H. Aksu, M. Canim, Y. Chang, I. Korpeoglu, and Ö. Ulusoy, Distributed k-Core View Materialization and Maintenance for Large Dynamic Graphs, IEEE Transactions on Knowledge and Data Engineering, vol.2610, pp.2439-2452, 2014.

R. Albert and A. Barabási, Statistical mechanics of complex networks, Reviews of Modern Physics, vol.86, issue.1, pp.47-97, 2002.
DOI : 10.1103/PhysRevLett.86.5835

R. Albert, H. Jeong, and A. Barabási, Error and attack tolerance of complex networks, In: Nature, vol.4066794, pp.378-382, 2000.
DOI : 10.1515/9781400841356.503

URL : http://arxiv.org/pdf/cond-mat/0008064

T. Allard, N. Anciaux, L. Bouganim, Y. Guo, L. L. Folgoc et al., Secure personal data servers, Proceedings of the VLDB Endowment, pp.1-2, 2010.
DOI : 10.14778/1920841.1920850

URL : https://hal.archives-ouvertes.fr/inria-00551875

N. Lu?s, A. Amaral, M. Scala, . Barthelemy, and . Stanley, Classes of small-world networks, In: Proceedings of the National Academy of Sciences, vol.9721, pp.11149-11152, 2000.

L. Backstrom, C. Dwork, and J. Kleinberg, Wherefore art thou r3579x?: anonymized social networks, hidden patterns, and structural steganography, WWW '07: Proceedings of the 16th International Conference on World Wide Web, pp.181-190, 2007.

J. Bae and S. Kim, Identifying and ranking influential spreaders in complex networks by neighborhood coreness, Physica A: Statistical Mechanics and its Applications, vol.395, pp.549-559, 2014.
DOI : 10.1016/j.physa.2013.10.047

E. Bakshy, J. M. Hofman, A. Winter, . Mason, J. Duncan et al., Everyone's an influencer, Proceedings of the fourth ACM international conference on Web search and data mining, WSDM '11, pp.65-74, 2011.
DOI : 10.1145/1935826.1935845

K. Balog, L. Azzopardi, and M. De-rijke, Formal models for expert finding in enterprise corpora, Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval , SIGIR '06, pp.43-50, 2006.
DOI : 10.1145/1148170.1148181

URL : https://strathprints.strath.ac.uk/57972/1/Balog_etal_SIGIR_2006_Formal_models_for_expert_finding_in_enterprise_corpora.pdf

N. Barbieri, F. Bonchi, and G. Manco, Topic-Aware Social Influence Propagation Models, ICDM '12: Proceedings of the 12th International Conference on Data Mining. 2012, pp.81-90
DOI : 10.1007/s10115-013-0646-6

J. Barnes, Class and Committees in a Norwegian Island Parish, Human Relations, vol.7, issue.1, pp.39-58, 1954.
DOI : 10.1177/001872675400700102

A. Barrat, M. Barthelemy, and A. Vespignani, Dynamical processes on complex networks, 2008.
DOI : 10.1017/CBO9780511791383

P. Basaras, D. Katsaros, and L. Tassiulas, Detecting Influential Spreaders in Complex, Dynamic Networks, Computer, vol.46, issue.4, pp.24-29, 2013.
DOI : 10.1109/MC.2013.75

F. Bass, A New Product Growth Model for Consumer Durable, Management Sciences, vol.155, pp.215-227, 1969.
DOI : 10.1007/978-3-642-51565-1_107

V. Batagelj and M. Zaversnik, An O(m) Algorithm for Cores Decomposition of Networks, p.CoRR, 2003.

A. Bavelas, A Mathematical Model for Group Structures, Human Organization, vol.7, issue.3, pp.16-30, 1948.
DOI : 10.17730/humo.7.3.f4033344851gl053

S. Peter, J. Bearman, K. Moody, and . Stovel, Chains of affection: The structure of adolescent romantic and sexual networks, In: American Journal of Sociology, vol.1101, pp.44-91, 2004.

N. Biggs, Algebraic graph theory, 1993.
DOI : 10.1017/CBO9780511608704

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang, Complex networks: Structure and dynamics, Physics Reports, vol.424, issue.4-5, pp.175-308, 2006.
DOI : 10.1016/j.physrep.2005.10.009

P. Bonacich, Power and Centrality: A Family of Measures, American Journal of Sociology, vol.92, issue.5, pp.1170-1182, 1987.
DOI : 10.1086/228631

P. Bonacich, Some unique properties of eigenvector centrality, Social Networks, vol.29, issue.4, pp.555-564, 2007.
DOI : 10.1016/j.socnet.2007.04.002

F. Bonchi and E. Ferrari, Privacy-aware knowledge discovery: novel applications and new techniques, 2010.
DOI : 10.1201/b10373

F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich, Core decomposition of uncertain graphs, Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '14, pp.1316-1325, 2014.
DOI : 10.1145/2623330.2623655

J. A. Bondy and U. Murty, Graph theory with applications, 1976.
DOI : 10.1007/978-1-349-03521-2

P. Stephen and . Borgatti, Centrality and network flow, In: Social Networks, vol.271, pp.55-71, 2005.

P. Stephen, . Borgatti, G. Martin, and . Everett, A graph-theoretic perspective on centrality, In: Social Networks, vol.284, pp.466-484, 2006.

J. Borge-holthoefer, A. Rivero, and Y. Moreno, Locating privileged spreaders on an online social network, Physical Review E, vol.1, issue.6, p.66123, 2012.
DOI : 10.1103/PhysRevLett.98.158702

URL : http://arxiv.org/pdf/1111.4181

C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, Maximizing Social Influence in Nearly Optimal Time, SODA '14: Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.946-957, 2014.
DOI : 10.1137/1.9781611973402.70

URL : http://arxiv.org/pdf/1212.0884.pdf

S. Brin and L. Page, Reprint of: The anatomy of a large-scale hypertextual web search engine, Computer Networks, vol.56, issue.18, pp.3825-3833, 2012.
DOI : 10.1016/j.comnet.2012.10.007

J. Brown, H. Peter, and . Reingen, Social Ties and Word-of-Mouth Referral Behavior, Journal of Consumer Research, vol.14, issue.3, pp.350-362, 1987.
DOI : 10.1086/209118

S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir, A model of Internet topology using k-shell decomposition, Proceedings of the National Academy of Sciences, vol.1, issue.5439, pp.27-11150, 2007.
DOI : 10.1126/science.286.5439.509

J. Casas-roma, J. Herrera-joancomartí, and V. Torra, k-Degree anonymity and edge selection: improving data utility in large networks, Knowledge and Information Systems, vol.2, issue.1, pp.447-474, 2017.
DOI : 10.14778/1687627.1687734

D. Centola, The Spread of Behavior in an Online Social Network Experiment, Science, vol.411, issue.6833, pp.1194-1197, 2010.
DOI : 10.1038/35075083

D. Chakrabarti and C. Faloutsos, Graph Mining: Laws, Tools, and Case Studies, Synthesis Lectures on Data Mining and Knowledge Discovery, vol.99, issue.21, pp.1-207, 2012.
DOI : 10.1073/pnas.172501399

D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos, Epidemic thresholds in real networks, ACM Transactions on Information and System Security, vol.10, issue.4, pp.1-1, 2008.
DOI : 10.1145/1284680.1284681

URL : http://www-2.cs.cmu.edu/~jure/pubs/virus-tissec.pdf

D. Chen, H. Gao, L. Lü, and T. Zhou, Identifying Influential Nodes in Large-Scale Directed Networks: The Role of Clustering, PLoS ONE, vol.14, issue.10, pp.10-77455, 2013.
DOI : 10.1371/journal.pone.0077455.t005

D. Chen, R. Xiao, A. Zeng, and Y. Zhang, Path diversity improves the identification of influential spreaders, EPL (Europhysics Letters), vol.104, issue.6, p.68006, 2013.
DOI : 10.1209/0295-5075/104/68006

D. Chen, L. Lü, M. Shang, Y. Zhang, and T. Zhou, Identifying influential nodes in complex networks, Physica A: Statistical Mechanics and its Applications, vol.391, issue.4, pp.1777-1787, 2012.
DOI : 10.1016/j.physa.2011.09.017

URL : http://doc.rero.ch/record/28320/files/zho_iin.pdf

W. Chen, C. Wang, and Y. Wang, Scalable influence maximization for prevalent viral marketing in large-scale social networks, Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '10, pp.1029-1038, 2010.
DOI : 10.1145/1835804.1835934

URL : http://research.microsoft.com/en-us/people/weic/kdd10_influence.pdf

W. Chen, Y. Yuan, and L. Zhang, Scalable Influence Maximization in Social Networks under the Linear Threshold Model, 2010 IEEE International Conference on Data Mining, pp.88-97, 2010.
DOI : 10.1109/ICDM.2010.118

J. Cheng, Y. Ke, S. Chu, and . Özsu, Efficient core decomposition in massive networks, 2011 IEEE 27th International Conference on Data Engineering, pp.51-62, 2011.
DOI : 10.1109/ICDE.2011.5767911

URL : http://www.cs.uwaterloo.ca/%7Etozsu/publications/graph/EM_kCore_icde11.pdf

A. Nicholas, . Christakis, H. James, and . Fowler, The spread of obesity in a large social network over 32 years, In: New England Journal of Medicine, vol.3574, pp.370-379, 2007.

A. Nicholas, . Christakis, H. James, and . Fowler, The collective dynamics of smoking in a large social network, In: New England Journal of Medicine, vol.35821, pp.2249-2258, 2008.

A. Clauset, C. R. Shalizi, and M. E. Newman, Power-Law Distributions in Empirical Data, SIAM Review, vol.51, issue.4, pp.661-703, 2009.
DOI : 10.1137/070710111

URL : http://arxiv.org/pdf/0706.1062

E. Cohen, Size-Estimation Framework with Applications to Transitive Closure and Reachability, Journal of Computer and System Sciences, vol.55, issue.3, pp.441-453, 1997.
DOI : 10.1006/jcss.1997.1534

URL : https://doi.org/10.1006/jcss.1997.1534

E. Cohen, D. Delling, T. Pajor, and R. F. Werneck, Sketchbased Influence Maximization and Computation: Scaling Up with Guarantees, CIKM '14 : Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp.629-638, 2014.
DOI : 10.1145/2661829.2662077

URL : http://arxiv.org/pdf/1408.6282

J. Cohen, Trusses: Cohesive subgraphs for social network analysis, In: National Security Agency Technical Report, vol.16, 2008.

R. Cohen, S. Havlin, and D. Ben-avraham, Efficient Immunization Strategies for Computer Networks and Populations, Physical Review Letters, vol.25, issue.24, p.247901, 2003.
DOI : 10.1038/35075138

URL : http://arxiv.org/pdf/cond-mat/0207387

R. Cohen, K. Erez, S. Daniel-ben-avraham, and . Havlin, Breakdown of the Internet under Intentional Attack, Physical Review Letters, vol.7, issue.16, pp.3682-3685, 2001.
DOI : 10.1017/S0963548398003526

G. Cornuejols, L. Marshall, . Fisher, L. George, and . Nemhauser, Exceptional Paper???Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms, Management Science, vol.23, issue.8, pp.789-810, 1977.
DOI : 10.1287/mnsc.23.8.789

L. Antonio-cutillo, R. Molva, and T. Strufe, Safebook: A privacypreserving online social network leveraging on real-life trust, IEEE Communications Magazine, vol.4712, pp.94-101, 2009.

A. Manlio-de-domenico, P. Lima, M. Mougel, and . Musolesi, The Anatomy of a Scientific Rumor, Scientific Reports, vol.3, issue.1, p.2980, 2013.
DOI : 10.1016/j.jocs.2012.05.001

K. Dietz, Epidemics and Rumours: A Survey, Journal of the Royal Statistical Society. Series A (General), vol.130, issue.4, pp.505-528, 1967.
DOI : 10.2307/2982521

Y. Ding, E. Yan, A. Frazho, and J. Caverlee, PageRank for ranking authors in co-citation networks, Journal of the American Society for Information Science and Technology, vol.42, issue.4, pp.2229-2243, 2009.
DOI : 10.1007/3-540-45735-6_13

URL : http://faculty.cse.tamu.edu/caverlee/pubs/ding09pagerank.pdf

P. Sheridan, D. Duncan, and J. Watts, Universal behavior in a generalized model of contagion, In: Physical Review Letters, vol.9221, p.218701, 2004.

P. Domingos and M. Richardson, Mining the network value of customers, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '01, pp.57-66, 2001.
DOI : 10.1145/502512.502525

L. Egghe and R. Rousseau, Introduction to informetrics: Quantitative methods in library, documentation and information science, 1990.

M. Eidsaa and E. Almaas, -core analysis to weighted networks, Physical Review E, vol.38, issue.6, p.62819, 2013.
DOI : 10.1128/MMBR.00013-06

M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the Internet topology, ACM SIGCOMM Computer Communication Review, vol.29, issue.4, pp.251-262, 1999.
DOI : 10.1145/316194.316229

U. Feige, A threshold of ln n for approximating set cover, Journal of the ACM, vol.45, issue.4, pp.634-652, 1998.
DOI : 10.1145/285055.285059

C. Linton and . Freeman, A set of measures of centrality based on betweenness, In: Sociometry, vol.401, pp.35-41, 1977.

C. Linton and . Freeman, Centrality in social networks conceptual clarification, In: Social networks, vol.13, pp.215-239, 1978.

J. Galaskiewicz, Social organization of an urban grants economy: A study of business philanthropy and nonprofit organizations, 2016.

J. Galaskiewicz, V. Peter, and . Marsden, Interorganizational resource networks: Formal patterns of overlap, Social Science Research, vol.7, issue.2, pp.89-107, 1978.
DOI : 10.1016/0049-089X(78)90006-6

A. Garas, F. Schweitzer, and S. Havlin, -shell decomposition method for weighted networks, New Journal of Physics, vol.14, issue.8, p.83030, 2012.
DOI : 10.1088/1367-2630/14/8/083030

URL : http://iopscience.iop.org/article/10.1088/1367-2630/14/8/083030/pdf

C. Gentry, Fully homomorphic encryption using ideal lattices, Proceedings of the 41st annual ACM symposium on Symposium on theory of computing, STOC '09, pp.169-178, 2009.
DOI : 10.1145/1536414.1536440

URL : http://www.cs.cmu.edu/~odonnell/hits09/gentry-homomorphic-encryption.pdf

C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis, D-cores: Measuring collaboration of directed graphs based on degeneracy, ICDM '11: IEEE 11th International Conference on Data Mining, pp.201-210, 2011.
URL : https://hal.archives-ouvertes.fr/lirmm-00846768

C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis, Evaluating Cooperation in Communities with the k-Core Structure, 2011 International Conference on Advances in Social Networks Analysis and Mining, pp.87-93, 2011.
DOI : 10.1109/ASONAM.2011.65

J. Goldenberg, B. Libai, and E. Muller, Talk of the network: A complex systems look at the underlying process of word-of-mouth, In: Marketing Letters, vol.123, pp.211-223, 2001.

J. Goldenberg, B. Libai, and E. Muller, Using complex systems analysis to advance marketing theory development: Modeling heterogeneity effects on new product growth through stochastic cellular automata, In: Academy of Marketing Science Review, p.1, 2001.

S. Goldwasser and S. Micali, Probabilistic encryption & how to play mental poker keeping secret all partial information, Proceedings of the fourteenth annual ACM symposium on Theory of computing , STOC '82, pp.365-377, 1982.
DOI : 10.1145/800070.802212

A. Goyal, F. Bonchi, V. Laks, and . Lakshmanan, Learning influence probabilities in social networks, Proceedings of the third ACM international conference on Web search and data mining, WSDM '10, pp.241-250, 2010.
DOI : 10.1145/1718487.1718518

URL : http://www-kdd.isti.cnr.it/~bonchi/wsdm339-goyal.pdf

A. Goyal, F. Bonchi, V. Laks, and . Lakshmanan, A data-based approach to social influence maximization, Proceedings of the VLDB Endowment, pp.73-84, 2011.
DOI : 10.14778/2047485.2047492

URL : http://www.vldb.org/pvldb/vol5/p073_amitgoyal_vldb2012.pdf

A. Goyal, W. Lu, and L. V. Lakshmanan, SIMPATH: An Efficient Algorithm for Influence Maximization under the Linear Threshold Model, 2011 IEEE 11th International Conference on Data Mining, pp.211-220, 2011.
DOI : 10.1109/ICDM.2011.132

A. Goyal, W. Lu, V. Laks, and . Lakshmanan, CELF++, Proceedings of the 20th international conference companion on World wide web, WWW '11, pp.47-48, 2011.
DOI : 10.1145/1963192.1963217

N. Guelzim, S. Bottani, P. Bourgine, and F. Képès, Topological and causal structure of the yeast transcriptional regulatory network, Nature Genetics, vol.31, issue.1, pp.60-63, 2002.
DOI : 10.1038/ng873

M. Gumbrecht, Blogs as 'protected space', WWW 2004 Workshop on the Weblogging Ecosystem: Aggregation, 2004.

F. Hoppenstaedt, Mathematical theories of populations: demographics, genetics and epidemics. SIAM, 1975.
DOI : 10.1137/1.9781611970487

H. Hotelling, Simplified calculation of principal components, Psychometrika, vol.26, issue.1, pp.27-35, 1936.
DOI : 10.1007/BF02287921

B. Hou, Y. Yao, and D. Liao, Identifying all-around nodes for spreading dynamics in complex networks, Physica A: Statistical Mechanics and its Applications, vol.391, issue.15, pp.4012-4017, 2012.
DOI : 10.1016/j.physa.2012.02.033

H. William, . Hsu, L. Andrew, . King, S. Martin et al., Collaborative and Structural Recommendation of Friends using Weblog-based Social Network Analysis, AAAI '06: Proceedings of Computational Approaches to Analyzing Weblogs, pp.55-60, 2006.

A. Bernardo and . Huberman, The laws of the Web: Patterns in the ecology of information, 2001.

O. Hugo and E. Garnsey, Hotmail: Delivering E-mail to the World, In: Cambridge Judge Business School, 2002.

A. Iamnitchi, M. Ripeanu, and I. Foster, Locating data in (smallworld? ) peer-to-peer scientific collaborations, Proceedings of International Workshop on Peer-to-Peer Systems (IPTPS), pp.232-241, 2002.
DOI : 10.1007/3-540-45748-8_22

URL : http://arxiv.org/pdf/cs/0209031

T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori et al., A comprehensive two-hybrid analysis to explore the yeast protein interactome, Proceedings of the National Academy of Sciences 98, pp.4569-4574, 2001.
DOI : 10.1038/82360

S. Iyer, T. Killingback, B. Sundaram, and Z. Wang, Attack Robustness and Centrality of Complex Networks, PLoS ONE, vol.74, issue.4, p.59613, 2013.
DOI : 10.1371/journal.pone.0059613.t003

J. Holland, J. Mark, and S. Handcock, An assessment of preferential attachment as a mechanism for human sexual network formation, In: Proceedings of the Royal Society of London B: Biological Sciences, vol.270, pp.1520-1123, 2003.

V. Kalapala, C. Sanwalani, and . Moore, The structure of the United States road network, 2003.

J. Matt, P. Keeling, and . Rohani, Modeling infectious diseases in humans and animals, 2008.

D. Kempe, J. M. Kleinberg, and É. Tardos, Maximizing the spread of influence through a social network, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.137-146, 2003.
DOI : 10.1145/956750.956769

D. Kempe, J. M. Kleinberg, and É. Tardos, Influential Nodes in a Diffusion Model for Social Networks, ICALP '05: Proceedings of the 32nd International Colloquium on Automata, Languages and Programming, pp.1127-1138, 2005.
DOI : 10.1007/11523468_91

O. William, . Kermack, G. Anderson, and . Mckendrick, Contributions to the mathematical theory of epidemics. II. The problem of endemicity, pp.55-83, 1932.

M. Kitsak, K. Lazaros, S. Gallos, F. Havlin, L. Liljeros et al., Identification of influential spreaders in complex networks, Nature Physics, vol.18, issue.11, pp.888-893, 2010.
DOI : 10.1103/PhysRevLett.89.208701

K. Klemm, . Serrano, M. Víctor, M. S. Eguíluz, and . Miguel, A measure of individual role in collective dynamics, Scientific Reports, vol.314, issue.1, p.292, 2012.
DOI : 10.1098/rstb.1986.0056

B. Klimt and Y. Yang, The Enron Corpus: A New Dataset for Email Classification Research, ECML '04: Proceedings of the 15th European Conference on Machine Learning, pp.217-226, 2004.
DOI : 10.1007/978-3-540-30115-8_22

L. Paul, S. Krapivsky, D. Redner, and . Volovik, Reinforcement-driven spread of innovations and fads, In: Journal of Statistical Mechanics: Theory and Experiment, vol.12, p.12003, 2011.

M. Latapy, Main-memory triangle computations for very large (sparse (power-law)) graphs, Theoretical Computer Science, vol.407, issue.1-3, pp.1-3, 2008.
DOI : 10.1016/j.tcs.2008.07.017

URL : https://hal.archives-ouvertes.fr/hal-01146068

D. Leprovost, L. Abrouk, N. Cullot, and D. Gross-amblard, Temporal Semantic Centrality for the Analysis of Communication Networks
DOI : 10.1007/978-3-642-31753-8_13

URL : https://hal.archives-ouvertes.fr/hal-00803128

J. Leskovec, A. Lada, . Adamic, A. Bernardo, and . Huberman, The dynamics of viral marketing, ACM Transactions on the Web, vol.1, issue.1, p.5, 2007.
DOI : 10.1145/1232722.1232727

J. Leskovec, D. Huttenlocher, and J. Kleinberg, Predicting positive and negative links in online social networks, Proceedings of the 19th international conference on World wide web, WWW '10, pp.641-650, 2010.
DOI : 10.1145/1772690.1772756

URL : http://www.cs.cornell.edu/Info/People/kleinber/www10-signed.pdf

J. Leskovec, J. Kleinberg, and C. Faloutsos, Graph evolution, ACM Transactions on Knowledge Discovery from Data, vol.1, issue.1, p.2, 2007.
DOI : 10.1145/1217299.1217301

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. Van-briesen et al., Cost-effective outbreak detection in networks, Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '07, pp.420-429, 2007.
DOI : 10.1145/1281192.1281239

URL : http://repository.cmu.edu/cgi/viewcontent.cgi?article=1527&context=compsci

J. Leskovec, J. Kevin, A. Lang, . Dasgupta, W. Michael et al., Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters, Internet Mathematics, vol.6, issue.1, pp.29-123, 2009.
DOI : 10.1080/15427951.2009.10129177

Q. Li, T. Zhou, L. Lü, and D. Chen, Identifying influential spreaders by weighted LeaderRank, Physica A: Statistical Mechanics and its Applications, pp.47-55, 2014.
DOI : 10.1016/j.physa.2014.02.041

URL : http://arxiv.org/pdf/1306.5042

R. Li, J. X. Yu, and R. Mao, Efficient Core Maintenance in Large Dynamic Graphs, IEEE Transactions on Knowledge and Data Engineering, vol.26, issue.10, pp.2453-2465, 2014.
DOI : 10.1109/TKDE.2013.158

URL : http://arxiv.org/pdf/1207.4567

D. Liben-nowell and J. Kleinberg, The link-prediction problem for social networks, In: Journal of the Association for Information Science and Technology, vol.587, pp.1019-1031, 2007.

J. Liu, J. Lin, Q. Guo, and T. Zhou, Locating influential nodes via dynamics-sensitive centrality, Scientific Reports, vol.437, issue.1, p.21380, 2016.
DOI : 10.1038/nature04209

URL : https://doi.org/10.1038/srep21380

L. Lü, D. Chen, and T. Zhou, The small world yields the most effective information spreading, In: New Journal of Physics, vol.1312, p.123005, 2011.

L. Lü, Y. Zhang, C. H. Yeung, and T. Zhou, Leaders in social networks, the delicious case, In: PloS one, vol.66, p.21202, 2011.

L. Lü, M. Medo, C. Ho-yeung, Y. Zhang, Z. Zhang et al., Recommender systems, Physics Reports, vol.5191, pp.1-49, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01306790

L. Lü, D. Chen, X. Ren, Q. Zhang, Y. Zhang et al., Vital nodes identification in complex networks, Physics Reports, vol.650, pp.1-63, 2016.
DOI : 10.1016/j.physrep.2016.06.007

T. ?uczak, Size and connectivity of the k-core of a random graph, Discrete Mathematics, vol.91, issue.1, pp.61-68, 1991.
DOI : 10.1016/0012-365X(91)90162-U

V. Mahajan, E. Muller, M. Frank, and . Bass, New product diffusion models in marketing: A review and directions for research In: Diffusion of Technologies and Social Behavior, pp.125-177, 1991.

G. Malewicz, H. Matthew, . Austern, J. Aart, . Bik et al., Pregel: a system for large-scale graph processing, SIGMOD '10: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pp.135-146, 2010.

D. Fragkiskos, . Malliaros, G. Maria-evgenia, M. Rossi, and . Vazirgiannis, Locating influential nodes in complex networks, In: Scientific Reports, vol.6, p.19307, 2016.

W. David, L. L. Matula, and . Beck, Smallest-last ordering and clustering and graph coloring algorithms, In: Journal of the ACM (JACM), vol.303, pp.417-427, 1983.

E. Menchen, Blogger motivations: Power, pull, and positive feedback, 6th International and Interdisciplinary Association of Internet Researchers, 2005.

D. Miorandi and F. D. Pellegrini, K-shell decomposition for dynamic complex networks, 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, pp.488-496, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00492057

M. Molloy, Cores in random hypergraphs and Boolean formulas, Random Structures and Algorithms, vol.67, issue.1, pp.124-135, 2005.
DOI : 10.1017/S0963548300001796

URL : http://www.cs.toronto.edu/~molloy/webpapers/cores.ps

A. Montresor, F. D. Pellegrini, and D. Miorandi, Distributed k-Core Decomposition, IEEE Transactions on Parallel and Distributed Systems, vol.24, issue.2, pp.288-300, 2013.
DOI : 10.1109/TPDS.2012.124

URL : http://arxiv.org/pdf/1103.5320

L. Jacob and . Moreno, Who shall survive, 1934.

Y. Moreno, M. Nekovee, F. Amalio, and . Pacheco, Dynamics of rumor spreading in complex networks, Physical Review E, vol.204, issue.6, p.66130, 2004.
DOI : 10.1209/epl/i2002-00529-8

A. Narayanan and V. Shmatikov, De-anonymizing Social Networks, 2009 30th IEEE Symposium on Security and Privacy, pp.173-187, 2009.
DOI : 10.1109/SP.2009.22

URL : http://arxiv.org/pdf/0903.3276

L. George, . Nemhauser, A. Laurence, . Wolsey, L. Marshall et al., An analysis of approximations for maximizing submodular set functions?I, In: Mathematical Programming, vol.141, pp.265-294, 1978.

E. J. Mark and . Newman, Spread of epidemic disease on networks, In: Physical Review E, vol.661, p.16128, 2002.

E. J. Mark and . Newman, The structure and function of complex networks, In: SIAM review, vol.452, pp.167-256, 2003.

E. J. Mark and . Newman, Networks: an introduction, 2010.

R. Pastor-satorras and A. Vespignani, Epidemic Spreading in Scale-Free Networks, Physical Review Letters, vol.62, issue.14, pp.3200-3203, 2001.
DOI : 10.1103/PhysRevE.62.7474

URL : https://repository.library.northeastern.edu/files/neu:331357/fulltext.pdf

R. Pastor-satorras and A. Vespignani, Immunization of complex networks, Physical Review E, vol.292, issue.3, p.36104, 2002.
DOI : 10.1126/science.1061076

S. Pei, A. Hernán, and . Makse, Spreading dynamics in complex networks, Journal of Statistical Mechanics: Theory and Experiment, vol.2013, issue.12, p.12002, 2013.
DOI : 10.1088/1742-5468/2013/12/P12002

S. Pei, L. Muchnik, Z. José-s-andrade-jr, . Zheng, A. Hernán et al., Searching for superspreaders of information in real-world social media, Scientific Reports, vol.3, issue.1, p.5547, 2014.
DOI : 10.1145/1935826.1935845

S. Pei, L. Muchnik, S. Tang, Z. Zheng, A. Hernán et al., Exploring the Complex Pattern of Information Spreading in Online Blog Communities, PLOS ONE, vol.435, issue.5, pp.5-0126894, 2015.
DOI : 10.1371/journal.pone.0126894.g009

J. Van and . Plank, Plant diseases: epidemics and control, 2013.

B. , A. Prakash, D. Chakrabarti, . Nicholasc, M. Valler et al., Threshold conditions for arbitrary cascade models on arbitrary networks, In: Knowledge and Information Systems, vol.333, pp.549-575, 2012.
DOI : 10.1109/icdm.2011.145

URL : http://www.cs.cmu.edu/%7Ebadityap/papers/gen-threshold-icdm11.pdf

F. Radicchi, S. Fortunato, B. Markines, and A. Vespignani, Diffusion of scientific credits and the ranking of scientists, Physical Review E, vol.4, issue.5, p.56103, 2009.
DOI : 10.1126/science.323.5922.1662

J. Rice, Mathematical statistics and data analysis, 2006.

M. Richardson, R. Agrawal, and P. Domingos, Trust Management for the Semantic Web, pp.351-368, 2003.
DOI : 10.1007/978-3-540-39718-2_23

G. Maria-evgenia, F. D. Rossi, M. Malliaros, and . Vazirgiannis, Spread it good, spread it fast: Identification of influential nodes in social networks, Proceedings of the 24th International Conference on World Wide Web. ACM. 2015, pp.101-102

G. Maria-evgenia, M. Rossi, and . Vazirgiannis, Exploring Network Centralities in Spreading Processes, International Symposium on Web AlGorithms (iSWAG, 2016.

G. Maria-evgenia, B. Rossi, and . Shi, Nikolaos Tziortziotis, Fragkiskos D. Malliaros, Christos Giatsidis, and Michalis Vazirgiannis MATI: An Efficient Algorithm for Influence Maximization in Social Networks, In: Manuscript, 2017.

G. Maria-evgenia, C. Rossi, P. Eichler, B. Berthomé, and . Nguyen, Private, Secure and Distributed Computation of k-cores, In: Manuscript

G. Sabidussi, The centrality index of a graph, Psychometrika, vol.24, issue.66, pp.581-603, 1966.
DOI : 10.4153/CMB-1964-034-7

A. Erdem-saríyüce, ?. Bu, G. Gra-gedik, K. Jacques-silva, . Wu et al., Streaming algorithms for k-core decomposition, In: Proceedings of the VLDB Endowment, vol.66, pp.433-444, 2013.

T. Schank, Algorithmic aspects of triangle-based network analysis, 2007.

B. Stephen and . Seidman, Network structure and minimum degree, In: Social networks, vol.53, pp.269-287, 1983.

E. Marvin and . Shaw, Group structure and the behavior of individuals in small groups, In: The Journal of Psychology, vol.381, pp.139-149, 1954.

A. Shimbel, Structural parameters of communication networks, The Bulletin of Mathematical Biophysics, vol.13, issue.4, pp.501-507, 1953.
DOI : 10.1007/BF02476438

K. Skianis, G. Maria-evgenia, F. D. Rossi, M. Malliaros, and . Vazirgiannis, SpreadViz: Analytics and Visualization of Spreading Processes in Social Networks, 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp.1324-1327
DOI : 10.1109/ICDMW.2016.0195

X. Song, B. L. Tseng, C. Lin, and M. Sun, Personalized recommendation driven by information flow, Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval , SIGIR '06, pp.509-516, 2006.
DOI : 10.1145/1148170.1148258

J. Stelling, S. Klamt, K. Bettenbrock, S. Schuster, and E. D. Gilles, Metabolic network structure determines key aspects of functionality and regulation, Nature, vol.292, issue.6912, p.190, 2002.
DOI : 10.1103/PhysRevE.64.036106

Y. Tang, X. Xiao, and Y. Shi, Influence maximization, Proceedings of the 2014 ACM SIGMOD international conference on Management of data, SIGMOD '14, pp.75-86, 2014.
DOI : 10.1145/2588555.2593670

B. Taskar, M. Wong, P. Abbeel, and D. Koller, Link prediction in relational data, NIPS '04: Advances in Neural Information Processing Systems, pp.659-666, 2004.

M. Trusov, R. E. Bucklin, and K. Pauwels, Effects of Word-of- Mouth Versus Traditional Marketing: Findings from an Internet Social Networking Site, In: Journal of Marketing, vol.735, pp.90-102, 2009.

J. Wang and J. Cheng, Truss decomposition in massive networks, Proceedings of the VLDB Endowment, pp.812-823, 2012.
DOI : 10.14778/2311906.2311909

URL : http://vldb.org/pvldb/vol5/p812_jiawang_vldb2012.pdf

Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, Epidemic spreading in real networks: an eigenvalue viewpoint, 22nd International Symposium on Reliable Distributed Systems, 2003. Proceedings., pp.25-34, 2003.
DOI : 10.1109/RELDIS.2003.1238052

S. Wasserman and K. Faust, Social network analysis: Methods and applications, 1994.
DOI : 10.1017/CBO9780511815478

J. Duncan, . Watts, H. Steven, and . Strogatz, Collective dynamics of 'small-world' networks, In: Nature, vol.3936684, pp.440-442, 1998.

D. Wen, L. Qin, Y. Zhang, X. Lin, J. Xu et al., I/O efficient Core Graph Decomposition at web scale, 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp.133-144
DOI : 10.1109/ICDE.2016.7498235

URL : http://arxiv.org/abs/1511.00367

X. Wu, X. Ying, K. Liu, and L. Chen, A Survey of Privacy-Preservation of Graphs and Social Networks, Managing and Mining Graph Data. Advances in Database Systems, pp.421-453, 2010.
DOI : 10.1007/978-1-4419-6045-0_14

A. Zeng and C. Zhang, Ranking spreaders by decomposing complex networks, Physics Letters A, vol.377, issue.14, pp.1031-1035, 2013.
DOI : 10.1016/j.physleta.2013.02.039

URL : http://doc.rero.ch/record/32545/files/zen_rsd.pdf

D. Zeng, H. Chen, R. Lusch, and S. Li, Social Media Analytics and Intelligence, IEEE Intelligent Systems, vol.25, issue.6, pp.13-16, 2010.
DOI : 10.1109/MIS.2010.151

X. Zhang, J. Zhu, Q. Wang, and H. Zhao, Identifying influential nodes in complex networks with community structure, Knowledge-Based Systems, vol.42, pp.74-84, 2013.
DOI : 10.1016/j.knosys.2013.01.017

Y. Zhang and S. Parthasarathy, Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks, 2012 IEEE 28th International Conference on Data Engineering, pp.1049-1060
DOI : 10.1109/ICDE.2012.35

Y. Zhang, J. Xu-yu, Y. Zhang, and L. Qin, A Fast Order-Based Approach for Core Maintenance, 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pp.337-348
DOI : 10.1109/ICDE.2017.93

URL : http://arxiv.org/pdf/1606.00200

Y. Zhou, L. Lü, and M. Li, Quantifying the influence of scientists and their publications: distinguishing between prestige and popularity, New Journal of Physics, vol.14, issue.3, p.33033, 2012.
DOI : 10.1088/1367-2630/14/3/033033