
�>���G �A�/�, �i�2�H�@�y�R�e�3�3�y�y�8

�?�i�i�T�b�,�f�f�T���b�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�i�2�H�@�y�R�e�3�3�y�y�8

�a�m�#�K�B�i�i�2�/ �Q�M �R�N �C���M �k�y�R�3

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�:�`���T�? �J�B�M�B�M�; �7�Q�` �A�M�~�m�2�M�+�2 �J���t�B�K�B�x���i�B�Q�M �B�M �a�Q�+�B���H
�L�2�i�r�Q�`�F�b
�J���`�B�� �_�Q�b�b�B

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�J���`�B�� �_�Q�b�b�B�X �:�`���T�? �J�B�M�B�M�; �7�Q�` �A�M�~�m�2�M�+�2 �J���t�B�K�B�x���i�B�Q�M �B�M �a�Q�+�B���H �L�2�i�r�Q�`�F�b�X ���`�i�B�}�+�B���H �A�M�i�2�H�H�B�;�2�M�+�2
�(�+�b�X���A�)�X �l�M�B�p�2�`�b�B�i�û �S���`�B�b�@�a���+�H���v�- �k�y�R�d�X �1�M�;�H�B�b�?�X ���L�L�h �, �k�y�R�d�a���*�G�s�y�3�j���X ���i�2�H�@�y�R�e�3�3�y�y�8��

https://pastel.archives-ouvertes.fr/tel-01688005
https://hal.archives-ouvertes.fr

!"#$%&'()()*&+,"&-)+./0)10
'#2(3(4#5(,)&()&6,1(#.&7058,"9:

;%<:0&=0&=,15,"#5&=0&.>?)(@0":(5A&B#"(:C6#1.#D
$"A$#"A0&E&.>F1,.0&B,.D501%)(G/0

F1,.0&=,15,"#.0&)HIJK&61(0)10:&05&501%),.,*(0:
=0&.>()+,"3#5(,)&05&=0&.#&1,33/)(1#5(,)&L6;-MN

6$A1(#.(5A&=0&=,15,"#5O&-)+,"3#5(G/0

;%<:0&$"A:0)5A0&05&:,/50)/0&E&B#.#(:0#/P&.0&QR&7,@03S"0P&$#"

!"#$%#!&'()*%#!+,--%!

M,3$,:(5(,)&=/&T/"D&O

'30&-,#)#&'#),.0:1/
60)(,"&-7U-V&U0:0#"1%0"&LWUQNP&XWU B"A:(=0)50
'Y&W#@(=&!",::CV3S.#"=
B",+0::0/"P&?)(@0":(5A&=0&U0))0:&Q U#$$,"50/"
'Y&Z#:(.0(,:&'0*#.,,(9,),3,/
B",+0::0/"P&?)(@0":(5D&,+&B#5"#: U#$$,"50/"
'Y&[/2(#,&W,)*
V$$.(0=&61(0)5(:5P&'(1",:+5&U0:0#"1%&\=3,)= \2#3()#50/"
'Y&MA="(1&\(1%.0"
'#]5"0&=0:&M,)+A"0)10:P&-76V&M0)5"0&Z#.&=0&^,("0 \2#3()#50/"
'Y&'(1%#.(:&Z#4("*(#))(:
B",+0::0/"P&F1,.0&B,.D501%)(G/0 W("0150/"&=0&5%<:0
'Y&_0)`#3()&7*/D0)
B",+0::0/"P&-76V&M0)5"0&Z#.&=0&^,("0 M,CW("0150/"&=0&5%<:0

!"#$%&'%((!'%)*&+,-./0*12
N

N
T

 :
20

17
S

A
C

LX
08

3

Maria Evgenia Rossi: Graph Mining for In�uence Maximization in Social Networks© 2017

A B S T R A C T

Modern science of graphs has emerged the last few years as a �eld of interest and has been

bringing signi�cant advances to our knowledge about networks. Until recently the existing

data mining algorithms were destined for structured/relational data while many datasets

exist that require graph representation such as social networks, networks generated by

textual data, 3D protein structures and chemical compounds. It has become therefore of

crucial importance to be able to extract in an ef�cient and effective way meaningful infor-

mation from that kind of data and towards this end graph mining and analysis methods

have been proven essential.

The goal of this thesis is to study problems in the area of graph mining focusing espe-

cially on designing new algorithms and tools related to information spreading and speci�-

cally on how to locate in�uential entities in real-world social networks. This task is crucial

in many applications such as information diffusion, epidemic control and viral marketing.

In the �rst part of the thesis, we have studied spreading processes in social networks

focusing on �nding topological characteristics that rank entities in the network based on

their in�uential capabilities. We have speci�cally focused on the K-truss decomposition

which is an extension of the k-core decomposition of the graph. Both methods partition a

graph into subgraphs whose nodes and/or edges have some common characteristics. For

the case of the K-truss, the edges belonging to such subgraph are contained to at least

K-2 triangles. After extensive experimental analysis in real-world networks, we showed

that the nodes that belong to the maximal K-truss subgraph show a better spreading

behavior when compared to baseline criteria such as degree and k-core centralities. Such

spreaders have the ability to in�uence a greater part of the network during the �rst steps

of a spreading process but also the total fraction of the in�uenced nodes at the end of the

epidemic is greater. We have also observed that node members of such dense subgraphs

are those achieving the optimal spreading in the network.

In the second part of the thesis, we focused on identifying a group of nodes that by

acting all together maximize the expected number of in�uenced nodes at the end of the

spreading process, formally called In�uence Maximization. The In�uence Maximization

problem is actually NP-hard though there exist approximation guarantees for ef�cient

algorithms that can solve the problem while obtaining a solution within the 63% of op-

timal classes of models. As those guarantees propose a greedy approximation which is

computationally expensive especially for large graphs, we proposed the MATI algorithm

which succeeds in locating the group of users that maximize the in�uence while also be-

ing scalable. The algorithm takes advantage of the possible paths created in each node's

neighborhood and precalculates each node's potential in�uence and achieves to produce

competitive results in quality compared to those of baseline algorithms such as the Greedy,

LDAG and SimPath.

In the last part of the thesis, we study the privacy point of view of sharing such metrics

that are good in�uential indicators in a social network. We have focused on designing

an algorithm that addresses the problem of computing through an ef�cient, correct, se-

cure, and privacy-preserving algorithm the k-core metric which measures the in�uence

of each node of the network. We have speci�cally adopted a decentralization approach

where the social network is considered as a Peer-to-peer (P2P) system. The algorithm is

iii

built based on the constraint that it should not be possible for a node to reconstruct par-

tially or entirely the graph using the information they obtain during its execution. While

a distributed algorithm that computes once and for all the nodes' coreness is already pro-

posed, networks that evolve over time are not taken into account. Our main contribution

is an incremental algorithm that ef�ciently solves the core maintenance problem in P 2P

while limiting the number of messages exchanged and computations. Through extensive

experiments we provide a security and privacy analysis of the solution regarding network

de-anonymization. We showed how it relates to previously de�ned attack models and

discuss countermeasures.

iv

R É S U M É

La science moderne des graphes est apparue ces dernières années comme un domaine

d'intérêt et a apporté des progrès signi�catifs à notre connaissance des réseaux. Jusqu'à

récemment, les algorithmes d'exploration de données existants étaient destinés à des don-

nées structurés / relationnelles, alors que de nombreux ensembles de données nécessitent

une représentation graphique, comme les réseaux sociaux, les réseaux générés par des

données textuelles, les structures protéiques 3D ou encore les composés chimiques. Il est

donc crucial de pouvoir extraire des informations pertinantes à partir de ce type de don-

nées et, pour ce faire, les méthodes d'extraction et d'analyse de graphes ont été prouvées

essentielles.

L'objectif de cette thèse est d'étudier les problèmes dans le domaine de la fouille de

graphes axés en particulier sur la conception de nouveaux algorithmes et d'outils liés

à la diffusion d'informations et plus spéci�quement sur la façon de localiser des entités

in�uentes dans des réseaux réels. Cette tâche est cruciale dans de nombreuses applications

telles que la diffusion de l'information, les contrôles épidémiologiques et le marketing

viral.

Dans la première partie de la thèse, nous avons étudié les processus de diffusion dans

les réseaux sociaux ciblant la recherche de caractéristiques topologiques classant les entités

du réseau en fonction de leurs capacités in�uentes. Nous nous sommes spéci�quement

concentrés sur la décomposition K-truss qui est une extension de la décomposition k-core.

On a montré que les noeuds qui appartiennent au sous-graphe induit par le maximal

K-truss présenteront de meilleurs proprietés de propagation par rapport aux critères de

référence. De tels épandeurs ont la capacité non seulement d'in�uencer une plus grande

partie du réseau au cours des premières étapes d'un processus d'étalement, mais aussi de

contaminer une plus grande partie des noeuds.

Dans la deuxième partie de la thèse, nous nous sommes concentrés sur l'identi�cation

d'un groupe de noeuds qui, en agissant ensemble, maximisent le nombre attendu de

nœuds in�uencés à la �n du processus de propagation, formellement appelé In�uence

Maximization (IM). Le problème IM étant NP-hard, il existe des algorithmes ef�caces

garantissant l'approximation de ses solutions. Comme ces garanties proposent une ap-

proximation gloutonne qui est coûteuse en termes de temps de calcul, nous avons proposé

l'algorithme MATI qui réussit à localiser le groupe d'utilisateurs qui maximise l'in�uence,

tout en étant évolutif. L'algorithme pro�te des chemins possibles créés dans le voisinage

de chaque nœud et précalcule l'in�uence potentielle de chaque nœud permettant ainsi de

produire des résultats concurrentiels, comparés à ceux des algorithmes classiques.

Finallement, nous étudions le point de vue de la con�dentialité quant au partage de

ces bons indicateurs d'in�uence dans un réseau social. Nous nous sommes concentrés

sur la conception d'un algorithme ef�cace, correct, sécurisé et de protection de la vie

privée, qui résout le problème du calcul de la métrique k-core qui mesure l'in�uence de

chaque noeud du réseau. Nous avons spéci�quement adopté une approche de décentral-

isation dans laquelle le réseau social est considéré comme un système Peer-to-peer (P2P).

L'algorithme est construit de telle sorte qu'il ne devrait pas être possible pour un nœud

de reconstituer partiellement ou entièrement le graphe en utilisant les informations obti-

ennues lors de son exécution. Notre contribution est un algorithme incrémental qui résout

v

ef�cacement le problème de maintenance de core en P2P tout en limitant le nombre de

messages échangés et les calculs. Nous fournissons également une étude de sécurité et de

con�dentialité de la solution concernant la désanonymisation des réseaux, nous montrons

ainsi la relation avec les strategies d'attaque précédemment de�nies tout en discutant les

contres-mesures adaptées.

vi

L I S T O F P U B L I C AT I O N S

The following publications and submissions under review are included in parts or in an

extended version in this thesis:

• Maria-Evgenia G. Rossi, Fragkiskos D. Malliaros, and Michalis Vazirgiannis. “Spread

it good, spread it fast: Identi�cation of in�uential nodes in social networks.” In: Pro-

ceedings of the24th International Conference on World Wide Web. ACM. 2015, pp. 101–

102.

• Fragkiskos D. Malliaros, Maria-Evgenia G. Rossi, and Michalis Vazirgiannis. “Lo-

cating in�uential nodes in complex networks.” In: Scienti�c Reports6: 19307(2016).

• Maria-Evgenia G. Rossi and Michalis Vazirgiannis. “Exploring Network Centrali-

ties in Spreading Processes.” In:International Symposium on Web AlGorithms (iSWAG).

2016.

• Konstantinos Skianis, Maria-Evgenia G. Rossi, Fragkiskos D. Malliaros, and Michalis

Vazirgiannis. “SpreadViz: Analytics and Visualization of Spreading Processes in

Social Networks.” In: ICDMW ' 16: IEEE 16th International Conference on Data Min-

ing Workshops. IEEE.2016, pp. 1324–1327.

• Maria-Evgenia G. Rossi, Cédric Eichler, Pascal Berthomé, and Benjamin Nguyen.

“Private, Secure and Distributed Computation of k-cores.” In: Manuscript, presented

in APVP. 2017.

• Maria-Evgenia G. Rossi, Bowen Shi, Nikolaos Tziortziotis, Fragkiskos D. Malliaros,

Christos Giatsidis, and Michalis Vazirgiannis. “MATI: An Ef�cient Algorithm for

In�uence Maximization in Social Networks.” In: Manuscript. 2017.

vii

The truth of a proposition has nothing to do

with its credibility. And vice versa.

– Robert Anson Heinlein

A C K N O W L E D G M E N T S

In the three years I spent doing my PhD, I have been fortunate enough to interact

with several people, both on a personal and a professional level. I believe that each

one of these people has contributed in their own way towards the completion of this

thesis. I am also sure that a few lines are not enough to acknowledge their contribution.

Nonetheless, I will still make an attempt, hoping to include as many people as memory

and time allows.

First and foremost, I would like to thank my supervisors Prof. Michalis Vazirgian-

nis and Prof. Benjamin Nguyen without whom this dissertation would not have been

possible. Prof. Vazirgiannis has been an excellent advisor, with whom I engaged in nu-

merous brainstorming sessions that helped me gain valuable knowledge and contribute

to the �eld of graph mining. I have really admired his ability to direct me into the re-

search directions that led to fruitful results while enjoying the freedom to experiment

with ideas of my own. The joy and enthusiasm he has for research was contagious and

motivational for me, even during tough times in the PhD pursuit. I am also extremely

grateful to Prof. Nguyen who introduced me into the �eld of privacy. I have learned a

lot from working with him and interactions with him have always been lively. He gave

me the opportunity to collaborate with him and contribute to the �eld of privacy. Our

conversations along with his endless passion for research will remain unforgettable.

Furthermore, I want to express my gratitude to the distinguished researchers who

accepted to be part of my Ph.D. thesis defense committee: Dr.Yuxiao Dong , Dr. Cédric

Eichler , Prof. David Gross-Amblard , Prof. Ioana Manolescu and Prof.Vasileios Mega-

looikonomou . Particularly, I want to thank the members that reviewed my dissertation

- Prof. David Gross-Amblard and Prof. Vasileios Megalooikonomou - who gave de-

tailed insightful comments about my PhD research work. The comments have helped

me greatly in preparing this �nal version of my thesis.

I have been truly lucky to interact with many brilliant people at École Polytechnique.

I would like to thank all the members of the DaSciM group, current and past, for all

I learned from them and especially: Dr. Fragkiskos Malliaros, Konstantinos Skianis, Dr.

Panagiotis Korvesis, Stratis Limnios , Dr. Christos Giatsidis, Dr. Francois Rousseau, Dr.

Antoine Tixier, Dr. Nikolaos Tziortziotis, Dr. Jesse Read, Bowen Shi, Giannis Nikolentzos

and Polykarpos Meladianos.

During my academic years, I was extremely fortunate to have amazing collaborators

(listed in chronological order of collaboration): Dr. Fragkiskos Malliaros, Konstantinos

Skianis, Dr. Cédric Eichler, Prof. Pascal Berthomé, Bowen Shi, Dr. Nikolaos Tziortziotis

and Dr. Christos Giatsidis. I am grateful to all of them for the contributions presented in

this dissertation and for the valuable knowledge I gained after various brainstormings.

I gratefully acknowledge the funding sources that made my PhD work possible. I was

funded by a DigiCosme PhD Fellowship.

On a personal level, there are so many people to which I want to express my most

sincere gratefulness and affection, starting with my friends Demetra and Sophia whom

I've known since the tender age of �ve. Although there is a great distance between us,

I could never imagine going through this journey without their unconditional love and

sometimes everyday support. Special thanks goes to my friend Angelina who honored

me in making me the maid of honor to her wedding and with whom I have been shar-

ing precious moments since highschool. Special credits go to my friends from school

xi

and undergraduate studies, Sotiris, Ioanna, Marianna, Nikos, Markos, Anna, Maria and

Evangelia. I would also like to thank all the wonderful friends I have met in Paris. Spe-

cial thanks go to Simon, Alina, Praksitelis, Nikos, Michalis, Lenia, Ilektra, Anna, Revekka

and Arjola for the precious moments that we have shared and continue to share.

Last but not least, I would like to thank from the depths of my heart my mother Elli

Kamper and godmother Elli Zacharopoulou. They have been my rock through all these

years and especially during these challenging years of the PhD studies and supported

me in every decision I have made so far. This dissertation is dedicated to both of them.

Thank you for everything you have done and continue doing for me.

Maria Rossi

Paris, Fall 2017

xii

To my mother and godmother Elli and Elli

for their endless love and support.

C O N T E N T S

1 introduction . 1

1.1 Social Networks and Social In�uence 1

1.2 Social In�uence examples . 1

1.3 Social In�uence Analysis Applications 2

1.4 Thesis statement and overview of contributions 3

1.4.1 Identi�cation of individual in�uential spreaders 3

1.4.2 Identi�cation of a group of in�uential spreaders 4

1.4.3 Secure and Private computation of in�uential metrics 4

1.5 Outline of the thesis . 5

2 basic concept and preliminaries . 7

2.1 Introduction to Graph Theory . 7

2.2 Adjacency Matrix and Eigenvalues . 9

2.3 Node centralities . 9

2.3.1 Structural centralities . 10

2.3.2 Iterative re�nement centralities 12

2.4 Description of Graph Datasets . 13

3 locating influential spreaders in social networks 17

3.1 Introduction . 17

3.2 Preliminaries and Background . 18

3.2.1 k-core decomposition . 19

3.2.2 K-truss decomposition . 19

3.2.3 Epidemic models . 21

3.2.4 The SIR model applied in networks 22

3.3 Related work . 22

3.4 K-truss decomposition for identifying in�uential nodes 23

3.5 Experimental Evaluation . 26

3.5.1 Datasets and Methodology . 26

3.5.2 Evaluating the spreading performance 27

3.5.3 Comparison to the optimal spreading 31

3.5.4 Impact of infection and recovery rate on the spreading process 36

3.6 Exploration of network centralities in spreading processes 39

3.6.1 Evaluation of Results . 40

3.7 Conclusions and Future Work . 44

4 influence maximization in social networks 47

4.1 Introduction . 47

4.2 Preliminaries and Background . 48

4.2.1 The In�uence Maximization (IM) problem 49

4.2.2 Diffusion Models . 50

4.3 Related work . 51

4.4 MATrix In�uence (MATI) Algorithm 52

4.4.1 In�uence in Social Networks 52

4.4.2 In�uence Computation under the LT Model 53

4.4.3 In�uence Computation under the IC Model 55

4.5 Experimental Evaluation . 57

4.5.1 Datasets .58

4.5.2 Baseline Algorithms . 58

xv

contents xvi

4.5.3 Experimental Results . 59

4.6 Conclusions and Future Work . 62

5 private , secure and distributed computation of k -cores . . 65

5.1 Introduction . 65

5.2 Problem Statement and Preliminiaries 66

5.2.1 Problem Statement . 67

5.2.2 Preliminaries and Background 68

5.3 Related work . 69

5.3.1 k-core Computation . 69

5.3.2 Core Maintenance . 69

5.3.3 Decentralized Personal Data Management Platforms 70

5.4 P2P Algorithm for Core Maintenance 70

5.4.1 Local variables . 71

5.4.2 Handling Messages and Events 71

5.4.3 Computing coreness estimations 73

5.4.4 Example . 75

5.5 Analytical and Experimental Study . 79

5.5.1 Analytical study . 79

5.5.2 Complexity: Experimental Study 86

5.6 Security and Privacy Analysis . 91

5.6.1 Attack Model . 91

5.6.2 Privacy and Information Quality 92

5.6.3 Experimental results . 92

5.7 Conclusions and Remarks . 97

6 concluding remarks . 99

6.1 Summary of Contributions and Future Work 99

6.2 Epilogue .101

bibliography .103

L I S T O F F I G U R E S

Figure 2.1 Examples of an undirected and a directed graph 8

Figure 2.2 Examples of a connected and a disconnected graph 8

Figure 2.3 Examples of a cyclic and an acyclic graph 9

Figure 2.4 Example of the k-core decomposition 11

Figure 3.1 State diagram of the SIR model 21

Figure 3.2 State diagram of the SIS model 22

Figure 3.3 Schematic representation of the maximal k-core and K-truss sub-

graphs of a graph. 24

Figure 3.4 Complementary cumulative truss number distribution function 28

Figure 3.5 Cumulative difference of the infected nodes per step achieved by

the truss method vs. the core and top degree methods (Continued

in Fig. 3.6) . 32

Figure 3.6 Cumulative difference of the infected nodes per step achieved by

the truss method vs. the core and top degree methods . . . 33

Figure 3.7 Spreading distribution of the nodes in the network 34

Figure 3.8 Distribution of the top-truss PT
W and top-core PC

W nodes among

the nodes with optimal spreading properties under a window of

size W . 35

Figure 3.9 Distribution of node's truss number with respect to the ranking

of the nodes under their spreading properties 37

Figure 3.10 Impact of infection and recovery probabilities of the SIR model

on the spreading process . 38

Figure 3.11 Complementary cumulative distribution function of nodes' (a)

degree, (b) core number and (c) truss number of the Epinions

dataset. 40

Figure 3.12 Evolution of the infected nodes' average (a) degree, (b) core num-

ber and (c) truss number during a simulated spreading process

for the Epinions dataset. 41

Figure 3.13 Comparison of the evolution of the infected nodes' average (a) de-

gree, (b) core number and (c) truss number, between a simulated

spreading process and real in�uence data for the H iggs-Twitter

dataset. 43

Figure 4.1 Illustration of the Linear Threshold model. 50

Figure 4.2 Example graph. 53

Figure 4.3 Illustration of Theorem 1. 55

Figure 4.4 In�uence spread in number of nodes for the different algorithms,

under the LT model. 60

Figure 4.5 In�uence spread in number of nodes for the different algorithms,

under the IC model. 61

Figure 4.6 Comparison of running times in seconds of the different algo-

rithms under the (a) LT and (b) IC models. 63

Figure 5.1 A simple example describing the static part of the algorithm. 76

Figure 5.2 A simple example describing the dynamic part of the algorithm. 78

Figure 5.3 Example graph . 80

Figure 5.4 Toy example to demonstrate the computation of q1, q2 and qN . 94

xvii

List of Figures xviii

Figure 5.5 Distribution of nodes in the top k-core subgraphs in the original

graph formats. 95

Figure 5.6 Normalized Quality qN of different percentages of top spreaders

selected from anonymized versions of real datasets. 96

L I S T O F TA B L E S

Table 2.1 Network datasets used in the thesis 15

Table 3.1 List of symbols and their de�nitions 19

Table 3.2 Properties of the real-world graphs used in the study 26

Table 3.3 Average number of infected nodes per step of the SIR model 29

Table 3.4 Cumulative number of infected nodes per step of the SIR model 30

Table 3.5 Network datasets used in Section 3.6. 39

Table 4.1 List of symbols used in Chapter 4. 48

Table 4.2 Properties of the real-world graphs used in Chapter 4. . . . 59

Table 4.3 Comparison of running times in seconds and in�uence spread in

number of nodes for different values of the parameter � . . . 62

Table 5.1 List of symbols and their de�nitions 67

Table 5.2 Properties of the real-world graphs used in Chapter 5. . . . 87

Table 5.3 ICS and PIICS statistics for NetHept network 87

Table 5.4 ICS and PIICS statistics for the EmailEnron network 88

Table 5.5 ICS and PIICS statistics for the WikiVote network 89

Table 5.6 ICS and PIICS statistics for the Epinions network 90

xix

1
I N T R O D U C T I O N

N
etworks have been getting a lot of attention the recent years. While various

kind of data can be naturally mapped to graph structures [126, 127], the sci-

enti�c study of networks has greatly bene�ted from a broad range of ideas

brought by specialists from different disciplines. Information networks, such as Web pages

linked together by hyperlinks [82], virtual networks of computers that allow sharing of

�les between computer users over local- or wide-area networks (i.e., Peer-to-peer net-

works) [84] or even citation networks between academic papers [57], have become cru-

cial towards information dissemination and detection of social patterns in the academic

world respectively. Biological networks, such as the network of metabolic pathways [150],

the networks of physical interactions between proteins [85] or genetic regulatory net-

works [76] can be used in order to better understand the phenomena that occur in

nature. Of great importance are also the technological networks, which include man-made

networks designed that distribute resources such as electricity or information: electric

power grids [157], the network of airline routes [5], roads [88] and of course the Inter-

net [59]. Last but not least come the social networkswhich represent a set of people with

some pattern of contacts (i.e., friendships, business relationships etc.) between them.

1.1 social networks and social influence

Social scientists have been meticulously studying social networks for decades [11, 156].

At �rst, studies concerned “small-world” cases such as: friendships within small groups

[121], studies of business communities [63, 64], patterns of sexual contacts [17, 87] etc.

The latest years, the Internet and the online social networking sites (e.g., Facebook, Twit-

ter, LinkedIn, Tumblr etc.) have caused a remarkable growth of research on social net-

works. This led to the development of many applications of social networks of which a

rich body of studies has been classi�ed as the analysis of in�uence or information diffusion

in social networks.

1.2 social influence examples

There exist various real-life phenomena that motivate the study of information propaga-

tion in social networks.

Let us consider a social network as Facebook, where a user Anna posts about her

having dinner at a speci�c restaurant in town. Such information is normally available to

Anna's friends. If Anna's friends react on Anna's post, then their friends have access to

this information too. In this way, the information contained in Anna's post is diffused

through the network.

A famous case that dates back to the1990s is the Hotmail phenomenon [83]. Back then

Hotmail wasn't a well-known e-mail service provider. The simple idea of attaching at

the end of each mail message a text that invited users to join the MSN Hotmail network,

had the effect of boosting the brand in just 8 months. The recipients of such messages

were inspired by the appended message to try it themselves and triggered other users in

their turn by sending them the same mail to behave similarly. The phenomenon diffused

very soon and Hotmail acquired 8 million users.

1

1.3 social influence analysis applications 2

In a famous study published in the New England Journal of Medicine, Christakis and

Fowler [43] analyzed a network of around 12 thousand people over a period of 32 years.

The focus of this study was on the smoking behavior of people and its association with

his/her social contacts. Their �ndings suggest that decisions to quit smoking are not

made by individual persons, but re�ect choices made by communities that are strongly

connected to each other. Similar results come from another study of the aforementioned

researchers [42] about the social in�uence of health conditions such as obesity. They

found that having an obese friend icreases by 171% the possibility for an individual to

be obese when compared to a random person.

Examples of social in�uence exist also in people's choice on entertainment such as

music. “ See you again”, Whiz Khalifa's music video which serves as a tribute to a beloved

actor who found tragic death in a car accident, reached a bit over 3 billion views on

YouTube almost two year after its release (i.e., April of 2015). It has overtaken “ Gangnam

Style” which was the �rst video to reach 1 billion views as of December 21, 2012. In

August 2017, only seven months after its release, “Despacito” reached 3,2 billion views

much quicker than the 26 months it took Wiz Khalifa's song to overtake Psy's “ Gangnam

Style.”

The power of diffusion has been various times utilized by people in various kinds

of disasters. During the Paris terror attack on the 13th of November in 2015, as the

events were taking place, millions of “tweets” were posted on Twitter. An analysis on the

respective “tweets” * showed that only the night of the attack, 1,07 million related posts

were published whereas until the 16th of November, that the situation still concurred

the world news, a total of 18,17 million “tweets” contained relevant information. In

the summer of 2011, in Vancouver, Canada, rioters that followed the Stanley Cup �nal

destroyed public properties in the center of the city †. This triggered broad reactions of

disgust which resulted in vast amounds of footage data: 5000h worth of 100 types of

digital video available for forensic analysis. The data helped the police to analyze the

riot behavior.

1.3 social influence analysis applications

In�uence propagation studies have found applications in various �elds. From studying

human, animal or even plant epidemics [78, 92, 133] to viral marketing [99], social media

analytics [161], spread of rumors [122], expert �nding [9], recommendation systems [81,

106, 152] etc.

A key task in order to understand information and in�uence diffusion is the identi-

�cation of vital nodes that play a signi�cant role in such cases. Such nodes may allow

us to control the spread of an epidemy [48, 129], to predict successful scientists and sci-

enti�c publications based on co-authorship and citation networks [54, 135, 165], design

in�uential advertisements for new products [99, 110] etc.

For example, in the case of virus propagation, such as in�uenza, the transmission

of the disease mainly depends on the extend of contacts of the infected person to the

susceptible population; thus, being able to locate and vaccinate individuals with good

spreading properties can prevent from a potential outbreak of the disease, leading to

ef�cient strategies of epidemic control. In a similar way, suppose that our goal is to

promote an idea or a product in order to be adopted by a large fraction of individuals

in the network. A key idea behind viral marketing is the word-of-mouth effect [153];

individuals that have already adopted the product, recommend it to their friends who

* http://tipsandviz.blogspot.fr/ 2015/ 11/parisattacks-how-twitter-tells-story.html
† https://en.wikipedia.org/wiki/ 2011_Vancouver_Stanley_Cup_riot

1.4 thesis statement and overview of contributions 3

in turn do the same to their own social circle, forming a cascade of recommendations

[56]. The basic question here is how to target a few initial individuals (e.g., by giving

them free samples of the product or explaining them the idea), that can maximize the

spread of in�uence in the network, leading to a successful promotion campaign.

Nevertheless, locating such users in a network is not a trivial task and numerous

research has been conducted to solve the problem in the area [111]. It has been of signi�-

cant importance to identify such nodes that will maximize the in�uence and information

diffusion at the end of a respective phenomenon in a network. The problem is actually

split into two subtopics: i) Identi�cation of individual in�uential nodes that have good

spreading properties and ii) Identi�cation of a group of nodesthat by acting all together

will maximize the total spread of in�uence in a network. Indeed the two tasks greatly

differ as �nding a ranking of the nodes that by acting individually can in�uence a great

part of the network cannot be directly used in order to discover the set of nodes that

will – by acting at the same time – maximize the spreading of information in a graph. Of

course this is justi�ed by the fact that putting some of the most in�uential spreaders to-

gether will not result in a most in�uential set of such spreaders, because their respective

in�uences may be and is usually largely overlapped.

The above are the topics that triggered the discoveries of this dissertation which is

involved in graph mining techniques towards studying and analyzing social in�uence

and speci�cally the identi�cation of the nodes that play a key role in in�uence propaga-

tion. To that end, we propose models and algorithmic tools to address the challenging

problems which arise in this area.

1.4 thesis statement and overview of contributions

This thesis contributes algorithms, tools, models and new insights to problems that

arise in the area of graph mining for in�uence maximization in social networks. We

speci�cally:

• Develop tools for analyzing the spreading behavior of individual nodes in complex

networks. Special focus is given on ways that can ef�ciently rank the users based

on their in�uential capabilities.

• Design algorithms that can locate a privileged group of nodes that – by acting

all together – can maximize the spread of in�uence in a network at the end of a

diffusion phenomenon.

• Develop models that can calculate metrics which measure the in�uence of an indi-

vidual in a network in a secure and private way.

Next, we provide an overview of the contributions of the dissertation with respect to

the above points.

1.4.1 Identi�cation of individual in�uential spreaders

What characterizes the nodes that rank high in terms of their spreading performance?

Locating the users that can ef�ciently spread information through the network is

not a trivial task. It is an even more challenging task when no personal information

is provided for the users (i.e., age, sex, occupation, city of residence etc.). Usually the

network is presented as a set of connections that represent some type of relationship

between two users which are labelled with numerical ids. A straightforward metric

that someone might think that affects users' spreading capabilities is the number of

1.4 thesis statement and overview of contributions 4

connections that they have. Even though this can be true for some cases, it has been

showed that the metrics that are more ef�cient are those that can locate nodes that are

well connected in the network. The k-core decomposition is one of such metrics and has

also been proven to work well towards our primary goal.

In this part of the thesis (Chapter 3) we capitalize on the properties of the K-truss

decomposition, a triangle-based extension of the k-core decomposition towards locating

in�uential nodes. By simulating a spreading phenomenon on real networks triggered

by the nodes identi�ed by our method we prove that the latter show better spreading

behavior compared to previously used importance criteria, leading to faster and wider

epidemic spreading. We additionally present an extensive analysis of the nodes that

conquer the top places in the optimal spreading ranking. We can conclude that, the

K-truss decomposition can reveal nodes that tend to have good spreading properties –

with the speci�c metric being highly related to the spreading effect.

Finally, we investigate the topological characteristics of individuals that are in�uenced

and that participate in a diffusion process and present the patterns that are detected. We

provide a comparison of the individuals' characteristics between a simulated and a real

world spreading process and show the need for a more comprehensive model in this

area.

1.4.2 Identi�cation of a group of in�uential spreaders

How can someone locate a group of nodes that can maximize the total in�uence in the

network?

As mentioned earlier, the current task greatly differs than the one described in the pre-

vious subsection. The nodes that are discovered using such methods cannot be directly

used in order to discover the set of nodes that – by acting at the same time – can maxi-

mize the total in�uence in the network. That is justi�ed by the fact that the in�uence of

one can overlap with the in�uence of another top spreader.

The problem of In�uence Maximization– as it is usually called – constitutes an NP-hard

problem. A simple greedy algorithm has been proved to provide good approximation

guarantees. Nevertheless, there are obviously serious scalability concerns – the greedy

algorithm cannot provide results as soon as needed for large-scale networks.

We are proposing an ef�cient algorithm that can be used under the most famous

diffusion models in the �eld: the Linear Thresholdand Independent Cascademodels. Our

algorithm takes into consideration the possible paths that are created in each node's

neighborhood and pre-calculates the nodes' in�uences. By performing extensive experi-

ments in real datasets, we have shown that it is competitive regarding both the quality of

seed nodes and the running time when compared to state-of-the-art algorithms (Chapter

4).

1.4.3 Secure and Private computation of in�uential metrics

How can we calculate in a secure and privacy preserving way an in�uential indicator?

Identifying the in�uential entities in a social network requires sharing its structure to

the entity concerned. However, distribution of such information raises serious privacy

concerns. In order to securely and privately compute in�uential nodes in a network, we

propose a distributed peer-to-peer algorithm. We constrain our algorithm on the basis

that it should not be feasible for an attacker to reconstruct partially or entirely the graph

using the information that can be obtained during its execution.

1.5 outline of the thesis 5

Speci�cally, our distributed algorithm computes the k-core number of each node

which has been proved to ef�ciently rank the nodes in a network based on their spread-

ing capabilities. Our main contribution is an incremental algorithm that succeeds in

computing such a metric for a network that evolves over time. We show via experiments

in real datasets that our solution ful�lls the security and privacy requirements against

typical attack models.

1.5 outline of the thesis

The rest of the dissertation is organized as follows. In Chapter 2 we present basic con-

cepts and background material that will be used throughout the dissertation. The next

two Chapters are devoted to our work concerning identi�cation of in�uential spreaders;

in particular, in Chapter 3 the methods towards identi�cation of individual spreaders is

presented while in Chapter 4 we present our algorithm that ef�ciently locates a group of

privileged users in social networks. In Chapter 5 we present our work towards a secure

and private computation of k-cores. Finally, in Chapter 6, we offer concluding remarks

about the topics covered in the dissertation and future research directions.

2
B A S I C C O N C E P T A N D P R E L I M I N A R I E S

I
n this Chapter we provide the basic concepts and background theory that will

be used throughout the thesis. Initially a basic introduction to graph theory is

given along with the de�nitions of the node centralities that will be mentioned

throughout the Chapters. The k-core decomposition is given special attention as it is a

basic concept of the thesis, speci�cally for Chapters 3 and 5. Finally, the graph datasets

that have been used for the experiments in the Chapters to follow are described. In each

Chapter, the necessary background is presented in the respective section along with the

symbols that will be used.

2.1 introduction to graph theory

A network is represented as a graph (the terms graph and network are used interchange-

ably throughout the dissertation). A graph is a pictorial representation of a set of objects

some of the pairs of which are connected with links. Formally a graph G is a pair of

sets (V,E) where V is the set of vertices and E is the set of edges connecting the pairs

of vertices. The number of nodes in the graph is equal to n = |V| and the number of

edgesm = |E| .

There are different types of graphs depending upon the number of vertices and edges,

the interconnectivity and their overall structure. Some of those are de�ned below. Fig-

ures 2.1 to 2.3 depict some examples of different types of graphs.

De�nition 2.1. Null Graph

A null graph G = (V; E) containsn isolated nodes and no edges among them. They are also called

endless graphs.

De�nition 2.2. Directed and Undirected Graph

• In a directed graphGD = (V; E), every edge(u; v) 2 E links nodeu to nodev (ordered

pair of nodes).

• An undirected graphG = (V; E) is a directed one where if edge(u; v) 2 E, then edge

(v; u) 2 E as well.

De�nition 2.3. Weighted Graph

Every edge(u; v) 2 E in a weighted graphG = (V; E) is associated with a real numberwuv

called itsweight .

path A path is de�ned as a sequence of nodes v1; v2; :::; vN - 1; vN . Every consecutive

pair of nodes in the path vk ; vk +1 is connected with an edge. For a directed graph the

notion of the path is extended as follows: in a directed patha directed edge should exist

from each node of the sequence to the next node. Two nodesu; v 2 V are called connected

if there is a path in the graph from node u to node v.

De�nition 2.4. Connected and Disconnected Graph

• In a connected graphG = (V; E) there exists a path between every pair of vertices. There

should be at least one edge for every vertexu in the graph so that it is connected to some

other vertexv at the other side of the edge.

7

2.1 introduction to graph theory 8

1 1
(a) Undirected graph (b) Directed graph

Figure 2.1: Examples of (a) an undirected and (b) a directed graph. In the case of the directed
graph (b), the arrows indicate the directionality of each edge.

1 1
(a) Connected graph (b) Disconnected graph

Figure 2.2: Examples of (a) a connected and (b) a disconnected graph. In the connected graph
we observe that each vertex has its edge connected to another edge whereas in the
disconnected graph there exist two components which are not connected to each
other.

• A graph G = (V; E) is disconnected if there exists at least a nodeu which is not connected

to another nodev.

De�nition 2.5. Cyclic and Acyclic Graph

• A cyclic graphG = (V; E) is a graph that contains at least one cycle: the starting vertex of

its �rst edge equals the ending vertex of its last edge.

• An acyclic graphG = (V; E) is a graph that contains no cycles.

degree In an undirected graph G = (V; E), a node v 2 V has a degreedG (v) = d if

it has d incident edges. For the case of a directed graph, every node is characterized

by two types of degrees: its in-degreeand its out-degree. The in-degreeof node v equals

to the number of incoming edges din
G (v) = juj(u; v) 2 Ej whereas its out-degreeequals to

the number of outcoming edges dout
G (v) = juj(v; u) 2 Ej. In undirected graphs din

G (v) =

dout
G (v).

De�nition 2.6. Simple, Regular and Complete Graph

• A graph G = (V; E) is a simple graph when it does not contain any loops (i.e., there exist

no edges connecting a vertex to itself) or any parallel edges (i.e., edges that are incident to

2.2 adjacency matrix and eigenvalues 9

a

b d

c

e

f

g

1

a

b d

c

e

f

g

1
(a) Cyclic graph (b) Acyclic graph

Figure 2.3: Examples of (a) a cyclic and (b) an acyclic graph. In the cyclic graph, we have two
cycles a-b-c-d-a and d-e-f-g-d whereas in the acyclic we observe no cycles.

the same two vertices). The maximum number of edges possible in a single graph withn

vertices is equal ton C2 = n(n - 1)=2. The number of simple graphs possible withn nodes

is 2
n C 2 = 2n (n - 1)=2.

• The vertices of a regular graphG = (V; E) have the same degree. If8v 2 V : dG (v) = k

then the graph is called ak-regular graph.

• Every pair of nodes in a complete graphG = (V; E) is connected by a unique edge. A

complete graph withn vertices hasm =
� n

2

�
= n(n - 1)=2 edges.

For a complete introduction to the �eld of complex networks, the reader may refer to

Refs. [19, 24, 34, 126].

2.2 adjacency matrix and eigenvalues

Every type of graph can be represented as a matrix. This matrix is called the adjacency

matrix A of the graph. Matrix A is a square matrix of size n � n where the rows and

columns represent the nodes of the graph and the entries indicate whether there exists

an edge between the respective pair of nodes.

De�nition 2.7. Adjacency Matrix [18]

The adjacency matrixA of a graphG = (V; E) is an � n matrix such that:

Auv =

8
<

:
auv ; if (u; v) 2 E; 8 u; v 2 1; : : : ; n

0; otherwise.
(2.1)

For weighted graphs, each value auv represents the weight associated with each edge

(u; v) while for unweighted graphs auv = 1; 8(u; v) 2 E. For a simple graph with no self-

loops, the adjacency matrix must have zeros on the diagonal. For an undirected graph,

the adjacency matrix is symmetric.

Let A be a symmetric matrix. A vector u is de�ned as an eigenvectorof A if and only if

Au =� u, where � is a scalar calledeigenvaluecorresponding to u. Then A can be written

as A = U � UT . The orthogonal matrix U contains as columns the eigenvectorsu1, u2,

..., un of A that correspond to real eigenvalues � 1 > � 2 > ... > � n and � = diag (� 1, � 2.

..., � n) the diagonal matrix with the eigenvalues as entries.

2.3 node centralit ies

The concept of centrality is being used in order to de�ne a node's importance according

to its involvement in the network [20, 25, 26, 61]. In general centrality measures assign

2.3 node centralit ies 10

values to the nodes of a graph which can be used to rank the latter subject to their im-

portance in the network. The different centralities that will be presented can be split in

two subcategories:

i) Structural centralitieswhich can be obtained exclusively on structural information.

ii) Iterative re�nement centralitieswhich use dynamical processes and iterative re�ne-

ment methods to explore the nodes' structural properties.

2.3.1 Structural centralities

Structural centralities can be further classi�ed into neighborhood-basedand path-basedcen-

tralities.

2.3.1.1 Neighborhood-based centralities

Degree centrality

As described earlier in the Chapter, the degree dG (v) of a node v of an undirected

network G = (V; E) represents the number of incindent edges on this node. It can also be

calculated as follows: dG (v) =
P

u auv where A = fAuv gis the adjacency matrix of the

graph and u 2 Neighbors (v).

Degree centrality is used for a wide range of applications due to its simplicity and

low-computational complexity. In some cases, degree acts exceptionally good. When the

rate of the spreading of information is very low, degree can identify better the in�uential

capabilities of nodes than some other centralities which on average are better in�uen-

tial indicators [94, 107]. Additionally, concerning network vulnerability, degree-targeted

attack can destroy scale-free networks and exponential networks very effectively [86].

As mentioned before, nodes in directed networks are characterized by two types of

degrees the in-degreeand the out-degreebased on whether the incoming or outcoming

edges of the node are taken into account respectively. In weighted graphs degree is

usually replaced by the strength which is de�ned as the sum of weights of the node's

associated edges.

k-core centrality

The k-core centrality or node's core number or corenessis a number assigned to each

node after the k-core decomposition of the network. The k-core decomposition is a

hierarchical decomposition of the graph into nested subgraphs. Let G = (V; E) be an

undirected graph with k 2 Z and k > 0.

De�nition 2.8. k-core subgraph

Let H be a subgraph ofG, (i.e.,H � G). SubgraphH is de�ned to be ak-core subgraph ofG,

denoted byCk , if it is a maximal connected subgraph in which all nodes have degree at leastk.

De�nition 2.9. Node's Core Number

A node i has core numberci = k, if it belongs to ak-core but not to any(k + 1)-core.

It is evident that if all the nodes of the graph have degree at least one, i.e., d(v) >

1; 8v 2 V, then the 1-core subgraph corresponds to the whole graph, i.e., C1 � G. Further-

more, assuming that Ci ; i = 0; 1; 2; : : : ; kmax is the i -core of G, then the k-core subgraphs

are nested, i.e.:

2.3 node centralit ies 11

3-core

2-core

1-core

Core number Core number Core numberc = 1 c = 2 c = 3

Figure 2.4: Example of the k-core decomposition.

C0 � C1 � C2 � : : : � Ck max : (2.2)

Typically, subgraph Ck max is called maximal k-core subgraph of G. Figure 2.4 depicts

an example of a graph and the corresponding k-core decomposition.

Computing the k-core decomposition of a graph can be done through a simple process

that is based on the following property: to extract the k-core subgraph, all nodes with

degree less than k and their adjacent edges should be recursively deleted [145]. That

way, beginning with k = 0, the algorithm removes all the nodes (and the incident edges)

with degree equal or less than k, until no such nodes have been remained in the graph.

Also notice that, removing edges that are incident to a node may cause reductions to the

degree of neighboring nodes; the degree of some nodes may become at mostk, and thus,

they should also be removed at this step of the algorithm. When all remaining nodes

have degree d(v) > k , k is increased by one and the process is repeated until no more

remaining nodes have left in the graph. Since each node and edge is removed exactly

once, the running time of the algorithm is O(n + m) [116]. Batagelj and Zaveršnik later

proposed an O(m) algorithm for k-core decomposition [15] presented in 2.1.

Algorithm 2.1 k-core decomposition

1: Input: Undirected graph G = (V; E)

2: Output: Vector of core numbers ci , i = 1; 2; :::n = jVj

3: Compute the degrees of each nodedG (v); 8v 2 V

4: Order the nodes in increasing order of their degrees dG (v)

5: for eachv 2 V do

6: cv dG (v)

7: for eachu 2 Neighbors (v) do

8: if dG (u) > d G (v) then

9: dG (u) dG (u) - 1

10: Reorder V accordingly
return Core numbers ci ; 8i 2 V

2.3 node centralit ies 12

This algorithm considers unweighted and undirected graphs. Nevertheless lot of ef-

fort has been made from researchers towards extending the k-core decomposition to

other types of graphs. Refs. [58, 65, 68] present extensions on weighted graphswhile

Giatsidis et. al [67] present an extension for directed graphs. A core decomposition on

probablistic graphsis proposed by Bon-chi et. al [23]. In a probabilistic or uncertain graph

every edge is associated with a probability of existence.

2.3.1.2 Path-based centralities

Closeness centrality

In a connected graph G = (V; E) the closeness centrality of a node is calculated as the

sum of the length of the shortest paths between the node and all other nodes in the

graph. For a node v 2 V it can be calculated as follows [62, 142]:

CCv =
n - 1

P
u 6=v duv

(2.3)

where n = jVj and duv expresses the distance between verticesu and v. Nevertheless,

when the graph is not connected there exist some node pairs for which duv = 1 . In

this case closeness centrality is de�ned in terms of the inverse of the harmonic mean

distances between the nodes:

CCv =
1

n - 1
1

P
u 6=v duv

(2.4)

Betweeness centrality

The betweeness centrality [16, 146, 147] is a centrality measure based on the notion

of shortest paths between nodes. In an unweighted and connected graph, there exists

between every pair of nodes one shortest path such that the number of edges passing

through is minimized. For weighted and connected graphs it is the sum of the weights

that is minimized [61]. Then, the betweeness centrality of each node is the number of

these shortest paths passing through this node. It is calculated as follows:

BCv =
X

v6=x;v 6=y;x 6=y

gv
xy

gxy
(2.5)

where gxy is the number of the shortest paths between nodes x and y and gv
xy is the

number of the paths which pass through v among all the shortest paths between x and

y.

2.3.2 Iterative re�nement centralities

Eigenvector centrality

The eigenvector centrality of a node v is proportional to the summation of the central-

ities of the nodes to which it is connected [21]. It is a measure of the importance of a

node, denoted by xv and is calculated as follows:

xv = c
nX

u =1

avu xu (2.6)

where c = 1=� . c is a proportionality constant and � is the largest eigenvalue of the

adjacency matrix A. The eigenvector centrality can be ef�ciently computed via the power

2.4 description of graph datasets 13

iteration method [79] at the beginning of which each node is assigned with a score of

1. Every node shares its score in an even way to its neighbors and receives a new value

during every iteration of the method. The process ends when the values of each node

reach a steady state.

PageRank

PageRank (PR) is a famous variant of the eigenvector centrality which supposes that

the importance of an entity in a network is determined by both the quantity and the

quality of its connected neighbors. The PageRank algorithm [29] that calculates the re-

spective centrality is used to rank webpages in the Google search engine but also for

other scenarios in the commercial sector. It distinguishes the importance of a webpage

by performing a random walk on the network created by the linked webpages (i.e., one

website referring to another creates a link between them). Initially, a node in the network,

or equivalently a webpage, is assigned on unit PR value. Then every node distributes its

PR value to its neighbors evenly using its outgoing edges. The PR value for a node v of

graph G at a speci�c step t can be calculated as follows:

PRv (t) =
nX

u =1

avu
PRu (t - 1)

dout
G (u)

(2.7)

where n is the total number of nodes in G, u 2 Neighbors (v) and dout
G (u) is the

out-degree of node u. The algorithm stops when the PR values reach a steady state.

Nevertheless, Eq. 2.7 cannot guarantee converge in some cases. An example of such a

case is the existence of nodes with zero out-degree that cannot redistribute their PR

value. For that reason, a jumping factor has been introduced assuming that the user will

visit a web page with probability p, and close the current page and open a random page

with probability 1-p.Then Eq. 2.7 is modi�ed as follows:

PRv (t) = p
nX

u =1

avu
PRu (t - 1)

dout
G (u)

+ (1 - p)
1
n

(2.8)

2.4 description of graph datasets

In this section, we brie�y describe the graph datasets used in this thesis. We have con-

sidered data from different domains, including social, collaboration, information and

technological networks. All datasets are publicly available. Table 2.1 provides a sum-

mary of the network statistics.

(i) Email -Enron . This email communication network created by email interaction

between the members of Enron Corporation, and made public by the Federal Energy

Regulatory Commission during its investigation [95]. It covers data from 150users and

a total of half a million messages. Each node represents an email address and an undi-

rected edge was formed between two nodes if at least an address i sent an email to

address j .

(ii) Email -EuAll . This email network was collected from email communication of a

large research institution [101]. To create the graph, each email address is considered as

a node and an edge is created between two nodes if the latter have exchanged messages

both ways. Overall there are 3; 038; 531emails between 287; 755different email addresses

recorded from October 2003to May 2005.

2.4 description of graph datasets 14

(iii) E pinions . This is a trust-based (who-trusts-whom) online social network between

the members of the Epinions.com (www.epinions.com) product review website [137].

The nodes of the network correspond to users of the website and the edges capture

trust relationships between them. Although the network is signed, in our experiments

we discard this information; we also convert the graph to an undirected one to use it on

our experiments.

(iv) W iki -Vote . The graph was created from the online encyclopedia Wikipedia (www.

wikipedia.org) and more precisely from the elections conducted to promote users to

administrators (till January 2008) [100]. The nodes of the social network correspond to

Wikipedia users and an edge between users i , j denotes that user i voted for user j .

(v) Wiki -Talk . This network is also created by data imported from Wikipedia [100].

Each user has a talk page where all interested users can edit to update various articles

on Wikipedia. The speci�c dataset contains all discussions between users until January

2008. The nodes of this network correspond to users of Wikipedia and an edge from

node i to node j indicates that user i edited a talk page of user j at least once.

(vi) Slashdot . Slashdot (slashdot.org) is a technology news website. The nodes of

the social network that is created correspond to users and the edges capture friendship

relationships among them (till February 2009) [103]. In fact, users are able to tag other

users as friends or foes, forming a signed social network with positive and negative

types of edges. In our experiments, we do not take into account the type of the edges.

(vii) H iggs Twitter Dataset . The Higgs Twitter dataset has been built after consid-

ering the information spreading process that was triggered after the announcement of

the discovery of a new particle with the features of the elusive Higgs boson. The mes-

sages considered date between1st and 7th July 2012. The activities that were taken

into account in order to build the dataset are: i) re-tweets, ii) replies and iii) mentions.

Of course the relations among users (friends/followers) relationships and information

about activity on Twitter during the boson discovery were also taken into account.

(viii) N et HEPT.: The dataset constitutes a collaboration network taken from the “High

Energy Physics (Theory)" section of http://arxiv.org, with nodes representing authors and

edges capturing co-authorship relationships. Here, a user publishing a paper is consid-

ered as an action.

www.epinions.com
www.wikipedia.org
www.wikipedia.org
slashdot.org

2.4 description of graph datasets 15

N
et

w
or

k
jV

j
jE

j
D

es
cr

ip
tio

n

E
m

ai
l

-E
nr

on
33

;6
96

18
0;

81
1

E
-m

ai
lc

om
m

un
ic

at
io

n
ne

tw
or

k

E
m

ai
l

-E
u

A
ll

22
4

;8
32

34
0;

79
5

E
-m

ai
lc

om
m

un
ic

at
io

n
ne

tw
or

k

E
pi

ni
on

s
75

;8
77

40
5;

73
9

W
ho

tr
us

ts
w

ho
m

ne
tw

or
k

W
ik

i-
V

ot
e

7
;0

66
10

0;
73

6
E

le
ct

io
ns

of
W

ik
ip

ed
ia

ad
m

in
is

tr
at

or
s

W
ik

i-
Ta

lk
2

;3
88

;9
53

4;
65

6;
68

2
U

se
r

co
m

m
un

ic
at

io
n

in
W

ik
ip

ed
ia

Sl
as

hd
ot

82
;1

68
58

2;
53

3
S

la
sh

do
ts

oc
ia

ln
et

w
or

k
(F

eb
.'

09
)

H
ig

gs
45

6;
62

6
14

;8
55

;8
42

H
ig

gs
Tw

itt
er

D
at

as
et

(M
ar

.'
15

)

N
et

H
ep

t
15

;2
33

62
;7

74
“H

ig
h

E
ne

rg
y

P
hy

si
cs

-
T

he
or

y”
co

lla
bo

ra
tio

n
ne

tw
or

k

Ta
bl

e
2.

1:
N

et
w

or
k

da
ta

se
ts

us
ed

in
th

e
th

es
is

,a
lo

ng
w

ith
ba

si
c

st
at

is
tic

s:
ni

m
be

r
of

no
de

s
jV

j;
nu

m
be

r
of

ed
ge

s
jE

j.

3
L O C AT I N G I N F L U E N T I A L S P R E A D E R S I N S O C I A L N E T W O R K S

U
nderstanding and controlling spreading processes in networks is an important

topic with many diverse applications. The problem which is of crucial impor-

tance for this task is to identify which entities act as in�uential spreaders. Our

focus of this Chapter is to identify the entities that while acting individually can propa-

gate information to a large portion of the network. We capitalize on the properties of the

K-truss decomposition, a triangle-based extension of the core decomposition of graphs,

to locate individual in�uential nodes. Our analysis on real networks indicates that the

nodes belonging to the maximal K-truss subgraph show better spreading behavior com-

pared to previously used importance criteria, including node degree and k-core index,

leading to faster and wider epidemic spreading. We further explored the centralities of

the entities that are involved in a spreading process and showed that epidemic models

cannot reproduce real world diffusion.

3.1 introduction

Spreading processes in complex networks have gained great attention from the research

community due to the plethora of applications that they occur. Typically, the interactions

among individuals are responsible for the formation of information pathways in the

network and to this extend, their position and topological properties have direct effect to

the spreading phenomena occurring in the network. That way, a fundamental aspect on

understanding and controlling the spreading dynamics is the identi�cation of in�uential

spreaders that can diffuse information to a large portion of the network.

As we discussed in the Introduction, the problem of identifying nodes with good

spreading properties in networks, can be split in two subtopics: (i) identi�cation of in-

dividual and (ii) identi�cation of a group of nodes that are able to maximize the total

spread of in�uence. In this Chapter, we focus on the problem of identifying single in-

�uential spreaders in networks. A straightforward approach towards �nding effective

spreading predictors, is to consider node centrality criteria and in particular the one

of degree centrality. In fact, several studies have examined how the existence of heavy-

tailed degree distribution in real-world networks [2, 59, 126] is related to cascading

effects concerning the robustness of such complex systems [2, 3, 49, 128]. Nevertheless,

there exist cases where a node can have arbitrarily high degree, while its neighbors are

not well-connected, making degree a not very accurate predictor of the spreading prop-

erties. For example, this can occur when a high degree node is located to the periphery

of the network. In fact, the spreading properties of a node are strongly related to the

ones of its neighbors in the graph, and thus, global centrality criteria seem to be more

appropriate for this task.

Of particular importance is the work by Kitsak et al. [93], which stressed out that

highly connected nodes or those having high betweenness and closeness centralities,

have little effect on the range of the spreading process. The main �nding of their work

was that, less connected but strategically placed nodes in the core of the network, are

able to disseminate information to a larger part of the population. To quantify the core-

periphery structure of networks, they applied the k-core decomposition algorithm [15,

31, 145] – a pruning process that removes nodes which do not satisfy a particular degree-

17

3.2 preliminaries and background 18

based threshold. Their results indicated that nodes belonging to the maximal k-core

subgraph are able to infect a larger portion of the network, compared to node degree or

betweenness centrality, making the k-core number of a node a more accurate spreading

predictor. Furthermore, extracting the k-core subgraph is a more ef�cient task compared

to the heavy computation required by some centrality criteria (e.g., betweenness). Nev-

ertheless, the resolution of k-core decomposition is quite coarse; depending on the struc-

ture of the network, many nodes will be assigned the same k-core number at the end

of the process, even if their spreading capability differs from each other. Furthermore,

building upon the good performance of the k-core decomposition, several extensions

have been proposed [7, 13, 27, 80, 130, 160, 162].

Our proposed approach moves on a similar axis as the one by Kitsak et al. [93]; we

argue that the topological properties of the nodes play a crucial role towards under-

standing their spreading capabilities. In particular, we consider that only a relatively

small fraction of the nodes extracted by the k-core decomposition method corresponds

to highly in�uential nodes. To that end, we propose the K-truss decomposition of a

graph [47, 154, 163], a triangle-based extension of the k-core decomposition, as a more

accurate method to identify privileged spreaders. The algorithm is able to extract a more

re�ned and even more dense subgraph of the initial graph – compared to the k-core de-

composition – as the K-truss is structurally more close to a clique.

The main contributions of this work can be summarized as follows:

• K-truss decomposition for locating in�uential nodes:The K-truss decomposition algo-

rithm is proposed, as a mechanism to identify nodes with good spreading proper-

ties in the network.

• Evaluation of our proposed approach on real graphs:We used large scale real-world

graphs while performing our experiments and showed that the maximal K-truss

subgraph of the network can reveal those nodes that show better spreading behav-

ior compared to previously used importance criteria.

• Exploration of the centralities of the entities involved in a diffusion process:We performed

additional experiments where we trigger a diffusion process by different groups

of in�uential spreaders and study the centralities of the entities involved in the

process. We also compare the simulated diffusion process with real in�uence and

discuss the capability of epidemic models in reproducing a real diffusion.

The rest of the Chapter is organized as follows. Section 3.2 presents the background

concepts that are used throughout the Chapter and Section 3.3 reviews the related lit-

erature on the problem of identifying individual in�uential nodes in networks. Then,

in Section 3.4 we present the proposed method for locating in�uential spreaders. Sec-

tion 3.5 presents a detailed experimental evaluation of our method. In Section 3.6 we

explore the centralities of the entities that are involved in a spreading process. Finally,

in Section 3.7 we present concluding remarks.

3.2 preliminaries and background

In this Section we present the preliminary concepts upon which we present the �ndings

of this Chapter. We brie�y recall the notion of the k-core decomposition, present the K-

truss decomposition and the epidemic models that are used in order to locate individual

in�uential spreaders in networks. A list of the symbols used in the Chapter is presented

in Table 3.1.

3.2 preliminaries and background 19

Symbol De�nition

G = (V; E) Undirected graph G

V; E Node and edge set of graph G

n = jVj; m = jEj Number of node and edges of G

dv Degree of node v 2 V

cv Core number of node v 2 V

Nb (v) Set of neighbors of node v

4 uvw Triangle subgraph de�ned by nodes u; v; w

TK K-truss subgraph

Ck k-core subgraph

t edge (e) Truss number of edge e 2 E

t v Truss number of node v 2 V

C Set of nodes with maximum core number value c

T Set of nodes with maximum t v value

D Set of nodes with maximum dv values

M v Average infection size caused by node v

� Epidemic threshold

Table 3.1: List of symbols and their de�nitions.

3.2.1 k-core decomposition

Let G = (V; E) be an undirected graph with n = jVj nodes and m = jEj edges and let H

be a subgraph of G, i.e., H � G. Subgraph H is de�ned to be a k-core subgraph of G,

denoted by Ck , if it is a maximal connected subgraph in which all nodes have degree at

least k. Then, each nodev 2 V has a core numbercv = k, if it belongs to a k-core but not

to a (k + 1)-core. We denote asC the set of nodes with the maximum core number kmax

(i.e., the nodes of the k-core subgraph of G that corresponds to the maximum value of

k) [145]. A detailed description is given in Chapter 2, Section2.3.1.1.

3.2.2 K-truss decomposition

The K-truss decomposition extends the notion of k-core using triangles, i.e., cycle sub-

graphs of length 3 [47, 154].

De�nition 3.1. (Triangle subgraph). LetG = (V; E) be an undirected graph. We de�ne as a

triangle 4 uvw a cycle subgraph of nodesu; v; w 2 V. Additionally, the set of triangles ofG is

denoted by4 G .

De�nition 3.2. (Edge support). The support of an edgee = (u; v) 2 E is de�ned assup(e; G) =

jf4 uvw : 4 uvw 2 4 G gjand expresses the number of triangles that contain edgee.

De�nition 3.3. (K-truss subgraph). Then, theK-truss, K > 2, denoted byTK = (VTK ; ETK), is

de�ned as the largest subgraph ofG, where every edge is contained in at leastK - 2 triangles

within the subgraph, i.e.,8e 2 ETK ; sup(e; TK) > K - 2.

De�nition 3.4. (Edge truss number). The truss number of an edgee 2 E is de�ned ast edge (e) =

maxfK : e 2 ETK g. Thus, if t edge (e) = K, then the edge belongs toTK but not to TK +1, i.e.,

e 2 ETK but e 62ETK +1. We useKmax to denote the maximum truss number of any edgee 2 E.

3.2 preliminaries and background 20

Algorithm 3.1 K-truss decomposition

1: Input: Undirected graph G = (V; E)
2: Output: K-truss subgraphs, for 3 6 K 6 Kmax

3: K 2
4: for eache = (u; v) 2 E do
5: sup(e) = jNb (u); Nb (v)j

6: while jEj6= ; do
7: while (9e = (u; v) : sup(e) < K - 2) do
8: W Nb (u) \ Nb (v)
9: for eache0 = (u; w) or e0 = (v; w), where w 2 W do

10: sup(e0) sup(e0) - 1

11: Remove e from G

12: Output G as the K-truss subgraph
13: K K + 1

return TK for 3 6 K 6 Kmax

De�nition 3.5. (K-class). TheK-class of a graphG = (V; E) is de�ned as� K = fe : e 2

E; � edge (e) = Kg.

Based on the above de�nitions, we can now introduce the concept of K-truss decom-

position.

De�nition 3.6. (K-truss decomposition). Given a graphG = (V; E), theK-truss decomposition

is de�ned as the task of �nding theK-truss subgraphs ofG, for all 2 6 K 6 Kmax. That is,

the K-truss can be obtained by the union of all edges that have truss number at leastK, i.e.,

ETK =
S

j > K � j .

The computation of the K-truss subgraph, for a speci�c value of K > 2, follows similar

methodological procedure as the one of k-core, where instead of the degree of a node,

we examine the number of triangles that the node participates to: remove all edges

e = (u; v) 2 E if they do not participate to at least K - 2 triangles, i.e., jN(u); N(v)j6 K - 2.

We denote as T the set of nodes with maximum node truss number (in other words,

this set contains the nodes of the maximal K-truss subgraph). Algorithm 3.1 presents the

K-truss decomposition of a graph [154].

The complexity of Algorithm 3.1 is polynomial. In general, the computation of the

support values in Step 5, i.e., the number of triangles that each edge participates to,

can be done in O(d2
max) time, where dmax is the maximum degree in G. Step 8 of the

algorithm requires time O(d(u) + d(v)) for each edge e = (u; v) 2 E, giving total time

complexity proportional to O
� P

e=(u;v)2 E d(u) + d(v)
�

= O
� P

v2 V d2(v)
�

. Also, the

algorithm starts from an initialization that computes the support of each edge in G.

Then all the edges are sorted in ascending order of their support. The computation

of the support of the edges can be done in O(m1:5) time by the in-memory triangle

counting algorithm [97, 144] as Wang and Cheng proposed [154]. The time complexity

of the improved algorithm is O(m1:5) and the space complexity O(m + n).

Next, we provide interesting properties of the K-truss subgraphs that will be later

used in our analysis.

Proposition 3.7 ([47]). Every nodev in a K-truss subgraphTK has degreedv > K - 1.

Proof. Let v be a node of TK . Since aK-truss subgraph do not contain isolated nodes, v

should be incident to an edge e = (v; w) 2 ETK . By the de�nition of TK , nodes v and w

must share at leastK - 2 additional neighbors (except from w and v respectively). Then,

there should be at least K - 1 nodes adjacent to v, i.e., dv > K - 1.

3.2 preliminaries and background 21

S I R
�

1 - � 1 -

Figure 3.1: State diagram of the SIR model.

Proposition 3.8. TheK-truss subgraphTK is contained within the(K - 1)-core subgraph.

Proof. According to Proposition 3.7, each node ofTK has degree at leastK - 1 within the

K-truss subgraph. Thus, TK is part of a (K - 1)-core subgraph.

3.2.3 Epidemic models

Modelling a spreading process is an active research topic that has been troubling re-

searchers from various �elds (epidemiology, social science, computer science etc.). As

our approach is based on simuating a diffusion phenomenon with an epidemic model,

we will be presenting a description of the Susceptible-Infected-Revovered (SIR) and

Susceptible-Infected-Susceptible (SIS) models which are the most commonly used in

the litterature. For a general introduction to epidemic models the reader may refer to

Refs. [12, 89, 92, 125].

3.2.3.1 The SIR model

The SIR model [53] is a model that is used to describe an acute infectious disease. The

latter refers to an infection which presents a rapid immune response after a short period

of time.

The model assumes a population of N individuals, divided on the following three

states.

• Susceptible (S): the individual is not yet infected, thus being susceptible to the

epidemic;

• Infected (I): the individual has been infected with the disease and it is capable of

spreading the disease to the susceptible population;

• Recovered (R): after an individual has experienced the infectious period, it is con-

sidered as removed from the disease and it is not able to be infected again or to

transmit the disease to others (immune to further infection or death).

Every individual that is on the I state can infect individuals with probability � , called

infection rate, and afterwards it can recover with probability
 , called recovery rate. The

state diagram of the model is presented in Figure 3.1.

Let S(t), I (t) and R(t) be the number of susceptible, infected and recovered individuals

at time t . Then, the model can be described by the following differential equations:

dS
dt

= -
�SI
N

dI
dt

=
�SI
N

-
I (3.1)

dR
dt

=
I:

The last equation can be considered as redundant, sinceS(t) + I (t) + R(t) = N. In the limit

of a large population of size N, analytical solutions for several quantities can be derived

from these equations, such as the size of the outbreak.

3.3 related work 22

S I

�

�

1 - � 1 - �

Figure 3.2: State diagram of the SIS model.

3.2.3.2 The SIS model

The SIS model is used to simulate infections for which there is no long-lasting immunity

where an individual can be infected numerous times. Examples of such diseases are

rotaviruses, sexually transmitted infections and many bacterial infections.

The model assumes a population of N individuals, divided on the two states Susceptible(S)

and Infected(I) as described for the SIR model. The model can be described by the fol-

lowing differential equations:

dS
dt

= -
�SI
N

+ �I

dI
dt

=
�SI
N

- �I (3.2)

We see that dS
dt + dI

dt = 0) S(t) + I (t) + R(t) = N. � is the fraction of the infected indi-

viduals that recover and re-enter the susceptible class per unit time. The state diagram

of the model is presented in Figure 3.2.

3.2.4 The SIR model applied in networks

In our experiments throughout the Chapter we will be using the SIR model to simulate

a spreading process. Based on its de�nition, the model assumes a fully mixed population:

an infected individual can equally infect any other member of the population to which

it belongs to. In order to apply the model in a population of individuals which form

connections between them (i.e., a network) we follow a more realistic approach. In such

a case any susceptible node can only be infected by an infected neighbor on the graph.

As we will present in Section 3.5, initially all the nodes of the network are set at the

susceptible state S, except from the one that we are interested to examine its perfor-

mance which is set at the infected state I . Then, at each time stept of the process, every

node that is on the I state can infect its susceptible neighbors with probability � and

afterwards it can recover with probability
 . Note that, a node cannot directly pass from

state I to state R during the same time step t .

3.3 related work

In this section, we present the related work for the problem of identi�cation of individ-

ual in�uential spreaders in networks. Numerous centrality criteria have been proposed

in order to locate privileged spreaders in networks. Lu et al. [109] proposed Leader-

Rank, a random walk-based algorithm similar to PageRank [29] for identifying in�uen-

tial users in social networks. Later, Li et al. [104] extended LeaderRank to properly detect

in�uential nodes in weighted networks. Chen et al. [38] proposed a semi-local centrality

measure which serves as a trade-off between degree and other computationally complex

measures (betweeness and closeness centrality). Additionally, Chen et al. [36] proposed

3.4 k-truss decomposition for identifying influential nodes 23

ClusterRank, a local ranking method that takes into account the clustering coef�cient of

a node while in another approach [37], the diversity of the paths that emanate from a

node was considered. The main idea was that the spreading ability of a node may be

reduced if its propagation depends only on a few paths, while the rest ones lead to dead

ends.

Building upon the fact that the k-core decomposition is an effective (and ef�cient)

measure to capture the spreading properties of nodes, as introduced by Kitsak et al. [93],

several extensions have been proposed. The authors of Ref. [160] introduced a modi�ed

version of the k-core decomposition in which the nodes are ranked taking into account

their connections to the remaining nodes of the graph as well as to the removed nodes

at previous steps of the process. They showed that the proposed node ranking method

is able to identify nodes with better spreading properties compared to the traditional

k-core decomposition. Bae et al. [7] extended the metric of k-core number of each node

by considering the core number of its neighbors. That way, the ranking produced by

the method is more �ne-grained in the sense that the effect of assigning the same score

(i.e., k-core number) to many nodes is eliminated. Basaras et al. [13] proposed to rank

the nodes according to a criterion that combines the degree and the k-core number of a

node within an � -hop neighborhood. In Ref. [80] the authors introduced a criterion that

combines three previously examined measures, namely degree, betweenness centrality

and core number. The intuition was that, most of the widely used centrality criteria pro-

duce highly correlated rankings of nodes; combining them in a proper way, we are able

to achieve a more accurate indicator of in�uential nodes. Zhang et al. [162] proposed a

method to locate in�uential nodes taking into account the existence of community struc-

ture in networks. In Ref. [27], the authors considered real social media data, in order

to examine to what extend the structural position of a user in the network allows us to

characterize the ability of an individual to spread rumors effectively. Their results indi-

cate that although the most appropriate feature is the degree of a node, only a few such

highly-connected individuals exist; however, by considering the k-core number metric,

we are able to locate a larger set of individuals that are likely to trigger large cascades.

For a detailed review in the area, we refer to the article by Pei and Makse [130]. It is

important to stress out that most of the above mentioned extensions can also be applied

to the proposed K-truss decomposition-based approach.

3.4 k-truss decomposition for identifying influential nodes

In this Section we present our proposed approach for the identi�cation of individual

in�uential spreaders in networks. Our method is based on the concept of K-truss, a type

of cohesive subgraph extracted by the K-truss decomposition [47, 154, 163] presented in

Section 3.2.2.

As we described earlier in this Chapter, a K-truss subgraph Tk of G, is de�ned as the

largest subgraph where all edges belong to at least K - 2 triangles. Respectively, an edge

e 2 E has truss number t edge (e) = K if it belongs to TK but not to TK +1. Since theK-truss

subgraph is de�ned on a per edge basis, in the following we extend the de�nition to the

nodes of the graph.

De�nition 3.9. (Node truss number). The truss number of a nodev 2 V, denoted byt v is the

maximum truss number of its incident edges, i.e.,t v = maxft edge (e); e = (v; u)8 u 2 N(v)g,

whereN(v) is the set of neighborhood nodes ofv.

Let T denote the set of nodes with the maximum node truss number t node . In fact,

these nodes correspond to the nodes of the maximal K-truss subgraph of the graph. In

3.4 k-truss decomposition for identifying influential nodes 24

SetC

SetT

6

Figure 3.3: Schematic representation of the maximal k-core and K-truss subgraphs of a graph.
The red colored nodes correspond to the 3-core subgraph of the graph (set C); the
gray shadowed region indicate the 4-truss subgraph (set T).

this work, we argue that this set contains highly in�uential nodeswith good spreading

properties.

It has been shown that the maximal k-core and K-truss subgraphs (i.e., maximum

values for k; K) overlap, with the latter being a subgraph of the former; in fact, K-truss

represents the core of a k-core that �lters out less important information. Figure 3.3

shows an example of a graph and its k-core and K-truss subgraphs respectively. The red

colored nodes correspond to the set C (i.e., the maximal k-core subgraph of the graph).

The edges of the gray shadowed region are the edges that belong to the maximal K-truss

of the original graph and the corresponding nodes are those belonging to set T , i.e., the

nodes with the maximum node truss number. Building upon the fact that the nodes

belonging to the maximal k-core of the graph perform good spreading properties [93],

here we further re�ne this set of the most in�uential nodes, showing that the nodes

having maximum node truss number (i.e., set T de�ned above) perform even better,

leading to faster and wider epidemic spreading.

To study the spreading process and evaluate the performance of the nodes extracted

by the K-truss decomposition method, we apply the SIR epidemic model (de�ned in Sec-

tion 3.2.3.1). Algorithm 3.2 presents the steps of the proposed framework for (i) selecting

the initial node that will trigger the epidemic (cascade) and (ii) evaluate the impact of

this individual node with respect to the epidemic spreading under the SIR model.

Initially, we choose a node that belongs to T (i.e., maximal K-truss subgraph) and set

it to the infected (I) state. In general, the initial node can be any node of the graph; the

same procedure is also performed for the baseline methods (as we will present later in

the experimental evaluation). The rest of the nodes are assigned to the susceptible state

S. Notice that, we keep track of the infected, susceptible and recovered nodes for each

time step of the process. At each time step, an infected node can infect a susceptible

neighbor with probability � . Additionally, any node that got infected at previous time

steps of the process, can recover with probability
 . The process is repeated until no

more infected nodes are left. Finally, the algorithm returns M v which is the number of

the infected individuals under the cascade triggered by node v.

computational complexity The K-truss decomposition is computationally a more

dif�cult task compared to the one of k-core decomposition. Its time complexity is pro-

portional to O(m1:5), since it requires the computation of the number of triangles that

3.4 k-truss decomposition for identifying influential nodes 25

Algorithm 3.2 Identify nodes and evaluate spreading process

1: Input: Undirected graph G = (V; E), parameters �;

2: Output: Size of infected population M v for cascade triggered by node v
3: Select nodev 2 T
4: State (v) I , State (V n v) S =� Initialization steps � =
5: I (0) fvg, S(0) V n v, R(0) ;
6: t 0
7: repeat
8: t t + 1
9: I (t) ; , R(t) ;

10: for each nodew 2 V do
11: =� Infected (I) nodes can infect susceptible neighbors � =
12: if State (w) = I then
13: for each nodez 2 fNb (w) : State (z) = Sgdo
14: Pr(State (z) I) = � (also I (t) I (t) [fzg)

15: =� Nodes that got infected at previous time steps can recover (R) � =
16: if State (w) = I and w 62I (t) then
17: Pr(State (w) R) =
 (also R(t) R(t) [fwg)

18: until I (t) = ; =� No more infected nodes left � =
19: return M v I (1) [I (2) [: : : [I (t)

each node participates to. In our approach, we are only interested for the maximal K-

truss subgraph and by taking into account Proposition 3.8 which states that a K-truss

subgraph is contained within a (K - 1)-core subgraph we speedup the computation of

the maximal K-truss subgraph. That is, we �rst compute the maximal k-core subgraph

in linear time with respect to the total number of edges and then we extract the maximal

K-truss subgraph. That way, the overall complexity of the task is signi�cantly reduced.

parameter settings In the SIR model used to simulate the epidemic spreading,

one has to set values for parameters� and
 . As we described in Section 3.2.3.1, param-

eter � concerns the probability that a node passes from the susceptible S to the infected

state I (i.e., a susceptible node will be infected by an already infected neighbor), while

parameter
 describes the probability of a node passing form the infected state I to the

recovered stateR where the nodes cannot be infected again in the future.

Setting such parameters are crucial for the evolution of the spreading process. Setting

� to a high value will result to a large fraction of the nodes to be infected. This actually

diminishes the role of individual nodes in the spreading process. In fact, parameters

� and
 de�ne the epidemic threshold which determines whether the epidemic will

spread to the network or will die out early [12].

De�nition 3.10 (Epidemic threshold �). The epidemic threshold� is de�ned as a value such

that

�

< �) infection dies out over time,

�

> �) infection becomes an epidemic.

The epidemic threshold depends on the spreading model that is under consideration as

well as on the properties of the underlying graph. In our work, we adopt the estimation

proposed by Chakrabarti, Wang et al. [35, 155] and Prakash et al. [134], in which the

epidemic threshold is

3.5 experimental evaluation 26

Network Name Nodes Edges kmax Kmax jC j- jT j jT j �

Email -Enron 33 ; 696 180; 811 43 22 230 45 0:00840

Epinions 75 ; 877 405; 739 67 33 425 61 0:00540

Wiki -Vote 7 ; 066 100; 736 53 23 286 50 0:00720

Email -EuAll 224 ; 832 340; 795 37 20 230 62 0:00970

Slashdot 82 ; 168 582; 533 55 36 38 96 0:00074

Wiki -Talk 2 ; 388; 953 4; 656; 682 131 53 463 237 0:00870

Table 3.2: Properties of the real-world graphs used in this study (Table 3.1 provides de�nitions
of the symbols). kmax and Kmax denote the maximum k-core and K-truss numbers
respectively (as produced by the decompositions); jT j represents the number of nodes
belonging to set T ; jC j- jT j represents the number of the nodes belonging to set C,
excluding the nodes that belong to set T ; � is the epidemic threshold of the graph.

� =
1
� 1

; (3.3)

where � 1 is the largest eigenvalue of the adjacency matrix A of the graph. That way,

we set parameter � close to the epidemic threshold � of the graph, in order to reduce

the effect of the spreading model on the number of infected nodes. Parameter
 is set

to a value close to one (
 = 0:8 in our experimental results). As we will present in the

following Section, we have performed experiments with several values of � and
 and

the results are persistent concerning the comparison of the proposed method to other

baselines.

3.5 experimental evaluation

In this Section we present the experimental results concerning the performance of the

proposed method for the identi�cation of individual in�uential spreaders in networks.

3.5.1 Datasets and Methodology

datasets We study real-world networks arising from online social networking and

communication platforms. In particular, we investigate the following network datasets:

(i) Email -Enron , (ii) Email -EuAll , (iii) Epinions , (iv) Wiki -Vote , (v) Wiki -Talk and

(vi) Slashdot . All datasets are considered undirected and unweighted. We considered

the largest connected component in our experiments since it �lls most of the network

(usually more than half but in the speci�c datasets used over 85%) and the rest of the

components are disconnected. High level characteristics of the networks are shown in

Table 3.2. A more detailed description of the datasets is presented in Section 2.4 of

Chapter 2.

methodology In the experimental results that follow, we are comparing the spread-

ing performance of the nodes belonging to the set T (truss method), to those belonging

to the set C - T (core method), i.e., the nodes belonging to the maximal k-core exclud-

ing those that belong to the maximal K-truss of the graph – since T is subset of C, as

discussed above.

The core method constitutes the basic baseline approach, since it has been shown that

outperforms other well known node importance criteria such as betweenness centrality

3.5 experimental evaluation 27

[93]. For completeness in the experimental evaluation, we also compare the spreading

capabilities of the nodes that belong to the maximal K-truss subgraph to those belonging

to the set D that contains the highest degree nodes in the graph (top degree method);

we choose jCj- jT j high degree nodes to achieve fair comparison between the different

methods.

properties of the K-truss subgraphs We have examined the distribution of

the node truss numbers t node of the graphs presented in Table 3.2 and the results are

depicted in Fig. 3.4. Each plot shows the complementary cumulative distribution func-

tion (CCDF) of the nodes' truss number in log-log scale. As we can observe, in most of

the cases the distribution is skewed, indicating that very few nodes have high truss num-

ber; the majority of the nodes belong to “low" K-truss subgraphs, i.e., small values of

parameter K of the decomposition. We have also �tted a power-law distribution [44] to

the data (red colored line) and the exponent is shown in Fig. 3.4. Here, we do not claim

that the truss number distribution is fully captured by a power-law; nevertheless, it cor-

responds to heavy-tailed distribution and this fact can help us to better understand the

underlying properties of the data. In our case, this means that we can reduce the graph

into a subgraph with exponentially smaller size and try to locate in�uential spreaders

within this subgraph.

We have additionally examined the maximum level of the K-truss decomposition, i.e.,

value Kmax, for the various graphs. As we can observe from Table 3.2, Kmax values vary

from dataset to dataset, but compared to the k max values of the k-core decomposition,

they tend to be much smaller. This is rather expected since the K-truss decomposition

relies on triangle participation, which is a more strict criterion compared to node degree.

This last point is also a justi�cation for the differences on the number of nodes belonging

to the truss set T and core set C (i.e., the set of nodes belonging to the maximal k-core

subgraph of the graph). Although these sets are overlapping, the one that corresponds

to K-truss has signi�cantly smaller size compared to the maximal k-core subgraph. This

was also one of the motivations of the proposed work; since the nodes of the maximal

k-core subgraph perform well in information spreading, how to further re�ne this set

by selecting a small subset that is characterized by even better spreading properties.

3.5.2 Evaluating the spreading performance

Next, we describe the experimental results concerning the performance of the proposed

technique. To evaluate the spreading ef�ciency of the methods, we focus on the follow-

ing quantities:

(i) the number of nodes that become infected at each time step of the process and the

corresponding cumulative one

(ii) the total number of infected nodes at the end of the epidemic

(iii) the time step where the epidemic fades out.

For each node, we repeat the simulation 100 times (10 times for the Wiki -Talk graph

due to its large size) and report the average behavior. In each case, we repeat the above

for all the respective nodes and calculate the average behavior for the nodes of each set

(truss method versus the two baselines core and top degree).

The experimental results are shown in Table 3.3. We set � close to the epidemic thresh-

old and parameter
 = 0:8, as used by Kitsak et al. [93]. The values of parameter � of

3.5 experimental evaluation 28

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
P

r(
X

 ³
 t)

Node Truss Number t

Data
Fitted Power Law (a = 3.5)

10
0

10
1

10
2

10
-6

10
-4

10
-2

10
0

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
P

r(
X

 ³
 t)

Node Truss Number t

Data
Fitted Power Law (a = 3.5)

(a) Email -Enron (b) Email -EuAll

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
P

r(
X

 ³
 t)

Node Truss Number t

Data
Fitted Power Law (a = 2.78)

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
P

r(
X

 ³
 t)

Node Truss Number t

Data
Fitted Power Law (a = 3.5)

(c) Epinions (d) Slashdot

10
0

10
1

10
2

10
-7

10
-5

10
-3

10
-1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
P

r(
X

 ³
 t)

Node Truss Number t

Data
Fitted Power Law (a = 2.75)

10
0

10
1

10
2

10
-4

10
-3

10
-2

10
-1

10
0

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
P

r(
X

 ³
 t)

Node Truss Number t

Data
Fitted Power Law (a = 2.08)

(e) Wiki -Talk (f) Wiki -Vote

Figure 3.4: Complementary cumulative truss number distribution function. Each plot depicts the
distribution of the truss numbers for the nodes of the graph on log-log scale. The red
line corresponds to the �tted power-law distribution.

3.5 experimental evaluation 29

Ti
m

e
S

te
p

M
et

ho
d

2
3

4
5

6
7

8
9

10
F

in
al

st
ep

�
M

ax
st

ep

E
m

ai
l

-
tr

us
s

8:
44

18
:5

8
46

:6
6

10
4:1

1
20

4:0
8

32
8:3

9
41

8:7
7

42
5:0

6
35

5:8
4

2;
59

6:
52

13
6:7

33

E
nr

on
co

re
4:

78
12

:8
2

31
:9

7
73

:7
7

15
2:5

5
26

4:3
6

36
7:2

8
40

3:9
8

36
4:1

3
2;

46
5:

60
19

9:6
37

to
p

de
gr

ee
6:

89
13

:8
7

34
:1

3
76

:6
7

15
5:4

8
26

4:1
3

36
0:8

9
39

4:3
7

35
7:0

8
2;

47
1:

67
35

4:8
36

E
pi

ni
on

s
tr

us
s

4:
17

9:
25

19
:7

0
39

:5
6

75
:0

4
13

0:4
8

20
4:1

4
27

8:6
9

32
9:0

8
2;

56
7:

69
22

7:8
37

co
re

3:
45

7:
18

14
:7

2
29

:1
1

55
:2

7
98

:1
1

15
8:5

6
22

6:1
7

28
0:0

3
2;

32
5:

37
32

7:2
43

to
p

de
gr

ee
4:

22
7:

94
16

:0
3

31
:3

2
58

:8
4

10
3:9

1
16

6:2
3

23
4:9

6
28

9:4
9

2;
41

4:
99

33
1:7

47

W
ik

i-
tr

us
s

2:
92

4:
37

6:
92

10
:4

3
15

:2
7

21
:6

3
28

:7
3

35
:9

3
42

:4
6

56
0:6

6
11

4:9
52

V
ot

e
co

re
1:

92
3:

07
4:

78
7:

22
10

:6
5

15
:1

8
20

:6
6

26
:7

0
32

:4
0

46
6:0

1
10

4:5
57

to
p

de
gr

ee
2:

43
3:

53
5:

46
8:

17
12

:0
5

17
:0

4
23

:0
5

29
:4

9
35

:5
5

50
2:8

8
10

4:5
62

E
m

ai
l

-
tr

us
s

11
:6

2
28

:0
4

62
:2

5
12

7:7
9

24
0:9

7
40

5:5
3

58
4:8

7
70

5:8
9

72
5:4

2
5;

01
8:

52
48

7:9
4

36

E
u

A
ll

co
re

9:
85

18
:6

9
40

:8
2

82
:2

8
15

8:7
2

27
9:4

1
43

3:8
1

57
4:9

7
64

4:7
6

4;
57

9:
84

49
8:7

1
38

to
p

de
gr

ee
17

:9
6

16
:7

4
39

:9
3

73
:6

6
14

4:6
9

38
4:0

7
50

3:1
8

56
5:0

6
54

8:2
5

4;
13

7:
56

1;
17

4:
84

39

Sl
as

hd
ot

tr
us

s
5:

36
20

:5
7

66
:2

1
18

8:5
2

46
1:3

5
91

7:2
1;

39
0:

52
1;

57
1:

97
1;

35
9:

99
8;

20
7:

46
36

8:3
7

32

co
re

6:
48

19
:6

8
61

:1
3

16
8:3

6
41

0:1
9

82
0:7

7
1;

27
2:

29
1;

48
6:

5
1;

34
4:

33
8;

00
2:

76
51

8:4
3

32

to
p

de
gr

ee
13

:9
5

27
:8

8
83

:2
9

20
4:6

0
48

3:9
5

94
0:4

9
1;

42
6:

81
1;

61
6:

55
1;

40
3:

80
8;

48
9:

45
59

:0
1

32

W
ik

i-
Ta

lk
tr

us
s

64
:2

1
43

5:7
9

3;
25

9:
05

16
;2

27
:2

5
34

;5
43

:2
3

23
;8

18
:0

6
9;

85
3:

84
3;

48
7:

65
1;

18
6:

41
93

;4
91

:8
1

47
6:2

2
21

co
re

41
:7

7
26

9:9
6

2;
02

7:
69

11
;1

69
:2

31
;2

23
:2

1
28

;7
32

:0
6

13
;0

55
:4

5
4;

80
5:

11
1;

66
4:

52
93

;4
96

:5
0

76
7:3

5
23

to
p

de
gr

ee
88

:8
4

32
4:1

1
2;

47
5:

01
11

;7
18

:2
8

29
;6

94
:4

5
27

;0
09

:0
5

13
;7

20
:1

5
5;

39
6:

45
1;

93
7:

89
93

;4
11

:1
8

1;
16

6:
77

24

Ta
bl

e
3.

3:
Av

er
ag

e
nu

m
be

r
of

in
fe

ct
ed

no
de

s
pe

r
st

ep
of

th
e

S
IR

m
od

el
us

in
g

�
cl

os
e

to
th

e
ep

id
em

ic
th

re
sh

ol
d

of
ea

ch
gr

ap
h

an
d

=

0:
8.

A
t

th
e

F
in

al
st

ep
co

lu
m

n,
w

e
sh

ow
th

e
to

ta
l

nu
m

be
r

of
in

fe
ct

ed
no

de
s

at
th

e
en

d
of

th
e

pr
oc

es
s

(M
ax

st
ep

),
w

ith
st

an
da

rd
de

vi
at

io
n

�
.

3.5 experimental evaluation 30

Ti
m

e
S

te
p

M
et

ho
d

2
3

4
5

6
7

8
9

10
F

in
al

st
ep

�
M

ax
st

ep

E
m

ai
l

-
tr

us
s

9:
44

28
:0

3
74

:6
9

17
8:8

0
38

2:8
8

71
1:2

7
1;

13
0:

05
1;

55
5:

11
1;

91
0:

95
2;

59
6:

52
13

6:7
33

E
nr

on
co

re
5:

78
18

:6
0

50
:5

7
12

4:3
5

27
6:9

0
54

1:2
6

90
8:5

4
1;

31
2:

52
1;

67
6:

65
2;

46
5:

60
19

9:6
37

to
p

de
gr

ee
7:

89
21

:7
6

55
:9

0
13

2:5
7

28
8:0

5
55

2:1
8

91
3:0

7
1;

30
7:

45
1;

66
4:

53
2;

47
1:

67
35

4:8
36

E
pi

ni
on

s
tr

us
s

5:
17

14
:4

2
34

:1
3

73
:6

9
14

8:7
4

27
9:2

3
48

3:3
7

76
2:0

6
1;

09
1:

14
2;

56
7:

69
22

7:8
37

co
re

4:
45

11
:6

4
26

:3
6

55
:4

8
11

0:7
5

20
8:8

7
36

7:4
3

59
3:5

9
87

3:6
2

2;
32

5:
37

32
7:2

43

to
p

de
gr

ee
5:

22
13

:1
6

29
:2

0
60

:5
2

11
9:3

6
22

3:2
7

38
9:4

9
62

4:4
6

91
3:9

5
2;

41
4:

99
33

1:7
47

W
ik

i-
tr

us
s

3:
92

8:
30

15
:2

3
25

:6
6

40
:9

4
62

:5
7

91
:3

1
12

7:2
5

16
9:7

1
56

0:6
6

11
4:9

52

V
ot

e
co

re
2:

92
5:

99
10

:7
8

18
:0

1
28

:6
6

43
:8

5
64

:5
0

91
:2

0
12

3:6
0

46
6:0

1
10

4:5
57

to
p

de
gr

ee
3:

43
6:

96
12

:4
3

20
:6

1
32

:6
6

49
:7

0
72

:7
5

10
2:2

5
13

7:8
1

50
2:8

8
10

4:5
62

E
m

ai
l

-
tr

us
s

12
:6

2
40

:6
6

10
2:9

2
20

3:7
2

47
1:6

9
87

7:2
2

1;
46

2:
10

2;
16

8:
00

2;
89

3:
43

5;
01

8:
52

48
7:9

4
36

E
u

A
ll

co
re

10
:8

5
29

:5
5

70
:3

7
15

2:6
5

31
1:3

8
59

0:7
9

1;
02

4:
60

1;
59

9:
57

2;
24

4:
34

4;
57

9:
84

49
8:7

1
38

to
p

de
gr

ee
18

:9
6

35
:7

1
75

:6
4

14
9:3

0
29

4:0
0

54
3:4

5
92

7:5
2

1;
43

0:
70

1;
99

5:
77

4;
13

7:
56

1;
17

4:
84

39

Sl
as

hd
ot

tr
us

s
6:

36
26

:9
3

93
:1

4
28

1:6
7

74
3:0

3
1;

66
0:

23
3;

05
0:

75
4;

62
2:

73
5;

98
2:

73
8;

20
7:

46
36

8:3
7

32

co
re

7:
48

27
:1

7
88

:3
1

25
6:6

7
66

6:8
6

1;
48

7:
64

2;
75

9:
93

4;
24

6:
43

5;
59

0:
76

8;
00

2:
76

51
8:4

3
32

to
p

de
gr

ee
14

:9
5

42
:8

4
12

6:1
3

33
0:7

4
81

4:6
9

1;
75

5:
18

3;
18

1:
99

4;
79

8:
55

6;
20

2:
35

8;
48

9:
45

59
:0

1
32

W
ik

i-
Ta

lk
tr

us
s

65
:2

1
50

1:0
0

3;
76

0:
06

19
;9

87
:3

1
54

;5
30

:5
5

78
;3

48
:6

2
88

;2
02

:4
6

91
;6

90
:1

1
92

;8
76

:5
3

93
;4

91
:8

1
47

6:2
2

21

co
re

42
:7

7
31

2:7
4

2;
34

0:
43

13
;5

09
:6

4
44

;7
32

:8
5

73
;1

04
:9

2
86

;1
60

:3
8

90
;9

65
:4

9
92

;6
30

:0
1

93
;4

96
:5

76
7:

35
23

to
p

de
gr

ee
89

:8
4

41
3:9

5
2;

88
8:

96
14

;6
07

:2
4

44
;3

01
:6

9
71

;3
10

:7
4

85
;0

30
:9

0
90

;4
27

:3
5

92
;3

65
:2

5
93

;4
11

:1
8

1;
16

6:
77

24

Ta
bl

e
3.

4:
C

um
ul

at
iv

e
nu

m
be

r
of

in
fe

ct
ed

no
de

s
pe

r
st

ep
of

th
e

S
IR

m
od

el
us

in
g

�
cl

os
e

to
th

e
ep

id
em

ic
th

re
sh

ol
d

of
ea

ch
gr

ap
h

an
d

=

0:
8.

A
tt

he
F

in
al

st
ep

co
lu

m
n,

w
e

sh
ow

th
e

to
ta

l
nu

m
be

r
of

in
fe

ct
ed

no
de

s
at

th
e

en
d

of
th

e
pr

oc
es

s
(M

ax
st

ep
),

w
ith

st
an

da
rd

de
vi

at
io

n
�

.

3.5 experimental evaluation 31

the SIR model for each graph, are shown in Table 3.2. Tables 3.3 and 3.4 show the num-

ber of the newly infected nodes for some of the �rst ten time steps of the spreading

process, which we consider as the outbreak of the epidemic and the cumulative number

of infected nodes per step respectively. We also report the total number of nodes that

were infected at the end of the process (Final step) and the time step where the epidemic

dies out (Max step).

As we can observe, the truss method achieves signi�cantly higher infection rate dur-

ing the �rst steps of the epidemic. Furthermore, in almost all cases, the total number of

infected nodes at the end of the process (Final step) is larger, while the fade out occurs

earlier (Max step). Lastly, as we discussed above, the number of nodes in the truss set

T is much smaller compared to the set C - T (Table 3.2). By re�ning signi�cantly the

set of in�uential nodes in truss set T , the “weaker" spreaders of C are left in core set

C - T , explaining the inferior behavior of the core method compared to top degree.

Some small deviations from this behavior are observed in the Slashdot and Wiki -

Talk graphs. In the Slashdot graph, the best performance is achieved by the top de-

gree method, which from the very �rst steps is able to infect a larger amount of nodes.

In the case of the Wiki -Talk graph, although the total number of infected nodes at the

end (Final step) of the epidemic is almost the same for all methods, the proposed truss

method performs quite effectively at the �rst steps of the process. In fact, it signi�cantly

outperforms both baseline methods achieving an increase of almost 23% on the cumu-

lative number of infected nodes compared to both core and top degree methods, at the

sixth step of the process.

We have also computed the cumulative difference of the number of infected nodes

per step achieved by the methods. Let I truss
t be the number of infected nodes at step t

achieved by the truss method (similar for core and top degree). We de�ne the cumula-

tive difference for the truss and core methods at step t as

D truss-core
t = cumsum

z=1:::t
(I truss

z - I core
z): (3.4)

Similarly, we can de�ne the same quantity for the truss vs. top degree methods. The re-

sults are shown in Figures 3.5 and 3.6. For each graph, we have performed experiments

for two values of parameter � and
 = 0:8. We observe that the cumulative difference of

the number of nodes that are being infected at every step is always larger between truss

and core than between truss and top degree. Both differences increase during the out-

break of the epidemic until they stabilize to the number of nodes which is actually the

�nal difference of the number of nodes that got infected (i.e., entered state I of the SIR

model) during the epidemic process of the two compared methods. Clearly, as in almost

all cases the differences are always above zero, one can conclude to the effectiveness of

information diffusion when the spreading is triggered by the nodes that belong to the

maximal K-truss subgraph.

3.5.3 Comparison to the optimal spreading

Since we lack ground-truth information about the best spreaders in the network, to

further study the performance of the proposed K-truss decomposition method, we have

examined the spreading achieved by each node of the graph. More precisely, we set

each node v 2 V at the infected state I and simulate the spreading capabilities of this

node using the SIR model, as described earlier. Figure 3.7 depicts the distribution of the

nodes with respect to the infection size M , for the Email -Enron and Wiki -Vote graphs

(parameter � of the SIR model was set to � = 0:01 for this experiment). In both cases, the

axes of the plot have been set to logarithmic scale. As we can observe, the distribution of

3.5 experimental evaluation 32

0 10 20 30
0

50

100

150

200

250

Number of Steps

C
um

ul
at

iv
e

D
iff

er
en

ce

(truss - core)
(truss - degree)

0 10 20 30
0

100

200

300

400

500

Number of Steps

C
um

ul
at

iv
e

D
is

ta
nc

e

(truss - core)
(truss - degree)

(a) Email -Enron : � = 0:01 (b) Email -Enron : � = 0:03

0 10 20 30
0

50

100

150

200

250

300

Number of Steps

C
um

ul
at

iv
e

D
iff

er
en

ce

(truss - core)
(truss - degree)

0 10 20
0

50

100

150

200

250

300

350

400

450

Number of Steps

C
um

ul
at

iv
e

D
iff

er
en

ce

(truss - core)
(truss - degree)

(c) Epinions : � = 0:007 (d) Epinions : � = 0:01

0 10 20 30 40 50
0

20

40

60

80

100

Number of Steps

C
um

ul
at

iv
e

D
iff

er
en

ce

(truss - core)
(truss - degree)

0 10 20
0

50

100

150

200

Number of Steps

C
um

ul
at

iv
e

D
iff

er
en

ce

(truss - core)
(truss - degree)

(e) Wiki -Vote : � = 0:009 (f) Wiki -Vote : � = 0:01

Figure 3.5: Cumulative difference of the infected nodes per step achieved by the truss method
vs. the core (truss - core) and top degree (truss - degree) methods. Parameter
 of the
SIR models is set to
 = 0:8. Continued in Fig. 3.6.

3.5 experimental evaluation 33

0 10 20 30
0

200

400

600

800

1000

1200

Number of Steps

C
um

ul
at

iv
e

D
iff

er
en

ce

(truss - core)
(truss - degree)

0 5 10 15 20 25
0

500

1000

1500

2000

2500

Number of Steps

C
um

ul
at

iv
e

D
iff

er
en

ce

(truss - core)
(truss - degree)

(a) Email -EuAll : � = 0:01 (b) Email -EuAll : � = 0:03

0 5 10 15 20
0

2000

4000

6000

8000

10000

12000

Number of Steps

C
um

ul
at

iv
e

D
iff

er
en

ce

(truss - core)
(truss - degree)

0 5 10 15

0

5000

10000

15000

20000

Number of Steps

C
um

ul
at

iv
e

D
iff

er
en

ce

(truss - core)
(truss - degree)

(c) Wiki -Talk : � = 0:01 (d) Wiki -Talk : � = 0:03

Figure 3.6: Cumulative difference of the infected nodes per step achieved by the truss method
vs. the core (truss - core) and top degree (truss - degree) methods. Parameter
 of the
SIR model is set to
 = 0:8.

the infection size M is skewed; only a small percentage of nodes are highly in�uential,

while the majority of the nodes are able to infect only a small portion of the graph (small

values of infection size M). Thus, our goal is to examine how the nodes detected by the

K-truss decomposition are distributed on this small subset of spreading-ef�cient nodes.

Note that, similar observations have been made for the rest of the graphs described at

Table 3.2.

To that end, we rank the nodes v 2 V of the graph, according to the infection size

M (v). Let

OPT1 = argmax
v2 V

M (v) (3.5)

be the node that achieves that highest infection size M among all nodes in the graph, i.e.,

OPT1 > OPT2 > : : : > OPTjV j . The aforementioned ranking is based on the assumption

that the spreading process evolves as suggested by the SIR model with the speci�c � and

 parameters. In order to examine how the nodes detected by the K-truss decomposition

are distributed among the most ef�cient (optimal) spreaders, we consider a variable size

window W over the ranked nodes and de�ne PT
W to be the fraction of nodes of set T

that can be found within W as follows:

3.5 experimental evaluation 34

10
2

10
3

10
410

1

10
2

10
3

10
4

Infection Size M

N
um

be
r

of
 N

od
es

10
1

10
2

10
3

10
410

1

10
2

10
3

Infection Size M

N
um

be
r

of
 N

od
es

(a) Email -Enron (b) Wiki -Vote

Figure 3.7: Spreading distribution of the nodes in the network, in log-log scale. The horizontal
axis corresponds to the infection size M achieved by each node in the graph, after a
binning process. The vertical axis captures the number of nodes that fall on each bin.
Observe that only a small percentage of nodes achieves high spreading. In both cases,
we have set � = 0:01 in the SIR model.

PT
W =

jTW j=jT j
jWj=jVj

; (3.6)

where TW is the set of nodes v 2 T that are located in the window W of size jWj (in a

similar way, we can de�ne PC
W for the nodes of the maximal k-core subgraph). We are

interested in examining how the quantities PT
W and PC

W behave with respect to the size

of the window W.

Figure 3.8 depicts the distribution of the top-truss PT
W and top-core PC

W nodes, for

various sizes of window W (i.e., fractions of the most ef�cient spreaders). As we can

observe, for almost all datasets, PT
W reaches the maximum value (i.e., 100%) relatively

early and for small window sizes, compared to PC
W . The maximum value of PT

W indicates

that we have found all the nodes belonging to set T in the window of fractional size W.

An early and intense upward trend of the curve implies that a large fraction of the nodes

belonging to the set of interest (T or C), corresponds to nodes with the best spreading

properties on the graph. For example, in the Email -EuAll graph, the maximum for the

nodes of set T is reached in window W = 1:7%, while in the case of set C in window

W = 2:8%. Thus, the nodes detected by theK-truss decomposition method (set T) are

better distributed among the most ef�cient spreaders, compared to those located by the

k-core decomposition (set C). A slightly different behavior is observed in the W iki -Talk

and Slashdot graphs; in both graphs, the values of PT
W and PC

W are very close to each

other for almost all choices of window W, indicating that both sets have almost the same

overlap with the set of optimal spreaders. Nevertheless, as we have already presented in

Tables3.3, for those two datasets the spreading performance of the truss nodes achieved

during the �rst steps of the epidemic is much better.

Furthermore, we are interested to study the distribution of the nodes' truss num-

ber t node with respect to window W. Similar to what described above, we consider a

fraction of the best spreaders in the graph (as speci�ed by W) and we examine the dis-

tribution of all truss numbers (and not only the maximum one) within it. Since nodes

with high truss number are of particular importance here, we have considered groups

of nodes as follows:

3.5 experimental evaluation 35

0 0.5 1 1.5
0

20

40

60

80

100

Window W (%)

P
W

 (
%

)

C
T

0 0.5 1 1.5
0

20

40

60

80

100

Window W (%)
P

W
 (

%
)

C
T

(a) Email -Enron (b) Epinions

0 5 10
0

20

40

60

80

100

Window W (%)

P
W

 (
%

)

C
T

0 0.1 0.2 0.3
0

20

40

60

80

100

Window W (%)

P
W

 (
%

)

C
T

(c) Wiki -Vote (d) Email -EuAll

0 0.05 0.1
0

20

40

60

80

100

Window W (%)

P
W

 (
%

)

C
T

0 0.5 1 1.5 2
0

20

40

60

80

100

Window W (%)

P
W

 (
%

)

C
T

(e) Wiki -Talk (f) Slashdot

Figure 3.8: Distribution of the top-truss PT
W and top-core PC

W nodes among the nodes with opti-
mal spreading properties under a window of size W. Observe that for small values of
window size W (i.e., closer to the optimal spreading), the number of top-truss nodes
is always higher compared to the number of top-core nodes.

3.5 experimental evaluation 36

(i) Individual groups for each of the top �ve truss numbers, i.e., Kmax to Kmax - 4. That

way, the �rst group contains nodes with truss number equal to Kmax, the second

group nodes with truss number Kmax - 1 and so on.

(ii) The rest of the groups concern truss numbers in the range Kmax - 5 to K = 2, group-

ing together �ve consecutive truss numbers each time. For example, the sixth

group contains nodes with truss number in the range Kmax - 5 to Kmax - 9. Note

that, the last group may contain less than �ve truss numbers.

Figure 3.9 depicts the distribution of truss numbers for various values of window W.

The colors on each bar correspond to the groups of truss number (darker colors for truss

numbers closer to the maximum one). As we can observe in most of the datasets, for

small values of window W, a large number of the nodes belong to the �rst group, i.e.,

their truss number is the maximum one. Since in most of the cases only a tiny fraction

of the nodes of the graph belong to the very �rst groups (i.e., close to Kmax), even for

small window sizes we also observe nodes from groups that correspond to smaller truss

numbers. As the window W increases, i.e., deviate from the optimal spreading behavior,

groups of smaller truss numbers start to evolve. From these results, it is evident that

the truss number is related to the spreading capabilities of the nodes. Until now, we

had only examined the effect of the nodes that belong to the maximal K-truss subgraph.

However, from this experiment we can conclude that, in general, nodes with high truss

number tend to have good spreading properties – with the truss number being highly

related to the spreading effect.

3.5.4 Impact of infection and recovery rate on the spreading process

In the experiments that have been already presented, parameters � and
 of the SIR

model have been set to some constant values; the infection rate� is typically set close

to the epidemic threshold of the graph (as de�ned by the maximum eigenvalue of the

adjacency matrix of the graph), while the recovery rate is considered constant and al-

ways set to
 = 0:8. Here, we examine the impact of the infection and recovery rate on

the epidemic spreading achieved by the proposed method (truss) and the two baseline

methods (core and top degree). To that end, we simulate the spreading process for each

of the above methods, setting parameters � and
 as follows:

(i) Parameter � is set close to the epidemic threshold of the graph, while varying

parameter
 2 f0:5; 0:8; 1g. Parameter
 = 1 implies that each infected node moves

to the recovered (R) state with probability one, in the next step of the model.

(ii) The recovery rate is set to
 = 0:8, while considering different values of parameter

� , always above the epidemic threshold of the graph. As we discussed in the main

text, if we consider high values of the infection rate � , a relatively high fraction of

nodes will be infected, and thus, the spreading capabilities of individual nodes is

diminished.

Fig. 3.10 shows the results. In all cases, we have computed the cumulative fraction of

infected nodes I t per step of the process, for each of the three methods, along with the

standard deviation (depicted as error bars in the plot). As we can observe, while the

recovery probability
 decreases, the number of infected nodes increases both during

the �rst time steps of the process, as well as at the end of the epidemic. This behavior is

expected since, as we discussed above, with high recovery rate
 most of the nodes will

move to the Rstate, thus being inactive in subsequent iterations of the model. Regarding

3.5 experimental evaluation 37

0 2 4 6 8 10
0

20

40

60

80

100

Window W (%)

D
is

tr
ib

ut
io

n
of

 T
ru

ss
 N

um
be

rs
 w

ith
in

 W

K (max value)
K - 1
K - 2
K - 3
K - 4
K - 5 to K - 9
K - 10 to K - 14
K - 15 to K = 2

0 1 2 3 4 5
0

20

40

60

80

100

Window W (%)

D
is

tr
ib

ut
io

n
of

 T
ru

ss
 N

um
be

rs
 w

ith
in

 W

K (max value)
K - 1
K - 2
K - 3
K - 4
K - 5 to K - 9
K - 10 to K - 14
K - 15 to K - 19
K - 20 to K - 24
K - 25 to K = 2

(a) Email -Enron (b) Epinions

0 5 10 15 20
0

20

40

60

80

100

Window W (%)

D
is

tr
ib

ut
io

n
of

 T
ru

ss
 N

um
be

rs
 w

ith
in

 W

K (max value)
K - 1
K - 2
K - 3
K - 4
K - 5 to K - 9
K - 10 to K - 14
K - 15 to K = 2

0 0.05 0.1 0.15 0.2
0

20

40

60

80

100

Window W (%)

D
is

tr
ib

ut
io

n
of

 T
ru

ss
 N

um
be

rs
 w

ith
in

 W

K (max value)
K - 1
K - 2
K - 3
K - 4
K - 5 to K - 9
K - 10 to K = 2

(c) Wiki -Vote (d) Email -EuAll

Figure 3.9: Distribution of node's truss number with respect to the ranking of the nodes under
their spreading properties. The nodes are classi�ed in groups (different colors) de-
pending on their truss number; for each window size W, we plot the distribution of
truss numbers observed within it. Observe that, for small window sizes a large num-
ber of the nodes belong to the �rst group, i.e., their truss number is Kmax. When the
window is enlarged, the groups of lower truss numbers involve a large percentage of
the considered nodes.

3.5 experimental evaluation 38

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of Steps

N
um

be
r

of
 In

fe
ct

ed
 N

od
es

 I

truss g = 0.8
core g = 0.8
top degree g = 0.8
truss g = 0.5
core g = 0.5
top degree g = 0.5
truss g = 1
core g = 1
top degree g = 1

g = 0.8

b = 0.01

g = 1

g = 0.5

0 5 10 15 20 25 30
0

2000

4000

6000

8000

10000

12000

Number of Steps

N
um

be
r

of
 In

fe
ct

ed
 N

od
es

 I

truss b = 0.1
truss b = 0.05
truss b = 0.03
truss b = 0.01
core b = 0.05
core b = 0.03
core b = 0.01
core b = 0.1
top degree b = 0.03
top degree b = 0.01
top degree b = 0.05
top degree b = 0.1

b = 0.1

b = 0.05

b = 0.03 b = 0.01

g = 0.8

(a) Email -Enron : � = 0:01 (b) Email -Enron :
 = 0:8

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

Number of Steps

N
um

be
r

of
 In

fe
ct

ed
 N

od
es

 I

core g = 0.8
truss g = 0.8
top degree g = 0.8
truss g = 0.5
core g = 0.5
top degree g = 0.5
truss g = 1
core g = 1
top degree g = 1

g = 0.5 g = 0.8

g = 1

b = 0.009

0 5 10 15
0

500

1000

1500

2000

2500

3000

3500

Number of Steps

N
um

be
r

of
 In

fe
ct

ed
 N

od
es

 I

top degree b = 0.009
truss b = 0.009
core b = 0.009
truss b = 0.01
core b = 0.01
top degree b = 0.01
truss b = 0.03
core b = 0.03
top degree b = 0.03
truss b = 0.05
core b = 0.05
top degree b = 0.05

b = 0.03

g = 0.8

b = 0.05

b = 0.01

b = 0.009

(c) Wiki -Vote : � = 0:009 (d) Wiki -Vote :
 = 0:8

0 5 10 15 20 25 30 35
0

2000

4000

6000

8000

10000

12000

Number of Steps

N
um

be
r

of
 In

fe
ct

ed
 N

od
es

 I

truss g = 0.8
core g = 0.8
top degree g = 0.8
truss g = 0.5
core g = 0.5
top degree g = 0.5
truss g = 1
core g = 1
top degree g = 1

g = 0.5

g = 0.8

g = 1

b = 0.01

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4x 10
4

Number of Steps

N
um

be
r

of
 In

fe
ct

ed
 N

od
es

 I

truss b = 0.01
core b = 0.01
top degree b = 0.01
truss b = 0.03
core b = 0.03
top degree b = 0.03
truss b = 0.05
core b = 0.05
top degree b = 0.05
truss b = 0.1
core b = 0.1
top degree b = 0.1b = 0.01b = 0.03

b = 0.05

b = 0.1

g = 0.8

(e) Email -EuAll : � = 0:01 (f) Email -EuAll :
 = 0:8

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of Steps

N
um

be
r

of
 In

fe
ct

ed
 N

od
es

 I

top degree g = 0.8
core g = 0.8
truss g = 0.8
truss g = 0.5
core g = 0.5
top degree g = 0.5
truss g = 1
core g = 1
top degree g = 1

g = 1

g = 0.8

g = 0.5

b = 0.007

0 5 10 15 20
0

0.5

1

1.5

2

2.5x 10
4

Number of Steps

N
um

be
r

of
 In

fe
ct

ed
 N

od
es

 I

truss b = 0.007
core b = 0.007
top degree b = 0.007
truss b = 0.01
core b = 0.01
top degree b = 0.01
truss b = 0.05
core b = 0.05
top degree b = 0.05
truss b = 0.1
core b = 0.1
top degree b = 0.1

b = 0.05

b = 0.01

b = 0.1

g = 0.8

b = 0.007

(g) Epinions : � = 0:007 (i) Epinions :
 = 0:8

Figure 3.10: Impact of infection and recovery probabilities of the SIR model on the spreading
process: (i) parameter � is set close to the epidemic threshold of the graph, while
varying parameter
 2 f0:5; 0:8; 1g; (ii) setting parameter
 = 0:8 and considering
different values of parameter � (always above the epidemic threshold of the graph).

3.6 exploration of network centralit ies in spreading processes 39

Network Nodes Edges dmax kmax Kmax

Email Enron 33 ,696 180,811 1383 43 22

Epinions 75 ,877 405,739 3044 67 33

Higgs 456,626 14,855,842 51386 125 72

Table 3.5: Network datasets used in Section 3.6.

the performance of the methods, it is evident that the proposed truss outperforms both

baselines for all different settings of parameter
 .

In the second case where the recovery rate
 is constant, while the infection probability

is increasing, the number of infected nodes naturally increases. However, for higher

values of � , the total number of infected nodes is almost the same for all methods. This

behavior is rather expected; by increasing the infection rate, the importance of individual

nodes in the epidemic process is reduced. For these values of� , the difference between

the methods can be observed during the outbreak of the epidemic (i.e., �rst steps of the

process), where thetruss method performs qualitatively better.

3.6 exploration of network centralit ies in spreading processes

In this Section we explore the centralities of the entities that are involved in a spreading

process which is triggered by different groups of in�uential spreaders of a network. We

analyze the patterns that occur by simulating the spreading process with the SIR epi-

demic model [125]. We also compare the simulated diffusion process with real in�uence,

in terms of the evolution of the centralities of the infected nodes.

datasets We have performed experiments with the following real-world networks:

Email Enron , Epinions and H iggs. All graphs are considered undirected and unweighted.

High level characteristics of the networks are shown in Table 3.5. A more detailed de-

scription of the datasets is presented in Section 2.4 of Chapter 2.

distribution of the examined centralit ies We have examined the distribu-

tion of the node degree (dv)), core number (cv) and truss number (t v) of these networks

and the results for the Epinions dataset are depicted in Figure 3.11. The rest of the

networks show a similar behavior. The plot shows the complementary cumulative dis-

tribution function of the nodes' aforementioned centralities in log-log scale. We observe

that all three distributions are skewed, indicating that few nodes have high centralities

and the majority of them have "low" degree and participate in "low" k-core and K-truss

subgraphs.

methodology To simulate the spreading process, we use the SIR model. Initially,

we set a single node to be at the infected stateI and the rest of the nodes at the suscep-

tible state S. We set the parameter � close to the epidemic threshold and the parameter

 = 0:8 same as in Section3.5.2. In our experiment, we compare three node centralities:

(i) degree (dv),

(ii) core number (cv) and

(iii) truss number (t v).

3.6 exploration of network centralit ies in spreading processes 40

100 101 102 103 104

Degree (d
v
)

10-5

10-4

10-3

10-2

10-1

100

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
P

r(
X

 !
 d

v)

Data
Fitted Power Law a=1.69

100 101 102

Core number (c
v
)

10-5

10-4

10-3

10-2

10-1

100

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
P

r(
X

 !
 c

v)

Data
Fitted Power Law a=1.79

100 101 102

Truss number (t
v
)

10-5

10-4

10-3

10-2

10-1

100

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
P

r(
X

 !
 t v)

Data
Fitted Power Law a=2.79

(a) degree dv (b) core number cv (c) truss number t v

Figure 3.11: Complementary cumulative distribution function of nodes' (a) degree dv , (b) core
number cv and (c) truss number t v of the Epinions dataset in log-log scale. The
red line corresponds to the �tted power-law distribution.

Those are the centralities of the nodes that are being infected at every time step of the

process while the epidemic was triggered from three different groups of nodes:

(a) group D denoting the set of nodes with the highest degree in the graph,

(b) group C0 denoting the set of nodes belonging to the k-core excluding those that

belong to the K-truss of the graph,

(c) group T denoting the set of nodes with the maximum node truss number.

For every node of the group, we simulate the process 100 times and get the average

behavior of the node. In order to get the average behavior of all the nodes of each group,

we repeat the above for all respective nodes.

3.6.1 Evaluation of Results

The results from the experiments are depicted in Figure 3.12. We can observe that the

behavior of all three centralities is divided in three distinctive periods:

i) the outburst of the epidemic,

ii) the "plateau" period and

iii) the fadeout of the epidemic.

We can observe that in case of the Epinions dataset, nodes originating from group

T, achieve to in�uence on average nodes with higher degree, core and truss centralities

during the outburst of the epidemic – speci�cally during the �rst four steps. In case

of the Email-Enron dataset, group T and C0 seem to in�uence nodes with similar cen-

tralities during the �rst timesteps. In both datasets though, the superiority of the latter

groups compared to group D is easily recognizable during the �rst period of the spread-

ing process. After the outburst of the epidemic (after the 6th time step), we observe in

both datasets that nodes being infected are characterized by similar centralities for all

the three compared behaviors. It should be noted that the centralities of the nodes in-

fected during this "plateau" period are quite high considering the fact that most of the

nodes of the network are characterized by low centralities. We realize that most of the

nodes infected in all cases during such an epidemic are characterized by the centralities

observed during the "plateau" period. For example for the E pinions dataset, from the

8th until the 14th timestep, we observe that nodes being infected have a degree ranging

3.6 exploration of network centralit ies in spreading processes 41

0

100

200

300

1 3 5 7 9 11 13 15 17 19
Time Steps

D
eg

re
e

(d
v)

group D
group C'
group T

(a) degree dv

0

20

40

60

1 3 5 7 9 11 13 15 17 19
Time Steps

C
or

e
nu

m
be

r
(c

v)

group D
group C'
group T

(b) core number cv

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19
Time Steps

Tr
us

s
nu

m
be

r
(t

v)

group D
group C'
group T

(c) truss number t v

Figure 3.12: Evolution of the infected nodes' average (a) degree dv , (b) core number cv and (c)
truss number t v during a simulated spreading process using the SIR model for the
Epinions dataset having triggered the epidemic from nodes of sets D, C0 and T.

3.6 exploration of network centralit ies in spreading processes 42

from 77 to 87, a core number ranging from 29 to 31 and a truss number ranging from

8 to 9. Finally, during the fadeout (during the 5 last time steps), the centralities of the

nodes infected are severely decreased in all cases. Note that the process stops when no

more nodes get infected (for the Epinions dataset this happens at time step 19).

comparison to a real spreading process . In order to explore the information

spreading in a real world setting we have used the Higgs Twitter dataset [52]. The

dataset is built by studying the diffusion (in means of tweets) of the announcement of

the Higgs boson-like particle at CERN on the Twitter social network between the 1st

and 7th of July 2012. The interactions that were considered were retweets, mentions and

replies.

In order to fairly compare the speci�c spreading process with the simulation models

that were previously discussed, speci�c assumptions have to be made [131, 132]. The

spreading activity that is recorded, involves around 562,556 asynchronous timestamps

during which at least one spreading interaction is recorded. We have decided to study

the in�uence that is triggered from nodes belonging to group C (i.e., the totality of

the nodes participating in the maximum k-core subgraph of the network) as they have

been proven to represent a great percentage of the spreading activity in a network.

The timestamp where each of the respective nodes is �rstly in�uenced by a user of its

network is considered as the �rst timestep of the speci�c node's spreading activity. The

following timestep is considered after 5000consecutively recorded timestamps. We are

considering the nodes being in�uenced during every such period by all the nodes that

were in�uenced during the preceding periods. We have considered for our experiments

totally ten such periods which we will be refering to as timesteps.

We are speci�cally interested in the three centralities of those nodes that are being

infected during these timesteps which we have compared with the respective centralities

after running the SIR model for ten timesteps starting from the same C nodes. As in our

previous experiments, the process is simulated 10 times for every node of the group

(due the dataset's size) and the average behavior of the node is calculated. The above

is repeated for all the nodes of the C set. Results from the experiments are shown in

Figure 3.13.

We observe that there are great differences between the two settings. While the simu-

lation shows that during the �rst steps, nodes with high centralities are in�uenced, real

data show that the nodes that are in�uenced do not differ much in terms of centralities

during these 10 time steps that we study. It has indeed been proven that epidemic mod-

els fail to reproduce the realistic viral spreading pattern [132] in terms of i) number of

nodes being infected and ii) of the characteristics of the diffusion trees created during

the process.

We prove that the model also fails to indicate the centrality characteristics of the nodes

being infected during the process. This can be explained by the de�nition of the models.

First and foremost the probability of an entity in�uencing a neighboring entity shouldn't

be the same for all entity relations. There is an extensive literature proposing methods to

modelize users' in�uence [77, 98, 117]. Moreover, considering the SIR model, an entity

does not get "recovered" while in a spreading process such as an information diffusion

in a Twitter network.

User behavior contains more complex patterns concerning the way information is

disseminated. Users may stop diffusing information for some period of time but start

"spreading the word" again in a later period for inde�nite reasons. This resembles the

SIS model where infected nodes can return to the susceptible state and with a probability

can start again infecting their neighbors. But unfortunately, neither this model can be

3.6 exploration of network centralit ies in spreading processes 43

0

500

1000

1500

1 2 3 4 5 6 7 8 9 10
Time Steps

D
eg

re
e

(d
v)

group C - Simulation
group C - Real data

(a) degree dv

0

25

50

75

100

125

1 2 3 4 5 6 7 8 9 10
Time Steps

C
or

e
nu

m
be

r
(c

v)

group C - Simulation
group C - Real data

(b) core number cv

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10
Time Steps

Tr
us

s
nu

m
be

r
(t

v)

group C - Simulation
group C - Real data

(c) truss number t v

Figure 3.13: Comparison of the evolution of the infected nodes' average (a) degree dv , (b) core
number cv and (c) truss number t v , between a simulated spreading process us-
ing the SIR model and real in�uence data for the H iggs-Twitter dataset having
triggered the epidemic from nodes of set C.

3.7 conclusions and future work 44

compared with the real in�uence data of our study. While the latter may be extremely

hard to model, we believe that there exist "who-in�uences-whom" patterns in in�uence

data that can help towards a better de�nition of the probabilities of an entity in�uencing

a fellow neighbor. Those patterns can be found while exploring the aforementioned

centralities of entities in�uencing their peers between steps of the spreading process.

3.7 conclusions and future work

Understanding and controlling the mechanisms that govern spreading processes in com-

plex networks is a fundamental task in various domains, including disease propagation

and viral marketing. Central to these tasks is the problem of identi�cation of in�uential

nodes with good spreading properties, that are able to diffuse information to a large

part of the network. It has been empirically observed that widely used node centrality

criteria such as degree and betweenness, have drawbacks when applied to �nd nodes

with good spreading properties; a node may have a large number of neighbors but if it

is located to the periphery of the network, its spreading capability is reduced. Kitsak et

al. [93] applied the k-core decomposition method in order to locate centrally placed indi-

viduals with good spreading properties; their observations suggested that the identi�ed

nodes outperform previously used criteria with respect to the spreading effectiveness.

However, the main drawback of the k-core decomposition is that its resolution is quite

coarse. Depending on the structure of the network, many nodes will be assigned the

samek-core number, even if their spreading capability differs from each other.

The fact that a relatively large fraction of the nodes that are extracted by the k-core de-

composition method corresponds to highly in�uential nodes, was the motivating force

behind our approach. To deal with this issue, we have considered the K-truss decom-

position of a network – a triangle-based extension of the k-core structure. By setting a

more strict criterion upon which nodes are assigned into layers of the graph, we have

shown that the K-truss decomposition can effectively reduce the number of candidate

in�uential spreaders in the network, as it further re�nes the set of nodes belonging to

the maximal k-core subgraph (recall that the maximal K-truss is a subgraph of the max-

imal k-core, see Proposition 3.8). Using the SIR epidemic model, we have shown that

such spreaders have the ability to in�uence a greater part of the network during the

�rst steps of the process; also the total fraction of in�uenced nodes at the end of the

epidemic is higher, compared to the performance of the rest nodes that belong to the

maximal k-core subgraph and the top degree nodes of the network. Our experimental

results also indicate that the K-truss decomposition �lters out the best spreaders of the

k-core structure; the spreading effectiveness of the remaining nodes is weakened, and

those nodes show even worst behavior compared to the top degree ones.

Additionally we observed that those nodes belonging to the maximal K-truss sub-

graph are distributed well among the optimal spreaders of the graph, presenting better

behavior compared to the remaining nodes of the maximal k-core subgraph. Further-

more, we observed that the truss number in general, is closely related to the spreading

effect. The nodes of the network are distributed among the optimal spreaders (after

ranking) in a way that a relationship to truss number occurs.

Finally, we explored the centralities of the entities that are involved in a spreading

process which is triggered by different groups of in�uential spreaders of a network. We

obtain interesting results by simulating the spreading process with the SIR epidemic

model that let us conclude that i) degeneracy algorithms help us detect groups of nodes

that will in�uence nodes with high centralities during the outburst of the epidemic and

ii) there exists a "plateau" period during the spreading process where a signi�cant part

3.7 conclusions and future work 45

of the nodes are in�uenced and iii) the nodes in�uenced in this "plateau" period have

relatively high degree, core and truss centralities considering the respective centrality

distributions of the network. Finally, by comparing the simulated diffusion process with

real in�uence, we observe that epidemic models cannot reproduce the real diffusion in

terms of the evolution of the centralities of the infected nodes. Thus we conclude that a

further research direction could be the search for a diffusion model �tting the real world

process.

4
I N F L U E N C E M A X I M I Z AT I O N I N S O C I A L N E T W O R K S

I
nfluence maximization has attracted a lot of attention due to its numerous ap-

plications, including diffusion of social movements, the spread of news, viral mar-

keting and outbreak of diseases. The objective is to discover a group of users (i.e.,

nodes) that are able to maximize the spread of in�uence across the network. It con-

stitutes an NP-hard problem, for which a simple greedy algorithm provides good ap-

proximation guarantees. Nevertheless, there are obviously serious scalability concerns.

In this Chapter, we propose Matrix In�uence, MATI, an ef�cient algorithm that can

be used under both the Linear Threshold and Independent Cascade diffusion models.

MATI is based on the precalculation of the in�uence by taking advantage of the simple

paths in the node's neighborhood. An extensive empirical analysis has been performed

on multiple real-world datasets showing that MATI has competitive performance when

compared to other well-known algorithms with regards to running time and expected

in�uence spread.

4.1 introduction

The interest in in�uence propagation has been exponentially increasing the recent years,

with applications ranging from social media analytics [10] and adoption of innovations,

to personalised recommendations [149], identi�cation of in�uential tweeters [8] and

viral marketing [14, 30, 56, 69, 70, 113]. The way entities in a social network interact

with each other creates information pathways in the network, making their position be

critical towards their spreading capabilities in the network. Thus, an important aspect on

understanding the in�uence dynamics is the identi�cation of privileged users that can

diffuse information to the greatest possible part of the network. Assuming we are aware

of the extent to which each individual can in�uence one another in a social network

and that we would like to introduce a new product so that it is adopted by the largest

possible fraction of the network [56, 113], the question is how to choose those speci�c

individuals that will trigger a cascade where their friends will recommend the product

to their friends until a lot of individuals will try it.

In this Chapter we will be studying the speci�c problem that concerns the identi�ca-

tion of a group of nodes that are able to maximize the total spread of in�uence – usually

called the in�uence maximizationproblem [39, 40, 46, 74, 75, 90, 102]. In�uence maxi-

mization can formally be described as follows: given a social networkwhere the relations

among users are revealed, adiffusion modelthat simulates how information propagates

through the network and a parameter k, the goal is to locate thosek users (represented

as nodes in the graph) that maximize the spread of in�uence. Kempe et al. [90] formu-

lated the problem in the aforementioned manner while adopting two diffusion models

borrowed from mathematical sociology: the Linear Threshold(LT) and the Independent

Cascade(IC) model. According to both, at any discrete time step a user can be either

active or inactive (i.e., has adopted the product or not) and the information propagates

until no more users can be activated.

Kempe et al. [90] proved that the function of the in�uence spread under both LT and

IC models is monotone and submodular. By exploiting these properties, they presented a

greedy algorithm that achieves (1- 1=e) approximation ratio. However, as the greedy al-

47

4.2 preliminaries and background 48

Notation Description

pu;v In�uence weight on directed edge (u; v)

� (S) In�uence of a set of nodes S to the graph

A (u; v) In�uence of node u to node v

 (u; v) Forward cumulative in�uence of node u to node
v

T (u) = f� 1; � 2; : : : ; � M g Set of all possible paths starting from node u

� i = fn i 1; n i 2; : : : ; n iN g Path consisting of N nodes starting from node u

F (� i) = ff i 1; f i 2; : : : ; f iN g Cumulative probability path for path � i

p�
`;` +1 In�uence weight between successive nodes in �

	 (u; v) = f 1; 2; : : : ; L g Set of all possible paths between nodesu and v

 i = fn i 1; n i 2; : : : ; n iN g Path between nodesu and v

� (i) = f� i 1; � i 2; : : : ; � iN g Cumulative probability path for path i

Table 4.1: List of symbols used in the Chapter.

gorithm repeatedly selects in every iteration the node with the maximum marginal gain

by running Monte Carlo simulations, we are lead towards great performance downsides.

Indeed, Feige's [60] result implied that any algorithm that guarantees a solution of at

least (1 - 1=e+ �) times the optimum, will probably not scale with the number of seeds.

The main contributions of this work can be summarized as follows:

• Ef�cient in�uence maximization algorithm:We propose the Matrix In�uence (MATI)

algorithm, an ef�cient in�uence maximization algorithm under the two well-known

diffusion models in the �eld: the linear threshold (LT) and independent cascade

(IC) models.

• Evaluation of our proposed approach on real graphs:We used large scale real-world

graphs while performing our experiments and showed that for both the cases of

the LT and IC models, MATI performs better than the baseline methods both in

terms of in�uence and computation time.

The rest of this Chapter is structured as follows: In Section 4.2 we present the in�uence

maximization problem along with the diffusion models used in the �eld. Section 4.3 re-

views the related literature on the problem of in�uence maximization. In Section 4.4

we describe the MATI algorithm for the linear threshold (LT) and the independent cas-

cade (IC) diffusion models. In Section 4.5 we show the results conducted in real-world

datasets and in Section4.6 we present concluding remarks.

4.2 preliminaries and background

In this Section we present the problem of In�uence Maximization (IM) as well as a de-

scription of two well-known diffusion models used in the �eld: the Linear Threshold

(LT) and Independent Cascade (IC) models and some further extensions. A list of the

symbols used in the Chapter is presented in Table 4.1.

4.2 preliminaries and background 49

4.2.1 The In�uence Maximization (IM) problem

Let us de�ne a network as G = (V; E) with V being the set of nodes and E the set of edges

between those nodes. If there exists an in�uence function f (S) : S ! IR with S � V, then

the problem of in�uence maximization (IM) is to discover this subset S that maximizes

f . S has a given sizek with k � jVj.

Kempet, Kleinberg and Tardos [90] proposed a general framework for IM. The spread-

ing models they consider (see Section4.2.2) categorize every node in two states: the active

and the inactivestate. Initially a set A of active nodes is considered. The latter trigger a

spreading process at the end of which, f (A) nodes will be active. Such a number cannot

be obtained analytically, an estimation though can be given after extensive simulations

of the process. In this framework, IM requires a set A of k nodes that maximizes f (A).

With the IM problem being NP-hard [90], the majority of the literature provides ap-

proximate rather than the exact solution. The most common approximate algorithms

would be: i) heuristic and ii) greedyalgorithms. An example of a heuristic algorithm

would be to rank all the nodes according to a centrality measure and select the k top-

ranking nodes.

The earliest greedy algorithm was provided by Kempe, Kleinberg and Tardos [90]

(see Algorithm 4.1). Let S be the subset of vertices selected to initiate the in�uence prop-

agation, called the seed set. Let InfModel(S) denote a model that simulates a spreading

process triggered by set S of which the output is a set of vertices in�uenced by S. At

each round i , one node is added to set S by the algorithm. This node, together with the

current set S is the one maximizing the total in�uence spread (Line 10). To select such a

node, for each v 2 S the in�uence of S[fvgis estimated by performing R simulations of

InfModel(S[fvg). Typically the number of simulations is set to 10.000.

Algorithm 4.1 Greedy Algorithm

1: Input: G = (V; E); k and R . k: budget, R : #simulations

2: Output: S

3: Initialize: S = ; and R = 10:000

4: for i = 1 to k do

5: for each v 2 V n S do

6: � (v) = 0

7: for j = 1 to R do

8: � (v)+ = jInfModel(S[fvg)j

9: � (v) = � (v)=R

10: S = S[fargmax v2 V nSf� (v)gg

11: return S

Before presenting the approximation guarantee of the greedy algorithm, we should

�rst introduce the de�nition of a submodular function.

De�nition 4.1. (Submodular function)

Given a �nite ground setV, a set functionf : 2V ! IR is submodular if:

f (S[fvg) - f (S) > f (T [fvg) - f (T)

for all elementsv 2 V n T and all pairs of setsS � T.

If f is monotone (i.e., f (S[fvg) > f (S)) for all elements v and sets S, then it has been

shown [50, 124] that the greedy algorithm provides an approximate solution S� within

4.2 preliminaries and background 50

v1 v2

u v3

v1 v2

u v3

Figure 4.1: Illustration of the Linear Threshold model. The white colored nodes are in an inactive
state whereas the pink colored nodes are in an active state. Node u will be activated
if pv1;u +pv3;u > � u .

a factor 1 - 1=e � 0:63:

f (S) > (1 - 1
e)f (S�)

4.2.2 Diffusion Models

Diffusion models are used to simulate the process of information propagation in the

network. Next, we describe two of the most widely applied models, namely the LT and

IC models and some extensions. As we will present later on, the proposed algorithm

is designed to deal with both of those models – contrary to most of the state-of-the-art

algorithms which have been designed for one of the two models.

4.2.2.1 Linear Threshold (LT) model

In this model, each directed link u ! v is assigned a weight pu;v satisfying that
P

u 2 Nb (v) pu;v 6 1, where Nb (v) is the set of node v's neighbors. Notice that pu;v 6= pv;u .

Each nodeu chooses a threshold� u uniformly at random from the interval [0; 1] which

represents the weighted fraction of u's neighbors that must become active in order for u

to become active (an example is provided in Fig 4.1). The linear threshold model starts

with some active nodes (with all other nodes being inactive) and a random choice of

thresholds. Then at each time step, a nodev will become active if
P

v2 Nb � (u) pv;u > � u ,

with Nb � (u) being the set of u's active neighbors. The diffusion process unfolds in a

synchronous and deterministic way in discrete steps until no further changes of nodes'

states happen.

4.2.2.2 Independent Cascade (IC) model

In the IC model, when a node u �rst becomes active in timestep t , it is given a single

chance to activate each neighbor v – which is currently inactive – and succeeds with

a probability pu;v . If u succeeds, thenv will become active in the next timestep. If u

does not succeed, it cannot further attempt to activate v in future timesteps. The process

continues as long as node activations are possible.

Kempe et al. [90] proved that for both the aforementioned models, the objective func-

tions on the expected number of active nodes f (:) are submodular concluding that the

greedy algorithm provides a (1 - 1=e)-approximation to the problem of in�uence maxi-

mization.

4.2.2.3 Further extensions

In the IC model, each weight pu;v that concerns link u ! v is independent of the

spreading process history. Nevertheless social networks have shown that information

diffusion presents memory effects [33, 55, 96, 108]. Thus, Kempe et al. [91] presented

4.3 related work 51

the decreasing cascade modelwhich extends the IC model by assigning weights at links

that depend on history. Let us denote as S the set of node v's neighbors that already

attempted to activate v. Then pu;v (S) expressesu's success probability to activate v. The

model contains two constraints: i) order-independent: the order in which the attempts of

the nodes trying to activate node v does not affect the probability of the latter being

active at the end; ii) non-increasing: function pu;v (S) satis�es pu;v (S) > pu;v (T) with

S � T. The authors proved that the objective function f (:) for the decreasing cascade

model is also submodular concluding that the greedy algorithm provides a (1 - 1=e)-

approximation.

4.3 related work

Following the seminal work by Kempe et al. [90], a series of algorithms have been

proposed in order to: (i) reduce the number of in�uence spread evaluations, (ii) make

batch computations of the in�uence spread, and (iii) design scalable heuristics towards

computing the respective spread.

Leskovec et al. [102] proposed the CELF algorithm, based on a “lazy-forward” opti-

mization scheme, that �nds near-optimal solutions guaranteed to achieve at least 1=2(1-

1=e) of the optimal ones by being 700 times faster than the greedy algorithm. The fact

that the marginal gain of a node cannot be greater than the one achieved in previous

iterations is taken into account. A table which stores every node and its marginal gain

(with regards to the in�uence achieved by the so far selected candidates) is stored in de-

creasing order. Only the marginal gain of the most pro�table (top) node is re-evaluated

when it is needed and the table is sorted again. The node remaining at the top of the

table is selected as the next seed node. Goyal et al. [75] introduced an algorithm that

further optimized the aforementioned one by 35- 55%, called CELF++. By exploiting

the submodularity property of the spread function for the diffusion models (e.g., LT and

IC) it avoids the unnecessary re-computations of the marginal gains.

Chen et al. [40] proposed the LDAG algorithm which is tailored for the LT model and

achieves to produce results by being orders of magnitude faster than the greedy algo-

rithm. They �rstly show that the computation of in�uence in directed acyclic graphs

(DAGs) can be done in linear time. Based on that, they construct a local DAG for ev-

ery node of the network and restrict the in�uence of the node in this local area. After

constructing the DAGs the greedy seed selection approach is applied together with an

accelerated solution for updating the incremental in�uence spread of each node.

The MIA algorithm, proposed by Chen et al. [39], is a maximum in�uence arbores-

cence model based on the assumption that information diffusion occurs according to the

IC model. They succeed in proposing a scalable algorithm which produces results that

outperform the other so far proposed heuristics by 100- 120%. They propose a) a best-

effort algorithm that estimates the upper bounds of location-aware in�uence spread and

prunes users having small in�uences thus achieving an approximation ratio of (1 - 1=e)

and b) a topic-materialization-based algorithm that estimates the bounds of in�uence

spread and avoids computation of the actual in�uence of least in�uential users while

�nally achieving an approximation of � (1 - 1=e). Goyal et al. [74] proposed SimPath, an

algorithm tailored for the LT model which computes the in�uence spread by enumerat-

ing simple paths within a small neighborhood. With the help of a parameter, a balance

between running time and quality of the solution can be achieved.

Tang et al. [151] designed the Two-phase In�uence Maximization (TIM) algorithm

which runs in near-linear time while also returning (1 - 1=e- 1=�)-approximate solu-

tions. In the �rst phase, a lower-bound of the maximum spread is calculated in order

4.4 matrix influence (mati) algorithm 52

to derive a parameter � . In the second phase, the parameter � is used so that random

reverse reachable (RR) sets (as de�ned by Borg et al. [28]) are sampled. The k-sized node

set that covers a large number of RR sets is the �nal result. TIM supports the triggering

modelwhich is a general diffusion model incorporating both the LT and IC models.

Another interesting approach is the one by Cohen et al. [46]. They designed a SKetch-

based In�uence Maximization (SKIM) algorithm which uses per-node summary struc-

tures called combined reachability sketchesrepresenting the node's in�uence coverage [45].

They introduce in�uence oracleswhich can answer in�uence queriesin an ef�cient way.

This algorithm is designed based on the IC diffusion model. Goyal et al. [73] proposed

a new probability model, the credit distribution modelwhich directly estimates in�uence

spread by exploiting historical data. This makes the need for knowing the in�uence

probabilities and making Monte Carlo simulations to compute the respective in�uence

redundant thus avoiding costly computations.

4.4 matrix influence (mati) algorithm

In this Section we introduce the proposed MATI algorithm, under both the LT and IC

models. After presenting some preliminaries on calculating in�uence in social networks,

we describe in detail how we compute the in�uence under each model and we provide

the algorithms used. Similar to the case of the greedy algorithm [90], at each round

of MATI, the node with the largest marginal in�uence estimate is chosen as the next

candidate. The novelty of our algorithm lies on the fact that, by having pre-calculated

all possible paths between nodes along with the respective in�uences of the nodes -

acting individually- in the network, we are able to ef�ciently compute the marginal gain

of adding a candidate node.

4.4.1 In�uence in Social Networks

A social network is typically modeled as a directed graph G = (V; E), consisting of jVj

users represented as nodes andjEj edges re�ecting the relationship between users. An

in�uence weight pu;v 2 [0; 1] is also associated with each directed edge (u; v) 2 E, and

represents the probability of node u to in�uence node v.

We assume that T (u) = f� 1; � 2; : : : ; � M g represents the set of all possible paths that

exist in the graph starting from node u and leading to "leaf" nodes (i.e., the paths that

cannot be further extended). It should be noticed that in our paths no nodes are allowed

to be repeated. All these paths are generated by using the Depth-�rst search (DFS)

algorithm, with the node to be the root of the tree. � i represents each possible path and

M is the number of all possible paths which start from node u. Each path � i consists of

a sequence of nodes:� i = fn i 1; n i 2; : : : ; n iN gand N represents the number of the nodes

and simultaneously the index of the terminal node of path � i . M and N can obviously

be different for every user u and every path � i , respectively, but they are de�ned as such

for the sake of the simplicity of the model.

Let p�
`;` +1, 1 6 ` 6 N - 1, represent the in�uence weight (probability) between two

successive nodes (n i` and n i (` +1)) in path � . Then F (� i) = ff i 1; f i 2; : : : ; f iN grepresents

the probability path for every path � i starting from node u to be active (i.e., a path is

considered active if each one of its edges is active). Eachf ij is de�ned as follows:

f ij =

8
><

>:

Q j - 1
` =1 p� i

`;` +1 if j > 1;

1 otherwise:
(4.1)

4.4 matrix influence (mati) algorithm 53

u a

b

v c

d e

f0:1

0:2

0:3

0:2

0:1

0:15

0:30:3

0:1

0:2

Figure 4.2: Example graph.

Let us now de�ne as 	 (u; v) = f 1; 2; : : : ; L gthe set of all possible (unique) paths

from a node u to a node v. i represents each possible path and L is the number

of all possible paths between nodes u and v. Each path i consists of a sequence of

nodes: i = fn i 1; n i 2; : : : ; n iN gand N represents again the number of nodes of path i .

Obviously L 6 M and again L and N can be different for every set of paths between

two nodes and every path i , respectively. We can now respectively de�ne as � (i) =

f� i 1; � i 2; : : : ; � iN gthe probability for every path i between two nodes u and v and is

calculated in the same way as f ij (see Eq. (4.1)).

Let us illustrate the above notations with an example. For this purpose, we consider

the graph illustrated in Fig. 4.2 that consists of jVj= 8 nodes and jEj= 9 edges. The set of

paths starting from node u is de�ned as T (u) = f� 1; � 2; � 3; � 4; � 5; � 6gwith M = 6 and the

different paths starting from node u being the following:

� 1 = fu; a; v; c; f g; N = 5

� 2 = fu; a; v; c; eg; N = 5

� 3 = fu; a; v; d; eg; N = 5

� 4 = fu; a; b; v; c; f g; N = 6

� 5 = fu; a; b; v; c; eg; N = 6

� 6 = fu; a; b; v; d; e g; N = 6

Therefore, the probability path for � 1 is de�ned as: F (� 1) = ff 11; f 12; f 13; f 14; f 15g, where

f 11 = 1, f 12 = 0:1, f 13 = 0:03, f 14 = 0:003and f 15 = 0:0009.

In the same way, the set of all possible paths from node u to node v is de�ned as

	 (u; v) = f 1; 2gwith L = 2 and the different paths between the two nodes being the

following:

 1 = fu; a; vg; N = 3

 2 = fu; a; b; v g; N = 4:

Then the probability path for 1 is de�ned as: � (1) = f� 11; � 12; � 13g with � 11 = 1,

� 12 = 1� 0:1 = 0:1 and � 13 = 1� 0:1� 0:3 = 0:03. Similarly, � (2) = f� 21; � 22; � 23; � 24gwith

� 21 = 1, � 22 = 1 � 0:1 = 0:1, � 23 = 1 � 0:1 � 0:2 = 0:02 and � 24 = 1 � 0:1 � 0:2 � 0:2 = 0:004.

4.4.2 In�uence Computation under the LT Model

Kempe et al. [90] have shown the equivalence of the Linear Threshold model to the

live-edge model. According to this model, a node u 2 V chooses just one of its incoming

edges with probability pu;v . If an edge is selected, it is consideredlive, otherwise blocked.

We can deduce from the above that the nodes expected to be activated by a seed setS is

the expected number of nodes that can be reached from S over all possible worlds. As it

has been shown by Goyal et al. [74], the expected spread of seed setS can be calculated

as follows:

� (S) =
X

v2 V

X

X

Pr[X]I (S; v; X) =
X

v2 V

A (S; v); (4.2)

4.4 matrix influence (mati) algorithm 54

where X is a possible live-edgegraph, Pr[X] is the sampling probability of graph X,

I (S; v; X) is an indicator function which equals to 1 if there exists a live path in X from

S to v and 0 otherwise, and A (S; v) is the probability the single node v to be activated

(in�uenced) by S. In the special case of a single nodeu, its expected spread to a nodev

(u 6= v) is de�ned as:

A (u; v) =
X

 i 2 	 (u;v)

Pr[i]

=
X

 i 2 	 (u;v)

N - 1Y

` =1

p i
`; (` +1)

=
X

 i 2 	 (u;v)

� iN =
LX

i =1

� iN (4.3)

where Pr[i] is the probability of path i being live and 	 (u; v) is the set of all possible

paths between nodesu and v. It becomes apparent that the in�uence of a node u to itself

is equal to 1 (i.e., A (u; u) = 1). According to the above, the in�uence of node u to node

v in our example graph (see Fig. 4.2) is equal to:

A (u; v) =
2X

i =1

� iN = [� 13] 1 + [� 24] 2 = 0:034

We can now de�ne the expected total in�uence spread of a single node u to the

network:

� (u) =
X

v2 V

A (u; v) �
X

v2 I (u)

A (u; v); (4.4)

where I (u) represents the nodes in the graph that can be in�uenced by node u de-

pending on a threshold � which is set in order to limit the calculations of probability

and cumulative probability paths. Roughly speaking, a node v belongs to set I (u), iff

A(u; v) > � . Therefore, the lower the parameter value � is, the higher the accuracy that

can be achieved.

The forward cumulative in�uence
 (u; v) is another quantity of interest, that corre-

sponds to the in�uence of node u to v and of node u to the nodes that can be found

right after node v in the paths T (u) of node u. Algorithms 4.3 and 4.4 show how
 is

calculated.

Practically each
 (u; v) element is calculated as the sum of i) the probabilities that all

unique paths between nodes u and v are live and ii) the probabilities that all unique

paths to nodes visited after node v while performing a Depth-�rst search starting from

node u are live. In our example graph (see Fig. 4.2) the aforementioned paths are the

following: {u,a,v}, {u,a,b,v}, {u,a,v,c}, {u,a,v,c,f}, {u,a,v,c,e}, {u,a,v,d}, {u,a,v,d,e}, {u,a,b,v,c},

{u,a,b,v,c,f}, {u,a,b,v,c,e}, {u,a,b,v,d}, {u,a,b,v,d,e}. According to the above, the cumulative

in�uence of node u to node v in our example graph is equal to:
 (u; v) = 0:03+ 0:004+

0:003+ 0:0009+ 0:0003+ 0:0045+ 0:0009+ 0:0004+ 0:00012+ 0:00004+ 0:0006+ 0:00012=

0:04488:

Revisiting the case of a set of nodes, Goyal et al. [74] showed that the spread of a set

S of nodes is the sum of the spread of each individual node u 2 S on the subgraphs

induced by the set V - S+ u:

� (S) =
X

u 2 S

� V - S+u (u); (4.5)

where � V - S+u (u) denotes the total in�uence of u in the subgraph induced by V - S+ u.

Similar to [74], we write V - S to denote the difference of sets V and S, V n S, and

V - S+ u to denote ((V n S) [fug).

4.4 matrix influence (mati) algorithm 55

Sx

V

Figure 4.3: Illustration of Theorem 1.

By taking advantage of the A (u; v) (Eq. 4.5) and
 (u; v) de�nitions, we get the follow-

ing key result that helps towards the calculation of the in�uence gain after the addition

of a node x to a set of nodes S. This result constitutes the basis of the proposed MATI

algorithm under the LT diffusion model.

Theorem1. Under the LT model, to calculate the in�uence after adding a node x to a set

of nodes S, one has to subtract from the sum of the individual spread of S and x the

forward cumulative in�uence � of all the nodes that belong to set S which contain node

x in paths connecting the latter to nodes in set S. That is,

� (S[fxg) = � (S) + � (x) -
X

y 2 S

 (x; y) -
X

y 2 S

 (y; x): (4.6)

Proof.

� (S[fxg)
(1)
=

X

u 2 S[f x g

� V - S- x +u (u)

(2)
= � V - S(x) +

X

u 2 S

� V - S- x +u (u)

(3)
= � V - S(x) + � V - x (S)
(4)
= � (x) + � (S) -

X

y 2 S

 (x; y) -
X

y 2 S

 (y; x):

Equality (1) is a direct application of Eq. 4.5 (see [74] for its proof). (2) and (3) can easily

be veri�ed by making simple calculations. (4) comes from set theory (see Fig.4.3 for an

illustration). Roughly speaking, (4) expresses that the in�uence gain after adding node

x to a set S, is equal to the summation of the in�uence gain of x and S independently,

subtracting from this value the nodes that can be in�uenced by x or S, through paths

that pass via nodes on setSor node x, respectively. For instance, if both x and Sin�uence

nodes that do not cross each other, we get that � (S[fxg) = � (x) + � (S).

Algorithms 4.2 to 4.5 show the complete structure of MATI algorithm under the LT

model. Routine Calc Stats LT (Algorithm 4.3) computes A and
 , and routine C alc Inf

(Algorithm 4.5) returns the in�uence of all nodes v 2 V, as was described in this section.

We use a CELF queue which is a queue storing the nodes' marginal gains in decreasing

order, as in [75]. At each iteration, we add the top node of the CELF queue at the seed

set, until the budget k is reached (see Algorithm 4.2). The in�uence gain of every node to

be selected is calculated by subtracting the respective in�uence for which the candidates

selected so far are responsible for, through common paths as shown in Theorem 1.

4.4.3 In�uence Computation under the IC Model

In the IC diffusion model, the activation probability of a node to another one in a path

can be calculated by multiplying the in�uence weights p�
`;` +1 leading to it in path i .

4.4 matrix influence (mati) algorithm 56

Algorithm 4.2 Mati LT

1: Input: G = (V; E); k . k: budget (number of seed nodes)

2: Initialize: S = ;

3: A ;
 = Calc Stats LT(G)

4: Q = Calc Inf (A ; V)

5: for i = 1 to k do

6: s; � (s) = Q:top ()

7: S = S[fsg

8: U = VnS

9: for each u 2 U do

10: � (u) = Q(u)

11: for each v 2 S do

12: � (u) - =
 (v; u)

13: � (u) - =
 (u; v)

14: Q:add ((u; � (u)))

15: return S

Algorithm 4.3 Calc Stats LT

1: Input: G = (V; E)

2: Initialize: A ;
 = 0

3: for each u 2 V do

4: A(u; u) = 1

5: A(u; :);
 (u; :); _ = DFStatistics (G; u; 1; A(u; :);
 (u; :))

6: return A ,

Algorithm 4.4 DFStatistics

1: Input: G = (V; E); u; pu ; A r ;
 r

2: Initialize:
 temp = pu

3: for each w 2 Neighbors (u) do . w =2 Predecessors(u)

4: pw = pu;w � pu

5: A r (w) += pw

6: A r ;
 r ;
 0
temp = DFStatistics (G; w; pw ; A r ;
 r)

7:
 temp +=
 0
temp

8:
 r (u) +=
 temp

9: return A r ;
 r ;
 temp

Algorithm 4.5 Calc Inf

1: Input: A , V

2: Initialize: Q = ; ; � (u) = 0; 8u 2 V

3: for each u 2 V do

4: for each v 2 I (u) do . I (u): nodes in�uenced by u

5: � (u) += A (u; v)

6: Q:add ((u; � (u)))

7: return Q

That is, in a path i = fn i 1 = u; n i 2; :::; n iN = vg, the in�uence of node u to node v can

be calculated as follows:

A i (u; v) =
N - 1Y

` =1

p i
`;` +1 = � iN (4.7)

4.5 experimental evaluation 57

The total activation probability of node v from node u, while taking into consideration

the L different (unique) paths 	 (u; v) = f 1; 2; :::; L g that lead from u to v, can be

computed as:

A (u; v) = 1 -
Y

 i 2 	 (u;v)

(1 - � i (u; v)) = 1 -
LY

i =1

(1 - � iN); (4.8)

where
Q L

i =1(1 - � iN) is equal to the probability that node u does not in�uence v (i.e.,

none of the paths from u to v is active).

In the case of the IC model,
 (u; v) cannot be calculated only according to the in�u-

ence weights pk;k +1 in a speci�c path. In fact, the calculation of the in�uence in the case

of the addition of a node u will change the so far calculated in�uence of a set of seed

nodes S. Therefore, we use the following heuristics to compute the additional in�uence

of node u, i.e., � (S[fug):

� (S[fug) computation:

1. For every path originating from node u (i.e., T (u)) or a node belonging to seed

set S, we keep the subpaths before falling into a node belonging to S[fug.

2. The � (S[fug) is equal to the sum of the in�uence probabilies that correspond to

each of these subpaths.

Algorithm 4.6 Mati IC

1: Input: G = (V; E); k . k: budget (number of seed nodes)

2: Initialize: S = ; ; � (S) = 0

3: A = Calc Stats IC(G)

4: Q = Calc Inf (A ; V)

5: for i = 1 to k do

6: s; � (s) = Q:top ()

7: S = S[fsg

8: U = VnS

9: � (S) = � (S) + � (s)

10: for each u 2 U do

11: � (S[fug) = jS[fugj

12: � (S[fug)+= A dditive Inf (T (u), F (u), S)

13: � (S[fug)+= A dditive Inf (T (S), F (S), S[fug)

14: Q:add ((u; � (S[fug) - � (S))) . Order is maintained

15: return S

Algorithm 4.6 shows the structure of the MATI algorithm under the IC model. Initially,

routines Calc Stats IC (Algorithm 4.7) and Calc Inf (Algorithm 4.5) are called to com-

pute A and the contents of CELF queue Q, respectively. While calculating the marginal

in�uence for every candidate node u, routine A dditive Inf (Algorithm 4.8) computes

the additional in�uence as previously described (see � (S[fug) computation).

4.5 experimental evaluation

In this Section, we present experimental results concerning the performance of the pro-

posed algorithm for in�uence maximization. We have conducted experiments in real-

world datasets in order to evaluate the performance of the MATI algorithm and com-

pare it to state-of-the-art in�uence maximization algorithms on the quality of results

4.5 experimental evaluation 58

Algorithm 4.7 Calc Stats IC

1: Input: G = (V; E)

2: Initiaze: A = 0

3: for each u 2 V do

4: GenerateT (u) and F (� i), 8 � i using DFS

5: for each v 2 V do

6: pr = 1

7: Generate 	 (u; v) and � (i); 8 i (based on T (u))

8: for each i 2 	 (u; v) do

9: pr = pr � (1 - � ij)

10: A (u; v) = 1 - pr

11: return A

Algorithm 4.8 Additive Inf

1: Input: T ; F ; S . T : set of paths, S: set of nodes

2: Initialize: i = 0; inf = 0

3: for each � 2 T do

4: i = i + 1

5: for each u 2 � do

6: j index (u)

7: if j == 1 then

8: continue

9: else if u =2 S then

10: inf += f ij

11: else

12: break

13: return inf

and ef�ciency. The algorithm has been implemented in Python and all experiments are

run on a Linux machine with a 3:00GHz CPU Intel Xeon CPU and 64GB memory.

4.5.1 Datasets

We have used four publicly available graph datasets: N et Hept , Wiki Vote , Epinions and

Email -EuAll . High level characteristics of the networks are shown in Table 4.2. A more

detailed description of the datasets is presented in Section 2.4 of Chapter 2. To generate

in�uence weights on all edges, we adopt the classical uniform method by [72, 90]. More

precisely, we set the weight of every incoming edge of a node v to be equal to 1
d v

, where

dv is the in-degree of node v. It has to be noted that the datasets were transformed from

an undirected format to a directed one by simply assuming that if an edge between two

nodes exists the one can in�uence the other. Thus, the number of the edges used in the

experiments is twice the one that is reported.

4.5.2 Baseline Algorithms

In order to evaluate the performance of the MATI algorithm, we compare the respective

results with those of four baseline algorithms which are described below:

• Degree: A heuristic based on the concept of “degree centrality”, considering high-

degree nodes as in�uential [90]. The seeds are nodes withk highest out-degrees.

4.5 experimental evaluation 59

Dataset Net HEPT Wiki Vote Epinions Email -EuAll

Nodes 15K 7K 75K 225K

Edges 62K 103K 405K 341K

Table 4.2: Properties of the real-world graphs used.

• Greedy: The original greedy algorithm with Monte-Carlo Simulations. Following

the literature [90], we run 10; 000 Monte Carlo (MC) simulations to estimate the

spread of any seed set.

• LDAG : The algorithm using locality properties as proposed in [40]. In�uence pa-

rameter � is set to 1
320 as used by the authors.

• SimPath: The algorithm proposed in [74]. The pruning threshold is set to 10- 3 and

the look-ahead value l is set to 4 as proposed by the authors.

Unless noted otherwise, the threshold � for the proposed MATI algorithm is set to 0:0001.

The value was chosen experimentally, based on performance observation.

4.5.3 Experimental Results

We compare the performance of the aforementioned algorithms, with respect to the

quality of seed sets and ef�ciency aspects.

quality of seed sets . The quality of the seed sets obtained by different algorithms

is evaluated based on the expected spread of in�uence measured in number of nodes.

Figures 4.4 and 4.5 show the spread of in�uence versus the size of seed set, under the

LT and IC models respectively.

Under the LT model, the seed sets obtained via MATI are quite competitive in quality

compared to those of the Greedy, LDAG and SimPath algorithms. For all four datasets,

the in�uence loss for up to 50 seeds is less than2%. Under the IC model, our algorithm

is still ef�cient, despite the heuristics involved in the in�uence estimation.

We have also performed experiments for different values of the parameter � of our

algorithm for the NetHEPT dataset, in order to observe the running time of our algo-

rithm with respect to the in�uence that is achieved. The results are depicted in Table 4.3.

As � decreases, the running time is always increasing. This is justi�ed by the fact that a

smaller � allows computation of in�uence in a greater neighborhood around each node.

In most of the cases, the in�uence achieved also increases. This is justi�ed by the fact

that the formation of paths of greater length provide a more accurate computation of a

node's in�uence.

efficiency of mati . We have also examined the running time of the proposed

algorithm. Figure 4.6 reports the execution time required by various algorithms for the

LT and IC models respectively. The �gures have a logarithmic scale on the y-axis. In

all cases, MATI is faster than the Greedy and LDAG algorithms. In all datasets except

WikiVote, MATI also performs better that SimPath. It takes Greedy more than one week

to select 50 seed nodes for datasets such as Epinions. We should also mention here that,

although the Degree heuristic is time ef�cient, it fails to output a seed set of high quality.

4.5 experimental evaluation 60

0 10 20 30 40 50
Number of seeds

0

1000

2000

3000

4000

5000

6000

In
flu

en
ce

Degree
Greedy
LDAG
SimPath
MATI

0 10 20 30 40 50
Number of seeds

0

200

400

600

800

1000

1200

1400

In
flu

en
ce

Degree
Greedy
LDAG
SimPath
MATI

(a) Wiki Vote (b) Net HEPT

0 10 20 30 40 50
Number of seeds

0

0.5

1

1.5

2

2.5

3

In
flu

en
ce

104

Degree
Greedy
LDAG
SimPath
MATI

0 10 20 30 40 50
Number of seeds

0

2

4

6

8

10

In
flu

en
ce

104

Degree
Greedy
LDAG
SimPath
MATI

(b) Epinions (c) Email -EuAll

Figure 4.4: In�uence spread in number of nodes for the different algorithms, under the LT
model. We show results for the following networks: (a)Wiki Vote ; (b)Net HEPT;
(c)Epinions ; (d)Email -EuAll . Each plot depicts the in�uence in number of nodes
achieved by the different methods: D egree, Greedy , LDAG, SimPath and MATI.
Each point shows the number of nodes that the respective number of seed nodes
- given by the different methods - achieves to in�uence.

4.5 experimental evaluation 61

0 10 20 30 40 50
Number of seeds

0

500

1000

1500

2000

2500

3000

In
flu

en
ce

Degree
Greedy
MATI

0 10 20 30 40 50
Number of seeds

0

200

400

600

800

1000

In
flu

en
ce

Degree
Greedy
MATI

(a) Wiki Vote (b) Net HEPT

0 10 20 30 40 50
Number of seeds

0

0.5

1

1.5

2

In
flu

en
ce

104

Degree
Greedy
MATI

0 10 20 30 40 50
Number of seeds

0

2

4

6

8

10

In
flu

en
ce

104

Degree
Greedy
MATI

(c) Epinions (d) Email -EuAll

Figure 4.5: In�uence spread in number of nodes for the different algorithms, under the
IC model. We show results for the following networks: (a)Wiki Vote ; (b)Net HEPT;
(c)Epinions ; (d)Email -EuAll . Each plot depicts the in�uence in number of nodes
achieved by the different methods: D egree, Greedy and MATI. Each point shows the
number of nodes that the respective number of seed nodes - given by the different
methods - achieves to in�uence.

4.6 conclusions and future work 62

� Running Time (s) In�uence

0.1 1.2 984.7

0.01 6.5 1162.3

0.001 88.6 1209.6

0.0001 708.2 1190.8

(a)

� Running Time (s) In�uence

0.1 1.2 867.77

0.01 6.8 959.42

0.001 106.5 938.21

0.0001 820.6 950.32

(b)

Table 4.3: Comparison of running times in seconds and in�uence spread in number of nodes
for different values of the parameter � under (a) the LT and (b) the IC model for the
Net HEPT network.

4.6 conclusions and future work

Identifying vital nodes in networks which are associated with some certain structural

or functional objectives is a very signi�cant task with various applications in numerous

domains. In the previous Chapter the problem of identifying individual vital nodes was

introduced. Nevertheless, many real-world applications require a small set of nodes

that play a crucial role in information diffusion. A common marketing strategy when

the budget is limited, is to show advertisements and provide small samples or even

discounts to the speci�c set of customers that are highly probable to buy the product

and inluence many people to buy it too. For some military applications, it is required

that some few critical nodes of the enemy are destroyed in order to the greatly reduce

their communication capacity.

A greedy algorithm has been proposed for the so-called problem of in�uence maxi-

mization which is proven to provide good approximation guarantees. The serious draw-

back of the greedy algorithm is that it is very time-consuming. Many algorithms have

been proposed in order to surpass greedy's main drawback. They focus on reducing

the computation time either by reducing the number of spread evalutations, either by

making batch computations of the in�uence spread or by designing heuristics that will

ef�ciently compute the respective spread.

In this Chapter, we proposed MATI, an ef�cient in�uence maximization algorithm

under both the LT and IC diffusion models. By taking advantage of the possible paths

that are created in each node's neighborhood, we have designed an algorithm that suc-

ceeds in locating the users that can maximize the in�uence in a social network while

also being scalable for large datasets.

Speci�cally we take advantage of the fact that when we want to calculate the in�uence

gain that a node will add to the in�uence of a group of nodes, we just need to subtract

the in�uence of the common paths of the new node and those of our already existing

seeds from this new node's individual in�uence to the network. Our algorithm can

be seen an extension of the SimPath algorithm in what concerns its formulation for

the LT model. Taking advantage of the possible paths created and pre-calculating the

4.6 conclusions and future work 63

WikiVote NetHEPT EpinionsEmail-EuAll
10-2

100

102

104

106

R
un

ni
ng

 ti
m

e
(s

)

Greedy
SimPath
LDAG
MATI
Degree

(a) Running time - LT model

WikiVote NetHEPT EpinionsEmail-EuAll
10-2

100

102

104

106

R
un

ni
ng

 ti
m

e(
s)

Greedy
MATI
Degree

(b) Running time - IC model

Figure 4.6: Comparison of running times in seconds of the different algorithms under the
(a) LT and (b) IC models. We show results for the following networks: W iki Vote ;
Net HEPT; Epinions ; Email -EuAll . Each plot depicts the running time in seconds
that each different algorithm requires to produce a group of k = 50 seed nodes.
Results for the following methods are shown: D egree, Greedy , LDAG, SimPath and
MATI.

in�uence gain of a node for the IC model though has not beed proposed, in the best

of our knowledge, by any related work. The methods used to precalculate each node's

potential in�uence depends on the creation of matrices which may on one hand increase

the memory consumption of the algorithm while at the same time facilitating the re-

computation of the seeds in the case that some nodes and edges are deleted. In order

to limit the computation of the possible paths and the respective probabilities of them

being “active”, we use a pruning threshold � which reduces the running time but also

the accuracy of the in�uence computation. Extensive experiments show that for both the

cases of the LT and IC models, MATI performs better than the baseline methods both in

terms of in�uence and computation time.

As future work, we plan to further evaluate our algorithm by doing more experiments

with larger datasets and comparing it with more baseline methods. Additionally we are

experimenting with heuristics that can speed up more the running time and ef�cient

data structures that may reduce the memory consumption of our algorithm. It would be

interesting to experiment with the structural centralities that have been proven ef�cient

4.6 conclusions and future work 64

in identifying individual in�uential spreaders in order to see whether those centralities

can also provide useful insights for the in�uence maximization problem. Finally we are

studying how our method can be extended for the case of a dynamic graph where nodes

and edges are added or deleted from the network.

5
P R I VAT E , S E C U R E A N D D I S T R I B U T E D C O M P U TAT I O N O F

K - C O R E S

T
he focus of the dissertation until now was on identifying those speci�c nodes

in the network that would, as individuals or by acting all together as a group,

maximize the spread of in�uence across the network. This information can be

proven invaluable speci�cally for advertisers, for building on-line services and viral mar-

keting campaigns. However, sharing such social networks raises severe privacy concerns.

The goal of this Chapter is to calculate a metric which measures the in�uence of each

node of the network in a secure and privacy-preserving way. To that end, we capitalize

on the k-core decomposition which has been proved to locate higly in�uential spreaders.

We build a distributed Peer-to-peer (P 2P) algorithm that securely calculates the k-core

numbers and therefore the spreading properties of the nodes in a network. We show that

our algorithm can succesfully calculate the speci�c metric for dynamic graphs while lim-

iting the calculations and the number of the messages exchanged among peers. Finally

we show that our algorithm can run on anonymized graphs while maintaining good

quality of results.

5.1 introduction

Identi�cation of in�uential spreaders in networks has been the focus of many researchers

from various different scienti�c �elds. Numerous metrics and algorithms have been in-

troduced in order to locate those “important” nodes in complex network structures as

presented in the previous Chapters. Indeed, it has been shown [93, 115, 138] that the

identi�cation of dense subgraphs can lead to a good estimation of the “best” initial

nodes (called in�uential nodes), both in terms of spread speed and total number of nodes

reached. The results of such studies have been proven signi�cant to a great range of

applications that include collective dynamics and viral marketing.

Nevertheless, the aforementioned methods require knowledge of the social network.

Such practices raise serious concerns associated with the publishing of such sensitive

information. A trivial solution to this problem would be to remove the identifying in-

formation from the network by removing user-speci�c data concerning each individual

node. Unfortunately such a solution is not impenetrable to possible attacks that aim to

reveal the true identities of targeted users [6]. The latter work triggered the proposal

of several anonymization methods whose purpose is to limit the risk of privacy breach

in shared data [22, 159]. Another trend that exists towards circumventing the privacy

problem is secure computation using cryptographic techniques such as homomorphic

encryption [66, 71]. The major drawbacks of the cryptographic approach is that, for the

moment, it is computationnaly costly (when not unfeasible).

In this work, we adopt the decentralizationapproach to favor privacy. Distributed graph

computation models have gained great attention the latest years as they can effectively

perform computations over large-scale graphs which became very relevant for numer-

ous Web-related applications.

We speci�cally propose a Peer-to-peer (P2P) algorithm for distributed k-core decom-

position. k-coreness has been proved to be a metric that ef�ciently locates those nodes

that –while acting individually – will disseminate information to a larger part of the

65

5.2 problem statement and preliminiaries 66

population [93]. Montresor et al. [120] were the �rst to propose an algorithm devised

with a Peer-to-Peer scenario in mind (i.e., fully distributed). They succeed in designing

an algorithm that completes the k-core decomposition in O(N) rounds for graph with

N number of nodes. However, in real-world applications, the network evolves over time.

Several nodes and/or edges may be added to the initial state of the graph. In such dy-

namic networks, it is crucial to have the up-to-date k-core values of the nodes which

constitutes a dif�cult problem – usually called the core maintenanceproblem.

An edge addition or deletion may affect though not only the coreness of the two

end nodes, but also that of their neighbors. The update could even spread across the

network and change various k-core values. Thus we deduce that determining which

node in a network should update its core number given the network changes is not a

straightforward task. For a small network with few updates, a trivial alternative would

be to execute the P2P k-core decomposition algorithm [120] every time an update takes

place. This solution would lead to a high number of messages and computations as well

as to a non-negligible convergence time which could cause issues if updates are frequent.

It could possibly be an acceptable solution for small networks with low dynamism but

it is inadequate in our context: fully distributed computations in a large network with

frequent updates.

Our proposed approach, inspired by the one by Montresor et al., constitutes an incre-

mental algorithm that solves the core maintenance problem while limiting the number

of computations and messages exchanged for each update. The main contributions of

this work can be summarized as follows:

• P2P algorithm that solves the core maintenance problem: We propose an incremental

algorithm that ef�ciently solves the core maintenance problem in P 2P, limiting

the number of messages and computations needed to successfully update the core

numbers for the vertices when an edge is inserted or deleted, thus respecting these

constraints.

• Complexity analysis on real graphs: We provide an experimental evaluation of our

proposed P2P algorithm, that shows that it can correctly scale to large-scale net-

works.

• Security and privacy analysis on real graphs: We analyse the security and privacy

aspects of our algorithm using two different adversary models. We discuss the

desired privacy and information quality that needs to be achieved in our scenario

and perform experiments on real datasets.

The rest of the Chapter is organized as follows. Section 5.2 presents the problem

statement and some background concepts that are used throughout the Chapter and

Section5.3 reviews the related literature on k-core decomposition and core maintenance

algorithms. Then, in Section 5.4 we present the proposed P2P algorithm for core main-

tenance. Sections5.5 and 5.6 present a detailed computational complexity and security

and privacy analysis of our method respectively. Finally, in Section 5.7 we present con-

cluding remarks.

5.2 problem statement and preliminiaries

In this Section, we present the problem studied and the preliminary concepts upon

which our approach for a P 2P core maintenance algorithm is built. Initially, we recall

the concept of k-core decomposition in graphs. Then, we present the theorems and de�-

5.2 problem statement and preliminiaries 67

nitions that were the basis towards the composition of our algorithm. Table 5.1 provides

a list of symbols used in this Chapter, along with their de�nitions.

5.2.1 Problem Statement

In this work, we are interested in the following problem: how to compute through an

ef�cient, correct, secure, and privacy-preserving algorithm a metric which will measure the

in�uence of each node of the network.

Hypothesis1. (Peer-to-Peer)The social network is considered as a P2P system. The algo-

rithms developed must be P 2P algorithms.

There have also been many attempts to propose distributed and private social net-

works [51]. Arguably, the most successful is Diaspora, in which podsrepresent end-

points to which users connect, and constitute the distributed infrastructure. In a fully

decentralizedcontext, which is the case considered in this work, each user would create

and manage his own pod. There is no central entity that has a global knowledge of the

network.

Nevertheless, creating algorithms in a decentralized setting still raises the following

question: what is the privacy leakage of the information shared with other nodes when running

the algorithm?In our work, we consider the following privacy constraint, applied to the

computation of k-cores:

Constraint1. (Privacy) It must not be possible for a node (resp. a set of colluding nodes)

to reconstruct partially or entirely the graph using the information it (resp. they) obtain

during the execution of our algorithm.

Symbol De�nition

G = (V; E) Undirected graph G

V; E Node and edge set of graph G

dG (v) Degree of node v 2 V

neighbor G (v) Function returning the set of nodes u such that (u; v) 2 E

kG (v) Coreness/ k-core number of node v of graph G

ICS(v) Induced Core Subgraph of node v

PIICS(v) Potential Incrementation Induced Core Subgraph of node v

DICS(v) Decrementation Induced Core Subgraph ofnode v

Ganon , G̃ Anonymized and modi�ed version of graph G

� ,� percentage of nodes to be added and deleted

q,qN Quality and Normalized Quality

q1, q2 base and randomized quality

X%, z percentage and actual number of in�uential nodes

VN ,Vi<N set of nodes of the N th and N - 1 top coreness groups of G

V 0
N , V 0

i<N set of nodes of the N th and N - 1 top coreness groups of G̃

Table 5.1: List of symbols and their de�nitions.

5.2 problem statement and preliminiaries 68

5.2.2 Preliminaries and Background

We assume that each individual node of the graph G = (V; E) is actually one of the

hosts of the distributed system. Each node v is initially only aware of its degree dG (v)

and has access to the functionneighbor G (v) which returns the set of nodes u such that

(u; v) 2 E.

We brie�y recall to the notion of k-core decomposition in networks (a detailed descrip-

tion can be found in Chapter 2, Section 2.3.1.1). Let G = (V; E) be an undirected graph.

Ck is de�ned to be the k-core subgraph of G if it is a maximal connected subgraph

in which all nodes have degree at least k. Then, each nodev 2 V has a core number

kG (v) = k – also known as coreness, if it belongs to ak-core but not to a (k + 1)-core.

Our distributed algorithm is based on locality theoremproved by Montresor et al. [120]

and the k-core update theorem[105] that follow.

Theorem 5.1 (Locality [120]). For every nodev 2 V of graphG, kG (v) = k if and only if a)

there existk neighbors ofv whose coreness is greater than or equal tok and b) there are nok + 1

neighbors ofu whose coreness is greater than or equal tok + 1.

From the locality theorem, we conclude that knowing the coreness of its neighbors

is suf�cient for a node to compute its own coreness. Based on this theorem, Montresor

et al. [120] developed a distributed peer-to-peer algorithm for the computation of the k-

core decomposition of a network. Nevertheless, in real-world applications, the network

evolves over time. Our distributed algorithm incorporates a �rst round of computations

similar to the aforementioned algorithm where each individual node v is �nally aware

of its own coreness and that of its neighbors. Then, each time a change occurs, addi-

tional computations are triggered so that the coreness of all the nodes affected by the

aforementioned change is updated. Potentially affected nodes are limited to some sub-

graph:

De�nition 5.2 (Induced Core Subgraph (ICS)). The core subgraph ofG induced by a node

v 2 V, notedICS(v) = (Vv
I ; Ev

I) is the maximal connected subgraph of thekG (v)-core containing

v such as:

1. v 2 Vv
I ; v is in H (i.e., the vertex inducing the ICS is in the ICS).

2. 8u 2 Vv
I ; kG (u) = kG (v); all node ofICS(v) has a coreness exactly equal to (and no greater

than) kG (v).

Accordingly, the k-core update theorem limits the potential changes as follows:

Theorem 5.3 (k-core update theorem [105]). Given our graphG and two nodesu and v in

G, the insertion or deletion of an edge betweenu andv:

• if kG (u) > k G (v), may impactVv
I , the nodes that belong toICS(v).

• if kG (u) < k G (v), may impactVu
I , the nodes that belong toICS(u).

• if kG (u) = kG (v), may impactVv
I and Vu

I ,the nodes that belong to the union ofICS(v)

andICS(u).

The coreness of such a node may:

• remain unchanged.

• in the case of an edge addition, increase by1.

• in the case of an suppression, decrease by1.

5.3 related work 69

Based on this theorem, whenever an edge between two nodes is added/deleted in G,

only the nodes in the ICS induced by the node(s) with the smaller coreness may need

to be updated. Node addition and deletion are not considered in the update theorem. A

simple node addition -without any edges being added to connect the latter to nodes al-

ready existing in the graph- does not modify the corenesses of any node. Node deletion

in itself has no impact, rather it's the apparition -and subsequent deletion- of dangling

edges that does.

5.3 related work

In this section the relevant state-of-art in the areas of i) k-core decomposition and ii)

core maintenance algorithms will be reviewed. Finally we take a look at decentralized

personal data management platforms which demonstrate the soundness of the consid-

ered context and provide examples of systems where our proposed approach could be

applied.

5.3.1 k-core Computation

The standard algorithm for k-core decomposition was proposed by Batagelj and Zaver-

snik [15]. They propose an algorithm which recursively deletes nodes (and the edges

incident to them) that have a degree less than k. The core subgraphs are computed in

increasing order (1-core,2-core, 3-core etc) and in linear time to the number of edges

in the network. This algorithm runs ef�ciently if the entire network can �t in the main

memory.

For graphs that cannot be kept in the main memory, Cheng et al. [41] proposed EM-

core, an algorithm for massive networks. Contrary to the aforementioned bottom-up

approach, they propose a top-down approach starting from the smallest-size core and

recursively decreasing the search space and disk I/O cost for every core computed.

Wen et al. [158] propose a semi-external algorithm comprising optimization tech-

niques to reduce I/O and CPU cost for core decomposition on web-scale graphs. Core

decomposition is also studied in random graphs [112, 119] and uncertain graphs [23].

Montresor et al. [120] proposed a distributed k-core algorithm assuming that nodes

of the network are located on separate computing nodes. They present two different

models: i) one which assumes that one computational unit is associated with one node

in the graph similar to Pregel, the distributed framework proposed by Google [114] and

ii) one assuming one host stores a group of nodes with their local and remote edges. It

is assumed that everything is held in the memories of the computing nodes.

5.3.2 Core Maintenance

Moriandi and Pelegrini [118] rely solely on the algorithm in [15]. If the graph is updated,

the algorithm is re-executed and the core number of every node is re-calculated from

scratch. This is obviously a computationally expensive solution for large graphs. Li and

Yu [105] proposed a more ef�cient solution which limits the computations needed by

determining the minimal subgraph for which the k-core decomposition might have to

be updated.

Aksu et al. [1] propose a batch maintenance as changes occur dynamically in the

graph. The proposed algorithms prune the search space to minimize the messages ex-

changed among the computing nodes that store the partitioned data. Saríyüce et al. [143]

present an incremental k-core decomposition scheme. Based on the observation that

5.4 p2p algorithm for core maintenance 70

when an edge is inserted or removed, the subgraph that may need to be updated is

connected and reside in the subcore which the edge is in, they propose an algorithm

linear in the size of the subcore. Zhang et al. [164] further improve the aforementioned

approach by proposing a new order-based algorithm. By maintaining a k-order among

vertices they signi�cantly outperform the state-of-the-art algorithm up to 3 orders of

magnitude.

5.3.3 Decentralized Personal Data Management Platforms

The work proposed in this Chapter is to be considered in the context of a distributed

social network, or more generally a distributed data management platform, or personal

cloud. Many companies such as OwnCloud, SandStorm, SeaFile, Tonido, You-nity, Cozy-

Cloud, Lima or governmental initiatives such as the British * initiative, offer a logically

decentralized approach to the management of personal data.

Compared to Diaspora †, which is a decentralized social network, the current trend

of empowering users to manage their own data goes further and continues to pursue

a privacy objective, often with physical decentralization. For instance, OpenPDS and

the SafeAnswers framework aim to minimize to the bare minimum the (personal) in-

formation shared with others when computing a query. Allard et al. [4] proposed an

initial design for the Personal Data Server approach to use low-price secure hardware

to execute local computations, while protecting the system from the user himself.

We believe that the work presented in this Chapter belongs to this context and that

our approach could be integrated into any logically or physically decentralized system.

In this next section, we formalize our P 2P algorithm which is based on the theo-

rems presented in the Section 5.2. It solves the core maintenance problem by triggering

update mechanisms that involve the exchange of a limited number of messages and

performance of computations whenever a change occurs.

5.4 p2p algorithm for core maintenance

The algorithm can be divided in two parts:

i) the static partwhich involves the initial calculations so that all the nodes of the

initial format of the graph are aware of their own and their neighbors' corenesses.

This part is similar to the "one node, one host" algorithm introduced by Montresor

et al. [120].

ii) the dynamic partinvolving isolated graph perturbations during which new coreness

estimations are calculated. We consider that the system is stable prior to graph

evolutions and that the maintenance algorithms are performed after the static al-

gorithm has converged.

Before describing the algorithms that concern the coreness estimation for each node,

we will be giving a description of the local variables stored in each node and the different

types of messages exchanged among them.

* mydex.org
† diasporafoundation.org/

5.4 p2p algorithm for core maintenance 71

5.4.1 Local variables

Each node u maintains some variables representing their local knowledge. The three

�rst variables are similar to the static case:

• myCrns is an integer that represents node's u own estimated coreness; initially set

to its degree.

• est{}, the partial view of u, is a map linking node u's neighbors ids to the most

up-to-date information regarding their respective coreness estimations. Initially, all

the estimations are set to +1 .

• changed is a Boolean �ag set to true if u's state has been modi�ed since its last

communication. It is initialized to false.

The following variables are related in particular to core maintenance:

• isInc is a Boolean �ag set to true if the node is handling a possible incrementation

of its coreness. It is initially set to false.

• incrEst {}, similar to est is a hashmap containing node u's neighbors ids and some

coreness estimations. Used during an attempted incrementation, estimations are

made assuming neighbors with coreness kG (u) will be affected (i.e., increased). It

is initially empty.

• toHandle is an identi�er of events to be handled by u. Such events are a particular

kind of change in the graph topology: edge additions. It is initially empty. Since

concurrent events are not considered for now, toHandleis supposed to be a single

identi�er in the remainder of the section.

• handled is a set of identi�ers containing already handled events in order to avoid

redundant treatments and ensure convergence. It is initially empty.

5.4.2 Handling Messages and Events

Each node can send and receive different types of messages. Graph evolution and

message exchange trigger corresponding routines described in Algorithm 5.1 and Al-

gorithm 5.3, respectively.

5.4.2.1 Events and graph evolutions

The routine execute by each peer (i.e., each nodeu) that handles graph evolutions is

described in Algorithm 5.1.

• During Initialization the variables listed in the previous section are set to their

initial values. The creation of some node u (i.e., its addition to the network) simply

triggers the initialization routine on u. Note that when added, a node has no

neighbor and therefore has no particular impact on other nodes' coreness.

• The Suppressionroutine triggers the suppression of all edges incident to u.

• The Edge Suppressionroutine concerns the deletion of an edge (u; v). It is a unilat-

eral decision taken by v, one of u's extremity nodes. v sends a message<v> to u,

terminating its relation with the receiver.

5.4 p2p algorithm for core maintenance 72

Algorithm 5.1 Handling graph evolutions in P 2P k-core decomposition with mainte-

nance; routine executed by node u.
1: on Initialization/creationdo

2: myCrns d(u)

3: isInc false

4: changed true

5: handled ;

6: toHandle NULL

7: for each v 2 neighbor (u) do

8: est[v] +1

9: send < u; myCrns > to v

10: on Suppressiondo

11: for each v 2 neighbor (u) do

12: send < u > to v

13: on Edge Suppression (u; v) do

14: send < u > to v

15: changed true

16: est[v] 0

17: if isInc then

18: incrEst[v] 0

19: on Edge Addition <v,k,eventID> do

20: est[v] k

21: if myCrns 6 k then

22: tryIncrement(eventID)

• An Edge Addition is a bilateral event. Accordingly, we suppose that during such

addition, extremities exchange their coreness estimation, agree on an identi�er

eventID , and trigger the corresponding routine: on edge addition <v,k,eventID>

where v is the identi�er of the other extremity and k its coreness estimation. For

the addition of an edge (u; v) the identi�er is assumed to be generated by a hashing

function hash taking as input u, v and the local time of u and/or v. In concordance

with theorem 5.3, the extremity with the lowest coreness may have to increment

its estimation.

5.4.2.2 Attempting coreness incrementation

The tryIncrementprocedure, described in Algorithm 5.2, initializes a coreness incremen-

tation attempt of node u. It sets the isInc �ag to true and stores the id of the event

to handle. Most importantly, it builds an alternate partial view incEst integrating the

hypothesis that all neighbors of u that could be impacted by the event eventID will be;

i.e. all neighbors belonging to the ICS will increment their coreness. In the next round of

computations, the node will determine whether it is possible for its coreness to be incre-

mented with this hypothesis. Depending on the outcome, the node will send a message

to its neighbors either propagating the potential incrementation or notifying its failure

to increment.

5.4.2.3 Messages

Here we provide a description of the messages that are exchanged between the nodes.

The �rst two types of messages serve to notify for an update of the coreness estima-

tion while the third noti�es for an edge suppresion. The protocol is described in Algo-

5.4 p2p algorithm for core maintenance 73

Algorithm 5.2 Initializing an incrementation attempt on node u.

1: procedure try Increment (eventID)

2: toHandle eventID

3: isInc true

4: changed true

5: incEst est

6: for each v 2 neighbor (u) do

7: if incEst[v] = myCrns then

8: incEst[v] incEst[v] + 1

rithm 5.3.

• <u,k> : the sender, nodeu, sends an update of its own coreness estimation,k. This

message is similar to the message exchanged in the static case. The receiving node

will update its local knowledge (i.e., its own and immediate neighbors coreness

estimations) and switch the changed �ag to true accordingly. Note that, in the

dynamic case, this message is also used to notify for a failure of coreness incre-

mentation.

• <u,k,eventID> : the sender, nodeu, sends an update of its own coreness estimation,

k, and propagates the event with id eventID . The receiver, node v, updates its

local knowledge accordingly and triggers a potential coreness incrementation. In

concordance with theorem 5.3, this incrementation may occur only if v belongs

to the Induced Core Subgraph (ICS)of u, and therefore only if its coreness is k - 1

(i.e., the coreness ofv before its incrementation). In addition, the incrementation

may only occur if v did not already handle the event. If it already did but is

still of coreness k - 1, it means that v's coreness could not increment after the

event occured. Sinceu, during its incrementation attempt, made the hypothesis

that v's coreness could increment, v noti�es u of its failure through the message:

< u; k - 1 > in order to invalidate this hypothesis.

• <u>: the sender, nodeu, noti�es that an edge has been deleted. The receiver deletes

u as its neighbor, which is equivalent to considering u having a coreness of0. The

est map is updated accordingly and the changed �ag is set to true.

5.4.3 Computing coreness estimations

Periodically, each node re-estimates its coreness according to its new local knowledge.

The periodic behaviour and the process leading to the estimation are described in Algo-

rithms 5.4 and 5.5.

5.4.3.1 Periodic behaviour

Similar to the static case [120], the protocol execution is divided in periodic rounds to

limit computations and the number of exchanged messages. Every � time units, the

variable changedis checked; if the local knowledge has been modi�ed, a new coreness

estimation – newCrns – is computed. Flags are set back to false and, if relevant, the

event handled is pushed to the handled set. The result of this computation may be

broadcasted to neighbors.

5.4 p2p algorithm for core maintenance 74

Algorithm 5.3 Handling messages in P2P k-core decomposition with maintenance; rou-

tine executed by node u.

1: on Receive <v,k> do

2: if est[v] 6= k then

3: changed true

4: est[v] k

5: if isInc then

6: incrEst[v] k

7: on Receive <v,k,eventID> do

8: if est[v] 6= k then

9: changed true

10: est[v] k

11: if isInc then

12: incrEst[v] k

13: if myCrns=k- 1 then

14: if eventID 2 handled then

15: send < u; myCrns > to v

16: else

17: tryIncrement(eventID)

18: on Receive <v> do

19: changed true

20: est[v] 0

21: if isInc then

22: incrEst[v] 0

Algorithm 5.4 Estimating local coreness; routine executed by node u.

1: repeat every � time units (round duration)

2: if changed then

3: if ! isInc then

4: newCrns computeEstimate(est)

5: if newCrns < myCrns then

6: myCrns newCrns

7: for each v 2 neighbor (u) do

8: send < u; newCrns > to v

9: else

10: newCrns computeEstimate(incEst)

11: if newCrns> myCrns then

12: est incEst

13: for each v 2 neighbor (u) do

14: send <u; newCrns; toHandle > to v

15: else

16: for each v 2 neighbor (u) do

17: send < u; newCrns > to v

18: handled handled [{toHandle}

19: toHandle NULL

20: isInc false

21: changed false

22: myCrns newCrns

5.4 p2p algorithm for core maintenance 75

Algorithm 5.5 Computation of node u's upper bound coreness.

1: procedure compute Estimate (estimation)

2: for i from 1 to myCrns do

3: count[i] 0

4: for each v 2 neighbor (u) do

5: j min(myCrns, estimation[v])

6: count[j] count[j]+ 1

7: for i from myCrns downto 2 do

8: count[i- 1] count[i- 1] + count[i]

9: i myCrns

10: while i > 1 and count[i] < i do

11: i i - 1

return i

• During the static case (isInc =false):

– Node u is not handling an incrementation. If the new estimated coreness

newCrns has decreased,myCrns takes its value and the message< u; newCrns >

is sent to u's neighbors to notify them for the update of the coreness estima-

tion.

• When the node is handling a potential incrementation (isInc =true):

– If the node's coreness estimation has increased, the message< u; newCrns;

toHandle > is sent, notifying for the update of the coreness estimation

and propagating the potential incrementation corresponding to the event

toHandle . The local knowledge of u, stored in est, is replaced by incEst :

u maintains its hypothesis that all of its neighbors belonging to the same ICS

will manage to increment their coreness estimation.

– If the node's coreness estimation has not increased, a message< u; newCrns >

is sent. Even if its estimation remains the same, the message will serve to in-

validate the hypothesis made by one or several of its neighbors that u could

increment its coreness. The local knowledge of u remains stored in est while

the incremented coreness estimations of the neighbors included in incEst are

discarded.

5.4.3.2 Estimating coreness

The procedure computeEstimate described in Algorithm 5.5 is used to estimate an

upper-bound of a node's coreness. It is similar to the static case [120] and stems directly

from the locality theorem (Theorem 5.1). The only difference is that, in the case of an

incrementation attempt, the local knowledge used to estimate coreness is incEst rather

than est; the node then supposes that its neighbors in the same ICS will increment their

coreness.

5.4.4 Example

In this section we are describing a run of the algorithm on a sample graph. At �rst,

with no perturbation, the algorithm runs similarly to its static counterpart as depicted

in Figure 5.1. Then, its dynamic behaviour when confronted to the addition of an edge

is detailed and illustrated in Figure 5.2.

5.4 p2p algorithm for core maintenance 76

b

[1]

c

[3]
d

[3]

a
[3]

e

[2]
f

[2]

Ã

!

Ã
1(a) At t= 0.

b

[1]

c

[2]
d

[2]

a
[2]

e

[2]
f

[2]
!
Ã !

"
!
Ã

Ã

!

1(b) At t= � .

b

[1]

c

[2]
d

[2]

a
[2]

e

[2]
f

[2]

1(c) At t= 2*� .

Figure 5.1: A simple example describing the static part of the algorithm.

5.4.4.1 Static run

Initially all nodes have a coreness equal to their degree and the �ag isChanged is set to

true .

– At t= 0. Nodes a, c, and d propagate their coreness estimation (MyCorness) of 3 by

sending their neighbors the messages< a; 3 > , < c; 3 > , and < d; 3 > , respectively.

Their neighbors update their local knowledge est accordingly. These updates do

not however cause any change to their own estimations. Similarly, node b noti�es

node a that its myCrns = 1, so that the latter will update its coreness estimate to

2 at the end of the round when re-computation occurs. At the same time, nodes

f and e notify node c and d respectively about their estimation being equal to

2 which will cause the myCrns value of the latter nodes to change from 3 to 2

during the next computation (see Figure 5.1a).

– At t= � . All nodes re-compute their estimation and set their �ag isChanged to

false. As seen previously, nodes a, c, and d modify their estimation and notify

their neighbors {b,c,d}, {a,d,f} and {a,c,e}, respectively (see Figure 5.1b). All nodes

therefore change their local knowledge est and switch their isChanged �ag to

true .

5.4 p2p algorithm for core maintenance 77

– At t= 2*� . All nodes re-compute their estimation. Nevertheless, myCrns estimates

of the nodes do not change from now on; the algorithm has converged for this

initial state of the graph (see Figure 5.1c).

5.4.4.2 Dynamic run - One perturbation

– At (k- 1)*� � t < k � � . An event occurs: an edge is added between nodesa and e

(see Fig.5.2a). They exchange messages in order to notify each other about their

current coreness estimation, agree on an event identi�er – eventID – and trigger

the corresponding routines On edge addition <e,2,eventID> and On edge addition

<a,2,eventID>, respectively. Since they have the same coreness, it is possible for the

coreness of both to be incremented according to theorem 5.3. Both therefore trigger

tryIncrement . Flags are set to true,eventID is stored in toHandle , and incEst is

built by making the hypothesis that all neighbours in the same ICS will increment

their coreness. Note that the ICS induced by e and a are the same graph, which is

the sub-graph induced by fa; c; d; e; f g. Consequently, e considers, in incEst , that

all its neighbors have coreness 3. On the other hand, the incEst of node a maps

c, d, and e with coreness 3 and b with 1 (b's coreness remains unchanged since it

does not belong to the ICS induced by a).

– At t = k � � . Nodes a and e re-compute an estimation using incEst . Both have

three neigbors of coreness3 and therefore change their estimated coreness to 3.

Flags are set back to false,est takes the values of incEst (the hypothesis regarding

neighbors incrementation are not discarded), and the event is propagated. a and e

send < a; 3; eventId > and < e; 3; eventId > to fb; c; d; egand fa; d; f g, respectively.

a and e are unaffected by the messages,b updates its knowledge of a, and c,d, and

f update their knowledge and trigger tryIncrement . The situation is depicted in

Figure 5.2b.

– At t = (k + 1) � � . b recomputes its coreness but no change occurs. Nodesc, d

and e handle the potential incrementation. c and d manage to increment and be-

have similarly to a and e in the previous step. Node f , however, having only two

neighbors, can not increment its coreness to 3. The local knowledge remains est,

incEst is discarded, and f sends < f; 2 > to fe; cg. e and c update their estimation

of f : the hypothesis according to which f would have incremented its coreness is

invalidated – see Figure 5.2c.

– At t = (k + 2) � � . Nodes e and c re-compute their estimation due to the modi�ca-

tion of their knowledge regarding node f . They both have exactly two neighbors

with an estimated coreness of 3 and one of 2 –node f . They both change their esti-

mation to 2 and notify about this modi�cation by sending < e; 2 > and < c; 2 > to

fa; d; f g–see Figure5.2d.

– At t = (k + 3) � � . Node f recomputes its estimation but it remains unchanged.

Nodes a and d, however, update their estimated coreness to 2 and notify their

neighbors with the messages < a; 2 > and < d; 2 > , respectively – see Figure5.2e.

– At t = (k + 4) � � . Nodes a, b, c, d, and e recompute their estimation due to

the modi�cation of a and/or d. Nevertheless, all estimations remain unchanged;

the algorithm has converged and the event eventID has been fully handled as

depicted in Figure 5.2f.

5.4 p2p algorithm for core maintenance 78

b

[1]

c

[2]
d

[2]

a
[2]

e

[2]
f

[2]

Ã
!

1(a) At (k- 1)*� � t < k � � .

b

[1]

c

[2]
d

[2]

a
[3]

e

[3]
f

[2]

Ã !
#

!Ã
! Ã

1(b) At t = k � � .

b

[1]

c

[3]
d

[3]

a
[3]

e

[3]
f

[2]

!
Ã

! Ã
"

Ã

Ã
!

1(c) At t = (k + 1) � � .

b

[1]

c

[2]
d

[3]

a
[3]

e

[2]
f

[2]

"
!

!

Ã

Ã !

1(d) At t = (k + 2) � � .

b

[1]

c

[2]
d

[2]

a
[2]

e

[2]
f

[2]

Ã !
#

! Ã

Ã

!

1(e) At t = (k + 3) � � .

b

[1]

c

[2]
d

[2]

a
[2]

e

[2]
f

[2]

1(f) At t = (k + 4) � � .

Figure 5.2: A simple example describing the dynamic part of the algorithm.

5.5 analytical and experimental study 79

5.5 analytical and experimental study

In this Section, we perform an extensive study of our P 2P algorithm both analytically

and experimentally. Firstly, and for each possible type of perturbation, we show that

the algorithm converges. We then provide upper and lower bounds for its analytical

complexity in terms of time, exchanged messages and local computations and prove its

correctness. Finally, we transpose the complexity study in the real world by performing

an analysis on real online social networks and datasets.

5.5.1 Analytical study

5.5.1.1 Complexity: remarks and notations

In the following, we provide an analytical complexity analysis for the maintenance rou-

tines that correspond to each of the four events presented in Sec.5.4.2.1: node addition

(na), node deletion (nd), edge addition (ea) and edge deletion (ed) whose complexity

is noted Cna (v), Cnd (v), Cea (e), and Ced (e), respectively. v corresponds to a node v 2 V

and e to an edge e 2 E of graph G = (V; E).

For each kind of event, the complexity is studied w.r.t. three aspects:

1. time – Ct
event (el): it refers to the number of rounds necessary for the algorithm to

converge, the duration of a single round being � . In this section, we assume that

the transmission time of a message from a neighbor to another is less than � , so

that a message sent in round i will always be treated in round i + 1;

2. exchanged messages– Cm
event (el): refering to the sum of all exchanged messages.

Considered messages are those presented in Sec.5.4.2.3, of type < v > , < v; k > ,

or < v; k; eventId > ;

3. local computations– Cc
event (el): refering to the sum of local coreness re-estimation

through computeEstimate .

with event 2 fna; nd; ea; ed gand el being the concerned element either a node v or an

edge e.

5.5.1.2 Edge suppression

preliminaries .

Let us consider the deletion of some edge e between nodes v and u. Let G and G0 be

the considered graph before and after the deletion of e, respectively. In the complexity

analysis, and so as to isolate consequences of the perturbation, we consider that the

system is stable prior to the perturbation.

According to the k-core update theorem (see Theorem 5.3), the nodes that may be

affected by the deletion of e belong to ICS(v) or ICS(u) or ICS(v) [ICS(u) . In particular,

and by design of the algorithm, the nodes that will decrement their coreness belong to

some sub-graphs:

De�nition 5.4 (Decrementation Induced Core Subgraph

(DICS)). The DICS = (Vv
D ; Ev

D) induced by some vertexv for a graphG = (VG ; EG), noted

DICS(v; G), is the maximal (induced) connected subgraph of the core subgraph induced byv on

G (ICS(v; G)) such as:

5.5 analytical and experimental study 80

a b

cd

e

f

g

h

i

j

k

l m

coreness = 1
coreness = 2
coreness = 3

1

Figure 5.3: Example graph.

1. 8u 2 Vv
I , dICS (v) + |{ (u 0 2 VG) | (u 0 =2 Vv

I) ^ ((u; u 0) 2 EG) ^ (k(u 0) > k (v)) }| =

k(v); all nodes of DICS(v) have exactlyk(v) neighbors that are either inG with a coreness

greater thank(v) or in ICS(v):

2. v 2 Vv
D _ Vv

D = ; .

Indeed, the extremity with the lowest coreness decrements its estimation if it previ-

ously had exactly kG (v) neighbors of coreness greater or equal tokG (v) since it now has

kG (v)-1 such neighbors. In turn, its neighbors that had exactly kG (v) neighbors of core-

ness greater or equal to kG (v) now have kG (v) - 1 such neighbors and will decrements

their estimation before propagating the perturbation.

Example. Let us illustrate the above with an example. For this purpose, we consider

the graph G illustrated in Fig. 5.3. Suppose that the edge between nodesc and h is

deleted. According to the k-core update theorem and as kG (h) < k G (c), the nodes that

may be affected belong to ICS(h). ICS(h) contains 7 nodes: Vh
I = fg; h; i; j; k; l; m g. In

reality, the nodes that will be affected belong to DICS(h; G) = fh; j g. Node h has exactly

one neighbor in ICS(h) (node j) and one neighbor in G of coreness3 (node c). Similarly,

node j is a neighbor of h in ICS(h) and has exactly kG (h) = 2 neighbors that are both in

ICS(h) (i.e., nodesh and k). Node k, however, has 3 neighbors in ICS(h) and is therefore

not in DICS(h; G). After the edge deletion, node h has kG (h) - 1 = 1 neighbor and will

decrement its estimation before propagating the perturbation. The perturbation reaches

j which now has kG (h) - 1 = 1 neighbors of corenesskG (h) = 2. It will also decrement its

estimation and propagates the perturbation that will not lead to further decrementation

(as h has already been impacted and k will not be).

complexity .

The deletion of an edge creates a perturbation that is propagated within the concerned

DICS as nodes in the DICS broadcast the perturbation until reaching nodes outside of

the DICS whose coreness remains unchanged.

Time. Here, the time required for a perturbation to be propagated is equivalent to

the distance it travels in the graph thanks to the hypothesis that � is greater than the

communication time between neighbors. Thus, with � (v; G) the eccentricity of v in G,

the number of round taken by initial perturbation to reach all concerned nodes is:

Ct
ed ((v; u)) = � (v; DICS(v; G)) + 1 if k G (v) < k G (u)

Ct
ed ((v; u)) = max (� (v; DICS(v; G)); � (u; DICS (u; G))) + 1 if k G (v) = kG (u)

(5.1)

5.5 analytical and experimental study 81

Messages.All nodes in the concerned DICS(s) will be affected by the decrementation

and will broadcast their new coreness. Thus, the number of messages exchanged in

order to calculate the updated coreness after an edge deletion is:

Cm
ed ((v; u)) =

X

n 2 V v
D

dG (n) if k G (v) < k G (u)

Cm
ed ((v; u)) =

X

n 2 V v
D [V u

D

dG (n) if k G (v) = kG (u)
(5.2)

Local computations. By design of the algorithm:

• Upon deletion of an edge, both extremities re-compute their coreness estimation.

• Apart from that, no computation can occur in absence of messages.

We thus trivially have:

Cc
ed ((v; u)) 6 2+ Cm

ed ((v; u)) (5.3)

correctness .

In order to prove the corectness of an edge suppression event, we should de�ne the

liveness theoremas proposed by Montresor el al.[120]:

Theorem 5.5 (Liveness [120]). There is a time after which the coreness estimation of each node

v 2 V is always equal tokG (v).

From the locality theorem (see Thm 5.1), it is obvious that, for the computation of

one's coreness, a non-existant neighbor is equivalent to a neighbor of coreness0*. There-

fore, both extremities of the deleted edge have an accurate representation of their neigh-

borood after setting their coreness estimate of the other extremity at 0.

From there, the process can be seen as a regular event of the static algorithm where a

node is noti�ed by one of its neighbors of a decrease in the latter's coreness estimation.

In particular, the liveness property of the algorithm is conserved. Therefore, the edge

deletion process is correct as the static algorithm is itself correct [120]. Note that this is

true even in the presence of concurrent perturbations and regardless of the state of the

system (stable or not) when the event occurs.

5.5.1.3 Node suppression

complexity .

A node suppression is equivalent to multiple edge deletions as all edges incident to

it are suppressed. We thus trivially have:

Ct
nd (v) 6 max f u 2 V G j(v;u)2 EG gC

t
ed ((v; u))

Cm
nd (v) 6

X

f u 2 V G j(v;u)2 EG g

Cm
ed ((v; u))

Cc
nd (v) 6

X

f u 2 V G j(v;u)2 EG g

Cc
ed ((v; u))

(5.4)

* Note that it is not normally possible for a node to have a neighbor of coreness 0 as only isolated nodes

have a coreness equal to0.

5.5 analytical and experimental study 82

correctness .

The node suppression process is correct for the exact same reason that the edge sup-

pression process is. It is similar to a regular event of the static algorithm where a node

noti�es all of its neighbors of a decrease in its coreness estimation.

5.5.1.4 Edge addition

preliminaries .

Let's consider the addition of some edge e between nodes v and u. Let G and G0 be

the considered graph before and after the addition of e, respectively. In the complexity

analysis, and so as to isolate consequences of the perturbation, we consider that the

system is stable prior to the perturbation.

According to the k-core update theorem (see Theorem 5.3), the nodes that may be

affected by the addition of e belong to ICS(v) or ICS(u) or ICS(v) [ICS(u) . In particular,

in our algorithm, the nodes that can possibly manage to increment their coreness are

those belonging to the following subgraph:

De�nition 5.6 (Potential Incrementation Induced Core Subgraph

(PIICS)). ThePIICS = (Vv
PI ; Ev

PI) induced by some vertexv for a graphG = (VG ; EG), noted

PIICS(v; G), is the maximal (induced) connected subgraph of the core subgraph induced byv on

G (ICS(v; G)) such as:

1. v 2 Vv
PI .

2. 8u 2 (Vv
I nv), dICS (v) + |{ (u 0 2 VG) | (u 0 =2 Vv

I) ^ ((u; u 0) 2 EG) ^ (k(u 0) > k (v))

}| > k(v); all nodes of PIICS(v) have at leastk(v) + 1 neighbors that are either inG with a

coreness greater thank(v) or in ICS(v).

Indeed, nodes of the PIICS are the one that can increment their coreness estimation

through the computeEstimate routine. Note that the incrementation will not necessar-

ily happen: they may go back to their initial coreness afterwards.

Example. Let us assume that an edge is added between nodesb and l in our example

graph (see Fig. 5.3). According to the k-core update theorem and as kG (b) < k G (l),

the nodes that may be affected belong to ICS(l; G). ICS(l; G) contains 7 nodes: V l
I =

fg; h; i; j; k; l; m g. In reality the nodes that will be affected belong to PIICS(l; G) and

are fg; i; k; l g. Nodes i and k have 3 neighbors that are in ICS(l; G) and node g has

2 neighbors in ICS(l) and one neighbor (node b) in G with a coreness greater than

kG (b) > k G (l).

complexity .

The best case scenario is quite trivial. It happens when extremities have different

coreness numbers and thePIICS induced by the extremity with the lowest coreness is

limited to said extremity. Let's assume that v is the extremity with the lowest coreness.

This case is characterized bykG (v) < k G (u) ^ PIICS(v) = (fvg; ;).

After edge addition, tryIncrement is triggered on v. As isChanged is set to true, v re-

computes its coreness, fails to increment it, and noti�es its dG 0(v) (= dG (v) + 1) neighbors

by broadcasting the message< v; k G (v) > . Neighbors won't be affected as none did any

hypothesis regarding a potential incrementation of v's coreness.

5.5 analytical and experimental study 83

Therefore:

Ct
ea ((v; u)) > 2

Cc
ea ((v; u)) > 1

Cm
ea ((v; u)) > dG 0(v):

(5.5)

Worst-case scenario. Similarly to edge deletion, to maximize the number of poten-

tially affected nodes, both extremities should have the same coreness in G so that

both ICS(v; G) and ICS(u; G) will be affected. Hence, the worst case happens when

kG (v) = kG (u). Note that, in this case, ICS(v; G0) = ICS(u; G 0).

The addition of an edge creates a perturbation that is propagated within the con-

cerned PIICS. Nodes in the PIICS propagate the perturbation that eventually reach

some nodes in the ICS (but not in the PIICS) that fail to increment. If enough nodes fail

to increment, secondary, inverse, perturbations are propagated within some subgraph

of the PIICS as nodes will decrement their estimations and propagate the secondary

perturbations.

To maximize the number of messages and computations, all nodes that can possibly

affected should indeed be. They should also be affected in the worst possible way: suc-

cessfully increment during one round, and then decrement.

Time. As noted previously, the time required for a perturbation to be propagated is

equivalent to the distance it travels in the graph. Thus, regarding time, the initial per-

turbation (incrementation) will take at most max (� (v; PIICS(v; G)); � (u; PIICS(u; G))) + 1

rounds to reach all concerned nodes.

In the worst case scenario, the node being the furthest away from the initial source of

the perturbation will trigger a secondary perturbation that will:

• reach the PIICS in 1 round.

• be propagated within the whole PIICS. Let diam (G) be the diameter of the graph

G. The perturbation traverses the PIICS in diam (PIICS(u; G 0) rounds.

• be broadcasted one last time by the last node to be reached in the PIICS.

Therefore:

Ct
ea ((v; u)) 6 � + diam (PIICS(u; G 0)) + 3

with � = max (� (v; PIICS(v; G)); � (u; PIICS(u; G)))

(5.6)

Messages.A node n belonging to PIICS may be affected by an edge modi�cation and

will, in a worst case scenario:

• broadcast a message < n; k G (v) + 1; eventID > to its neighbor to propagate the

incrementation;

• broadcast a message< n; k G (v) > to its neighbor to propagate the decrementation;

• upon reception of an incrementation message sent by a neighbor in the PIICS reply

with < n; k G (v) > to signify that the event has been handled but the incrementa-

tion failed. Since n had to handle the perturbation before sending such messages,

this can occur:

– at most once per neighbor in PIICS minus one (the one whose message lead

to the event being handled) if n is neither u nor v,

5.5 analytical and experimental study 84

– at most once per neighbor in PIICS if n is either u or v (the sources of the

perturbation).

Neighbors of n that are not in the PIICS will receive messages and may also send

messages in response. LetNPI (v; G) be the neighbors of nodes in PIICS(v; G) that are

not themselves in the PIICS(v; G):

NPI (v; G) = fn 2 (VG nVPI (v; G))j(n 0 2 Vv
PI ^ ((n; n 0) 2 EG)g.

Example. Considering again an edge addition between nodes b and l in our exam-

ple graph. As discussed PIICS(l; G) is the graph induced by fg; i; k; l g which makes

NPI (v; G) = fb; m; j g.

Nodes in NPI but not in the ICS will not send any message. However, nodes n 2

NPI \ VI will in the worst case:

• broadcast a message< n; k G (n) > after failing to increment.

• upon reception of an incrementation message sent by a neighbor in the PIICS

reply with < n; k G (n) > to signify that the event has been handled but the incre-

mentation failed. This can occur at most once per neighbor in PIICS minus one

(the one whose message lead to the event been handled).

Thus, we conclude the upper bound of the number of messages exchanged in order

to calculate the updated coreness after an edge modi�cation :

Cm
ea ((v; u)) 6 (

X

n 2 V v
PI [V u

PI

2 � dG (n) + (dPIICS (v;G 0)(n) - 1)) + 2

+
X

n 2 S

dG (n) + jfn 0 2 Vv
PI [Vu

PI j(n; n 0) 2 EG gj- 1

with S = (NPI (v; G) \ VI (v; G)) [(NPI (u; G) \ VI (u; G))

(5.7)

Local computations. By design of the algorithm:

• Upon addition of an edge, the extremity with the lowest coreness re-computes

its coreness estimation. If both extremities have the same coreness, they both re-

compute their coreness estimation.

• Apart from that, no computation can occur in absence of messages.

We thus trivially have:

Cc
ea ((v; u)) 6 2+ Cm

ea ((v; u)) (5.8)

A �ner upper bound can however be found. Indeed:

• For nodes in the PIICS, the initial perturbation triggers a single computation, no

matter how many messages of type < v; k; eventID > are received, as long as they

all contain the same eventID .

• As seen previously, when a node broadcasts a message of type < v; k; eventID > ,

it may get replies of type < v; k > from neighbors that already handled the event

but failed to increment. These replies are received during the same round and can

therefore trigger a single re-computation.

5.5 analytical and experimental study 85

Therefore:

Cc
ea ((v; u)) 6 2

+
X

n 2 V v
PI [V u

PI

2 � dG (n) + 1

+
X

n 2 S

dG (n) + jfn 0 2 Vv
PI [Vu

PI j(n; n 0) 2 EG gj- 1

with S = fn 2 Vv
I [Vu

I j(n 0 2 Vv
PI [Vu

PI) ^ ((n; n 0) 2 EG)g

(5.9)

correctness

We have seen that the edge addition process has a bounded complexity. It is therefore

terminating. Let's demonstrate that it stops with the correct coreness. We assume here

that the system was stable prior to edge addition (i.e., all vertices did estimate their

coreness correctly). By contradiction, let's assume that the process does not accurately

update the estimation of each node. Nodes affected by the process have their estimated

coreness either unchanged or incremented by one. According to the update theorem, an

edge addition may lead to the coreness incrementation of some nodes. Therefore, there

are basically two possibilities; (1) some node(s) do not have an incremented coreness

estimation while their actual coreness is changed, (2) some node(s) have an incremented

coreness estimation while their actual coreness is unchanged. Let k - 1 be the coreness

of the potentially affected node prior to the edge addition.

(1) Erroneous equality. Let's assume that some vertices did not increment their es-

timation while they should have and let V= be the set of such vertices. They either (i)

did not initially increment their estimations or (ii) did increment their estimations but

decrement it at some point during the process. Estimation updates occurs at the end of a

round, for each u 2 V= one of these two events thus occurred at the end of some round

ru . Let v be a nodeV= such as8u 2 V=; rv 6 ru . (i) No initial incrementation.Let's assume

that v receives a message of type< u; k; eventID > in round rv but did not increment

its coreness. Since we consider the initial incrementation attempt, eventID should not

be in handled . Since we assumed thatv's coreness increments due to the edge addition,

according to the update theorem, its coreness should be k - 1 prior to the perturbation.

Therefore, due to the stability hypothesis, v's estimation at the beginning of rv is k - 1

and tryIncrement is triggered on v. At the end of the round, v recomputes its coreness

with incEst and, by hypothesis, v's estimation remains unchanged. Therefore, it has

less than k neighbors with an estimated coreness of at least k - 1 (neighbors of core-

ness k - 1 are considered to have corenessk in incEst). According to the core update

theorem, it means that after the edge addition v has necessarily less thank neighbors

of corenessk. According to the locality theorem, this contradicts the hypothesis that v's

coreness increments after the edge addition. (ii) Erroneous decrementation.Let's assume

that v decrements its estimation at the end of round rv . Necessarily, it has received

some message(s)< u i ; k - 1; eventID > from a set of neighbors u i in that round. These

messages notify an estimation update calculated at the end of round rv - 1. Since v

decrements its coreness at the end ofrv , its set est contains (after its update according

to these messages) less thank neighbors of estimated coreness at leastk due to the

update. By de�nition of v and rv , coreness updates emitted before the end of round rv

are legitimate and v has indeed less than k neighbors of coreness at leastk after the

edge addition. According to the locality theorem, this contradicts the hypothesis that v's

coreness increments after the edge addition. Therefore, it is not possible for a node to

5.5 analytical and experimental study 86

erroneously not incrementits coreness estimation during the edge addition process.

(2) Erroneous incrementation. Let's assume that some vertices did increment their

estimation while they should not have. Let V+ be the set of such nodes and let v be

a node in V+. Note that, in spite of the incrementation hypotheses, each node has a

consistent view of its neighbors' estimations at the end of the process (i.e., the values

stored in est are consistent with local estimations). By hypothesis, v's estimation is k.

Since each time est is modi�ed the node re-computes its coreness, v has at least k

neighbors of estimated coreness greater or equal to k. Let K be the largest connected

subgraph containing v and whose nodes all have an estimated coreness greater or equal

to k. For all vk 2 K, either

• vk is of corenessk. According to the locality theorem, it has at least k neighbors

of coreness greater or equal to k. By de�nition of K, these neighbours are in K.

Therefore, vk has at leastk neighbors of coreness greater or equal tok in K.

• vk 2 V+. As seen before, it therefore has at leastk neighbors of estimated coreness

greater or equal to k who are in K by de�nition of K.

Therefore, K is contained in a k-core by de�nition. Since v is in K, v is of coreness at

least k. This is a contradiction. Therefore, it is not possible for a node to erroneously

incrementits coreness estimation during the edge addition process.

Thus, the edge addition process is correct.

5.5.1.5 Node addition

In the case of node addition, the study is quite trivial: obviously, the addition of some

node v with no edge does not impact the coreness of other nodes as v's neighborhood

is empty.

A simple initialization is performed on v, taking a single round. During the initializa-

tion, isChanged is set to false and the procedure computeEstimate is thus triggered

once. The coreness ofv equals its degree,0, and the estimated coreness is not modi�ed.

No messages are exchanged asv has no neighbours. Therefore:

Ct
na (v) = Cc

na (v) = 1

Cm
na (v) = 0

(5.10)

5.5.2 Complexity: Experimental Study

In this subsection we perform an analysis on real online social networks as it is impor-

tant to see how our analytical results translate in the real world. We speci�cally focus

on edge additionas it is the most costly event and also the one that differs the most from

the static version of the algorithm.

datasets We have performed experiments with several real-world networks. Ta-

ble 5.2 presents the datasets used in our study, along with some relevant properties.

A detailed description of the datasets is presented in Section 2.4 of Chapter 2.

results Tables5.3 to 5.6 present for every of the aforementioned datasets the average

ICS size, average PIICS size, average ICS diameterand average PIICS diameterfor every

coreness group. We speci�cally focus on the aforementioned values as those are the

ones related to the complexity of an edge addition event. The size of the aforementioned

5.5 analytical and experimental study 87

Dataset Net HEPT Wiki Vote Email -Enron Epinions

Nodes 15K 7K 34K 75K

Edges 62K 103K 180K 405K

kmax 31 53 43 67

Table 5.2: Properties of the real-world graphs used.

coreness average ICS size average PIICS size average ICS diameter average PIICS diameter

1 1:79 1:14 0:75 0:14

2 3:44 1:69 1:37 0:55

3 17:33 6:20 4:05 2:03

4 109:58 22:59 14:81 3:00

5 376:35 206:91 12:64 9:48

6 256:05 152:94 11:57 9:26

7 147:37 99:27 7:80 8:12

8 191:58 154:45 5:19 4:22

9 10:00 1:00 1:00 0:00

18 19:00 1:00 1:00 0:00

20 21:00 1:00 1:00 0:00

23 24:00 1:00 1:00 0:00

31 32:00 1:00 1:00 0:00

Table 5.3: ICS and PIICS statistics for NetHept network

subgraphs de�ne the number nodes that will be impacted while their diameter is related

to the upper bound of the time complexity for such an event.

We have seen that the total number of messages that will be sent in case of an edge

addition is approximately bounded by three times the sum of the degree of nodes in

the PIICS induced by the respective vertex. We observe that for the N et Hept dataset the

largest average PIICSdetected is the one for nodes in the 5-core subgraph and consists on

average of 206.91 nodes. This is just a 1:36% fraction of the total number of nodes in the

dataset. Similar values are observed for the rest of the datasets, even for the largest of the

four chosen datasets for this study, Epinions , the the largest average PIICSdetected is

the one for nodes in the 53-core subgraph and consists on average of324.04 node which

is just a 0:63% fraction of the total number of nodes. From this analysis we conclude

that it is a lot less costly to use our P2P algorithm, in terms of number of messages that

will be sent, than Montresor's algorithm [120] which in the case of an edge addition,

requires that all nodes broadcast a message at least once in order to calculate the new

coreness estimations.

In terms of temporal complexity, again for the case of an edge addition, the number of

steps that will be performed by our algorithm is approximately bounded by two times

the diameter of the PIICS. We observe that for the Wiki Vote dataset the largest average

PIICS diameterdetected is the one for nodes in the 51-core subgraph and equals to 13:76.

For the Email -Enron dataset the largest average PIICS diameterdetected is the one for

nodes in the 39-core subgraph and equals to 10:45.

5.5 analytical and experimental study 88

coreness average ICS size average PIICS size average ICS diameter average PIICS diameter

1 1:05 1:02 0:03 0:02

2 1:58 1:15 0:48 0:13

3 3:24 1:67 1:03 0:47

4 3:85 2:00 1:05 0:56

5 3:59 1:91 1:08 0:52

6 4:76 2:35 1:38 0:68

7 9:95 6:33 1:77 1:22

8 5:61 3:72 1:34 0:84

9 6:72 3:90 1:94 1:10

10 3:72 2:62 1:28 0:72

11 4:48 3:35 1:18 0:77

12 3:73 2:67 1:20 0:64

13 3:16 1:93 0:96 0:42

14 5:86 4:02 2:21 1:25

15 2:66 1:60 1:20 0:39

16 3:37 1:89 1:37 0:49

17 2:74 1:79 1:25 0:55

18 2:61 1:75 1:28 0:63

19 2:09 1:30 0:98 0:24

20 4:26 2:44 2:04 0:82

21 2:59 1:73 1:29 0:65

22 12:44 5:68 5:17 1:69

23 5:61 2:22 2:31 0:61

24 9:00 2:77 4:70 1:13

25 11:91 2:85 6:01 0:89

26 3:47 1:79 2:12 0:58

27 25:05 14:30 6:83 4:46

28 10:96 4:03 4:68 1:51

29 18:74 5:34 7:34 1:37

30 44:68 22:87 6:87 4:14

31 44:25 11:13 11:63 1:73

32 75:04 28:39 13:57 3:70

33 8:27 3:48 4:19 1:40

34 140:40 101:53 10:54 9:00

35 54:30 33:55 9:63 8:00

36 58:51 36:62 7:04 7:25

37 26:80 17:24 6:49 5:20

38 76:00 59:22 6:00 7:00

39 58:03 42:03 9:83 10:45

40 86:00 76:12 6:00 6:00

41 37:28 24:86 5:58 5:40

42 50:04 42:35 4:90 4:90

43 275:00 267:03 3:00 3:00

Table 5.4: ICS and PIICS statistics for the EmailEnron network

5.5 analytical and experimental study 89

coreness average ICS size average PIICS size average ICS diameter average PIICS diameter

1 1:02 1:01 0:01 0:01

2 1:01 1:00 0:01 0:00

3 1:06 1:02 0:06 0:02

4 1:01 1:00 0:01 0:00

5 1:08 1:03 0:08 0:02

6 1:04 1:00 0:04 0:00

7 1:21 1:12 0:18 0:09

8 1:19 1:06 0:19 0:04

9 1:18 1:10 0:18 0:10

10 1:14 1:06 0:14 0:06

11 1:26 1:08 0:26 0:07

12 1:90 1:67 0:58 0:44

13 1:09 1:03 0:09 0:03

14 1:20 1:09 0:20 0:09

15 1:36 1:15 0:36 0:12

16 1:37 1:15 0:37 0:15

17 1:23 1:08 0:23 0:08

18 2:03 1:29 0:91 0:20

19 1:17 1:02 0:17 0:02

20 2:26 1:61 0:89 0:47

21 5:15 2:04 2:78 0:65

22 3:63 2:11 1:49 1:06

23 1:58 1:24 0:58 0:24

24 2:09 1:42 0:70 0:28

25 1:67 1:19 0:56 0:15

26 1:61 1:06 0:61 0:06

27 1:30 1:11 0:30 0:11

28 2:82 1:49 1:38 0:27

29 2:62 1:77 1:54 0:60

30 2:18 1:39 1:08 0:33

31 9:43 5:83 3:22 2:41

32 6:68 2:39 3:18 0:73

33 12:09 5:35 4:74 1:56

34 4:14 3:27 1:95 1:43

35 4:50 1:79 2:33 0:79

36 8:91 2:93 4:52 0:87

37 14:33 5:49 4:97 2:74

38 25:39 10:33 10:33 2:79

39 11:00 4:05 5:00 1:40

40 58:45 22:68 12:21 4:84

41 18:62 2:53 8:30 0:74

42 7:47 4:03 2:82 1:68

43 4:45 3:00 3:05 1:23

44 9:93 4:05 4:21 1:77

45 40:60 21:66 9:00 4:60

46 38:63 22:18 11:23 8:43

47 73:08 26:40 8:77 8:91

48 39:31 19:18 7:51 9:64

49 139:00 112:19 6:00 6:99

50 45:24 28:59 7:53 7:94

51 52:04 31:43 6:87 13:76

52 144:00 132:08 5:00 5:00

53 336:00 324:04 3:00 3:00

Table 5.5: ICS and PIICS statistics for the WikiVote network

5.5 analytical and experimental study 90

coreness average ICS size average PIICS size average ICS diameter average PIICS diameter

1 1:33 1:12 0:24 0:12

2 1:73 1:24 0:56 0:21

3 1:92 1:38 0:60 0:24

4 1:87 1:35 0:63 0:27

5 2:02 1:43 0:66 0:28

6 2:11 1:54 0:67 0:35

7 2:07 1:44 0:68 0:29

8 2:13 1:52 0:73 0:34

9 2:80 1:83 1:01 0:44

10 2:23 1:49 0:80 0:27

11 3:39 2:63 0:83 0:46

12 2:26 1:68 0:70 0:33

13 1:80 1:34 0:57 0:28

14 2:71 1:87 0:92 0:48

15 2:01 1:40 0:73 0:28

16 2:79 1:62 1:32 0:40

17 1:72 1:33 0:56 0:25

18 4:38 3:02 1:46 0:80

19 4:86 3:71 1:18 0:48

20 2:77 1:54 1:19 0:36

21 2:97 1:89 1:35 0:55

22 8:71 6:40 1:95 1:23

23 2:29 1:33 1:07 0:27

24 5:60 1:89 3:37 0:64

25 2:14 1:38 1:14 0:38

26 2:46 1:48 1:18 0:33

27 2:44 1:70 1:08 0:50

28 4:04 1:89 2:13 0:72

29 2:78 2:01 1:09 0:52

30 3:13 1:78 1:56 0:56

31 3:47 2:00 1:88 0:80

32 9:23 2:65 3:55 0:77

33 5:97 2:73 2:52 0:99

34 5:71 2:48 3:23 1:19

35 3:60 2:09 1:52 0:75

36 6:58 2:29 3:40 0:54

37 46:31 8:00 10:72 1:62

38 20:65 5:50 5:73 1:01

39 3:83 1:93 2:07 0:70

40 13:52 3:65 5:43 1:05

41 28:64 15:62 7:99 3:73

42 7:98 3:95 3:70 1:43

43 31:39 10:65 7:90 3:18

44 28:77 9:88 7:77 2:20

45 114:53 94:06 6:64 7:95

46 19:67 8:77 6:33 2:68

47 19:82 6:68 5:76 1:71

48 11:24 3:62 5:74 1:21

49 23:81 10:70 6:91 3:77

50 81:93 41:35 11:84 13:36

51 20:57 5:98 7:02 1:00

52 36:80 13:97 10:43 3:38

53 51:25 9:52 10:14 1:47

54 63:91 43:86 7:84 4:84

55 96:02 56:90 7:92 7:19

56 53:68 23:08 9:11 5:32

57 80:07 53:38 6:83 11:48

58 72:03 42:64 6:91 10:88

59 11:91 4:88 6:18 2:33

60 56:19 39:13 8:56 6:39

61 40:14 15:59 11:45 6:36

62 77:17 55:92 6:77 5:58

63 38:19 19:86 6:71 4:29

64 73:00 52:75 6:00 5:84

65 36:15 21:95 6:65 7:17

66 231:00 217:06 4:00 4:00

67 486:00 477:02 3:00 3:00

Table 5.6: ICS and PIICS statistics for the Epinions network

5.6 security and privacy analysis 91

5.6 security and privacy analysis

Whenever confronted with sensitive data, such as social networking data, security and

privacy questions come to mind. Most importantly, using pseudonyms (i.e. removing

node identi�ers) is not suf�cient to provide privacy to social network users [123]. In this

section, we perform a security and privacy analysis of our approach, by overviewing

existing privacy models for graphs, and by showing how such models can be used in

our context to anonymize the data. We then perform a quality analysis to show that

our coreness computation remains robust even when running on anonymized graphs.

We thus discuss the impact of security and privacy, which depends on anonymization

parameters, on the quality of the output, measured by comparing the results of our

algorithm executed on the initial and anonymized graphs.

First of all, we will describe the general anonymization process for graphs, and a state

of the art methodology to reconstruct the original while using its anonymized version.

Our contribution in this Chapter is to propose a secure protocol to apply state of the

art graph anonymization techniques and subsequently to study the in�uence of state of

the art graph anonymization on the quality of the results of our coreness computation

algorithm.

5.6.1 Attack Model

The social network de-anonymization attacks considered in this work are those de-

scribed in the work of Narayanan et al. [123]. In this context, the attacker A is assumed

to know Gaux which represents some knowledge of the real graph topology G (partial

or complete), and the attack consists in trying to map nodes of Gaux to nodes in G̃

which is the observed graph that the attacker can obtain during the execution of the

algorithm. In a worst case scenario, one can assume thatGaux = G.

Obviously, in a real context, Gaux � G and nodes in G̃ contain additional information

that A wishes to append to his own knowledge of Gaux .

We consider the following kind of attackers in our scenario:

1. A int : The attacker is a member of the network. He knows his own neighbors

and receives their messages. Therefore he knows the degree and the evolution of

estimated coreness of its neighbors.

2. A ext : The attacker is outside of the network but manages to have access to all the

exchanged messages. He knows which nodes are communicating with one another,

as well as the degree and the evolution of estimated coreness of each node.

Our approach to security and privacy for both these attackers is similar : is the at-

tacker able to reconstruct (part of) the original graph from the information that he has?

Although exact graph reconstruction simply from the knowledge of the degrees of the

graph is dif�cult, Narayanan and Shmatikov [123] have shown that it is possible to re-

construct parts of it, based on �nding some “seed” nodes who have rare degrees, and

progress from that point to de-anonymize a large portion of the graph. Thus, it is not

acceptable for any attacker to obtain the exact degrees of the graph.

In case ofA ext , one can easily see that if the algorithm runs on the real topology, then

A ext can reconstruct G without even using Gaux since G̃ = G.

Therefore, in order to have G̃ 6= G, our algorithm should obviously not run on the

original graph but on a modi�ed version, and any observation of the network should

lead to seeing the anonymized topology and in no case G itself. In this case, the attacker

5.6 security and privacy analysis 92

knows G̃ 6= G and Gaux and tries to reconstruct G by mapping vertices from G̃ to Gaux .

This model is equivalent to the global surveillance attacker model de�ned in [123].

In order to secure the coreness computation process, two complementary techniques

are used: messages are all encrypted, so that no information may actually leak from

the contents of the messages for an external observer (such as temporary coreness val-

ues) and 2) communications of the nodes must be modi�ed so that the actual topology

observed by the attackers is different from the real topology. Casas-Roma et al. [32] pro-

posed a technique to produce such a graph G̃ by switching, adding and deleting edges

of G. In particular they aim at preserving information quality, meaning that algorithms

should have similar results whether they are run on G̃ or G. Different algorithms are

more or less robust to such an anonymization process. We will show in what follows

that our distributed coreness computation algorithm is very robust to anonymization.

In practice, we need to implement this anonymization model in a distributed context.

This can be achieved by i) not broadcasting to a set of random neighbors (which cor-

responds to deletingan edge from the graph) and ii) by sending messages to random

nodes of the graph which are not neigbours (which corresponds to addingedges to the

graph). In a social network, these random nodes can be selected by simply contacting

non-neigbour nodes in a connected component.

In the rest of this Section, we will assume that G̃ 6= G in other words, that the graph

that can be observed by a global attacker has been anonymized with a speci�c pro-

cess which we will describe next, and whose precise parameters will be explained in

section 5.6.3. By running our algorithm on such a graph, we achieve the security and

privacy objective. We will next show that our algorithm continues to produce good re-

sults in terms of coreness ranking, thus achieving the quality objective.

5.6.2 Privacy and Information Quality

In our case, the quality (i.e. robustness) of an algorithm is linked to the similarity of

nodes' corenesses when computed onG and G̃. The objective is that the distribution of

nodes with regards to their coreness is similar when running on both G and G̃.

Indeed, the applications that we consider are interested in selecting nodes with high-

est coreness values, regarless of this actual value, since coreness is studied in particular

to identify highly in�uential individuals. Speci�cally, the nodes that belong to the dens-

est k-core subgraph are proved to be more ef�cient information spreaders [93]. To assess

the quality of G̃, we will therefore compare the resulting nodes when in�uential individ-

uals are chosen from the different versions of the graph. Those in�uential individuals

are obviously chosen from the top k-core subgraph (or subgraphs depending on the

number of individuals required) as previously suggested.

In other words, we do not necessarily want nodes to have the exact same coreness

valueswhen computing our algorithm on G and G̃, but we want sets of nodes ranked by

coreness to be the same.

5.6.3 Experimental results

In this Section we present experimental results concerning the quality of the in�uential

entities acquired from anonymized versions of a graph.

5.6 security and privacy analysis 93

5.6.3.1 Datasets and methodology

datasets For the experiments of this Section we have used the Net Hept , Wiki Vote

and Email -Enron datasets, some relevant properties of which are presented in Table 5.2.

A detailed description of the datasets is presented in Section 2.4 of Chapter 2.

anonymization process We produce anonymized versions of the datasets by ran-

domly adding and/or deleting edges from the initial graph. The edges are added/deleted

based on two parameters � and � . They represent the percentage of the total edges to

be added and deleted respectively. We speci�cally consider two different settings:

• Setting I: Only random deletions of edges occur. In this case � is obviously equal

to 0 whereas � can take values from 0.1 to 0.9.

• SettingII: Both random additions and deletions of edges occur. Both � and � take

values from 0.1 to 0.9.

De�nition 5.7 (Anonymization SecurityAS). The anonymization securityAS of an algorithm

is measured by� in Setting I and by the couple(�; �) in Setting II .

Obviously in Setting II, values of AS are not necessarily comparable, but form a lattice.

methodology Experimentally, as the edges are added/dele-ted in a random way,

for each anonymized version (i.e., for a speci�c choice of an AS value) we repeat the

process10 times and report average behavior.

In order to evaluate the quality of in�uential entities that are acquired from the

anonymized versions of the graphs we de�ne the following metrics.

De�nition 5.8 (Quality q). The Qualityq of the in�uential nodes computed using an anonymized

version of a graph is de�ned as the number of nodes returned that are indeed in�uential inG. In

other words, it is the number of in�uential nodes that are common whether they were computed

using the anonymized graph̃G or the original graphG.

The most common practice in respective applications, is to require a speci�c amount

of in�uential nodes of the graph. Let us de�ne as X% the percentage of in�uential nodes

required out of the total number of nodes of the graph. We note z the actual number of

in�uential nodes required, hence the following de�nition of Normalized Quality qN .

We note asGz the top z nodes computed using our algorithm running on G. We note

G̃z the top z nodes computed using our algorithm running on G̃. As some nodes may

have the same coreness value, it is possible thatjGz j> z and/or G̃z > z .

De�nition 5.9 (Normalized QualityqN). The Normalized QualityqN of the in�uential nodes

acquired from an anonymized version of the graph, is the number of in�uential nodes that are

common when chosen from either version of the graph (G̃ or G) averaged over the numberz of

in�uential nodes required.

Obviously qN takes values between 0 and 1. It should be noted that the value that

will be reported in the results is the average of the values produced by the different

iterations performed for the production of each anonymized version of the graph.

A �rst idea would be simply to compute qN by using the Jaccard index :

qN =
jGz \ G̃z j
jGz [G̃z j

(5.11)

5.6 security and privacy analysis 94

(a) original graph (b) modified graph

Figure 5.4: Toy example to demonstrate the computation of q1, q2 and qN which represent
the base, randomized and normalized quality of in�uential nodes acquired from an
anonymized version of a graph. The top 3 corenesses (left column) and the nodes
characterized by them (right column) are depicted for the (a) original graph and
the (b) modified graph When z = 3 - when 3 in�uential nodes are required - q1 = 2,
q2 = 0 and qN = 0:667. Whereas when z = 4, then q1 = 2, q2 = 0:75 and qN = 0:6875.

However, in fact our algorithm does not return a set of z nodes, but instead a partially

ordered list. We should take this order into account when deciding which nodes to select.

Thus in fact, qN can be better calculated as follows:

qN =
q1 + q2

z
(5.12)

where q1 is the base qualityand q2 the randomized quality. In order to de�ne q1 and

q2, let us denote asVN and Vi<N the set of nodes that belong in the N th and the N - 1

top coreness groups of the original graph respectively. The equivalent sets of nodes of a

modi�ed version of the graph are denoted as V 0
N and V 0

i<N . Let Y be the natural number

such that jVi<Y j < z 6 jVi<Y +1j. Equivalently Y0 is the natural number such that jV 0
i<Y 0j6

z < jV 0
i<Y 0+1j. Then the baseand randomized qualitycan be calculated as follows:

q1 = jV 0
i<Y 0 \ Vi<Y +1j (5.13)

q2 = jSj
jP \ Vi<Y +1j

jPj
(5.14)

where jSj is the number of nodes remaining to be picked after having selected jV 0
i<Y 0j

nodes (i.e., jSj= z - jV 0
i<Y 0j). In this case where jSj>0, jV 0

i<Y 0+1j > jVi<Y +1j > jV 0
i<Y 0j. Let

A = V 0
i<Y 0 \ Vi<Y +1 which de�nes the set of correct in�uential spreaders that we need

to select based on their ranking. Then P = V 0
i<Y 0 n A [V 0

i =Y 0 which de�nes the set of all

nodes that have not already been considered and that will be considered now.

q2 actually represents the mean of a hypergeometric distribution [136]. The latter

represents a discrete probability distribution describing the probability of ` successes in

m draws, without replacement, from a �nite population of size M that contains exactly

L successes, wherein each draw is either a success or a failure. The mean of such a

distribution is calculated as follows:

Mean hg = m
L
M

(5.15)

In our case we are interested in knowing the mean of the probability of m = z -

jV 0
i<Y 0j draws without replacement from a population of size jPj that contains exactly

jP \ Vi<Y +1j successes (i.e., nodes that are indeed the correct top spreaders in the orig-

inal graph). We could have simply considered the hypergeometric mean of sampling

5.6 security and privacy analysis 95

(a) Net Hept (b)Wiki Vote (c) Email Enron

Figure 5.5: Distribution of nodes in the top k-core subgraphs in the original fomat of the
real datasets tested. The data reported for the following datasets: (a) Net Hept ,
(b)Wiki Vote and (c) Email Enron . The coreness values of X%=1%, 5% and 10% of
top spreaders selected are shown.

z individuals from V 0
i<Y 0+1with jV 0

i<Y 0+1 \ Vi<Y +1j correct individuals. However, as we

have a ranking of spreaders, we initially take all the V 0
i<Y 0 (computation of q1), and

simply sample the V 0
i<Y 0+1 ones (computation of q2).

A toy example is presented in 5.4 in order to demonstrate the calculation of q1, q2

and qN . The example depicts the nodes belonging to the top 3 coreness groups in the

(a) original and the (b) modi�ed graph respsectively. The 0 was added to the notation of

the coreness groups of the modi�ed graph as the value k of the densestk-core subgraph

may change after addition and/or deletion of edges. Let us consider the case where 3

in�uential nodes (i.e., z = 3) need to be picked from the modi�ed graph. Then Vi<Y +1 =

fb; h; j g, V 0
i<Y 0 = fa; b; h g and V 0

i<Y 0 \ Vi<Y +1 = fb; hg. Which means that q1 = 2. As

jSj= z- jV 0
i<Y 0j= 0 also q2 = 0. Finally the normalized qualityequals to qN = 2+ 0=3 = 0:667.

If z = 4, then Vi<Y +1 = fb; h; j; a; c; d g, V 0
i<Y 0 = fa; b; h gand V 0

i<Y 0 \ Vi<Y +1 = fb; hgwhich

results in q1 = 2. In this case jSj= 1, P = fc; d; j; n g. Then the randomized qualityequals to

q2 = 1 � 3
4 which results in a randomized qualityqN = 0:6875.

5.6.3.2 Evaluating the quality of in�uential spreaders on anonymized graphs

Figure 5.6 depicts the normalized qualityqN of top in�uential nodes selected from anony-

mized versions of real datasets produced as SettingsI and II suggest. The qN values

presented are calculated for different numbers of nodes - X% represents the percentage

of the nodes required out of the total number of nodes of the dataset. It should be noted

that even if the proportions of edges added are the same with those that are deleted in

Setting II, the actual edges deleted are different from those that were added in order to

create the anonymized versions of the graph.

We observe that for the N et Hept dataset, the qN values are greater than 65% up

until there are 50% of edge deletions (Setting I, a=0, b=0.5). Whereas when both edges

are added and deleted, the normalized quality is greater than 70% for the �rst four

anonymized versions (i.e., until there are a= 0.4 and b=0.4 additions and deletions re-

spectively). In the case of the Wiki Vote dataset, the quality results are more promising

even for large perturbations. We observe that even for 90% of edge deletions (Setting I,

a=0, b=0.9), qN is approximately 78% when 10% of top spreaders are to be selected. In

general for both SettingsI and II the normalized quality is greater than approximately

70% and 60% respectively. For the Email -Enron dataset the results are still convincing,

the qN values are greater than 70% up until there are 80% of edge deletions (Setting I,

5.6 security and privacy analysis 96

(a) Net Hept : Setting I (b) N et Hept : Setting II

(c) Wiki Vote : Setting I (d) Wiki Vote : Setting II

(c) Email Enron : Setting I (d) Email Enron : Setting II

Figure 5.6: Normalized Quality qN of different percentages of top spreaders selected from
anonymized versions of real datasets.

5.7 conclusions and remarks 97

a=0, b=0.8) and 70% of edge additions and deletions (Setting II, a=0.7, b=0.7). It is im-

portant to note that Narayanan et al. have shown in [123] that graph de-anonymiza-tion

attacks are ineffective when b > 0:75.

In consequence, experimental results show that even for the case when the original

graph is subject to great perturbations, the normalized quality is suf�ciently high. Thus,

we can indeed run our algorithm on a modi�ed version of the graph G̃ for high AS

values thus preventing reconstruction of the original graph from possible attackers while

preserving the desired information quality.

What is interesting to mention, is that the qN values presented for a range of per-

turbations below 50% or 70% for N et -Hept and Wiki Vote respectively show a similar

behavior. Under such perturbations the graph has not yet lost the required information

quality for nodes' spreading capabilities. Observe for example the behavior of the qN

values for both Settings for the W iki Vote dataset up until there are 70% of edge modi�-

cations. Similarly for the N et Hept dataset up until there are 50% of edge modi�cations.

This behavior may be justi�ed by the speci�c coreness distribution of the nodes in the

original graph with which the comparison occurs in order to calculate the normalized

quality values. Figure 5.5 depicts the number of nodes distributed in top coreness groups

for the original forms of the datasets examined. The coreness groups depicted include

the top 10% of nodes that are used to provide the quality results.

Finally, let us note that it would be possible to conduct experiments by controlling

even more how edges are added and deleted, in order to increase the dif�culty of de-

anonymization techniques (e.g. by increasing the probability of removing edges for high

degree nodes). We have not studied the impact of such optimizations since we believe

that current results are already very convincing and show that our anonymization ap-

proach is feasible and provides good quality while achieving good security and privacy.

To conclude on the privacy aspect, one could re�ect on the privacy risk of publishing

the coreness value of a node. Coreness value is not a direct identi�er, such as degree can

be, where some nodes (or small groups of nodes) have unexpectedly high and/or rare

degree values, and are consequently easy to deanonymize. On the contrary, coreness de-

�nes an equivalence class. As shown in column ICS of Tables 5.6 and 5.5, the cardinality

of the smallest equivalence groups is usually hundreds of nodes, thus coreness bene�ts

from an intrinsic form of k-anonymization.

5.7 conclusions and remarks

In this Chapter we have studied the privacy point of view of sharing metrics that are

good indicators concerning the spreading capabilities of a node in a network. We have

speci�cally focused on the k-core centrality of a node which has been proved to be an

ef�cient metric to locate the nodes that succeed in disseminating information to a large

part of the population.

We have designed an algorithm that computes in an ef�cient, correct, secure and

privacy-preserving way this k-core metric and adopted a decentralization approach

where the social network is considered as a Peer-to-peer (P2P) system. While a dis-

tributed algorithm that computes once and for all the nodes' coreness is already pro-

posed, networks that evolve over time are not taken into account. Our main contribution

is an incremental algorithm that succesfully computes the up-to-date k-core values that

limits the number of messages and computations needed when a modi�cation occurs to

the network.

By performing a complexity analysis and experimenting on real graphs, we show that

our algorithm is less costly than the existing baseline algorithm in terms of numbers of

5.7 conclusions and remarks 98

messages that will be sent between peers, number of local computations and temporal

complexity.

We �nally perform a security and privacy analysis of our system. After describing the

possible attacks that may occur in a social network, we discuss the desired privacy and

information quality that needs to be achieved in our scenario. After performing exper-

iments on real datasets, we show that the information quality achieved is suf�ciently

high even when the original graph is subject to great perturbations that serve to provide

anonymized versions of the graph for privacy purposes.

As future work we plan to extend our algorithm to support concurrent changes in

the network. We also intend to propose a distributed algorithm that succeds in correctly

computing other in�uence indicators (e.g., the K-truss centrality) for dynamic networks.

6
C O N C L U D I N G R E M A R K S

N
etworks are ubiquitous and have introduced numerous challenging problems

to the research community. This dissertation has focused on social networks

and specially on social in�uence. We speci�cally use graph mining techniques

to study in�uence propagation and in�uence maximization in social networks. We par-

ticularly:

- Develop tools that can ef�ciently rank the users based on their in�uential capabil-

ities.

- Design algorithms that can locate a privileged group of nodes that – by acting

all together – can maximize the spread of in�uence in a network at the end of a

diffusion phenomenon.

- Develop models that can calculate metrics which measure the in�uence of an indi-

vidual in a network in a secure and private way.

In the next Section, we provide an overview of the main contributions of the thesis

and discuss future research directions.

6.1 summary of contributions and future work

identif ication of individual influential spreaders In Chapter 3 we fo-

cused on identifying individual in�uential spreaders in social networks. Even if degree

centrality may seem an effective metric in locating such privileged entities, it appears

to present some drawbacks. A node may have a great number of neighbors but if it is

located in the periphery of the network its in�uential capabilities are reduced. It has

been shown that those nodes that are centrally placed in the network are those that

can ef�ciently spread information to the greatest possible number of individuals. We

speci�cally proposed to use the K-truss decomposition to locate such individuals and

we showed that indeed the speci�c nodes can in�uence a greater part of the network

during the �rst steps of the spreading process but also the total fraction of in�uenced

nodes at the end is higher.

Moreover, we explored the centralities of the entities that are involved in a spread-

ing process which is triggered by different groups of in�uential spreaders of a network.

While using models borrowed from the �eld of epidemics to simulate the process, we

observed speci�c patterns during the spreading phenomenon. By comparing the simu-

lated diffusion process with real in�uence, we observe that the aforementioned models

cannot reproduce the real diffusion in terms of the evolution of the centralities of the

infected nodes.

It would be interesting to experiment in the future with dynamic networks where

node and/or edge modi�cations may occur. The question seems to be whether the K-

truss decomposition is a robust enough metric to provide such entities that will still

retain their spreading capabilities after changes in the network occur. Finally it would

be interesting to check whether the already proposed metrics for locating privileged

spreaders work equally well when different models are used to simulate the process.

We would furthermore like to examine what is the behavior of the centralities of the

99

6.1 summary of contributions and future work 100

entities when different spreading models are used and whether those can reproduce

real diffusion.

identif ication of a group of influential spreaders In Chapter 4 we stud-

ied the problem of locating a group of nodes in a social network that by acting together

can maximize information diffusion. Nodes that are discovered using methods men-

tioned in Chapter 3 cannot be directly used in order to discover the set of nodes in

question. That is justi�ed by the fact that the in�uence of one can overlap with the in�u-

ence of another top spreader. The problem of In�uence Maximization(IM) – as it is usually

called – constitutes an NP-hard problem. A simple greedy algorithm has been proved

to provide good approximation guarantees. Nevertheless, there are obviously serious

scalability concerns – the greedy algorithm cannot provide results as soon as needed for

large-scale networks.

We proposed a Matrix In�uence (MATI) algorithm, an ef�cient in�uence maximiza-

tion algorithm designed for both the Linear Threshold (LT) and Independent Cascade

(IC) diffusion models. MATI takes advantage of the possible paths that are created in

each node's neighborhood and succeeds in locating the users that can maximize the

in�uence in a social network while also being scalable for large datasets.

It would be interesting to experiment with the centralities used to identify individual

spreaders in order to see whether they can describe the group of nodes that are discov-

ered after applying in�uence maximization algorithms. If the respective group of nodes

is well de�ned by the aforementioned centralities, it would be interesting to use them

as heuristics to speed up the IM algorithms. It has been shown that the already existing

models that simulate information diffusion cannot ef�ciently reproduce a real spreading

process in networks. It would be interesting to design new models that can represent

better a spreading phenomenon by incorporating memory of past events (succesful or

unsuccesful efforts of entities to in�uence one another) or by taking into account also

the fact that in real life in�uence is not always positive but might be negative as well.

secure and private computation of influential metrics In Chapter 5

we focused on the secure and private computation of metrics that reveal in�uential

entities in social networks. Nevertheless such metrics require knowledge of the social

network. Such practices raise serious concerns associated with the publishing of such

sensitive information. We have adop-ted a decentralization approach to favor privacy, we

speci�cally proposed a P 2P algorithm that can ef�ciently calculate the k-core centrality

of each node.

The k-core centrality has been proven to be a metric that succesfully ranks the nodes

in a network based on their spreading capabilities. A distributed algorithm that calcu-

lates said metric already exists, though networks that evolve over time are not taken

into account. Our main contribution is an incremental algorithm that succesfully com-

putes the up-to-date k-core values that limits the number of messages and computations

needed when a modi�cation occurs to the network.

We performed a complexity analysis and made experiments on real graphs to show

that our algorithm is less computationally expensive in terms of numbers of messages

that are sent between peers, number of node computations and temporal complexity.

Additionally, a security and privacy analysis has been performed along with experi-

ments on real datasets. There is a need of good information quality in anonymized

versions of the datasets in order to prevent attackers from reconstructing the original

dataset. We showed that great perturbations do not result in severe loss of the quality of

6.2 epilogue 101

the spreaders that can be provided by the k-core decomposition thus our algorithm can

indeed securely calculate such a measure.

Our algorithm treats each update individually but we are currently working on ex-

tending it in order to support concurrent changes in the network. It would be interesting

to design a distributed algorithm that calculates other in�uence indicators such as the

K-truss centrality which as presented in Chapter 3 has been proven to �lter out the best

spreaders of the k-core structure.

6.2 epilogue

Social networks have presented numerous demanding but at the same time interesting

problems to the research community. Throughout this dissertation we have presented

our understanding of the area of in�uence maximization and reported �ndings that

will hopefully help its comprehension and progress. Even though a lot of work has been

done in the �eld, there are still unanswered questions and challenging problems that

will further enlighten our knowledge about networks but also social behavior.

B I B L I O G R A P H Y

[1] Hidayet Aksu, Mustafa Canim, Yuan-Chi Chang, Ibrahim Korpeoglu, and Özgür

Ulusoy. “Distributed k-Core View Materialization and Maintenance for Large

Dynamic Graphs.” In: IEEE Transactions on Knowledge and Data Engineering26.10

(2014), pp. 2439–2452.

[2] Réka Albert and Albert-László Barabási. “Statistical mechanics of complex net-

works.” In: Reviews of modern physics74 (1 2002), pp. 47–97.

[3] Réka Albert, Hawoong Jeong, and Albert-László Barabási. “Error and attack tol-

erance of complex networks.” In: Nature 406.6794(2000), pp. 378–382.

[4] Tristan Allard, Nicolas Anciaux, Luc Bouganim, Yanli Guo, Lionel Le Folgoc,

Benjamin Nguyen, Philippe Pucheral, Indrajit Ray, Indrakshi Ray, and Shaoyi

Yin. “Secure personal data servers: a vision paper.” In: Proceedings of the VLDB

Endowment3.1-2 (2010), pp. 25–35.

[5] Lu�s A Nunes Amaral, Antonio Scala, Marc Barthelemy, and H Eugene Stan-

ley. “Classes of small-world networks.” In: Proceedings of the National Academy of

Sciences97.21 (2000), pp. 11149–11152.

[6] Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. “Wherefore art thou r 3579x?:

anonymized social networks, hidden patterns, and structural steganography.” In:

WWW '07: Proceedings of the16th International Conference on World Wide Web. ACM.

2007, pp. 181–190.

[7] Joonhyun Bae and Sangwook Kim. “Identifying and ranking in�uential spread-

ers in complex networks by neighborhood coreness.” In: Physica A: Statistical

Mechanics and its Applications395(2014), pp. 549–559.

[8] Eytan Bakshy, Jake M Hofman, Winter A Mason, and Duncan J Watts. “Every-

one's an in�uencer: quantifying in�uence on twitter.” In: WSDM ' 11: Proceedings

of the Fourth ACM International Conference on Web Search and Data Mining. ACM.

2011, pp. 65–74.

[9] Krisztian Balog, Leif Azzopardi, and Maarten De Rijke. “Formal models for ex-

pert �nding in enterprise corpora.” In: SIGIR '06: Proceedings of the29th Annual

International ACM SIGIR Conference on Research and Development in Information Re-

trieval. ACM. 2006, pp. 43–50.

[10] Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. “Topic-Aware Social

In�uence Propagation Models.” In: ICDM ' 12: Proceedings of the12th International

Conference on Data Mining. 2012, pp. 81–90.

[11] John Arundel Barnes. “Class and committees in a Norwegian island parish.” In:

Human Relations7.1 (1954), pp. 39–58.

[12] Alain Barrat, Marc Barthelemy, and Alessandro Vespignani. Dynamical processes

on complex networks. Cambridge University Press, 2008.

[13] Pavlos Basaras, Dimitrios Katsaros, and Leandros Tassiulas. “Detecting In�uen-

tial Spreaders in Complex, Dynamic Networks.” In: Computer46.4 (2013), pp. 24–

29.

[14] Frank Bass. “A New Product Growth Model for Consumer Durable.” In: Manage-

ment Sciences15.5 (1969), pp. 215–227.

103

Bibliography 104

[15] Vladimir Batagelj and Matjaz Zaversnik. “An O(m) Algorithm for Cores Decom-

position of Networks.” In: CoRR(2003).

[16] Alex Bavelas. “A mathematical model for group structures.” In: Human organiza-

tion 7.3 (1948), pp. 16–30.

[17] Peter S Bearman, James Moody, and Katherine Stovel. “Chains of affection: The

structure of adolescent romantic and sexual networks.” In: American Journal of

Sociology110.1 (2004), pp. 44–91.

[18] Norman Biggs. Algebraic graph theory. Cambridge University Press, 1993.

[19] Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez, and D-U Hwang.

“Complex networks: Structure and dynamics.” In: Physics Reports424.4 (2006),

pp. 175–308.

[20] Phillip Bonacich. “Power and centrality: A family of measures.” In: American

Journal of Sociology92.5 (1987), pp. 1170–1182.

[21] Phillip Bonacich. “Some unique properties of eigenvector centrality.” In: Social

Networks29.4 (2007), pp. 555–564.

[22] Francesco Bonchi and Elena Ferrari.Privacy-aware knowledge discovery: novel appli-

cations and new techniques. Chapman and Hall/CRC Press, 2010.

[23] Francesco Bonchi, Francesco Gullo, Andreas Kaltenbrunner, and Yana Volkovich.

“Core decomposition of uncertain graphs.” In: KDD ' 14: Proceedings of the20th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

ACM. 2014, pp. 1316–1325.

[24] John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph theory with

applications. Vol. 290. London: Macmillan, 1976.

[25] Stephen P Borgatti. “Centrality and network �ow.” In: Social Networks27.1 (2005),

pp. 55–71.

[26] Stephen P Borgatti and Martin G Everett. “A graph-theoretic perspective on cen-

trality.” In: Social Networks28.4 (2006), pp. 466–484.

[27] Javier Borge-Holthoefer, Alejandro Rivero, and Yamir Moreno. “Locating privi-

leged spreaders on an online social network.” In: Physical Review E85 (6 2012),

p. 066123.

[28] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. “Maxi-

mizing Social In�uence in Nearly Optimal Time.” In: SODA '14: Proceedings of the

Twenty-�fth Annual ACM-SIAM Symposium on Discrete Algorithms. 2014, pp. 946–

957.

[29] Sergey Brin and Lawrence Page. “Reprint of: The anatomy of a large-scale hyper-

textual web search engine.” In: Computer Networks56.18 (2012), pp. 3825–3833.

[30] Jacqueline Johnson Brown and Peter H Reingen. “Social ties and word-of-mouth

referral behavior.” In: Journal of Consumer Research14.3 (1987), pp. 350–362.

[31] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir. “A

model of Internet topology using k-shell decomposition.” In: Proceedings of the

National Academy of Sciences104.27 (2007), pp. 11150–11154.

[32] Jordi Casas-Roma, Jordi Herrera-Joancomartí, and Vicenç Torra. “k-Degree anonymity

and edge selection: improving data utility in large networks.” In: Knowledge and

Information Systems50.2 (2017), pp. 447–474.

[33] Damon Centola. “The spread of behavior in an online social network experi-

ment.” In: Science329.5996(2010), pp. 1194–1197.

Bibliography 105

[34] Deepayan Chakrabarti and Christos Faloutsos. “Graph mining: laws, tools, and

case studies.” In: Synthesis Lectures on Data Mining and Knowledge Discovery7.1

(2012), pp. 1–207.

[35] Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jurij Leskovec, and Christos

Faloutsos. “Epidemic Thresholds in Real Networks.” In: ACM Transactions on

Information and System Security (TISSEC)10.4 (2008), 1:1–1:26.

[36] Duan-Bing Chen, Hui Gao, Linyuan Lü, and Tao Zhou. “Identifying In�uential

Nodes in Large-Scale Directed Networks: The Role of Clustering.” In: PLoS ONE

8.10 (2013), e77455.

[37] Duan-Bing Chen, Rui Xiao, An Zeng, and Yi-Cheng Zhang. “Path diversity im-

proves the identi�cation of in�uential spreaders.” In: EPL (Europhysics Letters)

104.6 (2013), p. 68006.

[38] Duanbing Chen, Linyuan Lü, Ming-Sheng Shang, Yi-Cheng Zhang, and Tao

Zhou. “Identifying in�uential nodes in complex networks.” In: Physica A: Sta-

tistical Mechanics and its Applications391.4 (2012), pp. 1777–1787.

[39] Wei Chen, Chi Wang, and Yajun Wang. “Scalable In�uence Maximization for

Prevalent Viral Marketing in Large-scale Social Networks.” In: KDD ' 10: Proceed-

ings of the16th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. 2010, pp. 1029–1038.

[40] Wei Chen, Yifei Yuan, and Li Zhang. “Scalable In�uence Maximization in Social

Networks Under the Linear Threshold Model.” In: ICDM ' 10: Proceedings of the

10th International Conference on Data Mining. 2010, pp. 88–97.

[41] James Cheng, Yiping Ke, Shumo Chu, and M Tamer Özsu. “Ef�cient core decom-

position in massive networks.” In: ICDE '11: IEEE International Conference on Data

Engineering. IEEE.2011, pp. 51–62.

[42] Nicholas A Christakis and James H Fowler. “The spread of obesity in a large

social network over 32 years.” In: New England Journal of Medicine357.4 (2007),

pp. 370–379.

[43] Nicholas A Christakis and James H Fowler. “The collective dynamics of smok-

ing in a large social network.” In: New England Journal of Medicine358.21 (2008),

pp. 2249–2258.

[44] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. “Power-Law Distri-

butions in Empirical Data.” In: SIAM Review51.4 (2009), pp. 661–703.

[45] Edith Cohen. “Size-Estimation Framework with Applications to Transitive Clo-

sure and Reachability.” In: Journal of Computer and System Sciences55.3 (1997),

pp. 441–453.

[46] Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F. Werneck. “Sketch-

based In�uence Maximization and Computation: Scaling Up with Guarantees.”

In: CIKM ' 14 : Proceedings of the23rd ACM International Conference on Conference on

Information and Knowledge Management. 2014, pp. 629–638.

[47] Jonathan Cohen. “Trusses: Cohesive subgraphs for social network analysis.” In:

National Security Agency Technical Report16 (2008).

[48] Reuven Cohen, Shlomo Havlin, and Daniel Ben-Avraham. “Ef�cient immuniza-

tion strategies for computer networks and populations.” In: Physical Review Let-

ters91.24 (2003), p. 247901.

Bibliography 106

[49] Reuven Cohen, Keren Erez, Daniel ben Avraham, and Shlomo Havlin. “Break-

down of the Internet under Intentional Attack.” In: Physical Review Letters86 (16

2001), pp. 3682–3685.

[50] Gerard Cornuejols, Marshall L Fisher, and George L Nemhauser. “Exceptional

paper—Location of bank accounts to optimize �oat: An analytic study of exact

and approximate algorithms.” In: Management Science23.8 (1977), pp. 789–810.

[51] Leucio Antonio Cutillo, Re�k Molva, and Thorsten Strufe. “Safebook: A privacy-

preserving online social network leveraging on real-life trust.” In: IEEE Commu-

nications Magazine47.12 (2009), pp. 94–101.

[52] Manlio De Domenico, Antonio Lima, Paul Mougel, and Mirco Musolesi. “The

anatomy of a scienti�c rumor.” In: Scienti�c Reports3: 2980(2013).

[53] Klaus Dietz. “Epidemics and rumours: A survey.” In: Journal of the Royal Statistical

Society. Series A (General)130.4 (1967), pp. 505–528.

[54] Ying Ding, Erjia Yan, Arthur Frazho, and James Caverlee. “PageRank for rank-

ing authors in co-citation networks.” In: Journal of the Association for Information

Science and Technology60.11 (2009), pp. 2229–2243.

[55] Peter Sheridan Dodds and Duncan J Watts. “Universal behavior in a generalized

model of contagion.” In: Physical Review Letters92.21 (2004), p. 218701.

[56] Pedro Domingos and Matt Richardson. “Mining the Network Value of Customers.”

In: KDD ' 01: Proceedings of the Seventh ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. 2001, pp. 57–66.

[57] Leo Egghe and Ronald Rousseau.Introduction to informetrics: Quantitative methods

in library, documentation and information science. Elsevier Science Publishers,1990.

[58] Marius Eidsaa and Eivind Almaas. “S-core network decomposition: A generaliza-

tion of k-core analysis to weighted networks.” In: Physical Review E88.6 (2013),

p. 062819.

[59] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. “On power-law rela-

tionships of the internet topology.” In: ACM SIGCOMM Computer Communication

Review. Vol. 29. 4. ACM. 1999, pp. 251–262.

[60] Uriel Feige. “A threshold of ln n for approximating set cover.” In: Journal of the

ACM (JACM) 45.4 (1998), pp. 634–652.

[61] Linton C Freeman. “A set of measures of centrality based on betweenness.” In:

Sociometry40.1 (1977), pp. 35–41.

[62] Linton C Freeman. “Centrality in social networks conceptual clari�cation.” In:

Social networks1.3 (1978), pp. 215–239.

[63] Joseph Galaskiewicz.Social organization of an urban grants economy: A study of busi-

ness philanthropy and nonpro�t organizations. Elsevier, 2016.

[64] Joseph Galaskiewicz and Peter V Marsden. “Interorganizational resource net-

works: Formal patterns of overlap.” In: Social Science Research7.2 (1978), pp. 89–

107.

[65] Antonios Garas, Frank Schweitzer, and Shlomo Havlin. “A k-shell decomposition

method for weighted networks.” In: New Journal of Physics14.8 (2012), p. 083030.

[66] Craig Gentry. “Fully homomorphic encryption using ideal lattices.” In: STOC

'09: Proceedings of the Forty-�rst Annual ACM Symposium on Theory of Computing.

2009, pp. 169–178.

Bibliography 107

[67] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis. “D-cores:

Measuring collaboration of directed graphs based on degeneracy.” In: ICDM ' 11:

IEEE 11th International Conference on Data Mining. IEEE.2011, pp. 201–210.

[68] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis. “Evaluating

cooperation in communities with the k-core structure.” In: ASONAM ' 11: Inter-

national Conference on Advances in Social Networks Analysis and Mining. IEEE.2011,

pp. 87–93.

[69] Jacob Goldenberg, Barak Libai, and Eitan Muller. “Talk of the network: A com-

plex systems look at the underlying process of word-of-mouth.” In: Marketing

Letters12.3 (2001), pp. 211–223.

[70] Jacob Goldenberg, Barak Libai, and Eitan Muller. “Using complex systems anal-

ysis to advance marketing theory development: Modeling heterogeneity effects

on new product growth through stochastic cellular automata.” In: Academy of

Marketing Science Review2001(2001), p. 1.

[71] Sha� Goldwasser and Silvio Micali. “Probabilistic encryption & how to play men-

tal poker keeping secret all partial information.” In: STOC '82: Proceedings of the

fourteenth annual ACM symposium on Theory of computing. ACM. 1982, pp. 365–377.

[72] Amit Goyal, Francesco Bonchi, and Laks VS Lakshmanan. “Learning in�uence

probabilities in social networks.” In: WSDM ' 10: Proceedings of the Third ACM

International Conference on Web Search and Data Mining. ACM. 2010, pp. 241–250.

[73] Amit Goyal, Francesco Bonchi, and Laks VS Lakshmanan. “A data-based ap-

proach to social in�uence maximization.” In: Proceedings of the VLDB Endowment

5.1 (2011), pp. 73–84.

[74] Amit Goyal, Wei Lu, and Laks V. S. Lakshmanan. “SIMPATH: An Ef�cient Algo-

rithm for In�uence Maximization Under the Linear Threshold Model.” In: ICDM

'11: Proceedings of the11th International Conference on Data Mining. 2011, pp. 211–

220.

[75] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. “Celf++: optimizing the greedy

algorithm for in�uence maximization in social networks.” In: WWW '11: Proceed-

ings of the20th International Conference Companion on World Wide Web. ACM. 2011,

pp. 47–48.

[76] Nabil Guelzim, Samuele Bottani, Paul Bourgine, and François Képès. “Topologi-

cal and causal structure of the yeast transcriptional regulatory network.” In: Na-

ture Genetics31.1 (2002), pp. 60–63.

[77] Michelle Gumbrecht. “Blogs as `protected space'.” In: WWW 2004 Workshop on

the Weblogging Ecosystem: Aggregation, Analysis and Dynamics. Vol. 2004. 2004.

[78] Frank Hoppenstaedt. Mathematical theories of populations: demographics, genetics and

epidemics. SIAM, 1975.

[79] Harold Hotelling. “Simpli�ed calculation of principal components.” In: Psychome-

trika 1.1 (1936), pp. 27–35.

[80] Bonan Hou, Yiping Yao, and Dongsheng Liao. “Identifying all-around nodes for

spreading dynamics in complex networks.” In: Physica A: Statistical Mechanics and

its Applications391.15 (2012), pp. 4012–4017.

[81] William H Hsu, Andrew L King, Martin SR Paradesi, Tejaswi Pydimarri, and

Tim Weninger. “Collaborative and Structural Recommendation of Friends using

Weblog-based Social Network Analysis.” In: AAAI ' 06: Proceedings of Computa-

tional Approaches to Analyzing Weblogs. 2006, pp. 55–60.

Bibliography 108

[82] Bernardo A Huberman. The laws of the Web: Patterns in the ecology of information.

MIT Press, 2001.

[83] Oliver Hugo and Elizabeth Garnsey. “Hotmail: Delivering E-mail to the World.”

In: Cambridge Judge Business School, University of Cambridge(2002).

[84] Adriana Iamnitchi, Matei Ripeanu, and Ian Foster. “Locating data in (small-

world?) peer-to-peer scienti�c collaborations.” In: In Proceedings of International

Workshop on Peer-to-Peer Systems (IPTPS)(2002), pp. 232–241.

[85] Takashi Ito, Tomoko Chiba, Ritsuko Ozawa, Mikio Yoshida, Masahira Hattori,

and Yoshiyuki Sakaki. “A comprehensive two-hybrid analysis to explore the

yeast protein interactome.” In: Proceedings of the National Academy of Sciences98.8

(2001), pp. 4569–4574.

[86] Swami Iyer, Timothy Killingback, Bala Sundaram, and Zhen Wang. “Attack ro-

bustness and centrality of complex networks.” In: PloS one8.4 (2013), e59613.

[87] James Holland Jones and Mark S Handcock. “An assessment of preferential at-

tachment as a mechanism for human sexual network formation.” In: Proceedings

of the Royal Society of London B: Biological Sciences270.1520(2003), pp. 1123–1128.

[88] VK Kalapala, V Sanwalani, and C Moore. “The structure of the United States

road network.” In: Preprint, University of New Mexico(2003).

[89] Matt J Keeling and Pejman Rohani. Modeling infectious diseases in humans and

animals. Princeton University Press, 2008.

[90] David Kempe, Jon M. Kleinberg, and Éva Tardos. “Maximizing the spread of

in�uence through a social network.” In: KDD ' 03: Proceedings of the ninth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. 2003,

pp. 137–146.

[91] David Kempe, Jon M Kleinberg, and Éva Tardos. “In�uential Nodes in a Dif-

fusion Model for Social Networks.” In: ICALP '05: Proceedings of the32nd In-

ternational Colloquium on Automata, Languages and Programming. Springer. 2005,

pp. 1127–1138.

[92] William O Kermack and Anderson G McKendrick. “Contributions to the math-

ematical theory of epidemics. II. The problem of endemicity.” In: vol. 138. 834.

JSTOR,1932, pp. 55–83.

[93] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik,

H Eugene Stanley, and Hernán A Makse. “Identi�cation of in�uential spreaders

in complex networks.” In: Nature physics6.11 (2010), pp. 888–893.

[94] Konstantin Klemm, M Ángeles Serrano, Víctor M Eguíluz, and Maxi San Miguel.

“A measure of individual role in collective dynamics.” In: Scienti�c Reports2: 292

(2012).

[95] Bryan Klimt and Yiming Yang. “The enron corpus: A new dataset for email clas-

si�cation research.” In: ECML '04: Proceedings of the15th European Conference on

Machine Learning(2004), pp. 217–226.

[96] Paul L Krapivsky, Sidney Redner, and D Volovik. “Reinforcement-driven spread

of innovations and fads.” In: Journal of Statistical Mechanics: Theory and Experiment

2011.12 (2011), P12003.

[97] Matthieu Latapy. “Main-memory triangle computations for very large (sparse

(power-law)) graphs.” In: Theoretical Computer Science407.1-3 (2008), pp. 458–473.

Bibliography 109

[98] Damien Leprovost, Lylia Abrouk, Nadine Cullot, and David Gross-Amblard.

“Temporal semantic centrality for the analysis of communication networks.” In:

ICWE '12: Proceedings of the12th International Conference on Web Engineering(2012),

pp. 177–184.

[99] Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. “The dynamics of

viral marketing.” In: ACM Transactions on the Web (TWEB)1.1 (2007), p. 5.

[100] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. “Predicting positive and

negative links in online social networks.” In: WWW '10: Proceedings of the19th

International Conference on World Wide Web. ACM. 2010, pp. 641–650.

[101] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. “Graph evolution: Densi-

�cation and shrinking diameters.” In: ACM Transactions on Knowledge Discovery

from Data (TKDD) 1.1 (2007), p. 2.

[102] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-

Briesen, and Natalie Glance. “Cost-effective Outbreak Detection in Networks.” In:

KDD ' 07: Proceedings of the13th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining. 2007, pp. 420–429.

[103] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. “Com-

munity structure in large networks: Natural cluster sizes and the absence of large

well-de�ned clusters.” In: Internet Mathematics6.1 (2009), pp. 29–123.

[104] Qian Li, Tao Zhou, Linyuan Lü, and Duanbing Chen. “Identifying in�uential

spreaders by weighted LeaderRank.” In: Physica A: Statistical Mechanics and its

Applications404(2014), pp. 47–55.

[105] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. “Ef�cient core maintenance in large

dynamic graphs.” In: IEEE Transactions on Knowledge and Data Engineering26.10

(2014), pp. 2453–2465.

[106] David Liben-Nowell and Jon Kleinberg. “The link-prediction problem for social

networks.” In: Journal of the Association for Information Science and Technology58.7

(2007), pp. 1019–1031.

[107] Jian-Guo Liu, Jian-Hong Lin, Qiang Guo, and Tao Zhou. “Locating in�uential

nodes via dynamics-sensitive centrality.” In: Scienti�c Reports6: 21380(2016).

[108] Linyuan Lü, Duan-Bing Chen, and Tao Zhou. “The small world yields the most

effective information spreading.” In: New Journal of Physics13.12 (2011), p. 123005.

[109] Linyuan Lü, Yi-Cheng Zhang, Chi Ho Yeung, and Tao Zhou. “Leaders in social

networks, the delicious case.” In: PloS one6.6 (2011), e21202.

[110] Linyuan Lü, Matúš Medo, Chi Ho Yeung, Yi-Cheng Zhang, Zi-Ke Zhang, and

Tao Zhou. “Recommender systems.” In: Physics Reports519.1 (2012), pp. 1–49.

[111] Linyuan Lü, Duanbing Chen, Xiao-Long Ren, Qian-Ming Zhang, Yi-Cheng Zhang,

and Tao Zhou. “Vital nodes identi�cation in complex networks.” In: Physics Re-

ports650(2016), pp. 1–63.

[112] Tomasz �uczak. “Size and connectivity of the k-core of a random graph.” In:

Discrete Mathematics91.1 (1991), pp. 61–68.

[113] Vijay Mahajan, Eitan Muller, and Frank M Bass. “New product diffusion models

in marketing: A review and directions for research.” In: Diffusion of Technologies

and Social Behavior. Springer, 1991, pp. 125–177.

Bibliography 110

[114] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. “Pregel: a system for large-scale

graph processing.” In: SIGMOD ' 10: Proceedings of the2010ACM SIGMOD Inter-

national Conference on Management of Data. ACM. 2010, pp. 135–146.

[115] Fragkiskos D. Malliaros, Maria-Evgenia G. Rossi, and Michalis Vazirgiannis. “Lo-

cating in�uential nodes in complex networks.” In: Scienti�c Reports6: 19307(2016).

[116] David W Matula and Leland L Beck. “Smallest-last ordering and clustering and

graph coloring algorithms.” In: Journal of the ACM (JACM)30.3 (1983), pp. 417–

427.

[117] Ericka Menchen. “Blogger motivations: Power, pull, and positive feedback.” In:

6th International and Interdisciplinary Association of Internet Researchers(2005).

[118] Daniele Miorandi and Francesco De Pellegrini. “K-shell decomposition for dy-

namic complex networks.” In: WiOpt ' 10: 8th International Symposium on Modeling

and Optimization in Mobile, Ad Hoc, and Wireless Networks. IEEE.2010, pp. 488–496.

[119] Michael Molloy. “Cores in random hypergraphs and Boolean formulas.” In: Ran-

dom Structures & Algorithms27.1 (2005), pp. 124–135.

[120] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi. “Distributed

k-core decomposition.” In: IEEE Transactions on Parallel and Distributed Systems

24.2 (2013), pp. 288–300.

[121] Jacob L Moreno. Who shall survive. Vol. 58. JSTOR,1934.

[122] Yamir Moreno, Maziar Nekovee, and Amalio F Pacheco. “Dynamics of rumor

spreading in complex networks.” In: Physical Review E69.6 (2004), p. 066130.

[123] Arvind Narayanan and Vitaly Shmatikov. “De-anonymizing social networks.” In:

30th IEEE Symposium on Security and Privacy. IEEE.2009, pp. 173–187.

[124] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. “An analysis of

approximations for maximizing submodular set functions—I.” In: Mathematical

Programming14.1 (1978), pp. 265–294.

[125] Mark E. J. Newman. “Spread of epidemic disease on networks.” In: Physical Re-

view E66.1 (2002), p. 016128.

[126] Mark E. J. Newman. “The structure and function of complex networks.” In: SIAM

review45.2 (2003), pp. 167–256.

[127] Mark E. J. Newman. Networks: an introduction. Oxford university press, 2010.

[128] Romualdo Pastor-Satorras and Alessandro Vespignani. “Epidemic Spreading in

Scale-Free Networks.” In: Physical Review Letters86 (14 2001), pp. 3200–3203.

[129] Romualdo Pastor-Satorras and Alessandro Vespignani. “Immunization of com-

plex networks.” In: Physical Review E65.3 (2002), p. 036104.

[130] Sen Pei and Hernán A Makse. “Spreading dynamics in complex networks.” In:

Journal of Statistical Mechanics: Theory and Experiment2013.12 (2013), P12002.

[131] Sen Pei, Lev Muchnik, José S Andrade Jr, Zhiming Zheng, and Hernán A Makse.

“Searching for superspreaders of information in real-world social media.” In: Sci-

enti�c Reports4: 5547(2014).

[132] Sen Pei, Lev Muchnik, Shaoting Tang, Zhiming Zheng, and Hernán A Makse.

“Exploring the complex pattern of information spreading in online blog commu-

nities.” In: PloS one10.5 (2015), e0126894.

[133] James Edward Van der Plank. Plant diseases: epidemics and control. Elsevier, 2013.

Bibliography 111

[134] B.Aditya Prakash, Deepayan Chakrabarti, NicholasC. Valler, Michalis Faloutsos,

and Christos Faloutsos. “Threshold conditions for arbitrary cascade models on

arbitrary networks.” In: Knowledge and Information Systems33.3 (2012), pp. 549–

575.

[135] Filippo Radicchi, Santo Fortunato, Benjamin Markines, and Alessandro Vespig-

nani. “Diffusion of scienti�c credits and the ranking of scientists.” In: Physical

Review E80.5 (2009), p. 056103.

[136] John Rice.Mathematical statistics and data analysis. Nelson Education, 2006.

[137] Matthew Richardson, Rakesh Agrawal, and Pedro Domingos. “Trust manage-

ment for the semantic web.” In: The Semantic Web-ISWC2003(2003), pp. 351–368.

[138] Maria-Evgenia G. Rossi, Fragkiskos D. Malliaros, and Michalis Vazirgiannis. “Spread

it good, spread it fast: Identi�cation of in�uential nodes in social networks.”

In: Proceedings of the24th International Conference on World Wide Web. ACM. 2015,

pp. 101–102.

[139] Maria-Evgenia G. Rossi and Michalis Vazirgiannis. “Exploring Network Cen-

tralities in Spreading Processes.” In: International Symposium on Web AlGorithms

(iSWAG). 2016.

[140] Maria-Evgenia G. Rossi, Bowen Shi, Nikolaos Tziortziotis, Fragkiskos D. Malliaros,

Christos Giatsidis, and Michalis Vazirgiannis. “MATI: An Ef�cient Algorithm for

In�uence Maximization in Social Networks.” In: Manuscript. 2017.

[141] Maria-Evgenia G. Rossi, Cédric Eichler, Pascal Berthomé, and Benjamin Nguyen.

“Private, Secure and Distributed Computation of k-cores.” In: Manuscript, pre-

sented in APVP. 2017.

[142] Gert Sabidussi. “The centrality index of a graph.” In: Psychometrika31.4 (1966),

pp. 581–603.

[143] Ahmet Erdem Saríyüce, Bu�gra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and

Ümit V Çatalyürek. “Streaming algorithms for k-core decomposition.” In: Proceed-

ings of the VLDB Endowment6.6 (2013), pp. 433–444.

[144] Thomas Schank. Algorithmic aspects of triangle-based network analysis. PhD thesis,

Universität Karlsruhe (TH), 2007.

[145] Stephen B Seidman. “Network structure and minimum degree.” In: Social net-

works5.3 (1983), pp. 269–287.

[146] Marvin E Shaw. “Group structure and the behavior of individuals in small groups.”

In: The Journal of Psychology38.1 (1954), pp. 139–149.

[147] Alfonso Shimbel. “Structural parameters of communication networks.” In: The

Bulletin of Mathematical Biophysics15.4 (1953), pp. 501–507.

[148] Konstantinos Skianis, Maria-Evgenia G. Rossi, Fragkiskos D. Malliaros, and Michalis

Vazirgiannis. “SpreadViz: Analytics and Visualization of Spreading Processes in

Social Networks.” In: ICDMW ' 16: IEEE16th International Conference on Data Min-

ing Workshops. IEEE.2016, pp. 1324–1327.

[149] Xiaodan Song, Belle L. Tseng, Ching-Yung Lin, and Ming-Ting Sun. “Personal-

ized Recommendation Driven by Information Flow.” In: SIGIR '06: Proceedings of

the 29th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval. 2006, pp. 509–516.

[150] Jorg Stelling, Steffen Klamt, Katja Bettenbrock, Stefan Schuster, and Ernst Dieter

Gilles. “Metabolic network structure determines key aspects of functionality and

regulation.” In: Nature 420.6912(2002), p. 190.

Bibliography 112

[151] Youze Tang, Xiaokui Xiao, and Yanchen Shi. “In�uence Maximization: Near-

optimal Time Complexity Meets Practical Ef�ciency.” In: SIGMOD ' 14: Proceed-

ings of the2014 ACM SIGMOD International Conference on Management of Data.

2014, pp. 75–86.

[152] Ben Taskar, Ming-Fai Wong, Pieter Abbeel, and Daphne Koller. “Link prediction

in relational data.” In: NIPS '04: Advances in Neural Information Processing Systems.

2004, pp. 659–666.

[153] Michael Trusov, Randolph E. Bucklin, and Koen Pauwels. “Effects of Word-of-

Mouth Versus Traditional Marketing: Findings from an Internet Social Network-

ing Site.” In: Journal of Marketing73.5 (2009), pp. 90–102.

[154] Jia Wang and James Cheng. “Truss decomposition in massive networks.” In: Pro-

ceedings of the VLDB Endowment5.9 (2012), pp. 812–823.

[155] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos. “Epi-

demic Spreading in Real Networks: An Eigenvalue Viewpoint.” In: SRDS '03: Pro-

ceedings of the22nd International Symposium on Reliable Distributed Systems. IEEE

Computer Society, 2003, pp. 25–34.

[156] Stanley Wasserman and Katherine Faust. Social network analysis: Methods and ap-

plications. Vol. 8. Cambridge University Press, 1994.

[157] Duncan J Watts and Steven H Strogatz. “Collective dynamics of `small-world'

networks.” In: Nature 393.6684(1998), pp. 440–442.

[158] Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. “I/o ef�cient

core graph decomposition at web scale.” In: ICDE '16: IEEE 32nd International

Conference on Data Engineering. IEEE.2016, pp. 133–144.

[159] Xintao Wu, Xiaowei Ying, Kun Liu, and Lei Chen. “A survey of privacy-preservation

of graphs and social networks.” In: Managing and Mining Graph Data. Advances in

Database Systems(2010), pp. 421–453.

[160] An Zeng and Cheng-Jun Zhang. “Ranking spreaders by decomposing complex

networks.” In: Physics Letters A377.14 (2013), pp. 1031–1035.

[161] Daniel Zeng, Hsinchun Chen, Robert Lusch, and Shu-Hsing Li. “Social media

analytics and intelligence.” In: IEEE Intelligent Systems25.6 (2010), pp. 13–16.

[162] Xiaohang Zhang, Ji Zhu, Qi Wang, and Han Zhao. “Identifying in�uential nodes

in complex networks with community structure.” In: Knowledge-Based Systems42

(2013), pp. 74–84.

[163] Yang Zhang and Srinivasan Parthasarathy. “Extracting Analyzing and Visualiz-

ing Triangle K-Core Motifs within Networks.” In: ICDE '12: Proceedings of the2012

IEEE 28th International Conference on Data Engineering. 2012, pp. 1049–1060.

[164] Yikai Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin. “A fast order-based ap-

proach for core maintenance.” In: ICDE '17: Proceedings of the IEEE33rd Interna-

tional Conference on Data Engineering. IEEE.2017, pp. 337–348.

[165] Yan-Bo Zhou, Linyuan Lü, and Menghui Li. “Quantifying the in�uence of scien-

tists and their publications: distinguishing between prestige and popularity.” In:

New Journal of Physics14.3 (2012), p. 033033.

colophon

This document was typeset in LATEX using the typographical look-and-feel classicthesis .

The graphics in this dissertation are generated using the Matlab numerical computing

environment, the R language, the Ipe extensible drawing editor and pgf/tikz . The bib-

liography is typeset using biblatex .

	Abstract
	Publications

