. En-général, ouverture est élevée, plus la distance de travail est faible. La figure A.12 montre une photographie d'un objectif de microscope. On peut voir qu'on retrouve les informations essentielles sur les performances de l'objectif inscrites sur la monture, Discoveries in the ruins of Nineveh and Babylon, 1853.

P. Boutibonnes, L'oeil de leeuwenhoek et l'invention de la microscopie, pp.58-66, 1999.

R. Hooke, Micrographia or some physiological descriptions of minute bodies made by magnifying glasses, p.1665

J. J. Lister, On Some Properties in Achromatic Object-Glasses Applicable to the Improvement of the Microscope, Philosophical Transactions of the Royal Society of London, vol.120, issue.0, pp.187-200, 1830.
DOI : 10.1098/rstl.1830.0015

G. Mie, Beiträge zur optik trüber medien, speziell kolloidaler metallösungen, Annalen der Physik, vol.3, pp.377-445, 1908.
DOI : 10.1002/andp.19083300302

M. I. Mishchenko, L. D. Travis, and A. A. , Lacis, Scattering, Absorption, and Emission of Light by Small Particles, 2002.

D. Sacchet, Linear and non-linear full-field optical coherence tomography, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00519355

H. Benisty, Optique Physique -Interférence et diffraction (Institut d'Optique Graduate School, 2016.

F. Harms, Imagerie des tissus à haute résolution en profondeur par tomographie de cohérence optique plein champ : approches instrumentales et multimodales pour l'application au diagnostic per-opératoire du cancer, 2015.

J. Sandby-møller, T. Poulsen, and H. C. Wulf, Epidermal Thickness at Different Body Sites: Relationship to Age, Gender, Pigmentation, Blood Content, Skin Type and Smoking Habits, Acta Dermato-Venereologica, vol.83, issue.6, pp.410-413, 2003.
DOI : 10.1080/00015550310015419

P. Borellus, Historiarum et observationum medicophysicarum centuria (A. Colomerium , 1653)

M. Malpighi, De viscerum structura exercitatio anatomica, J. Montij, 1666.

M. F. Bichat, Traité des membranes en général et diverses membranes en particulier, 1800.
DOI : 10.1097/00003086-197503000-00002

R. J. Cooper, Bioimaging: Watching the brain at work, Nature Photonics, vol.8, issue.6, pp.425-426, 2014.
DOI : 10.1016/j.neuroimage.2009.07.033

J. Xia, J. Yao, and L. H. Wang, PHOTOACOUSTIC TOMOGRAPHY: PRINCIPLES AND ADVANCES (Invited Review), Progress In Electromagnetics Research, vol.147, pp.1-22, 2014.
DOI : 10.2528/PIER14032303

URL : http://www.jpier.org/pier/pier147/01.14032303.pdf

S. Resink, P. A. Boccara, and P. W. Steenbergen, State-of-the art of acousto-optic sensing and imaging of turbid media, Journal of Biomedical Optics, vol.17, issue.4, pp.40901-2012
DOI : 10.1117/1.JBO.17.4.040901

J. Huisken, J. Swoger, F. Del-bene, J. Wittbrodt, and E. H. Stelzer, Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy, Science, vol.305, issue.5686, pp.1007-1009, 2004.
DOI : 10.1126/science.1100035

URL : http://www.s.kanazawa-u.ac.jp/phys/biophys/References/Opt-microscopy/SPIM.pdf

W. Denk, J. Strickler, and W. Webb, Two-photon laser scanning fluorescence microscopy, Science, vol.248, issue.4951, pp.73-76, 1990.
DOI : 10.1126/science.2321027

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences, Nature Biotechnology, vol.21, issue.11, pp.1369-1377, 2003.
DOI : 10.1038/nbt899

M. Minsky, Microscopy apparatus, p.467, 1961.

T. Wilson and C. Sheppard, Theory and practice of scanning optical microscopy, 1984.

R. C. Youngquist, S. Carr, and D. E. Davies, Optical coherence-domain reflectometry: a new optical evaluation technique, Optics Letters, vol.12, issue.3, pp.158-160, 1987.
DOI : 10.1364/OL.12.000158

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson et al., Optical coherence tomography, Science, vol.254, issue.5035, pp.1178-1181, 1991.
DOI : 10.1126/science.1957169

J. Fujimoto and W. Drexler, Introduction to optical coherence tomography Optical Coherence Tomography : Technology and Applications, pp.1-45, 2008.

G. Moneron, Microscopie tridimensionnelle à très haute résolution par tomographie par cohérence optique, 2006.

J. A. Izatt, E. A. Swanson, J. G. Fujimoto, M. R. Hee, and G. M. Owen, Optical coherence microscopy in scattering media, Optics Letters, vol.19, issue.8, pp.590-592, 1994.
DOI : 10.1364/OL.19.000590

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov et al., Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source, Optics Express, vol.12, issue.10, pp.2112-2119, 2004.
DOI : 10.1364/OPEX.12.002112

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann et al., Submicrometer axial resolution optical coherence tomography, Optics Letters, vol.27, issue.20, pp.1800-1802, 2002.
DOI : 10.1364/OL.27.001800

J. S. Schuman, Spectral domain optical coherence tomography for glaucoma (an aos thesis), Trans Am Ophthalmol Soc, vol.106, pp.426-458, 2008.

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. , and J. A. Izatt, In vivo video rate optical coherence tomography, Optics Express, vol.3, issue.6, pp.219-229, 1998.
DOI : 10.1364/OE.3.000219.m003

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-zaiat, Measurement of intraocular distances by backscattering spectral interferometry, Optics Communications, vol.117, issue.1-2, pp.43-48, 1995.
DOI : 10.1016/0030-4018(95)00119-S

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, Performance of fourier domain vs time domain optical coherence tomography, Optics Express, vol.11, issue.8, pp.889-894, 2003.
DOI : 10.1364/OE.11.000889

M. Wojtkowski, High-speed optical coherence tomography: basics and applications, Applied Optics, vol.49, issue.16, pp.30-61, 2010.
DOI : 10.1364/AO.49.000D30

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source, Optics Letters, vol.22, issue.5, pp.340-342, 1997.
DOI : 10.1364/OL.22.000340

R. Huber, D. C. Adler, and J. G. Fujimoto, Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s, Optics Letters, vol.31, issue.20, pp.2975-2977, 2006.
DOI : 10.1364/OL.31.002975

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm, Optics Express, vol.13, issue.26, pp.10523-10538, 2005.
DOI : 10.1364/OPEX.13.010523.m003

A. Aguirre and J. Fujimoto, Optical coherence microscopy Optical Coherence Tomography : Technology and Applications, pp.17-505, 2008.

J. A. Izatt, M. D. Kulkarni, H. Wang, K. Kobayashi, and M. V. Sivak, Optical coherence tomography and microscopy in gastrointestinal tissues, IEEE Journal of Selected Topics in Quantum Electronics, vol.2, issue.4, pp.1017-1028, 1996.
DOI : 10.1109/2944.577331

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, Extended focus depth for Fourier domain optical coherence microscopy, Optics Letters, vol.31, issue.16, pp.2450-2452, 2006.
DOI : 10.1364/OL.31.002450

URL : http://femtosecondsystems.com/GreyhawkOptics/Extended_focus_axicon.pdf

J. Mo, M. De-groot, and J. F. De-boer, Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography, Optics Express, vol.21, issue.8, pp.10048-10061, 2013.
DOI : 10.1364/OE.21.010048

K. Sasaki, K. Kurokawa, S. Makita, and Y. Yasuno, Extended depth of focus adaptive optics spectral domain optical coherence tomography, Biomedical Optics Express, vol.3, issue.10, pp.2353-2370, 2012.
DOI : 10.1364/BOE.3.002353

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Inverse scattering for optical coherence tomography, Journal of the Optical Society of America A, vol.23, issue.5, pp.1027-1037, 2006.
DOI : 10.1364/JOSAA.23.001027

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. Lee, Gabor-based fusion technique for Optical Coherence Microscopy, Optics Express, vol.18, issue.4, pp.3632-3642, 2010.
DOI : 10.1364/OE.18.003632

J. Holmes and S. Hattersley, Image blending and speckle noise reduction in multibeam oct, Proc. SPIE, pp.71681-71689, 2009.
DOI : 10.1117/12.808575

J. Schmitt, S. Lee, and K. Yung, An optical coherence microscope with enhanced resolving power in thick tissue, Optics Communications, vol.142, issue.4-6, pp.203-207, 1997.
DOI : 10.1016/S0030-4018(97)00280-0

B. Qi, A. P. Himmer, L. M. Gordon, X. V. Yang, L. D. Dickensheets et al., Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror, Optics Communications, vol.232, issue.1-6, pp.123-128, 2004.
DOI : 10.1016/j.optcom.2004.01.015

V. X. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo et al., Micromachined array tip for multifocus fiber-based optical coherence tomography, Optics Letters, vol.29, issue.15, pp.1754-1756, 2004.
DOI : 10.1364/OL.29.001754

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-jalmes, Full-field optical coherence microscopy, Optics Letters, vol.23, issue.4, pp.244-246, 1998.
DOI : 10.1364/OL.23.000244

B. Pova?ay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber et al., Full-field time-encoded frequency-domain optical coherence tomography, Optics Express, vol.14, issue.17, pp.7661-7669, 2006.
DOI : 10.1364/OE.14.007661.m004

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, An Application Of Interference Microscopy To Integrated Circuit Inspection And Metrology, Integrated Circuit Metrology, Inspection, & Process Control, 1987.
DOI : 10.1117/12.940433

G. S. Kino and S. S. Chim, Mirau correlation microscope, Applied Optics, vol.29, issue.26, p.3775, 1990.
DOI : 10.1364/AO.29.003775

P. J. Caber, Interferometric profiler for rough surfaces, Applied Optics, vol.32, issue.19, 1993.
DOI : 10.1364/AO.32.003438

J. Schmit, J. Reed, E. Novak, and J. K. Gimzewski, Performance advances in interferometric optical profilers for imaging and testing, Journal of Optics A: Pure and Applied Optics, vol.10, issue.6, p.64001, 2008.
DOI : 10.1088/1464-4258/10/6/064001

J. Wyant, Interferometric optical metrology : basic principles and new systems, Laser Focus, vol.18, pp.65-71, 1982.

P. Carré, Installation et utilisation, p.13, 1966.

K. G. Larkin, Efficient nonlinear algorithm for envelope detection in white light interferometry, Journal of the Optical Society of America A, vol.13, issue.4, pp.832-843, 1996.
DOI : 10.1364/JOSAA.13.000832

A. Federici, Développement de systèmes de microscopie par cohérence optique plein champ étendus spatialement et spectralement, 2015.

K. Creath, Phase-measurement interferometry techniques Progress in optics XXVI, pp.349-398, 1988.

A. Harasaki, J. Schmit, and J. C. Wyant, Improved vertical-scanning interferometry, Applied Optics, vol.39, issue.13, pp.2107-2115, 2000.
DOI : 10.1364/AO.39.002107

URL : http://arizona.openrepository.com/arizona/bitstream/10150/289148/1/azu_td_9972113_sip1_m.pdf

A. Dubois, Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets, Journal of the Optical Society of America A, vol.18, issue.8, pp.1972-1979, 2001.
DOI : 10.1364/JOSAA.18.001972

URL : https://hal.archives-ouvertes.fr/hal-00533180

A. Federici, H. S. Da-costa, J. Ogien, A. K. Ellerbee, and A. Dubois, Wide-field, full-field optical coherence microscopy for high-axial-resolution phase and amplitude imaging, Applied Optics, vol.54, issue.27, pp.8212-8220, 2015.
DOI : 10.1364/AO.54.008212

URL : https://hal.archives-ouvertes.fr/hal-01218908

P. J. Caber, Interferometric profiler for rough surfaces, Applied Optics, vol.32, issue.19, pp.3438-3441, 1993.
DOI : 10.1364/AO.32.003438

A. Dubois, L. Vabre, A. Boccara, and E. Beaurepaire, High-resolution full-field optical coherence tomography with a Linnik microscope, Applied Optics, vol.41, issue.4, pp.805-812, 2002.
DOI : 10.1364/AO.41.000805

URL : https://hal.archives-ouvertes.fr/hal-00627977

A. Dubois, J. Selb, L. Vabre, and A. Boccara, Phase measurements with wide-aperture interferometers, Applied Optics, vol.39, issue.14, pp.2326-2331, 2000.
DOI : 10.1364/AO.39.002326

URL : https://hal.archives-ouvertes.fr/hal-00627972

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, Dispersion Effects in Partial Coherence Interferometry: Implications for Intraocular Ranging, Journal of Biomedical Optics, vol.4, issue.1, pp.144-151, 1999.
DOI : 10.1117/1.429900

A. Federici and A. Dubois, Three-band, 19-??m axial resolution full-field optical coherence microscopy over a 530???1700??nm wavelength range using a single camera, Optics Letters, vol.39, issue.6, pp.1374-1377, 2014.
DOI : 10.1364/OL.39.001374

S. Labiau, G. David, S. Gigan, and A. C. Boccara, Defocus test and defocus correction in full-field optical coherence tomography, Optics Letters, vol.34, issue.10, pp.1576-1578, 2009.
DOI : 10.1364/OL.34.001576

URL : https://hal.archives-ouvertes.fr/hal-00448239

D. Sacchet, J. Moreau, P. Georges, and A. Dubois, Simultaneous dual-band ultra-high resolution full-field optical coherence tomography, Optics Express, vol.16, issue.24, pp.19434-19446, 2008.
DOI : 10.1364/OE.16.019434

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography, Optics Express, vol.11, issue.18, pp.2183-2189, 2003.
DOI : 10.1364/OE.11.002183

D. Sacchet, M. Brzezinski, J. Moreau, P. Georges, and A. Dubois, Motion artifact suppression in full-field optical coherence tomography, Applied Optics, vol.49, issue.9, pp.1480-1488, 2010.
DOI : 10.1364/AO.49.001480

URL : https://hal.archives-ouvertes.fr/hal-00520528

G. J. Tearney, E. A. Swanson, J. G. Fujimoto, B. E. Bouma, S. A. Boppart et al., Rapid acquisition of in vivo biological images by use of optical coherence tomography, Optics Letters, vol.21, issue.17, pp.1408-1410, 1996.
DOI : 10.1364/OL.21.001408

B. Karamata, P. Lambelet, M. Laubscher, M. Leutenegger, S. Bourquin et al., Multiple scattering in optical coherence tomography I Investigation and modeling, Journal of the Optical Society of America A, vol.22, issue.7, pp.1369-1379, 2005.
DOI : 10.1364/JOSAA.22.001369

B. Karamata, P. Lambelet, M. Leutenegger, M. Laubscher, S. Bourquin et al., Multiple scattering in optical coherence tomography II Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography, Journal of the Optical Society of America A, vol.22, issue.7, pp.1380-1388, 2005.
DOI : 10.1364/JOSAA.22.001380

A. Dhalla, J. V. Migacz, and J. A. Izatt, Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources, Optics Letters, vol.35, issue.13, pp.2305-2307, 2010.
DOI : 10.1364/OL.35.002305

A. Grebenyuk, A. Federici, V. Ryabukho, and A. Dubois, Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination, Applied Optics, vol.53, issue.8, pp.1697-1708, 2014.
DOI : 10.1364/AO.53.001697

URL : https://hal.archives-ouvertes.fr/hal-00956673

B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, and T. Lasser, Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography, Optics Letters, vol.29, issue.7, pp.736-738, 2004.
DOI : 10.1364/OL.29.000736

A. Federici and A. Dubois, Full-field optical coherence microscopy with optimized ultrahigh spatial resolution, Optics Letters, vol.40, issue.22, pp.5347-5350, 2015.
DOI : 10.1364/OL.40.005347

URL : https://hal.archives-ouvertes.fr/hal-01294993

. Huang, Full-depth epidermis tomography using a mirau-based full-field optical coherence tomography, Biomed. Opt. Express, vol.5, pp.3001-3010, 2014.

T. Cao and H. L. Tey, High-definition optical coherence tomography - an aid to clinical practice and research in dermatology, JDDG: Journal der Deutschen Dermatologischen Gesellschaft, vol.151, issue.2, pp.886-890, 2015.
DOI : 10.1001/jamadermatol.2014.2668

M. Boone, G. B. Jemec, and V. , High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy, Experimental Dermatology, vol.104, issue.12, pp.740-744, 2012.
DOI : 10.1111/1523-1747.ep12606215

K. Fletcher and A. Dubois, In vivo-Hautkrebsdiagnose mittels optischer Kohärenztomographie, p.35, 2017.

O. Assayag, M. Antoine, B. Sigal-zafrani, M. Riben, F. Harms et al., Large Field, High Resolution Full-Field Optical Coherence Tomography: A Pre-clinical Study of Human Breast Tissue and Cancer Assessment, TCRT Express, vol.13, pp.455-468, 2014.
DOI : 10.7785/tcrtexpress.2013.600254

J. M. Guilera, A. B. Capurro, C. C. Alvárez, and S. P. Sardá, The Role of Reflectance Confocal Microscopy in Clinical Trials for Tumor Monitoring, Dermatologic Clinics, vol.34, issue.4, pp.519-526, 2016.
DOI : 10.1016/j.det.2016.06.001

M. Rajadhyaksha, A. Marghoob, A. Rossi, A. C. Halpern, and K. S. , Reflectance confocal microscopy of skin in vivo: From bench to bedside, Lasers in Surgery and Medicine, vol.21, issue.929, pp.7-19, 2017.
DOI : 10.1117/1.JBO.21.1.016006

K. König, Clinical multiphoton tomography, Journal of Biophotonics, vol.17, issue.1, pp.13-23, 2008.
DOI : 10.1002/jbio.200710022

L. Schmitz, U. Reinhold, E. Bierhoff, and T. Dirschka, Optical coherence tomography: its role in daily dermatological practice, JDDG: Journal der Deutschen Dermatologischen Gesellschaft, vol.7, issue.Suppl 2, pp.499-507, 2013.
DOI : 10.1034/j.1600-0846.2001.007001001.x

J. Holmes, Theory and applications of multi-beam OCT, 1st Canterbury Workshop on Optical Coherence Tomography and Adaptive Optics, 2008.
DOI : 10.1117/12.821006

C. Dunsby, Y. Gu, and P. M. French, Single-shot phase-stepped wide-field coherence-gated imaging, Optics Express, vol.11, issue.2, pp.105-115, 2003.
DOI : 10.1364/OE.11.000105.m006

M. S. Hrebesh, R. Dabu, and M. Sato, In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography, Optics Communications, vol.282, issue.4, pp.674-683, 2009.
DOI : 10.1016/j.optcom.2008.10.070

H. M. Subhash, Full-field and single-shot full-field optical coherence tomography : A novel technique for biomedical imaging applications Advances in Optical Technologies, p.26, 2012.

G. Moneron, A. C. Boccara, and A. Dubois, Stroboscopic ultrahigh-resolution full-field optical coherence tomography, Optics Letters, vol.30, issue.11, pp.1351-1353, 2005.
DOI : 10.1364/OL.30.001351

URL : https://hal.archives-ouvertes.fr/hal-00533148

S. E. Schausberger, B. Heise, S. Bernstein, and D. Stifter, Full-field optical coherence microscopy with Riesz transform-based demodulation for dynamic imaging, Optics Letters, vol.37, issue.23, pp.4937-4939, 2012.
DOI : 10.1364/OL.37.004937.m002

M. Akiba and K. Chan, <italic>In vivo</italic> video-rate cellular-level full-field optical coherence tomography, Journal of Biomedical Optics, vol.12, issue.6, pp.64024-064024, 2007.
DOI : 10.1117/1.2822159.2

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel et al., In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography, Optics Express, vol.13, issue.16, pp.6286-6295, 2005.
DOI : 10.1364/OPEX.13.006286

URL : https://hal.archives-ouvertes.fr/hal-00533146

Y. Watanabe and M. Sato, Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera, Life Sciences, pp.1889-1895, 2008.
DOI : 10.1016/j.optcom.2007.04.068

E. Dalimier, A. Bruhat, K. Grieve, F. Harms, F. Martins et al., High resolution in-vivo imaging of skin with full field optical coherence tomography, Proc. SPIE, pp.89260-89268, 2014.

E. Auksorius and A. C. Boccara, Fingerprint imaging from the inside of a finger with full-field optical coherence tomography, Biomedical Optics Express, vol.6, issue.11, pp.4465-4471, 2015.
DOI : 10.1364/BOE.6.004465

P. Montgomery, F. Anstotz, D. Montaner, and F. Salzenstein, Real time and high quality on-line 4d ff-oct using continuous fringe scanning with a high speed camera and fpga image processing Handbook of Full-Field Optical Coherence Microscopy -Technology and Applications, pp.393-427, 2016.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. Hu, Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm, Physics in Medicine and Biology, vol.51, issue.6, p.1479, 2006.
DOI : 10.1088/0031-9155/51/6/008

P. Xiao, M. Fink, and A. C. Boccara, Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations, Optics Letters, vol.41, issue.17, pp.3920-3923, 2016.
DOI : 10.1364/OL.41.003920

URL : http://arxiv.org/pdf/1606.06894

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin et al., Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera, Optics Express, vol.14, issue.2, pp.726-735, 2006.
DOI : 10.1364/OPEX.14.000726.m006

K. Grieve, G. Moneron, A. Dubois, J. L. Gargasson, and C. Boccara, optical coherence tomography, Journal of Optics A: Pure and Applied Optics, vol.7, issue.8, p.368, 2005.
DOI : 10.1088/1464-4258/7/8/003

URL : https://hal.archives-ouvertes.fr/hal-00674826

E. Auksorius and A. C. Boccara, Dark-field full-field optical coherence tomography, Optics Letters, vol.40, issue.14, pp.3272-3275, 2015.
DOI : 10.1364/OL.40.003272

J. Schmitt, S. Lee, and K. Yung, An optical coherence microscope with enhanced resolving power in thick tissue, Optics Communications, vol.142, issue.4-6, pp.203-207, 1997.
DOI : 10.1016/S0030-4018(97)00280-0

D. Sacchet, J. Moreau, P. Georges, and A. Dubois, Multi-band ultrahigh resolution full-field optical coherence tomography, Proc. SPIE, pp.73721-73730, 2009.
DOI : 10.1364/ecbo.2009.7372_1f

B. Yang, Y. Wang, Y. Lin, Y. Juan, H. Chen et al., Applying RGB LED in full-field optical coherence tomography for real-time full-color tissue imaging, Applied Optics, vol.53, issue.22, pp.56-60, 2014.
DOI : 10.1364/AO.53.000E56

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre et al., Ultrahigh-resolution full-field optical coherence tomography, Applied Optics, vol.43, issue.14, pp.2874-2883, 2004.
DOI : 10.1364/AO.43.002874

URL : https://hal.archives-ouvertes.fr/hal-00533151

F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann et al., Simultaneous dual-band ultra-high resolution optical coherence tomography, Optics Express, vol.15, issue.17, pp.10832-10841, 2007.
DOI : 10.1364/OE.15.010832

J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, Functional optical coherence tomography: principles and progress, Physics in Medicine and Biology, vol.60, issue.10, pp.211-237, 2015.
DOI : 10.1088/0031-9155/60/10/R211

URL : http://iopscience.iop.org/article/10.1088/0031-9155/60/10/R211/pdf

A. Dubois, Technological extensions of full-field optical coherence microscopy for multicontrast imaging Handbook of Full-Field Optical Coherence Microscopy -Technology and Applications, pp.467-518, 2016.

P. M. Mcnamara, H. M. Subhash, and M. J. Leahy, correlation mapping optical coherence tomography, Journal of Biomedical Optics, vol.18, issue.12, p.126008, 2013.
DOI : 10.1117/1.JBO.18.12.126008.6

A. Nahas, M. Bauer, S. Roux, and A. C. Boccara, 3D static elastography at the micrometer scale using Full Field OCT, 3d static elastography at the micrometer scale using full field oct, pp.2138-2149, 2013.
DOI : 10.1364/BOE.4.002138

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis, Biomedical Optics Express, vol.7, issue.4, pp.1511-1524, 2016.
DOI : 10.1364/BOE.7.001511

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, Doppler Optical Coherence Tomography, Progress in Retinal and Eye Research, vol.41, pp.26-43, 2014.
DOI : 10.1016/j.preteyeres.2014.03.004

L. A. Yannuzzi, Indocyanine Green Angiography: A Perspective on Use in the Clinical Setting, American Journal of Ophthalmology, vol.151, issue.5, pp.745-751, 2011.
DOI : 10.1016/j.ajo.2011.01.043

Z. Chen and J. Zhang, Doppler optical coherence tomography Optical Coherence Tomography : Technology and Applications, pp.621-651, 2008.

V. J. Srinivasan, A. C. Chan, E. Y. Lam, and G. Liu, Doppler oct and oct angiography for in vivo imaging of vascular physiology Selected Topics in Optical Coherence Tomography, pp.21-40, 2012.

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media, Optics Letters, vol.22, issue.1, pp.64-66, 1997.
DOI : 10.1364/OL.22.000064

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali et al., Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography, Optics Letters, vol.22, issue.14, pp.1119-1121, 1997.
DOI : 10.1364/OL.22.001119

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography, Optics Letters, vol.22, issue.18, pp.1439-1441, 1997.
DOI : 10.1364/OL.22.001439

S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography, Optics Express, vol.1, issue.13, pp.424-431, 1997.
DOI : 10.1364/OE.1.000424.m002

M. D. Kulkarni, T. G. Van-leeuwen, S. Yazdanfar, and J. A. Izatt, Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography, Optics Letters, vol.23, issue.13, pp.1057-1059, 1998.
DOI : 10.1364/OL.23.001057

A. M. Rollins, S. Yazdanfar, J. K. Barton, and J. A. Izatt, Real-time in vivo color Doppler optical coherence tomography, Journal of Biomedical Optics, vol.7, issue.1, pp.123-129, 2002.
DOI : 10.1117/1.1428291

J. Kehlet-barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, and A. J. Welch, Threedimensional reconstruction of blood vessels from in vivo color doppler optical coherence tomography images, pp.355-361, 1999.

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography, Optics Letters, vol.25, issue.19, pp.1448-1450, 2000.
DOI : 10.1364/OL.25.001448

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. De-boer et al., Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity, Optics Letters, vol.25, issue.2, pp.114-116, 2000.
DOI : 10.1364/OL.25.000114

R. Leitgeb, L. F. Schmetterer, M. Wojtkowski, C. K. Hitzenberger, M. Sticker et al., Flow velocity measurements by frequency domain short coherence interferometry, Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI, pp.16-21, 2002.
DOI : 10.1117/12.470477

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser et al., Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography, Journal of Biomedical Optics, vol.12, issue.4, pp.41213-41220, 2007.
DOI : 10.1117/1.2771553

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography, Journal of Biomedical Optics, vol.12, issue.4, pp.41215-41223, 2007.
DOI : 10.1117/1.2772871

S. Makita, T. Fabritius, and Y. Yasuno, Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography, Optics Letters, vol.33, issue.8, pp.836-838, 2008.
DOI : 10.1364/OL.33.000836

G. Liu and Z. Chen, Advances in doppler oct, Chin. Opt. Lett, vol.11, p.11702, 2013.

V. J. Srinivasan, S. Sakad?i?, I. Gorczynska, S. Ruvinskaya, W. Wu et al., Quantitative cerebral blood flow with Optical Coherence Tomography, Optics Express, vol.18, issue.3, pp.2477-2494, 2010.
DOI : 10.1364/OE.18.002477.m001

URL : http://dspace.mit.edu/bitstream/1721.1/72568/1/Fujimoto-Quantitative%20Cerebral.pdf

J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography, Optics Express, vol.15, issue.20, pp.12636-12653, 2007.
DOI : 10.1364/OE.15.012636

URL : https://authors.library.caltech.edu/8981/1/FINoe07.pdf

D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser et al., In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography, Biomedical Optics Express, vol.2, issue.6, pp.1504-1513, 2011.
DOI : 10.1364/BOE.2.001504.m002

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett et al., Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging, Nature Medicine, vol.54, issue.10, pp.1219-1223, 2009.
DOI : 10.1016/S0002-9440(10)65171-1

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. De-boer, Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans, Optics Express, vol.20, issue.18, pp.20516-20534, 2012.
DOI : 10.1364/OE.20.020516.m002

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique, Optics Express, vol.17, issue.24, pp.22190-22200, 2009.
DOI : 10.1364/OE.17.022190

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce et al., Speckle variance detection of microvasculature using swept-source optical coherence tomography, Optics Letters, vol.33, issue.13, pp.1530-1532, 2008.
DOI : 10.1364/OL.33.001530

M. V. Yu and . Sarunic, Retinal angiography with real-time speckle variance optical coherence tomography, British Journal of Ophthalmology, vol.99, pp.1315-1319, 2015.

A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee et al., Optimized speckle variance OCT imaging of microvasculature, Optics Letters, vol.35, issue.8, pp.1257-1259, 2010.
DOI : 10.1364/OL.35.001257.m002

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser et al., Ultrahigh-speed non-invasive widefield angiography, Journal of Biomedical Optics, vol.17, issue.7, pp.70505-70506, 2012.
DOI : 10.1117/1.JBO.17.7.070505

URL : https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-17/issue-7/070505/Ultrahigh-speed-non-invasive-widefield-angiography/10.1117/1.JBO.17.7.070505.pdf

Y. Huang, Q. Zhang, M. Thorell, L. An, M. Durbin et al., Swept-Source OCT Angiography of the Retinal Vasculature Using Intensity Differentiation-based Optical Microangiography Algorithms, Ophthalmic Surgery, Lasers and Imaging Retina, vol.45, issue.5, pp.382-389, 2014.
DOI : 10.3928/23258160-20140909-08

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba et al., In vivo high-contrast imaging of deep posterior eye by 1-??m swept source optical coherence tomography and scattering optical coherence angiography, Optics Express, vol.15, issue.10, pp.6121-6139, 2007.
DOI : 10.1364/OE.15.006121.m008

E. Jonathan, J. Enfield, and M. J. Leahy, Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images, Journal of Biophotonics, vol.17, pp.583-587, 2011.
DOI : 10.1002/jbio.201000103

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang et al., Split-spectrum amplitude-decorrelation angiography with optical coherence tomography, Optics Express, vol.20, issue.4, pp.4710-4725, 2012.
DOI : 10.1364/OE.20.004710.m001

URL : http://dspace.mit.edu/bitstream/1721.1/73109/1/Fujimoto-Split-spectrum%20amplitude.pdf

L. An and R. K. Wang, In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography, Optics Express, vol.16, issue.15, pp.11438-11452, 2008.
DOI : 10.1364/OE.16.011438.m003

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography, Optics Express, vol.16, issue.9, pp.6008-6025, 2008.
DOI : 10.1364/OE.16.006008

F. Jaillon, S. Makita, E. Min, B. H. Lee, and Y. Yasuno, Enhanced imaging of choroidal vasculature by high-penetration and dual-velocity optical coherence angiography, Biomedical Optics Express, vol.2, issue.5, pp.1147-1158, 2011.
DOI : 10.1364/BOE.2.001147

Y. Wang and R. Wang, Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity, Optics Letters, vol.35, issue.21, pp.3538-3540, 2010.
DOI : 10.1364/OL.35.003538

URL : http://europepmc.org/articles/pmc3059208?pdf=render

J. D. Briers and A. F. Fercher, Retinal blood-flow visualization by means of laser speckle photography, Investigative Ophthalmology & Visual Science, vol.22, p.255, 1982.

M. Draijer, E. Hondebrink, T. Van-leeuwen, and W. Steenbergen, Review of laser speckle contrast techniques for visualizing tissue perfusion, Lasers in Medical Science, vol.13, issue.4, pp.639-651, 2009.
DOI : 10.1364/JOSAA.13.000345

W. J. Choi, Y. Li, W. Qin, and R. K. Wang, Cerebral capillary velocimetry based on temporal OCT speckle contrast, Biomedical Optics Express, vol.7, issue.12, pp.4859-4873, 2016.
DOI : 10.1364/BOE.7.004859.v001

URL : http://europepmc.org/articles/pmc5175537?pdf=render

V. M. Kodach, D. J. Faber, J. Van-marle, T. G. Van-leeuwen, and J. Kalkman, Determination of the scattering anisotropy with optical coherence tomography, Optics Express, vol.19, issue.7, pp.6131-6140, 2011.
DOI : 10.1364/OE.19.006131

M. Unekawa, M. Tomita, T. Osada, Y. Tomita, H. Toriumi et al., Frequency distribution function of red blood cell velocities in single capillaries of the rat cerebral cortex using intravital laser-scanning confocal microscopy with highspeed camera, Asian Biomedicine, vol.2, pp.203-218, 2008.

X. Liu, Y. Huang, J. C. Ramella-roman, S. A. Mathews, and J. U. Kang, Quantitative transverse flow measurement using optical coherence tomography speckle decorrelation analysis, Optics Letters, vol.38, issue.5, pp.805-807, 2013.
DOI : 10.1364/OL.38.000805.m003

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging, Journal of the Optical Society of America B, vol.9, issue.6, pp.903-908, 1992.
DOI : 10.1364/JOSAB.9.000903

H. F. Hazebroek and A. A. Holscher, Interferometric ellipsometry, Journal of Physics E: Scientific Instruments, vol.6, issue.9, p.822, 1973.
DOI : 10.1088/0022-3735/6/9/013

M. Kobayashi, H. Hanafusa, K. Takada, and J. Noda, Polarization-independent interferometric optical-time-domain reflectometer, Journal of Lightwave Technology, vol.9, issue.5, pp.623-628, 1991.
DOI : 10.1109/50.79538

J. F. De-boer, T. E. Milner, M. J. Van-gemert, and J. S. Nelson, Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography, Optics Letters, vol.22, issue.12, pp.934-936, 1997.
DOI : 10.1364/OL.22.000934

C. K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. F. Fercher, Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography, Optics Express, vol.9, issue.13, pp.780-790, 2001.
DOI : 10.1364/OE.9.000780

B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, Measurements of depolarization distribution in the healthy human macula by polarization sensitive OCT, Journal of Biophotonics, vol.47, issue.6-7, pp.426-434, 2009.
DOI : 10.1001/archopht.1967.00980030643016

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. De-boer, Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography, Investigative Opthalmology & Visual Science, vol.45, issue.8, p.2606, 2004.
DOI : 10.1167/iovs.03-1160

E. Götzinger, M. Pircher, M. Sticker, A. F. Fercher, and C. K. Hitzenberger, Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography, Journal of Biomedical Optics, vol.9, issue.1, p.94, 2004.
DOI : 10.1117/1.1629308

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl et al., Polarization???Sensitive Optical Coherence Tomography of Dental Structures, Caries Research, vol.34, issue.1, pp.59-69, 1999.
DOI : 10.1159/000016571

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. De-boer, In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography, Journal of Biomedical Optics, vol.6, issue.4, p.474, 2001.
DOI : 10.1117/1.1413208

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. De-boer, Birefringence measurements in human skin using polarization-sensitive optical coherence tomography, Journal of Biomedical Optics, vol.9, issue.2, p.287, 2004.
DOI : 10.1117/1.1645797

S. L. Jacques, J. C. Ramella-roman, and K. Lee, Imaging skin pathology with polarized light, Journal of Biomedical Optics, vol.7, issue.3, p.329, 2002.
DOI : 10.1117/1.1484498

L. Duan, T. Marvdashti, A. Lee, J. Y. Tang, and A. K. Ellerbee, Automated identification of basal cell carcinoma by polarization-sensitive optical coherence tomography, Biomedical Optics Express, vol.5, issue.10, pp.3717-3729, 2014.
DOI : 10.1364/BOE.5.003717

T. Marvdashti, L. Duan, S. Z. Aasi, J. Y. Tang, and A. K. Bowden, Classification of basal cell carcinoma in human skin using machine learning and quantitative features captured by polarization sensitive optical coherence tomography, Biomedical Optics Express, vol.7, issue.9, pp.3721-3735, 2016.
DOI : 10.1364/BOE.7.003721

J. Moreau, V. Loriette, and A. Boccara, Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography II Instrument and results, Applied Optics, vol.42, issue.19, pp.3811-3818, 2003.
DOI : 10.1364/AO.42.003811

URL : https://hal.archives-ouvertes.fr/hal-00624814

G. Moneron, A. Boccara, and A. Dubois, Polarization-sensitive full-field optical coherence tomography, Optics Letters, vol.32, issue.14, pp.2058-2060, 2007.
DOI : 10.1364/OL.32.002058

URL : https://hal.archives-ouvertes.fr/hal-00520535

B. Heise, B. Buchroithner, S. E. Schausberger, P. Hierzenberger, G. Eder et al., Simultaneous detection of optical retardation and axis orientation by polarization-sensitive full-field optical coherence microscopy for material testing, Laser Physics Letters, vol.11, issue.5, p.55602, 2014.
DOI : 10.1088/1612-2011/11/5/055602

K. S. Park, W. J. Choi, T. J. Eom, and B. H. Lee, Single-camera polarization-sensitive full-field optical coherence tomography with polarization switch, Journal of Biomedical Optics, vol.18, issue.10, p.100504, 2013.
DOI : 10.1117/1.JBO.18.10.100504

URL : https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-18/issue-10/100504/Single-camera-polarization-sensitive-full-field-optical-coherence-tomography-with/10.1117/1.JBO.18.10.100504.pdf

A. Dubois, Spectroscopic polarization-sensitive full-field optical coherence tomography, Optics Express, vol.20, issue.9, pp.9962-9977, 2012.
DOI : 10.1364/OE.20.009962

K. L. Lurie, T. J. Moritz, and A. K. Ellerbee, Design considerations for polarization-sensitive optical coherence tomography with a single input polarization state, Biomedical Optics Express, vol.3, issue.9, pp.2273-2287, 2012.
DOI : 10.1364/BOE.3.002273.m004

F. Goudail and A. Bénière, Optimization of the contrast in polarimetric scalar images, Optics Letters, vol.34, issue.9, pp.1471-1473, 2009.
DOI : 10.1364/OL.34.001471

URL : https://hal.archives-ouvertes.fr/hal-00746930

G. Anna, F. Goudail, and D. Dolfi, Optimal discrimination of multiple regions with an active polarimetric imager, Optics Express, vol.19, issue.25, pp.25367-25378, 2011.
DOI : 10.1364/OE.19.025367

URL : https://hal.archives-ouvertes.fr/hal-00747147

B. H. Park and J. F. De-boer, Polarization sensitive optical coherence tomography Optical Coherence Tomography : Technology and Applications, pp.22-653, 2008.

G. Anna, F. Goudail, and D. Dolfi, General state contrast imaging: an optimized polarimetric imaging modality insensitive to spatial intensity fluctuations, Journal of the Optical Society of America A, vol.29, issue.6, p.892, 2012.
DOI : 10.1364/JOSAA.29.000892

URL : https://hal.archives-ouvertes.fr/hal-00747189

G. Anna, F. Goudail, and D. Dolfi, Polarimetric target detection in the presence of spatially fluctuating Mueller matrices, Optics Letters, vol.36, issue.23, pp.4590-4592, 2011.
DOI : 10.1364/OL.36.004590

URL : https://hal.archives-ouvertes.fr/hal-00747158

Q. Y. Duan, V. K. Gupta, and S. Sorooshian, Shuffled complex evolution approach for effective and efficient global minimization, Journal of Optimization Theory and Applications, vol.7, issue.3, pp.501-521, 1993.
DOI : 10.1007/BF00939380

J. F. De-boer and T. E. Milner, Review of polarization sensitive optical coherence tomography and Stokes vector determination, Journal of Biomedical Optics, vol.7, issue.3, p.359, 2002.
DOI : 10.1117/1.1483879

J. Schmitt, Optical coherence tomography (OCT): a review, IEEE Journal of Selected Topics in Quantum Electronics, vol.5, issue.4, pp.1205-1215, 1999.
DOI : 10.1109/2944.796348

B. Redding, Y. Bromberg, M. A. Choma, and H. Cao, Full-field interferometric confocal microscopy using a VCSEL array, Optics Letters, vol.39, issue.15, pp.4446-4449, 2014.
DOI : 10.1364/OL.39.004446.m001

URL : http://europepmc.org/articles/pmc4217487?pdf=render

A. Dubois, Appareil et procede de tomographie optique WO Patent App, p.78, 2015.

C. Sheppard and X. Mao, Confocal Microscopes with Slit Apertures, Journal of Modern Optics, vol.31, issue.7, pp.1169-1185, 1988.
DOI : 10.1111/j.1365-2818.1981.tb00304.x

G. J. Brakenhoff and K. Visscher, Confocal imaging with bilateral scanning and array detectors, Journal of Microscopy, vol.809, issue.1, pp.139-146, 1992.
DOI : 10.1117/12.941505

K. Im, S. Han, H. Park, D. Kim, and B. Kim, Simple high-speed confocal line-scanning microscope, Optics Express, vol.13, issue.13, pp.5151-5156, 2005.
DOI : 10.1364/OPEX.13.005151

P. J. Dwyer, C. A. Dimarzio, J. M. Zavislan, W. J. Fox, and M. Rajadhyaksha, Confocal reflectance theta line scanning microscope for imaging human skin in vivo, Optics Letters, vol.31, issue.7, pp.942-944, 2006.
DOI : 10.1364/OL.31.000942

P. J. Dwyer, C. A. Dimarzio, and M. Rajadhyaksha, Confocal theta line-scanning microscope for imaging human tissues, Applied Optics, vol.46, issue.10, pp.1843-1851, 2007.
DOI : 10.1364/AO.46.001843

I. Zeylikovich, A. Gilerson, and R. R. Alfano, Nonmechanical grating-generated scanning coherence microscopy, Optics Letters, vol.23, issue.23, pp.1797-1799, 1998.
DOI : 10.1364/OL.23.001797

Y. Watanabe, K. Yamada, and M. Sato, Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography, Optics Express, vol.14, issue.12, pp.5201-5209, 2006.
DOI : 10.1364/OE.14.005201

A. F. Zuluaga and R. Richards-kortum, Spatially resolved spectral interferometry for determination of subsurface structure, Optics Letters, vol.24, issue.8, pp.519-521, 1999.
DOI : 10.1364/OL.24.000519

Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Itoh et al., Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation, Journal of Biomedical Optics, vol.11, issue.1, p.14014, 2006.
DOI : 10.1117/1.2166628

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, Swept-source parallel OCT, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, 2009.
DOI : 10.1117/12.809915

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister et al., Line-field parallel swept source MHz OCT for structural and functional retinal imaging, Biomedical Optics Express, vol.6, issue.3, pp.716-735, 2015.
DOI : 10.1364/BOE.6.000716

URL : http://europepmc.org/articles/pmc4361428?pdf=render

Y. Chen, S. Huang, A. D. Aguirre, and J. G. Fujimoto, High-resolution line-scanning optical coherence microscopy, Optics Letters, vol.32, issue.14, pp.1971-1973, 2007.
DOI : 10.1364/OL.32.001971

Y. Chen, S. W. Huang, C. Zhou, B. Potsaid, and J. G. Fujimoto, Improved Detection Sensitivity of Line-Scanning Optical Coherence Microscopy, IEEE Journal of Selected Topics in Quantum Electronics, vol.18, issue.3, pp.1094-1099, 2012.
DOI : 10.1109/JSTQE.2011.2161758

O. Liba, M. D. Lew, E. D. Sorelle, R. Dutta, D. Sen et al., Speckle-modulating optical coherence tomography in living mice and humans Article, pp.15845-2017

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller et al., A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future, Investigative Opthalmology & Visual Science, vol.57, issue.9, p.51, 2016.
DOI : 10.1167/iovs.16-19103

G. Roblin, Microscopie optique, 1999.

B. J. Vakoc, M. Shishko, S. H. Yun, W. Oh, M. J. Suter et al., Comprehensive esophageal microscopy by using optical frequency???domain imaging (with video), Gastrointestinal Endoscopy, vol.65, issue.6, pp.898-905, 2007.
DOI : 10.1016/j.gie.2006.08.009

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705339/pdf

J. Schmitt, D. Kolstad, and C. Petersen, Intravascular optical coherence tomography opens a window onto coronary artery disease, Optics and Photonics News, vol.15, issue.2, pp.20-25, 2004.
DOI : 10.1364/OPN.15.2.000020

?. Ogien and A. Dubois, Speckle variance full-field optical coherence microscopy for high-resolution microvasculature mapping
DOI : 10.1117/12.2254836

URL : https://hal.archives-ouvertes.fr/hal-01522109

W. Spie-photonics, United States, Proc. SPIE 10053, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI, 2017.

?. Ogien and A. Dubois, Microscopie par cohérence optique plein champ à éclairage LED pour l'imagerie biomédicale