M. Aarts, Treatment of Ischemic Brain Damage by Perturbing NMDA Receptor- PSD-95 Protein Interactions, Science, vol.298, issue.5594, pp.846-850, 2002.
DOI : 10.1126/science.1072873

L. Adam, R. Vadlamudi, P. Mccrea, and R. Kumar, Tiam1 Overexpression Potentiates Heregulin-induced Lymphoid Enhancer Factor-1/??-Catenin Nuclear Signaling in Breast Cancer Cells by Modulating the Intercellular Stability, Journal of Biological Chemistry, vol.112, issue.30, pp.28443-28450, 2001.
DOI : 10.1074/jbc.272.52.33105

A. Aksimentiev and K. Schulten, Imaging ??-Hemolysin with Molecular Dynamics: Ionic Conductance, Osmotic Permeability, and the Electrostatic Potential Map, Biophysical Journal, vol.88, issue.6, pp.3745-3761, 2005.
DOI : 10.1529/biophysj.104.058727

M. Aldeghi, A. Heifetz, M. Bodkin, S. Knapp, and P. Biggin, Accurate calculation of the absolute free energy of binding for drug molecules, Chemical Science, vol.9, issue.1, pp.207-218, 2016.
DOI : 10.1021/ct4003477

R. F. Alford, A. Leaver-fay, J. R. Jeliazkov, M. J. O-'meara, F. P. Dimaio et al., The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design, Journal of Chemical Theory and Computation, vol.13, issue.6, pp.3031-3048, 2017.
DOI : 10.1021/acs.jctc.7b00125

D. Allouche, I. André, S. Barbe, J. Davies, S. Givry et al., Computational protein design as an optimization problem, Artificial Intelligence, vol.212, 2014.
DOI : 10.1016/j.artint.2014.03.005

URL : https://hal.archives-ouvertes.fr/hal-01268554

M. Almlöf, J. Carlsson, and J. Åqvist, Improving the Accuracy of the Linear Interaction Energy Method for Solvation Free Energies, Journal of Chemical Theory and Computation, vol.3, issue.6, pp.2162-2175, 2007.
DOI : 10.1021/ct700106b

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-410, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

J. Amacher, R. Zhao, M. Spaller, and D. Madden, Chemically Modified Peptide Scaffolds Target the CFTR-Associated Ligand PDZ Domain, PLoS ONE, vol.13, issue.8, 2014.
DOI : 10.1371/journal.pone.0103650.t003

A. Leaver-fay, A. O-'meara, M. Tyka, M. Jacak, R. Song et al., Scientific Benchmarks for Guiding Macromolecular Energy Function Improvement, Methods in Enzymology, pp.109-143, 2013.
DOI : 10.1016/B978-0-12-394292-0.00006-0

B. Appleton, Y. Zhang, P. Wu, J. Yin, W. Hunziker et al., Comparative Structural Analysis of the Erbin PDZ Domain and the First PDZ Domain of ZO-1, Journal of Biological Chemistry, vol.352, issue.31, pp.22312-22320, 2006.
DOI : 10.1093/nar/gkg556

J. Åqvist and T. Hansson, On the Validity of Electrostatic Linear Response in Polar Solvents, The Journal of Physical Chemistry, vol.100, issue.22, pp.9512-9521, 1996.
DOI : 10.1021/jp953640a

J. Åqvist and J. Marelius, The Linear Interaction Energy Method for Predicting Ligand Binding Free Energies, Combinatorial Chemistry & High Throughput Screening, vol.4, issue.8, pp.613-626, 2001.
DOI : 10.2174/1386207013330661

J. Åqvist, C. Medina, and J. Samuelsson, A new method for predicting binding affinity in computer-aided drug design, "Protein Engineering, Design and Selection", vol.7, issue.3, pp.385-391, 1994.
DOI : 10.1093/protein/7.3.385

J. Åqvist, V. Luzhkov, and B. Brandsdal, Ligand Binding Affinities from MD Simulations, Accounts of Chemical Research, vol.35, issue.6, pp.358-365, 2002.
DOI : 10.1021/ar010014p

A. Bach, J. Eildal, N. Stuhr-hansen, R. Deeskamp, M. Gottschalk et al., -Aspartate Receptor Interaction, Journal of Medicinal Chemistry, vol.54, issue.5, pp.1333-1346, 2011.
DOI : 10.1021/jm1013924

A. Bach, B. Clausen, M. Moller, B. Vestergaard, C. Chi et al., A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage, Proceedings of the National Academy of Sciences, pp.3317-3322, 2012.
DOI : 10.1038/nrn2540

E. Baldwin, O. Hajiseyedjavadi, W. Baase, and B. Matthews, The role of backbone flexibility in the accommodation of variants that repack the core of T4 lysozyme, Science, vol.262, issue.5140, pp.1715-1718, 1993.
DOI : 10.1126/science.8259514

H. Baruch and L. Wendell, Mechanism and role of PDZ domains in signaling complex assembly, Journal of Cell Science, vol.114, pp.3219-3231, 2001.

N. Foloppe and R. Hubbard, Towards Predictive Ligand Design With Free-Energy Based Computational Methods?, Current Medicinal Chemistry, vol.13, issue.29, pp.3583-3608, 2006.
DOI : 10.2174/092986706779026165

D. Fry and L. Vassilev, Targeting protein???protein interactions for cancer therapy, Journal of Molecular Medicine, vol.30, issue.12, pp.955-963, 2005.
DOI : 10.1007/s00109-005-0705-x

N. Fujii, J. Haresco, K. Novak, D. Stokoe, I. Kuntz et al., A Selective Irreversible Inhibitor Targeting a PDZ Protein Interaction Domain, Journal of the American Chemical Society, vol.125, issue.40, pp.12074-12075, 2003.
DOI : 10.1021/ja035540l

T. Gaillard and T. Simonson, Pairwise decomposition of an MMGBSA energy function for computational protein design, Journal of Computational Chemistry, vol.77, issue.18, pp.1371-1387, 2014.
DOI : 10.1002/prot.22488

URL : https://hal.archives-ouvertes.fr/hal-01048588

P. Gainza, E. Roberts, and B. Donald, Protein Design Using Continuous Rotamers, PLoS Computational Biology, vol.285, issue.1, pp.1-15, 2012.
DOI : 10.1371/journal.pcbi.1002335.s002

URL : http://doi.org/10.1371/journal.pcbi.1002335

P. Gainza, K. Roberts, I. Georgiev, R. Lilien, D. Keedy et al., osprey, Methods in Enzymology, vol.523, pp.87-107, 2013.
DOI : 10.1016/B978-0-12-394292-0.00005-9

R. Gallardo, Y. Ivarsson, J. Schymkowitz, F. Rousseau, and P. Zimmermann, Structural Diversity of PDZ-Lipid Interactions, ChemBioChem, vol.18, issue.4, pp.456-467, 2010.
DOI : 10.1091/mbc.11.12.4217

S. Gee, S. Sekely, C. Lombardo, A. Kurakin, S. Froehner et al., Cyclic Peptides as Non-carboxyl-terminal Ligands of Syntrophin PDZ Domains, Journal of Biological Chemistry, vol.16, issue.34, pp.21980-21987, 1998.
DOI : 10.1007/BF01715530

S. Genheden and U. Ryde, Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies, Proteins: Structure, Function, and Bioinformatics, vol.44, issue.5, pp.1326-1342, 2012.
DOI : 10.1021/jm0100279

S. Genheden and U. Ryde, The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities, Expert Opinion on Drug Discovery, vol.43, issue.5, pp.449-461, 2015.
DOI : 10.2174/1386207013330689

I. Georgiev, D. Keedy, J. Richardson, D. Richardson, and B. Donald, Algorithm for backrub motions in protein design, Bioinformatics, vol.15, issue.12, pp.196-204, 2008.
DOI : 10.1110/ps.062353106

M. Gilson and H. Zhou, Calculation of protein-ligand binding affinities. Annual review of biophysics and biomolecular structure 36, pp.21-42, 2007.

M. Joshi, C. Vargas, P. Boisguerin, A. Diehl, G. Krause et al., Discovery of Low-Molecular-Weight Ligands for the AF6 PDZ Domain, Angewandte Chemie International Edition, vol.13, issue.23, pp.3790-3795, 2006.
DOI : 10.1016/0263-7855(96)00009-4

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.33, issue.12, pp.2577-2637, 1983.
DOI : 10.1016/0005-2795(73)90350-4

B. Kajsa, K. Ljungberg, J. Marelius, D. Musil, P. Svensson et al., Computational modelling of inhibitor binding to human thrombin, & Åqvist J. European Journal of Pharmaceutical Sciences, vol.12, pp.441-446, 2001.

K. Kaufmann, N. Shen, L. Mizoue, and J. Meiler, A physical model for PDZ-domain/peptide interactions, Journal of Molecular Modeling, vol.97, issue.2, pp.315-324, 2011.
DOI : 10.1073/pnas.97.19.10383

A. Kia and E. Darve, The accuracy of the CHARMM22/CMAP and AMBER ff99SB force fields for modelling the antimicrobial peptide cecropin P1, Molecular Simulation, vol.209, issue.11, pp.922-936, 2013.
DOI : 10.1063/1.457480

E. Kim and M. Sheng, PDZ domain proteins of synapses, Nature Reviews Neuroscience, vol.21, issue.10, pp.771-781, 2004.
DOI : 10.1074/jbc.M300184200

S. Kirkpatrick, C. Gelatt, and M. Vecchi, Optimization by Simulated Annealing, Science, vol.220, issue.4598, pp.671-680, 1983.
DOI : 10.1126/science.220.4598.671

URL : http://www.cs.virginia.edu/cs432/documents/sa-1983.pdf

E. Kjellgren, O. Skytte-glue, P. Reinholdt, E. Meyer, J. Kongsted et al., A comparative study of binding affinities for 6,7-dimethoxy-4-pyrrolidylquinazolines as phosphodiesterase 10A inhibitors using the linear interaction energy method, Journal of Molecular Graphics and Modelling, vol.61, pp.44-52, 2015.
DOI : 10.1016/j.jmgm.2015.06.010

P. Koehl and M. Delarue, Application of a Self-consistent Mean Field Theory to Predict Protein Side-chains Conformation and Estimate Their Conformational Entropy, Journal of Molecular Biology, vol.239, issue.2, pp.249-275, 1994.
DOI : 10.1006/jmbi.1994.1366

P. Koehl and M. Levitt, De novo protein design. I. In search of stability and specificity, Journal of Molecular Biology, p.27, 1999.

A. Koller, H. Schwalbe, and H. Gohlke, Starting Structure Dependence of NMR Order Parameters Derived from MD Simulations: Implications for Judging Force-Field Quality, Biophysical Journal, vol.95, issue.1, pp.4-06, 2008.
DOI : 10.1529/biophysj.108.132811

P. Kollman, Free energy calculations: Applications to chemical and biochemical phenomena, Chemical Reviews, vol.93, issue.7, pp.2395-2417, 1993.
DOI : 10.1021/cr00023a004

P. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo et al., Calculating Structures and Free Energies of Complex Molecules:?? Combining Molecular Mechanics and Continuum Models, Accounts of Chemical Research, vol.33, issue.12, pp.889-897, 2000.
DOI : 10.1021/ar000033j

H. Kono and J. Doi, Energy minimization method using automata network for sequence and side-chain conformation prediction from given backbone geometry, Proteins: Structure, Function, and Genetics, vol.86, issue.3, pp.244-255, 1994.
DOI : 10.1080/07391102.1991.10507882

G. Krivov, M. Shapovalov, and R. Dunbrack, Improved prediction of protein side-chain conformations with SCWRL4, Proteins: Structure, Function, and Bioinformatics, vol.3, issue.Pt 1, pp.778-795, 2009.
DOI : 10.1007/978-1-4899-3324-9

B. Kuhlman, G. Dantas, G. Ireton, G. Varani, and B. D. Stoddard, Design of a Novel Globular Protein Fold with Atomic-Level Accuracy, Science, vol.11, issue.5649, pp.1364-1368, 2003.
DOI : 10.1006/jmrb.1995.1109

B. Kuhn and P. Kollman, Binding of a Diverse Set of Ligands to Avidin and Streptavidin:?? An Accurate Quantitative Prediction of Their Relative Affinities by a Combination of Molecular Mechanics and Continuum Solvent Models, Journal of Medicinal Chemistry, vol.43, issue.20, pp.3786-3791, 2000.
DOI : 10.1021/jm000241h

S. Kumar, J. Rosenberg, D. Bouzida, R. Swendsen, and P. Kollman, THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method, Journal of Computational Chemistry, vol.22, issue.8, pp.1011-1021, 1992.
DOI : 10.1887/0852743920

K. Kundu and R. Backofen, Cluster based prediction of PDZ-peptide interactions, BMC Genomics, vol.15, issue.Suppl 1, pp.5-10, 2014.
DOI : 10.1002/jcc.20084

M. Lamb, J. Tirado-rives, and W. Jorgensen, Estimation of the binding affinities of FKBP12 inhibitors using a linear response method, Bioorganic & Medicinal Chemistry, vol.7, issue.5, pp.851-860, 1999.
DOI : 10.1016/S0968-0896(99)00015-2

G. Lamoureux and B. Roux, Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm, The Journal of Chemical Physics, vol.25, issue.6, pp.3025-3039, 2003.
DOI : 10.1063/1.473030

G. Lamoureux, A. Mackerell, and B. Roux, A simple polarizable model of water based on classical Drude oscillators, The Journal of Chemical Physics, vol.119, issue.10, pp.5185-5197, 2003.
DOI : 10.1016/0301-0104(89)80166-1

X. Liu, D. Speckhard, T. Shepherd, Y. Sun, S. Hengel et al., Distinct Roles for Conformational Dynamics in Protein-Ligand Interactions, Structure, vol.24, issue.12, pp.2053-2066, 2016.
DOI : 10.1016/j.str.2016.08.019

J. Long, Z. Wei, W. Feng, C. Yu, Y. Zhao et al., Supramodular Nature of GRIP1 Revealed by the Structure of Its PDZ12 Tandem in Complex with the Carboxyl Tail of Fras1, Journal of Molecular Biology, vol.375, issue.5, pp.1457-1468, 2008.
DOI : 10.1016/j.jmb.2007.11.088

A. Lopes, A. Alexandrov, C. Bathelt, G. Archontis, and T. Simonson, Computational sidechain placement and protein mutagenesis with implicit solvent models, Proteins: Structure, Function, and Bioinformatics, vol.18, issue.4, pp.853-867, 2007.
DOI : 10.1080/07391102.1991.10507882

S. Lovell, J. Word, J. Richardson, and D. Richardson, The penultimate rotamer library, Proteins: Structure, Function, and Genetics, vol.38, issue.3, pp.389-408, 2000.
DOI : 10.1080/07391102.1991.10507882

URL : http://kinemage.biochem.duke.edu/teaching/workshop/CSHL2002/PROT2000.40.389.pdf

K. Luck, S. Charbonnier, and G. Travé, The emerging contribution of sequence context to the specificity of protein interactions mediated by PDZ domains, FEBS Letters, vol.25, issue.17, pp.2648-2661, 2012.
DOI : 10.1093/bioinformatics/btp033

M. López, E. Lacroix, M. Ramírez-alvarado, and L. Serrano, Computer-aided design of ??-sheet peptides 1 1Edited by J. Thornton, Journal of Molecular Biology, vol.312, issue.1, pp.229-246, 2001.
DOI : 10.1006/jmbi.2001.4918

P. Mach and P. Koehl, Capturing protein sequence-structure specificity using computational sequence design, Proteins: Structure, Function, and Bioinformatics, vol.105, issue.9, pp.1556-1570, 2013.
DOI : 10.1073/pnas.0704422105

R. Marcus, Chemical and Electrochemical Electron-Transfer Theory, Annual Review of Physical Chemistry, vol.15, issue.1, pp.155-196, 1964.
DOI : 10.1146/annurev.pc.15.100164.001103

S. Marshall, C. Vizcarra, and S. Mayo, One- and two-body decomposable Poisson-Boltzmann methods for protein design calculations, Protein Science, vol.51, issue.5, pp.1293-1304, 2005.
DOI : 10.1110/ps.041259105

C. Masili, M. Schumann, N. Toussaint, J. Kageyama, O. Kohlbacher et al., Binding pocket optimization by computational protein design, PLOS ONE, vol.7, pp.52505-52539, 2012.

M. Masuda, T. Maruyama, T. Ohta, A. Ito, T. Hayashi et al., CADM1 interacts with Tiam1 and promotes invasive phenotype of human T-cell leukemia virus type, 2010.

D. Mobley and P. Klimovich, Perspective: Alchemical free energy calculations for drug discovery, The Journal of Chemical Physics, vol.137, issue.23, pp.230901-150, 2012.
DOI : 10.1021/bi700866x

D. Mobley, J. Chodera, and K. Dill, Confine-and-Release Method:?? Obtaining Correct Binding Free Energies in the Presence of Protein Conformational Change, Journal of Chemical Theory and Computation, vol.3, issue.4, pp.1231-1235, 2007.
DOI : 10.1021/ct700032n

D. Mobley, A. Graves, J. Chodera, A. Mcreynolds, B. Shoichet et al., Predicting Absolute Ligand Binding Free Energies to a Simple Model Site, Journal of Molecular Biology, vol.371, issue.4, pp.1118-1134, 2007.
DOI : 10.1016/j.jmb.2007.06.002

B. H. Mooers, D. Datta, W. A. Baase, E. S. Zollars, S. L. Mayo et al., Repacking the Core of T4 Lysozyme by Automated Design, Journal of Molecular Biology, vol.332, issue.3, pp.741-756, 2003.
DOI : 10.1016/S0022-2836(03)00856-8

J. Murciano-calles, M. Mclaughlin, A. Erijman, Y. Hooda, N. Chakravorty et al., Alteration of the C-Terminal Ligand Specificity of the Erbin PDZ Domain by Allosteric Mutational Effects, Journal of Molecular Biology, vol.426, issue.21, pp.3500-3508, 2014.
DOI : 10.1016/j.jmb.2014.05.003

L. Murphy, A. Wallqvist, and R. Levy, Simplified amino acid alphabets for protein fold recognition and implications for folding, Protein Engineering, Design and Selection, vol.13, issue.3, pp.149-55, 2000.
DOI : 10.1126/science.7886447

S. Nakariyakul, Z. Liu, and L. Chen, A sequence-based computational approach to predicting PDZ domain-peptide interactions, Proteins and Proteomics 1844, pp.165-170, 2014.
DOI : 10.1016/j.bbapap.2013.04.008

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics, vol.81, issue.1, pp.511-519, 1984.
DOI : 10.1080/00268978400100801

C. Nourry, S. Grant, and J. Borg, PDZ domain proteins: Plug and play! Science Signaling, pp.1-13, 2003.
DOI : 10.1126/scisignal.1792003re7

G. Offer and R. Sessions, Computer Modelling of the ??-Helical Coiled Coil: Packing of Side-chains in the Inner Core, Journal of Molecular Biology, vol.249, issue.5, pp.967-987, 1995.
DOI : 10.1006/jmbi.1995.0352

M. Olsson, C. Søndergaard, M. Rostkowski, and J. Jensen, Predictions, Journal of Chemical Theory and Computation, vol.7, issue.2, pp.525-537, 2011.
DOI : 10.1021/ct100578z

URL : https://hal.archives-ouvertes.fr/hal-01496109

C. Saunders and D. Baker, Recapitulation of Protein Family Divergence using Flexible Backbone Protein Design, Journal of Molecular Biology, vol.346, issue.2, pp.631-644, 2005.
DOI : 10.1016/j.jmb.2004.11.062

M. Schmidt-am-busch, A. Lopes, D. Mignon, and T. Simonson, Computational protein design: Software implementation, parameter optimization, and performance of a simple model, Journal of Computational Chemistry, vol.109, issue.7, pp.1092-1102, 2008.
DOI : 10.1080/07391102.1991.10507882

URL : https://hal.archives-ouvertes.fr/hal-00488192

H. Schrauber, F. Eisenhaber, and P. Argos, Rotamers: to be or not to be? an analysis of amino acid sidechain conformations in globular proteins, Journal of Molecular Biology, vol.23, pp.592-612, 1993.

C. Schutz and A. Warshel, What are the dielectric ?constants? of proteins and how to validate electrostatic models?, Proteins: Structure, Function, and Genetics, vol.89, issue.4, pp.400-417, 2001.
DOI : 10.1016/0022-2836(91)90215-R

O. Sensoy and H. Weinstein, A mechanistic role of Helix 8 in GPCRs: Computational modeling of the dopamine D2 receptor interaction with the GIPC1???PDZ-domain, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1848, issue.4, pp.976-983, 2015.
DOI : 10.1016/j.bbamem.2014.12.002

M. Shapovalov and R. Dunbrack, A Smoothed Backbone-Dependent Rotamer Library for Proteins Derived from Adaptive Kernel Density Estimates and Regressions, Structure, vol.19, issue.6, pp.844-858, 2011.
DOI : 10.1016/j.str.2011.03.019

T. Shepherd, S. Klaus, X. Liu, S. Ramaswamy, K. Demali et al., The Tiam1 PDZ Domain Couples to Syndecan1 and Promotes Cell???Matrix Adhesion, Journal of Molecular Biology, vol.398, issue.5, pp.730-746, 2010.
DOI : 10.1016/j.jmb.2010.03.047

T. Shepherd, R. Hard, A. Murray, D. Pei, and E. Fuentes, Distinct Ligand Specificity of the Tiam1 and Tiam2 PDZ Domains, Biochemistry, vol.50, issue.8, pp.1296-1308, 2011.
DOI : 10.1021/bi1013613

M. Shirts and J. Chodera, Statistically optimal analysis of samples from multiple equilibrium states, The Journal of Chemical Physics, vol.129, issue.12, pp.124105-106, 2008.
DOI : 10.1063/1.457480

M. Shirts and V. Pande, Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration, The Journal of Chemical Physics, vol.122, issue.14, pp.144107-105, 2005.
DOI : 10.1016/S0378-3758(98)00176-1

D. Shoup and A. Szabo, Role of diffusion in ligand binding to macromolecules and cell-bound receptors, Biophysical Journal, vol.40, issue.1, pp.33-39, 1982.
DOI : 10.1016/S0006-3495(82)84455-X

T. Simonson, Free Energy Calculations, In Computational Biochemistry and Biophysics, pp.169-197, 2001.
DOI : 10.1201/9780203903827.ch9

URL : https://hal.archives-ouvertes.fr/hal-00767091

T. Simonson, Protein: Ligand Recognition: Simple Models for Electrostatic Effects, Current Pharmaceutical Design, vol.19, issue.23, pp.4241-4256, 2013.
DOI : 10.2174/1381612811319230008

URL : https://hal.archives-ouvertes.fr/hal-00814137

T. Simonson, The Physical Basis of Ligand Binding, Silico Drug Discovery and Design, pp.3-43, 2015.
DOI : 10.1201/b18799-3

T. Simonson, G. Archontis, and M. Karplus, Free Energy Simulations Come of Age:?? Protein???Ligand Recognition, Accounts of Chemical Research, vol.35, issue.6, pp.430-437, 2002.
DOI : 10.1021/ar010030m

T. Simonson, J. Carlsson, and D. Case, Calculations with Explicit and Implicit Solvent Models, Journal of the American Chemical Society, vol.126, issue.13, pp.4167-4180, 2004.
DOI : 10.1021/ja039788m

URL : https://hal.archives-ouvertes.fr/hal-00770711

T. Simonson, T. Gaillard, D. Mignon, M. Schmidt-am-busch, A. Lopes et al., Computational protein design: The proteus software and selected applications, Journal of Computational Chemistry, vol.79, issue.28, pp.2472-2484, 2013.
DOI : 10.1002/prot.23124

URL : https://hal.archives-ouvertes.fr/hal-00868677

U. Singh and P. Kollman, An approach to computing electrostatic charges for molecules, Journal of Computational Chemistry, vol.77, issue.2, pp.129-145, 1984.
DOI : 10.1063/1.444325

C. Smith and T. Kortemme, Backrub-Like Backbone Simulation Recapitulates Natural Protein Conformational Variability and Improves Mutant Side-Chain Prediction, Journal of Molecular Biology, vol.380, issue.4, pp.742-756, 2008.
DOI : 10.1016/j.jmb.2008.05.023

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2603262/pdf

C. Smith and T. Kortemme, Structure-Based Prediction of the Peptide Sequence Space Recognized by Natural and Synthetic PDZ Domains, Journal of Molecular Biology, vol.402, issue.2, pp.460-474, 2010.
DOI : 10.1016/j.jmb.2010.07.032

M. Smith, J. Rao, E. Segelken, and L. Cruz, : A Comparison of OPLS, AMBER, CHARMM, and GROMOS Force Fields, Journal of Chemical Information and Modeling, vol.55, issue.12, pp.2587-2595, 2015.
DOI : 10.1021/acs.jcim.5b00308

R. Smith, W. Jorgensen, J. Tirado-rives, M. Lamb, P. Janssen et al., Prediction of Binding Affinities for TIBO Inhibitors of HIV-1 Reverse Transcriptase Using Monte Carlo Simulations in a Linear Response Method, Journal of Medicinal Chemistry, vol.41, issue.26, pp.5272-5286, 1998.
DOI : 10.1021/jm9804174

Z. Songyang, A. Fanning, C. Fu, J. Xu, S. M. Marfatia et al., Recognition of Unique Carboxyl-Terminal Motifs by Distinct PDZ Domains, Science, vol.275, issue.5296, pp.73-77, 1997.
DOI : 10.1126/science.275.5296.73

E. Sonnhammer, S. Eddy, and R. Durbin, Pfam: A comprehensive database of protein domain families based on seed alignments, Proteins: Structure, Function, and Genetics, vol.183, issue.3, pp.405-420, 1997.
DOI : 10.1016/0076-6879(90)83031-4

I. Spiegel, D. Salomon, B. Erne, N. Schaeren-wiemers, and E. Peles, Caspr3 and Caspr4, Two Novel Members of the Caspr Family Are Expressed in the Nervous System and Interact with PDZ Domains, Molecular and Cellular Neuroscience, vol.20, issue.2, pp.283-297, 2002.
DOI : 10.1006/mcne.2002.1110

D. Spiliotopoulos, A. Spitaleri, and G. Musco, Exploring PHD Fingers and H3K4me0 Interactions with Molecular Dynamics Simulations and Binding Free Energy Calculations: AIRE-PHD1, a Comparative Study, PLoS ONE, vol.7, issue.10, pp.1-13, 2012.
DOI : 10.1371/journal.pone.0046902.s013

J. Srinivasan, T. Cheatham, P. Cieplak, P. Kollman, and D. Case, Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate???DNA Helices, Journal of the American Chemical Society, vol.120, issue.37, pp.9401-9409, 1998.
DOI : 10.1021/ja981844+

M. Stiffler, J. Chen, V. Grantcharova, Y. Lei, D. Fuchs et al., PDZ Domain Binding Selectivity Is Optimized Across the Mouse Proteome, Science, vol.426, issue.6967, pp.364-369, 2007.
DOI : 10.1038/nature02178

I. Stoica, S. Sadiq, and P. Coveney, Rapid and Accurate Prediction of Binding Free Energies for Saquinavir-Bound HIV-1 Proteases, Journal of the American Chemical Society, vol.130, issue.8, pp.2639-2648, 2008.
DOI : 10.1021/ja0779250

T. Straatsma and J. Mccammon, [23] Theoretical calculations of relative affinities of binding, Methods in Enzymology, vol.202, pp.497-511, 1991.
DOI : 10.1016/0076-6879(91)02025-5

T. Straatsma and J. Mccammon, Computational Alchemy, Annual Review of Physical Chemistry, vol.43, issue.1, pp.407-435, 1992.
DOI : 10.1146/annurev.pc.43.100192.002203

A. Street and S. Mayo, Pairwise calculation of protein solvent-accessible surface areas. Folding and Design 3, pp.253-258, 1998.

N. Stricker, K. Christopherson, B. Yi, P. Schatz, R. Raab et al., PDZ domain of neuronal nitric oxide synthase recognizes novel C-terminal peptide sequences, Nature Biotechnology, vol.105, issue.4, pp.336-342, 1997.
DOI : 10.1074/jbc.272.2.705

A. Su and S. L. Mayo, Coupling backbone flexibility and amino acid sequence selection in protein design, Protein Science, vol.86, issue.8, pp.1701-1707, 1997.
DOI : 10.1007/978-1-4684-6831-1_10

URL : http://onlinelibrary.wiley.com/doi/10.1002/pro.5560060810/pdf

M. Suárez and A. Jaramillo, Challenges in the computational design of proteins, Journal of The Royal Society Interface, vol.307, issue.12, pp.477-491, 2009.
DOI : 10.1371/journal.pcbi.0020168

B. Sulka, H. Lortat-jacob, R. Terreux, F. Letourneur, and P. Rousselle, Tyrosine Dephosphorylation of the Syndecan-1 PDZ Binding Domain Regulates Syntenin-1 Recruitment, Journal of Biological Chemistry, vol.23, issue.16, pp.10659-10671, 2009.
DOI : 10.1042/bst0230456

URL : https://hal.archives-ouvertes.fr/hal-01063046

J. Sunhwan, K. Taehoon, I. Vidyashankara, and I. Wonpil, CHARMM-GUI: A webbased graphical user interface for CHARMM, Journal of Computational Chemistry, vol.29, pp.1859-1865, 2008.

J. Swanson, R. Henchman, and J. Mccammon, Revisiting Free Energy Calculations: A Theoretical Connection to MM/PBSA and Direct Calculation of the Association Free Energy, Biophysical Journal, vol.86, issue.1, 2004.
DOI : 10.1016/S0006-3495(04)74084-9

J. Swanson, S. Adcock, and J. Mccammon, Optimized Radii for Poisson???Boltzmann Calculations with the AMBER Force Field, Journal of Chemical Theory and Computation, vol.1, issue.3, pp.484-493, 2005.
DOI : 10.1021/ct049834o

B. Tembe and J. Mccammon, Ligand-receptor interactions, Computers & Chemistry, vol.8, issue.4, pp.281-283, 1984.
DOI : 10.1016/0097-8485(84)85020-2

T. Thorsen, K. Madsen, N. Rebola, M. Rathje, R. Anggono et al., Identification of a small-molecule inhibitor of the PICK1 PDZ domain that inhibits hippocampal LTP and LTD, Proceedings of the National Academy of Sciences, pp.413-418, 2009.
DOI : 10.1038/nn.2142

F. Tian, L. Lv, P. Zhou, and L. Yang, Characterization of PDZ domain???peptide interactions using an integrated protocol of QM/MM, PB/SA, and CFEA analyses, Journal of Computer-Aided Molecular Design, vol.112, issue.10, pp.947-958, 2011.
DOI : 10.1021/jp8054763

R. Tonikian, Y. Zhang, S. Sazinsky, B. Currell, J. Yeh et al., A Specificity Map for the PDZ Domain Family, PLoS Biology, vol.277, issue.9, pp.1-17, 2008.
DOI : 10.1371/journal.pbio.0060239.st007

S. Wan, B. Knapp, D. Wright, C. Deane, and P. Coveney, Rapid, Precise, and Reproducible Prediction of Peptide???MHC Binding Affinities from Molecular Dynamics That Correlate Well with Experiment, Journal of Chemical Theory and Computation, vol.11, issue.7, pp.3346-3356, 2015.
DOI : 10.1021/acs.jctc.5b00179

C. Wang, L. Pan, J. Chen, and M. Zhang, Extensions of PDZ domains as important structural and functional elements, Protein & Cell, vol.9, issue.8, pp.737-751, 2010.
DOI : 10.1016/S1097-2765(02)00549-X

W. Wang and P. Kollman, Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model 1 1Edited by B. Honig, Journal of Molecular Biology, vol.303, issue.4, pp.567-582, 2000.
DOI : 10.1006/jmbi.2000.4057

W. Wang, J. Wang, and P. Kollman, What determines the van der Waals coefficient ? in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations?, Proteins: Structure, Function, and Genetics, vol.114, issue.3, pp.395-402, 1999.
DOI : 10.1002/(SICI)1097-0134(19990215)34:3<395::AID-PROT11>3.0.CO;2-4

A. Warshel, F. Sussman, and G. King, Free energy of charges in solvated proteins: microscopic calculations using a reversible charging process, Biochemistry, vol.25, issue.26, pp.8368-8372, 1986.
DOI : 10.1021/bi00374a006

B. Welch, A. Vandemark, A. Heroux, C. Hill, and M. Kay, Potent D-peptide inhibitors of HIV-1 entry, Proceedings of the National Academy of Sciences, vol.3, issue.13, pp.16828-16833, 2007.
DOI : 10.1007/BF00126739

J. Wells and C. Mcclendon, Reaching for high-hanging fruit in drug discovery at protein???protein interfaces, Nature, vol.12, issue.7172, pp.1001-1009, 2007.
DOI : 10.1128/MCB.17.12.7040

L. Wernisch, S. Hery, and S. Wodak, Automatic protein design with all atom force-fields by exact and heuristic optimization 1 1Edited by J. Thorton, Journal of Molecular Biology, vol.301, issue.3, pp.713-736, 2000.
DOI : 10.1006/jmbi.2000.3984

L. Wesson and D. Eisenberg, Atomic solvation parameters applied to molecular dynamics of proteins in solution, Protein Science, vol.20, issue.4, pp.227-235, 1992.
DOI : 10.1016/0005-2795(80)90033-1

D. Wilson, M. Madera, C. Vogel, C. Chothia, and J. Gough, The SUPERFAMILY database in 2007: families and functions, Nucleic Acids Research, vol.35, issue.Database, pp.308-313, 2007.
DOI : 10.1093/nar/gkl910

C. Wong and J. Mccammon, Dynamics and design of enzymes and inhibitors, Journal of the American Chemical Society, vol.108, issue.13, pp.3830-3832, 1986.
DOI : 10.1021/ja00273a048