.. Tests-de-robustesse-par-validation-croisée, 106 4.5.1 : Validation croisée appliquée au lot S6, Validation croisée appliquée aux pièces d'épicéa

.. Des-sciages, 115 4.8.1 : Erreur d'estimation de la pente de fil : Impact sur l'estimation de propriétés mécaniques, ., p.117

P. A. Reme and T. Helle, Assessment of transverse dimensions of wood tracheids using SEM and image analysis, Holz als Roh- und Werkstoff, vol.60, issue.4, pp.277-282, 2002.
DOI : 10.1007/s00107-002-0310-4

M. Sarén, . Serimaa, . Ritva, . Andersson, . Seppo et al., Structural Variation of Tracheids in Norway Spruce (Picea abies [L.] Karst.), Journal of Structural Biology, vol.136, issue.2, pp.101-109, 2001.
DOI : 10.1006/jsbi.2001.4434

A. Bergander and L. Salmén, Cell wall properties and their effects, Journal of Materials Science, vol.37, issue.1, pp.151-156, 2002.
DOI : 10.1023/A:1013115925679

L. Salmén, Micromechanical understanding of the cell-wall structure, Comptes Rendus Biologies, vol.327, issue.9-10, pp.873-880, 2004.
DOI : 10.1016/j.crvi.2004.03.010

J. Fromm, . Rockel, . Beate, . Lautner, . Silke et al., Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques, Journal of Structural Biology, vol.143, issue.1, pp.77-84, 2003.
DOI : 10.1016/S1047-8477(03)00119-9

R. Passass, The measurement of single fibers properties : capabilities today and possibilities for tomorrow, Cost E54, 2007.

J. E. Mark, Polymer Data Handbook, 1999.

. Sedighi-gilani, . Marjan, . Sunderland, . Homeira, and P. Navi, Microfibril angle non-uniformities within normal and compression wood tracheids, Wood Science and Technology, vol.19, issue.2, pp.419-430, 2005.
DOI : 10.1111/j.1365-2818.1969.tb00701.x

M. Akerholm and L. Salmén, Interactions between wood polymers studied by dynamic FT-IR spectroscopy, Polymer, vol.42, issue.3, pp.963-969, 2001.
DOI : 10.1016/S0032-3861(00)00434-1

B. Albinsson, . Li, . Shiming, . Lundquist, . Knut et al., The origin of lignin fluorescence, Journal of Molecular Structure, vol.508, issue.1-3, pp.19-27, 1999.
DOI : 10.1016/S0022-2860(98)00913-2

A. Hanhijärvi, A. Rantamaunus, and G. Turk, Potential of strength grading of timber with combined measurement techniques, p.568, 2005.

J. Andreu and A. Rinnhofer, Modeling Knot Geometry in Norway Spruce from Industrial CT Images, Lecture Notes inComputer Science, pp.2749-287, 2003.
DOI : 10.1007/3-540-45103-X_104

F. Lam, J. D. Barrett, and S. Nakajima, Influence of Knot Area Ratio based grading rules on the engineering properties of Hem-fir used in japanese post and beam housing, Wood Science and Technology, vol.38, pp.83-92, 2004.

F. Lam, J. D. Barrett, and S. Nakajima, Influence of knot area ratio on the bending strength of Canadian Douglas fir timber used in Japanese post and beam housing, Journal of Wood Science, vol.51, issue.1, pp.18-25, 2005.
DOI : 10.1007/s10086-003-0619-6

. Mitsuhashi, . Kohsaku, . Poussa, . Matti, and J. Puttonen, Method for predicting tension capacity of sawn timber considering slope of grain around knots, Journal of Wood Science, vol.326, issue.3, pp.189-195, 2008.
DOI : 10.1007/s10086-007-0941-5

C. Foley, A three-dimensional paradigm of fiber orientation in timber, Wood Science and Technology, vol.35, issue.5, pp.453-465, 2001.
DOI : 10.1007/s002260100112

F. Wangaard, The mechanical properties of wood, 1950.

A. L. Shigo, A New Tree Biology : Facts Photos, and Philosophies on Trees and Their Problems and Prooper Care, 1997.

M. Brännström, J. Manninen, and J. Oja, Predicting the strenght of sawn wood by tracheid laser scattering, BioResources, vol.3, pp.437-451, 2008.

M. Kumar, . Saranpää, . Pekka, J. R. Barnett, . Wilkinson et al., Juvenile-mature wood transition in pine: correlation between wood properties and candidate gene expression profiles, Euphytica, vol.105, issue.3, pp.341-355, 2009.
DOI : 10.1007/978-3-642-72126-7

J. Alteyrac, A. Cloutier, and S. Y. Zhang, Characterization of juvenile wood to mature wood transition age in black spruce (Picea mariana (Mill.) B.S.P.) at different stand densities and sampling heights, Wood Science and Technology, vol.42, issue.6, pp.124-138, 2006.
DOI : 10.1007/s00226-005-0047-4

. Lindström, . Håkan, J. W. Evans, and S. P. Verrill, [L.] Karst.), Holzforschung, vol.41, issue.1, pp.573-581, 1998.
DOI : 10.2307/1307825

L. Bouffier, . Raffin, . Annie, . Rozenberg, . Philippe et al., What are the consequences of growth selection on wood density in the French maritime pine breeding programme?, Tree Genetics & Genomes, vol.62, issue.2, pp.11-25, 2009.
DOI : 10.1007/978-3-642-74069-5

B. E. Roth, . Li, . Xiaobo, D. A. Huber, . Peter et al., Effects of management intensity, genetics and planting density on wood stiffness in a plantation of juvenile loblolly pine in the southeastern USA, Forest Ecology and Management, vol.246, issue.2-3, pp.155-162, 2007.
DOI : 10.1016/j.foreco.2007.03.028

. Dünisch, . Oliver, . Richter, . Hans-georg, and G. Koch, Wood properties of juvenile and mature heartwood in Robinia pseudoacacia L. Wood Science and Technology, 2009.

M. Ivkovic, W. J. Gapare, . Abarquez, . Aljoy, . Ilic et al., Prediction of wood stiffness, strength, and shrinkage in juvenile wood of radiata pine, Wood Science and Technology, vol.44, issue.1, pp.237-257, 2009.
DOI : 10.1163/22941932-90000302

B. K. Via, C. L. So, T. F. Shupe, L. H. Groom, and J. Wikaira, Mechanical response of longleaf pine to variation in microfibril angle, chemistry associated wavelengths, density, and radial position, Composites Part A: Applied Science and Manufacturing, vol.40, issue.1, pp.40-60, 2009.
DOI : 10.1016/j.compositesa.2008.10.007

A. Nf and . En, Bois de structure -Classes de résistance, 1995.

A. Nf and . En, Bois de structure -Détermination des valeurs caractéristiques des propriétés mécaniques et de la masse volumique, 1995.

F. Rouger, A new statistical method for the establishment of machine settings, Proceedings of the 30th Meeting, International Council for Research and Innovation in Building and Construction, Working Commission W18 ? Timber Structures, pp.30-47, 1997.

D. Reuling, J. D. Lanvin, and F. Rouger, Homologation des machines de classement des bois pour la résistance, Colloque sur le classement structure des sciages par machine, 2008.

G. Roblot, D. Coudegnat, L. Bleron, C. , and R. , ??valuation de la norme de classement m??canique visuel sur des sciages fran??ais d?????pic??a (Picea excelsa) et de Douglas (Pseudotsuga menziesii), Annals of Forest Science, vol.57, issue.8, 2008.
DOI : 10.4267/2042/5026

T. Tredwell, Visual Stress Grading of Timber, Explanation and practical interpretation of the visual grading elements of BS 4978:1973. Timber grades for structural uses, Timber Research and Development Association, p.31, 1973.

H. Bailleres, G. Hopewell, and G. Boughton, MOE and MOR assessment technologies for improving graded recovery of exotic pines in Australia, 2009.

. Oh, . Jung-kwon, . Shim, . Kugbo, . Kim et al., Quantification of knots in dimension lumber using a single-pass X-ray radiation, Journal of Wood Science, vol.64, issue.323, pp.264-272, 2009.
DOI : 10.1007/s10086-009-1031-7

K. Hofstetter, . Hellmich, . Christian, and J. Eberhardsteiner, Development and experimental validation of a continuum micromechanics model for the elasticity of wood, European Journal of Mechanics - A/Solids, vol.24, issue.6, pp.1030-1053, 2005.
DOI : 10.1016/j.euromechsol.2005.05.006

K. Hofstetter, Physical Modeling of the Effects of Defects, WWN Gradewood, 2010.

C. Fernandez-maloigne, Introduction aux techniques de traitement et d'analyse d'images, p.90

R. A. Mariño, M. E. Fernàndez, C. Fernàndez-rodriguez, and M. Méndez, Bestimmung der Lage der Markr??hre in Kastanienschnittholz (Castanea sativa Mill.) mittels akustischer Tomographie und longitudinaler Stosswellengeschwindigkeit, European Journal of Wood and Wood Products, vol.33, issue.2, pp.197-206, 2010.
DOI : 10.1007/s00107-009-0366-5

. Simonaho, . Simo-pekka, . Palviainen, . Jari, . Tolonen et al., Determination of wood grain direction from laser light scattering pattern, Optics and Lasers in Engineering, vol.41, issue.1, pp.95-103, 2004.
DOI : 10.1016/S0143-8166(02)00144-6

J. Palviainen and R. Silvennoinen, Inspection of wood density by spectrophotometry and a diffractive optical element based sensor, Measurement Science and Technology, vol.12, issue.3, pp.345-352, 2001.
DOI : 10.1088/0957-0233/12/3/314

J. Nyström, Automatic measurement of fiber orientation in softwoods by using the tracheid effect, Computers and Electronics in Agriculture, vol.41, issue.1-3, pp.91-99, 2003.
DOI : 10.1016/S0168-1699(03)00045-0

S. Simonaho and R. Silvennoinen, Light Diffraction from Wood Tissue, Optical Review, vol.13, issue.5, pp.308-311, 2004.
DOI : 10.1007/s10043-004-0308-8

A. Kienle, . Andrea, . Cosimo, . Foschum, . Florian et al., Light propagation in dry and wet softwood, Optics Express, vol.16, issue.13, pp.9895-9906, 2008.
DOI : 10.1364/OE.16.009895

C. Hu, . Tanaka, . Chiaki, and T. Ohtani, On-line determination of the grain angle using ellipse analysis of the laser light scattering pattern image, Journal of Wood Science, vol.50, issue.4, pp.321-326, 2004.
DOI : 10.1007/s10086-003-0569-z

J. Seltman, Indication of slope of grain and biodegradation in wood with electromagnetic aves In Paper for presentation at the seminar/workshop on scanning technology and image processing on wood, 1992.

M. Aikio, Hyperspectral prism-grating-prism imaging spectrograph, Thèse de Doctorat, 2001.

C. M. Altaner, E. N. Tokareva, J. C. Wong, A. I. Hapca, J. Mclean et al., Measuring compression wood severity in spruce, Wood Science and Technology, vol.10, issue.3, pp.279-290, 2009.
DOI : 10.1007/978-3-642-61616-7

URL : https://hal.archives-ouvertes.fr/hal-00565601

S. S. Kelley, T. G. Rials, . Snell, . Rebecca, L. H. Groom et al., Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood, Wood Science and Technology, vol.38, issue.4, pp.257-276, 2004.
DOI : 10.1007/s00226-003-0213-5

J. Nyström and O. Hagman, Real-time spectral classification of compression wood inPicea abies, Journal of Wood Science, vol.7, issue.1, pp.30-37, 1999.
DOI : 10.1007/BF00579521

L. R. Schimleck, . Evans, . Robert, P. Jones, . David et al., Estimation of Microfibril Angle and Stiffness by near infrared Spectroscopy using sample sets having Limited wood Density Variation, IAWA Journal, vol.26, issue.2, pp.175-187, 2005.
DOI : 10.1163/22941932-90000109

A. Zbo?ák and T. Bush, Application of near-infrared spectroscopy to predict microfibril angle of 14-year-old Pinus patula, IUFRO symposium on Wood structure and Properties 06, 2006.

T. Inagaki, M. Schwanninger, R. Kato, Y. Kurata, W. Thanapase et al., Eucalyptus camaldulensis density and fiber length estimated by nearinfrared spectroscopy, Wood Sci. Technol, pp.46-143, 2010.
DOI : 10.1007/s00226-010-0379-6

T. Fujimoto, . Kurata, . Yohei, . Matsumoto, . Kazushige et al., Feasibility of near-infrared spectroscopy for online multiple trait assessment of sawn lumber, Journal of Wood Science, vol.79, issue.6, pp.452-459, 2010.
DOI : 10.1016/S0922-3487(98)80046-4

L. Donaldson, . Radotic, . Ksenija, . Kalauzi, . Aleksandar et al., Quantification of compression wood severity in tracheids of Pinus radiata D. Don using confocal fluorescence imaging and spectral deconvolution, Journal of Structural Biology, vol.169, issue.1, pp.106-115, 2010.
DOI : 10.1016/j.jsb.2009.09.006

K. K. Pandey, N. K. Upreti, and V. V. Srinivasan, A fluorescence spectroscopic study on wood, Wood Science and Technology, vol.19, issue.4, pp.309-315, 1998.
DOI : 10.1007/BF00702898

. Billa, . Evaggeli, . Pastou, . Adamantia, . Monties et al., Multivariate chemometric analysis of the fluorescence spectra of eucalyptus wood, Industrial Crops and Products, vol.11, issue.2-3, pp.187-196, 2000.
DOI : 10.1016/S0926-6690(99)00062-X

C. Altaner and M. Jarvis, Galactan in compression wood : detection by immuno-fluorescence and thought about its role, Cost E50, 2006.

E. Baradit, R. Aedo, and J. Correa, Knots detection in wood using microwaves, Wood Science and Technology, vol.48, issue.10, pp.118-123, 2006.
DOI : 10.1007/978-3-642-77453-9

G. S. Schajer, B. Orhan, and F. , Messung der Faserneigung, der Holzfeuchte und der Rohdichte mittels Mikrowellen, Holz als Roh- und Werkstoff, vol.49, issue.9, pp.483-490, 2006.
DOI : 10.1007/978-3-642-77453-9

G. S. Schajer, B. Orhan, and F. , Microwave Non-Destructive Testing of Wood and Similar Orthotropic Materials, Subsurface Sensing Technologies and Applications, vol.23, issue.4, pp.293-313, 2005.
DOI : 10.1080/16070658.1980.11689208

F. Longuetaud, Détection et analyse non destructive de caractéristiques internes de billons d'épicéa commun (Picea Abies (L.) Karst.) par tomographie à rayons X, 2005.

J. Andreu and A. Rinnhofer, Modeling of internal defects in logs for value optimization based on Industrial CT scanning, 5th International Conf. on Image Processing and Scanning of Wood Institute for Digital Image Processing, pp.141-150, 2003.

F. Longuetaud, . Leban, . Jean-michel, . Mothe, . Frédéric et al., Automatic detection of pith on CT images of spruce logs, Computers and Electronics in Agriculture, vol.44, issue.2, pp.107-119, 2004.
DOI : 10.1016/j.compag.2004.03.005

P. Sepùlveda, Measurement of spiral grain with computed tomography, Journal of Wood Science, vol.15, issue.2, pp.289-293, 2001.
DOI : 10.1007/BF00766715

S. C. Mayo, F. Chen, and R. Evans, Micron-scale 3D imaging of wood and plant microstructure using high-resolution X-ray phase-contrast microtomography, Journal of Structural Biology, vol.171, issue.2, 2010.
DOI : 10.1016/j.jsb.2010.04.001

K. Steppe, . Cnudde, . Veerle, . Girar, . Catherine et al., Use of X-ray computed microtomography for non-invasive determination of wood anatomical characteristics, Journal of Structural Biology, vol.148, issue.1, pp.11-21, 2004.
DOI : 10.1016/j.jsb.2004.05.001

C. Buksnowitz, . Müller, . Ulrich, . Evans, . Robert et al., The potential of SilviScan???s X-ray diffractometry method for the rapid assessment of spiral grain in softwood, evaluated by goniometric measurements, Wood Science and Technology, vol.45, issue.1, pp.95-102, 2008.
DOI : 10.1007/s00226-007-0153-6

M. Sarén and R. Serimaa, Determination of microfibril angle distribution by X-ray diffraction, Wood Science and Technology, vol.33, issue.6, pp.445-460, 2006.
DOI : 10.1111/j.1365-2818.1995.tb03528.x

I. D. Cave, Theory of X-ray measurement of microfibril angle in wood, Wood Science and Technology, vol.39, issue.3, pp.143-152, 1997.
DOI : 10.1007/BF00705881

A. Reiterer, H. F. Jakob, S. E. Stanzi-tschegg, and P. Fratzl, Spiral angle of elementary cellulose fibrils in cell walls ofPicea abies determined by small-angle x-ray scattering, Wood Science and Technology, vol.39, issue.4, pp.335-345, 1998.
DOI : 10.1007/978-3-642-48848-1

U. Sahlberg, . Salmén, . Lennart, and A. Oscarsson, The fibrillar orientation in the S2-layer of wood fibres as determined by X-ray diffraction analysis, Wood Science and Technology, vol.4, issue.3, pp.77-86, 1997.
DOI : 10.1007/BF00705923

M. Sarén, . Serimaa, . Ritva, and Y. Tolonen, Bestimmung der Faserneigung in Fichtenholz mittels R??ntgenbeugung und Laserstreuung, Holz als Roh- und Werkstoff, vol.39, issue.3, pp.183-188, 2006.
DOI : 10.5558/tfc33335-4

A. Bergander, . Briindström, . Jonas, G. Daniel, and L. Salmén, Fibril angle variability in earlywood of Norway spruce using soft rot cavities and polarization confocal microscopy, Journal of Wood Science, vol.14, issue.5, pp.255-263, 2002.
DOI : 10.1007/PL00009766

M. Peura, . Müller, . Martin, . Serimaa, . Ritva et al., Structural studies of single wood cell walls by synchrotron X-ray microdiffraction and polarised light microscopy, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.238, issue.1-4, pp.16-20, 2005.
DOI : 10.1016/j.nimb.2005.06.011

C. Ye and A. Vilenius, Measurement of the microfibril angle and cell wall thickness, Cost E54, 2007.

B. Jähne, . Haußecker, . Horst, and P. Geißler, Handbook of Computer Vision and Applications Signal Processing and Pattern Recognition, 1999.

S. Muburak, Fundamentals of computer vision. 133 p, 1997.

E. Davalo and P. Naïm, Des Réseaux de Neurones, 1991.

B. Gosselin, Application de réseaux de neurones artificiels à la reconnaissance automatique de caractères manuscrits, Thèse de doctorat, Fac. Polytech. de Mons. 231 p, 1996.

D. L. Schmoldt, P. Li, A. , and A. Lynn, Machine vision using artificial neural networks with local 3D neighborhoods, Computers and Electronics in Agriculture, vol.16, issue.3, pp.255-271, 1997.
DOI : 10.1016/S0168-1699(97)00002-1

. Kohonen, . Teuvo, . Kangas, . Jari, and J. Laaksonen, SOM_PAK : the Self-Organizing Map program package, 1992.

. Silvén, . Olli, . Niskanen, . Matti, and H. Kauppinen, Wood inspection with non-supervised clustering, Machine Vision and Applications, vol.13, issue.5-6, pp.275-285, 2003.
DOI : 10.1007/s00138-002-0084-z

H. Kaupinen, Development of a color machine vision method for wood surface inspection, 1999.

J. Azé, K-plus proches voisins, Cours DataMining, 2007.

M. Hasan and F. Boris, SVM : Machines à Vecteurs de Support ou Séparateurs à Vastes Marges, 2006.

. Sanchez-yañez, E. Raùl, . Kurmyshev, V. Evguenii, and F. J. Cuevas, A framework for texture classification using the coordinated clusters representation, Pattern Recognition Letters, vol.24, issue.1-3, pp.21-31, 2003.
DOI : 10.1016/S0167-8655(02)00185-X

P. Poudiougo, Texture : un état de l'art, ORSTOM, pp.167-177, 1990.

R. M. Haralick, K. Shanmugam, . Dinstein, . Its, and . Hak, Textural Features for Image Classification, IEEE Transactions on Systems, Man, and Cybernetics, vol.3, issue.6, pp.610-621, 1973.
DOI : 10.1109/TSMC.1973.4309314

T. Ojala, M. Pietikäinen, and D. Harwood, A comparative study of texture measures with classification based on featured distributions, Pattern Recognition, vol.29, issue.1, pp.51-59, 1996.
DOI : 10.1016/0031-3203(95)00067-4

. Ojala, . Timo, . Pietikäinen, . Matti, and T. Mäenpää, Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns, In Lecture Notes in Computer Science, 2000.
DOI : 10.1007/3-540-45054-8_27

E. V. Kurmyshev and M. Cervantes, A quasi-statistical approach to digital binary image representation, Revista Mexicana de Fisica, vol.42, pp.104-116, 1996.

A. Grossmann and J. Morlet, Decomposition of hardy functions into square integrable wavelets of constant shapes, SIAM Journal of Mathematical Analysis, pp.723-736, 1984.

R. Oyvind, Applications of the wavelet transform in image processing, 2004.

A. Nf and . En, Bois de structure et bois lamellé-collé -Détermination de certaines propriétés physiques et mécaniques, 2010.