νc(t):

εi(t) = JE(t)σi0 − (σj0 + σk0)νr(t)⊗ J̇E(t), where i 6= j 6= k ∈ {1, 2, 3}
(2.24a)

εi(t) = JE(t)σi0 − (σj0 + σk0)νc(t)JE(t), where i 6= j 6= k ∈ {1, 2, 3}.
(2.24b)

Here, we consider experimental results available in the literature (see

Fig. 2.5), and by using Eqs. 2.24a and 2.24b, we compute the experimental

values of the Poisson's ratios νr and νc. The details of the computation are

given in appendix B. Note that the Poisson's ratios displayed on Figs. 2.5a-c

exhibit very di�erent trends over time: some increase, one decreases, and one

remains constant. For such a variety of cases, we compare the relaxation and

creep Poisson's ratios with each other.

Figure 2.5a displays results of a biaxial creep test on a cubic concrete

sample of Jordaan and Illston (1969). The two Poisson's ratios reach their

asymptotic value in less than 10 days, during which they vary by about 0.004.

The di�erence between them is smaller than 0.0002, which is negligible: they

can be considered as equal to each other. Note that such a trend of almost

constant Poisson's ratios is observed with other experimental data on con-

crete available in the literature (i.e., namely the data in Kennedy (1975);

Stockl et al. (1989); Kim et al. (2005)): with such data, relaxation and creep

Poisson's ratio can again be considered as equal to each other. The results

from a uniaxial creep test on a cuboid sample of cement paste of Parrott

(1974) are displayed in Fig. 2.5b. Both Poisson's ratios decrease by about

0.05 in about a dozen of days. The di�erence between the two Poisson's ra-

tios is always smaller than 0.004, which, depending on the applications, can

be considered as negligible or not. The last case displayed in Fig. 2.5c is that
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Figure 2.5 � Experimental data of multiaxial creep experiments on cementi-
tious materials: (a) biaxial creep test on cubic concrete sample of Jordaan
and Illston (1969), (b) uniaxial creep test on a cuboid sample of cement paste
of Parrott (1974), (c) triaxial creep tests on cylindrical specimens of leached
cement paste and mortar of Bernard et al. (2003a).

of triaxial creep tests on cylindrical specimens of leached cement paste and

mortar of Bernard et al. (2003a). In this last case, the Poisson's ratios are

increasing functions of time and vary by about 0.157 for the cement paste

specimen and by about 0.218 for the mortar specimen 2. Here, the di�erence

between the two Poisson's ratios can be as large as 0.017 for the cement paste

specimen and 0.025 for the mortar specimen: for those specimens the di�er-

2Bernard et al. (2003a) reported only creep strains. We estimated the elastic strains
that are necessary for the computation of the creep Poisson's ratio by considering the
Young's modulus equal to 0.7 GPa and the elastic Poisson's ratio equal to 0.24 for the
leached cement paste, the Young's modulus equal to 0.5 GPa and the elastic Poisson's
ratio equal to 0.24 for mortar (Heukamp, 2003; Le Bellego, 2001).
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ence between the relaxation Poisson's ratio and the creep Poisson's ratio is

no more negligible. From this back-analysis of creep tests on cementitious

materials, we conclude that if the Poisson's ratios vary little over time, then

the di�erence between the relaxation Poisson's ratio and the creep Poisson's

ratio is negligible. In contrast, when the Poisson's ratios vary signi�cantly

over time, the di�erence between the two Poisson's ratios can be no more

negligible: whether this di�erence must be taken into account in practice

needs to be assessed case by case, that is, for each application considered.

The signi�cance of the di�erence between the two Poisson's ratios must

also be assessed by keeping in mind the accuracy of the measurement of creep

strains, which results from the accuracy of strain gauges and of temperature

control. For instance, the accuracy of the strain gauges that were used in

the biaxial creep test reported on concrete sample (see Fig. 2.5a) is 1× 10−6

(Jordaan and Illston, 1969): this accuracy leads to an uncertainty on the

creep Poisson's ratio of about 0.002, which is ten times larger than the di�er-

ence between the two Poisson's ratios in that experiment. The temperature

was controlled with an accuracy of ±1◦ C in that experiment. Considering

a thermal dilatation coe�cient of 14.5× 10−6 K−1 for concrete, uncorrected

variations of temperatures would lead to an uncertainty on the measured

strain that would be 15 times larger than the accuracy of the strain gauges.

However, in that experiment, variations of temperature were corrected so

that the uncertainty induced by variations of temperatures would be much

smaller than 15 times the accuracy of the strain gauges, although probably

nonnegligible. Also, what concerns the uniaxial creep test reported on ce-

ment paste (see Fig. 2.5b), for which the accuracy of the strain gauges they

used was 3 × 10−6 (Parrott, 1974), we found an uncertainty on the creep

Poisson's ratio of about 0.003, which is of the same order of magnitude as

the maximum di�erence between the two Poisson's ratios in that experiment.

In contrast, for what concerns the experiments performed on leached spec-

imens (see Fig. 2.5c), since the strains are about two orders of magnitude

greater than the strains in the experiments displayed in Figs. 2.5a and 2.5b,

the uncertainty on the Poisson's ratio becomes truly negligible: with respect

to this uncertainty, the di�erence between the creep and relaxation Poisson's
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ratios in that experiment is signi�cant.

2.3.2 The elastic�viscoelastic correspondence principle

For an isotropic elastic material with bulk modulus K0 and shear modulus

G0, the stress�strain relations read:

σv = K0εv (2.25a)

sij = 2G0eij (2.25b)

We observe that these elastic relations are analogous to the viscoelastic

stress�strain relations 2.3 and 2.4. In fact, we could have inferred these latter

viscoelastic stress�strain relations in the Laplace domain directly from the

elastic stress�strain relations 2.25, simply by replacing all elastic coe�cients

by the s-multiplied Laplace transform (also called the Carson transform) of

their corresponding viscoelastic relaxation functions (Tschoegl et al., 2002).

In terms of Poisson's ratio, for an isotropic elastic material, we have the

following relation:

ν0 =
3K0 − 2G0

2(3K0 +G0)
. (2.26)

We observe that applying the correspondence principle to this equation makes

it possible to retrieve Eq. 2.8 if one replaces the elastic Poisson's ratio ν0

with the s-multiplied Laplace transform of the relaxation Poisson's ratio

νr(t). Therefore, we infer that the corresponding viscoelastic operator of

the elastic Poisson's ratio is the relaxation Poisson's ratio νr(t) and not the

creep Poisson's ratio νc(t); in other words, the correspondence principle can

be applied to elastic relations that involve the Poisson's ratio if this latter

is replaced with the s-multiplied Laplace transform sν̂r(s) of the relaxation

Poisson's ratio νr(t) in the corresponding viscoelastic equation.

The validity of correspondence principle is due to the fact that the vis-

coelastic relations are �of the convolution type whose integral transforms lead
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to algebraic relations similar to the elastic ones� (Hilton, 2001). Consider-

ing the speci�c example of a uniaxial creep test, we observe that the lateral

strain εl(t) and the axial strain εa(t) can be related through the use of ei-

ther the relaxation Poisson's ratio νr(t) or the creep Poisson's ratio νc(t),

through Eqs. 2.10 or 2.2a, respectively. Of those two equations, the former

involves a convolution, whereas the latter does not, which shows that the

correspondence principle is not applicable to the creep Poisson's ratio νc, as

already noted by Hilton (2001); Tschoegl et al. (2002); Hilton (2009, 2011).

Note that Lakes and Wineman (2006) found a relationship between the two

Poisson's ratios νr and νc that di�ers from that given in Eq. 2.11. We believe

that their equation is not valid and that the error in their derivation stems

from the fact that they applied the correspondence principle not only to the

relaxation Poisson's ratio νr (which is valid), but also to the creep Poisson's

ratio νc (which is not valid) (Tschoegl et al., 2002). This example shows that

we can easily get confused in how to manipulate the various Poisson's ratios

that can be de�ned: in consequence, in the generic case, to perform a vis-

coelastic characterization, avoiding as much as possible the use of viscoelastic

Poisson's ratios and restricting oneself to the use of creep compliances and

relaxation moduli seems to be a wise choice.

Since the relaxation Poisson's ratio νr is the only Poisson's ratio to which

the correspondence principle can be applied, solving viscoelastic problems

analytically can be performed much more easily by using the relaxation

Poisson's ratio rather than the creep Poisson's ratio. In contrast, since the

relationship between the creep Poisson's ratio νc and the time-dependent

strains does not involve any convolution (see Eq. 2.24b in comparison with

Eq. 2.24a), back-calculating the creep Poisson's ratio from experimental data

is more straightforward than back-calculating the relaxation Poisson's ratio.

This is the reason why, when experimentalists report a Poisson's ratio, they

almost exclusively report the creep Poisson's ratio (see, e.g., Benboudjema

(2002); Torrenti et al. (2014); Hilaire (2014)).

For a uniaxial experiment performed on an elastic material, the lateral

strain εl is linked to the axial strain σa through εl = −(ν/E)σa. Based on

this elastic relation, the fact that the correspondence principle is applicable to
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the relaxation Poisson's ratio makes it possible to derive how, for a uniaxial

experiment with a generic load history σa(t) performed on a viscoelastic

solid, the lateral strain εl(t) must evolve over time. Thus, we �nd that, in

the Laplace domain, the following relation holds:

ε̂l = −sν̂r
(
sĴEσ̂a

)
. (2.27)

This relation can be translated back into the time domain:

εl(t) = −νr(t)⊗
(
d

dt
(JE(t)⊗ σ̇a(t))

)
. (2.28)

Thus, for a uniaxial experiment with a generic load history, we can use the

relaxation Poisson's ratio to calculate the evolution of the lateral strain over

time. Note that we did not succeeded in deriving such an equation based on

the creep Poisson's ratio, which is a direct consequence of the fact that the

correspondence principle cannot be applied to the creep Poisson's ratio.

For triaxial loadings with a generic load history, starting from Eqs. 2.6b

and 2.28, using the principle of superposition makes it possible to derive the

following equation:

εi(t) = JE(t)⊗σ̇i(t)−νr(t)⊗
(
d

dt
(JE(t)⊗ (σ̇j(t) + σ̇k(t)))

)
where i 6= j 6= k ∈ {1, 2, 3}

(2.29)

which is a direct extension of Eq. 2.24a. Thus, if we know the uniaxial

creep compliance and the relaxation Poisson's ratio of the material, this

equation makes it possible to predict the evolution of the principal strains

over time from the history of the triaxial stresses. Note that, again, we did

not succeeded in deriving such equation based on the creep Poisson's ratio.

2.3.3 In�uence of duration of loading phase on apparent

creep Poisson's ratio

In order to identify the creep Poisson's ratio, we may want to perform a creep

experiment and calculate the ratio −εl(t)/εa(t) of the lateral dilation to the
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axial contraction measured during the creep phase. By doing so, we identify

a time-dependent function to which we will refer as to an �apparent� creep

Poisson's ratio since, in practice, for any creep experiment, the duration of

the loading phase is �nite, whereas the creep Poisson's ratio was de�ned with

respect to a creep experiment with an instantaneous loading (see Eq. 2.2a).

Therefore, we can wonder by how much an apparent creep Poisson's ratio

identi�ed on an actual creep experiment di�ers from the creep Poisson's ratio

of the material. The study of such a di�erence is the focus of this section.

To study this di�erence, we consider two virtual materials whose rheolog-

ical behaviors are those described in Figs. 2.1a and 2.1b in the speci�c case

where ηK → +∞. Therefore, the volumetric behavior of the two virtual ma-

terials is elastic since they only creep deviatorically. The deviatoric behavior

of the �rst virtual material is governed by the Maxwell unit (see Fig. 2.1a),

wheras the deviatoric behavior of the second virtual material is governed by

the Kelvin�Voigt unit (see Fig. 2.1b). Their characteristic viscous time is

τG = ηG/G0. The elastic sti�nesses are chosen such that the elastic Poisson's

ratio is ν0 = 0.2.

On each of those two materials, we consider creep experiments in which

the load is increased linearly over time in a duration τL, after which the load is

kept constant. For various durations τL of the loading phase, Fig. 2.6 displays

what the ratio of the lateral dilation to the axial contraction is, together with

the creep Poisson's ratio of the material. We observe that the apparent creep

Poisson's ratio di�ers from the creep Poisson's ratio: the slower the loading,

the greater this di�erence. Also, this di�erence is maximum at the end of

the loading phase (i.e., at the dimensionless time t/τL = 1), but we note

that this di�erence is signi�cant only for times that are smaller than about

10 times the duration of the loading phase: at times greater than 10 times

the duration of the loading phase, the di�erence between the creep Poisson's

ratio and the apparent creep Poisson's ratio is negligible.

In conclusion, if we aim at identifying the creep Poisson's ratio as the

ratio −εl(t)/εa(t) of a lateral dilation to an axial contraction measured during

the creep phase of an actual creep experiment, one will commit some error.

However, the di�erence between the creep Poisson's ratio and the apparent
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we may only be signi�cant for times smaller than about 10 times the duration

of the loading phase; for larger times, this di�erence will be negligible.
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Figure 2.6 � Ratio −εl(t)/εa(t) of the lateral to the axial strain (black lines)
observed during creep experiments with various durations τL of the loading
phase, and creep Poisson's ratio νc (gray lines) for a material that creeps
deviatorically and whose deviatoric creep behavior is modeled by (a) the
Maxwell unit, or (b) the Kelvin-Voigt unit.

2.4 Conclusions

Two time-dependent Poisson's ratios are de�ned for linear viscoelastic mate-

rials: the relaxation Poisson's ratio νr(t) and the creep Poisson's ratio νc(t).

Those two Poisson's ratios were de�ned with respect to creep or relaxation

experiments with an instantaneous loading. The following conclusions are

drawn on their di�erences, in both theory and practice:

• Those two Poisson's ratios are not equal to each other. They can be

expressed as functions of the creep compliances and relaxation moduli

and are linked to each other through the exact expression 2.11.

• At the initial time of loading, both Poisson's ratios are equal to the

elastic Poisson's ratio. Their long-time asymptotic values are identical.

Their initial derivatives with respect to time are also identical, and so

are their long-time asymptotic derivatives.
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• The parametric study of virtual materials based on simple rheological

models indicates that the two Poisson's ratios can di�er signi�cantly

from each other. The maximum characteristic di�erence ∆ν between

them at a given time can be as large as 0.3. The creep Poisson's ratio

evolves slower than the relaxation Poisson's ratio by a retard factor

f∆t, which is in the range [1.44, 2.08].

• A study of multiaxial creep data on cementitious materials showed that,

if the Poisson's ratios vary little over time, their di�erence is negligible.

When the Poisson's ratios vary signi�cantly over time, whether their

di�erence must be taken into account in practice should be assessed

with respect to the application considered. The signi�cance of the

di�erence must also be assessed by keeping in mind the accuracy of the

measurement of creep strains.

• The use of each of the two Poisson's ratios is of interest: solving vis-

coelastic problems analytically can be performed much more easily by

using the relaxation Poisson's ratio rather than the creep Poisson's ra-

tio, since the elastic-viscoelastic correspondence principle is applicable

to this parameter; in contrast, back-calculating the creep Poisson's ratio

from experimental data is more straightforward than back-calculating

the relaxation Poisson's ratio.

• For materials subjected to a triaxial loading, even if the load history

is generic, from the uniaxial creep compliance JE(t) and the relaxation

Poisson's ratio νr(t), one can calculate the evolution of the principal

strains over time (see Eq. 2.29). However, given all confusion in the

literature on how to manipulate viscoelastic Poisson's ratios, in the

generic case, a wise choice to perform viscoelastic characterization or

analytical calculations in viscoelasticity is to restrict oneself to the use

of unambiguously de�ned creep compliances and relaxation moduli.

• The creep Poisson's ratio was de�ned on a creep experiment with an

instantaneous loading. If the loading phase of the creep experiment is

not instantaneous (which is the case in practice), the ratio of the lateral
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dilation to the axial contraction during the creep phase di�ers from the

creep Poisson's ratio. This di�erence may be signi�cant only for times

that are smaller than about 10 times the duration of the loading phase.

We calculated how the relaxation and creep Poisson's ratios of cementi-

tious materials evolved over time. The analysis of those parameters could be

translated in terms of volumetric and deviatoric creep behaviors, thus paving

the way for a more rationale choice of creep models for those materials.
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Chapter 3

Viscoelastic Poisson's ratio of

concrete

T
he viscoelastic Poisson's ratio of concrete is an essential parameter

when it comes to study creep and loss of prestress in biaxially prestressed

structures, e.g., the containment of nuclear power plants. Various de�nitions

and evolutions with time are reported in the literature for this Poisson's ra-

tio. The present work �rst aims to perform a comprehensive study of those

de�nitions. We then analyze all creep data of concrete available in literature

that make it possible to compute the evolutions of this non-aging isotropic

viscoelastic Poisson's ratio of concrete, which is found to remain roughly

constant or to slightly decrease over time, such as to reach a long-term value

always comprised between 0.15 and 0.2.1

L
e coefficient de Poisson viscoélastique du béton est un paramètre

essentiel lorsqu'il s'agit d'étudier le �uage et la perte de précontrainte

1This chapter is published together with the next chapter as Aili, A., Vandamme,
M., Torrenti, J. M., Masson, B., & Sanahuja, J. (2016). Time evolutions of non-aging
viscoelastic Poisson's ratio of concrete and implications for creep of CSH. Cement and
Concrete Research, 90, 144-161.
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dans des structures en bétons béton précontraint biaxialement comme l'en-

ceinte de con�nement de centrales nucléaires. Di�érentes dé�nitions et évo-

lutions avec le temps sont rapportées dans la littérature pour ce coe�cient

de Poisson. Le présent travail vise d'abord à mener une étude complète de

ces dé�nitions. Nous analysons ensuite toutes les données de �uage de bé-

ton disponibles dans la littérature qui permettent de calculer les évolutions de

ce coe�cient de Poisson viscoélastique isotrope non-vieillissant. Cette étude

montre que le coe�cient de Poisson viscoélastique du béton reste à peu près

constant ou légèrement décroissant dans le temps, de manière à atteindre une

valeur à long terme toujours comprise entre 0,15 et 0,2.
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The containment of the typical French nuclear power vessel is a massive

concrete structure which is biaxially prestressed and is designed to withstand

an internal overpressure of 0.5 MPa in case of accident (Torrenti et al., 2014).

To extend the service life of the containment, we need to ensure that the pre-

stress remains su�cient in order to avoid tensile stress and thus limit cracks

in the event of such an accident. However, the prestress decreases over time,

because of a combination of relaxation of steel and delayed strain of concrete

(i.e., creep and shrinkage). Here biaxial creep is considered. In this case,

in order to predict the creep of concrete and the resulting loss of prestress,

we need to know more than only the 1-dimensional creep behavior of the

concrete: we need to know its full 3-dimensional creep behavior. Within the

framework of isotropic linear viscoelasticity, this 3-dimensional creep behav-

ior is fully characterized by two creep compliances or relaxation moduli: for

instance, on top of the uniaxial creep compliance considered in most models,

one can use a viscoelastic (i.e., time-dependent) Poisson's ratio. However, al-

though numerous studies (e.g., (RILEM Technical Committee, 1995, 2015))

and models (e.g., FIB (2013), 1992-1-1:2005 (2004), ACI Committee 209

(2008)) are devoted to the uniaxial creep compliance, the evolution of the

viscoelastic Poisson's ratio of concrete with time has been much less scruti-

nized.

A �rst issue when considering a viscoelastic Poisson's ratio is that its de�-

nition is not unique (Aili et al., 2015), even when considering simple uniaxial

compression, and in spite of the fact that all authors de�ne it through a ratio

of axial strain to lateral strain. For instance, Neville et al. (1983) de�ne it

through a ratio of the creep strains only, while Jordaan and Illston (1969)

de�ne it through a ratio of the total mechanical strains (which are equal to

the sum of the elastic strains and of the creep strains). For what concerns the

value of this ratio or its evolution over time, a very large scatter is observed.

For instance, with the de�nition he chose, Neville et al. (1983) gathered the

following values for the viscoelastic Poisson's ratio: close to 0 (Ross, 1954;

Furr, 1967), equal to 0.05 (Glanville and Thomas, 1939; L'Hermite, 1959),

equal to the elastic Poisson's ratio (Duke and Davis, 1944; Polivka et al.,

1963), increasing with time (Evans and Wood, 1937), or decreasing with
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time (York et al., 1972). A possible reason that could partly explain this

large scatter is that the various experiments gathered by Neville were per-

formed under various �and sometimes uncontrolled� hydric conditions. In

our present work, we will focus on the evolutions of a viscoelastic Poisson's

ratio during basic creep experiments, during which no water is exchanged

between sample and environment. Such condition is achieved either by seal-

ing the sample (Jordaan and Illston, 1969, 1971; Kennedy, 1975; Ulm et al.,

2000; Kim et al., 2005), or by controlling the relative humidity of the environ-

ment to the same relative humidity as that of the sample (Gopalakrishnan,

1968). As a prerequisite, we will need to clearly de�ne the viscoelastic Pois-

son's ratio we will consider, and determine how our de�nition compares with

de�nitions used elsewhere.

First, we de�ne the viscoelastic Poisson's ratio we will consider in this

study and compare it with alternative de�nitions found in the literature.

Secondly, we perform an analysis of basic creep data on concrete from the

literature, to determine how this viscoelastic Poisson's ratio evolves with

time.

3.1 De�nition of viscoelastic Poisson's ratio for

creep tests

This section is devoted to clearly de�ne a viscoelastic Poisson's ratio for

creep studies. To do so, we consider ideal relaxation/creep experiments, i.e.,

experiments with an instantaneous loading. A more detailed introduction of

those de�nitions and of their interest can be found in chapter 2. During an

ideal creep experiment, the measured strains (referred to as the `total' strains)

can be separated into an elastic contribution (termed `elastic' strains) and

a delayed one (termed `creep' strains). Next, we introduce a de�nition of

viscoelastic Poisson's ratio based on total strains: we will use this de�nition

throughout the chapter. In section 3.1.2, the introduced viscoelastic Poisson's

ratio is compared to an alternative de�nition based on creep strains only.

Concrete is an aging material, i.e., its mechanical properties depend on
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its age (Grasley and Lange, 2007; Li et al., 2015). However, mature concrete

can be considered non-aging. Also, up to about at least 40% of its strength,

concrete can reasonably be assumed to be linear viscoelastic (Neville et al.,

1983). In this article, we restrict ourselves to a material that is isotropic

linear non-aging viscoelastic.

3.1.1 De�nition of viscoelastic Poisson's ratio for isotropic

linear non-aging viscoelastic solids

Now, we consider an ideal uniaxial relaxation or an ideal creep experiment,

i.e., an experiment in which the displacement or the load, respectively, is

applied instantaneously and kept constant over time. Based on those two

thought experiments, from the ratio of the radial dilation to the axial con-

traction, we can de�ne two Poisson's ratios:

νr(t) = −εl(t)
ε0
a

during a uniaxial relaxation experiment for which εa(t) = ε0
a

(3.1a)

νc(t) = − εl(t)
εa(t)

during a uniaxial creep experiment for which σa(t) = σ0
a

(3.1b)

which we termed relaxation Poisson's ratio νr and creep Poisson's ratio νc.

They can be expressed as functions of the bulk and shear time-dependent

properties:

ν̂r(s) =
3K̂(s)− 2Ĝ(s)

2s(3K̂(s) + Ĝ(s))
(3.2a)

νc(t) =
3JG(t)− 2JK(t)

2(3JG(t) + JK(t))
(3.2b)

where s is the Laplace variable and where f̂(s) represents the Laplace trans-
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form of the function f(t). Those two Poisson's ratios are related through the

uniaxial creep compliance JE(t) by:

νc(t) = (νr(t)⊗ J̇E(t))/JE(t) (3.3)

Hilton (2001); Tschoegl et al. (2002); Hilton (2009, 2011); Aili et al. (2015)

already discussed the di�erence between various de�nitions of Poisson's ra-

tios, including the relaxation Poisson's ratio νr and creep Poisson's ratio νc.

The principle of correspondence (Christensen, 1982), which is of great use

for solving linear viscoelastic problems analytically, is only applicable to the

relaxation Poisson's ratio νr, not to the creep Poisson's ratio νc (Hilton, 2001;

Tschoegl et al., 2002; Hilton, 2009, 2011; Aili et al., 2015). Said otherwise, if

we want to infer the solution to a linear viscoelastic problem from the solution

to the corresponding elastic one, then we need to replace the elastic Poisson's

ratio by the s-multiplied Laplace transform of the relaxation Poisson's ratio

sν̂r, not of the creep Poisson's ratio sν̂c. Therefore, the relaxation Poisson's

ratio νr is a material property, which can be used to predict the response of

the material under a generic load history. In contrast, the correspondence

principle cannot be applied to the creep Poisson's ratio νc.

In spite of the theoretical di�erences that exists between the two Poisson's

ratios νr and νc, their initial and asymptotic values are equal, and so are their

initial and asymptotic time-derivatives (Aili et al., 2015). Moreover, in prac-

tice, for all cementitious materials (i.e., cement paste, mortar, or concrete)

on which we could analyze biaxial creep data, the di�erence between those

two Poisson's ratios was negligible at all times. Therefore, in the following,

we will not distinguish the two Poisson's ratios and will only refer to it as

to the viscoelastic Poisson's ratio of the material: we will note it ν(t). Note

however that, for innovative concretes or for immature ones, the fact that

the creep and relaxation Poisson's ratio almost coincide is not guaranteed:

consequently, even if the creep Poisson's ratio νc can easily be obtained with

Eq. 3.4 from creep data, experimentalists should always calculate the relax-

ation Poisson's ratio νr as well (with the above relation via transforms or

via a numerical �tting routine), to check if the di�erence between the two
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Poisson's ratio is indeed always negligible.

In the rest of the thesis, the viscoelastic Poisson's ratio of the material

will be back-calculated from creep experiments by using Eq. 3.4 that was

derived for the creep Poisson's ratio: we thus retrieve the de�nition 3.4 that

we introduced. When needed, we will also consider that this viscoelastic

Poisson's ratio ν(t) satis�es the elastic-viscoelastic correspondence principle,

which can theoretically only be applied to the relaxation Poisson's ratio.

The viscoelastic Poisson's ratio ν(t) that we will use throughout this work

relates strains and stresses for a triaxial creep experiment through:

εi(t) = JE(t)σ0
i − (σ0

j + σ0
k)ν(t)JE(t), where i 6= j 6= k ∈ {1, 2, 3}, (3.4)

where σ0
i , σ

0
j , and σ

0
k are the constant loads instantaneously applied in the

principal directions, and εi(t), εj(t), and εk(t) are the strains in those same

principal directions. This de�nition makes it possible to retrieve a de�nition

found elsewhere for uniaxial creep tests (Jordaan and Illston, 1969, 1971;

Kim et al., 2005):

ν(t) = −ε2(t)

ε1(t)
= −ε3(t)

ε1(t)
with a load applied in direction 1 only, (3.5)

and another de�nition found elsewhere for biaxial creep tests (Jordaan and

Illston, 1969, 1971; Kim et al., 2005):

ν(t) = − ε3(t)

ε1(t) + ε2(t)− ε3(t)
with a load applied in directions 1 and 2.

(3.6)

The viscoelastic Poisson's ratio here introduced is de�ned based on total

strains: one cannot calculate it when only the creep strains are reported (as

is the case, e.g., in Gopalakrishnan et al. (1969); Bernard et al. (2003a)),

unless the elastic strains can be estimated.
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3.1.2 De�nition based on creep strain

One of the most reported Poisson's ratios in the literature is de�ned based

on creep strains (L'Hermite, 1959; Hannant, 1967; Gopalakrishnan et al.,

1969; Neville et al., 1983; Kogan, 1983; Granger, 1995; Baºant et al., 1997;

Benboudjema, 2002; Hilaire, 2014). For instance, for uniaxial creep tests,

Neville et al. (1983) de�ned a uniaxial creep-based Poisson's ratio as:

ν̃(t) = − εl(t)− ε
0
l

εa(t)− ε0
a

(3.7)

where εl(t), εa(t) are the total lateral and axial strain, respectively, and

where ε0
l = εl(0) and ε0

a = εa(0) are the lateral and axial elastic strains,

respectively. Thus, εl(t) − ε0
l and εa(t) − ε0

a are the lateral and axial creep

strains, respectively. In comparison with the viscoelastic Poisson's ratio ν(t)

that we introduced in Eq. (3.4), one could draw the following analogy: the

creep-based Poisson's ratio corresponds to a creep function, while the vis-

coelastic Poisson's ratio corresponds to a creep compliance.

The main interest of the creep-based Poisson's ratio ν̃(t) is that only creep

strains are needed to compute it. Thus, it can be reported for any creep

experiment, even in absence of any information on the elastic properties of

the material. But this interest is in fact a drawback, which is the same

drawback as for any creep function compared with its corresponding creep

compliance.

The �rst drawback is that, if one reports only the creep-based Poisson's

ratio, he/she may omit to report the elastic Poisson's ratio. In such case,

the creep-based Poisson's ratio becomes quite useless: if one does not keep

the load constant after the initial loading, one would be unable to calculate

how the ratio between lateral and axial strain would evolve over time. In

contrast, such omission is not possible if the viscoelastic Poisson's ratio is

reported, since this ratio includes the elastic data: indeed, ν(0) is the elastic

Poisson's ratio.

Creep functions (and hence the creep-based Poisson's ratio) are sensitive

to the duration of the loading, which, for any creep test, is never instanta-

neous.
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As a consequence, any creep function is associated to an apparent elastic

modulus, which must be measured from the strain at the end of the loading

phase. Yet, when creep functions are reported in the literature, the associated

apparent elastic modulus is not always reported or measured, and, when it

is measured, it is sometimes measured from a di�erent test (Baºant et al.,

1993). The error that may arise from such a wrong combination could be

nonnegligible.

In conclusions, in the spirit of Baºant et al. (1993), who recommended

to report creep compliances rather than creep functions, we recommend the

use of the viscoelastic Poisson's ratio rather than the creep-based Poisson's

ratio. In any case, if one chooses to report the creep-based Poisson's ratio,

he/she should report meaningful elastic properties as well.

3.1.3 Potential anisotropy of time-dependent behavior

Gopalakrishnan (1968); Gopalakrishnan et al. (1969); Neville et al. (1983)

wondered whether the creep-based Poisson's ratio of concrete is anisotropic

during a multiaxial creep test. They reached the conclusion that it can be.

Here, we discuss their results.

To reach their conclusions, the authors proposed, for triaxial loading, the

following de�nition for a direction-speci�c creep-based Poisson's ratio ν̃i:

εi(t)− εi(0) = J cuE (σ0
i − ν̃i(σ0

j + σ0
k)) where i 6= j 6= k ∈ {1, 2, 3}. (3.8)

which is a de�nition based on creep strains. Note that in this de�nition

intervenes the uniaxial creep compliance J cuE , which is measured from an

independent uniaxial creep test in which the axial load σ0
a is equal to the

maximum load of the triaxial test (i.e., σ0
a = max

i∈{1,2,3}
{σi}).

For instance, Gopalakrishnan (1968) performed 13 di�erent triaxial tests

on a cubic concrete sample. Among these 13 tests, we consider the 11 tests

that yielded an elastic Poisson's ratio between 0 and 0.3. His results showed

that the direction-speci�c creep-based Poisson's ratios ν̃i obtained in the
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three directions i ∈ {1, 2, 3} di�er from each other. However, we believe that

this anisotropy is mostly due to the fact that he only took into account creep

strains, i.e., that he used uniaxial creep functions instead of uniaxial creep

compliances.

Here, we propose an alternative way to analyze their data. This alterna-

tive relies on the data from the triaxial experiments only. First, we compute

the volumetric strain εv(t) and applied volumetric stress σ0
v , from which

we obtain the volumetric creep compliance JK(t) = εv(t)/σ
0
v . Second, we

compute the von Mises strain εd(t) =
√

3Jε2(t) (where Jε2(t) is the second in-

variant of the deviatoric strain tensor eij) and von Mises stress σ0
d =

√
3Jσ

0

2

(where Jσ
0

2 is the second invariant of deviatoric stress tensor sij), from which

we obtain the shear creep compliance JG(t) = 2εd(t)/σ
0
d. Then, from the

knowledge of the creep compliances JK(t) and JG(t), we obtain the uniaxial

creep compliance JE(t) = JK(t)/9 + JG(t)/3. Finally, by applying Eq. (3.4)

while rotating the indices i 6= j 6= k ∈ {1, 2, 3}, we can obtain, from the

triaxial data, 3 directional viscoelastic Poisson's ratios, which we note ν1, ν2,

and ν3.

For instance, we consider the test TC10 in Gopalakrishnan (1968), in

which the specimen is subjected to a triaxial compression: the 3 principal

compression stresses are 13.24 MPa, 1.78 MPa and 1.83 MPa. We computed

the 3 directional viscoelastic Poisson's ratios as explained above. Our re-

sults are displayed in Fig. 3.1, together with the 3 directional creep-based

Poisson's ratio reported by Gopalakrishnan (1968). The maximum di�er-

ence between the 3 creep-based Poisson's ratios (i.e., max
i 6=j∈{1,2,3}

{ν̃i(t)− ν̃j(t)})
displayed in Fig. 3.1a is 0.14. In constrast, the maximum di�erence be-

tween the 3 directional viscoelastic Poisson's ratios that we introduced (i.e.,

max
i 6=j∈{1,2,3}

{νi(t) − νj(t)}) and that are displayed in Fig. 3.1b is reduced to

0.019.

In fact, for the 11 tests considered from Gopalakrishnan (1968), we com-

puted the 3 directional creep-based Poisson's ratios with Eq. (3.8) (as did

the authors) and the 3 directional creep-based Poisson's ratios with Eq. (3.4)

(see appendix C). For all 11 tests, the mean value of the maximum di�erence
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Figure 3.1 � Dependency of Poisson's ratio on the direction in experiment
TC10 in Gopalakrishnan (1968): (a) Creep-based Poisson's ratio reported
in Gopalakrishnan (1968), calculated from Eq. (3.8) for three directions; (b)
viscoelastic Poisson's ratio calculated from Eq. (3.4) for three directions.

max
i 6=j∈{1,2,3}

{ν̃i(t)− ν̃j(t)} between the 3 directional creep-based Poisson's ratio

was 0.1182 and its standard deviation was 0.1245. In contrast, for the same

11 tests, the mean value of the maximum di�erence max
i 6=j∈{1,2,3}

{νi(t) − νj(t)}
between the 3 directional viscoelastic Poisson's ratios was 0.0367 and its
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standard deviation was 0.0441.

Therefore, by working with viscoelastic Poisson's ratios rather than creep-

based ones, and by consistently analyzing data from a unique test rather

than from 2 independent ones, any potential anisotropy of a time-dependent

Poisson's ratio vanished. In short: the viscoelastic Poisson's ratio of concrete

can be considered as isotropic. Note that this conclusion is fully consistent

with the theory of linear viscoelasticity, according to which, for an isotropic

solid, the viscoelastic Poisson's ratio should have no reason to exhibit any

anisotropy. Such conclusion is only valid for cases for which the load is lower

than 30% of the strength, for which neither cracking nor damage is involved.

3.2 Evolution of viscoelastic Poisson's ratio of

concrete

In this section, based on experimental results of basic creep of concrete avail-

able in the literature and for which the strains were measured in more than

one direction, we analyze how the viscoelastic Poisson's ratio of concrete

evolves over time. Here, following the reasoning explained in section 3.1.2,

we consider only experiments for which both the creep strains and the elastic

strains were measured. In these tests, the samples are either sealed (Jordaan

and Illston, 1969, 1971; Kennedy, 1975; Ulm et al., 2000; Kim et al., 2005)

or stored in an environment whose relative humidity is close to the relative

humidity inside the sample (Gopalakrishnan, 1968). For each creep test, a

reference specimen is used to measure autogenous shrinkage. This autoge-

nous shrinkage is subtracted from the strain of the loaded specimen to obtain

the strain only due to stress, i.e., the basic creep strain. Then, injecting the

values of applied stress and stress-induced strains into Eq. (3.4), the evolu-

tion of the viscoelastic Poisson's ratio of the concrete samples with time is

back-calculated. The data considered are the following:

• Gopalakrishnan (1968) performed triaxial creep tests on a cubic sample

made of concrete with one mix design. The samples were always kept

in a relative humidity of about 98%. The strain was measured by strain
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gauges of resolution 10µm/m, with four strain gauges per surface. The

load was applied by four high tensile steel rods whose relaxation was

less than 0.2%. The load was provided by a 100-ton hydraulic jack and

the load in the jack was indicated by a pressure gauge during the test.

The loading age was 8 days.

• Jordaan and Illston (1969, 1971) measured the creep of a cubic sample

of concrete with one mix design, under uniaxial and biaxial loads. The

samples were coated with one layer of liquid plastic weatherproo�ng

and several coats of resin. The strain was measured with strain gauges

of sensitivity within 1µm/m. The nominal stress was measured during

the test in all three directions. The loading age was 16 days (Jordaan

and Illston, 1969) or 7 days (Jordaan and Illston, 1971).

• Kennedy (1975) performed uniaxial and triaxial creep tests on cylin-

drical specimens of concrete with one mix design, but prepared with

two types of curing conditions: �AsCast� denotes specimens cured un-

der sealed conditions, while �AirDried" denotes specimens cured at a

relative humidity of 50%. Before testing, all samples were coated with

two layers of epoxy, then sealed in a copper jacket, placed in a neoprene

sleeve and sealed at both ends with neoprene. At the end of each test,

the author checked the mass loss of the specimens. The largest mass

loss was 0.97% for the sample loaded at the age of 365 days and loaded

during 1700 days. The strain was measured with vibrating wire strain

gauges embedded in the sample, whose accuracy was 1µm/m. The load

was supplied by a hydraulic pressure which was regulated with a sta-

bility of ±5%. A warning system was set to trigger an alarm if a 10%

drop in pressure occurred, but the alarm was never triggered during

the test.

• Kim et al. (2005) prepared cubic samples of concrete with three mix

designs (noted C1, C2 and C3) and tested them under uniaxial, biaxial

and triaxial loads. The samples were cured under water. Before the

test, all exposed faces of the specimens were sealed with a base coat of
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bituminous sealant and wrapped again in several layers of waterproof

plastic �lm. They stated that they veri�ed the reliability of the sealing

method. The strain was measured with embedded gauges of sensitivity

1µm/m. The load was applied with a spring-loaded creep frame and

hydraulic cylinders with loading plates. The hydraulic cylinders were

connected to accumulators that automatically compensated for the oil

leakage of the cylinders. The authors also stated that they con�rmed

the e�ectiveness of their spring-loaded creep frame in providing reliable

loads.

All cements that are used for the concretes above are equivalent of cement

CEM I clinker in Eurocode. All experimental data are provided in ap-

pendix D.

The results are summarized in Fig. 3.2a, in which, for each experiment,

the evolutions of the viscoelastic Poisson's ratio ν(t) with time are lumped

into: elastic Poisson's ratio ν0 (i.e., value at loading, displayed on the x-axis),

long-term asymptotic viscoelastic Poisson's ratio ν∞ (which is approximated

by the value at the end of the test, displayed on the y-axis), and maxi-

mum and minimum viscoelastic Poisson's ratios over time (indicated with

the error bars). For almost all experiments, the viscoelastic Poisson's ratio

either remained quite constant and equal to its elastic value ν0 at loading,

or decreased continuously toward its long-term value ν∞.

For each mix design tested, a signi�cant scatter was observed from ex-

periment to experiment. In Fig. 3.2b, we display, averaged over experiments

performed with each mix design, the long-term viscoelastic Poisson's ratio ν∞

versus the elastic Poisson's ratio ν0. One can observe that the scatter from

test to test was on the order of 0.05, for both the elastic Poisson's ratio and

the long-term viscoelastic one. For all concretes tested by Gopalakrishnan

(1968); Jordaan and Illston (1969, 1971); Kim et al. (2005), the elastic ν0 and

long-term viscoelastic ν∞ Poisson's ratios were almost identical, as a conse-

quence of the fact that, for those concretes, the viscoelastic Poisson's ratio

remained almost constant over time. In contrast, for the two concretes tested

by Kennedy (1975), the �nal viscoelastic Poisson's ratio ν∞ was signi�cantly
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Figure 3.2 � Creep experiments on concrete of Gopalakrishnan (1968); Jor-
daan and Illston (1969); Kennedy (1975); Kim et al. (2005): Long-term
asymptotic value of the viscoelastic Poisson's ratio versus elastic Poisson's ra-
tio (a) for each individual experiment, and (b) averaged over all experiments
performed with one mix design. In sub�gure (a), y-axis error bars indicate
the maximum and minimum values of the viscoelastic Poisson's ratio during
the experiment.

lower than its elastic value ν0.

From Fig. 3.2, we observe that, in all cases, the long-term value ν∞ of the

viscoelastic Poisson's ratio was always equal to or smaller than the elastic

value ν0. The variation of viscoelastic Poisson's ratio over time was non-
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negligible for certain types of concrete. For all concretes studied here, the

long-term value ν∞ of the viscoelastic Poisson's ratio was comprised between

0.15 and 0.20. So, if the elastic Poisson's ratio of a concrete is in-between

0.15 and 0.20, considering that its viscoelastic Poisson's ratio is constant with

time, as proposed by Bazant (1975); RILEM Technical Committee (1995), is

a very reasonable assumption. We remind the reader that these conclusions

are drawn by neglecting aging: they are therefore valid for a mature con-

crete (for which aging is negligible), but do not hold necessarily for early-age

concrete (for which aging is signi�cant).

These values of long-term viscoelastic Poisson's ratio ν∞ of concrete show

that the long-term creep of concrete is both deviatoric and volumetric. In-

deed, if concrete were to creep only in a deviatoric manner with no asymp-

tote, the long-term viscoelastic Poisson's ratio should theoretically converge

toward ν∞ = 0.5 for in�nite times (see section 4.1), and hence should at least,

in practice, increase with time. However, the experiments here analyzed show

that the viscoelastic Poisson's ratio remained constant or decreased slightly

with time. Moreover, Fig. 3.3 highlights the fact that the long-term creep

is not only deviatoric but also volumetric: out of the �ve tests plotted in

Fig. 3.3, four showed an increasing volumetric strain, three of which evolved

logarithmically with time during the creep experiment.

3.3 Conclusions

We analyzed the long-term viscoelastic Poisson's ratio of concrete from creep

experiments from the literature. The analysis of all experimental results

shows that:

• The time-dependent behavior of concrete is isotropic, as expected from

the theory of linear viscoelasticity.

• The long-term creep of concrete is not only deviatoric, but also volu-

metric.

• The long-term viscoelastic Poisson's ratio of concrete is equal to or
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Figure 3.3 � Evolution of volumetric strain during creep experiment on con-
crete. Original data are from Gopalakrishnan (1968); Jordaan and Illston
(1969); Kennedy (1975); Ulm et al. (2000); Kim et al. (2005).

smaller than its elastic Poisson's ratio, and comprised between 0.15

and 0.20.

• When the elastic Poisson's ratio of mature concrete is signi�cantly

greater than 0.20, the variation of its viscoelastic Poisson's ratio over

time is non-negligible.

• When the elastic Poisson's ratio of mature concrete is comprised be-

tween 0.15 and 0.20, for practical applications, considering that its

viscoelastic Poisson's ratio is constant over time, as proposed in partic-

ular by Bazant (1975); RILEM Technical Committee (1995), is a very

reasonable assumption.
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Chapter 4

Long-term viscoelastic Poisson's

ratio of C-S-H gel

T
he long-term viscoelastic Poisson's ratio of concrete is downscaled to

the level of calcium silicate hydrates (noted C-S-H) with homogeniza-

tion schemes. The long-term viscoelastic Poisson's ratio of the C-S-H gel

is found to be comprised between 0 and 0.2. Finally, the downscaled long-

term viscoelastic Poisson's ratio of the C-S-H gel is used to discuss various

potential creep mechanisms at the level of the C-S-H particles.1

L
e coefficient de Poisson viscoélastique à long terme du gel de si-

licate de calcium hydraté (noté comme C-S-H) est calculé à partir du

coe�cient de Poisson à long terme du béton par des schémas d'homogénéisa-

tion viscoélastique. Le coe�cient de Poisson viscoélastique du gel de C-S-H

se trouve entre 0 et 0,2. À la �n, en nous basant sur la valeur à long terme du

1This chapter is published together with the previous chapter as Aili, A., Vandamme,
M., Torrenti, J. M., Masson, B., & Sanahuja, J. (2016). Time evolutions of non-aging
viscoelastic Poisson's ratio of concrete and implications for creep of CSH. Cement and
Concrete Research, 90, 144-161.

133



CHAPTER 4. LONG-TERM VISCOELASTIC POISSON'S RATIO OF
C-S-H GEL

coe�cient de Poisson du gel de C-S-H, nous analysons di�érents mécanismes

possibles de �uage à l'échelle de particules de C-S-H.
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For concretes made with ordinary Portland cement paste, there is a con-

sensus that the main phase responsible for the creep of concrete is the calcium

silicate hydrates (noted C-S-H) (Mehta and Monteiro, 2006). C-S-H is lay-

ered at the nanometric scale �we will refer to stacks of C-S-H layers as to

C-S-H `particles'� and forms a gel at a larger scale. We can reasonably

wonder how the viscoelastic Poisson's ratio of concrete is related to the vis-

coelastic Poisson's ratio of the C-S-H gel and to the creep mechanism of

the C-S-H particles. By performing some downscaling on the long-term vis-

coelastic Poisson's ratio of concrete found in chapter 3, we aim at shedding

some light on these relations.

First, we derive the relation between the long-term Poisson's ratio of

a composite and of its components using viscoelastic Mori-Tanaka scheme.

Then, by performing three steps of downscaling of the long-term Poisson's

ratio of concrete, we infer the long-term viscoelastic Poisson's ratio of the

C-S-H gel. Finally, we consider various creep mechanisms at the scale of

the C-S-H particles and assess, by upscaling, whether those mechanisms are

possible or not.

4.1 Downscaling of long-term viscoelastic Pois-

son's ratio

Knowing the long-term value of the viscoelastic Poisson's ratio of concrete, a

back-calculation of the long-term value of the viscoelastic Poisson's ratio of

the C-S-H gel is possible. As we shall see, from the knowledge of this long-

term viscoelastic Poisson's ratio, some physical conclusions can be inferred.

Working with data on cement paste may have been more relevant, but we are

aware of only one experimental data (Parrott, 1974) on cement paste that

we could use. Therefore, in this section, an analysis of data on concrete is

presented.

The elastic-viscoelastic correspondence principle (Christensen, 1982) is a

tool that can transform a linear non-aging viscoelastic problem into a cor-

responding linear elastic problem. This principle consists in eliminating the
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explicit time-dependence of the viscoelastic problem by replacing all time-

dependent moduli by the s-multiplied Laplace transform (also called Carson

transform) of their viscoelastic operator, thus yielding a corresponding elas-

ticity problem in the Laplace domain. Using this principle makes it possible

to tackle upscaling of viscoelastic creep compliances, by using corresponding

elastic homogenization schemes in the Laplace domain.

Resulting relations in the Laplace domain need to be transformed back

into the real time domain, which always remains hard to do analytically,

because only a few types of functions can be transformed analytically from

the Laplace domain back into the time domain. Nevertheless, one can use

the �nal value theorem (Auliac et al., 2000) to �nd a relation between the

long-term asymptotic values K∞ and G∞ of the relaxation moduli, J∞K and

J∞G of the creep compliances, and ν∞ of the viscoelastic Poisson's ratio. For

instance, applying the �nal value theorem (Auliac et al., 2000) to Eq. 3.2a, we

�nd the following relation between the long-term value ν∞ of the viscoelastic

Poisson's ratio and the long-term bulk K∞ and shear G∞ moduli:

lim
s→0

(sν̂(s)) = lim
s→0

(
3K̂ − 2Ĝ

6K̂ + 2Ĝ

s

s

)
=

3K∞ − 2G∞

6K∞ + 2G∞
= ν∞ (4.1)

From this relation, we infer that, if the material creeps with no asymptote

in time (which seems to be the case for most cementitious materials (Bazant

et al., 2011; Müller et al., 2013; RILEM Technical Committee, 2015; Torrenti

and Le Roy, 2015; Le Roy et al., 2017), see also Fig. 3.3), but in a deviatoric

manner only (in which case K∞ � G∞), the viscoelastic Poisson's ratio

must converge toward ν∞ = 0.5. In contrast, if the material creeps with no

asymptote in time but in a volumetric manner only (in which case K∞ �
G∞), the viscoelastic Poisson's ratio must converge toward ν∞ = −1.

In the experiments discussed in Sec. 3.2, the duration of the experiments is

�nite and the viscoelastic Poisson's ratio may not have reached its asymptotic

value fully. However, as the viscoelastic Poisson's ratio ν(t) does not vary

much with time, we will consider its value at the end of the experiment as its

asymptotic value ν∞. Based on this approach, we will perform downscaling

of the long-term asymptotic viscoelastic Poisson's ratio by using the elastic-

136



4.1. DOWNSCALING OF LONG-TERM VISCOELASTIC POISSON'S
RATIO

viscoelastic correspondence principle and the �nal value theorem.

To infer the long-term asymptotic value of the viscoelastic Poisson's ratio

of the C-S-H gel from that of the concrete, the concrete is regarded as a

multiscale composite material at four di�erent scales, which are displayed in

Fig. 4.1:

• At the largest scale of concrete (see Fig. 4.1a), the aggregates are con-

sidered as spherical inclusions that do not creep and are embedded into

a matrix made of cement paste, which creeps.

• At a scale below, i.e., at the scale of the cement paste (see Fig. 4.1b),

portlandite, calcium sulfoaluminates hydrates and the unhydrated clinker

are considered as spherical inclusions that do not creep and are embed-

ded into a matrix made of a mixture of C-S-H with capillary pores.

This mixture is considered to creep.

• At another scale below (see Fig. 4.1c), the mixture of C-S-H with

capillary pores is considered to be a matrix of C-S-H gel (that contains

the gel porosity) that surrounds spherical capillary pores.

We downscaled then the Poisson's ratio from the scale of concrete (Fig.

4.1a) to the scale of C-S-H gel (Fig. 4.1c). As a prerequisite to the down-

scaling, we derive some theoretical results. It should be noted that we do

not take into account any interfacial transition zone (ITZ) in this stage of

downscaling but the e�ect of ITZ will be discussed in section 4.2.1. In sec-

tion 4.1.1, we derive what the long-term viscoelastic Poisson's ratio is for a

composite material made of a matrix that creeps and that embeds spherical

inclusions that do not creep. In section 4.1.2, we derive what the long-term

viscoelastic Poisson's ratio is for a composite material made of a matrix that

creeps and that surrounds spherical pores.

137



CHAPTER 4. LONG-TERM VISCOELASTIC POISSON'S RATIO OF
C-S-H GEL

Portlandite
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d) C-S-H gel
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Figure 4.1 � Multiscale structure of concrete: (a) Concrete as a matrix of
cement paste embedding aggregates, (b) cement paste as portlandite, cal-
cium sulfoalumintes hydrates and unhydrated clinker embedded into a ma-
trix made of a mixture of C-S-H with capillary pores, (c) mixture of C-S-H
with capillary pores as a matrix of C-S-H gel surrounding capillary porosity,
and (d) C-S-H gel as a mixture of C-S-H particles and gel pores. The scales
(a) (b) (c) are considered in Sec. 4.1 for the downscaling of the long-term
Poisson's ratio, while the scale (d) is considered in Sec. 4.2.2 for the analysis
of long-term creep mechanism of C-S-H gel.

4.1.1 Viscoelastic Poisson's ratio of composite made of

matrix embedding non-creeping inclusions

Here we consider a composite made of a matrix that embeds spherical inclu-

sions. The matrix is considered to creep, and the inclusions are considered

not to creep. The aim is to derive the relation between the long-term value

ν∞com of the viscoelastic Poisson's ratio of the composite, the long-term value

ν∞m of the viscoelastic Poisson's ratio of the matrix, and the volume fraction
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fi of the inclusions.

For such a microstructure, the Mori-Tanaka scheme has been shown to

be applicable, for any volume fraction of inclusions (Bernard et al., 2003b;

Sanahuja et al., 2007; Pichler and Hellmich, 2011). So, we apply the Mori-

Tanaka scheme to calculate the properties of the composite as a function of

the properties of its individual phases . The interface between inclusion and

matrix is considered to be perfectly adhesive. Applying the correspondence

principle to the elastic Mori-Tanaka homogenization scheme, one �nds, in

the Laplace domain, the solution to the viscoelastic homogenization problem

of interest.

Applying the �nal value theorem (Auliac et al., 2000) to this relation,

we obtain a relation between the long-term values K∞com and G∞com of the

relaxation moduli of the composite, K∞m and G∞m of the relaxation moduli of

the matrix, and K∞i and G∞i of the relaxation moduli of the inclusions:

K∞com = K∞m
(1− f)(K∞m + α(K∞i −K∞m )) + fK∞i
(1− f)(K∞m + α(K∞i −K∞m )) + fK∞m

(4.2a)

G∞com = G∞m
(1− f)(G∞m + β(G∞i −G∞m )) + fG∞i
(1− f)(G∞m + β(G∞i −G∞m )) + fG∞m

(4.2b)

where α = (3K∞m )/(3K∞m + 4G∞m ) and β = (6K∞m + 12G∞m )/(15K∞m + 20G∞m ).

Then, injecting the relaxation moduli K∞com and G∞com into Eq. (4.1), we get

the expression of the long-term value ν∞com of the viscoelastic Poisson's ratio

of the composite. Supposing that the long-term volumetric and deviatoric

creep functions of the matrix are non-asymptotic, we let K∞m /K
∞
i → 0 and

G∞m/G
∞
i → 0 in the expression of ν∞com and obtain:

ν∞com =
(10(ν∞m )2 − 11(ν∞m ) + 3)f + (8(ν∞m )− 10(ν∞m )2)

(30(ν∞m )2 − 41ν∞m + 13)f + (8− 10ν∞m )
(4.3)

This equation indicates that the long-term viscoelastic Poisson's ratio of

such a composite depends only on the long-term viscoelastic Poisson's ratio

of the matrix and on the volume fraction of the inclusions. The relation

between the long-term viscoelastic Poisson's ratio ν∞com of the composite and
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ν∞m of the matrix is displayed in Fig. 4.2a for various volume fractions f of

inclusion.
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Figure 4.2 � (a) Long-term viscoelastic Poisson's ratio of a composite made
of a creeping matrix that surrounds non-creeping spherical inclusions. f is
the volume fraction of inclusions. (b) Long-term viscoelastic Poisson's ratio
of a composite made of a creeping matrix that surrounds spherical pores. φ
is the volume fraction of pores.

Figure 4.2a shows that if the matrix creeps only deviatorically (i.e., ν∞m =

0.5) at large times, then the composite must also creep deviatorically only.
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As the basic creep of concrete is non-asymptotic (Le Roy, 1995; Zhang et al.,

2014; Le Roy et al., 2017) and its long-term viscoelastic Poisson's ratio is

strictly lower than 0.5 (see Fig. 3.2), we can consider that the cement paste

creeps not only deviatorically but also volumetrically with no asymptote.

Thus, the homogenization scheme developed in this section can be applied

to downscale results from the scale of concrete to the scale of the cement

paste and to the scale of the mixture of C-S-H with capillary porosity (see

Fig. 4.1).

4.1.2 Viscoelastic Poisson's ratio of porous medium

Here we consider a composite made of a homogeneous matrix that embeds

spherical pores. The aim is to relate the long-term viscoelastic Poisson's ratio

ν∞com of the composite to the long-term viscoelastic Poisson's ratio ν∞m of the

matrix and the volume fraction φ of pores (i.e. porosity).

Given the microstructure, we apply the Mori-Tanaka scheme to compute

the properties of the composite as a function of the properties of its indi-

vidual phases. Since the homogenization scheme is the same as that used in

section 4.1.1, the long-term relaxation moduli K∞com and G∞com of the compos-

ite read as in Eq. (4.2). In this equation, taking into account the fact that

K∞i = 0 and G∞i = 0 and injecting them into Eq. (4.1) yields:

ν∞com =
((5ν∞m )2 + 2ν∞m − 3)φ+ ν∞m (10ν∞m − 14)

(15(ν∞m )2 + 2ν∞m − 13)φ+ (10νm − 14)
(4.4)

This equation indicates that the long-term viscoelastic Poisson's ratio of

such a composite depends only on the long-term viscoelastic Poisson's ratio

of the matrix and on the volume fraction of the pores. The relation between

the long-term viscoelastic Poisson's ratios ν∞com of the composite and ν∞m of

the matrix is displayed in Fig. 4.2b for various values of volume fraction

of pores. This �gure shows that if the matrix creeps only deviatorically

(i.e., ν∞m = 0.5) at large times, the porous medium may creep not only

deviatorically, but also volumetrically. It is worth to keep in mind that

a pure deviatoric creep at microscopic level does not imply always a pure

deviatoric creep at macroscopic level.
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4.1.3 Long-term viscoelastic Poisson's ratio: from con-

crete down to C-S-H gel

The long-term viscoelastic Poisson's ratio ν∞gel of the C-S-H gel is computed

from the results obtained at the scale of concrete by downscaling in three

steps, by using the intermediate scales of the cement paste and of the mixture

of C-S-H with the capillary porosity (see Fig. 4.1).

To downscale results from the scale of concrete to the scale of cement

paste, we apply the viscoelastic homogenization scheme introduced in sec-

tion 4.1.1. We use Eq. (4.3), in which the long-term viscoelastic Poisson's

ratio used is that of concrete, which is displayed in Fig. 3.2a, and in which the

volume fraction of aggregates is computed from the mix design (see Tab. 5.2).

Thus, we back-calculate the long-term viscoelastic Poisson's ratio of the ce-

ment paste, which plays the role of the matrix in this step of downscaling

(see Fig. 4.1a).

To downscale results from the scale of cement paste to the scale of the

mixture of C-S-H with capillary porosity, we apply the viscoelastic homog-

enization scheme introduced in section 4.1.1 again. The volume fraction of

each phase is computed by using Power's model (Powers and Brownyard,

1947; Taylor, 1997), which considers that the volume of cement paste is

composed of bulk hydrate (i.e., solid hydrates plus gel pores), unhydrated

clinker, and capillary pores. The sample is considered to be fully hydrated

if the water-to-cement mass ratio w/c is superior to 0.38 for samples cured

under water, and superior to 0.44 for samples cured under sealed conditions

(Taylor, 1997). Otherwise, the long-term hydration degree α∞ is taken to

be equal to (w/c)/0.38 for samples cured under water, and to (w/c)/0.44

for samples cured under sealed conditions (Taylor, 1997). The bulk volume

fraction of hydrates per volume of cement paste is 2.12(1 − p)α∞, where

p = (w/c)/(w/c+ ρw/ρc) and where ρw and ρc are the densities of water and

cement, respectively. The volume fraction of portlandite per bulk volume of

hydrates is estimated to be equal to 25%, which is a typical value for CEM

I cement pastes (Mehta and Monteiro, 2006), from which the volume frac-

tion fCH of portlandite per volume of cement paste is fCH = 0.53(1− p)α∞.
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The volume fraction of calcium sulfoaluminates hydrates per bulk volume

of hydrate is estimated to be equal to 15% (Mehta and Monteiro, 2006),

from which the volume fraction falu of sulfoaluminates hydrates per vol-

ume of cement paste is falu = 0.32(1 − p)α∞. The volume fraction fcl

of unhydrated clinker per volume of cement paste is estimated also with

Power's model (Powers and Brownyard, 1947; Taylor, 1997) to be equal to

fcl = (1 − p)(1 − α∞). Therefore, to downscale results from the scale of

cement paste to the scale of the mixture of C-S-H with capillary porosity,

we use Eq. (4.3) by considering that the volume fraction of inclusions is

fCH + falu + fcl. Thus, we back-calculate the long-term viscoelastic Poisson's

ratio of the mixture of C-S-H with the capillary porosity, which plays the

role of the matrix in this step of downscaling (see Fig. 4.1b).

To downscale results from the scale of the mixture of C-S-H with the

capillary porosity to the scale of the C-S-H gel, we apply the viscoelastic

homogenization scheme introduced in section 4.1.2. The volume fraction Vcp
of capillary pores per volume of cement paste is estimated with Powers' law

(Powers and Brownyard, 1947; Taylor, 1997) as Vcp = p−1.12(1−p)α∞. We

use Eq. (4.4) by considering that the porosity φ = Vcp/(1− VCH− Valu− Vcl)
is the volume fraction of capillary pores in the mixture. Thus, we back-

calculate the long-term viscoelastic Poisson's ratio of the C-S-H gel, which

plays the role of the matrix in this step of downscaling (see Fig. 4.1c).

Figure 4.3 displays the results of this downscaling. The long-term vis-

coelastic Poisson's ratio ν∞gel of the C-S-H gel is comprised between −0.07

and 0.16, while the long-term viscoelastic Poisson's ratio ν∞c of concrete is

comprised between 0.16 and 0.19. As a result of the fact that the slope of

the curves displayed in Figs. 4.2a and b is lower than 1 for Poisson's ratios

around 0.2, the long-term viscoelastic Poisson's ratio of C-S-H is more scat-

tered than that of concrete, which indicates that the long-term viscoelastic

Poisson's ratio of concrete is rather independent of that of C-S-H gel: the

long-term viscoelastic Poisson's ratio of C-S-H has little in�uence on the long-

term viscoelastic Poisson's ratio of concrete. The fact that the estimation

of the Poisson's ratio of C-S-H gel is scattered is due to the scatter of the

measurement at the level of the concrete.

143



CHAPTER 4. LONG-TERM VISCOELASTIC POISSON'S RATIO OF
C-S-H GEL

Concrete Cement
type

Water-
to-
cement
mass
ratio

Volume
fraction
of aggre-
gates

Volume
fraction
of port-
landite,
calcium
sulfoalu-
minates
hydrates
and
clinker

Volume
fraction
of cap-
illary
pores

Gopalakrishnan Type III 0.72 0.725 0.259 0.474
AsCast, Kennedy Type II 0.425 0.637 0.363 0.147
AirDried, Kennedy Type II 0.425 0.637 0.363 0.147
Jordaan and Illston OPC1 0.40 0.641 0.375 0.099
C1, Kim et al. Type I 0.58 0.715 0.300 0.357
C2, Kim et al. Type I 0.4 0.7 0.375 0.099
C3, Kim et al. Type I 0.32 0.691 0.434 0.057

Table 4.1 � Concrete formulation data used for the downscaling of viscoelas-
tic Poisson's ratio. The volume fraction of aggregates is expressed per unit
volume of concrete. The volume fraction of portlandite, calcium sulfoalumi-
nates hydrates and unhydrated clinker is expressed per unit volume of cement
paste. The volume fraction of capillary pores is expressed per unit volume of
mixture of C-S-H with capillary pores. 1 OPC is ordinary Portland cement.
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Even when taking into account the scatter, for all materials considered,

the sum of the long-term viscoelastic Poisson's ratio ν∞gel of the C-S-H gel

and of its standard deviation is found to be between −0.38 and 0.24, which

is signi�cantly smaller than 0.5 and signi�cantly greater than −1. Therefore,

given the fact that the creep of cementitious materials is known to exhibit

no asymptote (Le Roy, 1995; Zhang et al., 2014; Le Roy et al., 2017), we

infer that the long-term creep of the C-S-H gel is neither deviatoric only (in

which case we would observe ν∞gel = 0.5), nor volumetric only (in which case

we would observe ν∞gel = −1): in the long term, the C-S-H gel creeps both

volumetrically and deviatorically.

We remind the reader that in the above downscaling approach, aging

e�ect is neglected. It is possible to extend the downscaling of Poisson's ratio

to the case of aging (Sanahuja, 2013).
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Figure 4.3 � Long-term viscoelastic Poisson's ratio ν∞c of concrete versus
long-term viscoelastic Poisson's ratio ν∞gel of C-S-H gel.
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4.2 Discussion

4.2.1 In�uence of interface

The homogenization scheme introduced in section 4.1.1 was derived by con-

sidering that the interface between inclusion and matrix is perfectly adhesive.

Said otherwise, by using this scheme, we considered that there is no disconti-

nuity of displacement, neither at the interface between aggregates and cement

paste (see Fig. 4.1a), nor at the interface between portlandite, calcium sulfoa-

luminates hydrates, clinker and the mixture of C-S-H with capillary porosity

(see Fig. 4.1b). In practice, adhesion at those two interfaces may not be

perfect. The objective of this section is to quantify how this imperfection

could alter the �ndings obtained in section 4.1.3.

As was done in section 4.1.3, we consider a composite made of a matrix

that creeps and surrounds spherical inclusions that do not creep, but we now

consider that the interface between matrix and inclusion can be imperfect:

a tangential sti�ness Kt(t) of the interface is introduced, with a long-term

asymptotic value limt→+∞Kt(t) = K∞t . The normal displacement at the

interface is considered to be continuous, i.e., there is no separation at the

interface. The radius of the inclusions is noted Ri. The viscoelastic homog-

enization scheme is based on the equivalent inclusion method developed by

Duan et al. (2007) for elastic solids. In his model, the imperfection of the

interface is characterized by the dimensionless parameter mθ = KtRi/Gm,

where Gm is the shear modulus of the matrix. Using the correspondence

principle, the viscoelastic homogenization scheme with imperfect interfaces is

derived in the Laplace domain by replacing all elastic parameters in Duan's

scheme by the s-multiplied Laplace transform of their corresponding vis-

coelastic parameter. Then, using again the �nal value theorem (Auliac et al.,

2000), we derive a relation between the long-term viscoelastic Poisson's ratio

ν∞com of the composite, ν∞m of the matrix, the long-term interface property

m∞θ = limt→+∞ (Kt(t)Ri/Gm(t)), and the volume fraction f of inclusions:

ν∞com =
A1(ν∞m )2 +B1ν

∞
m + C1

A2(ν∞m )2 +B2ν∞m + C2

(4.5)
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where the coe�cients are:

• A1 = 10f 2m∞θ + 20f 2 − 20fm∞θ − 76f + 10m∞θ + 38

• B1 = −11f 2m∞θ − 22f 2 + 19fm∞θ + 92f − 8m∞θ − 34

• C1 = 3f 2m∞θ + 6f 2 − 3fm∞θ − 24f

• A2 = 30f 2m∞θ + 60f 2 − 30fm∞θ − 96f

• B2 = −41f 2m∞θ − 82f 2 + 31fm∞θ + 116f + 10m∞θ + 38

• C2 = 13f 2m∞θ + 26f 2 − 5fm∞θ − 28f − 8m∞θ − 34

In the above equation, letting the interface parameter m∞θ tend toward

+∞, we retrieve Eq. (4.3), which is valid for perfectly adhesive interfaces.

In contrast, letting the interface parameter m∞θ tend toward 0, we obtain a

relation valid in the case of perfectly smooth interfaces. We checked that

the relation obtained in this latter case is consistent with the Poisson's ratio

obtained by using the elastic homogenization scheme for perfectly smooth

interface developed by Barthélémy (2005). Next, we study the in�uence of

the interface conditions on the results when performing a homogenization 1)

from the scale of the cement paste to that of the concrete, and 2) from the

scale of the C-S-H gel to that of the cement paste.

For what concerns homogenization from the scale of cement paste to the

scale of concrete, the interface that plays a role is that between aggregates

and cement paste (see Fig. 4.1a). Here, in accordance with the experimen-

tal results of Parrott (1974), we consider a concrete made of aggregates at

a typical volume fraction of 0.7 and of a cement paste with a long-term

viscoelastic Poisson's ratio equal to 0.19. Using Eq. (4.5), we compute the

long-term viscoelastic Poisson's ratio of the concrete as a function of the in-

terface parameter m∞θ . The results are displayed in Fig. 4.4a: to retrieve a

long-term viscoelastic Poisson's ratio between 0.15 and 0.2 for concrete (as

is observed experimentally, see Fig. 3.2), Fig. 4.4a suggests that the inter-

face between aggregates and cement paste can be considered to be perfectly

adhesive.
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For what concerns homogenization from the scale of the C-S-H gel to the

scale of the cement paste, the interfaces that play a role are those between

portlandite, calcium sulfoaluminates hydrates, clinker and the mixture of C-

S-H with the capillary porosity (see Fig. 4.1b). Here, in accordance again

with the experimental results of Parrott (1974), we consider a cement paste

with a long-term viscoelastic Poisson's ratio equal to 0.19. This long-term

viscoelastic Poisson's ratio is downscaled down to the scale of the C-S-H

gel in two steps, to obtain the long-term viscoelastic Poisson's ratio of the

C-S-H gel (see Fig. 4.1b and c). For the �rst step, we consider the volume

fraction of portlandite, calcium sulfoaluminates hydrates and clinker equal to

0.35 (which is the mean value of the volume fractions of portlandite, calcium

sulfoaluminates hydrates and clinker in Tab. 5.2) and use Eq. (4.5) to back-

calculate the long-term viscoelastic Poisson's ratio of the mixture of C-S-H

with capillary porosity, as a function of the parameterm∞θ of its interface with

portlandite, calcium sulfoaluminates hydrates and clinker. Then, considering

the volume fraction of capillary pores equal to 0.21 (which is the mean value

of the volume fractions of capillary pores in Tab. 5.2) and using Eq. (4.4),

by downscaling we infer the long-term viscoelastic Poisson's ratio ν∞gel of the

C-S-H gel. The results are displayed in Fig. 4.4b: the range over which

the long-term viscoelastic Poisson's ratio ν∞gel of the C-S-H gel is almost the

same as the scatter of the downscaled value, which is visible in Fig. 4.3.

Said otherwise: the properties of the interface between portlandite, calcium

sulfoaluminates hydrates and clinker on one hand, and the mixture of C-S-H

with capillary porosity on the other hand, play a negligible role on the back-

calculated value of the long-term viscoelastic Poisson's ratio of the C-S-H

gel.

From the calculations performed above, we conclude that 1) the inter-

face between aggregates and cement paste can be considered to be perfectly

adhesive, and 2) the interface between portlandite, calcium sulfoaluminates

hydrates and clinker on one hand, and the mixture of C-S-H with capillary

porosity on the other hand, has little in�uence on the back-calculated long-

term viscoelastic Poisson's ratio of the C-S-H gel. It should be noted that

such conclusion is only valid for the long-term values of Poisson's ratio. As
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Figure 4.4 � (a) Upscaled long-term viscoelastic Poisson's ratio of concrete
as a function of the property of the interface between aggregates and cement
paste. (b) Downscaled long-term viscoelastic Poisson's ratio of C-S-H gel
as a function of the property of the interface between portlandite, calcium
sulfoaluminates hydrates and clinker on one hand, and the mixture of C-S-H
with capillary pores on the other hand.

to whether the interface e�ect can be neglected or not for the whole time-

evolution of Poisson's ratio, no information can be obtained from the above

study.
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4.2.2 Implications for creep mechanism of C-S-H gel at

large times

Based on the back-calculated long-term viscoelastic Poisson's ratio of the C-

S-H gel, which is found to lie between 0 and 0.18 (see sec. 4.1.3), we aim at

inferring some implications for the creep mechanism of the C-S-H gel. In the

spirit of the model proposed by Jennings (2000, 2004), we consider the C-S-

H gel to be made of nanometer-sized C-S-H particles. Two potential creep

mechanisms are considered next: long-term creep of the C-S-H gel is due to

1) creep of the C-S-H particles themselves, or 2) creep of the contact points

between neighboring C-S-H particles. Note that those conclusions which will

be drawn only hold if we consider that the experimental data at the concrete

scale are su�ciently reliable.

Creep of C-S-H gel originating from creep of C-S-H particles

In this section, we consider that creep of the C-S-H gel originates from the

creep of the C-S-H particles themselves, and that those particles are per-

fectly bonded to each other. We adopted the model proposed by Tennis and

Jennings (2000); Jennings (2000) for the description of the microstructure

of C-S-H gel. The C-S-H gel is composed of individual globules of C-S-H

particles, which are stacks of C-S-H layers. The globules form zones of Low

Density (LD) C-S-H and zones of High Density (HD) C-S-H, whose gel poros-

ity (volume of gel pores over the sum of the volume of solid hydrates and

gel pores) is 0.37 and 0.24, respectively (Tennis and Jennings, 2000). We

consider that each globule of C-S-H particle can creep by having its C-S-H

layers sliding over each other (see Fig. 4.5a): the shear relaxation modulus

associated to this sliding is noted GCSH(t). In addition, we consider that

the distance between solid C-S-H layers could vary over time: the uniaxial

relaxation modulus associated to this type of deformation is noted ECSH(t).

At large times, the shear and uniaxial relaxation moduli tend toward G∞CSH

and E∞CSH, respectively.

Sanahuja (2008) developed a viscoelsatic homogenization scheme for a

composite material made of an assembly of transverse isotropic particles ran-
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Figure 4.5 � (a) Layered structure of C-S-H particles. (b) Imperfect contact
between C-S-H particles.

domly oriented, intermixed with spherical pores. He considered both spher-

ical and aspherical particles. Here we extend his scheme to homogenization

of the long-term viscoelastic behavior, again by using the correspondence

principle and the �nal value theorem (Auliac et al., 2000). Thus, we obtain a

relationship between long-term viscoelastic Poisson's ratio ν∞gel of the C-S-H

gel and long-term shear relaxation modulus G∞CSH and uniaxial relaxation

modulus E∞CSH of the C-S-H particles.

For spherical C-S-H particles, we found that the long-term viscoelastic

Poisson's ratio ν∞gel of the C-S-H gel did not depend much on the gel porosity,

in the range of its two extreme values, i.e., 0.24 and 0.37. We display this

long-term viscoelastic Poisson's ratio ν∞gel of the C-S-H gel in Fig. 4.6a, as

a function of the ratio G∞CSH/E
∞
CSH, for a gel porosity of 0.28. If the ratio

G∞CSH/E
∞
CSH is equal to 0, i.e., if in the long term C-S-H layers can only slide

over each other, the long-term viscoelastic Poisson's ratio of the C-S-H gel

must be equal to ν∞gel = 0.40, which is not consistent with the experimental

results obtained by downscaling and displayed in Fig. 4.3. In contrast, to

retrieve the long-term viscoelastic Poisson's ratio ν∞gel of the C-S-H gel ob-

served experimentally, which is between −0.07 and 0.16 (see Fig. 4.3), and

151



CHAPTER 4. LONG-TERM VISCOELASTIC POISSON'S RATIO OF
C-S-H GEL

if we still consider spherical C-S-H particles, in the long term both sliding

of its C-S-H layers over each other and variations of the interlayer distance

must occur.

For oblate C-S-H particles with still a gel porosity equal to 0.28, Fig. 4.6a

displays the long-term viscoelastic Poisson's ratio of the C-S-H gel, as a

function of the ratio G∞CSH/E
∞
CSH, for two aspect ratio: rs = 0.12 (Sanahuja

et al., 2007) and rs = 0.033 (Sanahuja et al., 2007). We observe that, in such

case, one can retrieve the long-term creep Poisson's ratio of the C-S-H gel

observed experimentally, if G∞CSH/E
∞
CSH = 0, i.e., if the C-S-H layers are only

allowed to slide over each other, with no variation of the interlayer distance.

In conclusion, if creep of the C-S-H gel is due to creep of the C-S-H

particles themselves, evolutions of the viscoelastic Poisson's ratio observed

experimentally cannot be explained if one considers that the C-S-H particles

are spherical and that they creep by sliding of its C-S-H layers over each

other: either the C-S-H particles need to be considered aspherical, or the

interlayer distance between neighboring C-S-H layers must be considered to

vary in the long term.

Creep of C-S-H gel originating from creep of contact points be-

tween neighboring C-S-H particles

In this section, we consider that creep of the C-S-H gel originates from creep

of the contact points between C-S-H particles, and that C-S-H particles only

deform elastically.

Maalej (2007) developed an elastic homogenization scheme for a com-

posite material made of rigid spherical particles in contact through elastic

contact points: to those contact points are associated a normal sti�ness Kn

and a tangential sti�ness Kt (see Fig. 4.5b). In order to predict the viscoelas-

tic behavior of the C-S-H gel here considered, in which contact points are

considered viscoelastic, we extend Maalej's scheme to homogenization of the

long-term viscoelastic behavior, again by using the correspondence principle

and the �nal value theorem (Auliac et al., 2000). Thus, we obtain a relation-

ship between the long-term viscoelastic Poisson's ratio ν∞gel of the C-S-H gel,
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its porosity, the long-term asymptotic values K∞n of the normal sti�ness and

K∞t of the tangential sti�ness.

For spherical C-S-H particles and a gel porosity equal to 0.28, the long-

term viscoelastic Poisson's ratio ν∞gel of the C-S-H gel is displayed in Fig. 4.6b

as a function of the ratio K∞t /K
∞
n . If C-S-H particles can only slide over each

other, i.e., if K∞t /K
∞
n = 0, the long-term viscoelastic Poisson's ratio of the

C-S-H gel is predicted to be equal to 0.33, which is greater than the values

observed experimentally, which lay between −0.07 and 0.16 (see Fig. 4.3).

Therefore, if creep of the C-S-H gel originates from the creep of the contact

points between C-S-H particles, if one considers that C-S-H particles are

spherical, he/she cannot consider that C-S-H particles can only slide over

each other: in the long term, the C-S-H particles must also be allowed to get

closer to each other, i.e., to interpenetrate each other.

We found no homogenization scheme that predicts the elastic behavior of

an assembly of rigid particles in contact through elastic contact points, when

the particles are considered aspherical. Therefore, we do not know how the

conclusions drawn in this section would hold if the assumption of sphericity

of the C-S-H particles was relaxed. However, given the results obtained

in section 4.2.2, conclusions are likely to signi�cantly di�er for aspherical

particles. This elastic homogenization problem is di�cult from a technical

point of view. As a starting point, Sidhom (2014) proposed some bounds on

the e�ective moduli, using energy approaches, but these bounds may not be

tight enough to be directly applied to this study.

4.3 Conclusions

From the long-term viscoelastic Poisson's ratio of concrete we compute the

long-term viscoelastic Poisson's ratio of C-S-H gel by downscaling with the

help of elastic homogenization schemes extended to viscoelasticity. Several

conclusions can be drawn.

For what concerns downscaling of the viscoelastic Poisson's ratio of concrete,

if the aggregates, portlandite, calcium sulfoaluminates hydrates and clinker

can be considered as spherical:

153



CHAPTER 4. LONG-TERM VISCOELASTIC POISSON'S RATIO OF
C-S-H GEL

10-3 10-2 10-1 100 101 102 103

Ratio of long-term moduli G∞
CSH/E

∞
CSH[-]

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Lo
ng

-te
rm

 P
oi

ss
on

's 
ra

tio
 ν
∞ ge
l

 o
f C

-S
-H

 g
el

 [-
]

spherical rs =1

oblate rs =0.12

oblate rs =0.033

(a)

10-3 10-2 10-1 100 101 102 103

Ratio of interface moduli K∞
t /K∞

n [-]

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Lo
ng

-te
rm

 P
oi

ss
on

's 
ra

tio
 ν
∞ ge
l 

of
 C

-S
-H

 g
el

 [-
]

(b)

Figure 4.6 � Long-term viscoelastic Poisson's ratio ν∞gel of C-S-H gel: (a)
in the case where creep is due to creep of the C-S-H particles themselves,
and (b) in the case where creep is due to creep of contact points between
neighboring C-S-H particles.

• The long-term viscoelastic Poisson's ratio of the C-S-H gel has little

e�ect on the long-term viscoelastic Poisson's ratio of concrete.

• The interface between aggregates and cement paste can be considered

adhesive for downscaling or upscaling the long-term viscoelastic Pois-

son's ratio.
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• The interface between portlandite, calcium sulfoaluminates hydrates

and clinker on one hand, and the mixture of C-S-H with the capillary

porosity on the other hand, has little e�ect on the relation between the

viscoelastic Poisson's ratio of concrete and that of the C-S-H gel.

For what concerns creep of the C-S-H gel, if we consider that the experi-

mental data at the concrete scale are su�ciently reliable, downscaling of all

experimental results obtained at the scale of concrete shows that:

• The long-term viscoelastic Poisson's ratio of the C-S-H gel is comprised

between 0 and 0.2.

• The long-term creep of C-S-H gel in concrete is both deviatoric and

volumetric.

• If creep of the C-S-H gel is due to creep of the C-S-H particles them-

selves, evolutions of the creep Poisson's ratio observed experimentally

cannot be explained if one considers that the C-S-H particles are spher-

ical and that they creep by sliding of its C-S-H layers over each other:

either the C-S-H particles need to be considered aspherical, or the in-

terlayer distance between neighboring C-S-H layers must be considered

to vary in the long term.

• if creep of the C-S-H gel is due to creep of the contact points between

C-S-H particles, and if one considers that C-S-H particles are spherical,

he/she cannot consider that C-S-H particles can only slide over each

other: in the long term, the C-S-H particles must also be allowed to

get closer to each other, i.e., to interpenetrate each other.
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Chapter 5

Is long-term autogenous shrinkage

a creep phenomenon induced by

capillary e�ects due to

self-desiccation?

L
ong-term shrinkage and creep of concrete can impact the lifetime of

concrete structures. Basic creep of cementitious materials is now known

to be non-asymptotic and evolve logarithmically with time at large times.

However, the long-term kinetics of autogenous shrinkage is not systemati-

cally analyzed. Here we �rst aim at �nding out how autogenous shrinkage

evolves with time at long term. We analyze all experimental data available in

the literature and �nd that autogenous shrinkage evolves logarithmically with

respect to time at long term, like basic creep. Then, by considering concrete as

a multiscale material, we obtain the bulk creep modulus of the calcium silicate

hydrate gel. In the end, we show that the kinetics of long-term autogenous

shrinkage can be a viscoelastic response to self-desiccation by comparing the

mechanical stress that should be applied to explain this long-term kinetics of

autogenous shrinkage with the capillary force due to self-desiccation.
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CHAPTER 5. IS LONG-TERM AUTOGENOUS SHRINKAGE A
CREEP PHENOMENON INDUCED BY CAPILLARY EFFECTS DUE
TO SELF-DESICCATION?

L
e retrait et fluage à long terme du béton peuvent avoir un impact

sur la durée de vie des structures en béton. On sait maintenant que

le �uage propre des matériaux cimentaires est non-asymptotique et évolue

comme une fonction logarithmique du temps à long terme. Cependant, il

n'y pas d'analyse systématique de la cinétique à long terme du retrait endo-

gène dans la littérature. Dans ce chapitre, nous cherchons donc à comprendre

comment le retrait endogène évolue au cours du temps à long terme. Nous

analysons toutes les données expérimentales disponibles dans la littérature et

trouvons que le retrait endogène évolue comme une fonction logarithmique

du temps à long terme, de même que le �uage propre. Ensuite, en consi-

dérant le béton comme un matériau multi-échelle, nous obtenons le module

de �uage volumétrique du gel de silicate de calcium hydraté. Au �nal, nous

montrons que la cinétique du retrait endogène à long terme pourrait être une

réponse viscoélastique à l'auto-dessiccation, en comparant la contrainte mé-

canique qui doit être appliquée pour expliquer cette cinétique à long terme du

retrait endogène avec la force capillaire due à l'auto-dessiccation.
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5.1 Introduction

Time-dependent behavior (i.e., creep and shrinkage) of cementitious materi-

als has been studied for more than half a century. In most of the shrinkage-

creep models (RILEM Technical Committee, 1995; Benboudjema et al., 2007;

RILEM Technical Committee, 2015) and engineering design codes (1992-1-

1:2005, 2004; ACI Committee 209, 2008; FIB, 2013), the time-dependent

strain is decomposed into four components: autogenous shrinkage, basic

creep, drying shrinkage and drying creep. In this present chapter, we fo-

cus only on autogenous shrinkage and basic creep, i.e., on time-dependent

deformations of sealed sample for which drying is not involved.

Both autogenous shrinkage and basic creep are time-dependent strains

that are measured on specimens that do not exchange water with its sur-

roundings. Such condition is achieved either by sealing the sample, (e.g., by

De Larrard (1990)), or by controlling the relative humidity of the environment

to the same relative humidity as that of the sample (e.g., by Gopalakrishnan

(1968)). For characterization of time-dependent behavior of cementitious

materials under such condition, usually two specimens are needed: one ref-

erence specimen which is not loaded and another specimen which is loaded.

The time-dependent strain of the reference specimen is called autogenous

shrinkage. Basic creep is obtained by subtracting time-dependent strain of

the reference specimen from the time-dependent strain of the loaded speci-

men. Basic creep is the time-dependent strain only due to the mechanical

load.

For compressive stresse below 40% of the compressive strength, the basic

creep of concrete is non-asymptotic and evolves logarithmically with time at

large times (Bazant et al., 2011; Le Roy, 1995; Le Roy et al., 2017). By ana-

lyzing viscoelastic Poisson's ratio, we showed in chapter 3 that even the volu-

metric basic creep of concrete is non asymptotic. At the scale of microinden-

tation and nanoindentation, Zhang et al. (2014); Frech-Baronet et al. (2017)

and Vandamme and Ulm (2013) respectively showed that the basic creep of

cement paste and of C-S-H gel evolves logarithmically with time after a tran-

sient period. In contrast, autogenous shrinkage is sometimes assumed to be
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asymptotic (1992-1-1:2005, 2004; FIB, 2013; RILEM Technical Committee,

2015), while some experimental data (e.g. of De Larrard (1990); Mazloom

et al. (2004); Brooks and Wainwright (1983); Brooks (1984)) show that au-

togenous shrinkage evolves logarithmically over time in the long term. For

what concerns the modeling of autogenous shrinkage, several authors (Lin

and Meyer, 2008; Stefan et al., 2009; Zhang et al., 2012; Wu et al., 2017)

considered the autogenous shrinkage as the elastic strain under the action of

capillary forces induced by self-desiccation, while others (Hua et al., 1995;

Luan et al., 2013) suggested that autogenous shrinkage is the viscoelastic

response of cement-based materials to the capillary forces. In comparison,

drying shrinkage is modeled as elastic strain (Di Bella et al., 2017) or vis-

coelastic strain (Benboudjema et al., 2007; Sellier and Bu�o-Lacarriere, 2009;

Grasley and Leung, 2011; Sellier et al., 2016) under the action of capillary

forces induced by desiccation. However, modeling autogenous shrinkage as

elastic strain due to self-desiccation can model only asymptotic evolution of

autogenous shrinkage at long term as self-desiccation stops at certain time.

In any case, no consensus exists regarding the physical origin of autogenous

shrinkage. In this chapter, we aim at shedding some light on the physical

origin by starting from an exhaustive analysis of data from the literature.

In the �rst part, we perform an exhaustive analysis of autogenous shrink-

age and basic creep data from the literature. Then, by considering concrete

as a multi-scale material, we use micromechanics to identify a long-term

creep propert of the calcium silicate hydrates (C-S-H) gel. In the third part,

we discuss if long-term autogenous shrinkage can be explained as a creep

phenomenon under the action of capillary force caused by self-desiccation.

To do so, we compare the magnitude of in-pore stress necessary to obtain

the long-term creep kinetics of autogenous shrinkage with that of capillary

forces.
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5.2 Analysis of autogenous shrinkage and basic

creep data

This section is devoted to analyze experimental data from literature and

study the long-term evolution of autogenous shrinkage and basic creep.

5.2.1 Autogenous shrinkage

We selected autogenous shrinkage data from the comprehensive database

on concrete creep and shrinkage (Baºant and Li, 2008) compiled by Prof.

Baºant and his collaborators. We consider all the experiments that satisfy

the following criteria:

• The tested concrete or cement paste is made with ordinary Portland

cement, i.e., the cement must be of type CEM I according to Eurocode-

2 (1992-1-1:2005, 2004), or of type I to type V according to ASTM

(ASTM-C150-C150M-16e1, 2016).

• The tested concrete or cement paste contains no silica fume, �y ashes,

�ller or slag.

• The autogenous shrinkage must be measured at least until the age of

90 days.

With these criteria, we selected in total 29 tests on concrete and 16 tests

on cement paste.

Figure 5.1a shows time evolution of autogenous shrinkage for three rep-

resentative tests. At large times, autogenous shrinkage evolves linearly with

logarithm of time. Such feature was in fact observed for all concretes and

cement pastes made with water-to-cement ratio below 0.5. Hence, we �tted

the following empirical relation for all of the chosen tests:

εsh(t) = αsh log

(
t

τ0

)
+ βsh, (5.1)

to all data points obtained at the age of more than 28 days. In Eq. 5.1, εsh
is the autogenous shrinkage strain, αsh is the slope of autogenous shrinkage
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Figure 5.1 � (a) Example of autogenous shrinkage data; (b) Example of basic
creep data. Data from Shritharan (1989); De Larrard (1990); Mazloom et al.
(2004)

displayed versus log(t), t is age of concrete and τ0 = 1 day is a reference time.

Table 5.1 summarizes the origin of data, mix design properties of concretes

and the �tted parameter αsh. For the sake of length, only the data of the
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Author File1 w/c2 a/c3 c4 αcr
6

Shritharan (1989) e_079_06 0.47 5.09 393 7.51
De Larrard (1990) A_022_05 0.35 3.96 450 15.96
Mazloom (2004) A_031_02 0.35 3.70 500 30.64

Table 5.1 � Extract of autogenous shrinkage data. 1File corresponds to the
�le number in the database compiled by Prof. Baºant and his collaborators
(Baºant and Li, 2008); 2w/c: water-to-cement ratio; 3a/c: aggregate-to-
cement mass ratio; 4c: cement per volume of mixture [kg/m3]; 5αsh: Fitted
parameter in Eq. 5.1, [µm/m]

three tests displayed in Fig. 5.1a are given in Tab. 5.2. For the data of all 45

tests used in this study, please see Tabs. E.1 and E.2 in appendix E.

If the autogenous shrinkage can be explained as a creep phenomenon, we

should be able to relate the �tted parameter αsh with a stress Σh that is

necessary to explain the long-term kinetics as following:

Σh = 3αshC
K
c (5.2)

where CK
c is the bulk creep modulus of concrete which is de�ned, in a creep

test under the stress σ0, as the asymptotic value of σ0/(tdε/dt) in the long

term. Hence, in order to obtain the stress Σh that is necessary to explain the

long-term kinetics of autogenous shrinkage as a creep phenomenon, we need

the bulk creep modulus CK
c of concrete. In next section, we analyze basic

creep data to obtain this parameter.

5.2.2 Basic creep

We selected basic creep data also from the comprehensive database on con-

crete creep and shrinkage (Baºant and Li, 2008) compiled by Prof. Baºant

and his collaborators. We selected all the basic creep data that satifsy the

following criteria:

• The tested concrete or cement paste is made with ordinary Portland

cement, i.e., the cement must be of type CEM I according to Eurocode-

2 (1992-1-1:2005, 2004), or of type I to type V according to ASTM
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(ASTM-C150-C150M-16e1, 2016).

• The tested concrete or cement paste contains no silica fume, �y ashes,

�ller or slag.

• The basic creep must be measured even after 5 times age of loading.

• The applied stress does not exceed 40% of the compressive strength.

With these criteria, we selected in total 59 tests on concrete.

Figure 5.1b shows time evolution of basic creep for three representative

tests. At large times, the evolution of basic creep is logarithmic with time for

all of the selected tests. Hence, by choosing the data from the time equal to 5

times the age of loading till the end of test, we �tted the following empirical

relation to all tests:

εcr(t) =
1

CE
c

log

(
t

τ0

)
+ βcr (5.3)

where εcr is the speci�c basic creep strain, 1
CEc

is the slope of basic creep

displayed versus log(t), t is time since loading and τ0 = 1 day is reference

time. The parameter CE
c is equal to the uniaxial creep modulus of con-

crete. Table 5.2 summarizes the origin of data, mix design properties of

concrete/cement paste, loading age and the �tted parameter 1
CEc

. For the

sake of length, only the data of the three experiments displayed in Fig. 5.1a

are given in Tab. 5.2. For data of all 59 tests used in this study, please see

Tabs.F.1 and F.2 in appendix F.

In conclusion, we con�rmed that basic creep evolves logarithmically with

respect to time at long term. Our analysis of an exhaustive set of data shows

that autogenous shrinkage also evolves logarithmically with respect to time

at long term.
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Author File1 w/c2 a/c3 c4 t0
5 1/CE

c
6

Shritharan (1989) c_079_08 0.47 5.09 390 14 8.93
De Larrard (1990) D_022_05 0.35 3.96 450 3 4.10
Mazloom (2004) D_031_02 0.35 3.70 500 7 16.86

Table 5.2 � Extract of basic creep data. 1File corresponds to the �le number
in the database compiled by Prof. Baºant and his collaborators (Baºant
and Li, 2008); 2w/c: water-to-cement ratio; 3a/c: aggregate-to-cement mass
ratio; 4c: cement per volume of mixture [kg/m3]; 5t0: loading age [days];
61/CE

c : Fitted parameter in Eq. 5.3, [µm/m/MPa].

5.3 Downscaling of creep compliance from the

scale of concrete to the scale of C-S-H gel

The objective of this section is to estimate the long-term creep properties of

C-S-H gel from the basic creep data on concrete presented in section 5.2.2. As

the creep of concrete evolves logarithmically with respect to time in the long

term, we can express the bulk creep compliance of concrete as JKc = 1/K0
c +

1/CK
c log(1 + t/τc), where CK

c is the bulk creep modulus that characterizes

long term kinetics of bulk creep strain.

Aili et al. (2016) showed that the viscoelastic Poisson's ratio νc of concrete

remains quite constant and comprised between 0.15 and 0.2. Hence, we take

the viscoelastic Poisson's ratio νc as constant and equal to 0.2. Then, making

use of the elastic-viscoelastic correspondence principle, we replace in the

elastic relation between bulk modulus and uniaxial modulus by s-multiplied

Laplace transform of their corresponding parameters. Next, we apply �nite

value theorem and obtain the relation between the bulk creep modulus CK
c

and the uniaxial creep modulus CE
c :

CE
c = 3(1− 2νc)C

K
c (5.4)

where νc is the viscoelastic Poisson's ratio of concrete. The objective is to

relate this bulk creep modulus CK
c of concrete to the bulk creep modulus CK

gel

of the C-S-H gel.

We �rst present the multi-scale scheme of concrete that we are going to
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use throughout the whole chapter. Then, we derive some theoretical result

by adapting some elastic homogenization schemes to viscoelastic case via

the correspondence principle (Christensen, 1982). In the end, we apply the

derived equations to relate the bulk creep modulus CK
c of concrete to bulk

creep modulus CK
gel of C-S-H gel.

5.3.1 Multiscale model for concrete

Concrete can be regarded as a multiscale composite material at three di�erent

scales, which are displayed in Fig. 5.2:

• At the largest scale of concrete (see Fig. 5.2a), the aggregates are con-

sidered as spherical inclusions that do not creep and are embedded into

a matrix made of cement paste, which creeps.

• At a scale below, i.e., at the scale of the cement paste (see Fig. 5.2b),

portlandite, calcium sulfoaluminate hydrates and the unhydrated clinker

are considered as spherical inclusions that do not creep and are embed-

ded into a matrix made of a mixture of C-S-H with capillary pores.

This mixture is considered to creep.

• At another scale below (see Fig. 5.2c), the mixture of C-S-H with

capillary pores is considered to be a matrix of C-S-H gel (that contains

the gel porosity) that surrounds spherical capillary pores.

As explained before, here we take viscoelastic Poisson's ratios of concrete

(Fig. 5.2a) equal to 0.2. Using the results displayed in Figs 4.2a and 4.2b,

we can also take the viscoelastic Poisson's ratio of cement paste (Fig. 5.2b),

of the mixture of C-S-H gel and capillary pores (Fig. 5.2c) and of C-S-H gel

as constant, equal to 0.2.

5.3.2 Theoretical derivation

We consider a composite made of a matrix that embeds spherical inclusions.

Given the microstructure, we employ the Mori-Tanaka scheme (Mori and
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Portlandite
Calcium sulfoaluminates
Clinker

d) C-S-H gel

a) Concrete

c)

b) Cement paste

Aggregates

Capillary pores

Gel pores

Mixture of
C-S-H with
capillary
pores

S
ection

5.3
S
ection

5.5.2

Figure 5.2 � Multiscale structure of concrete: (a) Concrete as a matrix of
cement paste embedding aggregates, (b) cement paste as portlandite, cal-
cium sulfoalumintes hydrates and unhydrated clinker embedded into a ma-
trix made of a mixture of C-S-H with capillary pores, (c) mixture of C-S-H
with capillary pores as a matrix of C-S-H gel surrounding capillary porosity,
and (d) C-S-H gel as a mixture of C-S-H particles and gel pores. The scales
(a) (b) (c) are considered in Sec. 5.3.1 for the downscaling of the creep mod-
ulus, while the scale (d) is considered in Sec. 5.5.2 for estimating the Biot
coe�cient of the mixture of C-S-H gel with capillary pores.

Tanaka, 1973; Zaoui, 1999) to calculate the properties of the composite as

a function of the properties of each phases (i.e., the matrix and inclusion).

The interface between inclusion and matrix is considered to be perfectly ad-

hesive. The viscoelastic Poisson's ratio νm of matrix is constant and equal to

0.2. Applying the correspondence principle (Christensen, 1982) to the elastic

Mori-Tanaka homogenization scheme, making use of the fact that νm = 0.2,

replacing the elastic parameters by the s-multiplied Laplace transform of
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their corresponding viscoelastic parameters, we get the viscoelastic homoge-

nization scheme in the Laplace domain:

K̂com =
K̂m(1− fi) + K̂i(1 + fi)

K̂m(1 + fi) + K̂i(1− fi)
K̂m (5.5)

where fi is the volume fraction of inclusions; Km, Ki and Kcom are the

viscoelastic bulk relaxation modulus of the matrix, of the inclusion and of

the composite, respectively. ĝ is the Laplace transform of the function g.

These bulk relaxation moduli Kj are related to bulk creep compliances

JKj through:

sĴKj =
1

sK̂j

(5.6)

where s is the Laplace variable, j = m, i, com represents matrix, inclusion

and composite, respectively.

We suppose that the bulk creep compliances JKj evolve logarithmically

with respect to time at large times and can be expressed as JKj = 1/K0
j +

1/CK
j log(1 + t/τj), where j = m, i, com and CK

j is the bulk creep modulus.

By using �nal value theorem (Auliac et al., 2000) and Laplace transform of a

derivative, we obtain the following relation between the bulk creep modulus

CK
j and the Laplace transform of bulk relaxation modulus ĴKj :

1

CK
j

= lim
t→∞

t ˙JKj = lim
s→0

s
(̂
t ˙JKj

)
= lim

s→0

(
−s d

ds

̂̇
(JKj )

)
= lim

s→0

(
−s d

ds

(
s(̂JKj )− JKj |t=0

))
= lim

s→0

(
−s d

ds

(
s(̂JKj )

)) (5.7)

where ġ is the derivative of the function g with respect to time. Equation 5.7

means that d(sĴKj )/ds can be approximated by −1/sCK
j for small s, from

which follows that ĴKj can approximated by − log(s)/CK
j s for small s:

ĴKj ≈ − log(s)/CK
j s, for s→ 0 (5.8)

Using the �nal value theorem (Auliac et al., 2000), letting s→ 0 in Eq. 5.5
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and combining with Eqs. 5.8 and 5.6, we obtain:

CK
com =

CK
m (1− fi) + CK

i (1 + fi)

CK
m (1 + fi) + CK

i (1− fi)
CK
m (5.9)

which make it possible to relate the bulk creep modulus CK
com of the composite

with that of its constituents.

We consider the following two cases:

• Case 1: Composite made of matrix embedding non-creeping inclusions.

The matrix is considered to creep logarithmically with respect to time

in the long term. The long-term volumetric creep kinetics of the matrix

is characterized by its creep modulus CK
m . Letting CK

m/C
K
i → 0 ,

equation 5.9 yields:

CK
com =

1 + fi
1− fi

CK
m (5.10)

• Case 2: Porous composite made of a matrix embedding spherical pores.

Letting CK
i /C

K
m → 0, equation 5.9 yields:

CK
com =

1− fi
1 + fi

CK
m (5.11)

5.3.3 From concrete to C-S-H gel

In this section, we derive a relation between the bulk creep modulus CK
c of

concrete and CK
gel of the C-S-H gel, by performing three steps of downscaling

following the multi-scale scheme displayed in Fig. 5.2.

• To relate the bulk creep modulus CK
c of concrete to the bulk creep

modulus of CK
p of cement paste (Fig. 5.2a), we apply Eq. 5.10.

• To relate the bulk creep modulus CK
p of cement paste to the bulk

creep modulus CK
mix of the mixture of C-S-H gel with capillary pores

(Fig. 5.2b), we apply again Eq. 5.10.
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• To relate the bulk creep modulus CK
mix of the mixture of C-S-H gel

with capillary pores to the bulk creep modulus CK
gel of the C-S-H gel

(Fig. 5.2c), we apply Eq. 5.11.

with these three steps of downscaling, we obtain:

CK
c =

(
1 + fa
1− fa

)(
1 + fb
1− fb

)(
1− φc
1 + φc

)
CK
gel (5.12)

where fa is the volume fraction of aggregates (counted with respect to the

volume of concrete); fb is the volume fraction of portlandite, calcium sul-

foaluminates and unhydrated clinker (counted with respect to the volume of

cement paste); φc is the volume fraction of the capillary porosity (counted

with respect to the volume of the mixture of C-S-H gel with capillary pores).

Combing Eqs. 5.12 and. 5.4, we obtain:

CK
gel =

(
1− fa
1 + fa

)(
1− fb
1 + fb

)(
1 + φc
1− φc

)
1

3(1− 2νc)
CE
c (5.13)

This equation makes it possible to compute the bulk creep modulus CK
gel

of the C-S-H gel from the uniaxial creep modulus CcE obtained from the

analysis of basic creep data, as long as the microstructural parameters fa, fb
and φc are known.

To determine the microstructural parameters fa, fb and φc, we use fol-

lowings:

• The volume fraction fa of aggregates in concrete, is computed from the

mix design properties of concrete: fa = 1 − c/ρc − c × w/c/ρw, where
c and w/c are mass of clinker per volume of mixture and the water-to-

cement mass ratio, ρc = 3.15g/cm3 and ρw = 1g/cm3 are the density

of cement and of water, respectively.

• The volume fraction fb of portlandite, calcium sulfoaluminates and un-

hydrated clinker (counted with respect to the volume of the cement

paste), is the sum of the volume fraction of portlandite, of calcium

sulfoaluminates and of unhydrated clinker. Each of them is computed

by using Powers' model (Powers and Brownyard, 1947; Taylor, 1997),
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which considers that the volume of cement paste is composed of bulk

hydrates (i.e., solid hydrates plus gel pores), unhydrated clinker, and

capillary pores. The long-term hydration degree ξ∞ of the sample is

taken to be equal to ξ∞ = 1 − exp(−3.3w/c) (Waller, 1999). The

volume fraction of bulk hydrates per unit volume of cement paste is

2.12(1 − p)α∞, where p = (w/c)/(w/c + ρw/ρc). The volume of port-

landite per unit volume of bulk hydrates is estimated to be equal to

25%, which is a typical value for CEM I cement pastes (Mehta and

Monteiro, 2006). Then, the volume fraction of portlandite (counted

with respect to the volume of cement paste) is 0.53(1 − p)ξ∞. The

volume of calcium sulfoaluminates hydrates per unit volume of bulk

hydrates is estimated to be equal to 15% (Mehta and Monteiro, 2006),

from which the volume fraction of sulfoaluminates hydrates (counted

with respect to the volume of cement paste) reads 0.32(1− p)ξ∞. The
volume fraction of unhydrated clinker (still counted with respect to the

volume of cement paste) is estimated also with Powers' model (Powers

and Brownyard, 1947; Taylor, 1997) to be equal to (1 − p)(1 − ξ∞).

Therefore, volume fraction fb of portlandite, calcium sulfoaluminates

and unhydrated clinker (counted with respect to the volume of the

cement paste) is fb = 0.85(1− p)ξ∞ + (1− p)(1− ξ∞).

• The volume fraction φc of capillary porosity with respect to the volume

of the mixture of C-S-H gel with capillary pores, is also computed by

using Powers' model (Powers and Brownyard, 1947; Taylor, 1997). The

volume fraction of capillary pores counted with respect to the volume

of cement paste is estimated as p−1.12(1−p)ξ∞. The volume fraction

of the mixture of C-S-H gel with capillary pores (counted with respect

to the volume of cement paste) is equal to 1− fb. Hence, the capillary
porosity φc (i.e., volume fraction of the capillary pores counted with

respect to the volume of the mixture of C-S-H gel with capillary pores)

is equal to (p− 1.12(1− p)ξ∞)/(1− fb).

Inserting the uniaxial creep modulus CE
c from Tab. 5.2, and the above-

calculated microstructural parameters fa, fb and φc into Eq. 5.12, we ob-
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tain the bulk creep modulus CK
gel of C-S-H gel. The results are displayed in

Fig. 5.3. The bulk creep modulus CK
gel of C-S-H gel does not exhibit any

speci�c trend with water-to-cement ratio. Its mean value is 13GPa.

The value of 13 GPa is lower than that obtained by Zhang (2014); Frech-

Baronet et al. (2017), who measured contact creep modulus as a function

of relative humidity. By downscaling their results as done here, we found

that the mean value of the bulk creep modulus is constant around 32GPa for

relative humidities over 75%. Flatt et al. (2011) showed that the relative hu-

midity under autogenous condition remains beyond 80%, from which follows

that the bulk creep moduli displayed in Fig. 5.3 should be comparable with

those downscaled from the measurements of Zhang (2014); Frech-Baronet

et al. (2017).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

water-to-cement ratio w/c [-]

0

5

10

15

20

25

30

35

40

C
re

ep
 m

od
ul

us
 C

K ge
l

 o
f C

-S
-H

 g
el

 [G
Pa

]

Hanson (1953a)
Hanson (1953b)
Browne (1967)
Rostasy (1972)
Kommandent (1976a)
Kommandent (1976b)
Takahashi (1980)
Kawasumi (1982)
Brooks (1983)
Brooks (1984)
Bryant (1987)
Larrard (1988)
Shritharan (1989)
Larrard (1990)
Leroy (1995)
Mazloom (2004)
Mazzotti (2005)
Mu (2009)
Mean value CK

gel =  13GPa

Figure 5.3 � Bulk creep modulus as a function water-to-cement ratio, com-
puted from basic creep data in Hanson (1953); Browne (1967); Rostasy et al.
(1973); Kommendant et al. (1976); Takahashi and Kawaguchi (1980); Kawa-
sumi et al. (1982); Brooks (1984); Brooks and Wainwright (1983); Bryant
and Vadhanavikkit (1987); De Larrard (1988); Shritharan (1989); De Lar-
rard (1990); Le Roy (1995); Mazloom et al. (2004); Mazzotti et al. (2005);
Mu et al. (2009)
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5.4. IN-PORE STRESS NECESSARY TO EXPLAIN LONG-TERM
KINETICS OF AUTOGENOUS SHRINKAGE

5.4 In-pore stress necessary to explain long-

term kinetics of autogenous shrinkage

This section aims at testing the following hypothesis: may capillary forces due

to self-desiccation be the driving force of the long-term kinetics of autogenous

shrinkage? To do so, we compare the in-pore stress necessary to explain long-

term kinetics of autogenous shrinkage with the capillary stress induced by

self-desiccation of concrete under autogenous condition. In this section, we

compute the in-pore mechanical stress σh that should act on the mixture of

C-S-H gel with capillary pores to explain the long-term kinetics characterized

by αsh. The next section is devoted to compute the capillary stress due to

self-desiccation.

We compute �rst the mechanical stress Σh that should act on concrete to

explain the long-term kinetics of autogenous shrinkage, which was captured

through the �tted parameter αsh (see Tab. 5.1), using Eq. 5.2.

Then, we downscale the stress Σh to the scale of the C-S-H gel to which

stress it may correspond. To do so, we perform two steps of downscaling.

The two steps are the same as the �rst two steps of downscaling scheme that

is described in section 5.3.1.

In each step, we are dealing with a composite made of a matrix that

creeps with no asymptote and of spherical inclusions that do not creep. The

matrix is subjected to a stress σ. We aim at computing an equivalent macro-

scopic stress Σ that should act on the composite to obtain an identical strain

response (Zaoui, 1999; Pichler et al., 2007).

In elastic case, the macroscopic stress reads:

Σ = (1− fi)σ :< A >m (5.14)

where fi is the volume fraction of inclusion; A is the 4th order strain local-

ization tensor; < g >m is the mean value of the parameter g on the matrix

domain. For an isotropic stress σ = σ1 where 1 is the identity tensor (hence,

Σ = Σ1), Eq. 5.14 can be simpli�ed to scalar form by taking the spherical

part Asphi of the localization tensor A of inclusion in Mori-Tanaka's scheme
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(Zaoui, 1999):

Σ = (1− fi)σ

(
1− fiAsphi

1− fi

)
=

(
1 + αm

Km
(Ki −Km)

)
(1− fi)

1 + αm
Km

(Ki −Km)(1− fi)
σ (5.15)

where αm = 3Km/(3Km + 4Gm), for νm = 0.2, we obtain α = 1/2.

In viscoelastic case with the viscoelastic Poisson's ratio of the matrix

νm(t) = 2, using the elastic-viscoelastic correspondence principle, we replace

all the elastic parameters in Eq. 5.15 by the s-multiplied Laplace transform of

their corresponding viscoelastic parameters. Then, considering that at long

term, the inclusion is much more rigid than the matrix, i.e., K∞i � K∞m , we

use �nal value theorem and obtain:

Σ∞ = σ∞ (5.16)

In two steps downscaling from the scale of concrete to the scale of the

mixture of C-S-H gel with capillary pores, we use Eq. 5.16 twice. The in-

pore stress Σh that should act on concrete to explain long-term kinetics of

autogenous shrinkage corresponds to a stress σh = Σh act on the mixture of

C-S-H gel with capillary pores. Hence, combing Eqs. 5.2 and 5.12, we can

relate this stress σh to the �tted parameter αsh via the bulk creep modulus

CK
gel of the C-S-H gel:

σh = 3αshC
K
gel

(
1 + fa
1− fa

)(
1 + fb
1− fb

)(
1− φc
1 + φc

)
(5.17)

This equation provides the mechanical stress σh that must act in the cap-

illary pore system at the scale of the mixture of C-S-H gel with capillary

pores to explain the long-term logarithmic kinetics of autogenous shrinkage,

characterized by the parameter αsh. For all autogenous shrinkage experi-

ments considered in section 5.2.1, we compute the mechanical stress σh and

display σh as a function of water-to-cement ratio in Fig. 5.6. This stress σh
is going to be compared with the capillary forces due to self-desiccation in

the next section.
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5.5 Capillary stress due to self-desiccation

In this section, we �rst analyze experimental data that measure evolution

of relative humidity under autogenous conditions in order to characterize

the self desiccation. Then, making use of Power's hydration model (Powers

and Brownyard, 1947) and theory of poromechanics (Coussy, 2011), we es-

timate capillary stress due to self-desiccation. By comparing this capillary

stress with the mechanical stress σh, we check the hypothesis: may capillary

forces due to self-desiccation be the driving force of the long-term kinetics of

autogenous shrinkage?

5.5.1 Self-desiccation of cementitious materials

Hydration of cement is a water-consuming process. In sealed conditions, i.e.,

in absence of any external water supply, consumption of water desaturates

the cement paste as the porosity decreases less slowly than the quantity of

water. As a result, the relative humidity inside of cement paste (Jensen,

1995) decreases. Flatt et al. (2011) showed that hydration stops below a

certain relative humidity. On the other hand, Jensen (1995) showed that

the self-desiccation is limited by thermodynamics. Thus, we expect that un-

der autogenous condition the relative humidity reaches an equilibrium value

when hydration stops. The objective of this section is to relate this relative

humidity at equilibrium to the water-to-cement ratio of the concrete or the

cement paste.

Baroghel-Bouny (1994); Jensen and Hansen (1996, 1999); Persson (1997);

Yssorche-Cubaynes and Ollivier (1999); Zhutovsky and Kovler (2013); Wyrzykowski

and Lura (2016) measured relative humidity inside concrete or cement paste

under autogenous conditions as a function of age. In addition, we have

measured the evolution of the relative humidity of a cement paste (see ap-

pendix H). For each of these tests, author, year, water-to-cement ratio and

duration of test are summarized in Tab. 5.3.

As the relative humidity stabilize at a certain value, we propose the fol-

lowing simple empirical relation for the evolution of relative humidity over
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Author w/c1 [-] τT
2 [days] h∞r

3 [-] τhr
4 [days]

Baroghel-Bouny (1991) 0.35 800 0.87 237
Baroghel-Bouny (1991) 0.49 365 0.94 52
Jensen (1996) 0.30 1 0.89 0.12
Jensen (1996) 0.35 14 0.93 0.71
Persson (1997) 0.25 450 0.76 40
Persson (1997) 0.33 450 0.82 62
Persson (1997) 0.47 450 0.88 135
Persson (1997) 0.58 450 0.94 98
Yssorche (1999) 0.33 365 0.84 15.24
Yssorche (1999) 0.44 365 0.90 0.95
Yssorche (1999) 0.59 365 0.99 0.57
Yssorche (1999) 0.75 337 0.99 0.06
Zhutovsky (2013) 0.21 7 0.81 0.44
Zhutovsky (2013) 0.25 7 0.84 0.61
Zhutovsky (2013) 0.33 7 0.86 0.62
Wyrzykowski (2016) 0.21 7 0.78 4
Wyrzykowski (2016) 0.24 7 0.79 5
Wyrzykowski (2016) 0.30 7 0.83 5
Wyrzykowski (2016) 0.35 7 0.88 4
Aili (see appendix H) 0.52 127 0.90 10

Table 5.3 � Summary of experimental data of evolution of relative humid-
ity with respect to time under autogenous condition, and of the �tted pa-
rameters. Data from Baroghel-Bouny (1994); Jensen and Hansen (1996,
1999); Persson (1997); Yssorche-Cubaynes and Ollivier (1999); Zhutovsky
and Kovler (2013); Wyrzykowski and Lura (2016) and appendix H. 1w/c:
water-to-cement ratio; 2τT : the duration of the test; 3h∞r : �tted parame-
ter with Eq. 5.18, corresponding to the long-term relative humidity under
autogenous conditions; 4τhr : �tted parameter with Eq. 5.18.
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time under autogenous condition:

hr(t) = h∞r + (1− h∞r ) exp

(
− t

τhr

)
(5.18)

where h∞r and τhr are �tted parameters, which depend on the water-to-cement

ratio and correspond to the long-term relative humidity and to a character-

istic time, respectively. For the sake of simplicity, in Fig. 5.4 we present only

the experimental measure of Baroghel-Bouny (1994) and the corresponding

�t with Eq. 5.18. However, we have analyzed a set of 20 experiments, see

Fig. G.1 in appendix G.
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Figure 5.4 � Evolution of relative humidity under autogenous condition, data
retrieved from Baroghel-Bouny (1994).

As we are interested in long-term kinetics of autogenous shrinkage, we

listed the long-term relative humidity h∞r in Tab. 5.3 and again plotted them

against water-to-cement ratio in Fig. 5.5. From Fig. 5.5, we can see that the

long-term relative humidity h∞r for a concrete with water-to-cement ratio
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w/c will be in between Eq. 5.19 and Eq. 5.20:

Upper bound for h∞r :

1− (0.4− w/c), if w/c < 0.4,

1, otherwise.
(5.19)

Lower bound for h∞r :

1− 0.45(0.75− w/c), if w/c < 0.75,

1, otherwise.
(5.20)
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Figure 5.5 � Long-term relative humidity under autogenous condition as
a function water-to-cement ratio, computed from experimental data in
Baroghel-Bouny (1994); Jensen and Hansen (1996, 1999); Persson (1997);
Yssorche-Cubaynes and Ollivier (1999); Zhutovsky and Kovler (2013);
Wyrzykowski and Lura (2016) and in appendix H.

5.5.2 Estimation of capillary force

Knowing the relative humidity h∞r at long term under autogenous conditions,

we compute the long-term capillary pressure by using Kelvin's law (Coussy,

2011):

Pc =
ρwRT

Mw

log(h∞r ) (5.21)
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R = 8.314J ·K−1 ·mol−1, T and Mw = 18g/mol are ideal gas constant, the

absolute temperature and molar mass of water.

The saturation degree Sl (i.e., the volume fraction of the capillary and

gel pores spaces that is occupied with liquid water with respect to the total

volume of capillary and gel pores) is computed from Power's model as follow-

ing: For a given volume V of cement paste, the volume Vp of total pore space

is equal to total volume minus the volume 0.53(1 − p)ξ∞V of portlandite,

0.32(1 − p)ξ∞V of calcium sulfoaluminate, (1 − p)(1 − ξ∞)V of clinker and

VCSH = 1.52(1−p)(1−α∞)V of C-S-H solid (i.e., C-S-H without its gel poros-

ity). The volume of chemical shrinkage is equal to Vcs = 0.20(1 − p)ξ∞V .

The saturation degree Sl is then get by:

Sl = 1− Vcs
Vp

=
p− 0.72(1− p)α∞

p− 0.52(1− p)α∞
(5.22)

The Biot coe�cient is computed by two steps of upscaling:

• In the �rst step, at the scale of the C-S-H gel, we compute the porosity

of C-S-H gel as mean value of the porosity of high-density C-S-H and

low-density C-S-H: considering that 40% of C-S-H gel is high-density

C-S-H with porosity 0.24, and the other 60% is low-density C-S-H with

porosity 0.37 (Jennings, 2000), the mean porosity of C-S-H gel is esti-

mated to be equal to φgel = 0.32. Considering that the C-S-H gel is

composed from spherical C-S-H particles and gel pores, we apply the

self-consistent homogenization scheme and use the expression of the

Biot coe�cient developed by Ghabezloo (2010).

In elastic case, assuming the Poisson's ratio of the C-S-H gel equal to

0.2 (see section 5.3.1), we obtain the Biot coe�cient of C-S-H gel:

bgel = 2φgel (5.23)

In viscoelastic case, using the elastic-viscoelastic correspondence princi-

ple, we replace the elastic parameters in Eq. 5.23 with the s-multiplied

Laplace transform of their corresponding viscoelastic parameters. At

long term, we consider that the microstructure of material remains
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constant, from which follows that the gel porosity φgel is constant over

time. As a result, we can easily transform back the relation in the

Laplace domain to real time. Hence, Eq. 5.23 holds true for viscoelas-

tic case, under the hypothesis that the viscoelastic Poisson's ratio of

the C-S-H gel is constant and equal to 0.2.

• In the second step, at the scale of the mixture of C-S-H gel with cap-

illary pores (Fig. 5.2c), we consider the Biot coe�cient of a composite

made from porous matrix (i.e., C-S-H gel) and capillary pores. As done

previous step, in elastic case, assuming the Poisson's ratio of the C-S-

H gel equal to 0.2 (see section 5.3.1), making use of the derivations in

Ghabezloo (2010), we apply the Mori-Tanaka's homogenization scheme

and obtain the Biot coe�cient b of the mixture of C-S-H gel with cap-

illary pores:

b = 1− 1− φc
1 + φc

(1− bgel) (5.24)

In viscoelastic case, using the elastic-viscoelastic correspondence princi-

ple, we replace the elastic parameters in Eq. 5.24 with the s-multiplied

Laplace transform of their corresponding viscoelastic parameters. At

long term, we consider that the microstructure of material remains

constant, from which follows that the capillary porosity φc is constant

over time. As a result, we can easily transform back the relation in the

Laplace domain to real time. Hence, Eq. 5.24 holds true for viscoelastic

case, under the hypothesis that the viscoelastic Poisson's ratio of the

C-S-H gel is constant and equal to 0.2.

Knowing the capillary pressure Pc, the saturation degree Sl and the Biot

coe�cient b, the mechanical stress due to capillary force acting on the mixture

of capillary pores with C-S-H gel is estimated as bSlPc according to the theory

of poromechanics (Coussy, 2011).

Figure 5.6 compares the mechanical stress due to capillary force bSlPc,

act on the mixture of C-S-H gel and capillary pores, with the mechanical

stress σh that should act to explain the long-term kinetics of autogenous
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Figure 5.6 � Mechanical stress σh that should act on the mixture of C-S-H gel
displayed together with capillary pores to explain the long-term kinetics of
autogenous shrinkage of data in Brooks (1984); Shritharan (1989); De Larrard
(1990); Tazawa and Miyazawa (1993, 1995); Weiss et al. (1999); Brooks and
Johari (2001); Lee et al. (2003); Zhang et al. (2003); Mazloom et al. (2004);
Vidal et al. (2005); Lee et al. (2006) with the capillary stress bSlPc.

shrinkage characterized by αsh. The mechanical stress σh is of the same

magnitude as the stress bSlPc induced by capillary forces and exhibits iden-

tical trends with water-to-cement ratio. Therefore, we conclude that the

long-term kinetics of autogenous shrinkage is compatible with the hypothesis

of autogenous shrinkage being creep under the action of capillary forces due

to self-desiccation.

5.6 Conclusions

We performed an exhaustive study of experimental data in literature on ba-

sic creep and autogenous shrinkage. We downscaled these results with help

of elastic homogenization schemes extended to viscoelasticity and discussed

the origin of long-term autogenous shrinkage using the theory of porous me-

chanics. Several conclusions can be drawn.

• For materials that are kept under autogenous condition, the creep mod-
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ulus of C-S-H gel exhibits no speci�c trend with water-to-cement ratio,

with a mean value around 13 GPa.

• The creep modulus, which is found by analyzing data of basic creep, is

lower than the value obtained from microindentation testing, which is

32 GPa.

• For concretes made with a water-to-cement ratio below 0.5, the au-

togenous shrinkage is not asymptotic and evolves logarithmically with

respect to time in the long term.

• The long-term kinetics of this logarithmically evolving autogenous shrink-

age is compatible with the hypothesis of autogenous shrinkage being

creep under the action of capillary forces due to self-desiccation.

• An upper bound and a lower bound are proposed for the long-term rel-

ative humidity under autogenous conditions by analyzing experimental

data in the literature.

• The stress induced by the capillary forces due to self-desiccation is

estimated by bSlPc for various water-to-cement ratio. The capillary

stress bSlPc can be around 20 MPa for water-to-cement ratio of 0.2.
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Chapter 6

Viscoelastic poromechanical

model

T
his chapter presents a viscoelastic poromechanical model to predict

creep and shrinkage behavior of mature cement-based materials. The

objective of the model is to unify the prediction of four types of delayed strain

of classical decomposition. The model is going to be proposed at the scale of

the mixture of the C-S-H gel and capillary pores at which scale the long-term

creep originates. We start by listing major experimental tendencies that are to

be captured by the model. Then, the in�uence of relative humidity on the long-

term viscoelastic behavior of concrete is considered in two manners. The �rst

one is through the dependence of the creep modulus on relative humidity. This

dependence is characterized based on experimental results of microindentation

tests from the literature. The second one is through the dependence of the

e�ective stress on capillary e�ects. The third section is devoted to present

the model at the scale of the mixture of the C-S-H gel and capillary pores

with as few �tting parameters as possible. All of the components of delayed

strains are regarded as viscoelastic response of material. Considering that

the capillary stress transmitted to the solid skeleton is less important in non-

loaded specimen than that in loaded specimen due to some sort of micro-

damage, we introduce a coe�cient noted κ. By doing so, the model is able to
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capture well the Pickett e�ect. In the end, two ways are presented to apply

the model at the scale of concrete before ending up calibrating the model with

experimental results of delayed strain of concrete in literature.

C
e Chapitre présente un modèle viscoélastique poromécanique pour pré-

dire le comportement de retrait et �uage à long terme des matériaux

cimentaires matures. L'objective du modèle est d'uni�er la prédiction des

quatre composants classiques de la déformation di�érée. Le modèle est for-

mulé à l'échelle du mélange du gel de C-S-H et des pores capillaires où se

trouve l'origine du �uage à long terme. Nous commençons par lister les prin-

cipales tendances expérimentales qui sont à capturer par le modèle. Puis, l'in-

�uence de l'humidité relative sur le comportement viscoélastique à long terme

est considérée en deux volets. Le premier est via la dépendance du module de

�uage sur l'humidité relative. La caractérisation de cette dépendance est basée

sur les résultats expérimentaux des tests de microindentation de la littérature.

Le second est via la dépendance de la contrainte e�ective à l'e�et capillaire.

La section suivante est dédiée à la présentation du modèle à l'échelle du mé-

lange du gel de C-S-H et pores capillaires en utilisant le minimum possible

de paramètres à calibrer. Toutes les composantes de la déformation di�érée

sont considérées comme réponse viscoélastique du matériau. En supposant

que, dû à un certain micro-endommagement, la contrainte capillaire trans-

mise au squelette solide est moins importante dans un cas de séchage sans

charge que dans un cas de séchage avec charge appliquée, nous introduisons

un coe�cient κ. Ainsi, le modèle est capable de bien capturer l'e�et Pickett.

À la �n, nous présentons deux manières d'appliquer le modèle à l'échelle du

béton avant de �nir par calibrer le modèle aux résultats expérimentaux de la

déformation di�érée du béton de la littérature.
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Long-term time-dependent strains of concrete are of great importance

when it comes to analyze the security of major civil engineering concrete

structures such as dams, nuclear power plants, nuclear waste storage tunnels

and large bridges, as they are normally designed for service lifetime of several

decades. Conventionally, the delayed behavior of concrete is decomposed into

autogenous shrinkage, basic creep, drying shrinkage and drying creep. Most

design codes (1992-1-1:2005, 2004; ACI Committee 209, 2008; FIB, 2013)

and well know models such as the B4 model of RILEM Technical Committee

(2015) follow such classical decomposition of delayed strains. In these models,

each component of delayed strain is computed with di�erent laws of kinetics

separately. Then, by summing them up, we obtain the total delayed strain.

However, the possible correlation between the four components of delayed

strain is neglected. In this chapter, we aim at unifying the prediction law by

deriving a predictive model that does not decompose the delayed strain.

Autogenous shrinkage is the time-dependent strain of a non-loaded spec-

imen exchanging no water with outside. Autogenous shrinkage at long term

can be modeled as viscoelastic strain under capillary e�ects due to self-

desiccation (Hua et al., 1995; Luan et al., 2013) (see also chapter 5.).

Basic creep is the di�erence between the strain of a loaded specimen

exchanging no water with the outside and the autogenous shrinkage. Basic

creep is regarded as the viscoelastic strain response of material to the applied

load.

Drying shrinkage is the di�erence between the strain of a non-loaded

specimen exchanging water with outside and the autogenous shrinkage. The

drying shrinkage can be modeled as viscoelastic strain under capillary e�ects

due to desiccation (Benboudjema et al., 2007; Sellier and Bu�o-Lacarriere,

2009; Grasley and Leung, 2011; Sellier et al., 2016).

Drying creep is the additional time-dependent strain of a loaded specimen

exchanging water with outside with respect to the sum of autogenous shrink-

age, basic creep and drying shrinkage. Drying creep is also known under

the name of Pickett e�ect as it was observed at �rst by Pickett (1942). The

most common two ways to model drying creep are: 1) the �rst one is that

the variation ḣr of relative humidity with respect to time in presence of an

185



CHAPTER 6. VISCOELASTIC POROMECHANICAL MODEL

applied mechanical load induces an additional term in the creep compliance;

2), in a drying sample, the capillary e�ects in presence of a mechanical load

is more important than in absence of a mechanical load. Baºant and Chern

(1985) followed the �rst method while Sellier et al. (2016) used the second

one. We choose the second way.

From the above we can see that each of the 4 components of delayed strain

can be considered to be a viscoelastic response to applied external load or

internal capillary e�ects. Each component is in�uenced by the internal rela-

tive humidity, which governs the material creep properties and the capillary

e�ects. Thus, the various components of delayed strain can be modeled in

a uni�ed manner, which will be achieved based on poromechanics in the

framework of non-aging isotropic linear viscoelasticity. The model starts at

the scale of a porous material whose solid skeleton is homogenous, namely

the mixture of C-S-H gel with capillary pores.

In the following, we start by listing the main experimental tendencies that

are to be captured with the model. Then, the in�uence of relative humidity

on delayed strain of concrete is re�ected on two aspects: the creep compliance

of material and the e�ective stress. In the end, the model is upscaled to be

used at the scale of concrete from the scale of the mixture of C-S-H gel with

capillary pores. In the last section, the model is calibrated with experimental

results from the literature.

6.1 Objective of model

Being the �nal objective of the thesis, the predictive model of shrinkage and

creep of cement-based material is based on poromechanics. The main fea-

ture of this model is to not suppose the decomposition of delayed strain of

concrete. No kinetics will be separately assumed for autogenous shrinkage,

drying shrinkage, basic creep and drying creep. Instead, we would like to

capture these di�erent strains via material properties that depend on rel-

ative humidity and capillary e�ect. Therefore, the model does not intend

to improve accuracy of shrinkage and creep prediction but to capture main

experimental tendencies, while considering the right physics behind with the
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least possible �tting parameters.

Although a variety of experimental tendencies are observed in the litera-

ture for the delayed behavior of concrete, the model aims at capturing only

the main ones as following.

For basic creep, we consider a logarithmic evolution over time at long

term, as observed by Hanson (1953); Browne (1967); Rostasy et al. (1973);

Kommendant et al. (1976); Takahashi and Kawaguchi (1980); Kawasumi

et al. (1982); Brooks (1984); Brooks and Wainwright (1983); Bryant and

Vadhanavikkit (1987); De Larrard (1988); Shritharan (1989); De Larrard

(1990); Le Roy (1995); Mazloom et al. (2004); Mazzotti et al. (2005); Mu

et al. (2009) and supported also by nanoindentation tests (Vandamme and

Ulm, 2013) and microindentation tests (Zhang, 2014; Frech-Baronet et al.,

2017).

Autogenous shrinkage is regarded as creep under the action of capillary

stress due to self desiccation, according to the �ndings of chapter 5. With

this assumption, autogenous shrinkage evolves also logarithmically over time

at long term, which is supported by the data of Brooks (1984); Shritharan

(1989); De Larrard (1990); Tazawa and Miyazawa (1993, 1995); Weiss et al.

(1999); Brooks and Johari (2001); Lee et al. (2003); Zhang et al. (2003);

Mazloom et al. (2004); Vidal et al. (2005); Lee et al. (2006) (all gathered

from the database of Baºant and Li (2008)).

For what concerns drying shrinkage, we consider the drying shrinkage

as creep under the action of capillary stress due to desiccation, as done by

Benboudjema et al. (2007); Sellier and Bu�o-Lacarriere (2009); Grasley and

Leung (2011); Sellier et al. (2016). Therefore, the drying shrinkage does not

stop increasing when drying �nishes, but slows down signi�cantly over time.

Drying creep, i.e., Pickett e�ect appears when drying occurs in the pres-

ence of load. This part of time-dependent strain will be modeled as viscoelas-

tic strain due to the higher e�ect of capillary stress comparing to non-loaded

drying specimen, as done by Sellier et al. (2016).

The model is proposed for a porous material that is composed from a

homogenous matrix and spherical inclusions, which corresponds to the mix-

ture of C-S-H gel and capillary pores, scale (c) in the multi-scale scheme of
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concrete in Fig. 5.2.

As the model is based on non-aging isotropic linear viscoelasticity, it is not

applicable to the cases where the applied load exceeds 40% of the strength.

The pore pressure does not take into account surface e�ects. So the range of

applicability is limited to relative humidity over 40%.

This model is limited to hardened mature materials, i.e., mature materi-

als whose microstructure does not change with time. So the model cannot

simulate shrinkage and creep behavior related to or caused by the hydration

at early age.

6.2 In�uence of relative humidity

The in�uence of relative humidity on delayed behavior of concrete is twofold:

on one hand, the creep compliance of cement-based material depends on

the relative humidity, according to the experimental observation of Baºant

et al. (1976) and Abiar (1986) that, under autogenous conditions, a wet

specimen creeps more than a pre-dried specimen; on the other hand, the

relative humidity governs the capillary e�ects.

6.2.1 Dependence of creep compliance on relative hu-

midity

Experimental observations (Baºant et al., 1976; Abiar, 1986) showed that a

pre-dried concrete creeps less than a wet concrete under autogenous condi-

tion. In this section, we aim at taking into account this dependence of creep

compliance on the relative humidity.

Given that the basic creep evolves logarithmically over time at long term,

we take the following form for the bulk creep compliance:

JK(t) =
1

K
+

1

CK
log

(
1 +

t

t̃

)
(6.1)

where K is the bulk modulus; CK is the bulk creep compliance; t̃ is the creep

characteristic time. The de�nition of creep compliance CK is consistent
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with the de�nition of Vandamme and Ulm (2009), where it is de�ned, for

a creep test under the stress σ0, as the asymptotic value of σ0/(tdε/dt) =

σ0/dε/d(log(t)) in the long term.

The in�uence of relative humidity hr is taken into account by the de-

pendence of the bulk creep modulus CK on the relative humidity hr. As

wet concrete creeps faster than a pre-dried concrete at long term, the bulk

creep modulus CK should be higher for lower relative humidity hr. In fact,

this dependence is also supported by the results of microindentation test by

Zhang (2014) and Frech-Baronet et al. (2017), as explained next.

Microindentation test of Zhang (2014) is on C3S paste with water-to-

cement ratio 0.42. The samples are prepared by cutting a cylindrical spec-

imen at the age of 28 days into dish-like sample with thickness of 3 mm to

3.5 mm and are kept under various relative humidities in desiccator during

90 days, where the hydric equilibrium is reached. Then a load of 5 to 20 N

is applied and kept constant for 300 seconds. The volume fraction of each

phase is estimated by using the hydration degree which is measured by the

method of chemical shrinkage (Parrott et al., 1990). The volume fractions

given by Zhang (2014) are as follows: unhydrated clinker: 0.05; C-S-H gel:

0.55; Portlandite: 0.215; Capillary porosity: 0.185.

Microindentation test of Frech-Baronet et al. (2017) is on ordinary Port-

land cement paste with water-to-cement ratio 0.6. The samples are prepared

by cutting a cylindrical specimen at the age of 3 months into cubic samples

with 30 mm of edge size. Then the sample is kept under various relative hu-

midities during 7 days before testing. The hydric equlibrium should be only

established in a layer of thickness around 200 µm which is the characteristic

size of the zone probed by microindentation. The applied load is equal to 8 N

and kept constant for 300 seconds. We estimate the volume fraction of each

phase using Powers' model (see chapter 1) by taking the hydration degree ξ

equal to its long-term value ξ∞ given in Eq. 1.10.

The experimental results of microindentation test provide the contact

compliance L(t) which is the inverse, in the Laplace domain, of the time-

dependent indentation modulus M(t). The contact creep modulus CM is

de�ned as the asymptotic value of tdL
dt

= dL
d(log(t))

at large times.
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Figure 6.1 � Bulk creep modulus of C-S-H gel as a function of relative hu-
midity obtained from microindentation results of Zhang (2014) and Frech-
Baronet et al. (2017)

Taking the viscoelastic Poisson's ratio ν as a constant, Vandamme and

Ulm (2013) derived the following relation between contact creep modulus

CM and bulk creep modulus CK :

CM =
3(1− 2ν)

1− ν2
CK (6.2)

Knowing the contact creep modulus CM
p of cement paste from the results

of microindentation test of Zhang (2014) or Frech-Baronet et al. (2017), we

compute the bulk creep modulus CK
p of of cement paste with Eq. 6.2. Then,

using the microstructure of cement paste as shown in Fig. 5.2, we perform

three steps of downscaling and obtain the bulk creep modulus CK
gel of the

C-S-H gel (for details of derivation, see section 5.3.3):

CK
gel =

(
1− fb
1 + fb

)(
1 + φc
1− φc

)
CK
p (6.3)

where fb is the volume fraction of unhydrated clinker and portlandite and

calcium sulfoaluminate hydrates with respect to the volume of cement paste;

φc is the volume fraction of capillary pores with respect to the volume of
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the mixture of C-S-H gel with capillary pores. Inserting the values of φc
and fb (computed from experimental data for the test of Zhang (2014) or

estimation from Powers' model for the test of Frech-Baronet et al. (2017))

and the creep modulus CK
p of cement paste into Eq. 6.3, we obtain the creep

modulus CK
gel of the C-S-H gel as a function of relative humidity hr. The

results are displayed in Fig. 6.1. This result leads us to propose the following

type of relationship for the dependence of creep modulus of the C-S-H gel on

the relative humidity:

CK
gel(hr) =

CK∞
gel + βhr(hc − hr), if hr < hc,

CK∞
gel , if hr ≥ hc

(6.4)

where CK∞
gel is the creep modulus for the concretes that are kept at a relative

humidity higher than a critical relative humidity hc. Figure 6.1 suggests that

the critical relative humidity hc should be 75% while the creep modulus CK∞
gel

should be 32 GPa. Compared to this result, the creep modulus of 13 GPa

obtained in Fig. 5.3 from the analysis of basic creep data in section 5.3.3, is

signi�cantly lower. Considering that the testing condition in the application

of the model is closer to that of macroscopic basic creep test than that of

microindentation test, we choose 13 GPa for the value of CK∞
gel . For what

concerns the parameter βhr , by scaling the value of βhr obtained from the

results of microindentation by a factor of 13/32, we obtain βhr = 38 GPa.

Thus, in the model we take: CK∞
gel = 13 GPa, βhr = 38 GPa.

6.2.2 Capillary stress

This section is dedicated to take into account the in�uence of relative hu-

midity on the e�ective stress. Considering the application of the model,

we restrict the relative humidity between 100% and 40%. As mentioned in

section 1.5.3, the pore pressure is taken to be equal to bSlPc, where b, Sl
and Pc are Biot coe�cient of the mixture of C-S-H gel with capillary pores,

saturation degree and capillary pressure, respectively.

The Biot coe�cient of the mixture of C-S-H gel with capillary pores, is

computed by two steps of upscaling.
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At a lower scale, C-S-H particles and gel pores are arranged together

to form the C-S-H gel. We compute �rst the porosity of the C-S-H gel as

the mean value of the porosity of high-density C-S-H and low-density C-

S-H: taking 40% of C-S-H gel as high-density C-S-H with a porosity 0.24,

and the other 60% as low-density C-S-H with a porosity 0.37 (Jennings,

2000), we obtain the porosity of the C-S-H gel equal to φgel = 0.32. Then,

supposing that the viscoelastic Poisson's ratio of the C-S-H gel is 0.2 and

taking the self-consistent scheme, we obtain the Biot coe�cient bgel from

Eq. 1.36, bgel = 2φgel.

At the scale of the mixture of the C-S-H gel with capillary pores, we con-

sider the Mori-Tanaka scheme. Inserting the capillary porosity φc obtained

from Power's model into Eq. 1.38, we obtain the Biot coe�cient b of the

mixture of the C-S-H gel with capillary pores:

b = 1− 1− φc
1 + φc

(1− 2φgel) (6.5)

The saturation degree Sl depends on the relative humidity hr as the ther-

modynamic equilibrium should be maintained between water vapor and liq-

uid water in capillary pores. In fact, this dependence of the saturation degree

Sl on the relative humidity hr is known as sorption isotherm. Most often, the

sorption isotherm is expressed by the water content w per dried hardened

cement paste as a function of relative humidity. When the relative humidity

decreased to 40% almost all capillary water has evaporated (Jennings, 2000).

The water content wcr remaining at this relative humidity of 40% can be

regarded as absorbed water on the surface of solid hydrates. Therefore, the

water content wcr should depend only on the speci�c area of solid and be

independent of the water-to-cement ratio w/c. That is to say, the sorption

isotherms for various cement paste should merge to a same point when rela-

tive humidity is decreased to 40%. This is con�rmed by experimental results

of Baroghel-Bouny (2007) displayed in Fig. 6.2.

Baroghel-Bouny (2007) measured the desorption isotherm for cement

pastes with various water-to-cement ratios. The desorption isotherms of

cement pastes with various water-to-cement ratios di�er from each other for
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relative humidities between 100% and 40%. When relative humidity drops

below 40%, all desorption isotherms are reduced to a master curve. The re-

sults displayed in Fig. 6.2 suggest that the water content wcr corresponding

to hr = 40% is 7.11 g/g.

In addition to the point at 40% of relative humidity, we can obtain also

the water content wsat at saturated state (i.e., all pores spaces are �lled with

water) hr = 100% from hydration model of Powers:

wsat =
(fcs + fcw + faw)ρw

pρw + (1− p)ρc − (faw + fgw)ρw
(6.6)

where fcs, fcw and fgw are the volume fraction of chemical shrinkage, of

capillary water and of physically adsorbed water, respectively (for the com-

putation, see Eqs. 1.2, 1.3 and 1.4); p = w/c
w/c+ρw/ρc

is the volume fraction of

water in the initial mixture; ρw and ρc are the density of water and of clinker,

respectively.

Knowing the two points, we could propose a linear model for the desorp-

tion isotherm. However, the experimental results of Baroghel-Bouny (2007)

in Fig. 6.2 show that straight lines do not re�ect well the desorption isotherm.

Hence, we choose a second-order power function:

w(hr) = ahrh
2
r + bhrhr + chr (6.7)

Since we know already two points, only one �tting parameter is needed. The

least square method suggests that chr(w/c) = 56.8w/c − 11.4. Then, the

other two parameters in Eq. 6.7 read ahr = −25wsat/6 + 5wcr/3 + 5chr/2

and bhr = 25wsat/6− 2wcr/3 + 7chr/2, respectively. The modeled desorption

isotherms are compared with the experimental results in Fig. 6.2.

The saturation degree then can be computed as follows:

Sl(hr) =
w(hr)

wsat
(6.8)

For materials kept under autogenous condition, the relative humidity h∞r
at long term is computed �rst as the mean value of the upper limit and lower
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Figure 6.2 � Desorption isotherm for cement pastes with various water-to-
cement ratio. Points are experimental results of Baroghel-Bouny (2007),
dashed lines are the model �tted relation with Eq. 6.7, solid line h∞r corre-
sponds to the water content under autogenous condition at long term.

limit in Fig. 5.5:

h∞r (w/c) = min {0.655 + 0.575w/c, 1} (6.9)

Then, inserting the long-term relative humidity h∞r into Eq. 6.8, we obtain

the corresponding saturation degree S∞l under autogenous condition.

The capillary pressure Pc can be computed from Kelvin's law:

Pc =
ρwRT

Mw

ln(hr) (6.10)

R = 8.314J ·K−1 ·mol−1, T and Mw = 18g/mol are ideal gas constant, the

absolute temperature and molar mass of water.

Inserting Eqs. 6.5-6.10 into

σh = σh1 = −bSlPc1, (6.11)

we obtain the capillary stress.
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6.3 Constitutive model

After having identi�ed the in�uence of relative humidity, in this section,

we present �rst the constitutive equations and the procedure to predict the

shrinkage and creep strains. In second part, we discuss how the 4 components

of delayed strains are considered in the model.

6.3.1 Constitutive equations

We recall that the model is proposed at the scale of the mixture of C-S-H gel

and capillary pores, i.e., scale c in Fig. 5.2. The C-S-H gel is regarded as a

matrix that embeds the spherical capillary pores.

The mixture of C-S-H gel and capillary pores, is regarded as non-aging

linear isotropic viscoelastic. Under a known history hr(t) relative humidity,

we compute �rst the e�ective stress (which will be de�ned in Eq. 6.15) ac-

cording to poromechanics. Then, the strain response ε(t) of the material is

given as viscoelastic response to the e�ective stress as following:

εv(t) = JK(0)σ′v(t)−
∫ t

0

σ′v(τ)
∂JK(t− τ, hr)

∂τ
dτ (6.12a)

eij(t) = JG(0)sij(t)−
∫ t

0

sij(τ)
∂JG(t− τ, hr)

∂τ
dτ (6.12b)

where σ′v = tr(σ′)/3 and s are the e�ective volumetric stress and deviatoric

stress tensor, respectively. εv = tr(ε) and e are the volumetric strain and

deviatoric strain tensor, respectively. The decompositions of stress and strain

tensors are same as in Eq. 2.3.

The remaining tasks are to compute the creep compliances JK(t), JG(t)

of material and the e�ective stress σ′v.

The creep compliances JK(t), JG(t) depend on water-to-cement ratio w/c

and relative humidity hr(t). Using Powers' model (Powers and Brownyard,

1947), we compute �rst the volume fraction φc of capillary pores (with respect

to the volume of the mixture of C-S-H with and capillary pores). Inserting
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Eq. 6.11

Eqs. 6.13 and 6.14
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Figure 6.3 � The procedure to predict shrinkage and creep with the proposed
model

the given history hr(t) of relative humidity in Eq. 6.4, we obtain the creep

modulus CK
gel(t) of the C-S-H gel. Then, using the elastic Mori-Tanaka scheme

for bulk modulus and the viscoelastic Mori-Tanaka scheme for creep modulus,

we obtain the bulk modulus K and bulk creep compliance CK of the mixture

of C-S-H gel with capillary pores:

K =
1− φc
1 + φc

Kgel (6.13a)

CK =
1− φc
1 + φc

CK
gel (6.13b)

JK(t) =
1

K
+

1

CK
ln

(
1 +

t

t̃

)
(6.13c)

where Kgel is the bulk modulus of C-S-H gel. Acker et al. (2001) and Con-

stantinides and Ulm (2004) provide the uniaxial elastic modulus EHD of

high-density C-S-H gel and ELD of low-density C-S-H gel (see Tab. 6.1).

Supposing the elastic Poisson's ratio of both high-density and low-density C-

S-H gel equal to be 0.2, we compute the bulk modulus KHD of high-density

C-S-H and KLD of low-density C-S-H, respectively. Then, taking the volume
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Reference Component Young's modulus
[GPa]

Bulk modulus
[GPa]

Acker et al.
(2001)

LD C-S-H 20±2 11.1±1.1

Acker et al.
(2001)

HD C-S-H 31±4 17.2±2.2

Constantinides
and Ulm (2004)

LD C-S-H 21.7±2.2 12.1±1.2

Constantinides
and Ulm (2004)

HD C-S-H 29.4±2.4 16.3±1.3

Table 6.1 � Young's modulus of C-S-H gel measured by Acker et al. (2001);
Constantinides and Ulm (2004) and computed bulk modulus of C-S-H gel

ratio of high-density C-S-H and low-density C-S-H equal to 4:6, we compute

the bulk modulus Kgel = 0.4KHD + 0.6KLD. We can take Kgel = 13.6± 1.6

GPa according to the results of Acker et al. (2001) or Kgel = 13.8± 1.3 GPa

according to the results of Constantinides and Ulm (2004). Hence, the bulk

modulus of C-S-H gel in Eq. 6.13 can be taken the average of those 2 values,

i.e., Kgel = 13.7 GPa.

From the results of chapter 3, we take viscoelastic Poisson's ratios of

concrete equal to 0.2. As explained in section 5.3, adapting the multi-scale

scheme displayed in Fig. 5.2 and using the results displayed in Figs 4.2a

and 4.2b, we can also take the viscoelastic Poisson's ratio of the mixture of

C-S-H gel and capillary pores as constant, equal to 0.2. Inserting this value

into the Laplace transform of the relation between bulk and shear modulus,

we obtain the shear properties of the mixture of C-S-H gel with capillary
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pores:

G =
3(1− 2ν)

2(1 + ν)
K =

3

4
K (6.14a)

CG =
3(1− 2ν)

2(1 + ν)
CK =

3

4
CK (6.14b)

G(t) =
1

G
+

1

CG
ln

(
1 +

t

t̃

)
(6.14c)

The e�ective stress σ′v(t) depends also on water-to-cement ratio w/c and

the history hr(t) of relative humidity. Inserting the water-to-cement ratio

into Eq. 6.7, we can predict the desorption isotherm. The given history

hr(t) of relative humidity permits to compute the saturation degree Sl from

Eqs. 6.7 and 6.8 and the capillary pressure Pc from Eq. 6.10. Then, we

obtain the capillary stress from Eq. 6.11. The e�ective stress σ′v is computed

in incremental form:

dσ′ = dσ − κdσh1 (6.15)

where κ is a parameter to capture drying creep.

Sellier et al. (2016) suppose that the capillary pressure that is transferred

to solid skeleton is greater in presence of mechanical load than in absence

of mechanical load. The explanation he gives is that, for non-loaded drying

specimen, micro-damage occurs as the relative humidity decreases. As a

result, the transmitted capillary stress is less important than in a loaded

drying specimen for which the load prevents partially micro-damage (Sellier

et al., 2016). We employ the same explanation as Sellier et al. (2016) but

formulate the equations in a slightly di�erent way.

When drying takes place in the presence of mechanical load, we consider

that κ is equal to 1, thus, making it possible to retrive Eq. 1.34:

σ′ = σ − σh1 (6.16)

In contrast, when drying takes place in absence of mechanical load, κ is

198



6.3. CONSTITUTIVE MODEL

considered to be smaller than 1.

As the coe�cient κ is intended to characterize the micro-damage of ma-

terial, the magnitude of κ should be related to tensile strength of material

and the intensity of drying. In case of drying, this coe�cient κ should be a

parameter varying over time, because of the desiccation varying over time.

However, for the sake of simplicity, we will consider the coe�cient κ to be

constant over time.

Figure 6.3 summarizes the procedure of predicting delayed strain of the

mixture of C-S-H gel and capillary pores. Water-to-cement ratio, evolution

of relative humidity over time and loading condition are necessary to predict

the delayed strain behavior with the proposed model.

6.3.2 Discussion about the 4 components of delayed strain

With such a model, the 4 components of delayed strain of cement-based

material are predicted with a uni�ed method.

For a non-loaded non-drying specimen, the strain response, which is equal

to the autogenous shrinkage, is creep under the capillary stress due to self-

desiccation. For a su�ciently mature specimen, this capillary stress is consid-

ered to remain constant, as the internal relative humidity does. If the relative

humidity is equal to 100%, the delayed strain is 0. Otherwise, autogenous

shrinkage evolves as a logarithmic function of time at long term, which is in

agreement with the experimental observation displayed in Fig. 5.1a.

For a loaded non-drying specimen, the strain response, which is equal to

the sum of autogenous shrinkage and basic creep, is creep under the constant

stress that is equal to the sum of applied load and capillary stress. The basic

creep evolves logarithmically over time at long term, which is in agreement

with the experimental observation displayed in Fig. 5.1b.

For a non-loaded drying specimen, the strain response, which is equal

to the sum of autogenous shrinkage and drying shrinkage, is creep under a

capillary stress which is variable over time and only partially transmitted

to the specimen. The drying shrinkage increases with no asymptote at long

term but the increment rate slows down signi�cantly due to the increase of
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the creep modulus with the decrease of relative humidity.

For a loaded drying specimen, the strain response, which is the sum of

autogenous shrinkage, drying shrinkage, basic creep, and drying creep, is

creep under variable stress that is equal to the sum of applied load and

capillary stress. The drying creep is due to the fact that the capillary stress

is transmitted in a larger proportion to the specimen when the sample is

drying and loaded than drying but non-loaded.

As an example, Figures 6.4 and 6.5 show the delayed strain of a mix-

ture of C-S-H gel and capillary pores for four cases: non-loaded non-drying;

loaded with σ1 = 12 MPa and σ2 = σ3 = 0 but non-drying; non-load but dry-

ing specimen with drying kinetics presented in Fig. 6.4a; loaded with σ1 = 12

MPa and σ2 = σ3 = 0 and drying specimen with drying kinetics presented in

Fig. 6.4a. The volume fraction φc of capillary pores computed with respect

to the volume of the mixture of C-S-H gel with capillary pores corresponds

to that in cement paste with water-to-cement ratio w/c = 0.5. Under auto-

genous conditions, the relative humidity hr0 is computed to be equal to 94%

from Eq. 6.9. The coe�cient κ is taken to be equal to κ = 0.5. As displayed

in Fig. 6.5b, the delayed strain of loaded drying specimen is higher than the

sum of autogenous shrinkage, drying shrinkage and basic creep. Therefore,

the model is able to exhibit drying creep.

6.4 Application to concretes

The model presented in previous section is proposed to the scale of the mix-

ture of the C-S-H gel and capillary pores so that the physical phenomena

at play can be taken into account with the least �tted parameters. The in-

dustrial background of the thesis being the long-term delayed behavior of

concrete structures, we aim at applying the above proposed model to con-

cretes in this section. Two methods of applying the model to concrete are

going to be presented in the �rst part. The second part is dedicated to the

calibration of the model with experimental results from the literature.
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Figure 6.4 � Application of model on the mixture of C-S-H gel and capillary
pores submitted to the histories of relative humidity displayed in Fig. (a).
(b) volumetric e�ective stress acting on the mixture of C-S-H gel with capil-
lary pores. When the specimen is mechanically loaded, the applied stress is
uniaxial and of magnitude 12 MPa.
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Figure 6.5 � Application of model on the mixture of C-S-H gel and capillary
pores submitted to hisotries of relative humdity and mechanical load dis-
played in Fig. 6.4. (a) strain of various specimens; (b) illustration of Pickett
e�ect.

6.4.1 Methodology

At the scale of concrete, when this concrete is su�ciently mature, the nature

of delayed strain is exactly the same as at the scale of the mixture of the
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C-S-H gel and capillary pores: non-aging linear isotropic viscoelastic strain

of a porous medium. The porous medium, here concrete, is composed from

capillary pores and a solid skeleton which is composed from aggregates and

cement paste. Hence, the model is, in theory, also applicable to concretes.

However, the solid skeleton di�ers from concrete to concrete, not only because

of the variability of aggregates but also because of di�erences in water-to-

cement ratio and hydration degree of cement. Hence, we cannot provide a

unique creep property of this solid skeleton, as was done in section 6.3 for

the C-S-H gel. In contrast, the computation of capillary stress may remain

the same as at the scale of the mixture of C-S-H gel with capillary pores,

according to Eq. 5.16. To use the model at the scale of concrete, we need

to know the creep compliance of concrete. In the following, we propose two

methods to obtain the creep compliance of concrete.

The �rst method consists of upscaling the creep compliance of the mixture

of the C-S-H gel and capillary pores to the scale of concrete. This upscaling

can be performed in two steps.

In the �rst step, we consider the cement paste (see Fig. 5.2b) as a com-

posite made from spherical inclusions that are embedded in a matrix that is

the mixture of the C-S-H gel and capillary pores. The inclusions are unhy-

drated clinker, portlandite and calcium sulfoaluminates and supposed to be

elastic. Then, we use viscoelastic Mori-Tanaka scheme to upscale the creep

compliances in Eqs. 6.13 and 6.14. This step requires the knowledge of elastic

modulus of unhydrated clinker, portlandite and calcium sulfoalumintes. Nu-

merical inversion of viscoelastic Mori-Tanaka scheme from Laplace domain

to time domain is also needed.

In the second step, we consider the concrete (see Fig. 5.2a) as a composite

made of spherical inclusions that are embedded in a matrix of cement paste.

The inclusions are aggregates and supposed to be elastic. Then, inserting

the elastic modulus of aggregates and creep compliances of cement paste into

viscoelastic Mori-Tanaka scheme, we obtain the creep compliance of concrete.

This step requires the knowledge of the elastic modulus of aggregates as well

as a numerical inversion of viscoelastic Mori-Tanaka scheme from Laplace

domain to time domain.
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The desorption isotherm of the mixture of the C-S-H gel and capillary

pressure can be adapted for the concrete by supposing that the aggregates do

not in�uence the water migration in the material. If the desorption isotherm

is expressed by water content per dried material, we need to scale the mass

of dried material taking into account the mass of unhydrated clinker, port-

landite, calcium sulfoaluminates and aggregates. If the desorption isotherm

is expressed by degree of saturation, we can use directly the same desorption

isotherm.

Knowing the creep compliances of the concrete and the desorption isotherm,

the delayed strain of concrete can be computed for given stress and history of

relative humidity. However, the estimated delayed strain is not satisfactory,

as the predicted creep compliance deviates largely from the one measured

experimentally. A deeper investigation of homogenization schemes would be

needed to improve the quality of estimation of the creep compliance.

The second method is based on macroscopic experimental results. We

obtain the uniaxial creep compliance of concrete from the experimental re-

sults of basic creep. Then, supposing the viscoelastic Poisson's ratio equal

to 0.2, we obtain the bulk and shear creep compliances of the concrete.

In the same spirit, if experimental results of desorption isotherm are avail-

able for the concrete, we can use them instead of using the theoretical des-

orption isotherm of Eq. 6.7. In this case, we suppose that the capillary

pressure Pc and the saturation degree Sl follow the following law proposed

by Van Genuchten (1980):

Pc(Sl) = b1

(
S
− 1
a1

l − 1

)1−a1
(6.17)

where a1 and b1 are material parameters, which are dimensionless and express

in Pascal, respectively.

The delayed strain of drying specimen can also provide information about

the isotherm of desorption. When the delayed strain of loaded drying spec-

imen is known, combining this delayed strain with the creep compliances

�tted from basic creep test, we can �t the value of material parameters a1

and b1 with least square method. In the end, using experimental results on
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Concrete Water-to-cement
ratio [-]

Saturated water
content [m3/m3]

Porosity [%]

Flamanville 0.48 0.106 15.2
Chooz 0.543 0.118 21.0
Civaux B11 0.557 0.129 20.0
Penly 0.577 0.133 18.5

Table 6.2 � Mix design of concretes used in Granger (1995)

delayed strain of non-loaded drying specimen, we can �t the coe�cient κ.

Compared to the �rst method, the second method requires more experi-

mental investigation, not only on delayed strain but also mass loss of drying

specimen.

In the next section, we �t the model to macroscopic experimental results

on concrete employing this second method.

6.4.2 Example of application

Granger (1995) studied the delayed behavior of six di�erent concretes. The

mix design of each of the six concretes corresponds to the concretes that

are used in containment building of nuclear power stations. Excluding the

concretes with silica fume, we focus ourselves on Civaux B11, Flamanville

and Chooz. The mix design properties of these concretes are displayed in

Tab. 6.2.

For each of the concretes, Granger (1995) measured the delayed strain

under four di�erent conditions: non-loaded non-drying condition, loaded non-

drying condition, non-loaded drying condition and loaded drying condition.

All specimens are kept sealed until the age of loading, i.e., 28 days. For

the loaded specimen, an axial load of 12 MPa is applied instantaneously

via a hydraulic pressure tank and kept constant afterwards. Drying starts

also at the time of loading under an ambient relative humidity of 50%. The

specimens are cylindrical specimens with a diameter of 16 cm and a height

of 1 m.

Beside the four tested specimen, another drying specimen is placed in

the same room to measure mass loss over time. Combining the history of
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mass loss over time with the water content at saturation given in Tab. 6.2,

we obtain the evolution of saturation degree Sl(t) over time.

The �rst step of calibration is to obtain the creep properties of concrete

from the basic creep strain. We obtain the axial basic creep strain εbc1 by sub-

tracting the strain of non-loaded non-drying specimen from the total strain

of loaded non-drying specimen. As proposed in section 6.3.1, the following

relation is �tted to the basic creep data:

εbc1 = σ1 ⊗ J̇E(t) =
σ1

E
+

σ1

CE
log

(
1 +

t

t̃E

)
(6.18)

where E, CE and t̃E are Young's modulus, uniaxial creep modulus and char-

acteristic time, respectively. Using the least square method, we obtain all

three parameters. Then supposing that the viscoelastic Poisson's ratio of

concrete is constant and equal to 0.2, we obtain the bulk JK(t) and shear

JG(t) creep compliances.

The dependence of creep compliance on relative humidity is taken into

account in the same way as Eq. 6.4. The creep modulus CK∞ at saturated

state is taken to be equal to the bulk creep modulus CK obtained from basic

creep test. The �tting parameter βhr is rescaled, i.e., βhr = CK∞

13
GPa × 38

GPa.

The next step consists in calibrating the Van Genuchten parameters a1,

b1 and the coe�cient κ from the strain of drying specimens. We propose two

types of calibration.

The �rst one is to calibrate those three parameters a1, b1 and κ. Know-

ing the history Sl(t) of saturation degree for drying specimen, we obtain the

history Pc(t) of capillary pressure as a function of Van Genuchten param-

eters from Eq. 6.17. The Kelvin's law in Eq. 6.10 gives then the history

hr(t) of relative humidity. As a result, we obtain the capillary stress as a

function of the Van Genuchten parameters and then, inserting the capillary

stress in Eq. 6.16, we obtain the e�ective stress σ′v. The dependence C
K(t)

of creep compliance on relative humidity is also obtained from the history

hr(t) of relative humidity using Eq. 6.4. Combining the e�ective stress with

the creep compliance obtained from basic creep strain and inserting them
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into the viscoelastic stress-strain relation Eq. 6.12, we compute the strain of

a loaded drying specimen. Finally using the least square method, we cal-

ibrate the value of Van Genuchten parameters a1 and b1. For non-loaded

drying specimen, knowing the Van Genuchten parameters a1 and b1, the

capillary stress σh is known. Then, the e�ective stress σ′v is computed from

Eq. 6.15 as a function of the coe�cient κ. Inserting this e�ective stress and

humidity-dependent creep compliance into the viscoelastic relation Eq. 6.12,

we compute the strain of a non-loaded drying specimen. Finally using the

least square method, we calibrate the value of the coe�cient κ. The results

of calibration are displayed in Fig. 6.6a-6.7a-6.8a-6.9a.

In the second type of calibration, we suppose a unique value 0.5 for the

coe�cient κ. Then, we calibrate a1 and b1 from the strain of non-loaded

drying specimen. In this case, without any additional information, we can

predict the strain of loaded drying specimen. The prediction results are

compared with experimental measurement in Fig. 6.6b-6.7b-6.8b-6.9b. An

alternative choice could have been the inverse: we could have calibrated a1

and b1 from the strain of loaded drying specimen. In this case, the strain of

non-loaded drying specimen could be predicted.

By comparing the two types of calibration in Fig. 6.6, we can see that, by

considering a unique value for the coe�cient κ = 0.5 of all concretes, we can

predict reasonably well the drying creep and drying shrinkage. Therefore,

setting κ = 0.5 is a reasonable choice if all types of delayed strain test have

not been performed. We can thus predict the delayed strain under a di�erent

hydric and loading condition from other tests. In contrast, when all types

of delayed strain tests are available, we can calibrate all parameters from

experimental results. The calibrated parameters are then used to model the

behavior of structures made of this type of concrete.

In the framework of the VERCORS project, Charpin et al. (2017) have

tested delayed strain behavior of the VERCORS concrete, whose water-to-

cement ratio is equal to 0.52. The delayed strains are measured under four

di�erent conditions: non-loaded non-drying condition, loaded non-drying

condition, non-loaded drying condition and loaded drying condition. All

specimens are kept sealed until the age of loading, i.e., 90 days. For the
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Figure 6.6 � Calibration of the model with the experimental results of Fla-
manville (Granger, 1995): (a) when the coe�cient κ is also �tted, (b) when
the coe�cient κ is set to κ = 0.5.

loaded specimen, an axial load of 12 MPa is applied instantaneously via a

hydraulic pressure tank and kept constant afterwards. Drying starts also at

the time of loading under an ambient relative humidity of 50%. The speci-

mens are cylindrical specimens with a diameter of 16 cm and a height of 1
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Figure 6.7 � Calibration of the model with the experimental results of Chooz
(Granger, 1995): (a) when the coe�cient κ is also �tted, (b) when the coef-
�cient κ is set to κ = 0.5.

m.

The desorption isotherm was measured on other specimens made with

same concrete. Fig. 6.10a displays the desorption isotherm.

The �rst step is to calibrate creep compliance from basic creep strains. We
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Figure 6.8 � Calibration of the model with the experimental results of Civaux
B11 (Granger, 1995): (a) when the coe�cient κ is also �tted, (b) when the
coe�cient κ is set to κ = 0.5.

obtain the axial basic creep εbc1 strain by subtracting the strain of non-loaded

non-drying specimen from the total strain of loaded non-drying specimen.

Then, using least square method, we �t the relation in Eq. 6.18 to obtain

Young's modulus E, uniaxial creep modulus CE and characteristic time τE.
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Figure 6.9 � Calibration of the model with the experimental results of Penly
(Granger, 1995): (a) when the coe�cient κ is also �tted, (b) when the coef-
�cient κ is set to κ = 0.5.

Then supposing that the viscoelastic Poisson's ratio of concrete is constant

and equal to 0.2, we obtain the bulk JK(t) and shear JG(t) creep compliances.

The dependence of creep compliance on relative humidity is taken into

account in the same way as done for the results of Granger (1995).
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Figure 6.10 � Calibration of the model with the experimental results on
VERCORS concrete: (a) measured desorption isotherm, (b) Calibration of
creep properties from basic creep strains and prediction of the strain of non-
loaded drying specimen and of loaded drying specimen

As we know the desorption isotherm, combining the desorption isotherm

with the creep compliance obtained by �tting the basic creep strain, we

can predict the delayed strain of non-loaded drying specimen and loaded
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drying specimen. We consider the coe�cient κ equal to 0.5 for non-loaded

drying specimen. The results are displayed in Fig. 6.10b. Taking κ = 0.5

gives a reasonable prediction of the strain of non-loaded drying specimen.

Comparison between the measured strain and predicted strain supports the

idea of unifying the four types of delayed strain as viscoelastic strain under

the action of the applied mechanical load and/or capillary stress.

6.5 Conclusions

In this chapter, we proposed a non-aging linear viscoelastic model to predict

the delayed strain of cement-based material, without decomposing the de-

layed strain. The model is based on poromechanics and developed initially

at the scale of the mixture of the C-S-H gel and capillary pores. In the last

section the model is upscaled to the scale of concrete and calibrated with

experimental results from the literature.

At the scale of the mixture of the C-S-H gel and capillary pores, the model

takes into account the dependence of creep modulus on relative humidity

and also capillary e�ects. Based on physical phenomena, the model aims

at reducing as much as possible the number of the parameters to �t. In

total, there are two parameters to calibrate: �rst one is already �tted, the

parameter chr in desorption isotherm (see section 6.2.2); second one is the

coe�cient κ.

At the scale of concrete, we proposed two ways of using the model: based

on viscoelastic upscaling of the model developed at the level of the mixture

of C-S-H gel with capillary pores, and by direct calibration on macroscopic

results on concrete. The former method requires the knowledge of elastic

modulus of clinker, portlandite, calcium sulfoaluminate and aggregates. Nu-

merical inversion of Laplace transform is also needed. The latter method

requires experimental investigation of delayed strain of concrete and drying

kinetics.

In the end, we calibrated the model to the experimental results of Granger

(1995). The results support the idea of unifying the four types of delayed

strain as viscoelastic strain under the action of mechanical applied load
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and/or capillary stress.

However, at least three points need to be improved in the model: the

creep characteristic time, the coe�cient κ, and structural e�ects.

At the scale of the mixture of C-S-H gel and capillary pores, the creep

characteristic time t̃ in Eq. 6.13 is not known. In fact, if the creep char-

acteristic time related to C-S-H gel was known from microindentation test,

the creep characteristic time of the mixture of C-S-H gel and capillary pores

in Eq. 6.13 could have been computed by numerical inverting the Laplace

transform of the viscoelastic Mori-Tanaka scheme.

The coe�cient κ is taken as a constant both at the scale of the mixture

of C-S-H gel and capillary pores and at the scale of concrete. However,

as the coe�cient κ is related to micro-damage, it should depend on the

tensile strength of material as well as the intensity of drying. Therefore, the

coe�cient κ may vary over time during a test. Though taking a constant

value 0.5 apparently provides satisfactory results at the scale of concrete,

some more e�orts could be devoted to the study of this parameter and to its

physical origin.

The calibration neglects the fact that the drying is not homogenous in the

testing specimen. The relative humidity decreases faster at the edge of the

specimen than in its middle. Some tensile stress is generated by the gradient

of the relative humidity, reducing the e�ective section (Baºant and Yunping,

1994; Granger et al., 1997). This e�ect is known as structural e�ect and not

negligible. Including this structural e�ect should be the very next point to

take into account in order to improve the model.
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Chapter 7

Conclusions and perspectives

7.1 Conclusions

In the context of evaluation and extension of service lifetime of nuclear pres-

sure vessels, we aimed in this thesis at better understanding long-term de-

layed strain behavior of cement-based materials. We contributed to the cur-

rent state of the art by exhaustive analysis of experimental data from the

literature and by micromechanical analysis and poromechanical modeling.

Considering the biaxial prestress in the nuclear vessel, we started by

studying the viscoelastic Poisson's ratio. We �rst looked at the de�nition

of Poisson's ratio in non-aging isotropic viscoelasticity. The de�nition of

Poisson's ratio in isotropic linear viscoelasticity is not unique. We compared

two most intuitive de�nitions: the relaxation Poisson's ratio νr(t) and the

creep Poisson's ratio νc(t). Those two Poisson's ratios were de�ned with

respect to creep or relaxation experiments with an instantaneous loading.

Those two Poisson's ratios are not equal to each other. They can be ex-

pressed as functions of the creep compliances and relaxation moduli and are

linked to each other through an exact expression. For cementitous materials,

we showed through a study of multiaxial creep data that, if the Poisson's

ratios vary little over time, their di�erence is negligible. Hence, throughout

the whole thesis, we do not distinguish the two Poisson's ratios.

In a second step, we compared the above de�nition of Poisson's ratio in
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viscoelasticity with other de�nitions based on creep strain that are widely

used in concrete creep testing. Then, we analyzed all experimental data

from the literature in which the delayed strains are measured in more than

one direction. The analysis of all experimental results shows that the long-

term viscoelastic Poisson's ratio of concrete is equal to or smaller than its

elastic Poisson's ratio, and comprised between 0.15 and 0.20. If the elastic

Poisson's ratio of a mature concrete is comprised between 0.15 and 0.20,

considering for practical applications that its viscoelastic Poisson's ratio is

constant over time, as proposed in particular by Bazant (1975); RILEM

Technical Committee (1995), is a very reasonable assumption. This long-

term value of Poisson's ratio indicates that the long-term creep of concrete

is not only deviatoric, but also volumetric.

Knowing the long-term Poisson's ratio of concrete, we computed the long-

term viscoelastic Poisson's ratio of C-S-H gel by downscaling with the help of

elastic homogenization schemes extended to viscoelasticity. If the aggregates,

portlandite, calcium sulfoaluminates hydrates and clinker can be considered

as spherical, then the long-term viscoelastic Poisson's ratio of the C-S-H

gel has little e�ect on the long-term viscoelastic Poisson's ratio of concrete.

The value of the long-term viscoelastic Poisson's ratio of the C-S-H gel is

comprised between 0 and 0.2. The long-term creep of C-S-H gel in concrete

is both deviatoric and volumetric.

From the long-term Poisson's ratio of C-S-H gel, we analyzed di�erent

possible mechanisms of creep at the scale of C-S-H particles. If creep of the

C-S-H gel is due to creep of the C-S-H particles themselves, evolutions of

the creep Poisson's ratio observed experimentally cannot be explained if we

consider that the C-S-H particles are spherical and that they creep by sliding

of its C-S-H layers over each other: either the C-S-H particles need to be

considered aspherical, or the interlayer distance between neighboring C-S-H

layers must be considered to vary in the long term. If creep of the C-S-H

gel is due to creep of the contact points between C-S-H particles, and if we

consider that C-S-H particles are spherical, we cannot consider that C-S-H

particles can only slide over each other: in the long term, the C-S-H particles

must also be allowed to get closer to each other, i.e., to interpenetrate each
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other.

In the second part of the thesis, which is devoted to the development of

the model, we started by identifying the major experimental tendencies that

are to captured with the model. With this aim in mind, we performed an

exhaustive study of experimental data from the literature on basic creep and

autogenous shrinkage. The basic creep of concrete, as well as the autogenous

shrinkage, is not asymptotic and evolves logarithmically with respect to time

at long term. Then, we downscaled these results to the scale of C-S-H gel

with the help of elastic homogenization schemes extended to viscoelasticity.

For materials that are kept under autogenous conditions, the creep modulus

of C-S-H gel remains approximately constant, around 13 GPa. For what con-

cerns autogenous shrinkage, we computed the stress that is needed to explain

long-term kinetics of autogenous shrinkage. Comparing this stress with the

capillary force due to self desiccation computed as bSlPc from poromechanics,

we concluded that the autogenous shrinkage can be explained as creep under

the action of capillary e�ects.

In the end, we proposed a non-aging linear viscoelastic model to pre-

dict the delayed strain of cement-based materials, without decomposing the

delayed strain into its classical components. The model is based on porome-

chanics and developed initially at the scale of the mixture of the C-S-H gel

and capillary pores. In the last section the model is upscaled to the scale of

concrete and calibrated with experimental results from the literature. Cali-

bration of the model on experimental results of Granger (1995) showed that

the model is able to capture well the magnitude of drying creep. The cali-

bration results support the idea of unifying the four types of delayed strain

as viscoelastic strain under the action of the applied mechanical load and/or

capillary stress.

7.2 Perspectives

Several improvements can be done to complete the work of the thesis, both on

the part dedicated to the Poisson's ratio and on the proposed poroviscoelastic

model.
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In the thesis, we analyzed basic creep data to draw conclusions on the

evolution of viscoelastic Poisson's ratio of concrete. The question of multi-

axiality is not explictely studied for other components of delayed strain.

Autogenous shrinkage is considered to be isotropic since there is no priv-

ileged direction for internal capillary pressure under autogenous conditions.

However, as we know, the only measurement of lateral autogenous shrinkage,

performed by Ulm et al. (2000), showed that lateral autogenous shrinkage

di�ers from axial autogenous shrinkage. At that time, Ulm et al. (2000) at-

tributed this inequality to non-homogenous radial aggregate distribution, but

suggested to check by testing autogenous shrinkage of cored cylindrical sam-

ples. This could be a direct extension of the work on viscoelastic Poisson's

ratio of concrete.

Drying shrinkage is also considered to be isotropic at the material level

(i.e., if the structural e�ect is not taken into account) for the same reason:

there is no privileged direction in drying. As far as we know, there is no

experimental studies on this point. Charpin et al. (2015, 2017) studied the

delayed strain behavior of concrete under biaxial load where drying shrinkage

is measured in three directions. However, the drying took place through

two opposite surfaces of the rectangular cuboid sample while the other four

surfaces were wrapped with four layers of aluminum sheets, thus inducing

anisotropic drying. Therefore, the results of the tests need careful analysis

to infer some conclusions on any potential multiaxial feature.

For what concerns drying creep, since the coe�cient κ is identical in all

directions in Eq. 6.15, drying creep is considered to be isotropic in the thesis.

However, there are very few tests on multiaxial drying creep in the literature.

Charpin et al. (2017) analyzed ten years shrinkage and creep measurement of

concrete and suggested that the Poisson's ratio related to drying shrinkage

is equal to the viscoelastic Poisson's ratio of basic creep. Hence, we could

calibrate the model to the data of Charpin et al. (2017) to improve the

prediction of multiaxial drying creep.

For what concerns the model, we never discussed the value of the creep

characteristic time t̃ in Eq. 6.13. Analyzing experimental data from microin-

dentation and nanoindentation tests may provide information about the creep
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characteristic time of C-S-H gel. Then, numerically inverting viscoelastic

Mori-Tanaka scheme from the Laplace domain to time domain, we could de-

duce the creep characteristic time of the mixture of C-S-H gel with capillary

pores.

The calibration of the model neglects any structural e�ects that are re-

lated to the inhomogeneous drying of specimen due to its �nite size. The

gradient of relative humidity due to the inhomogeneous drying causes tensile

stresses in the skin of the concrete. As a result, damage occurs when the

tensile stress is higher than the tensile strength of concrete; Consequently,

the e�ective section decreases. Baºant and Yunping (1994); Granger et al.

(1997); Benboudjema et al. (2005) showed that an important part of drying

creep is related to the structural e�ect. Incorporating this structural e�ect

into the analysis of experimental data such as the ones of Granger (1995) (see

section 6.4.2), should be the very next point to take into account to better

predict the strain behavior of a drying concrete specimen.
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Appendix A

Relaxation and creep Poisson's

ratios in rheological models

This section is devoted to present the analytical expression of the relaxation

Poisson's ratio νr and the creep Poisson's ratio νc based on the rheological

models that are presented in Fig. 2.1. For a material whose both volumetric

and deviatoric behaviors are governed by Maxwell units (see Fig. 2.1a), the

Poisson's ratios read:

νr (t) = −
(G0 + 3K0) (2ηG − 3ηK) + 9 (ηGK0 − ηKG0) exp

(
−G0K0(ηG+3ηK)
ηGηK(G0+3K0)

t
)

2 (ηG + 3ηK) (G0 + 3K0)
(A.1)

νc (t) = −ηGηK (2G0 − 3K0) +G0K0 (2ηG − 3ηK) t

ηGηK (G0 + 3K0) +G0K0 (ηG + 3ηK) t
(A.2)

For a material whose volumetric and deviatoric behaviors are governed

by a Maxwell unit and a Kelvin-Voigt unit, respectively (see Fig. 2.1b), the

Poisson's ratios are expressed as:

νr (t) = −1 +
9K0

2 (G0 + 3K0)
exp (−Ω1t) (cosh (Ω2t) + Ω3 sinh (Ω2t)) (A.3)
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RHEOLOGICAL MODELS

νc (t) = −
2ηKG0 − 6ηKK0 + 2G0K0t+ 3ηKK0 exp

(
−G0

ηG
t
)

2
(
ηKG0 + 6ηKK0 +G0K0t− 3ηKK0 exp

(
−G0

ηG
t
)) (A.4)

where the parameters Ω1,Ω2,Ω3 are function of K0, G0, ηK , ηG:

Ω1 =
G0 (6K0ηK + ηGK0 +G0ηK)

2ηGηK (G0 + 3K0)

Ω2 =

√
G2

0 (36η2
KK

2
0 + 12η2

KG0K0 + η2
GK

2
0 − 2ηGηKG0K0 + η2

KG
2
0)

2ηGηK (G0 + 3K0)

Ω3 =
(3ηKG0 + 6ηKK0 − ηGK0)√

(36η2
KK

2
0 + 12η2

KG0K0 + η2
GK

2
0 − 2ηGηKG0K0 + η2

KG
2
0)

For a material whose volumetric and deviatoric behaviors are governed

by a Kelvin-Voigt unit and a Maxwell unit, respectively (see Fig. 2.1c), the

Poisson's ratios read:

νr (t) =
1

2
− 3G0

2 (G0 + 3K0)
exp (−Ω4t) (cosh (Ω5t)− Ω6 sinh (Ω5t)) (A.6)

νc (t) =
3ηGK0 − 4ηGG0 + 3K0G0t+ 2ηGG0 exp

(
−K0

ηK
t
)

2
(

3ηGK0 + 2ηGG0 + 3K0G0t− ηGG0 exp
(
−K0

ηK
t
)) (A.7)
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where the parameters Ω4,Ω5,Ω6 are function of K0, G0, ηK , ηG:

Ω4 =
K0 (3K0ηG + 3ηKG0 + 2G0ηG)

2ηGηK (G0 + 3K0)

Ω5 =

√
K2

0 (9η2
GK

2
0 − 18ηKηGK0G0 + 12η2

GK0G0 + 9η2
KG

2
0 + 4η2

GG
2
0)

2ηGηK (G0 + 3K0)

Ω6 =
K0 (3ηKG0 − 9ηGK0 − 2ηGG0)√

K2
0 (9η2

GK
2
0 − 18ηKηGK0G0 + 12η2

GK0G0 + 9η2
KG

2
0 + 4η2

GG
2
0)

For a material whose both volumetric and deviatoric behaviors are gov-

erned by Kelvin-Voigt units (see Fig. 2.1d), the Poisson's ratios read:

νr(t) =
3K0 − 2G0

2(3K0 +G0)
+

9K0G0

3K0 +G0

Ω9 exp(−Ω7t) sinh(
Ω8

ηKηG(3K0 +G0)
)

(A.9)

νc (t) =
6K0 − 4G0 − 3K0 exp

(
−K0

ηK
t
)

+ 2G0 exp
(
−G0

ηG
t
)

2
(

6K0 + 2G0 − 3K0 exp
(
−K0

ηK
t
)
−G0 exp

(
−G0

ηG
t
)) (A.10)

where the parameters Ω4,Ω5,Ω6 are function of K0, G0, ηK , ηG:

Ω7 =
3K2

0ηG + 6K0G0ηK +G2
0ηK + 2K0G0ηG

2ηKηG(3K0 +G0)

Ω8 = 9K4
0η

4
G − 36K3

0G0ηKηG − 18K2
0G

2
0ηKηG + 12K3

0G0η
2
G

+ 36K2
0G

2
0η

2
K + 12K0G

3
0η

2
K +G4

0η
2
K − 4K0G

3
0ηKηG + 4K2

0G
2
0η

2
G

Ω9 =
G0ηK −K0ηG

Ω8
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Appendix B

Calculation of the two Poisson's

ratios from the experimental

results

This section is devoted to present how the relaxation Poisson's ratio νr and

the creep Poisson's ratio νc are calculated from the experimental results.

By using Eq. (2.24b), the creep Poisson's ratio νc (t) and the uniaxial creep

compliance JE are computed directly from the experimental measurement of

principals strains ε1 (t), ε2 (t), ε3 (t) and applied stress values σ10, σ20, σ30.

Then, to the experimental values of the uniaxial creep compliance JE is �tted

the following analytical expression:

JE (t) = α1t+ α2 + α3 exp

(
− t

τ1

)
(B.1)

where α1, α2, α3 and τ1 are �tted parameters.

Further, in order to capture the asymptotic behavior of the Poisson's ra-

tio, it is assumed that the relaxation Poisson's ratio νr (t) has an exponential

form, as follows:

νr (t) = νf + α0 exp

(
− t

τ0

)
(B.2)

where νf , α0, and τ0 are parameters to �t.
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APPENDIX B. CALCULATION OF THE TWO POISSON'S RATIOS
FROM THE EXPERIMENTAL RESULTS

Substituting Eqs. (B.1) and (B.2) into Eq. (2.17), the creep Poisson's

ratio νc is computed analytically. By changing the parameters νf , α0, and τ0

in Eq. (B.2), a best �t which gives the minimum variance for the �tted creep

Poisson's ratio νc is obtained.
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Appendix C

Comparaison of Poisson's ratio

and creep-based Poisson's ratio in

di�erent directions

In this section, for the 11 tests in Gopalakrishnan (1968), we computed the

3 directional creep-based Poisson's ratios with Eq. 17 (as did the authors)

and the 3 directional creep-based Poisson's ratios with Eq. 5. The results are

plotted in Figs. C.1-C.4.
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Figure C.1 � Dependency of Poisson's ratio on the direction: (a)(c)(e) creep-
based Poisson's ratio reported in Gopalakrishnan (1968), calculated from
Eq. (17) for three directions; (b)(d)(f) viscoelastic Poisson's ratio calculated
from Eq. (5) for three directions. Data (a)(b) from experiment TC1, (c)(d)
from experiment BC4, (e)(f) from experiment TC5 in Gopalakrishnan (1968):
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Figure C.2 � Dependency of Poisson's ratio on the direction: (a)(c)(e) creep-
based Poisson's ratio reported in Gopalakrishnan (1968), calculated from
Eq. (17) for three directions; (b)(d)(f) viscoelastic Poisson's ratio calculated
from Eq. (5) for three directions. Data (a)(b) from experiment TC5R, (c)(d)
from experiment TC6, (e)(f) from experiment TC7 in Gopalakrishnan (1968):
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Figure C.3 � Dependency of Poisson's ratio on the direction: (a)(c)(e) creep-
based Poisson's ratio reported in Gopalakrishnan (1968), calculated from
Eq. (17) for three directions; (b)(d)(f) viscoelastic Poisson's ratio calcu-
lated from Eq. (5) for three directions. Data (a)(b) from experiment BC8,
(c)(d) from experiment BT9, (e)(f) from experiment TC11 in Gopalakrishnan
(1968):
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Figure C.4 � Dependency of Poisson's ratio on the direction in experiment
TC12 in Gopalakrishnan (1968): (a) creep-based Poisson's ratio reported
in Gopalakrishnan (1968), calculated from Eq. (17) for three directions; (b)
viscoelastic Poisson's ratio calculated from Eq. (5) for three directions.
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Appendix D

Experimental data of concrete

Poisson's ratio from literature

In this section, we present all the experimental data of the evolution of Pois-

son's ratio of concrete. The evolution of the Poisson's ratio is computed from

Eq. 3.2. Each test is described brie�y in the following:

The tests of Gopalakrishnan (1968) are on cubic sample concrete. The

load is applied at the age of 8 days in three direction consequently. The

values of load are:

• Test TC1: σ1 = −5.69 MPa, σ2 = −5.55 MPa, σ3 = −3.59 MPa;

• Test BC4: σ1 = −5.21 MPa, σ2 = −3.59 MPa, σ3 = −0;

• Test TC5: σ1 = −10.0 MPa, σ2 = −7.72 MPa, σ3 = −3.14 MPa;

• Test TC5R: σ1 = −9.89 MPa, σ2 = −7.55 MPa, σ3 = −3.03 MPa;

• Test TC6: σ1 = −11.2 MPa, σ2 = −9.72 MPa, σ3 = −2.10 MPa;

• Test TC7: σ1 = −12.55 MPa, σ2 = −11.45 MPa, σ3 = −2.45 MPa;

• Test BC8: σ1 = −12.58 MPa, σ2 = −7.24 MPa, σ3 = 0;

• Test BT9: σ1 = −8.41 MPa, σ2 = −5.62 MPa, σ3 = 0;

• Test TC10: σ1 = −13.24 MPa, σ2 = −1.76 MPa, σ3 = −1.83 MPa;
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Figure D.1 � Poisson's ratio of concrete versus time. Data retrived from
Gopalakrishnan (1968)

• Test BT11: σ1 = −13.38 MPa, σ2 = −13.89 MPa, σ3 = 0;

• Test TC12: σ1 = −12.82 MPa, σ2 = −13.24 MPa, σ3 = −6.34 MPa;

The evolution of Poisson's ratio in these test are displayed in Fig. D.1.

Jordaan and Illston (1969, 1971) tested cubic sample of concrete under

uniaxial and biaxial load. Loading age is 16 days. The load values for the

tests from Jordaan and Illston (1969) are:

• Serie 1, uniaxial test: σ1 = −10.0 MPa, σ2 = σ3 = 0;

• Serie 1, biaxial test: σ1 = σ2 = −9.50 MPa, σ3 = 0;

• Serie 2, uniaxial test: σ1 = −10.6 MPa, σ2 = σ3 = 0;

• Serie 2, biaxial test: σ1 = −10.6 MPa, σ2 = −3.32 MPa, σ3 = 0;

The load values for the tests from Jordaan and Illston (1971) are:

• Uniaxial test: σ1 = −5.2 MPa, σ2 = σ3 = 0;

• Biaxial test: σ1 = −5.2 MPa, σ2 = −6.9 MPa, σ3 = 0;
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Figure D.2 � (a) Poisson's ratio versus time. Data retrieved from Jordaan
and Illston (1969). (b) Poisson's ratio versus time. Data retrieved from
Jordaan and Illston (1971).

• Triaxial test: σ1 = −5.2 MPa, σ2 = −6.9 MPa, σ3 = 3.5 MPa;

The evolution of Poisson's ratio for the test from Jordaan and Illston

(1969) are displayed in Fig. D.2a and those from Jordaan and Illston (1971)

are displayed in Fig. D.2b.

Kennedy (1975) performed uniaxial and triaxial creep tests on cyclindrical

specimen. The axial load σa and radial load σr are list in the following list,

as well as loading age:
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Figure D.3 � (a) Poisson's ratio versus time for As-Cast concrete specimens.
Data retrieved from Kennedy (1975). (b) Poisson's ratio versus time for
Air-Dried specimens. Data retrieved from Kennedy (1975).

235
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• As-Cast, B7: σa = −16.55 MPa, σr = 0, loading age 90 days;

• As-Cast, C23: σa = 0, σr = −16.55 MPa, loading age 90 days;

• As-Cast, E39: σa = 4.14 MPa, σr = 0, loading age90 days;

• As-Cast, F13: σa = 0, σr = −4.14 MPa, loading age 90 days;

• As-Cast, G35: σa = −4.14 MPa, σr = −24.82 MPa;

• As-Cast, H5: σa = −4.14 MPa, σr = 0, loading age 365 days;

• As-Cast, H22: σa = 0, σr = −24.82 MPa;

• As-Cast, H24: σa = −16.55 MPa, σr = 0, loading age 365 days;

• As-Cast, H34: σa = −16.55 MPa, σr = 0, loading age 183 days;

• As-Cast, H45: σa = −4.14 MPa, σr = 0, loading age 183 days;

• Air-Dried, B19: σa = −16.55 MPa, σr = 0, loading age 90 days;

• Air-Dried, E40: σa = 4.14 MPa, σr = 0, loading age90 days;

• Air-Dried, G30: σa = −4.14 MPa, σr = −24.82 MPa;

• Air-Dried, H17: σa = −16.55 MPa, σr = 0, loading age 365 days;

• Air-Dried, H31: σa = −4.14 MPa, σr = 0, loading age 365 days;

• Air-Dried, I20: σa = −16.55 MPa, σr = 0, loading age 183 days;

• Air-Dried, I39: σa = −4.14 MPa, σr = 0, loading age 183 days;

The evolution of the Poisson's ratio for As-Cast samples are displayed in

Fig. D.3a and those for Air-Dried samples are displayed in Fig. D.3b.

Kim et al. (2005) tested cubic concrete sample which are cured until age

of 28 days under water. The loading age is 28 days. The load values for each

test are:

• Concrete C1, uniaxial test 1: σ1 = −4.90 MPa, σ2 = σ3 = 0;
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Figure D.4 � (a) Poisson's ratio versus time for C1 concrete specimens. Data
retrieved from Kim et al. (2005). (b) Poisson's ratio versus time for C2
concrete specimens. Data retrieved from Kim et al. (2005). (c) Poisson's
ratio versus time for C3 concrete specimens. Data retrieved from Kim et al.
(2005).

• Concrete C1, uniaxial test 2: σ1 = −9.80 MPa, σ2 = σ3 = 0;

• Concrete C1, biaxial test 1: σ1 = −4.90 MPa, σ2 = −0.98 MPa, σ3 = 0;

• Concrete C1, biaxial test 2: σ1 = −4.90 MPa, σ2 = −1.96 MPa, σ3 = 0;

• Concrete C1, biaxial test 3: σ1 = −9.80 MPa, σ2 = −1.96 MPa, σ3 = 0;

• Concrete C1, triaxial test 1: σ1 = −4.90 MPa, σ2 = σ3 = −0.49 MPa;

• Concrete C1, triaxial test 2: σ1 = −4.90 MPa, σ2 = σ3 = −0.98 MPa;

• Concrete C1, triaxial test 3: σ1 = −4.90 MPa, σ2 = σ3 = −1.96 MPa;
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• Concrete C1, triaxial test 4: σ1 = −4.90 MPa, σ2 = −1.96 MPa,

σ3 = −0.98 MPa;

• Concrete C2, uniaxial test 1: σ1 = −7.35 MPa, σ2 = σ3 = 0;

• Concrete C2, uniaxial test 2: σ1 = −9.80 MPa, σ2 = σ3 = 0;

• Concrete C2, biaxial test 1: σ1 = −7.35 MPa, σ2 = −1.47 MPa, σ3 = 0;

• Concrete C2, biaxial test 2: σ1 = −7.35 MPa, σ2 = −2.94 MPa, σ3 = 0;

• Concrete C2, biaxial test 3: σ1 = −9.80 MPa, σ2 = −2.94 MPa, σ3 = 0;

• Concrete C2, triaxial test 1: σ1 = −7.35 MPa, σ2 = σ3 = −0.74 MPa;

• Concrete C2, triaxial test 2: σ1 = −7.35 MPa, σ2 = σ3 = −1.47 MPa;

• Concrete C2, triaxial test 3: σ1 = −7.35 MPa, σ2 = σ3 = −2.94 MPa;

• Concrete C2, triaxial test 4: σ1 = −7.35 MPa, σ2 = −2.94 MPa,

σ3 = −1.96 MPa;

• Concrete C3, uniaxial test 1: σ1 = −9.80 MPa, σ2 = σ3 = 0;

• Concrete C3, uniaxial test 2: σ1 = −12.25 MPa, σ2 = σ3 = 0;

• Concrete C3, biaxial test 1: σ1 = −9.80 MPa, σ2 = −1.96 MPa, σ3 = 0;

• Concrete C3, biaxial test 2: σ1 = −9.80 MPa, σ2 = −3.92 MPa, σ3 = 0;

• Concrete C3, biaxial test 3: σ1 = −12.25 MPa, σ2 = −3.92 MPa,

σ3 = 0;

• Concrete C3, triaxial test 1: σ1 = −9.80 MPa, σ2 = σ3 = −0.98 MPa;

• Concrete C3, triaxial test 2: σ1 = −9.80 MPa, σ2 = σ3 = −1.96 MPa;

• Concrete C3, triaxial test 3: σ1 = −9.80 MPa, σ2 = σ3 = −3.92 MPa;

• Concrete C3, triaxial test 4: σ1 = −9.80 MPa, σ2 = −3.92 MPa,

σ3 = −1.96 MPa;
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The evolution of Poisson's ratio for concrete C1, C2 and C3 are displayed

in Fig. D.4a, b and c, respectively.
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Appendix E

Autogenous shrinkage database

This section is devoted to present autogenous shrinkage data that are dis-

played in Fig. 5.6. For each data are given author and year of the work,

�le number that corresponds database (Baºant and Li, 2008) collected in

Northwestern University, mix design properties and long-term log-slope of

autogenous shrinkage, see Tab. E.1 and E.2.
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APPENDIX E. AUTOGENOUS SHRINKAGE DATABASE

Author File1 w/c2 a/c3 c4 αcr
6

Brooks (1984) e_074_20 0.67 4.75 366 -26.3
Brooks (1984) e_074_29 0.76 4.75 383 -98.94
Brooks (1984) e_074_30 0.62 4.75 344 -83.22
Brooks (1984) e_074_33 0.86 4.75 457 -46.73
Brooks (1984) e_074_35 0.63 4.75 387 -42.43
Shritharan (1989) e_079_6 0.47 5.09 393 7.51
Larrard (1990) A_022_2 0.35 3.96 450 82.13
Larrard (1990) A_022_3 0.35 3.96 450 7.49
Larrard (1990) A_022_5 0.35 3.96 450 15.96
Tazawa (1993) A_062_6 0.3 0 533 129.92
Tazawa (1993) A_062_7 0.3 0 533 221.16
Tazawa (1993) A_062_8 0.3 0 533 224.33
Tazawa (1993) A_062_9 0.3 0 533 90.08
Tazawa (1993) A_062_12 0.3 0 533 83.14
Tazawa (1993) A_062_13 0.3 0 533 136.05
Tazawa (1993) A_062_14 0.3 0 533 132.06
Tazawa (1993) A_062_15 0.3 0 533 164.82
Tazawa (1995) A_063_22 0.3 0 NAN 1.71
Tazawa (1995) A_063_27 0.4 0 NAN 1.69
Tazawa (1995) A_063_39 0.3 0 NAN 4.35
Tazawa (1995) A_063_42 0.3 0 NAN 2.42
Tazawa (1995) A_063_44 0.3 0 NAN 0.03
Tazawa (1995) A_063_49 0.3 0 NAN 9.01
Tazawa (1995) A_063_50 0.3 0 NAN 8.49
Tazawa (1995) A_063_51 0.3 0 NAN 8.85

Table E.1 � Details of autogenous shrinkage data (�rst part). 1File corre-
sponds to the �le number in the database compiled by Prof. Baºant and
his collaborators (Baºant and Li, 2008); 2w/c: water-to-cement ratio; 3a/c:
aggregate-to-cement mass ratio; 4c: cement per volume of mixture [kg/m3];
5αsh: Fitted parameter in Eq. 5.1, [µm/m]
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Author File1 w/c2 a/c3 c4 αsh
6

Weiss (1998) A_068_1 0.3 3.04 485 63.01
Weiss (1998) A_068_16 0.3 3.04 485 59.57
Weiss (1998) A_068_19 0.3 3.04 485 61.54
Brooks (2001) A_007_8 0.28 4 450 14.39
Brooks (2001) A_007_12 0.28 4 450 15.18
Lee (2003) A_023_1 0.5 4.66 370 5.59
Lee (2003) A_023_2 0.35 3.85 450 23.07
Lee (2003) A_023_3 0.31 3.4 500 24.23
Lee (2003) A_023_4 0.27 3.05 550 19.58
Lee (2003) A_023_8 0.34 3.73 440 20.44
Lee (2003) A_023_9 0.31 3.4 500 29.5
Zhang (2003) A_072_1 0.26 3.7 496 38.97
Zhang (2003) A_072_2 0.3 3.6 497 40.17
Mazloom (2004) A_031_2 0.35 3.7 500 30.64
Vidal (2005) A_065_3 0.44 3.7 450 10.95
Vidal (2005) A_065_5 0.53 5.25 350 27.99
Lee (2006) A_024_1 0.3 2.73 583 29.96
Lee (2006) A_024_2 0.4 3.92 438 17.17
Lee (2006) A_024_3 0.5 5.09 350 12.57
Lee (2006) A_024_4 0.6 6.43 292 9

Table E.2 � Details of autogenous shrinkage data (second part). 1File cor-
responds to the �le number in the database compiled by Prof. Baºant and
his collaborators (Baºant and Li, 2008); 2w/c: water-to-cement ratio; 3a/c:
aggregate-to-cement mass ratio; 4c: cement per volume of mixture [kg/m3];
5αsh: Fitted parameter in Eq. 5.1, [µm/m]
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Appendix F

Basic creep database

This section is devoted to present basic creep data that are displayed in

Fig. 5.3. For each data are given author and year of the work, �le number

that corresponds database (Baºant and Li, 2008) collected in Northwestern

University, mix design properties, age of loading and long-term log-slope of

basic creep, see Tabs. F.1 and F.2.
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APPENDIX F. BASIC CREEP DATABASE

Author File1 w/c2 a/c3 c4 t0
5 1/CE

c
6

Hanson (1953a) C_002_1 0.58 5.62 346 28 6.76
Hanson (1953a) C_002_3 0.56 6.14 320 7 8.39
Hanson (1953b) C_101_1 0.58 9.6 362 28 6.37
Browne (1967) C_025_15 0.42 4.4 418 28 5.94
Browne (1967) C_025_16 0.42 4.4 418 60 8.54
Rostasy (1972) C_043_3 0.41 5.59 332 28 6.13
Kommendant (1976a) C_104_1 0.38 4.34 419 28 4.88
Kommendant (1976a) C_104_2 0.38 4.34 419 90 4.28
Kommendant (1976b) C_054_1 0.38 4.34 419 28 8.42
Kommendant (1976b) C_054_2 0.38 4.34 419 90 8.67
Kommendant (1976b) C_054_14 0.38 4.03 449 28 6.07
Kommendant (1976b) C_054_15 0.38 4.03 449 90 7.67
Takahashi (1980) J_015_3 0.4 4.45 400 30 6.35
Kawasumi (1982) J_018_1 0.47 6.01 304 7 9.16
Kawasumi (1982) J_018_2 0.47 6.01 304 28 12.08
Kawasumi (1982) J_018_3 0.47 6.01 304 91 11.32
Kawasumi (1982) J_018_9 0.49 6.79 286 7 12.96
Kawasumi (1982) J_018_10 0.49 6.79 286 28 13.95
Kawasumi (1982) J_018_11 0.49 6.79 286 91 13.21
Brooks (1983) C_072_2 0.27 3.3 535 28 5.83
Brooks (1983) C_072_3 0.34 2.6 608 28 17.62
Brooks (1983) C_072_4 0.27 2.6 628 28 12.75
Brooks (1983) C_072_5 0.3 2.08 725 28 19.21
Brooks (1984) C_074_19 0.8 4.75 405 14 24.09
Brooks (1984) C_074_20 0.67 4.75 366 14 13.61
Brooks (1984) C_074_21 0.58 4.75 337 14 9.17
Brooks (1984) C_074_22 0.54 4.75 326 14 9.01
Brooks (1984) C_074_23 0.5 4.75 311 14 6.73
Brooks (1984) C_074_24 0.8 4.75 389 14 26.88
Brooks (1984) C_074_25 0.67 4.75 351 14 20.68
Brooks (1984) C_074_26 0.56 4.75 317 14 9.36

Table F.1 � Details of basic creep data (�rst part). 1File corresponds to the
�le number in the database compiled by Prof. Baºant and his collaborators
(Baºant and Li, 2008); 2w/c: water-to-cement ratio; 3a/c: aggregate-to-
cement mass ratio; 4c: cement per volume of mixture [kg/m3]; 5t0: loading
age [days]; 61/CE

c : Fitted parameter in Eq. 5.3, [µm/m/MPa].
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Author File1 w/c2 a/c3 c4 t0
5 1/CE

c
6

Brooks (1984) C_074_27 0.48 4.75 292 14 9.21
Brooks (1984) C_074_28 0.4 4.75 267 14 8.29
Bryant (1987) D_075_1 0.47 1.37 390 8 8.63
Bryant (1987) D_075_2 0.47 1.37 390 14 8.86
Bryant (1987) D_075_3 0.47 1.37 390 21 10.83
Bryant (1987) D_075_4 0.47 1.37 390 28 10.28
Bryant (1987) D_075_5 0.47 1.37 390 84 10.01
Larrard (1988) C_122_4 0.44 3.75 410 28 9.08
Shritharan (1989) C_079_7 0.47 5.09 390 8 8.3
Shritharan (1989) C_079_8 0.47 5.09 390 14 8.93
Shritharan (1989) C_079_9 0.47 5.09 390 21 12.57
Shritharan (1989) C_079_10 0.47 5.09 390 28 10.47
Shritharan (1989) C_079_11 0.47 5.09 390 84 10.78
Larrard (1990) D_022_2 0.35 3.96 450 5 4.42
Larrard (1990) D_022_3 0.35 3.96 450 3 3.14
Larrard (1990) D_022_4 0.35 3.96 450 7 4.08
Larrard (1990) D_022_5 0.35 3.96 450 3 4.1
Leroy (1995) C_123_1 0.5 5.46 342 0.83 4.11
Leroy (1995) C_123_3 0.5 5.46 342 3 3.83
Leroy (1995) C_123_4 0.5 5.46 342 7 4.33
Leroy (1995) C_123_5 0.5 5.46 342 28 4.92
Leroy (1995) C_123_34 0.33 4.35 426 3 1.52
Leroy (1995) C_123_35 0.33 4.35 426 7 1.91
Leroy (1995) C_123_36 0.33 4.35 426 28 3.52
Mazloom (2004) D_031_2 0.35 3.7 500 7 16.86
Mazloom (2004) D_031_10 0.35 3.7 500 28 15.1
Mazzotti (2005) D_033_3 0.42 4.32 418 7 10.75
Mu (2009) D_036_11 0.58 7.15 275 3 14.61

Table F.2 � Details of basic creep data (second part). 1File corresponds to the
�le number in the database compiled by Prof. Baºant and his collaborators
(Baºant and Li, 2008); 2w/c: water-to-cement ratio; 3a/c: aggregate-to-
cement mass ratio; 4c: cement per volume of mixture [kg/m3]; 5t0: loading
age [days]; 61/CE

c : Fitted parameter in Eq 5.3, [µm/m/MPa].
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Appendix G

Experimental data of evolution of

relative humidity with respect to

time under autogenous condition

This section is devoted to present the experimental data of evolution of rel-

ative humidity under autogenous condition. For each data, the �tted long-

term relative humidity h∞r is displayed in legend of �gure, see Fig. G.1
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Figure G.1 � Evolution of relative humidity with respect to time under au-
togenous condition. Data from (a) Jensen and Hansen (1996, 1999), (b)
Persson (1997), (c) Yssorche-Cubaynes and Ollivier (1999), (d) Zhutovsky
and Kovler (2013), (e) Wyrzykowski and Lura (2016), (f) appendix H.
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Appendix H

Experimental study of the

in�uence of relative humidity on

creep compliance of cement paste

Baºant et al. (1976); Baºant and Chern (1985); Abiar (1986) observed ex-

perimentally that, under autogenous condition, a pre-dried concrete creeps

much more slowly than a humid concrete. This observation suggests that the

creep modulus (see the de�nition in chapter 5) depends on relative humidity

inside the porous network of concrete. In this study, we want to identify

experimentally this dependency by tests on cement paste.

H.1 Material and methods

As a part of the VERCORS project, we prepare cement paste with cement

CEM I and water. The water-to-cement ratio is 0.52. In total, 12 samples

(see the notation of sample in Fig. H.2.) are casted into cylindrical molds

whose diameter is 20 mm and height is 100 mm. The samples are rotated

with a rotating device during the �rst 7 hours to avoid segregation and obtain

a better homogeneity (see the setup for rotation in Fig. H.1a). We removed

the samples from the molds at the age of 24 hours and wrapped each of them

with four layers of aluminum and kept them wrapped until the age of 28
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RELATIVE HUMIDITY ON CREEP COMPLIANCE OF CEMENT
PASTE

days. Then, we removed the aluminum layers from 9 samples and put them

into three di�erent desiccation boxes: 3 samples (1c, 1s, 1r) into the box in

which relative humidity is controlled at 50%; 3 samples (2c, 2s, 2r) into the

box in which relative humidity is controlled at 75%; 3 samples (3c, 3s, 3r)

into the box in which relative humidity is controlled at 100%. The other left

3 specimens (4c, 4s, 4r) are kept wrapped. The relative humidity in boxes are

controlled by saline solution: saturated solution of Mg(NO3)2 for hr = 50%,

saturated solution of NaCl for hr = 75% and tap water for hr = 100%. The

room temperature is controlled at 20±1 oC.

(a) (b)

Figure H.1 � (a) Set up to rotate all 12 samples during the �rst 7 hours after
casting. (b) LVDT to measure the strain of specimen.

The mass of each specimen is measured from time to time. At the end

of the 4th month, the variation of mass of the specimens (1c, 1s, 1r) in

the box of 50% of relative humidity was less than 0.05% during 30 days.

Thus, we consider that the specimens reached hydric equilibrium with relative

humidity of 50% (see Fig. H.3). Specimens that are in the box of 75% and of

100% of relative humidity have reached hydric equilibrium before. At the end

of the 4th month, we rewrapped all of the 9 unwrapped specimens (1c, 1s, 1r,

2c, 2s, 2r, 3c, 3s, 3r) with four layers of aluminum. The curing and loading
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H.1. MATERIAL AND METHODS

history of the specimens are described in Fig. H.2. Then, the following tests

are performed.

Age 1 - 28 days 28 – 142 days 142 – 336 days

Specimen Cure Drying Test

1c

Sealed

Drying at 50z RH

Sealed, loaded

1s Sealed, no load

1r Characterize

2c

Drying at 75z RH

Sealed, loaded

2s Sealed, no load

2r Characterize

3c

Drying at 100z RH

Sealed, loaded

3s Sealed, no load

3r Characterize

4c

Sealed

Sealed, loaded

4s Sealed, no load

4r Characterize

Figure H.2 � Summary of storage and testing condition of the specimens

We took one specimen from each relative humidity (1c, 2c, 3c, 4c) and put

them under a load of 12.56 MPa. The uniaxial compressive strength strength

of cement paste at 28 days is measured and we found that the mean value of

the strength is 40 MPa. As the applied load is around 30% of the uniaxial

compressive strength, we consider that the delayed strain of the specimens

are in the regime of linear viscoelasticity. The strain of each of these 4

specimen are measured by two LVDT. The accuracy of all of the LVDT is

checked just before tests and found to be equal to 1 µm (see Fig. H.1b).

Next, we took one specimen from each relative humidity (1s, 2s, 3s, 4s)

and measured the strain by two LVDT, the same measuring system as the

above loaded test.

The strain of non-loaded specimen (1s, 2s, 3s, 4s) is the autogenous

shrinkage of pre-dried specimen, whereas the strain of loaded specimen (1c,

2c, 3c, 4c) is the sum of autogenous shrinkage and basic creep of same pre-

dried specimens. By subtracting the strain of former specimen from that of

later specimens, we obtain the basic creep of predried specimens.
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APPENDIX H. EXPERIMENTAL STUDY OF THE INFLUENCE OF
RELATIVE HUMIDITY ON CREEP COMPLIANCE OF CEMENT
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The other left four specimens (1r, 2r, 3r, 4r) are used to measure the

hydration degree and water porosity.

The hydration degree is measured by thermogravimetric analysis. We put

a small portion (around 200 mg) of grinded sample at the temperature of 80
oC until the mass of specimen stabilized to be M80 (approximately 2 hours).

Then temperature is increased continuously till 550 oC in 45 minutes and

kept under this temperature until the mass of specimen stabilized to beM550

(approximately 0.5 hour). The hydration degree is estimated by Eq. H.1

according to Baroghel-Bouny et al. (2002):

ξ =
(M80 −M550)(1 + w/c)

M80E
(H.1)

where E is a coe�cient related to the quantity of water for full hydration.

For cement CEM I, we can take E = 0.25 (Baroghel-Bouny et al., 2002).

The water porosity of the sample is measured according to the French

standard NF P 18-459. First we submerged a portion of sample (around 15

g) into water for 24 hours and measured the weight Mwg in water (g is the

gravity, [m/s2]). Then, we take the sample out of water and immediately

measured the mass Ma. Finally, we dried sample at 105 oC until the mass

stabilized at Md. The water porosity reads:

φ =
Ma −Md

Ma −Mw

(H.2)

In addition to the above tests on cylindrical specimen, we casted at the

same time cement pasts into cups with diameter of 4 cm and depth of 1.5 cm

(�lled depth is around 1 cm). The cups are closed with their own cap and

wrapped up with fours layers of aluminum. At every due date, we opened

two cups and measured the relative humidity inside the sample with dew

point potential meter WP4C. Just after, one of the two samples is crushed

into powder and used to measure the hydration degree by thermogravimetric

analysis. By doing so, we follow up the evolution of relative humidity and

degree of hydration under autogenous condition.
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H.2. RESULTS

H.2 Results

Figure H.3 display the mass loss over time during the period of drying in

desiccators. In the beginning of drying period in order to know approximately

the date when we may stop drying, we performed �nite element simulations

of drying kinetics. The desorption isotherm of cement paste is modeled by

Eq. 6.17 proposed by Van Genuchten (1980). The �tted parameters are:

a1=0.36, b1=36 MPa.
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Experiment hr =50%
Experiment hr =75%
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Simulation hr =75%

Figure H.3 � Mass loss over time. The experimental curve is the mean value
of the three specimens in the same desiccator.

The measured strains are displayed in Fig. H.4. All of the 4 non-loaded

specimens deformed during the test. The sample 1s that is kept under hr =

50% expanded during the whole test. The sample 2s that is kept under

hr = 75% expanded at �rst then contracted. The sample 3s that is kept

under hr = 100% and the sample 4s that is kept sealed contracted. All of the

4 loaded sample showed logarithmic kinetics of strain at long term. However,

the value of elastic modulus and creep modulus of these 4 specimens did not
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show a simple correlation with the relative humidity hr.
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Figure H.4 � Measured total strain of (a) non-loaded specimens (b) loaded
specimen.

The evolution of hydration degree ξ under autogenous condition is dis-

played in Fig. H.5. The hydration degree ξ was 0.7 at the age of 4 days and

reached 0.9 at the age of 24 days.
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Figure H.5 � Evolution of hydration degree and relative humidity under au-
togenous condition

Figure H.5 shows also the mean value of relative humidity measured on

two di�erent cups at same age. Using Eq. 5.18, we found the long-term

relative humidity h∞r = 0.88.

H.3 Discussions

As described in Fig. H.2, we started the measurement of the strain of non-

loaded specimen from the age of 142 days. Moreover, the water-to-cement

ratio of the cement paste is 0.52. Hence we were expecting that the strain

of non-loaded specimen would be much smaller comparing to the strain of

loaded specimen. However, the amplitude of autogenous shrinkage of the

sample 3s reached 25% of the strain the corresponding loaded sample 3c.

In addition, the specimen 1c expands while others contract during the test.

To understand the reason of these unexpected results, we checked if the

specimens were well sealed during the test, if the relative humidity inside

samples remained constant.

Table H.1 summarizes the mass loss of samples in each period. All of the

four non-loaded samples lost mass during the test: sample 1s lost 0.25% of
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Period In Mold Cure Drying Test After test
Age 0-1 days 1-28 days 28-142

days
142-357
days

357-366
days

1c 0.17% 0.20% 9.07% 0.63% 0.32%
1s 0.17% -0.02% 9.62% 0.25% 0.38%
2c 0.00% 0.07% 5.17% 0.68% 0.28%
2s 0.00% 0.19% 4.80% 0.62% 0.42%
3c 0.00% 0.03% -2.20% 0.50% -0.15%
3s 0.00% -0.02% -2.57% 1.02% -0.17%
4c 0.17% 0.00% -0.05% 0.36% -
3s 0.00% 0.00% -0.03% 0.15% -

Table H.1 � Mass loss of specimens per period. A positive value corresponds
to decrease of mass whereas a negative value to mass increase. The mass
variation during a period is normalized with respect to the mass of sample
at the beginning of this period

its mass, 2s lost 0.62%, 3s lost 1.02% and 4c lost 0.15%. Comparing to the

mass loss of 1s, 2s and 4s, the sample 3s lost more mass which may explain a

larger strain. However, this is not compatible with the fact that the sample

1s expands while losing mass during the test.

In order to check if the relative humidity inside sample at the end of

the test is higher or lower than the supposed relative humidity, we put back

all samples again in the same desiccator as during the period of drying and

measured the mass during ten days. The results in Tab. H.1 show that the

sample 1s and 2s are losing again mass whereas the 3s is gaining mass. We

suppose from this result that, in the end of the test, the relative humidity of

the sample 1s is higher than 50%. This is contradictory with the fact that

the sample 1s lost mass during the test.

Other physical phenomenon may be needed to explain the fact that sam-

ple 1s lost mass during the test but the relative humidity increased and the

sample itself expanded. For example, during the test, the sample 1c lost wa-

ter in capillary pores which explains the mass loss. In the same time, water

migrated from gel pores to capillary pores with a delayed kinetics so that the

relative humidity increased in capillary pores. However, a further theoretical

investigation is necessary to support this idea.

258



H.3. DISCUSSIONS

As to the strain of loaded specimen, no clear relation can be found be-

tween the elastic strain and the relative humidity of the sample. Neglecting

the autogenous shrinkage of these specimen, we �tted for each specimen creep

compliance in the same form as Eq. 6.1. The bulk creep modulus of specimen

1c, 2c, 3c, 4c are 13.0 GPa, 9.8 GPa, 8.9 GPa, 9.9 GPa, respectively. From

these values of creep modulus, we cannot conclude on the dependence of the

creep modulus on relative humidity.
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