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SUMMARY

Effet Tunnel Hall Anormal à l’interface de semi-conducteurs contrôlé par

les interactions d’échange et spin-orbite. Etude dans le cadre d’une approche k.p

étendue

Nous avons étudié par des méthodes numériques et en théorie k.p avancée les pro-

priétés tunnel d’électrons et de trous dans des systèmes modèles et hétérostructures

composés de semi-conducteurs impliquant des interactions spin-orbite de volume. Nous

démontrons que le couplage entre les interactions spin-orbite et d’échange à l’interface

de jonctions tunnel résulte en un fort contraste de transmission de porteurs selon le signe

de la composante de leur vecteur d’onde dans le plan de la jonction. Cet effet conduit

à un effet tunnel anormal d’interface que nous appelons "Effet Hall Tunnel Anormal"

(ATHE).

Dans un modèle 2 bandes (2×2) polarisé en spin par interaction d’échange, l’asymétrie

du coefficient de transmission (A) pour des angles d’incidence respectivement positifs

(+k‖) et négatifs (-k‖) est maximale à des points particuliers de la zone de Brillouin cor-

respondant à une transmission strictement nulle pour un certain vecteur d’onde incident

(A=100%). Plus généralement, nous démontrons le caractère universel de l’asymétrie A

vis-à-vis des paramètres d’énergie cinétique réduite et du paramètre d’échange, A suiv-

ant une loi d’échelle universelle indépendant de l’interaction spin-orbite et des carac-

téristiques des matériaux. De façon similaire, des processus tunnel non-conventionnels

se manifestant sur des isolants topologiques ont été prédits par d’autres auteurs. Alors

que l’ensemble de ces effets Hall anormaux sont liés aux interactions spin-orbite, les

effets tunnel anormaux diffèrent des effets Hall tunnel, des effets Hall et des effets Hall

de spin par la forte amplitude prédite ainsi que par des phénomènes de chiralité. Ces

propriétés possèdent un lien non-trivial avec la symétrie du système. L’ensemble de ces

résultats démontre l’existence d’une nouvelle classe d’effets tunnel qui devaient être

étudiés expérimentalement dans un futur proche.

En ce qui concerne la bande de valence, nous démontrons, en utilisant un Hamil-

tonien 14×14 prolongeant un modèle 2×2, que le calcul décrivant l’ATHE repose sur

un traitement subtil des états dits "spurious" (états non-physiques) et nous donnons

quelques éléments d’amélioration et de compréhension. Dans ce mémoire de thèse,

nous développons deux méthodes numériques pour résoudre le problème des états spu-

rious en développant en parallèle des méthodes k.p respectivement à 14 bandes et 30

bandes afin de décrire des matériaux semi-conducteurs à gap indirect. Les calculs menés
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dans la bande de valence d’hétérostructures semi-conductrices incluant interfaces et

barrières tunnel (approches 6×6 et 14×14) sans centre de symétrie d’inversion mettent

en évidence des propriétés d’asymétrie équivalente à celles obtenues dans la bande de

conduction. De tels effets sont interprétés, dans le cadre de calculs de perturbation en

transport basés sur des techniques de fonctions de Green, par des effets chiraux orbitaux

lors du branchement tunnel des fonctions évanescentes dans la barrière.
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TABLE OF ACRONYMS

AHE: anomalous Hall effect
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CHAPTER I

INTRODUCTION

The discovery of giant magnetoresistance in the end of the 80’s at Orsay and Jülich by

A. Fert [1] and P. Grünberg [2], who were awarded the 2007 Nobel prize, has kicked-

off the field of spintronics. Spintronics is a science that merges both charge and spin

degrees of freedom as well as their associated charge and spin currents in metallic sys-

tems, magnetic tunnel junctions [3], as well as in semiconducting heterostructures [4],

to control the resistance of metallic multilayered devices using the so-called giant mag-

netoresistance (GMR) effects or magnetic tunnel junctions via the tunneling magne-

toresistance effects. This is made possible via two different kinds of effects acting

on the native spin currents, effects originating either from the bulk properties or from

spin-dependent transmission at interfaces. In the first case, the generation of spin accu-

mulation with current perpendicular-to-plane (CPP) (e.g. CPP geometry) is responsible

for the CPP-GMR effect in metallic multilayers whereas the diffusion at each inter-

face of the spin currents generated in the ferromagnetic materials is responsible for the

current-in-plane GMR (CIP-GMR). More recently, the field of spinorbitronics in met-

als, which uses the electronic spin-orbit coupling (SOC), has emerged as a new route to

create spin currents in the transverse direction of the current flow. This is made possible

via the so-called intrinsic spin Hall effect (SHE) of heavy metals [5, 6] as well as the

extrinsic SHE of metallic alloys [7, 8, 9]. Spin Hall effect borrows its concept from

the well-established anomalous Hall effect (AHE) where the relativistic SOC promotes

an asymmetric deflection of the electronic spin current depending on its spin-direction.

Intrinsic SHE is at the base of magnetization commutation via spin-orbit torque (SOT)

and spin-transfer torque (STT) operations in the ferromagnetic resonance regime (STT-

FMR). Intrinsic SHE is also involved in the mechanism of domain-walls moving via

SOT. However, from fundamental point of view, the exact anatomy of SOT between

Rashba and Dzyaloshinskii-Moriya interactions at spin-orbit active interfaces, in par-

ticular involving the 5d heavy SOC material of low resistivity (e.g. Pt), seems to be of

a high importance.

Since more than one decade (beginning 2000’s), spintronics and spinorbitronics ef-

fects in semiconductors and related heterostructures and devices have firstly concerned

the investigations of the intrinsic SHE in bulk materials (e.g. GaAs), the generation of

(transverse) spin currents free of magnetization and magnetic field via related effects.

The intense research led on the ferromagnetic semiconductor compounds (GaMnAs,

GeMn) since the early 90’s [4], and their integration in heterostructures and group IV
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and III-V heterostructures, have boosted the development of new kind of spinorbitron-

ics effects like tunneling anisotropic magnetoresistance (TAMR), Coulomb blockade

TAMR, and spin-orbit assisted spin-transfer torques in III-V based magnetic tunneling

devices. This was made possible due to the introduction of the natural core SOC of

holes in the valence bands of the semiconducting host matrix which makes these fer-

romagnetic materials as state of the art templates for the investigation of a new class

of physical effects. Another class of spinorbitronic effects naturally arises in semicon-

ductors and their heterostructures presenting a lack of inversion symmetry or symme-

try breaking, like in bulk group III-V, due to the particular Td symmetry group (like

GaAs). The bulk structural inversion asymmetry leads to the occurrence of supple-

mentary Hamiltonian terms (e.g. Dresselhaus interaction) acting directly on the spin

of carriers though the spin-orbit interactions [10]. The overall effective Hamiltonian

models show that they are responsible for several important effects, that are spin-flip

relaxation mechanism in bulk (D’yakonov-Perel’) and spin filtering along the [001]

crystallographic direction, and spin-dephasing along the [110] crystallographic direc-

tion for spin-polarized tunneling carriers. Significant investigations and contributions

in this field have been performed since the beginning of the 2000’s at IOFFE institute

in Saint-Petersburg [11] and at the Ecole Polytechnique with the PhD thesis of Nguỹên

Thi. Lâm Hoài [12]. In detail, the spin filtering and spin-dephasing physical phenom-

ena are related to the effect caused by the Dresselhaus interactions in tunneling barriers

constituting a finite volume of interaction on both the spin polarization of carriers and

their probability of transmission associated to this interaction. Like evidenced in a cer-

tain number of recent papers [11, 13, 14], this effect appears to be related to different

effective masses in the tunneling barriers depending on the in-plane wavevector of the

spin-polarized carriers within their characteristic Fermi surfaces.

However, some of the most exciting prospects in spinorbitronics also reside in the

area of spin-orbit interaction (SOI) driven phenomena, which can manifest prominently

at surfaces and interfaces in topological materials (topological insulators) and Rashba

systems [15, 16]. This originates from the crystallographic symmetry breaking at in-

terfaces, and generally responsible for the occurrence of a particular Rashba-split elec-

tronic structure appearing in both metallic and semiconductor structures. In the case of

III-V heterostructures, this symmetry breaking is responsible for the reduction of the

Td symmetry group to a particular C2v symmetry group leading to a number of exotic

effects like optical Pockels effect, reflectance anisotropy (in-plane [110] vs. in-plane

[11̄0]), linear gain anisotropy in semiconductor lasers and VECSELs as well as a class

of spin filtering effects in [110]-grown structures.

In more detail, the electronic energy bands are split by SOI via the Rashba SOC

which is odd and generally linear in the wavevector, k. The essential feature of any
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SOC is that electrons moving in an electric field experience, even in the absence of

an external magnetic field, an effective magnetic field in their frame of motion, called

SO field, which couples to the electron magnetic moment. The odd parity of this cou-

pling in the momentum enables a wide variety of phenomena (SHE, Inverse Edelstein

effect, SOT) and the exploration of these new asymmetry effects is now at the heart of

spinorbitronics. Charge carriers, electrons or holes, with asymmetric SOC terms then

experience a momentum-dependent effective magnetic field, a spin-dependent correc-

tion to their velocity, as well as a geometric dephasing resulting from the SOC. Benefit

can be taken of these features for the realization of concept devices in which the spin

polarization is generated independently of the charge current or, inversely, absorbed

in ferromagnetic layers for spin-torque operation. Among other research directions in

the field of spinorbitronics, one can cite the so-called spin-galvanic effects which arises

from the locking between the electron momentum and the angular momentum. It has for

effect to generate a lateral charge current from spin-accumulation in a Rashba-interface

gas. This concept of spin-to-charge conversion was originally developed in the context

of optical manipulation of spins in semiconductors and observed in quantum wells or

more recently in structures involving different topological insulators (TI) [17].

In the present work, we focused on a special class of physical phenomena dealing

with spin-polarized-carriers deflection and generation of lateral charge currents pro-

moted by pure exchange and spin-orbit-split interfaces involving evanescent states, and

that we call anomalous (topological) tunnel Hall effects (ATHE) [18]. This effect arises

at interfaces and (tunnel) junctions and manifests itself by a deviation of the charge

(and also spin currents) resulting from the particular matching conditions of the spin-

polarized spin-orbit-split electronic wave functions (pure contact effect). This effect, of

significant size, which can even reach 100% in certain cases, also manifests itself by

an asymmetry of transmission at interfaces for the carriers depending on their incident

in-plane wavevectors. This has been the focus of similar recent studies [16] in III-V

structures involving both interfacial Rashba and Dresselhaus contributions. Nonethe-

less, one important feature of our study is the numerical (k.p theory for spin-orbit and

exchange-split transport) as well as analytical (k.p theory for matching, perturbative

treatment through Green’s function techniques) demonstration of an "intrinsic skew

tunneling" effect derived from the interplay of pure exchange and Dresselhaus interac-

tions without involving Rashba terms [19]. This departs from the "skew tunneling" with

Dresselhaus field from the non-asymmetric behavior of the density of states (DOS) vs.

the in-plane carrier wavevectors which makes the asymmetric "intrinsic" to the match-

ing. We will prove, by perturbation techniques, that this asymmetry, occurring in both

semiconductor conduction (CB) and valence band (VB), should be related to a pure chi-

rality effect due to the mixing of both propagative (parallel wavevector) and evanescent
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(tunneling currents) states. This leads to a pure 0-dimensional surface tunneling effect.

Beyond the analytical developments presented in this manuscript for describing the

particular wave function matching at each interface, we have primarily chosen to de-

velop numerical calculations using the robust k.p method for tunneling and adapted to

any type of multilayers. Beyond the 2 × 2 CB and 6 × 6 VB models describing for

instance the GaMnAs band structure and heterostructures [20], the simultaneous treat-

ment of electrons and holes needs a 8-band k.p transport code whereas, the inclusion of

odd parity symmetry effects requires at least a 14-band k.p treatment (including the Γ5C

upper CB in Koster’s or Fishman’s notations [21, 22]). However, the difficulty to treat

a 14-band (as well as 8-band) spin-transport model is to get rid of some well-known

unphysical "spurious" electronic states making the tunneling calculation unfeasible due

to tunneling shortcuts within the first Brillouin zone (BZ). The adaptation of a derived

14×14 Hamiltonian including "healing terms" makes possible to treat spin transport

over the whole structure with a satisfactory accuracy, at least in the neighborhood of

the BZ center (Γ point) as required. The implementation of an effective 18-band tun-

neling code, involving supplementary electronic bands (anti-spurious or ghost bands),

improves the fidelity further away from the Γ point. This makes a playground for future

similar investigations towards a full 30-band treatment describing direct and indirect

gaps materials belonging to group IV semiconductors and heterostructures.

One of the real peculiarity and difficulty is to treat correctly the tunneling elas-

tic transport in heterostructures occurring at a constant energy, and not at a constant

wavevector k. This generally involves non-orthogonal states and large k- states away

from the first Brillouin zone (BZ), states that can admit a spurious or unphysical char-

acter being away from the validity zone of the k.p treatment. This makes the tunneling

problem much more complex than the electronic band structure calculations as well as

band-to-band optical-transition estimations.

This work provides one of the first advanced implementation of numerical k.p tun-

neling transport codes (14- and 30-band) and then one of the first playground platform

devoted to the investigation of spin-orbit field effects in carrier transport in a new class

of spintronics interfaces.
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CHAPTER II

SOME EXAMPLES OF SPINORBITRONICS

FUNCTIONALITIES WITH SEMICONDUCTORS

BELONGING TO THE TD SYMMETRY GROUP

In this chapter, as an introduction, we will consider the case of electron spin-polarized

transport in tunnel barriers and devices made of semiconductors belonging to the Td

symmetry group. The phenomenon of electron tunneling has been known since the ad-

vent of quantum mechanics like described in pioneering papers by Bardeen and Harri-

son in the beginning in the 60’s [23, 24] and afterward by Slonczewski [25] for the case

of spin-polarized transport. Electron tunneling continues to enrich our understanding

of many fields of physics, as well as spin-dependent tunneling. In that frame, one of the

major issues of general interest is the possibility of spin injection into semiconductors

aside of optical pumping. A natural way to achieve spin orientation in experiments is

the injection of spin-polarized carriers from magnetic materials through a tunnel junc-

tion (3d ferromagnetic materials) or from ferromagnetic semiconductors like GaMnAs

with a III-V host [26, 27]. However, only in the last decade, it was realized that the

process of electron tunneling in semiconductors could be spin and orbital dependent

due to the SOI. It was shown that the Rashba SOC at interfaces as well as the Dressel-

haus coupling in the bulk of the barrier make the barrier tunnel transmission dependent

on the spin orientation and on the wavevector of the incident electrons [11, 28, 29, 30].

The first important problem and issue which have been raised since the beginning of

the 2000’s is the one of electron tunneling through thin III-V barriers, seat of Dressel-

haus interactions and leading to spin filtering effects. In the case of Rashba and Dres-

selhaus coupling in [001]-grown barriers between bulk semiconductors, the spin po-

larization of transmitted electrons linearly scales with the lateral component k‖ of the

electron wavevector and is of opposite sign for the wavevectors k‖ and −k‖ [28, 11].

A spin polarization efficiency, P , was then introduced to determine the difference of

transmission coefficients (T↑ and T↓) between up- (↑) and down- (↓) spin states and

then the overall efficiency of the process according to the following relationship:

P =
T↑ − T↓
T↑ + T↓

. (1)

The spin polarization efficiency can reach a fraction of unity (about twenty percents)

for very large SOC (e.g. GaSb), with a reasonable width of the barriers to keep a sizable
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transmission. This effect, which is referred to as spin filtering effect, leads to a signif-

icant spin polarization of the carriers for an incoming non-zero parallel flux (in-plane

current) leading to preferential k‖ of a given sign. On the other hand, the tunneling

of electrons through a [110]-oriented single barrier in a heterostructure made of Td

semiconductor compounds, with combined Dresselhaus SOC in the barrier and Rashba

SOC at the barrier interfaces, has recently been considered [15]. These couplings, aris-

ing concurrently, do not only generate electron spin polarization after tunneling but also

lead to spin dephasing and spin rotation along the [110] direction.

The basic theory of the spin filtering effect through a [001]-grown barrier is in-

troduced in Sec. 2.1.2 following two distinct point of views [11, 31]. Then, in Sec.

2.1.3 we consider the effect in extended ferromagnetic-based structures which include

electrodes made of ferromagnetic semiconductors. Finally, the spin injection via [110]-

grown semiconductor barriers will be considered in Sec. 2.2 as a state of the art result.

2.1 Spin filtering effect through [001]-grown barriers

2.1.1 Dresselhaus interactions in Td symmetry group materials

Semiconductor crystals of diamond and zinc blende structures are constructed by two

face-centered cubic (fcc) sublattices (A) and (B), shifted by one forth of the cube main

diagonal. The atoms are placed at the nodes of each sublattice. If we take the Ox, Oy,

and Oz axes parallel to the cubic crystallographic axes, respectively [100], [010], and

[001], an atom of sublattice (A) at the point R′j = Rj + a where a = a [1/4, 1/4, 1/4]

has four nearest neighbors set at the point Rj + an, (n ∈ {0, 1, 2, 3 }) where a0 = 0,

a1 = a [1/2, 1/2, 0] , a2 = a [1/2, 0, 1/2] , a3 = a [0, 1/2, 1/2] with a being the length

of the unit cell.

If the two atoms in the two sublattices are identical, we obtain the diamond structure.

An inversion center exists in the middle of the segment joining these two atoms. These

semiconductors belong to the Oh group, e.g. silicon, gemanium, and carbon (see Fig. 1

a).

If the two atoms in the two sublattices are different, we obtain the zinc blende struc-

ture. These semiconductors, e.g. GaAs and GaSb, belong to the Td symmetry group,

where the inversion center symmetry no longer exists (see Fig. 1 b).

The Bravais lattice of this structure is the body-centered cubic lattice (bcc). The first

Brillouin zones of the Oh and Td groups are described in Fig. 1 c; characteric points

are:

15



(a) (b)

(c)

Figure 1: (a): Diamond crystal; (b) zinc blende structure; (c) common Brillouin zone

of diamond and zinc blende structure.
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Γ (2π/a) (0, 0, 0) K ′ (2π/a)(1, 1/4,−1/4)

X (2π/a) (1, 0, 0) U (2π/a)(1, 1/4, 1/4)

L (2π/a)(1/2, 1/2, 1/2) W (2π/a)(1, 1/2, 0)

K (2π/a)(3/4, 3/4, 0)

Group theory shows that for the Oh group the lattice potential displays a perfect

inversion symmetry, whereas the lack of inversion center leads to a small potential

asymmetry in the Td group, Vd = Vsym + Vantisym, where Vantisym can be considered

as a perturbation [22]. When the SOI is included, the lack of inversion center can

create an effective internal magnetic field, felt by electrons in the CB and referred to as

Dresselhaus terms ĤD [10]

ĤD = γ
[
σxkx

(
k2
y − k2

z

)
+ σyky

(
k2
z − k2

x

)
+ σzkz

(
k2
x − k2

y

)]
, (2)

where σ is Pauli’s operator and γ represents the strength of the SOI which will be

largely discussed in this manuscript. This is the so-called D’yakonov-Perel’ Hamil-

tonian known to lead to a spin relaxation mechanism of the conduction electrons [32].

When the [001] axis is the quantization direction, the two terms σxkx
(
k2
y − k2

z

)
and

σyky (k2
z − k2

x) are called in-plane Dresselhaus components, and the term σzkz
(
k2
x − k2

y

)
is the out-of-plane Dresselhaus component. In almost all previous work concerning the

spin filtering effect, the Dresselhaus Hamiltonian in Eq. 2 is simplified, getting rid of

the out-of plane component [11]:

ĤD = γ [σxkx − σyky]
∂2

∂z2
, (3)

for a perfect two-dimensional electron gas (2D electron gas) or at the limit of a grazing

incidence. Up to now, this reduced Dresselhaus form has been used to study the spin-

dependent tunneling [13, 14, 15, 16]. Note that, in Eq. 3, the out-of-plane Dresselhaus

component has been totally neglected. In Chapter 5, we will show that the out-of plane

Dresselhaus component plays an important role in the ATHE and is connected to a new

type of chiral phenomena.

The orientations of ↑- and ↓-spins for various directions of the in-plane electron

wavevectors k‖ are shown in Fig. 2. If k‖ is directed along a cubic crystal axis ([100]

or [010]) then the spins are parallel (or antiparallel) to k‖, while the spin directions are

perpendicular to k‖ if the in-plane wavevector is directed along the [11̄0] or [110] axes.

2.1.2 Spin filtering effect without ferromagnetism

In this section, we consider the case of spin-dependent tunneling transmission in pres-

ence of a spin-orbit Dresselhaus field (Fig. 2 ) localized within a "thin" tunnel barrier,

(Fig. 3).
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Figure 2: Spin orientation of ↑- and ↓- spins versus the in-plane wavevector [11].

The transmission of electrons with an initial wavevector k = (k‖, kz) through a

rectangular barrier grown along the z‖[001] direction is studied. We assume that the

inversion symmetry is broken only inside the barrier.

Figure 3: Transmission of electron though a rectangular barrier with the wavevector

k = (k‖, kz), barrier height V , barrier thickness a; m1, m2 electron effective mass

outside and inside the barrier [11].

The Hamiltonian ĤD given in Eq. 3 is diagonalized by spinors

χ± =
1√
2

(
1

∓eiϕ

)
,

where k = (kx cosϕ, ky sinϕ, kz). This introduces a correction to the effective mass of

↑- and ↓- spins in the barrier according to

m± = m2(1±
2γk‖m2

~2
)−1,

where m2 is the electron effective mass in the barrier with no SOI included.

The energy and in-plane wavevector are conserved upon electron tunneling. The

wave functions of electrons are,

Ψ±(r) = u±(z) exp(ik‖ρ),
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where k‖ = kx+ky, and ρ = (x,y). The functions u±(z) are solutions of the Schrödinger

equations in each layer: left electrode, barrier, and right electrode according to:

u(I)
± (z) = exp(ikzz) + r± exp(ikzz),

u(II)
± (z) = A± exp(−q±z) +B± exp(q±z),

u(III)
± (z) = t± exp(ikzz),

where q± are wavevectors in the barrier:

q± =

√
2m±V

~2
− k2

z

m±
m1

− k2
‖

(
m±
m1

− 1

)
,

q± =

√(
2m2V

~2
− k2

z

m2

m1

)
(1± 2γkqm2

~2
)−1 − k2

‖

(
m2

m1

(1± 2γkqm2

~2
)−1 − 1

)
.

In the limit where
(
2γk‖m2/~2

)
� 1, we get:

q± ≈

√(
2m2V

~2
− k2

z

m2

m1

)
(1± 2γkqm2

~2
)−1 − k2

‖

(
m2

m1

− 1

)
(1± 2γkqm2

~2
)−1,

q± ≈

√(
2m2V

~2
− k2

z

m2

m1

)
− k2

‖

(
m2

m1

− 1

)
(1± 2γkqm2

~2
)−1/2 = q0(1± 2γkqm2

~2
)−1/2,

where q0 =

√(
2m2V
~2 − k2

z
m2

m1

)
− k2

‖

(
m2

m1
− 1
)

is the wavevector in the barrier when

the Dresselhaus term is neglected.

To anticipate discussions on the matching conditions needed for the description of

interface crossing, the BenDaniel Duke (BDD) [33] matching conditions are used here

in the case of the CB: u and (1/m) (∂u/∂z) are continuous at the interface. Note that the

small spin-dependent renormalization of the effective mass induced by the Dresselhaus

Hamiltonian can be neglected in the boundary conditions, since it produces only a small

correction to the pre-exponential factor in the final expressions, thus leading to

t± = −4i
m2

m1

kzq±
(q± − ikzm2/m1)

exp(−q±a− ikza) (4)

≈ −4i
m2

m1

kzq0

(q0 − ikzm2/m1)
exp(−q0a− ikza) exp

(
±γkqm2

~2

)
≈ t0 exp

(
±γkqm2

~2

)
,

where

t0 = −4i
m2

m1

kzq0

(q0 − ikzm2/m1)2 exp(−q0a− ikza),

is the transmission amplitude when the SOI is neglected in the barrier. Equation. 4

presents the difference of transmission between ↑- and ↓- spin electrons. The spin
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polarization defined in Eq. 1 is then:

P =
|t+|2 − |t−|2

|t+|2 + |t−|2
= tanh(2γ

m2kq
~2

aq0). (5)

It clearly depends on the barrier thickness. It is plotted for some Td materials in Fig.

4 (upper) and compared to the numerical calculations performed for GaAs within a

2-band effective model (Eq. 2), and within 14-band k.p (Fig. 4 lower).

Figure 4: (Upper) Spin polarization vs. aq0 for GaAs with m∗ = 0.067 m0, and

γ = 24 eVÅ3 (red line), and GaSb with m∗ = 0.041 m0, and γ = 187 eVÅ3(black line).

(Lower) Spin polarization vs. barrier thickness within a 2-band effective model (black

line), m∗ = 0.067 m0, and γ = 24 eVÅ3, and 14 band k.p model with parameters close

the parameters given in Ref [34], barrier height 1 eV, k‖ = 0.02 Å−1, and E =81 meV.

In an other point of view [31], the authors considered that Dresselhaus terms do

not renomalize the effective masses of ↑- and ↓- spinors in the barrier but alter their

wavevectors. In the limit of a small in-plane wavevector they recovered Eq. 5.

From these results, it is possible to say that the in-plane Dresselhaus components

play a very important role for spin filtering, whereas the out-of-plane component may

be neglected in this particular case; in contrast, latter one will make the specificity of

the tunnel Hall effect (transmission asymmetry of opposite in-plane wavevectors) via a

new type of chiral phenomena, that we will discuss in Chapter 5.
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2.1.3 Spin filtering effect in zinc blende structure with ferromagnetic electrodes

(present work)

One of the most important aspects in the present work is the study of extended spin-

tronics phenomena in electrons and holes tunneling (computed by a single tunneling

k.p code - this work). In the related structures, two different physical effects may be

considered: the spin filtering effect with spin injection and potentially new spin orbital

chiral transport via tunneling (due to the interplay of propagative and evanescent wave

functions). In the simplest case, all the calculations are done with identical materials

in the layers, so that the Dresselhaus constant γ remains unchanged at the interfaces.

Therefore, the continuity of the current wave reduces to the continuity of derivative of

the wave function.

2.1.3.1 Exchange interactions

We now introduce important notions of ferromagnetism that we will need throughout

the manuscript. Let us consider as an example the case of ferromagnetic semiconductors

made of zinc blende III-V materials.

The discovery of ferromagnetism in zinc blende III-V [35, 36] and II-VI [37, 38]

Mn-based compounds allows one to explore the physics of previously unavailable com-

binations of quantum structures and ferromagnetism in semiconductors. Let us consider

zinc blende semiconductor compounds in which the cations are partly substituted with

magnetic ions, such as Mn. The Mn ions provide localized 5/2 spins and, in the case

of III-V semiconductors, act as acceptors. These Mn acceptors compensate the deep

antisite donors commonly present in GaAs grown by low-temperature molecular beam

epitaxy, and produce a p-type conduction with metallic resistance for the Mn concen-

tration x in the range 0.04 < x < 0.06 [39, 40, 41, 42].

Figure 5: A schematic band structure for the Stoner model of ferromagnetism. An

exchange interaction has split the energy of states with different spins, and states near

the Fermi level are spin-polarized.
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In the picture given by Dietl [26], the exchange interaction between hole and p− d
hybridization is described in a k.p model as:

Ĥexc =
βs.M

gµB
= 6BGs.m (6)

where β is the average exchange integral, s is the electron spin, M is a localized spin,

g is the Landé factor for hole, and µB is the Borh magneton, 6BG = β|M|
gµB

represents

the average interaction energy among holes, m is a unit vector along the exchange

direction. For the sake of simplicity, we will assume that Eq. 6 can be applied to the

exchange interaction between electron and localized magnetic moments, and the Landé

factor for electron instead of the factor for hole.

2.1.3.2 In-plane incident wavevector parallel to the magnetization direction (
−→
k‖ ‖−→

M )

We consider here the spin filtering effect with magnetic electrodes in both cases: either

for parallel or antiparallel magnetic configurations. The magnetization is parallel to the

in-plane wavevector.

Figure 6: Schema of transmission process through a tunnel junction grown along z
direction, PA magnetizations M along x. In-plane wavevector k‖ = (ξ, 0) . Carriers

with +ξ in-plane wavevector component are more easily transmitted than those carrying

-ξ.

Parallel (PA) magnetic configuration (↑↑) The exchange potential is modeled via

Dietl’s picture [26] Ĥexc = B.S = wm.σ, where w is the exchange constant. The x

component of the exchange potential is Ĥexc = wσx. The electron possesses the initial

in-plane wavevector k‖ = (ξ, 0) and an energy ε smaller than the barrier height. The

electron Hamiltonian writes ( see Fig. 6)
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Ĥξ =

{
γc
(
ξ2 + k2

)
+ wσx + γξk2σx if z < 0 or z > a,

γc
(
ξ2 + k2

)
+ γξk2σx + V if 0 < z < a,

(7)

where γc is related to the effective electron mass in the crystal. The SOI has the simple

form given in Eq. 3, without the out-of-plane component.

We consider the limiting case of small SOI, γξk2 � w, so that it can be neglected

in the magnetic contacts.

In the electrodes: The upper energy level is E = γc
(
ξ2 + k2

)
+ w, with the respec-

tive eigenvector
(

1
1

)
= |↑〉 ; whereas the lower one is E = γc

(
ξ2 + k̃2

)
− w, with the

respective eigenvector
(

1
−1

)
= |↓〉 .

In the barrier: The upper energy is E = γc
(
ξ2 + q2

)
+γξq2+V , with the eigenvector(

1
1

)
= |↑〉; whereas the lower one is E = γc

(
ξ2 + q̃2

)
− γξq̃2 + V , with the eigenvector(

1
−1

)
= |↓〉 .

We assume that the electrons come with ↓-spin and with energies lying within the

exchange step, −w < E < w. It means that there is one propagative wave k̃ and one

evanescent wave k. The wave functions then write:

Ψ =


|↓〉 eik̃z + A′1 |↓〉 e−ik̃z +B′1 |↑〉 e−ikz if z < 0,

A2 |↓〉 eiq̃z + A′2 |↓〉 e−iq̃z +B2 |↑〉 eiqz +B′2 |↑〉 e−iqz if 0 < z < a,

A3 |↓〉 eik̃z +B3 |↑〉 eikz if z > a.

(8)

The wave function and its derivative are continuous at the interfaces. According to

the BDD matching conditions for the ↓ spin states, we obtain:
|↓〉+ A′1 |↓〉 = A2 |↓〉+ A′2 |↓〉 ,

k̃ |↓〉 − k̃A′1 |↓〉 = q̃A2 |↓〉 − q̃A′2 |↓〉 ,
A2 |↓〉 eiq̃a + A′2 |↓〉 e−iq̃a = A3 |↓〉 eik̃a,

q̃A2 |↓〉 eiq̃a − q̃A′2 |↓〉 e−iq̃a = k̃A3 |↓〉 eik̃a.

(9)

Solving Eq. 9, we find:

A3 =
4q̃k̃e−iq̃a

(k̃ − q̃)2 − (k̃ + q̃)2e−2iq̃a
,

where the wavevectors in the barrier are purely imaginary, q̃ = iQ̃. Here, we have

assumed that (k̃ − Q̃)2 � (k̃ + Q̃)2e2Q̃a. The ↑-spin wavevectors are pure imaginary

inside and outside the barrier. Therefore, they do not contribute to the transmission

coefficient. The total transmission coefficient is equal to the ↓-spin one:

T+ = |A3|2 ≈
∣∣∣∣∣4Q̃k̃e−Q̃aQ̃− ik̃

∣∣∣∣∣
2

=
16Q̃2k̃2e−2Q̃a

Q̃2 + k̃2
. (10)

When the in-plane wavevector changes its sign, the spinors in barrier are exchanged

so that the transmission coefficient becomes:
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T− ≈
∣∣∣∣∣4Qk̃e−QaQ− ik̃

∣∣∣∣∣
2

=
16Q2k̃2e−2Qa

Q2 + k̃2
, (11)

where q = iQ.

The asymmetry of the transmission coefficients A, for opposite in-plane wavevec-

tors, k‖ and -k‖ is:

A =
T+ − T−
T+ + T−

≈ tanh aδQ, (12)

where δQ = Q̃ − Q. The formula yielding the spin filtering efficiency derived in

previous work is recovered in Eq. 12. The asymmetry of the transmission coefficients

in single-spin channel with opposite in-plane wavevectors parallel to the magnetization

direction should be considered as a spin filtering effect.

Figure 7 a shows the different transmission coefficients for opposite in-plane wavevec-

tors calculated by Eqs. 10, 11 and using our 2-band k.p effective Hamiltonian transport

code (present work), which are in good agreement. The respective asymmetry trans-

mission for pairs of opposite in-plane wavevectors, i.e., the spin filtering efficiency, is

displayed in Fig. 7 b. The transmission coefficient dependence on the in-plane wavevec-

tor is plotted in Fig. 7 c. We can see that the spin filtering effect occurs along kx and

not along ky. The results discussed in the next part will explain why the effect vanishes

along ky in the PA magnetic configuration along the x direction.

The tunneling of spin polarized carriers, as well as the "tunneling spin-galvanic"

effect, through a single barrier with no inversion symmetry for pairs of opposite in-

plane wavevectors is expected to generate an in plane electric current j‖ at the scale

of the electron mean free path [13]. These authors found j‖ ∼ 10−7 A/cm for a GaAs

barrier in structures with barrier transparency |t0|2 ∼ 10−5 and taking a momentum

scattering time τ p ∼ 10−12 s.

Anti-parallel (AP) magnetic configuration (↑↓) The electron Hamiltonian is (see

Fig. 8):

Ĥξ =


γc
(
ξ2 + k2

)
+ wσx + γξk2σx if z < 0

γc
(
ξ2 + k2

)
+ γξk2σx + V if 0 < z < a

γc
(
ξ2 + k2

)
− wσx + γξk2σx if z > a

(13)

This is similar to the PA magnetic configuration except that the spinors in the right

electrode are exchanged.

Ψ =


|↓〉 eik̃z + A′1 |↓〉 e−ik̃z +B′1 |↑〉 e−ikz if z < 0

A2 |↓〉 eiq̃z + A′2 |↓〉 e−iq̃z +B2 |↑〉 eiqz +B′2 |↑〉 e−iqz if 0 < z < a

A3 |↑〉 eik̃z +B3 |↓〉 eikz if z > a

(14)
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Figure 7: (a) Transmission coeffcient vs. incident energy through a single GaAs barrier,

barrier thickness 3 nm, barrier height 1 eV, calculated by our numerical 2-band k.p

code (present work) (solid lines) and from Eqs. 10, 11 (dotted lines) wavevectors kx =
−0.02 Å−1 (blue lines), and kx = 0.02 Å−1 (black lines); (b) Respective asymmetry

transmission coefficient of opposite in-plane wavevectors calculated by our numerical

2-band k.p code (solid line) and from Eq. 12 (dotted line); (c) Transmission coefficient

dependence on the in-plane wavevector, the displacement ∆k from the center of the

spherical transmission coefficient along kx corresponds to the spin filtering effect along

kx. 25



Figure 8: Schema of transmission process through a tunnel junction grown along z
direction, AP magnetizations M and -M along x, in-plane wavevector k‖ = (ξ, 0) .
Carriers with +ξ and -ξ in-plane wavevector components have equal transmission co-

efficients.

Note that an electron possessing an energy within the exchange step, −w < E < w,

cannot tunnel from the pure ↓- (or ↑-) spin to the pure ↑- (or ↓-) spin state. Only elec-

trons with energies overcoming the exchange step can be transmitted from one side

to the other, i.e., with E > w, with an non-zero transmission coefficient. Using the

continuity of the wave function and of its derivative at the barrier interfaces, the to-

tal transmission coefficient (sum of the transmission coefficients of ↑- and ↓-incoming

spins) is found to be:

T =
16Q̃4e−2Q̃a

(k̃2 + Q̃2)(k2 + Q̃2)
+

16Q4e−2Qa

(k̃2 +Q2)(k2 +Q2)
(15)

When the sign of the in-plane wavevector is changed ξ −→ −ξ, the spins in the barrier

are also exchanged, i.e., Q ←→ Q̃. Eventually, Eq. 15 does not change when the sign

of the in-plane wavevector is changed. The spin filtering effect does not exist in this

configuration.

2.1.3.3 In-plane wavevector perpendicular to magnetization (
−→
k ⊥ −→M )

The exchange potential is still along the x direction and the in-plane wavevector is taken

parallel to the y direction, k‖ = (ξ, 0) .

Parallel magnetic configuration (↑↑) The Hamiltonian in the layers is now, (see Fig.

9):

Ĥξ =

{
γc
(
ξ2 + k2

)
+ wσx + γξk2σy if z < 0 or z > a

γc
(
ξ2 + k2

)
+ γξk2σy + V if 0 < z < a
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Figure 9: Schema of transmission process through a tunnel junction grown along z
direction, PA magnetization M along x. In-plane wavevecctor k‖ = (0, ξ) . Carriers

with +ξ and −ξ in-plane wavevector components have equal transmission coefficients.

In this case, we obtain the relation Ĥ−ξ = Ĥ∗+ξ. This relation leads to:

t (−ξ) = t∗ (+ξ) , (16)

where t(±ξ) is the transmission amplitude for an electron with the in-plane wavevectors

±ξ. Therefore,

|t(−ξ)|2 = |t∗(+ξ)|2 , (17)

or T− = T+.

Equation 17 shows that the transmission coefficient is independent of the sign of in-

plane wavevector so that the spin filtering effect naturally disappears like proven by

the symmetry argument developed hereafter. This means that the spin filtering effect

disappears together with the generation of the in-plane current. This is the reason why

in Fig. 7 c the transmissions calculated for opposite values of ky are equal.

Anti-parallel magnetic configuration (↑↓) The electron Hamiltonian writes (see

Fig. 11):

Ĥξ =


γc
(
ξ2 + k2

)
+ wσx + γξk2σy if z < 0 ,

γc
(
ξ2 + k2

)
+ γξk2σy + V if 0 < z < a,

γc
(
ξ2 + k2

)
− wσx + γξk2σy if z > 0 .

(18)

In this case, we also obtain Ĥ−ξ = Ĥ∗+ξ. For the same reason as discussed in the case of

PA configuration, there is either no spin filtering in this case, as can be shown by simple

symmetry arguments [11].
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Figure 10: Electron transmission coeffcient vs. incident energy calculated using a 2-

band k.p code (present work), PA magnetizations M along x, ky = 0.02 Å−1 (solid

line), ky = −0.02 Å−1 (dotted line), exchange potential in electrodes 0.3 eV, barrier

thickness 3 nm, barrier height 1 eV.

Figure 11: Schema of transmission process through a tunnel junction grown along z
direction, AP magnetizations M and -M along x, in-plane wavevecctor k‖ = (0, ξ) .
Carriers with +ξ and −ξ in-plane wavevector components have equal transmission co-

efficients.
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For coordinate axes x, y, and z parallel to the cubic crystallographic axes, a conclu-

sion is that the spin filtering effect only arises through the in-plane components of the

Dresselhaus terms. This effect exits in the case where the wavevector is parallel to the

spin direction of the incident electrons but it vanishes in the AP magnetic configuration.

In the case of an in-plane wavevector perpendicular to the incoming spin direction, the

spin filtering effect does not exist.

2.1.4 Spin filtering effect viewed from a 14-band k.p model (present work)

In a 14-band k.p approach, the lack of inversion symmetry is introduced by k.p matrix

elements coupling the first conduction band (Γ6) and the higher conduction bands (Γ5C),

P ′, and by supplementary spin-orbit terms coupling the valence bands (Γ5) and higher

conduction bands, ∆′. The Dresselhaus term is obtained by the projection of the 14-

band k.p Hamiltonian on the first conduction band defining an effective Hamiltonian of

reduced dimension [43, 44] in a Löwdin or Rayleigh-Schrödinger approach [22]:

γ = γ3 + γ4,

γ3 =
4

9
PXPP

′∆
(
EG + 2E∆

)
+ ∆C (EG + 2E∆)

EGE∆EGE∆
,

γ4 = −4

9
PX∆′

P 2
(
2EG + E∆

)
+ P ′2 (EG + 2E∆)

EGE∆EGE∆
,

γ3 is obtained via third-order perturbation, whereas γ4 is obtained via fourth-order per-

turbation series.

The energies of ↑- and ↓-spin states in the first CB in a 2-band effective model can

then be evaluated according to:

E± = γCk
2 ± γ

√
k2
(
k2
xk

2
y + k2

yk
2
z + k2

zk
2
x

)
− 9k2

xk
2
yk

2
z .

For a fixed energy and in-plane wavevector, the ↑- and ↓-spin states are associated to

different wavevectors along the tunneling direction (z direction in this case).

Besides, we checked the validity of our numerical 14-band tunneling code. We have

checked the value of the electron effective mass calculated in the 14-band k.p model by

comparing the transmission coefficient vs. barrier thickness between the 14-band k.p

(red line) and the 2-band k.p effective models (black line) (see Fig. 12 upper panel).

The electron effective mass in the 2-band k.p model was taken to be m∗ = 0.067m0; an

exchange potential 2w = 0.3 eV in PA configuration is considered in the electrodes; the

barrier height is taken to be 1 eV, k‖ = 0.02 Å−1, incident energy is−0.119 eV. The low

incident energy is chosen to describe tunneling near the Γ point. The parameters used in

the 14-band k.p code are chosen to be very close to the values given by J.-M. Jancu et al.

29



in Ref. [34]. From this set of results, we observe that the GaAs electron effective mass is

close to the one given in the literature. Figure 12 (lower panel) displays the spin filtering

effect, defined as in Eq. 12, calculated through the 14-band k.p tunneling code (red line)

and the 2-band effective model (black line). In this case, the Dresselhaus coefficient in

the barrier was fixed at γ = 23, 5 eVÅ3. The spin filtering effect strongly depends on

the barrier thickness. We observe a very good agreement between these results which

proves the validity of our 14-band k.p approach (detailed hereafter). Besides, we will

show in the next chapter that ATHE very weakly depends on the barrier thickness.

Figure 12: Upper (present work): Transmission coefficient through a GaAs barrier

vs. barrier thickess calculated in a 2-band effective model (black lines), and in 14-

band k.p (red lines). The parameters are: parallel magnetization in electrode with ex-

change potential 2w=0.3 eV, barrier height 1 eV, E = −0.119 eV; k‖ = 0.02 Å−1;

m∗ = 0.067m0, γ = 23.5 eVÅ3; and band parameters of 14- band k.p taken from Ref

[34]; Lower (present work): Respective transmission asymmetry coefficient vs. barrier

thickness.

2.1.4.1 Double-barrier resonant transmission

In order to derive the effective Dresselhaus interactions in a more subtle way, we have

considered the case of double-barrier resonant structures where the inversion symmetry
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Figure 13: Double barrier structure, QW is made of materials belonging to Td symme-

try group like GaAs; barrier thickness 3 nm, QW width 8 nm, barrier height 1 eV.

is broken only in the QW, i.e., P ′ 6= 0 and ∆′ 6= 0 in the QW whereas their values are

zero outside the QW. To simplify, we assume that the electron effective masses coincide

in all layers. These calculations yield the splitting of the resonant peaks and also allow

us to check the robustness of our 14-band k.p tunneling code. The electron transmission

coefficient, with k‖ = ky = 0.02 Å−1, in the structure shown in Fig. 13 is evaluated.

The transmission coefficient as a function of energy is displayed in Fig. 14, in a 14-band

k.p tunneling model (lower) and 2-band effective model (upper).

We call E1 is the peak energy for ↑-spin

E1 = γc
(
k2

1,z + k2
‖
)
− γ
√
k2

1

(
k2
xk

2
y + k2

yk
2
1,z + k2

1,zk
2
x

)
− 9k2

xk
2
yk

2
1,z, (19)

and E2 is the peak energy for ↓-spin

E2 = γc
(
k2

2,z + k2
‖
)

+ γ
√
k2

2

(
k2
xk

2
y + k2

yk
2
2,z + k2

2,zk
2
x

)
− 9k2

xk
2
yk

2
2,z. (20)

The Dresselhaus terms in the QW split the ↑- and ↓-spin subbands by ∆E = 0.7

meV for the 2-band effective model with m∗ = 0.067m0, γ = 23.5 eVÅ3, and by

∆E = 0.68 meV for the 14-band k.p model.

We have extracted the value of the Dresselhaus coefficient in the bulk and of the

effective mass in the 14-band k.p model. From the 14-band code we have: E1 = 0.089

eV, respective out-of plane wavevectors kz1 = 0.036 Å−1 and k′z1 = 0.035 Å−1; E2 =

0.088 eV, for the out-of-plane wavevector kz2 = 0.0355 Å−1 and k′z2 = 0.035 Å−1.

Solving Eqs. 19 and 20, and using the above values, we obtain m∗ ≈ 0.067m0 and γ =

23.5 eVÅ3. These values perfectly agree with the data from previous works [34].

Moreover, we have considered the in-plane dispersion of a QW in the valence band

for holes. Figure. 15 displays the hole dispersion E(k‖) in a 8 nm-wide GaAs QW

calculated in a 14-band k.p model. Our results are similar to those obtained by Hayden

et al. [45] with a specific inverted effective hole mass for the third heavy hole band

(HH3). The agreement between the experimental dispersion of E(k) and the calculated

one is perfect up to HH2. Afterwards, above HH2 the quantization energy does not fit

any more simply because of the electronic leakage through the barrier at small barrier

thickness.

Eventually, from our numerical results we have calculated the electron effective

31



Figure 14: Electron transmission coefficient vs. incident energy through double bar-

riers GaAs/ GaAs /GaAs/ GaAs/ GaAs (3 nm/8 nm/3 nm); barrier thickness 1 eV;

k‖ = ky = 0.02 Å−1 for the 2-band effective model; (Upper) with fixed m∗ = 0.067m0

and γ = 23.5 eVÅ3; (Lower) 14-band k.p model with parameters close to the values

given in Ref. [34].
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Figure 15: (a) Hole subband dispersion vs. in-plane wavevector for 8 nm GaAs QWs

grown along the [001] direction, calculated by 14-band k.p model; Hole dispersion vs.

in-plane wavevector for 4.2 nm GaAs QWs [45]: (b) calculation, (c) experiment.
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masses and the Dresselhaus bulk coefficients for some materials which are listed in Fig.

16. They perfectly agree with the values given in Refs. [11, 46, 34].

Figure 16: Electron effective mass (present work) and Dresselhaus constant in bulk

extracted from our 14-band k.p code compared to previous work.

2.2 Spin injection along the [110] crystallographic direc-

tion and spin-galvanic effect

The detail of the calculations can be found in Ref. [15].

A particular property of the Dresselhaus interaction is its dependence on the crys-

tallographic direction. The net spin polarization in the structure in Eq. 5

P =
|t+|2 − |t−|2

|t+|2 + |t−|2
= tanh(2γ

m2kq
~2

aq0)

cancels because of the equal population of k‖ and −k‖ states. The spin injection along

the [110] direction emerges due to the combined action of the Dessellhaus SOC in the

barrier and the Rashba SOC at the barrier interfaces [15]. The Rashba coupling can be

considered as an effective magnetic field ΩR lying in the interface plane which rotates

the spin direction. The authors consider a zinc blende semiconductor heterostructure

with a symmetric potential barrier grown along the z ‖ [110] axis, and an in-plane

wavevector k‖ = (kx, ky) where x ‖ [11̄0] and y ‖ [001̄]. The electron effective Hamil-

tonian is:

Ĥ = Ĥ0 + ĤD + ĤR,
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where Ĥ0 is the Hamiltonian without SOI, ĤR describes the Rashba SOC at the barrier

interface

ĤR = α [δ (z − a)− δ (z)] (σxky − σykx) ,

where a is the barrier thickness, α is the Rashba coefficient and δ(z) the Dirac distribu-

tion; ĤD is the Dresselhaus Hamiltonian presented as the sum of four terms

ĤD1 = i
σx
2

{
γ(z),

∂3

∂z3

}
ĤD2 =

σzkx
2

∂

∂z
γ(z)

∂

∂z

ĤD3 = i

[
σx

(
k2
x

2
+ k2

y

)
− 2σykxky

]{
γ(z),

∂

∂z

}
ĤD4 = σzkx

(
k2
x

2
− k2

y

)
γ(z)

γ(z) is the bulk Dresselhaus coefficient. The kinetic energy of electrons is assumed

substantially smaller than the barrier height, therefore, they neglect ĤD3 and ĤD4 in

comparison with ĤD1 and ĤD2, respectively. The calculations demonstrate that the term

ĤD1 does not lead to spin injection to the first order [15, 31]. In Ref. [15], the authors

focused on the combined effect of the term ĤD2 and the Rashba term. The mechanism

of spin injection along the [110] direction can be viewed in Fig. 17. They assume

that the electrons impinging the barrier are unpolarized and that their distribution in

the interface plane is isotropic. The incident electrons are transmitted with different

in-plane wavevectors kx. As in the case of the spin filtering effect described in Sec.

2.1.3.2, a spin polarized current is generated. In the case where the Rashba term is

absent, the equal population of the kx and−kx states makes that the net spin polarization

goes to zero. The Rashba coupling is considered as an effective Hamiltonian with ΩR

proportional to kx, leading to a rotation with opposite axes for electron with positive

and negative kx. The spin injection is analyzed by using the spin-dependent transfer

matrix technique. They assume that the effective masses inside and outside the barrier

are the same (m) and neglect the spin-orbit coupling outside the barrier.

The conclusion is that the spin distribution of the transmitted electrons is an even

function of the in-plane wavevector ,

Sk,x = 2
αγm2k2

xkza

~4q
,

where q is the electron wavevector in the barrier when SOI is neglected. Therefore

spin injection along the [110] direction occurs even for an isotropic distribution of the

incident electrons in the interface plane.

Beside the spin injection, the authors consider the emergence of a direct electric

current jz, through the barrier in the presence of spin polarization, which is possible
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Figure 17: The model of spin injection via a [110]-grown barrier. The spin component

Sx > 0 of electrons transmitted through the barrier with different in-plane wavevec-

tors emerges due to (i) anisotropic spin filtering caused by the Dresselhaus SOC in the

barrier interior followed by (ii) spin rotation in the interface-included Rashba magnetic

field ΩR [15].

in the [110] direction. Taking into account that the transmission coefficients for the

electrons incident upon the barrier from left and from right, the tunneling current density

is

jz = e
∑
k

Tr
[
Tk(a)ρlT

+
k (a)

]
vzΘ(vz) + e

∑
k

Tr
[
Tk(−a)ρrT

+
k (−a)

]
vzΘ(−vz)

where ρl (ρr) is the spin density matrix on the left (right), e is the electron charge, Tk(a)

and Tk(−a) are matrices of transmission amplitude for an electron propagating from

the left to the right and from the right to left. The calculation yields the tunnel current

jz =
64eps
105π2

αγmak9
F

~3k3
exp(−2

√
2mV/~2)

where kF is the Fermi wavevector, ps is the spin polarization along the x axis, V is

barrier height.

2.2.1 Spin rotation along the [110] direction

The spin filtering effect in heterostructures grown along the [110] direction without

ferromagnetism was considered in Ref. [31]. It was shown that, in the simplest case,

under normal incidence, no solution can be calculated in the usual way assuming that

the wave function and its derivative are continuous. The energies of the electrons along
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the [110] axis with normal incidence k = k(1/
√

2)[110] are

for ↑ -spin E↑ = γck
2 +

1

2
γk3,

for ↓ -spin E↓ = γck
2 − 1

2
γk3.

Respectively, their eigenvectors satisfy two equations in parallel[
−γc

∂2

∂z2
+

1

2
iγ
∂3

∂z3

]
Ψ↑ = [E − V (z)] Ψ↑, (21)

[
−γc

∂2

∂z2
− 1

2
iγ
∂3

∂z3

]
Ψ↓ = [E − V (z)] Ψ↓, (22)

where V (z) = V when 0 ≤ z ≤ a and V (z) = 0 outside.

If the in-plane wavevector in the barrier is purely imaginary, ±iK, the respective

energy −γcK2 ∓ 1
2
iγK3 will be not real. Therefore, the wavevectors in the barrier are

complex quatities, i.e., Q ±iK. Let us write ⇑=↑ eiQz and ⇓=↓ eiQz.
We first try to deal with this situation according to the usual procedure. The wave

function writes

Ψ =


ΨI(z) = (A1e

iqz +B1e
−iqz) ↑ +B̃1e

−iqz ↓ (z < 0),

ΨII(z) =
(
A2e

−Kz +B2e
Kz
)
⇑ +

(
Ã2e

−Kz + B̃2e
Kz
)
⇓ (0 ≤ z ≤ a),

ΨIII(z) = A3e
iqz ↑ +Ã3e

iqz ↓ ( z > a).

Applying the BDD [33] matching conditions for ↓- spin states, we find:
B̃1 = Ã2 + B̃2,

qB̃ = (Q− iK) Ã2 + (Q+ iK) B̃2,

Ã2e
−i(Q−iK)a + B̃2e

−i(Q+iK)a = Ã3e
iqa,

(Q− iK)Ã2e
−i(Q−iK)a + (Q+ iK)B̃2e

−i(Q+iK)a = −qÃ3e
iqa.

(23)

These equations have a (non zero) solution when(
q2 −Q2 −K2

)
sinhKa+ 2iKq coshKa = 0.

The only solution is K = 0 but it is not relevant to our problem.

As introduced above, the DP term was obtained by perturbation method, so that we

will look for a solution of the effective Schrödinger equation to the first order in γ only,

e.g. for ↑- spin Ψ↑ = Ψ(0) + Ψ
(1)
↑ where Ψ(0) is solution when Dresselhaus terms are

neglected.

The Schrödinger equation for ↑- spin in Eq. 21 becomes
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[
−γc

∂2Ψ↑
∂z2

+
1

2
iγ
∂3Ψ(0)

∂z3

]
= [E − V (z)] Ψ↑.

Integrating this equation from one side of the interface to the other, the authors

obtain

lim
ε−→0

[
−γc

∂Ψ↑
∂z

∣∣∣∣z0+ε

z0−ε
+

1

2
iγ
∂2Ψ(0)

∂z2

∣∣∣∣z0+ε

z0−ε

]
= 0. (24)

Note that, in the electrodes, if the incident wave has a wavevector q, the reflected

wave will have wavevector −q′, where γcq
2 + 1

2
γq3 = γcq

′2 − 1
2
γq′3. It leads to δq =

q′ − q being a second order term in γ so that this term can be neglected. This means

there is no spin splitting in the electrode.

In the case of free electrons, it can be shown that:

∂2Ψ(0)

∂z2

∣∣∣∣z0+ε

z0−ε
=
(
K2 + q2

)
Ψ(0) (z0) . (25)

From Eqs. 24 and 25

lim
ε−→0

(
∂Ψ↑
∂z

∣∣∣∣z0+ε

z0−ε

)
=

iγ

2γc

(
K2 + q2

)
Ψ(0) (z0) ≈ 2iQ↑Ψ

(0) (z0) . (26)

Equation. 26 clearly shows the discontinuity of the derivative of the wave function

at an interface grown along the [110] direction in the presence of DP field.

Now, the solutions of the Schrödinger equation have to satisfy the new matching

condition, e.g. for ↑-spin that are:

The continuity of the wave function Ψ, and lim
ε−→0

(
∂Ψ↑
∂z

∣∣∣∣z0+ε

z0−ε

)
= 2iQ↑Ψ

(0) (z0) .

(27)

We write Q↑ = Q for ↑-spin and Q↓ = −Q for ↓-spin.

The solution of the Schrödinger equation is calculated to the first order in γ in the

form

Ψ = ϕs + ϕŝ,

where

ϕs =


ϕsI(z) = a1e

iqz + b1e
−iqz (z < 0),

ϕsII(z) =
(
a2e
−Kz + b2e

Kz
)
eiQz (0 < z < a) ,

ϕsIII(z) = a3e
iqzeiQz (a < z) ,

and

ϕŝ =


ϕŝI(z) = β1Qe

−iqz (z < 0),

ϕŝII(z) = Q
(
α2e

−Kz + β2e
Kz
)
eiQz (0 < z < a) ,

ϕŝIII(z) = α′3Qe
iqz (a < z) .
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The new matching conditions state that

(i) ϕs and ϕŝ are continuous at the interfaces,

(ii) limε−→0

(
∂(ϕs+ϕŝ)

∂z

∣∣∣∣z0+ε

z0−ε

)
= iQΨ

(0)
II (z0).

The detail of the calculations can be found in Ref. [31]; in that work it is found that

α′3 = 0 and the amplitudes of the transmission coefficients are a3e
iQz for ↑-spin and

a3e
−iQz for ↓-spin. Therefore, ↑- and ↓-spins are transmitted equivalently: there is no

spin filtering effect for normal incidence along the [110] direction.

The conclusion of this section is that it is very difficult to find the exact analytical

solution for electron tunneling through a heterostructure grown along [110] direction.

In the simplest model, the normal incoming electron was treated to the first order in γ.

Even though along the [110] direction the spin spliting is maximum. There is not nec-

essary a spin filtering effect. The difficulties do not only come from the mathematical

techniques but also from the physical point of view; the discontinuity of the derivative

of the wave function caused by the k cubic term highlight the crucial the role of the

matching conditions. The consequence is that numerical computational techniques, e.g.

using advanced k.p methods, like 14-band or 30-band tunneling codes, become manda-

tory in order to analyse the new properties brought by spin-orbit effects over the BZ.

The techniques we have employed and developed beyond the state of the art, will also

appear to be perfect numerical tools to check some analytical developments based on

perturbation technique approaches.
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CHAPTER III

DESCRIPTION OF THE K.P METHODS FOR

SEMICONDUCTORS AND HETEROSTRUCTURES

In this chapter, we will present in some detail the principles and methods in the k.p

framework to describe the electronic band structure and (spin-polarized) transport in

the semiconductor heterostructures which are considered in the present manuscript. The

k.p approach [47, 48, 49, 50, 51, 52, 53] is known to be very efficient to accurately de-

scribe the properties of the electronic structure near the Γ point using a 2-band model for

the conduction sates, a 6-band Luttinger model for the only VB of p-symmetry in an ef-

fective Hamiltonian approach using the Luttinger parameters γi in a multi-orbital band

description [54, 55]. However a 8-band k.p model is needed to describe the coupling

between the CB and VB, whereas a 14-band k.p model is necessary to deal properly

with the absence of inversion symmetry with the Dresselhaus SOI [44]. This had never

been adressed in the frame of a k.p model for transport in a multi-layered structure. One

can presently cite the recent work performed at IOFFE institute [56] for the numerical

analysis of the matching conditions required by the effective Dresselhaus parameters

of a III-V QW embedded between thick tunnel barriers in a 4-band approach derived

from a larger 14-band model. Nonetheless, the effect and physics of spin as well as the

spin-orbit assisted injection from a ferromagnetic reservoir within a 14-band k.p code

have never been addressed before. The present work represents a real advance for our

community.

Beyond, an extended 30-band k.p tunneling approach [22, 57, 58] is mandatory

to describe the spin-injection properties in a full-BZ approach, as required for indi-

rect band gap group IV semiconductors like Si, Ge, their compounds, and related het-

erostructures. Their treatment requires to include remote bands in the Hamiltonian

representation. The description of spin-dependent tunneling transport in a 14-band or

30-band k.p approach requires to unpin the unsolved issue of the spurious bands inher-

ent to band truncation in the k.p approach [58, 59, 60]. We will discuss that particular

point in the present chapter.

Note that, in recent work [61, 62] concerning spin-orbit assisted transport in group

IV semiconductors as well as metallic interface Ag/Bi [111] involving Rasha interaction

at the interfaces, the k.p framework has been shown to represent a valid and relevant

approach to describe unusual spin splittings in interface states.
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3.1 Principle of the k.p method

The details can be found in Refs. [12, 22].

Taking into account the SOI, the electron Hamiltonian in the crystal is written:

ĤSC =
p2

2m0

+ U+
~

4m2
0c

2
(∇U× p) .σ (28)

= ĤU + ĤSO,

where

ĤU =
p2

2m0

+ U, (29)

ĤSO =
~

4m2
0c

2
(∇U× p) .σ, (30)

U = U(r) is the lattice periodic potential,m0 is the free electron mass, σ = {σx, σy, σz}
is the Pauli operator, c is speed of light. The wave function is the solution of the

Schrödinger equation ĤSCΨ = EΨ, with the Bloch form Ψn,k(r) = eik.rϕnk(r).

The term ĤSO = ~
4m2

0c
2 (∇U× p) .σ = ~

4m2
0c
2 (σ ×∇U) .p represents the SOI.

ĤSOΨ =

{
~2

4m2
0c

2
(σ ×∇U) .p

}[
eik.rϕnk(r)

]
(31)

= eik.r
{

~2

4m2
0c

2
(σ ×∇U)

}
. [~k + p]ϕnk(r)

= eik.r
{

~2

4m2
0c

2
(∇U×p) .σ+

~2

4m2
0c

2
(∇U×k) .σ

}
ϕnk(r),

so that

ĤSCΨ = eik.r
[
ĤSC + k̆2 +

~
m0

k.p+
~2

4m2
0c

2
(∇U×k) .σ

]
ϕnk(r).

The Schrödinger equation becomes:[
ĤSC + k̆2 +

~
m0

k.p +
~2

4m2
0c

2
(∇U× k).σ

]
ϕnk = Enk ϕnk, (32)

where k̆2 = (~2/2m0)k2 is the free-electron energy.

The last term Ĥk
SO = ~2

4m2
0c
2 (∇U × k).σ is zero in the Oh group. In the Td group,

it does not introduce new splittings. Furthermore its influence is negligible [22, 47].

Finally we obtain, [
ĤSC + k̆2 +

~
m0

k.p

]
ϕnk = Enk ϕnk, (33)

The functions ϕnk(r) at k = 0 are supposed to be known through their symmetry

properties. We denote ϕn = ϕn(k=0)(r) and En = En(k=0) with ĤSCϕn = Enϕn. The

functions at k 6= 0 can be expanded as series of ϕn

ϕnk(r) =
∑
k

Cnkϕn.
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Multiplying Eq. 33 with ϕ∗m and integrating over the unit cell, we obtain the equa-

tions determining the Cnk coefficients:[
〈ϕm|

(
ĤSC +

}
m0

k.p

)
|ϕn〉+ k̆2δmn − Enkδmn

]
Cnk = 0, (34)

{ϕn} is a relevant set of basis functions, 〈ϕm|A|ϕn〉 = (1/Ω)
∫

Ω
ϕ∗m(r)Aϕn(r)dr where

Ω is the crystal volume. The energy E is the solution of the secular equation

det
(
Ĥk.p − E Î

)
= 0,

Î being the identity matrix and

Ĥk.p = 〈ϕm|
(
ĤSC +

}
m0

k.p

)
|ϕn〉+ k̆2δmn. (35)

3.2 A 2-band k.p toy model for the conduction and va-

lence band

We first consider a 2-band k.p toy model which has only one CB, UC , and one VB,

UV , in order to give an insight in the band coupling in the k.p approach and in the

appearance of spurious states. The simple k.p toy Hamiltonian then writes:

Ĥ =

|UC〉 |UV 〉[
EG + k̆2 Pk

Pk k̆2

]
,

where EG is the energy difference between the CB and the VB at the Γ point, and

P = (~/m0) 〈UC | p |UV 〉 .
Solving the secular equation

det(Ĥ − E Î) = 0,

we obtain the relationship between the eigenenergy and wavevector according to

E = k̆2 +
EG ±

√
E2
G + 4EP k̆2

2
, (36)

with EP = (2m0/~2)P 2.

For very small wavevectors, we have P 2k2 � E2
G and the energies in Eq. 36

become:

E = k̆2

(
1 +

EP
EG

)
+ EG for electron,

E = k̆2

(
1− EP

EG

)
for hole.
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The ratioEP/EG is of the order of 10 so that the electron effective massm∗e = (1 + EP/EG)−1

is positive and the hole effective mass m∗h = (1− EP/EG)−1
is negative as we ex-

pected. However, at large scale, k2 increases faster than

√
E2
G + 4EP k̆2 which makes

the energy in the VB increasing and crossing the band gap (see Fig. 18). Consider-

ing then a characteric carrier energy in the band gap (e.g. considering tunneling effect

through a barrier), propagative states with a very large real wavevector k appear in the

electronic structure diagram as well as in the tunneling transport. These unphysical

states are called "spurious states" and appear as a natural consequence of the truncation

of the remote bands necessary to recover the Bloch periodicity. The important point is

that the k.p method was built to describe the electronic structure near the Γ point but

not the electronic structure at arbitrary large wavevectors. Spurious states with large

imaginary wavevector components are rapidly decaying and therefore they are harm-

less [63, 64]. Spurious states with large real wavevectors [65, 66] are more problematic

because they mix and interact with real states, making it difficult to identify and remove

them in numerical calculations.

Figure 18: Energy vs. wavevector in Eq. 36, with EP/EG=10, and Eg = 1.519 eV.

In a realistic description of the electronic band structure, the spurious states are

well-recognized in 8-band k.p models [65, 66, 67, 68] and certainly in the larger k.p

models, e.g. 14-band k.p [34], and 30-band k.p [58, 69]. So far, treating the spurious

sates has been a pragmatic recipe. In our work, we managed to treat spurious states far

away from the Γ point to remove their influence on our results near the center of BZ.

The method to eliminate spurious states will be discussed here in Sec. 3.7.
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3.3 14-band k.p matrix

A general overview of the 14-band k.p basis is displayed in Fig. 19. As mentioned

Figure 19: Band schema used in the 14-band k.p model

before, we need an Hamiltonian which describes the properties of the CB and of the

VB when the SOI is taken into account, the smallest possible Hamiltonian being the

14×14 matrix. This Hamiltonian is built in the {Γ8C ,Γ7C ,Γ6,Γ7,Γ8} irreducible rep-

resentations like described in Ref. [22]. Its elements will be introduced hereafter. The

following basis is chosen to construct the 14×14 k.p matrix according to Ref. [22].∣∣3
2
, 3

2

〉
Γ8C

=
∣∣i [− (1/√2

)
(XC + iYC) ↑

]〉
,∣∣3

2
, 1

2

〉
Γ8C

=
∣∣∣i [√2/3ZC ↑ −1/

√
6 (XC + iYC) ↓

]〉
,∣∣3

2
, −1

2

〉
Γ8C

=
∣∣∣i [1/√6 (XC − iYC) ↑ +

√
2/3ZC ↓

]〉
,∣∣3

2
, −3

2

〉
Γ8C

=
∣∣i [(1/√2

)
(XC − iYC) ↓

]〉
,∣∣1

2
, 1

2

〉
Γ7C

=
∣∣∣i [1/√3ZC ↑ +

√
2/3 (XC + iYC) ↓

]〉
,∣∣1

2
, −1

2

〉
Γ7C

=
∣∣i [1/√3 (XC − iYC) ↑ −1/

√
3ZC ↓

]〉
,


p-type symmetry
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|+〉 = |S ↑〉 ,
|−〉 = |S ↓〉 ,

}
s-type symmetry (37)

∣∣3
2
, 3

2

〉
Γ8

=
∣∣i [− (1/√2

)
(X + iY ) ↑

]〉
,∣∣3

2
, 1

2

〉
Γ8

=
∣∣∣i [√2/3Z ↑ −1/

√
6 (X + iY ) ↓

]〉
,∣∣3

2
, −1

2

〉
Γ8

=
∣∣∣i [1/√6 (X − iY ) ↑ +

√
2/3Z ↓

]〉
,∣∣3

2
, −3

2

〉
Γ8

=
∣∣i [(1/√2

)
(X − iY ) ↓

]〉
,∣∣1

2
, 1

2

〉
Γ7

=
∣∣∣i [1/√3Z ↑ +

√
1/3 (X + iY ) ↓

]〉
,∣∣1

2
, −1

2

〉
Γ7

=
∣∣i [1/√3 (X − iY ) ↑ −1/

√
3Z ↓

]〉
.


p-type symmetry

In the Oh group, the functions S, XC , YC , and ZC are antisymmetric; the functions

X , Y, and Z are symmetric. In the Td group, the lack of inversion center destroys the

strictly antisymmetric nature of S, XC , YC , and ZC and strictly symmetrical nature of

X , Y, and Z. But, anyway, we keep these notations for the Td group.

This basis of functions consists of pairs of Kramers’ conjugates

K̂

∣∣∣∣32 ,±3

2

〉
= ±

∣∣∣∣32 ,∓3

2

〉
,

K̂

∣∣∣∣32 ,±1

2

〉
= ∓

∣∣∣∣32 ,∓1

2

〉
,

K̂

∣∣∣∣12 ,±1

2

〉
= ±

∣∣∣∣12 ,∓1

2

〉
.

or

K̂ |j,m〉 = (−1)j−m |j,−m〉 .

3.3.1 k.p coupling term

Note that ĤSC = ĤU + ĤSO and 〈ϕn| ĤU |ϕm〉 = Enδnm, particularly in this case

Γ
8C

〈
3

2
,M

∣∣∣∣ ĤU

∣∣∣∣32 ,M
〉

Γ8C

= Γ7C

〈
1

2
,M

∣∣∣∣ ĤU

∣∣∣∣12 ,M
〉

Γ7C

= E5C ,

〈±| ĤU |±〉 = E1,

Γ8

〈
3

2
,M

∣∣∣∣ ĤU

∣∣∣∣32 ,M
〉

Γ8

= Γ7

〈
1

2
,M

∣∣∣∣ ĤU

∣∣∣∣12 ,M
〉

Γ7

= E5,

with M =
{
±3

2
,±1

2

}
for Γ8C and Γ8, M =

{
±1

2

}
for Γ7C and Γ7, so that we need

to describe two terms 〈ϕm| (~/m0) k.p|ϕn〉, called k.p term, and 〈ϕm|ĤSO|ϕn〉 called

spin-orbit term to find all the matrix elements in Eq. 35.

By essence, these k.p coupling terms are closely linked to the k-dependent optical

transitions between initial and final excited states through a dipolar Hamiltonian of the

type ĤD =
−→
A.−→p with

−→
A is vector potential or equivalently ĤD =

−→
E .−→r with

−→
E is

electric field.
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Let Unσ be the set of functions {XC , YC , ZC , S,X, Y, Z} ⊗ {↑, ↓}; the basis func-

tions in Eq. 37 are linear combinations ofUnσ . This allows us to calculate 〈Unσ| (~/m0) k.p |Un′σ′〉 .

〈Unσ|
~
m0

k.p |Un′σ′〉 = 〈Un|
~
m0

k.p |Un′〉 δσσ′ (38)

This term is possibly non-zero only when the spin remains unchanged (σ = σ′).

In summary, the non-zero k.p terms are:

(i) the coupling terms between Γ6 and {Γ7,Γ8} representations

〈S| px |iX〉 = 〈S| py |iY 〉 = 〈S| pz |iZ〉 = $;

(ii) the coupling terms between Γ6 and the second CBs {Γ7C ,Γ8C} in the case

of lack of inversion center

〈S| px |iXC〉 = 〈S| py |iYC〉 = 〈S| pz |iZC〉 = $′,

(iii) and the coupling terms between {Γ7,Γ8} and {Γ7C ,Γ8C}

〈X| py |iZC〉 = 〈X| pz |iYC〉 = 〈Y | px |iZC〉
= 〈Y | pz |iXC〉 = 〈Z| px |iYC〉 = 〈Z| py |iXC〉 = −$X

where w, w′, and wX are real. In the Oh group, we have w′ = 0.

The natural k.p parameters are introduced according to:

P =
~
m0

$, P ′ =
~
m0

$′, PX =
~
m0

$X ;

with the characteristic energy

EP =
2m0

~2
P 2, E

′

P =
2m0

~2
P ′2 , EPX =

2m0

~2
P 2
X .

3.3.2 Spin-orbit coupling

The SOC terms were evaluated using the book of Koster et al. [21]. We resume here

the couplings which may differ from zero:

(i) The core spin-orbit in the second CB

∆C =

(
3~2

4m2
0c

2

)
〈XC |

∂U

∂x
py −

∂U

∂y
px |iYC〉 .

(ii) The core spin-orbit in the VB

∆ =

(
3~2

4m2
0c

2

)
〈X| ∂U

∂x
py −

∂U

∂y
px |iY 〉 .

(iii) And the spin-orbit caused by the lack of inversion center in the Td group

∆′ =

(
3~2

4m2
0c

2

)
〈X| ∂U

∂x
py −

∂U

∂y
px |iYC〉 .

In the Oh group, ∆′ = 0.
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3.3.3 The 14×14 k.p matrix

The supplementary perturbations originate from remote bands, out of the 14-band sub-

set, i.e., the bands lower than {Γ7,Γ8} or upper than {Γ6,Γ7C ,Γ8C} . They are intro-

duced through the terms:

K ′ =
2

m0

∑
n 6=5C,1,5

〈S| px |n〉 〈n| px |S〉
E1 − En

,

L′ =
2

m0

∑
n 6=5C,1,5

〈X| px |n〉 〈n| px |X〉
E5 − En

,

M ′ =
2

m0

∑
n 6=5C,1,5

〈X| py |n〉 〈n| py |X〉
E5 − En

,

N ′ =
2

m0

∑
n 6=5C,1,5

〈X| px |n〉 〈n| py |X〉+ 〈X| py |n〉 〈n| px |X〉
E5 − En

.

The full 14×14 k.p matrix, including perturbations of all remote bands, can be ex-

pressed through the measurable effective Luttinger parameters γC , γj, γ∆j (j = 1, 2, 3)

in both the CB and VB:

γC = 1− E ′P
3

(
2

E8C−6

+
1

E7C−6

)
+
EP
3

(
2

E6−8

+
1

E6−7

)
+K ′,

γ1 = −1 +
EPX

3

(
1

E8C−8

+
1

E7C−8

)
− L′ + 2M ′

3
+

EP
3E6−8

,

γ2 = −1

6

EPX
E7C−8

− L′ −M ′

6
+

EP
6E6−8

,

γ3 =
1

6

EPX
E7C−8

− N ′

6
+

EP
6E6−8

,

γ∆1 = −1 +
2

3

EPX
E8C−7

− L′ + 2M ′

3
+

EP
3E6−7

,

γ∆2 = −EPX
12

(
1

E8C−8

+
1

E8C−7

)
− L′ −M ′

6
+
EP
12

(
1

E6−8

+
1

E6−7

)
,

γ∆3 =
EPX
12

(
1

E8C−8

+
1

E8C−7

)
− N ′

6
+
EP
12

(
1

E6−8

+
1

E6−7

)
;

together with the notations

EH
8C = E ′8C − γ′C1k̆

2 + U′C ;

EL
8C = E ′8C − γ′C1k̆

2 − U′C ;

Ek
7C = E ′7C − γ′C∆1k̆

2;

Ek
6 = E6 + γ′C k̆

2;

EH
8 = E ′8 − γ′1k̆2 + U′;

EL
8 = E ′8 − γ′1k̆2 − U′;
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Ek
7 = E ′7 − γ′∆1k̆

2;

U′C = γ′C2

(
2k̆2

z − k̆2
ρ

)
;

U′C∆ = γ′C∆2

(
2k̆2

z − k̆2
ρ

)
;

B′C = 2
√

3γ′C3k̆zk̆−;

B′C∆ = 2
√

3γ′C∆3k̆zk̆−;

C′C =
√

3
[
γ′C2

(
k̆2
x − k̆2

y

)
− 2iγ′C3k̆xk̆y

]
;

C′∆C =
√

3
[
γ′∆C2

(
k̆2
x − k̆2

y

)
− 2iγ′∆C3k̆xk̆y

]
;

U′ = γ′2

(
2k̆2

z − k̆2
ρ

)
;

U′∆ = γ′∆2

(
2k̆2

z − k̆2
ρ

)
;

B′ = 2
√

3γ′3k̆zk̆−;

B′∆ = 2
√

3γ′∆3k̆zk̆−;

C′ =
√

3
[
γ′2

(
k̆2
x − k̆2

y

)
− 2iγ′3k̆xk̆y

]
;

C′∆ =
√

3
[
γ′∆2

(
k̆2
x − k̆2

y

)
− 2iγ′∆3k̆xk̆y

]
;

where k̆± = k̆x ± ik̆y, k̆2
ρ = k̆2

x + k̆2
y . E ′8C , E ′7C , E8 , and E7 would, respectively, be

the energies E (Γ8C) , E (Γ7C) , E (Γ8) , and E (Γ7) at k=0 if the interband spin-orbit

coupling ∆′ were equal to zero.

Furthermore,

γ′C = γC −
EP
3

(
2

E6−8

+
1

E6−7

)
+
E ′P
2

(
2

E8C−6

+
1

E7C−6

)
,

γ′1 = γ1 −
EP

3E6−8

− EPX
3

(
1

E7C−8

+
1

E8C−8

)
,

γ′2 = γ2 −
EP

6E6−8

+
EPX

6E7C−8

,

γ′3 = γ3 −
EP

6E6−8

− EPX
6E7C−8

,

γ′C1 = γC1 +
E ′P

3E8C−6

+
EPX

3

(
1

E8C−8

+
1

E8C−7

)
,

γ′C2 = γC2 +
E ′P

6E8C−6

− EPX
6E8C−7

,

γ′C3 = γC3 +
E ′P

6E8C−6

+
EPX

6E8C−7

,

γ′∆j ' γ′j; γ′C∆j ' γ′Cj,

We would like to stress on the particular point that the lack of inversion center does

not contribute to the parameters in the VB. We take here the Hamiltonian in a 14×14

k.p model and plot the following band structure along three characteric directions with

parameters close to the values introduced in Ref. [34].
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We consider here the overall 14 × 14 k.p Hamiltonian with the perturbation of all

remote bands which includes linear or quadratic ki terms but no cubic terms.

(39)

where P z
α = Pαkz, P

±
α = Pαk± with Pα = P or P ′ or PX . In Eq. 39 we keep

the notations of Ref. [22], |cM〉 instead of
∣∣3

2
,M
〉

Γ8C
with M =

{
±3

2
,±1

2

}
;
∣∣c± 7

2

〉
instead of

∣∣1
2
,±1

2

〉
Γ7C

; |M〉 instead of
∣∣3

2
,M
〉

Γ8
; and

∣∣±7
2

〉
instead of

∣∣1
2
,±1

2

〉
Γ7

.

In Fig. 20, it is easy to recognize the appearance of the spurious states in the VB.

Figure 20: GaAs band structure along [111], [100], and [110] directions calculated

from matrix in Eq. 39 with the parameters given by Ref. [34]
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3.4 The effective Hamiltonian in the conduction band

In this part, we will explain how we can find the Dresselhaus terms responsible for the

spin-splitting in an effective model which is often used for electrons in the CB band

of zinc blende semiconductors, like described in Chapter 2. For projecting the 14×14

k.p matrix in Eq. 39 on the first CB Γ6 = {S ↑, S ↓}, Löwdin’s perturbation theory is

applied at the third and fourth order. We obtain the effective Hamiltonian for electrons

in the first CB:

ĤC =
~2

2m∗
k2Î+ ĤD, (40)

wherem∗ is the electron effective mass in the crystal, Î is the unity matrix, ĤD is known

as D’yakonov- Perel’ Hamiltonian or Dresselhaus Hamiltonian like detailed in Chapter

2,

ĤD = γ

[
kz(k

2
x − k2

y) kx(k
2
y − k2

z)− iky(k2
z − k2

x)

kx(k
2
y − k2

z) + iky(k
2
z − k2

x) −kz(k2
x − k2

y)

]
, (41)

γ = γ(3) + γ(4), (42)

γ(3) =
4

9
PXPP

′∆
(
EG + 2E∆

)
+ ∆C (EG + 2E∆)

EGE∆EGE∆
, (43)

γ(4) = −4

9
PX∆′

P 2
(
2EG + E∆

)
+ P ′2 (EG + 2E∆)

EGE∆EGE∆
, (44)

where γ(3) represents the Dresselhaus coefficient obtained to third-order perturbation

series, whereas γ(4) corresponds to fourth-order contribution. Both terms originate from

antisymmetric P ′ and ∆′ couplings which are zero in the Oh group (e.g. Si, Ge). With

the parameters in the literature [34],
∣∣γ(4)

∣∣ is much larger than
∣∣γ(3)

∣∣ , which means that

the contribution of the fourth-order term is larger than the third order one. This non triv-

ial property makes then difficult to anticipate the consequence of a truncature, possible

higher-order development could give significant Dresselhaus contributions. From Eqs.

43, and 44, we show that SOI in effective models originates from core spin-orbit (∆,

and ∆C) and the lack of inversion center (∆′, and P ′). In the Oh group, ∆′ = P ′ = 0

so that the Dresselhaus Hamiltonian identically vanishes.

The electron energies in the CB are eigenvalues of the Hamiltonian ĤD,

E =
~2

2m∗
k2 ± γ

√[
kz(k2

x − k2
y)
]2

+
[
kx(k2

y − k2
z)
]2

+ [ky(k2
z − k2

x)]
2. (45)

50



The degeneracy of the conduction band is lifted in all directions but not along the [001]

and [111] directions. In the [110] direction, E = ~2
2m∗k

2 ± γk3, the spin splitting is

maximum.

The effective model is known as a convenient model for analytical calculations but

this is not always true, sometimes it introduces the difficult physical questions due to the

appearance of higher-order momentum terms. For example, if one considers tunneling

through the [110] direction, the appearance of k cubic terms lead to the discontinuity

of the envelope function and requires a redefinition of the current operator and current

flux at the interface as introduced in Chapter 2, as well as emphasized in Ref. [31]. The

conclusion is that it is not easy to find the new relevant matching conditions for electron

tunneling along the [110] direction in the general case.

Figure 21: Energies of ↑-spin (red line) and ↓-spin (blue line) states generated by

Dresselhaus terms.
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3.5 The effective model in the valence band

Now projecting the 14×14 k.p Hamiltonian in Eq. 39 on the {Γ7,Γ8} subspace through

second-order Lowdin’s perturbation method, we obtain the 6×6 k.p effective Hamil-

tonian for the VB.

| 3
2
, 3

2
〉Γ8 | 3

2
, 1

2
〉Γ8 | 3

2
, −1

2
〉Γ8 | 3

2
, 3

2
〉Γ8 | 1

2
, 1

2
〉Γ7 | 1

2
, −1

2
〉Γ7

−γ1k̆
2 + A B C 0 1√

2
B∆

√
2C∆

cc −γ1k̆
2 − A 0 C −

√
2A∆ −

√
3
2
B∆

cc 0 −γ1k̆
2 − A −B −

√
3
2
B∗∆

√
2A∆

0 cc cc −γ1k̆
2 + A −

√
2C∗∆

1√
2
B∗∆

cc cc cc cc −∆− γ∆1k̆
2 0

cc cc cc cc 0 −∆− γ∆1k̆
2


,

(46)

where the Luttinger parameters in the 6×6 k.p matrix in Eq. 46, γj and γ∆j were

introduced in Sec.3.3.3, and

γ∆(j=1,2,3) ≈ γ(j=1,2,3).

The Luttinger parameters in the VB have no contribution arising from the lack of inver-

sion center. It means that this Hamiltonian applies for the Oh and Td groups as well. In

that picture, the SOI in VB is introduced through the core spin-orbit parameter ∆. This

particular shape of the 6 × 6 projected Hamiltonian was firstly proposed by Luttinger-

Kohn from general arguments of invariant theory [55].

3.6 Exchange interactions (Ferromagnetism)

The p− d exchange interactions occurring in the VB are introduced through the Hamil-

tonian matrix as proposed by Dietl et al. [26] as well as in Ref. [70] in a different

approach

Hexc = 6BGs.m, (47)

where 6BG represents the average interaction energy among holes, s is spin of the hole

and m is a unit vector along the magnetization of the localized spins.

Here, we expand this model for electrons in the first and second CB with different

values of BG like classically considered. Using the basis defined in Eq. 37, we write

the exchange Hamiltonian in the 14-band k.p model as:

Hexc =

 HΓ5C
exc 0 0

0 HΓ1
exc 0

0 0 HΓ5
exc


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where HΓ5C
exc is the block exchange Hamiltonian in the Γ5C subspace, HΓ1

exc is the block

exchange Hamiltonian in the Γ1 subspace, and HΓ5
exc is the block exchange Hamiltonian

in the Γ5 subspace.

We write

s.m = [(s−m+ + s+m−) + szmz]

after having defined s± = (sx ± isy)/2 and m± = (mx ± imy).

The Hamiltonian in the {Γ8,Γ7} representations is written:

∣∣3
2
, 3

2

〉
Γ8

∣∣3
2
, 1

2

〉
Γ8

∣∣3
2
, −1

2

〉
Γ8

∣∣3
2
, −3

2

〉
Γ8

∣∣1
2
, 1

2

〉
Γ7

∣∣1
2
, −1

2

〉
Γ7

HΓ5
exc = BΓ5

G



3mz

√
3m− 0 0 −

√
6m− 0√

3m+ mz 2m− 0 2
√

2mz −
√

2m−

0 2m+ −mz

√
3m−

√
2m+ 2

√
2mz

0 0
√

3m+ −3mz 0
√

6m+

−
√

6m+ 2
√

2mz

√
2m− 0 −mz −m−

0 −
√

2m+ 2
√

2mz

√
6m− −m+ mz


,

(48)

whereas the exchange Hamiltonian in Γ6 is

|S ↑〉 |S ↓〉

Hexc = 3BΓ1
G

[
mz m−

m+ −mz

]
. (49)

The Hamiltonian in the second CB is similar to Eq. 48 but with BΓ5C
G instead of

BΓ5.
G .

3.7 k.p Hamiltonian without spurious states

Spurious states naturally arise at large k when considering a 2-band toy k.p model cou-

pling the CB and VB. Whereas the spurious states simply need to be omitted in the

electronic structure at large k for the calculation of the density of states, or of the effec-

tive mass as well as for the calculation of optical transitions (at constant k), these states

have to be fully included in transport properties (e.g. tunneling) at constant energy Ec
and Eh. The general matching conditions connect continuity / discontinuity conditions

of the components of the wave function to the corresponding current wave. In this sense

the number of matching conditions should be equal to ensure that every k state (at con-

stant energy) is considered, including the unphysical spurious states. This particular

point was perfectly described in the paper of Foreman [59]. In the present work, we

proposed two different solutions in order to remove the spurious states and "cure" their

effects, based on previous propositions [60].
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Figure 22: GaMnAs valence band structure with
−→
M ⊥ −→k .

3.7.1 Off-diagonal term method

The first method consists in adding supplementary off-diagonal matrix elements; these

are terms of the form Poff = iαk2
z parameterized by a parameter α where kz is the

wavevector along the current flow (z). This approach is the extension of the method

given by Kolokolov [60] and first applied to the 8- and 14-band Hamiltonians. The

main issues of this method lies in five main points:

(i) The unphysical spurious states characterized by large real k, making impossible

the development of transport theory, have to disappear.

(ii) The Hamiltonian has to be fully unchanged at the Γ point.

(iii) The current operator (1/~) (∂Ĥ/∂kz) has to be fully unchanged at the Γ point.

Provided that conditions (ii) and (iii) are fulfilled, the electronic structure and (spin-

polarized) transport properties are kept unchanged at the Γ point and close to it, in

particular, in terms of symmetry properties (Oh,Td). The symmetry of the crystal is

unchanged at the Γ point.

(iv) The supplementary term Poff = iαk2
z allows us to invert the concavity of the

electronic states and their dispersion beyond a certain k value away from the Γ point.

The inversion of the concavity parameterized by the α parameter leads to the disappear-

ance of the spurious states.

(v) The electronic and transport properties are only weakly affected when increas-

ing kz from zero (far away from the BZ center). We will calculate in the following

the errors made in the energy and components of the wave function introduced by the

supplemental terms, Poff .
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3.7.1.1 2-band k.p toy model

To have a preview of this method, we first consider the 2×2 toy k.p Hamiltonian. The

energies were given in Eq. 36.

for the CB E = k̆2 +

√
E2
G + 4EP k̆2

2
+
EG
2
,

for the VB E = k̆2 −

√
E2
G + 4EP k̆2

2
+
EG
2
.

Ideally, to pull down the VB at large wavevector scale, one needs to increase the

value of E2
G + 4EP k̆

2 by adding a positive term α2k4 which can be compared to the k̆

term. This is the role of the supplementary terms iαk2 in the off-diagonal term in the

toy k.p Hamiltonian

|UC〉 |UV 〉 (50)

Ĥ =

[
EG + k̆2 Pk − iαk2

Pk + iαk2 k̆2

]

We assume that E2
G + 4EP k̆

2 � α2k4 at the large wavevector scale. The energy

for the VB becomes E = (~2/2m0 − α) k2. If α > ~2/2m0, the hole effective mass

is always negative like expected. With the supplemental terms we obtained from the

energy, the electron effective mass for small wavevectors becomes:

Eelectron = k̆2 +

√
E2
G + 4EP k̆2 + α2k4

2
+
EG
2

≈ k̆2 +
EG
2

(
1 +

4EP k̆
2 + α2k4

E2
G

)1/2

+
EG
2

= EG + k̆2 +
EP k̆

2

EG
+
α2k4

4EG
.

One observes that as α2k4/EG � k2, the electron effective mass weakly depends on

the supplementary terms. We have similar results for the hole band. This method was

improved to remove spurious states within the 8-band k.p model [60].

3.7.1.2 14-band k.p model

In the present contribution, we develop this method for a 14-band k.p Hamiltonian

approach. As introduced in Fig. 20, far away from the Γ point the VBs go up and leads

to real spurious states in the band gap. Our idea is similar to the method described in

the 2-band k.p toy model: we modify the coupling terms between the VB and the CB
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by adding terms iαk2 pulling down the VBs far away from the Γ point. The pairs of

states selected for coupling are:
∣∣3

2
,±3

2

〉
Γ8C

and
∣∣1

2
,±1

2

〉
Γ7

;
∣∣1

2
,±1

2

〉
Γ7C

and
∣∣3

2
,∓3

2

〉
Γ8

;

| ±〉 and
∣∣3

2
,±1

2

〉
Γ8C

. Then, we need to find the critical value for the α parameter.

Let us consider the simplest case, the band structure of the Oh group along the [001]

direction. It means that in the 14×14 k.p matrix (Eq. 39) we consider P ′ = ∆′ = 0,

and kx = ky = 0. In this case, the 14×14 matrix can be expressed in the following

block form:

Ĥ =

[
H1 0

0 H2

]
,

where H1 = H2. The basis chosen to express the H1 matrix is{∣∣∣∣32 , 1

2

〉
Γ8C

,

∣∣∣∣32 , −3

2

〉
Γ8C

,

∣∣∣∣12 , 1

2

〉
Γ7C

, | +〉 ,

∣∣∣∣32 , 1

2

〉
Γ8

,

∣∣∣∣32 , −3

2

〉
Γ8

,

∣∣∣∣12 , 1

2

〉
Γ7

}
,

and the basis for the H2 matrix is{∣∣∣∣32 , −1

2

〉
Γ8C

,

∣∣∣∣32 , 3

2

〉
Γ8C

,

∣∣∣∣12 , −1

2

〉
Γ7C

, | −〉,
∣∣∣∣32 , −1

2

〉
Γ8

,

∣∣∣∣32 , −3

2

〉
Γ8

,

∣∣∣∣12 , −1

2

〉
Γ7

}
.

H1 =



EL
8C 0 0 0 0 1√

3
P z
X 0

0 EH
8C 0 0 −1√

3
P z
X 0

√
2
3
P z
X

+iαk2

0 0 Ek
7C 0 0

−
√

2
3
P z
X

−iαk2
0

0 0 0 Ek
6

√
2
3
P z

−iαk2
0 1√

3
P z

0 −1√
3
P z
X 0

√
2
3
P z

+iαk2
EL

8 0 −
√

2U
′

1√
3
P z
X 0

−
√

2
3
P z
X

+iαk2
0 0 EH

8 0

0

√
2
3
P z
X

−iαk2
0 1√

3
P z −

√
2U

′
0 Ek

7


(51)

Because of the time reversal properties, if k is a solution of det(H1 − E Î) = 0, −k
will also satisfy this equation. Therefore, we can write

det(H1−E Î) = 0⇐⇒ R14k
14+R12k

12+R10k
10+R8k

8+R6k
6+R4k

4+R2k
2+R0 = 0

(52)

where Ri is a function of {α, E}. If real spurious states appear, Eq. 52 will possess

solutions with real k at energy E in the band gap. To remove the spurious states, we
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try to find possible values of α making Eq. 52 with no real solution k in the gap. The

simplest way is to chose the value of α making all of Ri negative at energy E in the

band gap, this is our critical value of α. The critical value depends on the material, e.g.

α = 5.32 for GaAs, α = 6.42 for GaSb, α = 5.26 for InAs,. . .

Figure 23: GaAs band structures: (a) after adding the supplementary terms in the

matrix, Eq. 39; (b) before treatment of the spurious states.

In Fig. 23, we can observe that, after this treatment, the spurious states totally

disappear in the band gap.

3.7.1.3 Estimation of Errors

Figure. 24 displays the energy difference in GaAs between the original 14-band k.p

Hamiltonian (with spurious states) and treated 14-band k.p Hamiltonian after adding

off-diagonal terms. The difference in the relevant eigenfunctions is given by the for-

mula:

∆Ψ =

√
‖Ψ0 −Ψoff−diagonal‖2,

where Ψ0 is the eigenvector of the original 14×14 Hamiltonian, and Ψoff−diagonal is the

respective eigenvector of the Hamiltonian with supplemental terms at the same point.

This expression is plotted in Fig. 25 for Γ6 and {Γ7, Γ8} subsets along the [001] axis.

Within 20% of the BZ, the calculated energy and wave functions differences are

observed to be small. We also carefully checked that the supplementary terms do not

contribute to the k-cubic term: the spin-splitting of the first CB in the bulk is zero in the
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Figure 24: Difference in energies in GaAs along the [001] axis between the original

14-band k.p Hamiltonian with spurious states and 14-band k.p Hamiltonian treated by

adding off-diagonal terms (no spurious states) corresponding to the first CB and VBs

vs. wavevector. The edge of the BZ is located at 1 Å−1.

Figure 25: Difference of wave functions in GaAs along the [001] direction for the first

CB and VBs before and after treatment of the spurious states by adding off-diagonal

supplementary terms. The edge of the BZ is located at 1 Å−1.
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Oh group and, in addition, we used the 14-band treated Hamiltonian with supplementary

terms for all our calculations, e.g. the results related to the 14-band calculation in

Chapter 2 represented again in Fig. 26. We obtained a good agreement between the

14-band and 2-band effective tunneling models. The 14-band code demonstrated to be

very robust.

Figure 26: (a) Hole subband dispersion vs. in-plane wavevector for 8 nm GaAs QWs

grown along the [001] direction, calculated by 14-band k.p model; Hole dispersion vs.

in-plane wavevector for 4.2 nm GaAs QWs [45]: (b) calculation, (c) experiment.

However, one of the main drawbacks of the present method of supplementary off-

diagonal k2 term is its inadequation to remove the spurious states in the vicinity of

the indirect gap of group IV semiconductors like in the L valleys of Ge, or near the

X valleys of Si. We then propose another solution which can be able to remove the
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spurious states of Si and Ge (and their alloys).

3.7.2 Novel "ghost-band" approach

In order to extend the treatment of the spurious states to a wider region of the BZ

(not only close to the Γ point, at k < 0.2 Å), we propose a so-called "ghost-band

method". The idea is to use the same trick as previously, that is adding "off-diagonal"

iαk2 squared coupling terms, but much closer in the k space to the point where the

spurious band starts to possess an inverted effective mass. The properties of these sup-

plementary terms are the same:

(i) The Hamiltonian is strictly unchanged at the Γ point.

(ii) The (spin) current-operator is also unchanged at the Γ point.

Therefore, the physical properties remain exactly unchanged at the Γ point and in

particular the symmetry of the crystal.

3.7.2.1 Details of the method

In order to minimize the perturbation of the electronic structure and transport properties

due to the spurious-band treatment, one must minimize the perturbation at specific k

points (A) where are operating the supplementary Poff = iαk2 off-diagonal terms.

This implies that:

(i) One must introduce new fictitious supplementary bands (the so-called ghost-

bands) of arbitrary or adequate symmetry on which the Poff coupling acts in order

to leave unchanged the properties of the true (physical) CB (free of supplementary

couplings). These ghost-bands introduced hereafter (the 14-band model becomes a 18-

band model because there are 4 spurious states in the VB (see Fig. 20)), mimic on the

average the other physical bands that are necessarily truncated by the k.p method. The

mean energy positions of these ghost-bands have to be set by optimization according to

a trial and error procedure (components of the envelope function and energy).

(ii) In order to minimize the effect of the spurious states on the top VB, one needs to

apply the supplementary coupling in the basis where the Hamiltonian is purely diagonal

at a given A point in the k-space (see Eq. 53) in order to leave other bands uncoupled.
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(53)

The philosophy is then as follows:

- The electronic and transport properties are not affected at the Γ point (BZ center)

for all CB, VB, HH, LH, and SO bands.

- The electronic and transport properties are not affected at the A point where Poff

is introduced (away from Γ point), see Eq. 53, for the CB (see Fig. 27).

Figure 27: Band structure diagram of Eq. 53. The ghost bands are included at higher

energy than the first conduction band. At the A point, the ghost bands only couple with

the VB. At the Γ and A points, the CBs are not affected.

- We can expect that the tunneling transport properties (evanescent states from the

bottom of the CB to the top of the VB (Γ point)) will be only weakly affected which is

the case and particularly in the 30-band model.

61



Then, the interest of this procedure is that one can readily transpose the method to a

full 30-multiband approach where spurious states originating from the VB arise at the

first BZ boundary (the L valley of Ge [58]) or approximately for the X valleys of Si.

The symmetry of the corresponding states at the first BZ boundary generally admits a

well-defined character which can make the correction more convenient. Note that the

Hamiltonian in the CB is unchanged at the A point (see Eq. 53).

The price to pay for the method is the necessity to introduce at least two different

coupling points at +k (A+) and −k (A−) (instead of a single one for the BZ center

treatment) because of the different symmetry of the eigenvectors corresponding to +k

and −k.

Figure 28: GaAs band structure along the [110] and [001] directions treated by the

ghost-band method at large scale using parameters close to the values introduced in

Ref. [34]

In Fig. 28, we plot the GaAs band structure along the [110] and the [001] directions

at large scale after treatment by the ghost-band method. It is easy to see that the spurious

states in the hole bands are pushed away. In addition, near the Γ point the VBs and the

first CB are almost nearly unperturbed when compared to the ones before treatment (see

Fig. 29). The method must satisfy these conditions in order that the physical properties

near the Γ point are not changed.
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Figure 29: Difference between energies of 14×14 k.p matrix in GaAs without healing

spurious states and after treatment based on the 18×18 ghost-band method along the

[001] direction. The edge of the BZ is located at 1 Å−1.

Figure 30: Difference of wave functions in GaAs for the first CB and VBs before and

after treatment of the spurious states by ghost-band method along the [001] direction.

The edge of the BZ is located at 1 Å−1.
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3.7.2.2 Estimation of Errors

We decompose the wave function Ψ into a form

ΨT =

(
ΨP

Ψ̄G

)
,

where ΨT is over all the full wave function of the complete Hamiltonian, ΨP refers

to the physical components and Ψ̄G to the unphysical ghost part. The difference of

the wave function between the 14-band k.p matrix without ghost-band treatment in Eq.

39 and the physical wave function ΨP after treatment with the ghost-band method is

defined by:

∆Ψ =

√
‖Ψ0 −ΨP‖2

‖ΨP‖2 .

These calculations for the CB and VBs are showed in Fig. 30; the differences near

the Γ point are small.

3.7.2.3 Matching conditions

To anticipate the discussions on the matching conductions given in Chapter 4, we adopt

here the continuity of the wave function and wave current (the BDD conditions extended

to the multiband case) to study the consequence of the ghost-band treatment. Our con-

clusion will be that, through standard matching conditions, the ghost-band treatment

is truly relevant to describe the full (spin-dependent) transport properties in the main

conduction valleys: i.e., Γ valley for direct-gap semiconductors for both electrons and

holes, L valleys for the CB in the case of indirect-gap semiconductors (e.g. AlAs). We

have already checked (without formal proofs) that the symmetry of both the wave func-

tion and the wave current remain almost unchanged at the relevant valleys following the

ghost-band approach. What about the (spin-dependent) current flux?

Like in the last part, we decompose the wave function Ψ into a form

ΨT =

(
ΨP

Ψ̄G

)
,

(i) The continuity of the wave function means that ΨT is continuous at each interface

indicating that both of the ΨP and Ψ̄G parts are continuous. ΨP is then continuous

(necessary condition) at each interface and at each energy.

(ii) The continuity of the wavecurrent means that Ĵ (ΨT ) is continuous at each in-

terface which, however, it does not necessary imply that ĴΨP and ĴΨ̄G are both con-

tinuous separately at each energy.

However this important property remains true near the extrema of the valleys in-

volved in the transport because the symmetry is conserved for both wave function and

wave current in these regions.
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Let us write the current operator in the form:

Ĵ = ĴP + ĴG,

where ĴP is a 18×18 matrix which has 14×14 non-zero components concerning to the

original 14×14 k.p Hamiltonian, and all the ones concerning ghost-band being zero;

whereas 18×18 matrix, ĴG, has only ones concerning to ghost-band being non-zero.

The (spin-dependent) current flux is written:

Re 〈ΨT | Ĵ |ΨT 〉 = Re
〈

ΨP Ψ̄G

∣∣∣ Ĵ ∣∣∣∣∣ ΨP

Ψ̄G

〉
(54)

= Re
〈

ΨP 0
∣∣∣ ĴP

∣∣∣∣∣ ΨP

0

〉
+ Re

〈
0 Ψ̄G

∣∣∣ ĴG
∣∣∣∣∣ 0

Ψ̄G

〉
,

By principle (matching conditions), Re〈ΨT | Ĵ |ΨT 〉 is continuous over the multi-

layer structure which means that the sum of the two terms are continuous but not nec-

essary each term separately.

However the current of evanescent states are zero Refs. [71, 72, 73], the supple-

mentary ghost-bands (evanescent states) lead to:

Re
〈

0 Ψ̄G

∣∣∣ ĴG
∣∣∣∣∣ 0

Ψ̄G

〉
= 0,

so that we obtain

Re 〈ΨT | Ĵ |ΨT 〉 = Re 〈ΨP | ĴP |ΨP 〉 .

The proof is based on the current vanishing of evanescent states given in Ref. [71,

72], and is valid for the 14-band as well as for the 30-band ghost methods. The proof

for the spin-dependent tunneling current can be considered but, by simple arguments,

one can estimate that the result is equivalent so that one neglects the evanescent current

contribution originating from the lower spurious VBs, which is generally the case.

3.8 30-band k.p model

The details can be found in Refs. [57, 22].

As introduced above, the 14-band k.p model is pretty relevant within 20% of the BZ

near the Γ point. It is necessary to extend the k.p model to describe the band diagram

of indirect band gap semiconductors. Cardona and Pollak [43] used a 15-function basis

(without spin) to describe the dispersion curve throughout the whole Brillouin zone.

They reproduced the band structure of silicon and germanium without adding pertur-

bation involving states outside the 15-function basis: Luttinger-like parameters are not
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needed anymore and, in this sense, the Cardona-Pollak basis is self-contained. This

15-band method leads to a 30-band method if the spin is taken into account. This is the

reason why Cavassilas et al. [74] used a 20-function basis (with spin) and introduced

two bands named s∗ and pseudo-Luttinger parameters to mimic d levels following the

idea developed by Vogl et al. in Ref. [75] for linear combination of atomic orbitals

(LCAO) calculations. With this 20-band k.p Hamiltonian model, the valleys useful for

transport (Γ, L, and X valleys in GaAs, ∆ and L valleys in Si) were described but

this model contains ten adjustable parameters to describe the s∗ bands, nine interaction

energies between bands for Td group semiconductors (only six for Oh group semicon-

ductors) and six pseudo-Luttinger parameters, i.e., 25 adjustable parameters. Moreover,

this 20-band Hamiltonian gave valid results up to 3.5 eV above the top of the VB but

did not give access to the L valley of the second CB. Therefore, Richard et al. [57]

proposed a 30-band k·p Hamiltonian which allowed to calculate the band diagram of

bulk materials for Td or Oh group semiconductors with SOI. The 15 states of the real

crystal which are taken into account correspond to [000], (2π/a)[1 1 1], and (2π/a)[2 0

0] plane-wave states of free electrons in the “empty” germanium lattice. The large gap

between (2π/a)[2 0 0], and (2π/a)[2 2 0] plane waves (more than 15 eV) suggests that

these 15 states are enough to obtain a correct energy band diagram.

Figure 31: Notation in group theory for simple and double group.

For Oh group semiconductors (Si and Ge), the ten k·p matrix elements of interest

are: P = 〈S| px |iX〉, Pd = 〈S| px |iXd〉, PX = 〈XC | py |iZ〉 , PXd = 〈XC | py |iZd〉,
P3 = 〈D1| px |iX〉 , P3d = 〈D1| px |iXd〉 , P2 = 〈S2| px |iX〉 , P2d = 〈S2| px |iXd〉 ,
PS = 〈Sv| px |iXC〉 , PU = 〈SU | px |iXC〉 (see Fig. 32).

The lack of inversion center causes eight additionnal couplings in the Td group:

P ′ = 〈S| px |iXC〉, P ′d = 〈Xd| px |iZ〉, P ′3 = 〈D1| px |iXC〉 , P ′2 = 〈S2| px |iXC〉,
P ′S = 〈Sv| px |iX〉 , P ′Sd = 〈Sv| px |iXd〉 , P ′U = 〈SU | px |iX〉 , P ′Ud = 〈SU | px |iXd〉 ,
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Figure 32: Wave functions in the 30-band k.p model at k=0 for Oh group [57].

Figure 33: Td group: Additional matrix elements and SOC due to the lack of symmetry

in Td group [57].
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PS = 〈Sv| px |iXC〉 , PU = 〈SU | px |iXC〉 , (see Fig. 33).

The spin-orbit interaction is introduced by the following couplings:

(i) The core SOI

∆so =
3~

4m2
0c

2
〈X| ∂V

∂x
py −

∂V

∂y
px |iY 〉 ,

∆C =
3~

4m2
0c

2
〈XC |

∂V

∂x
py −

∂V

∂y
px |iYC〉 ,

∆d =
3~

4m2
0c

2
〈Xd|

∂V

∂x
py −

∂V

∂y
px |iYd〉 ,

(ii) The coupling between the two different multiplets the (Γ7,Γ8) and the (Γ7d,Γ8d)

∆dso =
3~

4m2
0c

2
〈Xd|

∂V

∂x
py −

∂V

∂y
px |iY 〉 ,

(iii) The coupling between the (Γ7C ,Γ8C) multiplet and the (Γ7d,Γ8d) multiplet

which stems from Γ5C levels and the Γ8 level which stems from the Γ3

∆3C =
3~

4m2
0c

2
〈D1|

∂V

∂x
pz −

∂V

∂y
py |iXC〉 .

For the Td group, there are some additional SOCs:

(i) The coupling inside the (Γ7,Γ8) multiplets

∆′ =
3~

4m2
0c

2
〈XC |

∂V

∂x
py −

∂V

∂y
px |iY 〉 ,

∆′Cd =
3~

4m2
0c

2
〈Xd|

∂V

∂x
py −

∂V

∂y
px |iYC〉 ,

(ii) The coupling inside the (Γ7,Γ8) which stems from the Γ5C levels and the Γ8

level which stems from the Γ3

∆′3 =
3~

4m2
0c

2
〈D1|

∂V

∂x
py −

∂V

∂y
px |iX〉 ,

∆′3d =
3~

4m2
0c

2
〈D1|

∂V

∂x
pz −

∂V

∂y
py |iXd〉 ,

(iii) The Luttinger parameters:

γ1 = −1 +
EP
3EG

+
EPX

3

(
1

EG + EGC
+

1

EG + EGC + ∆C

)
+

2E ′Pd
3E5d

+
4

3

EP3

E3

+
EP2

3E6q

− E ′PS
3E6v

+
E ′PU
3E6v

,

γ2 =
1

6

(
EP
EG

+
EP2

E6q

+
E ′PU
E6u

− E ′PS
3E6v

)
− EPX

6 (EG + EGC)
− E ′Pd

6E5d

+
2

3

EP3

E3d

,
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γ3 =
1

6

(
EP
EG

+
EP2

E6q

+
E ′PU
E6u

− E ′PS
3E6v

)
+

EPX
6 (EG + EGC)

+
E ′Pd
6E5d

− EP3

3E3d

,

γC =
m

mC

= 1 +
EP
3

(
1

EG + ∆
+

2

EG

)
− E ′P

3

(
1

EGC
+

2

EGC + ∆C

)
− EPd
E5d − EG

.

The ghost-band method is applied to remove the spurious states in 30-band mod-

els. The electronic band structures of GaAs at large scale before (blue) and after (red)

treatment of spurious states are plotted in Fig. 34. The spurious states are removed,

enabling possible tunneling transport calculations in a 30-band framework.

Figure 34: GaAs band structure before (red) and after (blue) spurious treatment by

ghost band method, with the parameters introduced in [57].
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Figure 35: Comparison between the in-plane hole energy dispersion for a AlAs/

GaAs/AlAs QW 6.21 nm derived from our 30-band tunnel k.p code (left) along the

[001] direction of the BZ and the one derived from Ref. [66] obtained with a 6-band

model along both [001] and [110] directions.
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CHAPTER IV

THE MATCHING CONDITIONS FOR TRANSPORT

WITHIN THE K.P FRAMEWORK

In this chapter, we consider the general rules defining the matching conditions for the

wave functions at single interfaces or in multilayered structures. These will be adopted

for electrons in effective-mass models or holes using Luttinger parameters in multi-

band transport with different engineered interfaces. Respectively, we consider in the

same way the propagation of spin current waves and their profiles throughout the het-

erostructures in a multiband approach. The set of matching conditions arises from the

resolution of the Schrödinger equation in each layer with correct boundary conditions

depending on the interface properties and related symmetries (e.g. Rashba interface,

Td, or C2v reduction) [53]. In some special cases, the need of perturbative methods

adapted to the whole heterostructure (or single interface) is mandatory to get a phys-

ical insight in the new physical properties we calculate. This is often the case when

one considers the effect of SOI in the diffusion processes (e.g. tunneling) from pure

numerical and analytical developments. In particular, we adopt the formalism of spin-

dependent scattering in the k.p frame, including SOI to study the effect of scattering

asymmetry (topological Hall effect like investigated throughout the present thesis) in

the VB of semiconductors in an improved Kane model. On the other hand, the electron

transport through interfaces which is a location of spin-orbit phenomena (e.g. Rashba

interactions) can lead to the same kind of interfacial transverse Hall effect. It can also

lead to a discontinuity of the longitudinal spin current due to local interface dephasing

phenomena which are important to consider in a general way. This could constitute a

natural extension of the present work.

More generally, the integration of possible Rashba, spin-orbit and/or exchange inter-

actions at interfaces in Dirac-like interaction potentials (δ-potentials) becomes, nowa-

days, a systematic way to consider the properties of electrons crossing ferromagnetic/

heavy-metal interfaces. These properties of electron crossing, scattering off interfaces

by reflection/transmission processes, are very important when one considers, e.g. the

issue of STT by SHE or Rashba processes from a heavy metal to a thin ferromagnetic

film. These particular issues are largely developed in recent papers [76, 78, 79] when

considering the absorption of the respective longitudinal and transverse parts of the spin

current relevant from both Rashba and SHE in the case of Co/Pt systems. The calcu-

lation of the spin current transmissivity at the specific interfaces leads to the correct
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determination and anatomy of the STT with possible relaxation to the lattice (by the

SO term) or directly transferred to the local magnetization (through the exchange in-

teractions). This is made possible via the determination of the extended spin-mixing

conductance integrating spin-orbit and exchange at interfaces.

These physical issues of wave function matching are, presently, of a primary im-

portance, because the properties of interface crossing for carriers (electrons or holes)

is a problem encountered more generally in the physical model of the spin-resolved

Boltzmann diffusion equations for both in-plane (e.g. CIP-GMR) and out-of-plane

(CPP-geometry) diffusion transport, like in recent spin-Hall magnetoresistance (SMR)

or unidirectional spin-Hall magnetoresistance (USMR) experiments [77, 80, 81, 82].

More generally, the particular matching conditions to adopt, and generalized to the

spin-orbit case, enter into the relevant boundary conditions to adopt e.g. from a 2 × 2

spinor approach, for the out-of-equilibrium distributions responsible for the spin cur-

rents, for the magnetoresistances and for the spin-torque and for SMR. The reason is

that interface crossing or scattering derives from a pure quantum-mechanical process

where spin-polarized electrons or carriers mainly behave like both wave and particles.

These observations partly explain the choice to dedicate a full-chapter to the matching

conditions.

For the case of semiconducting heterostructures, largely developed here, we have

chosen to consider the standard multiband matching conditions possibly involving ex-

trinsic SO surface potentials although, in the particular case of Td compounds, inter-

faces break the bulk symmetry group into the C2v symmetry responsible for example of

mixing between heavy hole and light holes. These particular matching condition for the

C2v symmetry have been proposed at the IOFFE institute in 1996 [83] in a first 4-band

and 6-band approach before their generalization to a 14-band treatment very recently

[56]. These particular matching conditions could be very easily implemented in a short

future in our 14- and 30-band codes without large complexity.

In this chapter, we first describe the matching conditions for unpolarized electrons

in the CB before generalizing to the case of the spin-polarized multiband applicable in

both the CB and VB of semiconductors, in a full BZ approach (30-band calculation)

and allowing the exact determination of both currents and spin currents in the whole

heterostructures.

4.1 Example for free electron

Tunneling transport is a very basic problem in fundamental quantum physics and its

applications. An electron can be transmitted through barrier of higher energy than the

electron energy. Let us consider for instance free electron tunneling in one dimension,
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for which the Hamiltonian in whole space writes:

Ĥ =
p̂2
x

2m0

+ V0Θ(x) = − ~2

2m0

∂2

∂x2
+ V0Θ(x), (55)

where m0 is free electron mass, V0 a certain constant, Θ(x) is Heaviside function.

An alternative approach is first to establish the continuity of the wave function deriv-

ative by integration of the Schrödinger equation:∫ +ε

−ε

[
− ~2

2m0

∂2

∂x2
+ V0Θ(x)

]
Ψ(x)dx =

∫ +ε

−ε
EΨ(x)dx (56)∫ +ε

−ε
− ~2

2m0

∂2

∂x2
Ψ(x)dx =

∫ +ε

−ε
[E − V0Θ(x)] Ψ(x)dx.

Taking the limit when ε −→ 0, because the term E −V0Θ(x) is bounded, we obtain:

lim
ε−→0

∫ +ε

−ε
[E − V0Θ(x)] Ψ(x)dx = 0.

Therefore, Eq. 56 becomes:

lim
ε−→0

[
∂

∂x
Ψ(x)

]+ε

−ε
dx = 0.

Physically, the probability current has to be continuous, i.e.,

Jf [Ψ] = Re

[
Ψ∗

p̂

m0

Ψ

]
=
~
m0

Im

[
Ψ∗

∂

∂x
Ψ

]
= 0. (57)

So that a sufficient condition is [Ψ]x=0 = 0 which provides us the standard matching

condition, namely the continuity of the envelope function and of its derivative.

4.2 The BenDaniel-Duke condition

The problem becomes more complex when an electron propagates through a heterostruc-

ture made of different materials, where in each bulk medium, the system is described by

its own relevant Hamiltonian. We then need to define the proper matching conditions

at each boundary. In this situation, the BDD approach is known to be the simplest one

[33] to be considered. Let us introduce the BDD ideas for the matching conditions in

one dimension. Suppose that an electron tunnels through an interface delimiting two

different media at x < 0 and x > 0. As mentioned before, each medium is character-

ized by its own Hamiltonian and one must find a solution of Schrödinger’s equation,

made of eigenvectors of relevant bands in the two bulk materials, ensuring the continu-

ity of the probability current at the origin. In this sense, the problem is analogous to a

scattering problem, where the wave functions are determined only at some distance of

the scattering potential. Proper matching conditions rely on the extension of the bulk
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envelope function over the whole space. In an effective mass point of view, the BDD

proposed to write the Hamiltonian in the whole space as:

Ĥ(x) =
p̂2
x

2m(x)
+ V (x) = p̂x

[
1

2m(x)
p̂x

]
+ V (x) =

1

2
p̂x
∂Ĥ

∂p̂x
+ V (x), (58)

where m(x) is the effective position-dependent mass and V (x) is the potential in each

medium. This procedure yields an Hermitian Hamiltonian. The integration of the

Hamiltonian in Eq. 58 around the boundary automatically ensures the continuity of

the probability current, provided that both Ψ(x) and current wave
(
∂Ĥ/∂p̂x

)
Ψ are

continuous. The BDD matching conditions are known as standard matching conditions

for electrons in the CB and have been applied with success to a variety of situations.

But one must note that these are not valid in the systems characterized by an Hamil-

tonian including terms with momentum operator power of orders larger than two along

the flux direction [31].

For more complex systems including, e.g. k3 terms, corresponding to Dresselhaus

interactions in an effective Hamiltonian approach, it is no longer possible to treat the

transport in the standard way. A solution is to increase the number of bands to express

to the Hamiltonian so that each matrix element of the Hamiltonian only involves k terms

with power strictly lower than three.

4.3 Standard matching condition for the multiband trans-

port

In this part, we consider the matching conditions in the structures possibly including

SOI and exchange interactions. This particular issue raises when one considers the

crossing of ferromagnetic/spin-orbit couples in semiconductor as well as metallic spin-

tronics systems like recently emphasized in papers dealing with the problematic of STT

via the SHE or SMR. As mentioned before, the SOI associated the the lack of inversion

center leads to the occurrence of the cubic terms, i.e., Dresselhaus terms, in the electron

effective model. It makes us modify the standard matching conditions [31] or consider

the cubic terms as perturbation terms [15]. Another solution, which is adopted in the

present work, is to work within a larger basis function to decrease the order of momen-

tum terms, e.g. using a 14-band k.p model instead of a 2-band effective model. In this

point of view, it becomes necessary to redefine the matching conditions for multiband

transport [84, 85]. Let us start with the Hamiltonian without exchange interaction:

Ĥ =
p2

2m0

+ U+
~

4m2
0c

2
(∇U× p) .σ.

As introduced before in Sec.3.1, the Hamiltonian can be written in the form:
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Ĥ =
∑
j,k

aj p̂j +
∑
j,k

bjkp̂j p̂k, (59)

where p̂j, p̂k are the components of momentum p; aj and bjk (j, k refer to Cartesian

coordinates) are 14×14 Hermitian matrices operating on the spin and space components

and invariant under permutation of j, k. To describe the potentials independent of the

momentum, e.g. the exchange potential or external magnetic field, we introduce Ĥ0 as

a supplemental term in Eq. 59.

We have intentionally chosen to give the exact derivation for the current and spin

current operators from the general Schrödinger equation in multilayers. The Schrödinger

equation writes:

i~
∂ |Ψ〉
∂t

= Ĥ |Ψ〉

i~
∂ |Ψ〉
∂t

=
∑
j

aj p̂j |Ψ〉+
∑
j,k

bjkp̂j p̂k |Ψ〉+ Ĥ0 |Ψ〉 .

Taking the adjoint, we obtain:

−i~∂ 〈Ψ|
∂t

=
∑
j

〈p̂jΨ| aj +
∑
j,k

〈p̂j p̂kΨ| bjk + 〈Ψ| Ĥ0.

The conservation equation related to the density of probability (i.e., the so-called

"continuity equation") can be straightforward defined:

i~
∂ 〈Ψ| Ψ〉

∂t
= i~

[
〈Ψ| ∂Ψ

∂t

〉
+

〈
∂Ψ

∂t

∣∣∣∣ Ψ〉
]

=
∑
j

〈Ψ| aj p̂j |Ψ〉+
∑
j,k

〈Ψ| bjkp̂j p̂k |Ψ〉

−
∑
j

〈p̂jΨ| aj Ψ〉 −
∑
j,k

〈p̂j p̂kΨ| bjk Ψ〉

=

[∑
j

〈Ψ| aj p̂j |Ψ〉 −
∑
j

〈p̂jΨ| aj Ψ〉
]

+

[∑
j,k

〈Ψ| bjkp̂j p̂k |Ψ〉 −
∑
j,k

〈p̂j p̂kΨ| bjk Ψ〉
]
.

Because 〈p̂jΨ| aj Ψ〉 = 〈Ψ| aj p̂j |Ψ〉∗ , 〈p̂j p̂kΨ| bjk Ψ〉 = 〈Ψ| bjkp̂j p̂k |Ψ〉∗, we ob-

serve:

∂ 〈Ψ| Ψ〉
∂t

=
2

~
Im

[∑
j

〈Ψ| aj p̂j |Ψ〉+
∑
j,k

〈Ψ| bjkp̂j p̂k |Ψ〉
]
. (60)
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Let us demonstrate that

2

~
Im

[∑
j

〈Ψ| aj p̂j |Ψ〉+
∑
j,k

〈Ψ| bjkp̂j p̂k |Ψ〉
]

= −
∑
j

∇j

(
Re 〈Ψ| Ĵj |Ψ〉

)
,

where Ĵj is the j component of the wave current operator Ĵ,

Ĵj =
∂Ĥ

∂p̂j
= aj + 2

∑
k

bjkp̂k.

One obtains,

Re 〈Ψ| Ĵj |Ψ〉 =
∑
k

〈Ψ| aj
2

+ bjkp̂k |Ψ〉+
∑
k

〈(aj
2

+ bjkp̂k

)
Ψ
∣∣∣ |Ψ〉 . (61)

Note∇j = (i/~) p̂j, and (aj)
+ = aj, (bjk)

+ = bjk.

We first consider the derivation of the first-order components in Eq. 61,

A1 =
i

~
p̂j

{
〈Ψ| aj

2
Ψ
〉

+
〈aj

2
Ψ
∣∣∣ Ψ〉

}
(62)

=
i

~
p̂j {〈Ψ| ajΨ〉}

=
i

~
{〈Ψ| aj p̂jΨ〉 − 〈p̂jΨ| ajΨ〉}

=
−2

~
Im 〈Ψ| aj p̂jΨ〉 .

And the derivation of the second-order components in Eq. 61,

A2 =
i

~
∑
k

p̂j {〈Ψ| bjkp̂kΨ〉+ 〈bjkp̂kΨ| Ψ〉} (63)

=
i

~
∑
k

{
〈Ψ| bjkp̂j p̂kΨ〉 − 〈p̂jΨ| bjkp̂kΨ〉
− 〈bjkp̂j p̂kΨ| Ψ〉+ 〈bjkp̂kΨ| p̂j Ψ〉

}
.

We have 〈bjkp̂kΨ| p̂j Ψ〉 = 〈p̂kΨ| bjkp̂j Ψ〉 = 〈p̂jΨ| bjkp̂kΨ〉 so that Eq. 63 becomes

A2 =
i

~
∑
k

{〈Ψ| bjkp̂j p̂kΨ〉 − 〈bjkp̂j p̂kΨ| Ψ〉} (64)

A2 =
−2

~
∑
k

Im 〈Ψ| bjkp̂j p̂kΨ〉 .

From Eqs. 62 and 64, we obtain

∇j

{
Im 〈Ψ| Ĵj |Ψ〉

}
=
−2

~
∑
k

Im 〈Ψ| (aj p̂j + bjkp̂j p̂k) Ψ〉 . (65)

According to Eqs. 60 and Eq. 65

∂ 〈Ψ| Ψ〉
∂t

= −
∑
j

∇j

(
Re 〈Ψ| Ĵj |Ψ〉

)
.

76



Under stationary regime, we obtain

0 = ∇j

{
Re 〈Ψ| Ĵj |Ψ〉

}
.

This equation demonstrates that the current 〈Ψ| ĴjΨ
〉

is conserved, at least in each

layer of the heterostructure separately. We will show, in the next section, that this is

also true within the whole heterostructure under the conditions that the correct current

operator is defined from the Hamiltonian and the correct boundary conditions from the

surface potential terms. Concerning the exchange potential, if this is to be considered

(e.g. appearing in the ferromagnetic semiconductor structures), the corresponding ex-

change Hamiltonian, Ĥ0, is independent of momentum and position. Therefore, it is

not necessary to redefine the components of the current operator Ĵ.

Finally, the continuity of the wave function Ψ and the continuity of the wave current

ĴiΨ are sufficient conditions which ensure that the probability current is continuous at

an interface. These are the matching conditions which we use in the present work. And

we will show that the charge current remains constant throught the heterostructure.

4.4 Definition of the spin current with the standard match-

ing conditions

With the standard matching conditions for multiband transport introduced in Sec.4.3,

respectively we consider the spin current.

i~
∂ 〈Ψ| σ̂α Ψ〉

∂t
= i~

[
〈Ψ| σ̂α

∂Ψ

∂t

〉
+

〈
∂Ψ

∂t

∣∣∣∣ σ̂α Ψ〉
]

(66)

= 〈Ψ| σ̂αĤΨ
〉
−
〈
σ̂αĤΨ

∣∣∣ Ψ〉 ,

where σ̂α is spin operator, σ̂α = {σx, σy, σz} .
For symmetry properties, the operator σ̂αĤ can be written as:

σ̂αĤ + Ĥ+σ̂+
α

2
=
σ̂αĤ + Ĥσ̂α

2
,

because the spin operator and the Hamiltonian are Hermitian matrices.

The conservation equation expressed by Eq. 66 becomes:

∂ 〈Ψ| σ̂α Ψ〉
∂t

=
1

i~

 〈Ψ| σ̂αĤ+Ĥσ̂α
2

Ψ
〉
−
〈
σ̂αĤ+Ĥσ̂α

2
Ψ
∣∣∣ Ψ〉

+ 〈Ψ|
[
σ̂α, Ĥ0

]
|Ψ〉

 (67)

=
2

~
Im 〈Ψ| σ̂αĤ + Ĥσ̂α

2
Ψ

〉
+

1

i~
〈Ψ|

[
σ̂α, Ĥ0

]
|Ψ〉 .
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Let us introduce Ĵαj which is the α, (α = {x, y, z}) , component of spin current

operator, along the j direction (j = {x, y, z}) of charge current,

Ĵαj =
σ̂α
2

∂Ĥ

∂p̂j
+
∂Ĥ

∂p̂j

σ̂α
2
.

We will demonstrate that

2

~
Im 〈Ψ|

(
σ̂αĤ + Ĥσ̂α

2

)
Ψ

〉
= −

∑
j

∇j

(
Re 〈Ψ| Ĵαj Ψ〉

)
,

The spin operator is independent of the momentum so that we can write,

∇j

(
σ̂α
2

∂Ĥ

∂p̂j
+
∂Ĥ

∂p̂j

σ̂α
2

)
=

σ̂α
2
∇j

∂Ĥ

∂p̂j
+∇j

∂Ĥ

∂p̂j

σ̂α
2

=
i

~
∑
k

{
σ̂α
2

(aj p̂j + 2bjkp̂kj p̂j) + (aj p̂j + 2bjkp̂kj p̂j)
σ̂α
2

}

= 2
i

~

(
σ̂αĤ + Ĥσ̂α

2

)
.

Therefore, we have

〈Ψ| Ĵαj Ψ〉 = 2
i

~
〈Ψ|

(
σ̂αĤ + Ĥσ̂α

2

)
Ψ〉 .

One obtains,

Re 〈Ψ| Ĵαj Ψ〉 =
1

2

(
〈Ψ| Ĵαj Ψ〉+ c.c

)
=

i

~
〈Ψ|

(
σ̂αĤ + Ĥσ̂α

2

)
Ψ〉+ c.c

= −2 Im 〈Ψ|
(
σ̂αĤ + Ĥσ̂α

2

)
Ψ〉 .

We observe and conclude that the conservation equation for the spin current writes:

∂ 〈Ψ| σ̂α Ψ〉
∂t

= −
∑
j

∇j

(
Re 〈Ψ| Ĵαj Ψ〉

)
+

1

i~
〈Ψ|

[
σ̂α, Ĥ0

]
|Ψ〉 .

In the case, when the Hamiltonian is time independent, we obtain the continuity

equation for the spin current according to the following form:

0 = ∇j

(
Re 〈Ψ| Ĵαj Ψ〉

)
+

1

i~
〈Ψ|

[
σ̂α, Ĥ0

]
|Ψ〉 . (68)

which means that, unlike the charge current which is always conserved, the spin current

is conserved on the condition that the Hamiltonian in the bulk and at the interface (see
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the following section) commutes with the corresponding spinor. On this unique condi-

tion, the spin current is conserved within the whole heterostructure. If one considers,

for example, the case of a spin-orbit coupling of the form ĤS.O = L.S, one can easily

observe that its commutator with the spin physical observable S is not zero but includes

the orbital-moment operator L, playing the role of a non-zero external magnetic field

acting on the spin. By reciprocity, the orbital current (not defined here, see for instance

Ref. [86]) will be neither conserved due to the action of the spin S. Note however, that

the total angular-momentum (J = L + S) is conserved at least in the case of a pure

spherical symmetry because it commutates with the spin-orbit Hamiltonian term.

Another example is the one of an exchange field in a ferromagnet, which is a gen-

eral problem for the issue of the spin-transfer phenomena. The presence of an exchange

field in the ferromagnetic layer to be switched, by STT or by SHE, makes the spin cur-

rent nonuniform in the layer but modulated by a precession of the local spin-polarized

carriers around the local magnetic field. This precession, which is shortly described

below, is responsible for the mixing between the damping-like and field-like torques

within the film thickness, as largely emphasized in the case of spin-torques through a

tunnel barrier [87, 145, 88].

Let us consider an example where Ĥ0 is the exchange Hamiltonian Ĥ0 = 6BG
−→m.σ̂,

where we observe

1

i~
〈Ψ|

[
σ̂α, Ĥ0

]
|Ψ〉 =

1

i~
〈Ψ| [σ̂α, 6BG

−→m.σ̂] |Ψ〉

=
1

~
〈Ψ| (6BG

−→m × σ̂)α |Ψ〉 .

This equation describes the physics of STT in tunnel junctions where the precession

term (second term) results in a strong mixing between the damping-like and field-like

symmetries of the torque.

Equation. 68 becomes

0 = ∇j

(
Re 〈Ψ| σ̂α

2

∂Ĥ

∂p̂j
+
∂Ĥ

∂p̂j

σ̂α
2

Ψ〉
)

+
1

~
〈Ψ| (6BG

−→m × σ̂)α |Ψ〉 .

4.5 Matching conditions with structure inversion asym-

metry (SIA) at interface

We consider now, the case where a surface potential of a particular symmetry possibly

involving either spin-orbit and/or surface exchange terms at interfaces or in interface

states is rapidly damped in the layer on a typical length scale given by the electronic

evanescent wave, that is a few nanometers. We will call it SIA-like structure inver-

sion asymmetry, even if these terms may gather different meanings, e.g. if exchange
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terms are included due to the proximity effect of the exchange interactions within the

ferromagnet. This case corresponds to the interface properties between two different

materials involving generally several interfaces which can be the seat of strong asym-

metric potential effects (Rashba-Dresselhaus supplementary in-plane terms breaking

symmetry).

We consider the SIA spin-splitting given by a Rashba interface term along the j

direction,

ĤR =
∑
j

Vjδ(xj − x0),

where Vj is a matrix which is independent of the j component of the momentum.

The total Hamiltonian is:

Ĥtotal = Ĥ + ĤR, (69)

where Ĥ was introduced in the last Sec. 4.3,

Ĥ =
∑
j

aj p̂j +
∑
j,k

bjkp̂j p̂k .

The Schrödinger equation is:

i~
∂ |Ψ〉
∂t

= Ĥtotal |Ψ〉

i~
∂ |Ψ〉
∂t

= Ĥ |Ψ〉+
∑
j

Vjδ(xj − x0) |Ψ〉 .

Taking the adjoint of this equation, one gets

−i~∂ 〈Ψ|
∂t

=
〈
ĤΨ

∣∣∣+
∑
j

〈VjΨ| δ(xj − x0).

4.5.1 Definition of the charge current and new matching condition

We are now going to generalize the definition of the charge current operator, as well as

the matching conditions to use for a given interface. The equation of conservation for

the present Hamiltonian, can now be written as:

∂ 〈Ψ| Ψ〉
∂t

= 〈Ψ| ∂Ψ

∂t

〉
+

〈
∂Ψ

∂t

∣∣∣∣ Ψ〉

=
1

i~

(
〈Ψ| ĤΨ

〉
−
〈
ĤΨ

∣∣∣ Ψ〉
)

+
1

i~

[∑
j

〈Ψ|Vjδ(xj − x0) |Ψ〉 −
∑
j

〈VjΨ| δ(xj − x0) |Ψ〉
]
.

As we did before,
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1

i~

(
〈Ψ| ĤΨ

〉
−
〈
ĤΨ

∣∣∣ Ψ〉
)

= −
∑
j

∇j Re 〈Ψ| ∂Ĥ
∂p̂j
|Ψ〉 .

We obtain

1

i~

[∑
j

〈Ψ|Vjδ(xj − x0) |Ψ〉 −
∑
j

〈VjΨ| δ(xj − x0) |Ψ〉
]

=
∑
j

−i
~
〈Ψ|Vjδ(xj − x0) |Ψ〉+ c.c

= Re 〈Ψ| (−2i)

~
Vjδ(xj − x0) |Ψ〉 .

We know that δ(xj − x0) is equal to
∂Θ(xj−x0)

∂xj
, where Θ is the Heaviside function.

The continuity equation for the current-operator becomes:

∂ 〈Ψ| Ψ〉
∂t

=
∑
j

∇j Re

[
−〈Ψ| ∂Ĥ

∂p̂j
− 2i

~
VjΘ(xj − x0) |Ψ〉

]

= −1

~
∑
j

∇j Re

[
〈Ψ| ∂Ĥ

∂k̂j
+ 2iVjΘ(xj − x0) |Ψ〉

]
.

In the case where the Hamiltonian is time independent like one considers here, one

obtains:

0 =
∑
j

∇j Re

[
〈Ψ| ∂Ĥ

∂k̂j
+ 2iVjΘ(xj − x0) |Ψ〉

]
,

or 0 =
∑
j

∇j Re
[
〈Ψ| Ĵj |Ψ〉

]
,

where Ĵj = ∂Ĥ

∂k̂j
+ 2iVjΘ(xj − x0) is the j component of the current operator to be

matched at interfaces. This important relationship allows us to give a formal definition

of the current operator to use in each media and, in this sense, provides a generaliza-

tion of the correct expression to use in the case of a general surface potential possibly

involving Rashba, Dresselhaus, exchange interactions, and of all other types.

This development then provides us the new matching conditions to use as far as:

Re
[
〈Ψ| Ĵj |Ψ〉

]
is continuous at the interface.

4.5.2 Definition of the spin current

Now, let us consider the spin current in heterostructures involving surface potential

terms.
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According to Eq. 68 with Ĥ0 = ĤR, we obtain:

0 = ∇j

(
1

~
Re 〈Ψ| σ̂α

2

∂Ĥ

∂k̂j
+
∂Ĥ

∂k̂j

σ̂α
2

Ψ〉
)

+
1

i~
〈Ψ|

[
σ̂α, ĤR

]
|Ψ〉j . (70)

We calculate 1
i~ 〈Ψ|

[
σ̂α, ĤR

]
|Ψ〉j ,

1

i~
〈Ψ|

[
σ̂α, ĤR

]
|Ψ〉j =

1

i~
〈Ψ| σ̂αVjδ(xj − x0)− Vjδ(xj − x0)σ̂α |Ψ〉 (71)

=
1

~
∇j 〈Ψ| − iσ̂αVjδ(xj − x0) + iVjδ(xj − x0)σ̂α |Ψ〉 .

Equation. 70 becomes:

0 = ∇j

{
Re 〈Ψ|

(
σ̂α
2

∂Ĥ

∂k̂j
+
∂Ĥ

∂k̂j

σ̂α
2

)
|Ψ〉+ 〈Ψ| − iσ̂αVjΘ(xj − x0) + iVjΘ(xj − x0)σ̂α |Ψ〉

}
.

(72)

Therefore, we observe:

Re 〈Ψ|
{(

σ̂α
2

∂Ĥ

∂k̂j
+
∂Ĥ

∂k̂j

σ̂α
2

)}
|Ψ〉 =

{
const+ i 〈Ψ| [σ̂α, Vj] |Ψ〉 if xj > x0

const if xj < x0

.

(73)

This equation shows the discontinuity of the spin current at the interface for a SIA

spin splitting given by Rashba interface term, and will be discussed in the next chapter

concerning transport in heterostructures.

4.6 Current in heterostructures

In this section, we will demonstrate that the use of the matching conditions derived

previously in the preceding sections and applied to each interface within a given het-

erostructure, simple interfaces, tunnel junctions, quantum wells, double-barrier struc-

tures, are always associated to a conservative charge-current profile within the transport

direction. The demonstration will be made taking into account the properties of the

S-scattering matrix for the contact interface. On the other hand, the same conclusions

cannot be generalized to the case of the spin current profile if either bulk or interface

potentials admit an Hamiltonian term responsible for local spin decoherence (linear or

cubic Rashba interactions, Dresselhaus for the C2v symmetry interface) responsible for

spin current discontinuities in the longitudinal direction (what is called spin-memory

loss) or in the two-transverse directions (spin decoherence). This effect should lead to

in the re-examination of the calculations of the spin-mixing conductance (real part and

imaginary part) for systems involving Rashba interactions at interfaces.
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Figure 36: The continuity of the flux current at the interface

We demonstrate here the continuity of the charge current. The wave function at the

left interface is written as:

ΨL = Φin(−→r ) +
∑
n

rin,nΦn
r (−→r ),

whereas the wave function at the right interface is:

ΨR =
∑
n

tin,nΦn
r (−→r ).

Let assume that the matching conditions at the interfaces are the continuity of the

wave function Ψ and of the wave current Re 〈Ψ| Ĵ |Ψ〉 where Ĵ = ∂Ĥ/∂p̂. These are

the matching conditions that we consider through the present work.

The probability current at the left of the interface is:

Re 〈ΨL| Ĵ |ΨL〉 = Re

〈
Φin +

∑
n

rin,nΦn
r

∣∣∣∣∣ Ĵ
∣∣∣∣∣Φin +

∑
n′

rin,n′Φ
n′

r

〉
(74)

= Re 〈Φin| Ĵ |Φin〉+
∑
n

|rin,n|2 Re 〈Φn
r | Ĵ |Φn

r 〉

+
∑
n

Re 〈rin,nΦn
r | Ĵ |Φin〉+

∑
n

Re 〈Φin| Ĵ |rin,nΦn
r 〉 .

The interference term,

〈rin,nΦn
r | Ĵ |Φin〉 =

〈
Ĵ+rin,nΦn

r

∣∣∣ Φin〉 = 〈Φin| Ĵ |rin,nΦn
r 〉
∗ = −

〈
ĴΦin

∣∣∣ rin,nΦn
r 〉
∗ .

(75)

From Eq. 75, one has:

Re 〈rin,nΦn
r | Ĵ |Φin〉 = 0. (76)

Equations 75 and 76 show that the interference terms in Eq. 74 are canceled∑
n

Re 〈rin,nΦn
r | Ĵ |Φin〉+

∑
n

Re 〈Φin| Ĵ |rin,nΦn
r 〉 = 0.
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Therefore, we obtain

〈ΨL| Ĵ |ΨL〉 = 〈Φin| Ĵ |Φin〉+
∑
n

|rin,n|2 〈Φn
r | Ĵ |Φn

r 〉 .

The probability current at the right of the interface is:

Re 〈ΨR| Ĵ |ΨR〉 =

〈∑
n

tin,nΦn
r

∣∣∣∣∣ Ĵ
∣∣∣∣∣∑
n′

tin,n′Φ
n′

r

〉
=

∑
n

|tin,n|2 〈Φn
r | Ĵ |Φn

r 〉 .

The continuity of the probability current gives:

〈Φin| Ĵ |Φin〉+
∑
n

|rin,n|2 〈Φn
r | Ĵ |Φn

r 〉 =
∑
n

|tin,n|2 〈Φn
r | Ĵ |Φn

r 〉 ,

1 +
∑
n

|rin,n|2
〈Φn

r | Ĵ |Φn
r 〉

〈Φin| Ĵ |Φin〉
=

∑
n

|tin,n|2
〈Φn

r | Ĵ |Φn
r 〉

〈Φin| Ĵ |Φin〉
,

1 +
∑
n

Rin,n

〈
ĴL

〉
n〈

ĴL

〉
in

=
∑
n

Tin,n

〈
ĴR

〉
n〈

ĴL

〉
in

Rin,n, Tin,n are reflection and transmission coefficients from in channel to n channel.

4.7 Scattering matrix formalism

The detail can be found in Refs. [89, 90].

Figure 37: Schema of tunneling electron

We assume that the electrons/holes tunnel through a heterostructure grown along

the z axis, each medium being characterized by its own Hamiltonian. Suppose that the

incident energy E and the in-plane wavevector k‖ = (kx, ky) are conserved during the

transport. Then we can find the relevant out-of-plane wavevectors kz and eigenvectors

of the Hamiltonian in each medium.
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Because of the time reversal properties, if Φ(kn) is a solution of the Schrödinger

equation, Φ(−kn) will also satisfy this equation. The solution of the Schrödinger equa-

tion in the jth layer has the form

Ψ(j) =

m∑
n=1

a(j)
n Φ(j)(kn) exp(iknz) + b(j)

n Φ(j)(−kn) exp(−iknz)

where m is the band index in the k.p model, i.e., m = 6 in 6-band k.p model, m = 14

in 14-band k.p model ; kn is the respective value of kz in the nth band; Φ(j)(kn) is

the eigenvector of the Hamiltonian in the jth layer at incident energy ε. Applying the

standard matching conditions for multiband transport, Φ and ĴzΦ are continuous. We

first consider a three-layer structure. It is convenient to write −kn = kn+m.

The matching condition between the left (L) region and the barrier (B) (i.e., for

z = 0) can be written:



ΦL
1 (k1) .... ΦL

1 (k2n)

.

.

.

.

.

.

.

.

.

ΦL
n(k1) ... ΦL

n(k2n)

JzΦ
L
1 (k1) .... JzΦ

L
1 (k2n)

.

.

.

.

.

.

.

.

.

JzΦ
L
n(k1) .... JzΦ

L
n(k2n)





aL1

.

.

.

aL2

bL1

.

.

.

bL2



=



ΦB
1 (k1) .... ΦB

1 (k2n)

.

.

.

.

.

.

.

.

.

ΦB
n (k1) ... ΦB

n (k2n)

JzΦ
B
1 (k1) .... JzΦ

B
1 (k2n)

.

.

.

.

.

.

.

.

.

JzΦ
B
n (k1) .... JzΦ

B
n (k2n)





aB1

.

.

.

aB2

bB1

.

.

.

bB2



,

(77)

or equivalently,

ML

[
aL

bL

]
= MB

[
aB

bB

]
.

The matching conditions between barrier and right region (R):

MBQB

[
aB

bB

]
= MR

[
aR

bR

]
, (78)

QB =


e−ik1d ... 0

.

.

.

.

.

.

.

.

.

0 0 e−ik2nd

 ,
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MR =



ΦR
1 (k1) .... ΦR

1 (k2n)

.

.

.

.

.

.

.

.

.

ΦR
n (k1) ... ΦR

n (k2n)

JzΦ
R
1 (k1) .... JzΦ

R
1 (k2n)

.

.

.

.

.

.

.

.

.

JzΦ
R
n (k1) .... JzΦ

R
n (k2n)



,

[
aL

bL

]
= M−1

L MBQ
−1
B M−1

B MR

[
aR

bR

]
,

M = M−1
L MBQ

−1
B M−1

B MR =

[
M11 M12

M21 M22

]
is the transfer matrix.

[
aL

bL

]
=

[
M11 M12

M21 M22

][
aR

bR

]
, (79)

In the scattering theoretical point of view we relate the coefficients according to a

different criterion. We consider the outgoing amplitudes, corresponding to bL and aR

and define the S-matrix which relates them to the incoming ones, aL and bR. Thus[
bL

aR

]
=

[
S11 S12

S21 S22

][
aL

bR

]
. (80)

From Eqs. 79 and 80, we obtain the relationship between the scattering matrix and the

transfer matrix

S11 = M21.M
−1
11 , (81)

S12 = M22 −M21.M
−1
11 .M12,

S21 = M−1
11 ,

S22 = −M−1
11 .M12.

The scattering matrix can be easily related to some phenomenological coefficients.

If we set bR = 0 in Eq. 80, then we describe an experiment in which a wave propagating

from the left, aL, bL is partly reflected with reflection amplitude r and partly transmitted,

aR, with transmission amplitude t. Likewise, for incidence from the right, aL = 0, the

respective transmission and reflection amplitudes are noted t′ and r′. Then, the S-matrix

can be cast in a more physical form.
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Usually the scattering matrix entries are denoted as

S =

[
r t′

t r′

]
. (82)

We have to note that the reference to incoming and outgoing amplitudes does not nec-

essarily mean that the above analysis is restricted to a basis of propagating states only.

As is well-known by appropriate analytical continuation, wavevectors change from real

to complex, i.e., change from waves propagating to the right/ left into waves decaying

to the right/ left and the same formal analysis holds for bound states, if there are any.

We will show that in order to ensure current conservation, the S-matrix must be

unitary. We assume that the incoming and outgoing currents in a particular mode m are

proportional to the squared magnitudes of the corresponding mode amplitudes inm and

outm respectively. Current conservation then requires that∑
m

|inm|2 =
∑
m

|outm|2 , (83)

that is

{in}+ {in} = {out}+ {out} .

Since

{out} = [S] {in} ,

we can write

{out}+ {out} = {in}+ [S]+ [S] {in} = {in}+ {in} .

Hence

[S]+ [S] = I = [S] [S]+ , (84)

so that in terms of the elements of the S-matrix we obtain

2m∑
k=1

|Skn|2 =
2m∑
k=1

|Snk|2 , (85)

or equivalenty,

m∑
k=1

|rkn|2 +
m∑
k=1

|t′kn|
2

=
m∑
k=1

|rnk|2 +
m∑
k=1

|tnk|2 , (86)

and

m∑
k=1

|tkn|2 +

m∑
k=1

|r′kn|
2

=

m∑
k=1

|t′nk|
2

+

m∑
k=1

|r′nk|
2
.

As a consequence of Eq. 86, we obtain

k=m,n=m∑
k=1,n=1

|tkn|2 =

k=m,n=m∑
k=1,n=1

|t′kn|
2
. (87)

Equation 87 shows that the total transmission coefficients of the left and right in-

coming waves are equal.
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CHAPTER V

PRINCIPLE OF GIANT SCATTERING

ASYMMETRY AND TUNNELING HALL EFFECT

AT SEMICONDUCTOR INTERFACES OF TD

SYMMETRY

Spintronics functionalities require efficient spin current injection at ferromagnet-non

magnetic interfaces as well as efficient STT and possibly efficient SHE [91] with heavy

materials for magnetic commutation without external field. In that context, investiga-

tions of SOI in solids, interfaces, as well as tunnel junctions are of a prime impor-

tance [92, 93, 94]. Moreover, SOI at an interface with a broken inversion symmetry

can lead to the observation of Bychkov-Rashba-split states [95] for carriers propagat-

ing along surface or interface states. Such a splitting, if well controlled, can be used

to convert a perpendicular spin current into a lateral charge current by Inverse-Rashba

or Inverse Edelstein effect [17, 96, 97]. Alternatively, SOI can lead to inherent spin-

memory loss (SML) [78, 79, 98] or spin current discontinuities [99] when electrons

cross interfaces. In that context, investigations of SOI in solids and at interfaces are of

prime importance for basic physics and today’s technology. No much attention has been

paid to the particular anatomy of the electronic spin-polarized transport at SOI-magnetic

interfaces where exchange-split interface states may be observed [100, 101, 102].

In this work, we show that the interplay of SOI and exchange interactions at inter-

faces and tunnel junctions may result in a large difference of transmission for carriers,

depending on the sign of their incident in-plane wavevector: this leads to interfacial

skew-tunneling effects that we refer to as anomalous tunnel Hall effect (ATHE) [18]

or tunnel anomalous Hall effect like proposed by other international groups [16]. In

a 2×2 exchange-split band model, the transmission asymmetry (A) between incidence

angles related to +k‖ and −k‖ wavevector components, is shown to be maximal at pe-

culiar points of the Brillouin zone corresponding to a totally quenched transmission (A
= 100%) making the transmission difference from the standard tunneling case.

As an example of reference systems without SOI effects, we provide here the trans-

mission coefficient mapping for the case of fully-epitaxial Fe/MgO/Fe magnetic tunnel

junctions, majority and minority spin channels, calculated within 2-dimensional BZ in-

coming channels in the respective PA and AP states [103]. Figure. 38 calculated by

Korringa–Kohn–Rostoker method (KKR) displays a clear symmetry vs. the BZ center
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in both PA and AP states without involving large SOI in the barrier.

(a) (b)

Figure 38: Conductance for PA (a) and AP (b) alignment of the moments in the elec-

trodes [103].

More generally by inclusion of SOI, we demonstrate the universal character of the

transmission asymmetry A vs. in-plane wavevector component, for given reduced ki-

netic energy and exchange parameter, A being universally scaled by a unique function,

independent of the spin-orbit strength and of the material parameters. Similarly, striking

tunneling phenomena arising in topological insulators have just been predicted. While

they all are related to the spin-orbit directional anisotropy, ATHE differs from the tun-

neling planar Hall effect [104], spontaneous anomalous and spin Hall effects [105], or

spin-galvanic effect [106], previously reported for electron transport, by its giant for-

ward asymmetry and chiral nature. These features have non-trivial connection with the

symmetry properties of the system. All these results show that a new class of tunneling

phenomena can now be investigated and experimentally probed.

5.1 Giant universal transport asymmetry and anomalous

tunnel Hall effect in the conduction band

In this part, we will describe the main properties of transmission or scattering asymme-

try including large SOI which is at the core of the present manuscript like also proposed

recently by the Buffalo and Regensburg groups [16]. In order to address the issue in a

simple way, we first consider a heterojunction made of two identical magnetic semicon-

ductors of zinc blende symmetry, with opposite in-plane magnetizations: this structure
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Figure 39: Scheme of transmission process at an exchange-SOI step with AP mag-

netizations M and −M along the x cubic crystal axis. The propagation direction of

carriers (straight arrow) is along z with propagative wavevector k1 whereas the in-plane

incident component +ξ (heavy line) or −ξ (dashed line) is along y; xyz forms a direct

frame. The dash-dot curve denotes the evanescent waves, either reflected or transmitted.

Carriers with +ξ in-plane wavevector component are more easily transmitted than those

carrying−ξ.(Top right inset): Energy profile of the exchange step; E is the longitudinal

kinetic energy along z and 2w is the exchange splitting in the magnetic materials.

(Fig. 39) constitutes an ideal exchange step and is a paradigm for exchange-engineered

heterostructures, similarly to the symmetrical spin-valve structure in giant magnetore-

sistance [107, 108]. Indeed, due to the axial character of the magnetization, the AP

configuration breaks the symmetry with respect to the reflection plane, and also some

possible rotation and time conjugation invariances existing in the parallel (PA) mag-

netic arrangement [109]. The result is that two states with opposite in-plane incident

wavevectors ±k‖ may be differently transmitted through exchange-SOI interactions.

We first consider the Dresselhaus interaction in the conduction band of bulk materi-

als [10]. For readers who are interested in the Appendix A we consider the geometry of

the scattering matrix, which is the more systematic and simple way to consider the inter-

play of SOI and exchange interactions in bulk semiconductors. The second possibility

would be to investigate the particular Rashba SOC term with either 3D bulk properties
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Figure 40: (a) Schematic of a ferromagnet-semiconductor-normal metal tunnel junc-

tion. The tunneling current flowing in the z direction generates the anomalous Hall volt-

age (VH) in the nonmagnetic electrode. (b) Side view of (a).Taking the [110] axis as a

reference, the magnetization direction (m) and the direction along which the Hall volt-

age is measured (t) are determined by the angles ϕ and φ, respectively. Spin-dependent

momentum filtering resulting from tunneling through a barrier with Bychkov-Rashba

SOC for majority channel (c), and minority chanel (d) [16].
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(electric field) or in tunnel junctions. This case, departing from Dresselhaus from the

point of view of symmetry because of the appearance of a potential profile within the

barrier itself, will be considered in the second part of this chapter. The third interesting

system is the one studied recently by A. Matos-Abigue and J. Fabian, namely a pure

Rashba interface term [16]. In one sense, the present contribution generalizes the work

of Fabian and Matos-Abiague to the case of finite barrier thickness. This could corre-

spond to the SOI assisted transmission of carriers at FM/SOI interfaces like involved in

Co/Pt systems prepared for STT experiments [76, 78, 79] in the regime of interfacial

tunneling transmission.

5.1.1 System investigated

In the following analytical calculations, the lack of inversion symmetry is needed to

introduce spin-orbit effects in the pure s-type CB near the Γ point in a 2×2 model [47].

Hereafter, we refer the structure to the cubic axes and we assume that electron transport

occurs along the [001] axis (z axis), whereas the magnetization lies along [100] (x axis).

We study the transmission asymmetry when the wavevector component along [010] (y

axis) is changed from ξ to −ξ. Electrons are injected from the first CB of material I to

the left (ε = 1) into the first CB of material II to the right (ε = −1). Then, the relevant

2× 2 Hamiltonians write respectively:

ĤI,II = γc
(
k2 + ξ2

)
Î + wm · σ̂ + (γ̂χ) · σ̂

=

[
γc(k

2 + ξ2)− γ̃ξ2k −iγξk2 + εw

iγξk2 + εw γc(k
2 + ξ2) + γ̃ξ2k

]
, (88)

where (0, ξ, k) is the electron wavevector. Î is the identity matrix, γc accounts for

the conduction effective mass, m is the unit magnetization vector, 2w the exchange

splitting (assumed to be positive), σ̂ the Pauli operator, and χ =
[
0, ξk2,−ξ2k

]
is the

DP internal field responsible for the spin splitting [8, 10]. For the subsequent discussion,

we introduce the tensor γ̂ = (γiδij) which characterizes the DP-field strength, with

γx = γy = γ, γz = γ̃, and δij the Kronecker symbol. We will consider the two cases

γ̃ = γ and γ̃ = 0, switching on and off the diagonal ξ2 perturbation.

5.1.2 Eigenvectors and density of states

To first order in γ, the two energies in the exchange and spin-orbit-split subbands are

given by E1 = γc
(
k2

1 + ξ2
)
− w and E2 = γc(k

2
2 + ξ2) + w, where k1 (k2) is the

z-component of the wavevector in the lower (upper) subband. These expressions are

correct up to first order in γ provided
∣∣γ̃ξ2k/w

∣∣ << 1 and |γξk2/w| << 1, where k =
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k1 or k = k2. The respective eigenvectors write:

uε,1 (ξ, k1) =
[
1− 2εiµk2

1,−ε (1− 2µ̃ξk1)
]
/
√

2, (89)

uε,2 (ξ, k2) =
[
1− 2εiµk2

2, ε (1 + 2µ̃ξk2)
]
/
√

2, (90)

where µ = γξ/(2w) and µ̃ = γ̃ξ/(2w) are reduced spin-orbit parameters. Note that

the norm of uε,` (` = 1 or 2) only involves even powers of ξ likewise the direct overlap

|〈uε,`|u−ε,`〉|2 between incoming and outgoing states, so that no transmission asymme-

try between waves with opposite k‖ can be expected in usual tunneling models, e.g.

based on interface density of states [3, 23, 25]. The asymmetry appears in full-quantum

treatments involving matching conditions at interfaces and may be correctly described

by embedding methods [71, 72] in a future work.

5.1.3 The matching properties

The corresponding wave functions in Regions I and II can be written in a compact

form:

ΨI (z) = αu1,2 (ξ, k2) eik2z + βu1,1 (ξ, k1) eik1z

+Au1,2 (ξ,−k2) e−ik2z +Bu1,1 (ξ,−k1) e−ik1z,

ΨII (z) = Cu−1,1 (ξ, k1) eik1z +Du−1,2 (ξ, k2) eik2z, (91)

where the α and β (resp. A and B) amplitudes stand for incident waves (resp. reflected

waves) in Region I , and C and D for transmitted waves in Region II . Because k‖ is

conserved in the transport process, we are dealing with states with the same longitudi-

nal kinetic energy E along z axis and a total kinetic energy E = E + γcξ
2. The proper

matching conditions are, as usual, the continuity of the wave function and of the cur-

rent operator Ĵ = (1/~) ∂ĤI,II/∂k because ĤI,II contains no more than quadratic k

terms [31, 85, 110, 111, 112] and because the two regions are made of the same material

(γ̂/γc is continuous).

5.1.4 Transmission and asymmetry of transmission

The average transmission coefficient T (ξ, k1, k2) upon positive and negative incidences

we have found is related to the amplitude of the transmitted wave C (ξ, k1, k2) calcu-

lated with the initial conditions α = 0 and β = 1 through:

T (ξ, k1, k2) =
|C (ξ, k1, k2)|2 + |C (−ξ, k1, k2)|2

2
, (92)

and we define the transmission asymmetry as:

A (ξ, k1, k2) =
|C (ξ, k1, k2)|2 − |C (−ξ, k1, k2)|2

|C (ξ, k1, k2)|2 + |C (−ξ, k1, k2)|2
. (93)
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Figure 41: (a) Universal asymmetry coefficient A vs. reduced energy η = E/w ob-

tained for different values of the incidence parameter t = ξ/K [t = 0.01 (black; cir-

cles), t = 0.5 (blue; squares), t = 1 (red; stars), and t = 2 (purple; triangles) by

2-band analytical (full line) and numerical (symbols) calculations. Two-dimensional

map of the transmission coefficient T in 2 × 2 (b) and 14 × 14 (c) k.p band models

for the exchange-SOI step schematized in Fig. 39; the parameters are: exchange energy

2w = 0.3 eV, total kinetic energy E = 0.08 eV counted from the middle of the conduc-

tion step, and DP strength γ = −24 eV Å3; band parameters of the 14-band k.p model

taken from Ref [34].

94



It can be checked that, when γ̃ = 0, A (ξ, k1, k2) vanishes when α and β are real,

which is a non trivial result. The transmission of a pure spin-up incident electron

from left into a pure spin-down state with the same group velocity at right is only

possible under oblique incidence via SOI which introduces off-diagonal matrix ele-

ments. Moreover, a non-vanishing diagonal part of the SOI is also necessary to obtain

a non-zero asymmetry although the related component of the DP field along the z axis

does not depend on the sign of k‖. Then, from now on, we take γ̃ = γ. The wavevector

k1 in the lower subband has to be real so that we can define K = k1. We introduce

the parameter λ with k2 = iλK, the reduced energy η =
(
1− λ2

)
/
(
1 + λ2

)
with

η = E/w, as well as the incidence parameter t = ξ/K. After a lengthy calculation, one

obtains:

C (ξ,K, λ) =

(
γK2ξ

w

) [
(ξ/K)

(
3λ2 − 1

)
+ 2λ

(
λ2 − 1

)]
(λ− i)2 . (94)

From Eq. 94, it is straightforward to check that A (ξ, k1, k2) = 0 if λ is purely

imaginary; the asymmetry appears when the lower-energy band carries a propaga-

tive state whereas the upper one acts as a barrier sustaining an evanescent state.

Transport is then described in a two-k-channel model, a propagative channel (k1) and

an evanescent channel (k2). One obtains:

T (t, η) =
γ2

γ3
c

wt2 (1 + η)2 {[t (2η − 1)]2 + 4η2 (1− η)
}

, (95)

as well as the asymmetry

A (t, η) =
4tη
√

1− η2 (2η − 1)

4η2 (1− η) + t2 (1 + η) (2η − 1)2 . (96)

This is the main result we expect from the derivation of properties of transmission

corresponding to Dresselhaus SOI for a magnetic-step contact.

5.1.5 Properties of the transmission asymmetry

The expression for T (t, η) emphasizes the increase of the carrier transmission with t

and γ. The range of validity defined above can be written |t2 (γK3/γcK
2)| << 1, a

condition easily fulfilled as |γK3/γcK
2| is expected to be small. The asymmetry A is

plotted in Fig. 41 for several values of t and 1/t (full lines), where the symbols refer to

the 2×2 numerical calculations showing an excellent agreement. It can be seen that the

curves related to t and 1/t are located at almost symmetrical positions with respect to

the t = 1 curve. They admit four zeros in the energy range considered: i) two at the two

ends of the energy step when either the propagative or the evanescent state disappears

and ii) one in the middle of the energy barrier and one for an energy equal to 3/4 of the

energy step, which is particular to the Dresselhaus interaction. It is a remarkable result
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that A (t, η) does not depend either on the material parameters or on the sign of γ, thus

conferring to A a universal character. Reversing the magnetization (changing w into

−w) makes transport occur in the k2 channel and it can be seen that this changesA (t, η)

to −A (t, η) [116]. Another striking feature is that an arbitrarily small perturbation is

able to produce a 100% transport asymmetry with, accordingly, a total quenching of

transmission for some given incidences. Figs. 41 b-41 c display the 2-dimensional map

of the electron transmission in the reciprocal space calculated using both a 2×2 effective

Hamiltonian (Fig. 41 b) and a full 14×14 band k.p treatment (Fig. 41 c) involving odd-

potential coupling terms P
′

and ∆
′

[34, 44, 117]. These calculations are based on the

multiband transfer matrix technique developed in Refs. [20, 85]. We have checked that

transport asymmetry also arises for a tunnel junction where a thin tunneling barrier is

inserted between the two magnetic layers.

5.1.6 Tunnel Hall effect (THE) and tunnel Hall angle (THA)

We want to point out that the scattering asymmetry demonstrated in this chapter is

associated to the generation of a lateral interfacial charge current at the length scale of

the mean free path (MFP) in the magnetic or non magnetic collector. However, we also

want to show that it strongly differs by nature from the well known extrinsic or intrinsic

SHE [6, 91, 126, 127] by several aspects.

(i) The property of THE we describe is of a pure interfacial nature (exchange step,

extended to tunnel devices) originating from the exact matching of spin polarized waves.

In that sense, it describes a pure 0-dimensional (0-D) effect which does not require any

bulk effect in the electrodes (intrinsic SHE) or alloying with impurities embedded in a

given host (extrinsic SHE). Its 0-D nature is clearly new and can be understood in the

next chapter by a new type of chirality phenomena.

(ii) The property of THE that we describe originates from a forward scattering asym-

metry property and not from skew-scattering phenomena during the diffusion (case of

skew scattering SHE [127]).

(iii) Its nature will be explained by chirality arguments which come into play when

the transport mixes both propagative and evanescent waves for ingoing and outgoing

waves.

We can calculate the total transmitted current, J [t, η] = Jξ [ΨII (z)]+J−ξ [ΨII (z)],

originating from incident waves of equal amplitude with opposite k‖. To the lowest

order in γ, we find

Jy,z [t, η] =
4 (γcw)1/2

~
(1 + η)1/2 T (t, η) [A (t, η) tŷ+ẑ] . (97)

resulting of two incident waves of equal amplitude with opposite parallel wavevectors.

This is connected to the non-diagonal σxy tunnel conductivity [127, 126].
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Thus, the asymmetrical transmission gives rise to a transverse momentum and then

to a tunneling surface current (per unit length) jy = Jy × ` (` is the MFP) which can

lead to an anomalous tunnel Hall effect under steady state regime. This effect could

be experimentally investigated at a scale where the thickness of the channel collect-

ing the current is comparable to `, i.e., not exceeding a few nm [120]. The ratio of

the (surface) transverse to the longitudinal current jy [t, η] /Jz [t, η] = tA (t, η) ` then

defines the THE length in the spirit of a recent work dealing with Inverse Edelstein

phenomenon [17, 122]. An incident beam in Region I with a given isotropic angular

dispersion with respect to the normal to the barrier gives rise, after angular averaging,

to a tilted beam bearing a transverse current. Hereafter, we take an isotropic angle dis-

tribution for the incident beam of electrons with a total energy E within an incidence

cone defined by the half angle θM so that tM = tan θM . Then, using the relation

η = (−t2 + E/w) / (1 + t2) which relates η to the reduced total energy E/w, the mean

transmitted current writes [121]

J [E ] =
1

θM

∫ θM

0

J [t, η] dθ =
1

θM

∫ tM

0

J [t, E ]

1 + t2
dt. (98)

Figure 42: THA vs. total energy of carriers calculated in the case of an ideal exchange

step discussed in the text for 4 different maximum half opening incident angles (π/6,

π/4, π/3, and π/2). In the best situation, the tunnel Hall angle can reach up to 45◦

giving rise to a large current parallel to the interface.

The results of the calculations are displayed in Fig. 42. The averaged tunnel Hall

angle angle corresponding to several θM (π/6, π/4, π/3, and π/2) is plotted vs. the

total energy of the incident carrier for an exchange step. It can be seen that a large beam
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deviation angle (up to 45◦) can be observed throughout a broad energy range leading to

a significant conversion from current normal to the plane to current parallel to plane.

The tunnel Hall effect may be observed in some physical situations described at

the end of the manuscript corresponding to a quantum well contacted by one ferro-

magnetic electrode (e.g. ferromagnetic semiconductor) and measure the in-plane

charge current propagating in the quantum well upon rotating the magnetization

from the out-of-plane direction to the in-plane direction.

5.1.7 Barrier engineering and resonant structures.

In the model case of the exchange step where both analytical and numerical calcu-

lations can be performed, the universal asymmetry A is large but the transmission is

rather small (Fig. 41). Note however (Eq. 95) that the energy (η) dependence is polyno-

mial and not exponential like the transmission coefficient through tunnel barriers. It is

possible to tailor more complicated structures involving resonant tunneling to increase

the transmission up to a fraction of unity while keeping extremely high asymmetries.

Such structures would be suitable for application. An example is given in Fig. 43:

the structure consists of a magnetic quantum well sandwiched between two magnetic

electrodes and separated by non-magnetic barriers of different thicknesses. The mag-

netization of each layer can be independently reversed. It can be seen that this structure

possesses 4 different transmission states (↑↑↑, ↑↓↑, ↑↑↓, and ↑↓↓) and is a paradigm

for a 4 state-memory. The transmission T and transmission asymmetry A (for opposite

parallel wavevector components ±ξ) are plotted in Fig. 43. It can be seen that the peak

transmission reaches values close to unity at the peak transmission whereas A is close

to 100%. An experimental confirmation of these predictions would yield a fingerprint of

THE. We will describe in more detail possible transport experiments in the last chapter

of the present manuscript.

In the systems corresponding to an asymmetric magnetic configuration and giving

rise to a strong forward scattering asymmetry, a charge current along the quantum well

direction, i. e., along the film plane is expected to take place under normal current injec-

tion. This may be detected by transverse voltage measurements (Hall-like geometry).

The same qualitative feature (occurrence of a transverse charge current) can be mea-

sured in a more simple situation of a non-magnetic quantum well contacted by a single

ferromagnetic electrode as previously discussed.

5.2 Case of Rashba interaction in a thin tunnel barrier

We consider now the alternate case of Rashba-SOI terms in a thin tunneling barrier

structure. This can mimic the presence of an electric field in the barrier originating from

certain structural asymmetry or potential gradient within the heterostructure (structural
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Figure 43: Transmission coefficient calculated for the two opposite incident wavevec-

tors ξ = ±0.3 nm−1 at the first resonant peak of a magnetic quantum well (thickness

20 nm) with ferromagnetic electrodes for the different magnetic configurations resp.

↑↑↑ (a), ↑↓↑ (b), ↑↑↓ (c), and ↑↓↓ (d) corresponding to left magnetic electrode/2 nm

thick barrier/20 nm thick magnetic quantum well/2 nm thick barrier/right magnetic

electrode. For the symmetric situation, the transmission for ±ξ are exactly the same

whereas different for the non-symmetric configuration. The k.p material parameters of

the whole heterostructure correspond to those of GaSb of high spin-orbit coupling. The

barrier thickness is 2 nm and the barrier height is 0.5 eV.
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or chemical through charge transfer). This case departs from the previous Dresselhaus

case by the fact that the Rashba interaction generally introduces an effective electric

field which makes the barrier profile nonsymmetric (structure inversion asymmetry or

SIA). A consequence is that

(i) the tunneling structure under consideration lacks of some symmetry properties

compared to the Dresselhaus case;

(ii) the properties of the S-matrix also differ from the previous case. We are then

going to make the connection with some results preliminary given in the second chapter.

We consider the specific case of Rashba interactions in a thin tunnel barrier. The

electron asymmetry transport caused by the interplay of bulk SOI and exchange interac-

tion is already considered. In this part, the SOI in the bulk has been replaced by the SOI

due to the structure inversion asymmetry. The inversion symmetry is then broken along

the growth the z direction by an existing electric field applied in the barrier,
−→
E = Ez

−→z .
The spin subbands are split in energy like explained by Rashba and Bychkov [95] who

have shown that the electric field results in an effective SOI of the form

ĤR = αR (−→z ×−→p ) .σ = αR (kxσy − kyσx) , (99)

where αR is called the Rashba-Bychkov constant and the σ is the Pauli operator.

5.2.1 In-plane wavevector parallel to the magnetization direction

The in-plane wavevector is taken parallel to the x direction, with k = (ξ, 0, k), then the

Rashba Hamiltonian in Eq. 99 has the simple form:

ĤR = αRξσy.

5.2.1.1 PA (↑↑)

Figure 44: Tunnel junction grown along the z direction with Rashba SOI in the barrier

under PA configuration,
−→
M ‖ x,

−→
k‖ = (ξ, 0).

The electron Hamiltonian writes:

Ĥξ =

{
γc
(
ξ2 + k2

)
+ wσx , if z < 0 or z > a

γc(ξ
2 + k2) + αRξσy + V, if 0 < z < a

(100)
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where γc represents the effective mass of electron in the crystal, w is magnitude of

exchange interaction, and V is the barrier height.

Let us introduce the expression of the wave functions in the three different regions

of space

Ψξ(z) =


ΨI(z) for z < a

ΨII(z) for 0 < z < a

ΨIII(z) for z > a

.

Taking the complex conjugate of the Hamiltonian in Eq. 100, we obtain

Ĥ∗ξ =

{
γc
(
ξ2 + k2

)
+ wσx if z < 0 or z > a

γc(ξ
2 + k2)− αRξσy + V if 0 < z < a

= Ĥ−ξ.

If Ψξ(z) is solution of the Schrödinger equation ĤξΨξ(z) = EΨξ(z), Ψ∗ξ(z) is also

a particular solution of the Schrödinger equation with opposite in-plane wavevector

and corresponding to the same magnetization direction in the electrodes. It results that

Ĥ−ξΨ
∗
ξ(z) = EΨ∗ξ(z). Note that when we take the complex conjugate, we turn from

ingoing to outgoing waves and vice versa

In other words from the scattering matrix point of view

{b} = [S]ξ {a} (101)

{b∗} = [S∗]ξ {a∗} .

However,

{a∗} = [S]−ξ {b∗} ,

and

{b∗} =
[
S+
]
−ξ {a

∗} . (102)

From Eqs. 101 and 102, we obtain:

[S∗]ξ =
[
S+
]
−ξ . (103)

or [
r∗ (t′)∗

t∗ (r′)∗

]
ξ

=

[
r t

t′ r′

]
−ξ

. (104)

Taking squared magnitude of both siles of Eq. 104, we observe that electrons with

positive and negative in-plane wavevectors posses equal transmission coefficients. No

asymmetry of transmission is expected in this case. This situation is similar to the case

of Dresselhaus interaction with in-plane incident wavevector parallel to the magnetiza-

tion in the PA magnetic configuration.
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Figure 45: Tunnel junction grown along the z direction with Rashba SOI in the barrier

under AP configuration,
−→
M ‖ x,

−→
k‖ = (ξ, 0).

5.2.1.2 AP (↑↓) (see Appendix A)

In this case, the structure is symmetrical so that it follows the results and conclusions

introduced in Appendix A.

The electron Hamiltonian now writes:

Ĥξ =


γc
(
ξ2 + k2

)
+ wσx if z < 0

γc(ξ
2 + k2)− αRξσy + V if 0 < z < a

γc
(
ξ2 + k2

)
− wσx if z > a

. (105)

This is similar to the PA configuration except that the eigenvectors in the region

z > a are now interchanged.

In this case, we also observe that

Ĥ∗ξ = Ĥ−ξ. (106)

As a consequence of Eq. 106, the result is that in the AP magnetic configuration,

no transport asymmetry vs. in-plane incidences is expected upon tunneling. This sit-

uation is quite similar to the case of the absence of the out-of-plane components for

Dresselhaus interaction.

5.2.2 In-plane wavevector perpendicular to the magnetization direction

Now, the in-plane wavevector is taken parallel to the x direction, k = (0, ξ, k), so that

the Rashba Hamiltonian in Eq. 99 becomes:

ĤR = −αRξσx,

with Ĥ∗ξ 6= Ĥ−ξ.

5.2.2.1 PA (↑↑)

The structure is asymmetric, (see Fig. 46), so that it does not follow the result shown in

Appendix A.
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The electron Hamiltonian writes:

Ĥξ =

{
γc
(
ξ2 + k2

)
+ wσx if z < 0 or z > a

γc(ξ
2 + k2)− αRξσx + V if 0 < z < a

.

In the electrodes, the upper energy level is E = γc(ξ
2 + k2) +w whereas the lower one

is E = γc(ξ
2 + k̃2)−w. The respective eigenvectors are 1√

2

(
1
1

)
= |↑〉 and 1√

2

(
1
−1

)
= |↓〉 .

The incident energy is smaller than the barrier height so that the relevant wavevectors

are purely imaginary. The energy of the upper level is E = γc(ξ
2 − q̃2) + αRξ + V,

whereas the lower one is E = γc(ξ
2 − q2) − αRξ + V where q and q̃ are pure real

numbers. The respective eigenvectors are |↓〉 and |↑〉 .

The corresponding wave functions in each region of the space are given by:

ΨI(z) = A1 |↑〉 eikz +B1 |↑〉 e−ikz + Ã1 |↓〉 eik̃z + B̃1 |↓〉 e−ik̃z, (107)

ΨII(z) = A2 |↑〉 e−qz +B2 |↑〉 eqz + Ã2 |↓〉 e−q̃z + B̃2 |↓〉 eq̃z, (108)

and

ΨIII(z) = A3 |↑〉 eikz + Ã3 |↓〉 eik̃z.

Using the BDD matching condition for the ↓ spin at z = 0, one obtains:{
|↓〉+ B̃1 |↓〉 = Ã2 |↓〉+ B̃2 |↓〉 ,

ik̃ |↓〉 − ik̃B̃1 |↓〉 = −q̃Ã2 |↓〉+ q̃B̃2 |↓〉 ;

whereas at z = a {
Ã2 |↓〉 e−q̃a + B̃2 |↓〉 eq̃a = Ã3 |↓〉 eik̃a,

−q̃Ã2 |↓〉 e−q̃a + q̃B̃2 |↓〉 eq̃a = ik̃aÃ3 |↓〉 eik̃a.

Solving this linear system, the amplitude of transmission, A3, for the ↓ spin channel

takes the form:

A3 =

[
cosh q̃a+

i

2

(
q̃

k̃
− k̃

q̃

)
sinh q̃a

]−1

,

and, the transmission coefficient of the ↓ spin follows:

T↓ (ξ) =

cosh2 q̃a+
1

4

(
q̃

k̃
− k̃

q̃

)2

sinh2 q̃a

−1

.

Similarly, the transmission coefficient of the ↑ spin is:

T↑ (ξ) =

[
cosh2 qa+

1

4

(
q

k
− k

q

)2

sinh2 qa

]−1

.
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We first consider an incident energy smaller than the exchange energy, −w < E <
w. The incident ↓ spin wave is propagative and it can transport the current through the

barrier whereas the ↑ spin wave is an evanescent wave carrying no current. Therefore,

the total transmission is equal to the transmission of the ↓ spin wave.

The total transmission coefficient is then

T (ξ) = T↓ (ξ) (109)

=

cosh2 q̃a+
1

4

(
q̃

k̃
− k̃

q̃

)2

sinh2 q̃a

 .
Equation 109 is equivalent to Eq. 3.3 in Ref. [25] describing the spin-polarization

transport involving a nonmagnetic tunneling barrier separating two ferromagnetic con-

ductors in the case of a single propagative wave.

If the electron impinges the barrier with an opposite in-plane wavevector, the wave

functions in the electrodes remain unchanged whereas the spin in the barrier is reversed.

This is equivalent to interchange q̃ ←→ q in Eq. 108, so that we deduce the respective

wave function in the barrier together with the total transmission coefficient:

T (−ξ) =

cosh2 qa+
1

4

(
q

k̃
− k̃

q

)2

sinh2 qa

−1

. (110)

The transmission asymmetry of ingoing electrons with opposite in-plane wavevec-

tors is then:

A =
T (ξ)− T (−ξ)
T (ξ) + T (−ξ) (111)

=

[
1 + 1

4

(
q

k̃
− k̃

q

)2

tanh2 qa

]
−
[
1 + 1

4

(
q̃

k̃
− k̃

q̃

)2

tanh2 q̃a

]
[
1 + 1

4

(
q

k̃
− k̃

q

)2

tanh2 qa

]
+

[
1 + 1

4

(
q̃

k̃
− k̃

q̃

)2

tanh2 q̃a

]
≈ tanh (aδq) .

We recover in Eq. 12 of Chapter 2 devoted to the spin filtering effect. It is possible

to say that Eq. 111 characterizes the spin filtering effect caused by a Rashba interaction

term in the thin barrier.

In the case of two incident propagative waves of both ↓ and ↑ spin channels, the

total transmission coefficient is the sum of T↓ and T↑, and we still obtain spin filtering

effect. Moreover, on the condition that the difference of the wavevectors between ↓ and

↑ spin channels in the barrier is small, we will recover the total transmission coefficient

calculated with two propagative waves in Ref. [25].
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Figure 46: The spin-filter effect caused by the Rashba term in the 1 nm thin barrier

vs. in-plane wavevector in tunnel junction GaAs/GaAs/GaAs; m∗ = 0.067m0, Rashba

constant 2 eVÅ, incident energy E = 0.1 eV, exchange interaction 0.18 eV.

Figure 47: Tunnel junction grown along the z direction with Rashba SOI in the barrier

under AP configuration,
−→
M ‖ x,

−→
k‖ = (0, ξ).
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5.2.2.2 AP (↑↓)

The electron Hamiltonian writes in this case:

Ĥξ =


γc
(
ξ2 + k2

)
+ wσx if z < 0

γc(ξ
2 + k2)− αRξσx + V if 0 < z < a

γc
(
ξ2 + k2

)
− wσx if z > a

This case is similar to the PA magnetic configuration except that the eigenvectors

in the region z > a are reversed. Therefore, ΨI(z) and ΨII(z) are kept unchanged

whereas

ΨIII(z) = A3 |↓〉 eikz + Ã3 |↑〉 eik̃z.

To transport the current from the left to the right electrode, the electrons must pos-

sess an energy larger than the exchange step because they cannot be transmitted from

a pure ↓ state into a pure ↑ state, and vice versa without SOI. Here, the wave functions

are similar to the ones corresponding to the Dresselhaus term in a barrier with an in-

plane wavevector parallel to the magnetization direction in the AP configuration. We

have demonstrated that the transmission coefficient is now independent of the sign of

the in-plane wavevector.

The conclusion about the transport asymmetry arising from the interplay between

exchange interaction and Rashba SOI for the electron is the following: Anomalous tun-

nel Hall effect does not exist in these structures because the Rashba SOC term does not

possess any out-of-plane component in the Hamiltonian. Only the spin filtering effect

may exist in the case of an in-plane wavevector perpendicular to the magnetization in

the PA configuration.
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CHAPTER VI

PERTURBATIVE SCATTERING APPROACH TO

SPIN-DEPENDENT TUNNELING INCLUDING

SPIN-ORBIT INTERACTIONS

6.1 Introduction in the frame of the spin Hall effects

The physical principles of the anomalous Hall effects and related spin-Hall effects,

largely revisited since the beginning of the 2000’s, follow the first proposal by Dyakonov

and Perel in 1971 [8]. It originates from an inequivalent probability for a given spin to

be scattered or moved on the left or on the right in a plane containing the trajectory and

perpendicular to its spin direction. This asymmetry in the trajectory originates in the

action of the spin-orbit force operating during a certain time lapse, either during a scat-

tering event within the collision time, e.g. extrinsic spin-Hall mechanism occurring in

random impurity alloys or between two collisions (intrinsic SHE) in the host material.

From pure symmetry considerations, the asymmetry of deflection (often called Mott’s

scattering as long as the extrinsic skew scattering mechanisms is concerned) only oc-

curs in the trajectory plane perpendicular to the spin direction. The particular plane

is a specific symmetry plane which makes possible to observe such an imbalance of

spin diffusion and spin current. Adding an incoming non-zero spin current by exchange

forces emanating from a ferromagnet makes the two spin currents being deflected with

a different amplitude generating a non-zero transverse charge-current associated to an

anomalous Hall effect in the ferromagnet. This has been largely debated in the literature

in the past few years as well as in a couple of recent papers [123, 124].

The intrinsic mechanism of the SHE, e.g. occurring in GaAs, Pt, Ta, or W, is related

to the host spin-orbit Hamiltonian during the accelerating-carrier trajectory and must be

described by the full temporal evolution of the carrier wave function between two colli-

sions (source terms). These source terms, calculated via Kubo, Keldysh or Berry’phase

formalisms [146] to derive the transverse spin-dependent conductivity or the spin-Hall

conductivity, may be afterwards integrated in a semi-classical Boltzmann equation in

a non-equilibrium formalism. The extrinsic SHE phenomena can be divided into two

parts: the skew scattering terms which become nonzero to the third order of the pertur-

bation calculation and the side-jump terms which represent the lateral space deviation

of the carrier wavepacket during the interaction process (effective first order of pertur-

bation in the SOI contribution). Among these contributions to the spin-Hall processes
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(c)

Figure 48: Mechanism of SHE effect: (a) skew scattering, (b) side jump, (c) intrinsic

spin Hall effect.

whose more physical details are largely given in some reference articles obtained both

in diagrammatic schemes or in semi-empirical Boltzmann pictures [125, 126, 127], the

skew-scattering mechanism generally provides the dominant source of the transverse

spin current in the limit of dilute alloys. The reason is the linear scaling of the skew-

scattering driven transverse conductivity σxy with the diagonal one σxx in the limit of

vanishing scattering, the scaling factor being the so-called SHA.

The skew-scattering mechanism for the SHE arises because of the non-equal in-

terference between the different parts of the diffused wave (by the Coulomb potential

and the related spin-orbit terms) as can be explained through detailed phase-shift analy-

ses in a spherical-symmetry potential picture (partial wave) [147]. This occurs to the

third order of perturbation calculations involving, at least, two perturbation terms aris-

ing from the Coulombic potential of the impurity (VC) and one from the central spin-

orbit perturbation VS.O. occurring in an effective 3rd-order T matrix scattering operator,

asymmetrical with respect to the left and right outgoing waves [128]. In a partial wave

decomposition approach (the spin-polarized angular moment being conserved), the ef-

fect of the Coulomb potential is entirely reduced to the scattering phase-shift to all

orders whereas the spin-orbit interactions enter to the first perturbation order in VS.O..

This is then a general way, in the community of ab-initio, to consider calculations to the

first order of spin-orbit perturbation VS.O., and the properties of spin-transport from the

general Kubo formula [148, 149, 150]. In the geometry of the "dilute alloy regime", this

is made by calculating the effect of the spherical symmetry of the spin-orbit terms once
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the properties of the overall scattering wave are known, e.g. from phase-shift analyses.

The investigations of the properties of the SHE in various 3d, 4d, and 5d transitions

metals, involving perturbation calculations techniques are numerous and in particular

since the end of the 2000’s and the beginning of the 2010’s [129].

Our philosophy concerning the treatment of the tunneling-Hall or scattering-Hall

effects we propose in the present manuscript can be developed in a same spirit than the

KKR formalism extensively used in the ab-initio density functional theory community.

Our approach takes also benefit of the perfect 2-dimensionality of the model system

under investigations to consider the case of evanescent waves in the diffusion process.

The physical processes of scattering or tunneling transmission in a perfect 2-dimensional

system (characterized by a translation invariance or conserved k‖) have to be known be-

fore the branching of the SOI. One interest of this perturbation method lies in the fact

that the SOI may be delocalized in a wide region (e.g. the electrodes) or localized in a

small region of space like in the case of a thin tunnel junction at the nanometer scale.

The case of a thin tunnel junction is then particularly interesting because it mimics the

action of the spin-orbit forces, of a given symmetry, on the conductivity, either longi-

tudinal or transverse (longitudinal or spin-Hall for instance). This kind of perturbative

scattering approach may then be generalized to any kind of physical systems where we

look for the effects of the SOI and possibly exchange on the respective diffusion prob-

ability or transmission coefficient (for a tunnel junction) when needed. This method

becomes more and more favorable in certain situations, like investigated here, where

the transmission is zero before branching the SOI term when the electrodes are made of

highly spin-polarized compounds, close to possess a half-metallicity character (GaM-

nAs or heusler alloys). One can investigate, like demonstrated afterwards, the effect of

the SOI in host (contacts) as well as the effect of SOI in the diffusion centers (tunnel bar-

rier) like encountered in skew-scattering Hall effects. The 2-dimensional character of

our chosen heterostructures helps that way in both numerical and analytical treatments

compared to spherically-symmetric diffusive centers involving spin-orbit contrast po-

tentials.

In the present chapter, we expose the fundamentals of the investigation methods

through a large number of examples before tackling the problem of the tunneling-Hall

effect by performing perturbation calculations with spin-orbit involved in the electrodes

(exchange step) or confined in a small region of the space (tunnel barrier). This method

will be demonstrated to be particularly relevant for the case of the perpendicular trans-

port (interface crossing) like proposed in this manuscript. However, it could be used in

the treatment of in-plane conduction, e. g. in a 2-dimensional-Rashba gas which is a

seat of spin-orbit assisted diffusions, possibly responsible for a new kind of anomalous

magnetoresistance like described in a series of recent papers [130].
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6.2 The Green function method

The single-particle Green function (GF) is a very useful tool for studying the electronic

properties of materials and transport phenomena because it can be used to express all

the observable properties of the system of interest [131] and because it has many other

advantages including the following ones:

(i) It allows to treat complex systems efficiently, starting from idealized ones to

e.g. interfaces and multilayered systems by handling the complexity as a perturbation

from bottom to up. Moreover, in order to obtain the electronic structure of a periodic

system, first, with a localized impurity or defect, one can start from the GF method to

treat the impurity and subsequent SOI and spin-dependent electronic diffusion as per-

turbations to increasing order. Similarly, the presence of a surface can be considered

to be a perturbation to the GF of an infinite medium. That way, we will introduce a

GF treatment for mixed propagative-evanescent waves of tunnel junctions considering

the spin-orbit interactions in a localized volume (tunnel junctions) or in half-spaces (ex-

change step) as perturbations to investigate the properties of the scattered spin-polarized

electronic waves taken to the zero-order. This provides us with a generalization of the

work dealing with GMR systems [132] to the spin-orbit case.

(ii) More generally, the GF is very useful for calculating the response of a sys-

tem to external fields e.g. the transport properties in the linear response regime (i.e., the

conductivity) [133].

For all these reasons, the ability to calculate the GF of a multilayered system or a

single interface with an arbitrary potential shaped barrier is very important. For a finite

system, the GF may be evaluated locally using unperturbed wave functions as a basis

and calculated quite simply as a function of the inverse of the Hamiltonian in the real

space. Similarly, the GF for an infinite periodic system may be obtained by this way

in the reciprocal space. Nevertheless, in the case of semi-infinite systems, e.g. an infi-

nite periodic system with a surface or an interface, one encounters the problem of the

matching conditions for the GFs which have been largely discussed and debated in a

series of relevant contributions [134, 135, 132, 136]. These papers deal with finding the

proper general expressions depending on the exact shape of the GF in each part (mater-

ial) and describing the multilayer structures with relevant transmissions and reflections

at each interface. In the present case, we will start from the well-known expression of

the spin-polarized GF corresponding to a simple potential step in the energy range of an

evanescent transmission from pure spin-up channel to pure spin-down channel without

SOI.

Although we are mostly concerned with the development of the GF methods adapted

to our situation of spin-orbit-assisted skew tunneling for an interface or a tunnel junc-

tion, it is worth to mention a few applications even without being able to give a full
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comprehensive view. In that physical issues, the GF formalism has been used with

great success to study transport through mesoscopic devices, exchange coupling, GMR

[133] as well as tunneling magnetoresistance [137], surface and interface states, as well

as spin-Hall effect of heavy-metal based transition metal alloys [138].

6.3 Green’s function and Lippman-Schwinger equation

The scattering theory is essentially a time-independent perturbation theory applied to

the case of a continuous spectrum. That means that we know that it exists eigenstates of

the full Hamiltonian for every possi vccccv ble

energy, E . Then we just pick any E , and try to find the perturbed eigenstates |Ψ (E)〉.
There are usually some degenerate eigenstates for any given energy. So, the question

becomes which of the presumably infinitely degenerate full-eigenstates we are trying

to compute? The answer comes from the causality; we want to be able to completely

specify the probability current amplitude incoming in from −→r −→ ∞, and we want

the theory to give us the corresponding outgoing current amplitude. The way we do

this is picking an unperturbed eigenstate which has the desired incoming current am-

plitude (at this stage we do not need to worry what the outgoing current amplitude of

the unperturbed state is). The second step is to make sure that our perturbation theory

generates no contribution and no changes on the incoming currents, which we accom-

plish by putting this condition by hand, under the mantra of causality. As we will see,

this means that the resulting full eigenstates will have desired incoming current ampli-

tudes. We recall that solving a partial differential equation requires first specifying the

boundary conditions, which is exactly what the standard scattering theory formalism is

designed to do.

Typically, the scattering formalism is described in the following way: an incident

particle in the state |Ψ0〉 is scattered by the potential V, resulting in a scattered state |Ψs〉.
The incident state |Ψ0〉 is assumed to be an eigenstate of the background Hamiltonian

Ĥ0, with the eigenvalue E . This is mathematically expressed as:

(
E − Ĥ0

)
|Ψ0〉 = 0, (112)

The potential V̂ (r) is assumed to be localized (without however being always a

necessary condition), so that

lim
r−→∞

V̂ (r) = 0. (113)

The goal of the scattering theory is then to solve the full eigenvalues problem(
E − Ĥ0 − V̂

)
|Ψ〉 = 0, (114)
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where |Ψ〉 is the eigenstate of the full Hamiltonian Ĥ = Ĥ0 + V̂ of the system with the

energy E . It should be clear that there is a different |Ψ0〉 and correspondingly a different

|Ψ〉 for each energy E , even though our notation does not indicate this explicitly. We

start by defining the scattered state |Ψs〉 via

|Ψs〉 = |Ψ〉 − |Ψ0〉 . (115)

The full Schrödinger equation (Eq. 114) may be written as(
E − Ĥ0

)
|Ψ〉 = V̂ |Ψ〉 , (116)

which, after substituting |Ψ〉 = |Ψs〉+ |Ψ0〉 and making use of Eq. 112, gives:

(
E − Ĥ0

)
|Ψs〉 = V̂ |Ψ〉 , (117)

otherwise,

|Ψs〉 =
(
E − Ĥ0

)−1

V̂ |Ψ〉 , (118)

by adding |Ψ0〉 to both sides of Eq. 118, one obtains:

|Ψ〉 = |Ψ0〉+
(
E − Ĥ0

)−1

V̂ |Ψ〉 . (119)

This is well known as the Lippman-Schwinger equation. It is often expressed in a

slightly more compact notation by introducing the concept of Green’s function, defined

as:

G±0 = lim
ε−→0

(
E − Ĥ0 ± iε

)−1

. (120)

G+
0 (G−0 ) is called retarded (advanced) Green’s function. The term iε is added to enforce

causality by making sure that |Ψs〉 has no incoming probability current associated with

it. It makes sense that scattered waves propagate away from the source, and not other

way around. In our work, as we only consider the retarded Green function, for simplic-

ity we use G0 instead of G+
0 . Using this definition, the Lippman-Schwinger equation

takes its standard form:

|Ψ〉 = |Ψ0〉+G0V̂ |Ψ〉 . (121)

Solving the Lippman-Schwinger equation for |Ψ〉 is formally very simple, yielding:

|Ψ〉 =
(

1−G0V̂
)−1

|Ψ0〉 .

The Born series give:

|Ψ〉 = |Ψ0〉+G0V̂ |Ψ0〉+G0V̂ G0V̂ |Ψ0〉+ .....
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and to the first order

|Ψ〉 = |Ψ0〉+G0V̂ |Ψ0〉 . (122)

Written as an integral equation, Eq. 122 becomes

Ψ(−→r ) = Ψ0(−→r ) +

∫
G0(−→r ,−→r ′)0V̂ (−→r ′)Ψ0(−→r ′)d−→r ′, (123)

where 〈−→r |Ψ〉 = Ψ(−→r ), and G0(−→r ,−→r ′) = 〈−→r |G0 |−→r ′〉. The GF, G0(−→r ,−→r ′), is a

solution of Eq. 120.

(
E − Ĥ0

)
G0(−→r ,−→r ′) = δ (−→r −−→r ′) . (124)

The respective retarded and advanced Green’s functions G±0 for homogeneous host

materials of respective eigenvalues E and eigenvectors Ψk, with a certain translational

invariance involving Bloch k states, and satisfying (E − Ĥ0)Ψk(r) = 0 at the energy E ,

is generally determined according to the general formula:

G±0 (E , r, r′) =
∑
k

Ψk(r)Ψ
∗
k(r
′)

E − Ek ± iη
,

to find the bulk or in heterostructures where η (η > 0) represents an infinitesimal value

needed for convergence; η ensures that the electronic waves coming from the left (right)

side remains finite over the whole host volume after a given propagation time τ . The

equivalent Green’s function G±0 to be derived for a junction composed of two semi-

infinite media or for a tunnel junction is generally more complex to obtain. We present

here a general method developed for spin-unpolarized particles based on some refer-

ences [132, 134, 135, 136] before its generalization to spin-polarized particles.

6.4 Interfacial Green’s function for spinless particles

As an example, we first consider the solution of Eq. 124 for a scalar (or spinless)

particle in a homogenous potential U1 for z < 0, and U2 for z > 0. In this part, we have

deliberately decided to detail the whole mathematical developments to find the correct

description of the GF for a single interface. The GF satisfies the equation:

(
E − Ĥ0

)
G0(z, z′) = δ (z − z′) , (125)

or

(
E +

~2

2

∂

∂z

1

m∗(z)

∂

∂z
− U(z)

)
G0(z, z′) = δ (z − z′) ,

where Ĥ0 = (~2/2) ∂
∂z

1
m∗(z)

∂
∂z
− U(z). Equation. 125 is an ordinary differential equa-

tion, the method to find the GF has been well mentioned in mathematical textbooks,
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normally it has three main steps. We use this procedure in a particular case, i.e., Eq.

125, with the boundary conditions at z = ±∞.

The strategy is:

(i) To find a fundamental system {Ψ0
L,Ψ

0
R} of the homogenous Schrödinger equa-

tion
(
E − Ĥ0

)
Ψ = 0.

(ii) To find a suitable linear combinations of Ψ0
L and Ψ0

R and find solutions y1 and

y2 of the equation
(
E − Ĥ0

)
y = 0 where y1(z) is non-infinite at z = −∞, whereas

y2(z) is non-infinite at z = +∞.

(iii) To define the correct GF we make use of the formula

G0(z, z′) =

{
y1(z)y2(z′)
W (y1, y2)(z′) if−∞ < z < z′ < +∞
y1(z′) y2(z)
W (y1, y2)(z′) if −∞ < z′ < z < +∞

, (126)

where W (z′) = ~2
2m∗(z′)

[
y1(z′)∂y2(z′)

∂z′ −
∂y1(z′)
∂z′ y2(z′)

]
is the Wronskian potential. In the

case E > U1 > U2, Eq. 125 has a solution Ψ0
L which is finite at z = −∞, and Ψ0

R finite

at z = +∞,
As well-known, at an energy larger than the potential step, the homogenous Schrödinger

equation,
(
E − Ĥ0

)
Ψ = 0, admits the solutions:

Ψ0
L = e−ik2z> + rLe

ik2z> + tLe
−ik1z< ,

Ψ0
R = eik1z< + rRe

−ik1z< + tRe
ik2z> ,

where we write z< instead of z < 0, and z> instead of z > 0. Concerning their physical

meaning: Ψ0
R is the wave transmitted from the left to the right and Ψ0

L is the wave

transmitted from the right to the left at the same energy. They satisfy the matching

conditions at the left and right sides respectively.

By using the BDD matching conditions at z = 0, one obtains:

tL =
2k2

k2 + k1

, tR =
2k1

k2 + k1

,

rL =
k2 − k1

k2 + k1

, rR =
k1 − k2

k2 + k1

.

if one chooses y1 ≡ Ψ0
L, and y2 ≡ Ψ0

R satisfying the boundary conditions at z = ±∞.
Therefore, Eq. 125 possesses a solution of the form:

G0(z, z′) =
Ψ0
L(z′)Ψ0

R(z)Θ(z − z′) + Ψ0
L(z)Ψ0

R(z′)Θ(z′ − z)

W (z′)
, (127)

with the Wronskian potential:

W (z′) =
~2

2m∗(z′)

[
Ψ0
L(z′)

∂

∂z′
Ψ0
R(z′)−Ψ0

R(z′)
∂

∂z′
Ψ0
L(z′)

]
. (128)
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If we assume, for simplicity and without a big loss of generality, that the effective

mass remains unchanged in the layers, one obtains m∗(z′) = m∗. It is easy to derive

∂W (z′)/∂z′ = 0 to prove that the Wronskian is independent of the coordinate (z and

z′). In this case, we obtain:

W =
~2

2m∗
4ik1k2

k2 + k1

.

Following Eq. 127, we recover the retarded GF introduced in Refs. [132, 135]

G0(z, z′) =
2m∗

~2

tR
2ik1

e−ik1zeik2z
′
; z < 0, z′ > 0,

G0(z, z′) =
2m∗

~2

tL
2ik2

e−ik1z
′
eik2z; z > 0, z′ < 0,

G0(z, z′) =
2m∗

~2

1

2ik1

[
eik1|z−z

′| + rRe
−ik1(z+z′)

]
, z < 0, z′ < 0,

G0(z, z′) =
2m∗

~2

1

2ik2

[
eik2|z−z

′| + rLe
−ik2(z+z′)

]
, z > 0, z′ > 0.

Note that the advanced GF is generally constructed by inversion of the respective

left and right incoming wave functions in the expression of the retarded GF.

6.5 Interfacial Green’s function for spin-polarized parti-

cle without orbital degeneracy.

6.5.1 General expression of the Green function.

In order to demonstrate the power of the perturbation methods adapted to the spin-

transport case, one first considers the simpler case of the CB, free of any orbital de-

generacy, and described by a single S−type orbital. Choosing the orthogonal basis

functions |S〉 ⊗ {|↑〉 , |↓〉} allows one to obtain the zeroth-order unperturbed diagonal

Hamiltonian according to:

|S ↑〉 |S ↓〉

Ĥ0 =

[
Ĥ↑↑0 0

0 Ĥ↓↓0

]
.

Ψ0
R =

[Ψ0↑
R

Ψ0↓
R

]
and Ψ0

L =
[Ψ0↑

L

Ψ0↓
L

]
are solutions of the homogenous Schrödinger equation

satisfying the boundary conditions for the respective left and right incoming waves,(
E Î− Ĥ0

)[Ψ0↑
R

Ψ0↓
R

]
= 0,

and (
E Î− Ĥ0

)[Ψ0↑
L

Ψ0↓
L

]
= 0.
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where Î is the 2× 2 unitary matrix. Note that
(
E Î− Ĥ0

)
is diagonal.

Now, the spin-polarized GF in the CB is a solution of the following equation(
E Î− Ĥ0

)
G0(z, z′) = Îδ(z − z′), (129)

The 2×2 GF admits a diagonal form, due to the orthogonality (no spin mixing) between

the basis functions, i.e., |S ↑〉 and |S ↓〉. This makes the treatment rather similar to the

spinless case. The diagonal GF then writes:

G0 (z, z′) =

[
G↑↑0 (z, z′) 0

0 G↓↓0 (z, z′)

]
,

with

G↑↑0 (z, z′) =
Ψ0↑
R (z)Ψ0↑

L (z′)Θ(z − z′) + Ψ0↑
R (z′)Ψ0↑

L (z)Θ(z′ − z)

W ↑↑(z′)
,

and

G↓↓0 (z, z′) =
Ψ0↓
R (z)Ψ0↓

L (z′)Θ(z − z′) + Ψ0↓
R (z′)Ψ0↓

L (z)Θ(z′ − z)

W ↓↓(z′)
.

The spin-dependent Lippman-Schwinger equation for the ΨR state then writes:[
Ψ↑R(z)

Ψ↓R(z)

]
=

[
Ψ0↑
R (z)

Ψ0↓
R (z)

]
+

∫ [
G↑↑0 (z, z′) 0

0 G↓↓0 (z, z′)

][
V̂ ↑↑(z′) V̂ ↑↓(z′)

V̂ ↓↑(z′) V̂ ↓↓(z′)

] [
Ψ0↑
R (z′)

Ψ0↓
R (z′)

]
dz′,

where V̂ σσ′ is the matrix element of the perturbed potential in the basis, |S ↑〉 and |S ↓〉 .
We then obtain the correction to the overall wave function within the heterostructure

according to:[
δΨ↑R(z)

δΨ↓R(z)

]
=

[∫
G↑↑0 (z, z′)V̂ ↑↑(z′)Ψ0↑

R (z′)dz′ +
∫
G↑↑0 (z, z′)V̂ ↑↓(z′)Ψ0↓

R (z′)dz′∫
G↓↓0 (z, z′)V̂ ↓↑(z′)Ψ0↑

R (z′dz′ +
∫
G↓↓0 (z, z′)V̂ ↓↓(z′)Ψ0↓

R (z′)dz′

]
(130)

6.5.2 Example: perturbative scattering method adapted to electron tunneling

through a Td [110] semiconductor barrier

In order to review this method, we will first describe the approach developed by the

IOFFE institute [15] involving SOI in the barrier via such a perturbative method. In

this present work, the free electron tunnels through an heterostructure with a symmetric

potential profile grown along the z ‖ [110] axis, with the in-plane axes x ‖ [11̄0], y ‖
[001̄]. The barrier is made of a Td-group semiconductor, as introduced in the preceding

chapters, and the lack of inversion center leads to the appearance of the Dresselhaus

k -cubic terms, ĤD, in the Hamiltonian.
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6.5.2.1 Physical issues

Along the [110] direction, the Dresselhaus Hamiltonian contains the derivative of the

third, second, first, and zeroth order. In perturbative treatment, we are interested in the

derivative of the third order term like:

ĤD =
σx
2

{
γ(z)k3

z +
(
k3
z

)+
γ(z)

}
. (131)

Indeed, the presence of the third-derivative term makes the current discontinuous at

the interface [31]. To avoid this problem, the authors considered the k-cubic term as

the perturbation term V (z) in the above part in order to calculate the correction to the

transmission coefficient for ↑ and ↓ spin channels.

One chooses here orthogonal basis functions with spin-quantization being the eigen-

vecctors of σx according to: |S〉 ⊗ {|↑〉 , |↓〉} with |↑〉 = 1√
2

(
1
1

)
, and |↓〉 = 1√

2

(
1
−1

)
.

The unperturbed Hamiltonian possesses then the following block form:

Ĥ0 =

[
Ĥ↑↑0 0

0 Ĥ↓↓0

]
,

with:

Ĥ↑↑0 = Ĥ↓↓0 =

{
−~2

2
∂
∂z

1
m∗(z)

∂
∂z

for z < 0 or z > a

−~2
2
∂
∂z

1
m∗(z)

∂
∂z

+ V0 for 0 < z < a
, (132)

and where a is the barrier thickness and V0 the barrier height. As is well known, the

solutions of the homogenous Schrödinger equation at the same incident energy E < V0

are respectively:

Ψ0↑
R = Ψ0↓

R =


eikz + rke

−ikz, z < 0

Ake
−qz +Bke

qz, 0 < z < a

tke
ik(z−a), z > a

,

Ψ0↑
L = Ψ0↓

L =


tke
−ikz, z < 0

Ake
q(z−a) +Bke

−q(z−a), 0 < z < a

e−ik(z−a) + rke
ik(z−a), z > a.

,

where tk =
[
cosh qa+ i

2

(
q
k
− k

q

)
sinh qa

]−1

is the transmission amplitude, rk =[
− i

2

(
q
k

+ k
q

)
sinh qa

]
tk the reflection amplitude, Ak and Bk are the amplitudes in the

barrier, Ak = tk
2

(
1 + ik

q

)
e−qa, Bk = tk

2

(
1− ik

q

)
eqa; k =

√
2mE/~2 > 0 is the

initial wavevector, q =
√

2m (V0 − E) /~2, with the same effective masses inside and

outside the barrier. The Wronskian potential is independent of the z′ coordinate. We

choose z > a to calculate its value.

W ↑↑ =
~2

2m∗

{
Ψ↑L(z′ > a)

∂Ψ↑R(z′ > a)

∂z
− ∂Ψ↑L(z′ > a)

∂z
Ψ↑R(z′ > a)

}
= i
~2k

m∗
tk.
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Note that the Wronskian for the ↓ spin particle remains unchanged,

W ↓↓ = i
~2k

m∗
tk.

6.5.2.2 Expression for the SOI potential (Dresselhaus)

We consider now the properly symmetrized Dresselhaus SOI Hamiltonian in the barrier.

Because of

〈↓|σx |↓〉 = −1, 〈↑|σx |↑〉 = 1, (133)

〈↑|σx |↓〉 = 〈↓|σx |↑〉 = 0, (134)

the perturbed potential can be expressed in a diagonal form according to:

V̂ (z) =

[
V ↑↑(z) 0

0 V ↓↓(z)

]
,

with

V ↑↑(z) = 〈↑| ĤD |↑〉 =
1

2

{
γ(z)k3

z +
(
k3
z

)+
γ(z)

}
,

and

V ↓↓(z) = 〈↓| ĤD |↓〉 =
−1

2

{
γ(z)k3

z +
(
k3
z

)+
γ(z)

}
.

Following Eq. 130, the correction to the zeroth order ↑-spin wave function within

the heterostructure is then:

δΨ↑R(z) =

∫ a

0

G↑↑0 (z, z′)V ↑↑(z′)Ψ0↑
R (z′)dz′ for ↑-spin incidence, (135)

=
−im∗eik(z−a)

~2k

∫ a

0

Ψ0↑
L (z′)

1

2

{
γ(z)k3

z +
(
k3
z

)+
γ(z)

}
Ψ0↑
R (z′)dz′,

whereas

δΨ↓R(z) =

∫ a

0

G↓↓0 (z, z′)V ↓↓(z′)Ψ0↓
R (z′)dz′ for ↓-spin incidence (136)

=
im∗eik(z−a)

~2k

∫ a

0

Ψ0↓
L (z′)

1

2

{
γ(z)k3

z +
(
k3
z

)+
γ(z)

}
Ψ0↓
R (z′)dz′.

From Eqs. 135 and 136, we can find the correction to the transmission amplitude

for the ↑- and ↓- spin channels respectively, according to:

δt↑↑ = −δt↓↓ =
−im∗
~2k

∫ a

0

Ψ0↑
L (z′)

i

2

{
γ(z)

−→
∂ 3

∂z3
−
←−
∂ 3

∂z3
γ(z)

}
Ψ0↑
R (z′)dz′

because Ψ0↓
L and Ψ0↑

L possess the same orbital character as Ψ0↓
R and Ψ0↑

R , where
−→
∂
∂z

acts

to the right, whereas
←−
∂
∂z

acts to the left. This is Eq. (A5) in Ref. [15] . The authors

finally obtained:

118



δt↑↑ = −δt↓↓ =
−im∗
~2k

∫ a

0

Ψ0↑
L (z′)

i

2

{
γ(z)

−→
∂ 3

∂z3
−
←−
∂ 3

∂z3
γ(z)

}
Ψ0↑
R (z′)dz′

=
−im∗
~2k

i

2
γ

∫ a

0

{
Ψ0↑
L (z′)

∂3Ψ0↑
R (z′)

∂z3
−Ψ0↑

R (z′)
∂3Ψ0↑

L (z′)

∂z3

}
dz′

=
γm∗q2a

2~2
tk.

The conclusion is that the correction to the transmission coefficient is independent

of the incoming spin direction,
∣∣δt↑↑∣∣2 =

∣∣δt↓↓∣∣2 , in the present situation. It means

that there is no particular spin filtering effect with normal electron ingoing but only

spin-dephasing or spin-rotation effects along the [110] direction like demonstrated by

Nguyen et al. [31].

6.6 Scattering at spin-orbit-split and exchange-split inter-

faces; connection to Chapter 5 [Present work]

After having discussed the perturbative scattering methods used, we now consider the

properties of the scattering asymmetry and the anomalous tunnel Hall effect we have

developed in Chapter 5 and which constitutes our main task. Before having presented

the general expression of the transmission coefficient adapted to the present issues, we

will consider the respective cases of:

(i) The perturbative scattering asymmetry and tunneling Hall effect introduced by

the in-plane and the out-of-plane Dresselhaus SOI components at left for left incoming

waves.

(ii) The perturbative scattering asymmetry and tunneling Hall effect introduced by

SOI at right with left incoming waves.

(iii) The perturbative scattering asymmetry and tunneling Hall effect introduced by

SOI at left and right with left incoming waves before analyzing the resulting effect from

symmetry arguments.

We have deliberately chosen here to leave some analytical developments in Ap-

pendix B for readers who are interested in the detail of the calculations. We refer the

structure to the x, y, and z are cubic axes; x‖[100], y‖[010], and z‖[001] and consider

the properties of electron scattering at the interface z = 0 between two identical Td

ferromagnetic semiconductors (GaMnAs,...) grown along the z axis. The magnetiza-

tions are anti-parallel and are fixed along the x direction. The incident wavevector is

k = (0, ξ, k).

We first detail the analytical derivation of the corresponding system Green’s func-

tion before discussing the properties of transmission and asymmetry of transmission
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when one considers respectively spin-orbit at left and at right and both in left and right

contacts. Of course, some transmissions are linked among some general symmetry

properties of the S-matrix derived in Appendix A2.

6.6.1 Reflection, transmission and perturbating potential

The unperturbed Hamiltonian is:

Ĥ0 =
~2

2m∗
(
k2 + ξ2

)
Î+ εwσx, (137)

where ε = 1 in the left region and ε = −1 in the right region. The SOI is introduced as

a perturbating potential:

ĤD =

[
ξ2σz

2

(
γ(z)k + k+γ(z)

)
− ξσy

2

(
γ(z)k2 +

(
k+
)2
γ(z)

)]
= −iξ

2σz
2

(
γ(z)

−→
∂

∂z
−
←−
∂

∂z
γ(z)

)
+
ξσy
2

(
γ(z)

−−→
∂2

∂z2
+

←−
∂2

∂z2
γ(z)

)
,

The unperturbed Hamiltonian in Eq. 137 possesses the following eigenvalues

E =
~2

2m∗
(
k2

1 + ξ2
)
− w, and E =

~2

2m∗
(
k2

2 + ξ2
)

+ w ;

with the respective eigenvectors

|↑〉 =
1√
2

(
1

1

)
, and |↓〉 =

1√
2

(
1

−1

)
.

In this new basis |S〉 ⊗ {|↓〉 , |↑〉}, this Hamiltonian writes:

|S ↓〉 |S ↑〉

Ĥ0 =

[
~2

2m∗

(
k2

1 + ξ2
)
− w 0

0 ~2
2m∗

(
k2

2 + ξ2
)

+ w

]
.

We now consider the electron transmission within an incident energy range in the

exchange step, −w < E < w, where the transmission asymmetry takes place, so that

k1 is real whereas k2 is pure imaginary. It is then quite convenient to replace k2 by ik2.

The two solutions of the homogeneous Schrödinger equation, Ψ0
R and Ψ0

L, are given by:

(
E Î− Ĥ0

)[Ψ0↑
R

Ψ0↓
R

]
= 0,

and (
E Î− Ĥ0

)[Ψ0↑
L

Ψ0↓
L

]
= 0,

to obtain:
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Figure 49: Scheme of a ↓-spin electron, Ψ↓0R , tunneling through an exchange step of

height 2w from the left to the right side.

Ψ↓0R (z) =
(
eik1z< + rR↓e

−ik1z< + tR↓e
−k2z>

)
, (138)

and

Ψ↑0R (z) =
(
e−k2z< + rR↑e

k2z< + tR↑e
ik1z>

)
(139)

together with

Figure 50: Scheme of an ↑-spin electron, Ψ↑0R , tunneling through an exchange step of

heigh 2w from the left to the right side.

Ψ↓0L (z) =
(
ek2z> + rL↓e

−k2z> + tL↓e
−ik1z<

)
, (140)

and

Ψ↑0L (z) = e−ik1z> + rL↑e
ik1z> + tL↑e

k2z< . (141)

The reflection and transmission amplitudes are then found via the matching condi-

tions at z = 0 with possible transmission from propagative to evanescent states (tR↓ and

tL↑) and vice-versa (tL↑ and tL↓). In details, the matching conditions at z = 0 for Ψ↓0R
are {

1 + rR↓ = tR↓,

ik1 − ik1rR↓ = −k2tR↓,
(142)
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thus giving:

tR↓ = tL↑ =
2k1

k1 + ik2

and rR↓ = rL↑ =
k1 − ik2

k1 + ik2

. (143)

The matching conditions at z = 0 for Ψ↑0R are{
1 + rR↑ = tR↑,

−k2 + k2rR↑ = ik1tR↑,
(144)

to give:

tR↑ = tL↓ =
2k2

k2 − ik1

. (145)

We now derive the perturbed potential V̂ = ĤSO and show that it will acquire a

pure non-diagonal form like:

V̂ =

[
0 V ↑↓

V ↓↑ 0

]
,

where the details of the SOI Hamiltonian form can be found in Appendix B1.

V ↑↓ = 〈↑ |ĤD| ↓〉,

= 〈↑ |
{
−iξ

2σz
2

(
γ(z)

−→
∂

∂z
−
←−
∂

∂z
γ(z)

)
+
ξσy
2

(
γ(z)

−−→
∂2

∂z2
+

←−
∂2

∂z2
γ(z)

)}
| ↓〉,

=
−iξ2

2

(
γ(z)

−→
∂

∂z
−
←−
∂

∂z
γ(z)

)
+
iξ

2

(
γ(z)

−−→
∂2

∂z2
+

←−
∂2

∂z2
γ(z)

)
,

=

(
−iξ2

2
γ(z)

−→
∂

∂z
+
iξ

2
γ(z)

−−→
∂2

∂z2

)
+

(
iξ2

2

←−
∂

∂z
γ(z) +

iξ

2

←−
∂2

∂z2
γ(z)

)
,

and

V ↓↑ =
−iξ2

2

(
γ(z)

−→
∂

∂z
−
←−
∂

∂z
γ(z)

)
− iξ

2

(
γ(z)

−−→
∂2

∂z2
+

←−
∂2

∂z2
γ(z)

)

=

(
−iξ2

2
γ(z)

−→
∂

∂z
− iξ

2
γ(z)

−−→
∂2

∂z2

)
+

(
iξ2

2

←−
∂

∂z
γ(z)− iξ

2

←−
∂2

∂z2
γ(z)

)
.

As mentioned before, we stress again on the particular point that the incident energy

value is chosen to be smaller that the exchange step. It results that, in the right contact,

the ↑-spin state admits a pure propagative character whereas the ↓-spin state is purely

evanescent. Following Eq. 130, the correction to the transmitted wave function for the

↑-spin state writes:

δΨ↑R(z) =

∫
G↑↑0 (z, z′)V ↑↓(z′)Ψ0↓

R (z′)dz′

= Ψ0↑
R (z)

∫
Ψ0↑
L (z′)V ↑↓(z′)Ψ0↓

R (z′)dz′

W ↑↑(z′)
.
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The host materials at left and right contacts are made identical and free of SOI so

that the Wronskian potential is independent of the z′ axis. We then obtain:

W ↑↑ =
~2

2m∗
2ik1tR↑ = i

~2k1

m∗
tR↑,

and

δΨ↑R(z) =
−im∗
~2k1

eik1z
∫

Ψ0↑
L (z′)V ↑↓(z′)Ψ0↓

R (z′)dz′.

The correction to the amplitude of transmission is therefore calculated to be:

δt↑↓ =
m∗

i~2k1

∫
Ψ0↑
L (z′)V ↑↓(z′)Ψ0↓

R (z′)dz′ (146)

=
m∗

i~2k1

+∞∫
−∞

Ψ0↑
L (z′)

[
−iξ

2

2
γ(z)

∂Ψ↓0R (z′)

∂z
+
iξ

2
γ(z)

∂2Ψ↓0R (z′)

∂z2

]
dz′

+
m∗

i~2k1

+∞∫
−∞

[
iξ2

2
γ(z)

∂Ψ0↑
L (z′)

∂z
+
iξ

2
γ(z)

∂2Ψ0↑
L (z′)

∂z2

]
Ψ↓0R (z′)dz.

We are now going to calculate the properties of the carrier transmission for the

different SOI configurations possibly including SOI to the left, SOI to the right, and

SOI in both contacts for the incoming left electrons. We will compare the resulting

transport asymmetry in each case.

6.6.1.1 Case of SOI on the left for incoming left electrons

We first note that the zeroth-order transmission coefficient, τ 0 = 0, from left-to-right

(or equivalently right-to-left) without involving spin-orbit is zero without spin-mixing

interactions. Then, from Eq. 146, the transmission amplitude, τL, only involving SOI

on the left electrode, is given by:

τL =
m∗

i~2k1

0∫
−∞

Ψ0↑
L (z′)

[
−iγξ

2

2

∂

∂z′
+
iγξ

2

∂2

∂z′2

]
Ψ↓0R (z′)dz′ (147)

+
m∗

i~2k1

0∫
−∞

[
iγξ2

2

∂Ψ0↑
L (z′)

∂z′
+
iγξ

2

∂2Ψ0↑
L (z′)

∂2z′

]
Ψ↓0R (z′)dz′.

After lengthy calculations introduced in Appendix B. 2.1, with the following nota-

tions k1 = K (incoming propagative wavevector) and k2 = λK (imaginary transmitted

wavevector), one obtains:

τL =
1

2w

γξK2

(1 + iλ)2

{
ξ

K
(3λ2 − 1) + 2λ

(
λ2 − 1

)}
=
C (ξ,K, λ)

2
(148)

with C (ξ,K, λ) as introduced in Chapter 5.
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6.6.1.2 Case of SOI at right for incoming left electrons

One now considers the case of SOI at right with incoming left electrons. We note that

the zeroth-order transmission coefficient, τ 0 = 0 from left-to-right (or equivalently

right-to-left) without involving spin-orbit is zero without spin-mixing interactions.

The amplitude of transmission writes in this case:

τR =
m∗

i~2k1

+∞∫
0

Ψ0↑
L (z′)

[
−iγξ

2

2

∂

∂z′
+
iγξ

2

∂2

∂z′2

]
Ψ↓0R (z′)dz′

+
m∗

i~2k1

+∞∫
0

[
iγξ2

2

∂Ψ0↑
L (z′)

∂z′
+
iγξ

2

∂2Ψ0↑
L (z′)

∂2z′

]
Ψ↓0R (z′)dz′.

The calculation detail is shown in Appendix B. 2.2. We obtain

τR = τL.

This equation agrees with the consequence of the scattering matrix developed in Eq. 87

in Chapter 4.

6.6.1.3 Case of spin-orbit interactions on the left and right side for left incoming

electrons.

We consider here the case of SOI interactions in the whole heterostructure in the both

left and right contacts. To first order of perturbation, the transmission coefficient is

simply the sum of the two transmission coefficients τL and τR from simple argument

of the linear response theory. We then derive that the transmission coefficient writes

τ = τL + τR = 2τL thus giving:

τ =
m∗

i~2k1

+∞∫
−∞

Ψ0↑
L (z′)

[
−iξ

2

2
γ(z)

∂Ψ↓0R (z′)

∂z
+
iξ

2
γ(z)

∂2Ψ↓0R (z′)

∂z2

]
dz′

+
m∗

i~2k1

+∞∫
−∞

[
iξ2

2
γ(z)

∂Ψ0↑
L (z′)

∂z
+
iξ

2
γ(z)

∂2Ψ0↑
L (z′)

∂z2

]
Ψ↓0R (z′)dz′

= τL + τR = 2τL =

(
γξK2

w

) ξ
K

(3λ2 − 1) + 2λ
(
λ2 − 1

)
(1 + iλ)2 .

By perturbative scattering methods, we thus recover the formula derived from the

application of the pure matching conditions at the interface (Chapter. 5 and Eq. 7 of our

article [18]). This proves the power of this methodology for the calculation of transport

properties involving mixed propagative and evanescent electronic states. This pertur-

bative scattering approach is often used to treat the issue of spin-transport like spin-

assisted diffusions and spin Hall effects in heavy transition metals and their impurity
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alloys. However, it has hardly been employed to investigate the role of the evanescent

waves in physical phenomena like skew-tunneling phenomena. We will now use it for

the calculation of spin-orbit assisted tunneling transport in the case of a thin tunnel

junction where the SOI perturbation is localized in a finite volume (localized electron

diffusion equivalent to extrinsic SHE in diluted alloys).

6.6.2 Magnetic tunnel junction with SOI in the barrier: case where SOI is lo-

cated in a confined region of the space as a spin-orbit diffusive center

6.6.2.1 Calculation of the SOI-assisted transmission coefficient and transmis-

sion asymmetry

In the case of a thin tunnel junction, the electron scatters at two different interfaces sep-

arated by a barrier and this makes the problem different from the previous treatment.

To illustrate this particular issue, we consider the case of a tunnel barrier made of a

semiconductor belonging to the Td -symmetry group separating two ferromagnetic con-

tacts, free of any SOI, still in an antiparallel magnetic configuration (AP). The incident

energy lies in the range of the exchange step, −w < E < w, also corresponding to a

single incident propagative wave of a pure ↓ spin character.

The zeroth-order unperturbed Hamiltonian (the back ground Hamiltonian) in the

basis S ⊗
{
|↑〉 = 1√

2

(
1
1

)
, |↓〉 = 1√

2

(
1
−1

)}
writes:

Ĥ0 =



[
γC(k2 + ξ2)− εw 0

0 γC(k2 + ξ2) + εw

]
for z > 0 or z > a[

γC(k2 + ξ2) + V0 0

0 γC(k2 + ξ2) + V0

]
for 0 < z < a

.

(149)

where ε = 1 on the left and ε = −1 on the right, respectively, and we introduce SOI as

a perturbating potential.

In order to simplify the calculation and without loosing generality, we have chosen

a particular value for the barrier height, equal to the exchange potential, V0 = |w| , in

order to avoid any tunneling scattering for the evanescent wave inside the barrier. By

this way, the tunnel transport only involves a single evanescent wave without supple-

mentary reflected waves inside the barrier. The calculation of the more general shape

of the GF is given in the article of Aguiar et al. [135].

To the first order of the perturbation series of the Lippman-Schingwer equation, the
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Figure 51: A ↓-spin electron tunnels through a barrier grown along the [001] direction

with V0 = |w| from the left to the right side.

amplitude of transmission, δt↓↑, is then:

δt↑↓ =
m∗

i~2k1

a∫
0

Ψ0↑
L (z′)

[
−iγξ

2

2

∂Ψ↓0R (z′)

∂z
+
iγξ

2

∂2Ψ↓0R (z′)

∂z2

]
dz′ (150)

+
m∗

i~2k1

a∫
0

[
iγξ2

2

∂Ψ0↑
L (z′)

∂z
+
iγξ

2

∂2Ψ0↑
L (z′)

∂z2

]
Ψ↓0R (z′)dz′,

The coefficient of the wave functions Ψ0↓
R , and Ψ0↑

L , without SOI, are found from

the relevant matching condition in a similar way to the case of the exchange step. One

then obtains:

Ψ0↓
R = tR↓e

−k2z =
2k1

k1 + ik2

e−k2z, for z > 0 (151)

as well as

Ψ0↑
L = t

L↑e
k2(z−a) =

2k1

k1 + ik2

ek2(z−a), for z < a. (152)

The detailed calculations in Appendix B.2.3 give:

δt↑↓ =
e−k2a

γc

2γξk2k1a

(k1 + ik2)2 (ξ + k2). (153)

Without SOI perturbation, the transmission coefficient is also zero in the present

situation of incoming/outgoing pure spin states, and consequently, T ↑↓ =
∣∣δt↑↓∣∣2 . If

one defines again the following parameters tan θ = ξ/K ( =⇒ ξ = K tan θ) for the

carrier incident angle upon the barrier, and η = 1−λ2
1+λ2

= E
w

(
=⇒ λ =

√
1−η
1+η

)
for the

reduced incident kinetic energy like introduced in Chapter 5, we find the asymmetry of

transmission for the tunnel barrier case according to:

Asymmetry = A =
|ξ + k2|2 − |−ξ + k2|2

|ξ − k2|2 + |−ξ − k2|2
= 2

√
(1− η)(1 + η) tan θ

tan2 θ(1 + η) + (1− η)
. (154)
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Figure 52: Transmission coefficient for an electron scattering at the interface between

GaAs/GaAs in AP configuration calculated by Eq. 153 (black line) and numerical code

(red line) with m∗ = 0.067m0, γ = 24 eVÅ3, w = 150 meV, barrier thickness 2 nm.
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Figure 53: Repective asymmetry transmission in Fig. 52 calculated by Eq. 154 (black

line) and 2×2 numerical code (red line).
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A first conclusion is that we obtain a very good agreement between the perturbative

scattering method and our numerical calculation for the transmission coefficient in Fig.

52 and the asymmetry transmission in Fig. 53. This proves the power of the present

method developed to first order. In more details:

The transmission coefficient for an incoming propagative spin-down electron into

an outgoing propagative spin-up electron, possible via a spin-orbit assisted mechanism

(Dresselhaus in the present case), is non-zero after perturbation However, the elec-

tronic transmissivity vs. incident kinetic energy and incident angle is non-trivial, pass-

ing through a maximum located at an energy smaller than the barrier height. This is

a peculiarity of the Dresselhaus symmetry. The maximum of transmission depends on

the incidence angle (tan θ parameter) [see Fig. 52].

In the case of Dresselhaus interaction, like considered here, the maximum of the

asymmetry of transmission reaches 100% in any case, which means that the transmis-

sion is possible for given electron incidences and fully quenched for the opposite inci-

dence. This particular point in the Brillouin zone (BZ) in the k-space depends on the

electron incidence. The k.p theory gives a maximum of asymmetry when the evanes-

cent wavevector (λ) equals in magnitude the parallel incoming wavevectors in the CB

S-band picture. This is another peculiarity of the Dresselhaus interaction. In the case of

holes in the VB discussed hereafter in the next chapter, the asymmetry of transmission

mediated in the VB by pure core spin-orbit interactions will be associated with the same

condition which could be more easily related to the coupling between average orbital

moments in the barrier via the p-character orbitals of the VB. One of the very inter-

esting conclusions suggests to infer a pseudo orbital moment for the S-CB electrons

experiencing a Dresselhaus potential.

From these whole developments, one can give a general expression for the change

of the spin-flip transmitted amplitude for a propagative ↓ spin S-wave submitted to

SOI in a confined region of the space and transmitted into a propagative ↑-spin S-wave

according to the following expression:

δtσσ
′
=
−im∗
~2k

∫ a

0

Ψ0σ
out(z

′)V σσ′(z′)Ψ0σ′

in (z′)dz′,

where the subscripts (in) and (out) refer respectively to the unperturbed incoming wave

from left with reflection at the left side, and the outgoing wave at right with reflection

at the right side (scattering wave, see Ref. [139]).

In Chapter 7, we will give an extension of the perturbation calculations to the case

of multiband transport (case of holes in the VB) involving orbital degeneracy like oc-

curring in p-symmetry orbital bands.
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CHAPTER VII

PERTURBATIVE SCATTERING APPROACH TO

THE SPIN-ORBIT DEPENDENT TUNNELING IN

THE VALENCE BAND

7.1 Perturbative scattering methods adapted to orbitally-

degenerated valence bands

In this part, we will proof by analytical and numerical methods that the scattering asym-

metry process and related anomalous tunnel Hall effect exist also in the VB of semi-

conductor junctions, only involving core atomic SOI like appearing in a 6-band k.p

Luttinger approach. This is presently a new result that we will show to be connected to

some spin-orbit dependent chirality effects in the interaction region with SOI.

This scattering asymmetry process, like previously described in the case of the CB,

may be then generalized in the valence band to some intrinsic phenomena without in-

voking necessary odd-potential spin-orbit assistance like Rashba or Dresselhaus SOC

terms. We develop, here, the same kind of perturbative scattering approach in a tunnel

junction geometry involving p-type ferromagnetic semiconductors and spin-polarized

holes. The goal is to demonstrate that the forward scattering asymmetry involving

mixed propagative (parallel incident wavevector and current) and evanescent tunneling

character arise from chirality phenomena (orbital moments). This scattering asymmetry

process has been considered in a very recent work dealing with USMR in topological

insulator [140] with in-plane current. This new phenomena can also explain the USMR

results in an in-plane current geometry involving the GaMnAs compound [77] when the

Boltzmann equation for transport is developed up to the second order.

Another interesting experimental situation to explore would be to revisit the case of

giant Hall effects observed a decade ago on Ge/GeMn systems characterized by Mn-

rich magnetic nanocolumns embedded in a Ge-rich highly conductive phase [141, 142].

The present work puts in evidence a very large anomalous Hall effect of the order of

60% in this kind of systems characterized by a typical distance between nanocolumns

of the order of several tens of nms of the order or shorter than the MFP in the Ge-rich

phase.

The spin-dependent diffusions and scattering of the p-type carriers on the Mn-

rich nanocolumns, like described in this manuscript in the case of 2-dimensionnal
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translational systems (2-dimensional multilayers), may explain the same kind of asym-

metry of the specular reflection/transmission of carriers on the circumference of the

nanocolumns. In order to demonstrate such effects, an analytical calculation should be

performed for a cylindrical geometry.

Figure 54: Hall angle ρxy/ρxx versus magnetic field recorded at different temperatures

[141].

However, the case of spin-polarized carriers in the VB (holes) differs from the case

of the CB by several points which makes the treatment of the VB case specific:

(i) The calculations have shown that the intrinsic core SOI of the p-type symme-

try orbital provides, by itself, properties of skew-tunneling or asymmetry of tunneling

transmission vs. in-plane wavevectors. This exists without involving supplementary

linear Rashba or cubic-Dresselhaus SOC terms, however existing for the Td symmetry

group [44]. The asymmetry of tunneling transmission may then appear in an interaction

region of finite volume (tunnel junction) via intrinsic atomic spin-orbit effects.

(ii) In addition to spin orbit arising from the p-type orbital symmetry, the VB treat-

ment brings a supplementary complexity in term of orbital degeneracy involving light-

hole (LH), heavy-hole (HH) and spin-orbit (SO) bands, each of them twice degenerated.

(iii) In the VB of III-V heterostructures, it is well known that, under oblique inci-

dence like considered in this manuscript, LH and HH bands generally mix together on

reflection/transmission at interfaces making analytical calculations heavier than the CB

case.
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(iv) The calculation of spin-orbit perturbative transport in the VB can be undertaken

in the same way that the one developed for the CB. By extension to the CB case, the

general expression of the correction to the amplitude of the transmission coefficient to

the multiband case may be proposed in a form like:

δtσσ
′

(nm) =
−im∗n
~2kn

∑
l

∫ d

0

[
Ψ0σ
out(n)(z

′)
]∗
V σσ′

nm (z′)Ψ0σ′

in(m)(z
′) d (z′) ,

where now (n) and (m) are the subscript corresponding to the multiband structure of

holes in the incoming and outgoing waves to consider, σ and σ′ are spin of the wave

functions.

It results that the correction to the transmitted wave should be linked to the coupling

between corresponding (in) and (out) wave function and orbital moments of the waves

and then to a new kind of chirality phenomena involved in tunnel barriers. This is what

we will investigate now in much more details.

To see this, we consider the case of tunneling transport of holes in the VB under

some assumptions to make easier analytical calculations in terms of Green’s function

method. We first work at the limit of almost normal incidence. Second, the most dras-

tic assumption is to consider no spin-orbit Hamiltonian in the contacts, in 6 × 6 Kane

approach, and with SOI only present in the barrier and playing the role of a pertur-

bation potential. We then extend by numerical calculations, in a second part, the k.p

calculations to a more physical system by including SOI also in electrodes. However,

calculations will show that the assumption made while neglecting with SOI in the con-

tacts gives the main results departing not too far from the exact numerical calculations,

and thus catching the main trends of the physical processes involved.

Figure 55: Transmission of electrons through tunnel barrier in the VB with the magne-

tization direction perpendicular to the wavevector in the contacts.

As an example, we consider a rectangular tunnel barrier grown along the x direction,

with respective left and right ferromagnetic contacts in the antiparallel magnetic magne-

tization with direction along z, and with in-plane incidence along y (x, y, z represent the
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cubic axes). To simplify the calculations, we first assume in Chapter 7 corresponding

to the perturbation techniques, that the core SOI, ĤSO = ~
4m2

0c
2 (∇U× p̂) .σ̂, is totally

neglected in the contacts and is introduced, afterwards, as a perturbation potential in

the barrier. This can mimic the case of GaAs barrier sandwiched between two GaM-

nAs ferromagnetic contacts. Moreover, without loss of generality, we consider that the

effective masses remain equal inside and outside the barrier. The true physical situation

of SOI in the electrodes (case of GaMnAs electrodes in the real situation) and in the

barrier will be treated numerically in a second step, without invoking any perturbative

treatment.

In the whole section 7.1, we chose the 6×6 {X, Y, Z}
⊗
{↑, ↓}Kane basis functions

free of any SOC. By rotation, this basis can be made equivalent to the 6×6 k.p Luttinger

basis involving the core SOC.

We start by finding the corresponding eigenvectors and eigenvalues before deriving

the multiband Green’s function as well as the spin-orbit assisted transport properties of

SOI-included tunnel barrier junctions in terms of orbital coupling in the barrier.

7.1.1 Hamiltonian, eigenenergies and eigenvectors in the valence bands

7.1.1.1 Hypothesis

In the present calculations, we assume that ky � kx so that second-order ky terms can

be neglected. Like in the CB, the incident energy lies in an energy range corresponding

to the exchange step region, −w < E < w, and the barrier height is equal to the

exchange constant energy, V0 = |w| to make continuous the evanescent character of

the tunneling wave functions inside the barrier (we then neglect the scattering of the

evanescent wave on the second barrier/right electrode interface for electrons coming

from left).

7.1.1.2 Description of the Hamiltonian

Under previous assumption we use the unperturbed 6× 6 k.p Hamiltonian in the three

different regions (left electrode, barrier and right electrode):

Ĥ0 =

{
Ĥkp + Ĥexc for x < 0 or x > a,

Ĥkp − V0 for 0 < x < a,
(155)

where Ĥkp represents the kinetic energy, Ĥexc the exchange potential, and V0 is the

barrier height (band discontinuity).

Ĥk.p =

[
Ĥ↑↑k.p 0

0 Ĥ↓↓k.p

]
, (156)
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with Ĥ↑↑k.p = Ĥ↓↓k.p, and

|X ↑〉 |Y ↑〉 |Z ↑〉

H↑↑k.p = ~2
2m0



(k2
x + k2

y)

− EPX
E5C−E8k

2
y − EP

E6−E8k
2
x

−kxky
(

EPX
E5C−E8 + EP

E6−E8

)
0

−kxky
(

EPX
E5C−E8 + EP

E6−E8

) (k2
x + k2

y)

− EPX
E5C−E8k

2
x − EP

E6−E8k
2
y

0

0 0
(k2
x + k2

y)

− EPX
E5C−E8 (k2

x + k2
y)


(157)

We then introduce the M and L parameters according to the notation of Ref [22]

M =

(
EP

E6 − E8

+
EPX

E5C − E8

)
,

L =

(
EP

E6 − E8

− EPX
E5C − E8

)
.

With the definition of these parameters (1− (M − L) /2)−1
is the effective mass of

the HH (in unit of 2m0

~2 ) whereas (1− (M + L) /2)−1
is the effective mass of the LH.

For simplicity, we have chosen the parameters to make the HH dispersion nearly flat,

1 ≈ (M − L)/2. Within this approach, under oblique incidence, the LH and HH

bands weakly mix together upon the reflection/transmission processes and this makes

the analytical development easier. Consequently, without SOI, the HH and LH states

can be almost transmitted like free carriers with respective effective masses m∗HH , and

m∗LH = −L−1 with a predominance for the LH transmission (tunneling).

The exchange Hamiltonian in these basis is written:

|X ↑〉 |Y ↑〉 |Z ↑〉 |X ↓〉 |Y ↓〉 |Z ↓〉

Ĥexc =



εw 0 0 0 0 0

0 εw 0 0 0 0

0 0 εw 0 0 0

0 0 0 −εw 0 0

0 0 0 0 −εw 0

0 0 0 0 0 −εw


,

(158)

where ε = 1 at left, and ε = −1 at right contacts (opposite magnetizations).

The atomic SOI to consider in the first order of perturbation calculation, ĤSO =
~

4m2
0c
2 (∇U× p̂) .σ̂, writes in the present basis:
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|X ↑〉 |Y ↑〉 |Z ↑〉 |X ↓〉 |Y ↓〉 |Z ↓〉

ĤSO =



0 −i∆/3 0 0 0 ∆/3

i∆/3 0 0 0 0 −i∆/3
0 0 0 −∆/3 i∆/3 0

0 0 −∆/3 0 i∆/3 0

0 0 −i∆/3 −i∆/3 0 0

∆/3 i∆/3 0 0 0 0


,

(159)

7.1.1.3 Eigenvalues and eigenvectors in the left electrode

We consider also the situation of a minimum mixing between LH and HH under quasi

normal incidence. However, one cannot totally avoid the band mixing between LH and

HH bands on transmission, and reflection processes as we will see hereafter. In order to

compute such transmission, one needs both eigenvectors and eigenvalues.

The eigenvectors and respective eigenvalues of the unperturbed Hamiltonian at the

left contact, HL, are respectively:

Eigenvalues Eigenvectors States, kx

E = ~2
2m0

(
1− M−L

2

)
k2
x + w

= ~2k2x
2m∗HH

+ w
Z ↑ Propagative, kx = k1

E = ~2
2m0

(
1− M−L

2

)
k2
x + w

= ~2k2x
2m∗HH

+ w

HH ↑= −Mky
Lkx

X ↑ +Y ↑≈ Y ↑
(because

Mky
Lk2
� 1)

Propagative, kx = k2

E = ~2
2m0

(
1− M+L

2

)
k2
x + w

= ~2k2x
2m∗LH

+ w
LH ↑= X ↑ +Mky

Lkx
Y ↑ Propagative, kx = k3

E = ~2
2m0

(
1− M−L

2

)
k2
x − w

= ~2k2x
2m∗HH

− w
Z ↓ Evanescent, kx = iK1

E = ~2
2m0

(
1− M−L

2

)
k2
x − w

= ~2k2x
2m∗HH

− w
HH ↓= Y ↓ Evanescent, kx = iK2

E = ~2
2m0

(
1− M+L

2

)
k2
x − w

= ~2k2x
2m∗LH

− w
LH ↓= X ↓ +Mky

Lkx
Y ↓ Evanescent, kx = iK3

,

where m∗LH , m
∗
HH , m

∗
Z = m∗HH are the effective masses in the LH, HH and Z bands,

respectively. From the hypothesis we used, the eigenvectors are described by pure

spin states (no SOI in the leads). Moreover, we find that the orbital character of the

eigenvectors are provided by the pure Z and Y waves (z and y are the two in-plane

directions) for the two HH bands. The LH orbital eigenvector mixes the X and Y

orbitals according to |LH〉 =
∣∣∣X + Mky

Lkx
Y
〉

.
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A first important conclusion is that none of these bands, of propagative (contact) or

evanescent (barrier) character admits an orbital moment except the LH-band. Indeed,

the |LH〉 =
∣∣∣X + Mky

Lkx
Y
〉

band must be associated with a value of the orbital moment

in the barrier equal to

〈LH| L̂z |LH〉 =

Mky
LK3

1 +
(
Mky
LK3

)2µB, (160)

where µB is the Bohr magneton. The same will occur at the right electrode by symmetry.

This is clearly an important feature to consider for the following.

7.1.1.4 Eigenvalues and eigenvectors in the right electrode

In the same way, the eigenvalues and respective eigenvectors of the unperturbed Hamil-

tonian at the right contact, ĤR, are equivalent to those of the left contact Hamiltonian

provided that the ↓- spin is now reversed into ↑- spin to give:

Eigenvalues Eigenvectors States, kx

E = ~2k2x
2m∗HH

+ w Z ↓ Propagative, kx = k1

E = ~2k2x
2m∗HH

+ w HH ↓= −Mky
Lkx

X ↓ +Y ↑≈ Y ↓ Propagative, kx = k2

E = ~2k2x
2m∗LH

+ w LH ↓= X ↓ +Mky
Lkx

Y ↓ Propagative, kx = k3

E = ~2k2x
2m∗HH

− w Z ↑ Evanescent, kx = iK1

E = ~2k2x
2m∗HH

− w HH ↑= Y ↑ Evanescent, kx = iK2

E = ~2k2x
2m∗HH

− w LH ↑= X ↑ +Mky
Lkx

Y ↑ Evanescent, kx = iK3

.

Note that k1 = k2, and K1 = K2, and that these values are much larger than k3, and

K3 because of the almost zero dispersion of the HH band we chose.

In the new basis {LH ↑, LH ↓, HH ↑ , HH ↓ , Z ↑, Z ↓} , the bare unperturbed

Hamiltonian possesses a block diagonal form according to:

Ĥ0 =

 Ĥ0, LH 0 0

0 Ĥ0, HH 0

0 0 Ĥ0, Z

 ,
where

|LH ↑〉 |LH ↓〉

Ĥ0, LH =

[
Ĥ0, LH↑ 0

0 Ĥ0, LH↓

]
,
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|HH ↑〉 |HH ↓〉

Ĥ0, HH =

[
Ĥ0, LH↑ 0

0 Ĥ0, LH↓

]
,

and

|Z ↑〉 |Z ↓〉

ĤZ =

[
Ĥ0, Z↑ 0

0 Ĥ0, Z↓

]
with

Ĥ0, α↑ =

{ ~2k2x
2m∗α

+ w for x < 0
~2k2x
2m∗α
− w for x > 0

,

Ĥ0, α↓ =

{
~2k2x
2m∗α
− w for x < a

~2k2x
2m∗α

+ w for x > a

and where the notation α is used for {LH, HH, Z}. One important point to note is

that the basis are exactly the same for the different layers constituting the junctions. We

consider this common basis as the starting point of the perturbation calculation.

7.1.1.5 Spin-orbit Hamiltonian and Green’s functions

In the {LH, HH, Z} ⊗ {↑, ↓} new basis, with the atomic SOI being switched on in

the barrier, and using in the perturbative scattering treatment, the Hamiltonian is :

|LH ↑〉 |LH ↓〉 |HH ↑〉 |HH ↓〉 |Z ↑〉 |Z ↓〉

ĤSOI =



0 0 −i∆
3

0 0 ∆
3

(
1− Mky

LK3

)
0 0 0 −i∆

3
−∆

3

(
1 + Mky

LK3

)
0

i∆
3

0 0 0 0 −i∆
3

0 −i∆
3

0 0 −i∆
3

0

0 ∆
3

(
−1 + Mky

LK3

)
0 i∆

3
0 0

∆
3

(
1 + Mky

LK3

)
0 i∆

3
0 0 0


.(161)

.

7.1.2 Green’s function

As mentioned before, the bare unperturbed Hamiltonian is diagonal in the basis {LH, HH, Z}⊗
{↑, ↓}. By extending the GF in the CB to the degenerated basis, we obtain the GF in

the VB, satisfying:

[G0 (E , z, z′)]ml =
∑
j,k

Ψ0∗
m (kj, z

′) Ψ0
l (kj, z

′)

E − E (kj) + iη
δml, (162)
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where (j,m, n) = {LH ↑, LH ↓, HH ↑, HH ↓, Z ↑, Z ↓}, in the case of an orthogonal

basis 〈Ψ0
m (kj)| Ψ0

l (kj)〉 = δml like one consider here.

The expression of the GF, of a diagonal form, is:

|LH ↑〉 |LH ↓〉 |HH ↑〉 |HH ↓〉 |Z ↑〉 |Z ↓〉

G0 (x, x′) =



G↑↑LH 0 0 0 0 0

0 G↓↓LH 0 0 0 0

0 0 G↑↑HH 0 0 0

0 0 0 G↓↓HH 0 0

0 0 0 0 G↑↑Z 0

0 0 0 0 0 G↓↓Z


.

As developed in the same way than in CB, the diagonal components of the GF write:

(
E − Ĥ0,ασ

)
Gσσ
α (x, x′) = δ(x− x′), (163)

with α being band index. The GF Gσσ
α (x, x′) can be formed via the expression of the

ingoing wave on the left Ψ0σ
R, α and the ingoing wave on the right Ψ0σ

L, α. The functions

Ψ0σ
R, α and Ψ0σ

L, α satisfy the homogenous Schrödinger equation.

We consider G↓↓LH(x, x′) for down-spin electrons left coming from as an example,

G↓↓LH(x, x′) =
Ψ0↓
R, LH(x)Ψ0↓

L, LH(x′)Θ(x− x′) + Ψ0↓
R, LH(x′)Ψ0↓

L, LH( x)Θ(x′ − x)

W ↓↓
LH(x′)

,

(164)

As mentioned before, the mixing between HH and LH is small and neglected in our

calculations in the limit of an almost normal incidence . The wave functions Ψ0↓
R, LH

and Ψ0↓
L, LH satisfy the homogenous Schrödinger equation for the LH ↓ state according

to: 
(
E − ~2k2x

2m∗LH
− w

)
Ψ0↓

LH(x) = 0 for x < a,(
E − ~2k2x

2m∗LH
+ w

)
Ψ0↓

LH(x) = 0 for x > a ,

One obtains:

Ψ0↓
L, LH(x) =

{
e−ik3(x−a) + rL, LH↓e

ik3(x−a) for x > a

tL, LH↓e
K3(x−a) for x < a

with

tL, LH↓ =
−2ik3

K3 − ik3

= tR, LH↑,

representing the transmission coefficient for left incoming down-spin electrons.
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For the following calculation, one introduces

tR, LH↑ =
2ik3

ik3 −K3

.

On the other hand, at the right interface, one has

Ψ0↓
R, LH(x) =

{
e−K3(x−a) + rR, LH↓e

K3(x−a) for x < a

tR, LH↓e
ik3(x−a) for x > a

.

with

tR, LH↓ =
−2K3

−K3 + ik3

.

We do similarly to find the other diagonal components G↓↓LH , G↑↑HH , G
↓↓
HH , G↑↑Z , and

G↓↓Z .

7.1.3 Spin-dependent Lippman-Schwinger equation in the valence bands

The spin-dependent Lippman-Schwinger equation in the valence band is:

ΨR(x) = Ψ0
R(x) +

∫
G0 (x, x′) ĤSOΨ0

R(x′)dx′, (165)

where

ΨR(x) =
(

Ψ↑R, LH(x) Ψ↓R, LH(x) Ψ↑R, HH(x) Ψ↓R, HH(x) Ψ↑R, Z(x) Ψ↓R, Z(x)
)
,

and Ψ0
R(x) is a solution of the homogenous Schrödinger equation,

Ψ0
R(x) =

(
Ψ0↑
R, LH(x) Ψ0↓

R, LH(x) Ψ0↑
R, HH(x) Ψ0↓

R, HH(x) Ψ0↑
R, Z(x) Ψ0↓

R, Z(x)
)
.

In the region of interest −w < E < w, we have three propagative ingoing waves in

the left contact Ψ0↑
R, LH , Ψ0↑

R, HH , and Ψ0↑
R, Z , whereas one has three propagative outgoing

waves Ψ0↓
R, LH , Ψ0↓

R, HH , and Ψ0↓
R, Z in the right contact . However, the atomic SOI which

is considered as a perturbating potential only couples |Z ↑〉 to |LH ↓〉 and |HH ↓〉 and

vice versa, whereas 〈LH ↑| ĤSOI |HH ↓〉 = 〈HH ↑| ĤSOI |LH ↓〉 = 0. In addition,

with our hypothesis, the HH is nearly flat so that the relevant evanescent sates are very

quickly vanishing in the barrier. This implies that the coupling between the HH-pure Y

orbital and the HH-pure Z orbital is small enough to be neglected in the barrier. Ac-

cording to the Lippman-Schwinger equation for the valence band, Eq. 165, the possible

couplings between the left ingoing and the right outgoing waves are shown in Fig. 56.

7.1.4 Ingoing Z ↑ in the left contact

According to the Lippman-Schwinger equation for the valence band, Eq. 165, one

obtains:

δΨ0↓
R, LH(x) =

∫ a

0

G↓↓LH(x, x′)

(
−∆

3

)(
1 +

Mky
LK3

)
Ψ0↑
R, Z(x′)dx′ (166)
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Figure 56: Sketch of different transmission amplitude corresponding to up-spin elec-

trons coming from left.

where G↓↓LH(x, x′) was introduced before

G↓↓LH(x, x′) =
Ψ0↓
R, LH(x)Ψ0↓

L, LH(x′)Θ(x− x′) + Ψ0↓
R, LH(x′)Ψ0↓

L, LH( x)Θ(x′ − x)

W ↓↓
LH(x′)

,

(167)

The Wronskian W ↓↓
LH(x′) writes in this case

W ↓↓
LH(x′) =

~2

2m∗LH

[
Ψ0↓
L, LH

∂Ψ0↓
R, LH

∂x′
−
∂Ψ0↓

L, LH

∂x′
Ψ0↓
R, LH

]
= i

~2k3

m∗LH
t↓R,LH .

because the effective masses are kept unchanged in the layers.

With the results that, from Eqs. 166, and 167, the correction to the wave function of

the LH ↓ band is given by

δΨ0↓
R, LH(x) =

Ψ0↓
R, LH(x)

W ↓↓
LH

(
−∆

3

)(
1 +

Mky
LK3

)∫ a

0

Ψ0↓
L, LH(x′)Ψ0↑

R, Z(x′)dx′. (168)

Similarly to the the CB, the correction to the transmission amplitude for Ψ0↓
R, LH in the

right contact can then be put in the following form:

δt↓↑LH =
m∗LH
i~2k3

(
−∆

3

)(
1 +

Mky
LK3

)∫ a

0

Ψ0↓
L, LH(x′)Ψ0↑

R, Z(x′)dx′. (169)

with

Ψ0↑
R, Z =

{
eik1x + rR, Z↑e

−ik1x for x < 0

tR , Z↑e
−K1x for x > 0

.

The matching conditions at x = 0 give us:
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tR , Z↑ =
2ik1

ik1 −K1

.

The integral in Eq. 169 is calculated:∫ a

0

Ψ0↓
L, LH(x′)Ψ0↑

R, Zdx
′ = tR, LH↑tR , Z↑e

−K3a

∫ a

0

e(K3−K1)xdx

=
tR, LH↑tR , Z↑e

−K3a
[
e(K3−K1)a − 1

]
K3 −K1

=
tR, LH↑tR , Z↑

[
e−K1a − e−K3a

]
K3 −K1

.

to give in fine,

δt↓↑LH =
m∗LH
i~2k3

(
−∆

3

)(
1 +

Mky
LK3

)
tR, LH↑tR , Z↑

[
e−K1a − e−K3a

]
K3 −K1

(170)

=
ik3

2 (E−w)

(
∆

3

)(
1 +

Mky
LK3

)
tR, LH↑tR , Z↑

[
e−K1a − e−K3a

]
K3 −K1

, (171)

because
m∗LH
~2k3 = k3

2(E−w)
.

7.1.5 Ingoing LH ↑ band in the left contact

We consider now the case of ingoing LH ↑ in the left contact. The Lippman-Schwinger

equation for the Z ↓, Eq. 165, gives:

δΨ0↓
R, Z(x) =

∫ a

0

G↓↓Z (x, x′)

(
∆

3

)(
1 +

Mky
LK3

)
Ψ0↑
R, LH(x′)dx′ (172)

G↓↓Z (x, x′) satisfies the following equation:(
E − Ĥ0,Z↓

)
G↓↓Z (x, x′) = δ(x− x′).

It can be written:

G↓↓Z (x, x′) =
Ψ0↓
R, Z(x)Ψ0↓

L, Z(x′)Θ(x− x′) + Ψ0↓
R, Z(x′)Ψ0↓

L, Z( x)Θ(x′ − x)

W ↓↓
Z (x′)

,

where Ψ0↓
R, Z , and Ψ0↓

L, Z( x) satisfy the homogenous Schrödinger equation for the Z

state: (
E − Ĥ0,Z↓

)
Ψ0↓

R, Z(x) = 0, and
(
E − Ĥ0,Z↓

)
Ψ0↓

L, Z(x) = 0.

Similarly to Sec. 7.1.4, the correction to the transmission amplitude of the Z ↓ state

in the right contact is:

t↓↑Z =
m∗Z
i~2k1

(
∆

3

)(
1 +

Mky
LK3

)∫ a

0

Ψ0↓
L, Z(x′)Ψ0↑

R, LH(x′)dx′. (173)
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with

Ψ0↓
L, Z(x) =

{
e−ik1(x−a) + rL, Z↓e

ik1(x−a) for x > a

tL, Z↓e
K1(x−a) for x < a

,

and

Ψ0↑
R, LH(x) =

{
eik3x + rR , LH↑e

−ik3x for x < 0

tR , LH↑e
−K3x for x > 0

,

The matching conditions at z = a for Ψ0↓
L, Z(x) give

tL, Z↓ =
−2ik1

−ik1 +K1

=
2ik1

ik1 −K1

= tR , Z↑,

an the matching conditions at z = a for Ψ0↑
R, LH(x) give

tR , LH↑ =
2ik3

ik3 −K3

.

The integral in Eq. 173 is then calculated to be

∫ a

0

Ψ0↓
L, Z(x′)Ψ0↑

R, LH(x′)dx′ = tR, LH↑tR , Z↑e
−K1a

∫ a

0

e(K1−K3)x′dx′

=
tR, LH↑tR , Z↑e

−K1a
[
e(K1−K3)a − 1

]
K1 −K3

=
tR, LH↑tR , Z↑

[
e−K3a − e−K1a

]
K1 −K3

.

The correction to the transmission amplitude of the Z ↓:

δt↓↑Z =
m∗Z
i~2k1

(
∆

3

)(
1 +

Mky
LK3

)∫ a

0

Ψ0↓
L, Z(x′)Ψ0↑

R, LH(x′)dx′,

=
m∗Z
i~2k1

(
∆

3

)(
1 +

Mky
LK3

)
tR, LH↑tR , Z↑

[
e−K3a − e−K1a

]
K1 −K3

=
ik1

2 (E−w)

(
∆

3

)(
1 +

Mky
LK3

)
tR, LH↑tR , Z↑

[
e−K3a − e−K1a

]
K3 −K1

.

because
m∗Z
~2k1 = k1

2(E−w)
.

7.1.6 Scattering asymmetry in the valence band

Neglecting the SOI in the barrier, the unperturbed transmission coefficient is zero so

that the total transmission coefficient is equal to the correction according to:
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|δt (ky)|2 = |δtLH |2
〈
Ĵx>a(LH ↓)

〉
〈
Ĵx<0(Z ↑)

〉 + |δtZ |2
〈
Ĵx>a(Z ↓)

〉
〈
Ĵx<0(LH ↑)

〉
= |δtLH |2

k1

k3

+ |δtZ |2
k3

k1

k1

k3

{
k3

2 (E−w)

(
∆

3

)(
1 +

Mky
LK3

)
tLHtZ

[
e−K1a − e−K3a

]
K3 −K1

}2

+

k3

k1

{
k1

2 (E−w)

(
∆

3

)(
1 +

Mky
LK3

)
tZtLH

[
e−K3a − e−K1a

]
K3 −K1

}2

=
k1k3

2 (E−w)2

(
∆

3

)2
{
tLHtZ

[
e−K1a − e−K3a

]
K3 −K1

}2(
1 +

Mky
LK3

)2

,

where 〈
ĴR(Z ↓)

〉
〈
ĴL(LH ↑)

〉 =
k3

k1

, and

〈
ĴR(LH ↓)

〉
〈
ĴL(Z ↑)

〉 =
k1

k3

,

〈
ĴR(Z ↓)

〉
=
~2k1

m∗Z
=

2 (E−w)

k1

,
〈
ĴL(LH ↑)

〉
=
~2k3

m∗LH
=

2 (E−w)

k3

.

When the in-plane wavevector changes its sign, ky −→ −ky, one obtains

|δt (−ky)|2 =
k1k3

2 (E−w)2

(
∆

3

)2
{
tLHtZ

[
e−K1a − e−K3a

]
K3 −K1

}2(
1− Mky

LK3

)2

.

Which leads to the transmission asymmetry, A, for holes having opposite in-plane

wavevector components:

A =
|δt (ky)|2 − |δt (−ky)|2

|δt (ky)|2 + |δt (−ky)|2
(174)

=
2Mky
LK3

1 +
(
Mky
LK3

)2 = 2 〈LH| L̂z |LH〉 .

This is the central result of this section devoted to the perturbation calculation analysis

concerning the VB.

The correction to the amplitude of transmission is then shown to be linked to the

orbital momentum of the evanescent states of the LH-band in the tunneling barrier as

previously suggested. From the comparison with the calculations, we observe a very

good agreement between these results calculated by GF method and the transfer matrix
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calculation using 6×6 k.p Hamiltonian with parameters chosen to make the HH nearly

flat (see Fig. 57). The results obtained are, however, somewhat different, in some

energy range, from the calculations obtained via the true Luttinger-parameter tunnel

junction showing that an advanced numerical platform is mandatory. This is performed

in the next section.

7.2 Anomalous tunnel Hall effect and giant transport asym-

metry in the valence band

We will now extend these analytical results to the case of real systems including SOI in

both contacts and barriers which may be played by GaMnAs ferromagnetic semicon-

ductors in contacts. The results shown in Fig. 58 were obtained in a 6-band approach

(we have checked that the 14-; and 30-band models give similar results); the lower curve

displays the asymmetry A vs. hole energy E in the case of a 3-nm-thick tunnel barrier.

The energy range covers the valence spin subbands, namely, starting from the highest

energy, the up-spin heavy-hole band (HH ↑), the up-spin light-hole band (LH ↑), the

down-spin light-hole band (LH ↓), the down-spin heavy-hole band (HH ↓), the up-

spin–split-off band (SO ↑), and the down-spin split-off band (SO ↓). We refer to points

(1) to (6) marked by vertical arrows for discussing the contribution from holes emitted

from the different spin subbands in Region I to the current injected in Region II . For

instance, with these parameters, the energy of the HH ↑ [HH ↓] maximum, corre-

sponds to 0.15 eV [−0.15 eV], the energy origin being taken at the top of the valence

band of the non-magnetic material, and is indicated by point (1) [(4)]. Correspondingly,

one observes an almost fully negative transmission asymmetry in this energy range for

predominant majority spin-up injection, that is, as far as HH ↓ does not contribute to

the current. At more negative energy [E < −0.15 eV: point (4)], a sign change of A
occurs at the onset ofHH ↓ (in the upper left inset, see the step in the transmission coef-

ficient, which reaches almost +50%). The asymmetryA remains positive after crossing

SO ↑ [point (5)] before turning negative again once crossing SO ↓ [point (6)]. Note

that A changes sign two times at characteristic energy points corresponding to a sign

change of the injected particle spin. We have performed the same kind of calculation

for a simple contact (i.e., d = 0; right upper inset in Fig. 58, black curve). It is remark-

able that A, although smaller, keeps the same trends as for the 3-nm tunnel junction,

except for a change of sign, showing a subtle dependence of the exchange coupling on

the barrier thickness. Without tunnel junction, A abruptly disappears as soon as SO ↓
contributes to tunneling [circle region] i.e., when evanescent states disappear. In the

case of tunnel junction, A, although small, subsists in this energy range and this should

be related to the evanescent character of the tunneling wave function in the barrier.

Figure 59 shows very good agreement of the results calculated by 6-; 14-; 30-band.
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Figure 57: Asymmetry vs. incident energy calculated from Eq. 174 (black line), 6-

band k.p with HH nearly flat (blue line), γ1 = 4.5, γ2 = 2.1, γ3 = 2.9, barrier height

−0.15 eV, barrier thickness 10 nm, M=2(γ1 +γ2 + 1), L = 6γ2; and real case (red line)

γ1 = 6.85: (upper) ky = 5.10−4 A−1; (lower) ky = 10−3 A−1. The energy is counted

from the top of the VB.
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Figure 58: (Bottom): Transmission asymmetry A vs. total energy E for a magnetic

tunnel junction in the AP state. The parameters are: 2w = 0.3 eV, parallel wavevector

ξ = 0.2 nm−1, barrier thickness d = 3 nm, and barrier height 0.6 eV. The energy zero

corresponds to the non-magnetic upper-valence-band maximum. (Upper left inset):

transmission T calculated in the AP state; (Upper right inset): Asymmetry A without

tunnel barrier (d = 0; black) compared to the case of the tunnel junction (dotted red).
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Figure 59: Transmission asymmetry A vs. total energy E calculated in the VB for

a p-type magnetic tunnel junction in the AP state by respective 6×6, 14×14, 18×18
(14-ghost-band) and 30×30 ghost band k.p method. The parameters are: 2w = 0.3
eV, parallel wavevector ξ = k‖ = 0.005 Å−1, barrier thickness d = 3 nm, and barrier

height 0.3 eV. The energy zero corresponds to the non-magnetic upper-valence-band

maximum

Moreover, we have checked that the asymmetry appears to be robust and persists

even when a single electrode is magnetic, (Fig. 60). In 6 × 6 k.p model, the spin

filtering effect does not exist because the cubic term is not included.

We have presented theoretical evidence for a large interfacial scattering asymmetry

of carriers vs. incidence in semiconducting exchange steps and tunnel barriers. This

involves either the Dresselhaus interaction in the conduction band of electrodes or spin-

orbit hybridization.

7.3 Tunneling transmission asymmetry and tunneling anisotropy

The tunneling asymmetry calculated in the present work manifests itself by a large

difference of transmission coefficient between the two opposite k‖ = ±ξ incidences.

The forward scattering asymmetry should also be associated to a change in the average

transmission coefficient between opposite incidence angles T = (1/2)[T (+ξ)+T (−ξ)]
so that it also affects the total sum of the transmission channels T =

∑
k‖
T (k‖) respon-

sible for the overall conduction through the Landauer-Buttiker formula. We emphasize

that this effect may predominantly contribute to the TAMR signal in the VB, in the

AP magnetic configuration of a magnetic tunnel junction as well as in the case of a

single ferromagnetic contact. The resistance change originating from the "chirality-

assisted" tunneling process is expected to be large in the VB (compared to the CB).
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Figure 60: Transmission coefficient T in a 6×6 k.p model for a tunnel junction when

only the left electrode is magnetic; the parameters are: exchange energy 2w = 0.3 eV,

barrier thickness 3 nm, barrier height 0.6 eV, and total kinetic energy -0.1 eV.

We have checked that the electronic transmission is quasi isotropic when the magneti-

zation is out-of-plane. On the contrary, for an in-plane magnetization, the electronic

tunneling beam is strongly deflected and the resistance drops. Figure. 61 displays

the change of resistance observed on a tunnel junction with a ferromagnetic GaM-

nAs/AlAs(3 nm)/GaAs:Be structure with a higher resistance state (smaller transmis-

sion coefficient) corresponding to the direction of the magnetization along the normal

of the film plane. A resistance change as large as 40% can be observed on such junc-

tion (Fig. 61) which may reveal the major role of this tunneling asymmetry process

on the conductance itself. Presently, the in-plane orientation of the magnetization does

only lead to a small change of resistance of the order of 2% due to the in-plane strain

anisotropy field.

147



Figure 61: Tunneling anisotropy magnetoresistance (TAMR) of GaMnAs(50 nm)/

AlAs/ GaAs:Be 128 µm2 junctions. Change of the tunneling Resistance vs. magne-

tization orientation from in-plane to out-of-plane (TAMR). The resistance is higher by

30% when the magnetization is aligned along the direction z normal to the plane.
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CHAPTER VIII

CONCLUSION

We provide here the main conclusions and propose future possible experiments to evi-

dence the interfacial skew tunneling effects demonstrated in the present manuscript.

The interfacial skew transmission and skew tunneling effects we have demonstrated

in this work via advanced k.p methods had never been investigated up to now and result

in several specific properties which clearly depart from any known existing properties

dealing with spin-Hall effects or galvanic or Inverse Edelstein effects. The first novel

property is a prediction of a strong asymmetry of transmission at ferromagnetic / spin-

orbit interfaces experimented by carriers, electrons or holes with a marked evanescent

character crossing such interfaces, at opposite incidences, i.e., characterized by positive

or negative incoming in-plane parallel wavevectors normal to the magnetization. This

is due to a particular combination of the matching properties of the wave functions sub-

mitted to both exchange and SO interactions or by selective tunneling branching of the

orbital moment in the barrier. These results have been derived by considering different

possible Hamiltonian terms describing SOI, that are bulk Dresselhaus terms, bulk or

interfacial Rashba terms, and more surprisingly, core SOI terms in the VB of semicon-

ductors. The particular properties of the transmission asymmetry have been calculated

to be strong in much cases once one considers that the exchange interactions could be

strong enough compared to the kinetic energy or Fermi energy in order to favor an in-

coming single spin channel (e.g. the majority one) which has to be transmitted into

opposite spin-channels (e.g. minority one). The expected almost zero transmission in

the situation of a half-metallic material, which is nearly the case of a lightly-doped fer-

romagnetic semiconductor (GaMnAs or GeMn) is enhanced via the spin-flip processes

mediated by the spin-orbit terms which make possible spin-mixing and spin-flip during

the coherent transmission or tunneling processes. However, whereas the transmission

from majority to minority spin channels is made possible via SOI, as it can be easily

observed through perturbation calculations to first order, the SOC also makes that the

transmission differs for opposite carrier incidences. This originates from a new type

of chirality phenomena which promotes a difference in the probability of transmission

when one considers both propagative (parallel wavevectors) and evanescent (tunneling

along the current flow) characters of the overall electronic wave function. This makes

the phenomenon we describe truly new. This new type of chirality phenomena has been
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particularly well described in this work by considering advanced perturbation investi-

gations involving the role of the SOC on both the transmission properties as well as its

impact on the deviation of the electronic flux (Chapter 5).

8.1 ARPES spectroscopy

Such strong difference of +k‖ and −k‖ transmission that we expect for carriers when

the spin splitting is large compared to the kinetic energy (electrons or holes or elec-

trons and holes in the case of magnetic Esaki diodes such as GaMnAs /n++-GaAs),

can hardly been observed in solid-state devices at the length scale where the mean-

free path before isotropization processes take place (through the angular-dependence

of the Boltzmann equation) except in the situation of a thin tunnel-junction electrode.

A first possibility to consider in a real experimental situation is the measurement of

the difference in the intensity collected in angular-resolved photoelectron spectroscopy

(ARPES), but not necessarily spin-resolved, at the surface of thin magnetic/spin-orbit

bilayers owing to the strong in-plane wavevector selectivity of this technique. Such pre-

cursor ARPES measurements have been considered in the past in the case of GdO/Gd

bilayers [100]. This could be implemented in other situations involving strong exchange-

split materials.

8.2 Skew tunneling and anomalous tunnel Hall effects

Nevertheless, the property of skew tunneling described here admits equivalent prop-

erties to skew diffusion for an overall carrier flow summed over the Fermi surface.

Indeed, an incoming carrier flux along the normal direction of the heterostructure (the

so-called z direction) can be divided into different positive and negative carrier inci-

dence angles transmitted differently at the other side of the contact. This asymmetry of

transmission leads to an overall parallel interface current along y if the magnetization

is directed along x from symmetry properties. This ‘anomalous’ tunnel Hall current

exists at the length scale of the mean free path and may be detected or measured in

several situations described hereafter. This tunnel Hall current is proportional to the

incoming carrier flux and proportional to the so-called THA reflecting the importance

of the deviation of the flux in the same way that the spin-Hall angle (SHA) describes the

flux deviation for the spin-Hall effect. The integration of the lateral charge flux along

the y direction on a thickness given by the electronic mean-free path then transforms a

two-dimensional current density per unit surface into a one-dimensional current density

per unit length like in Inverse Edelstein processes [17] when considering Rashba-split

interfacial 2-dimensional gas or TI, Fig. 62.

Such anomalous tunnel Hall effects could be investigated in the future in several
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experimental situations involving spin-dependent electronic transport.

8.2.1 Tunnel Hall in micronic GaMnAs-based tunnel junctions (normal current

injection)

The first series of experiments we can think about is the measurement of possible trans-

verse Hall voltage in skew tunneling devices made of GaMnAs/InGaAs/GaMnAs tunnel

junctions in the Anti-Parallel magnetic state with InGaAs thin tunnel barriers (e.g. 4 to 6

nm thickness). These kind of magnetic heterostructures have already been investigated

by M. Elsen during his PhD thesis [112] for their properties of tunneling Magnetore-

sistance (TMR) as well as for successful STT experiments. The proposed experiments

should consist in injecting a current normal to the stack via a top contact and measuring

the transverse hole flow or transverse voltage between two separate contacts located on

either side of the junction. One necessary condition for the experimental success is to

consider a bottom GaMnAs electrode thickness not largely exceeding the mean free-

path in GaMnAs, namely of few nm. A typical 5-10 nm thick GaMnAs should then be

considered.

The expected transverse voltage signal is then:

∆VTHE = θTHE
λW

t

VJ
RT

ρM

where θTHE is the THA,VJ the bias applied to the junction, RT is the tunnel barrier

resistance (Ωm2), λ is the MFP, t the GaMnAs channel thickness and ρM the resistivity

of GaMnAs, and W the width of the contact. Then, for a THA of 0.2, an applied bias of

0.5 V, a channel thickness and width of respectively 10 nm and 100 µm, a resistivity of

1 mΩ.cm and a tunnel barrier resistance of 100 kΩ.µm2, we obtain a transverse voltage

of 10 µV which is clearly measurable.

Figure 62: Electronic structure of interface Rashba states and principle of experiments

[17].
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8.2.2 GaMnAs-based tunnel junctions with in-plane current injection

Owing to some latest experiments published, a second possible tunneling transport

geometry is to measure the conductivity of the same kind of GaMnAs-based tunnel

junction with thinner InGaAs barriers (1-2 nm thick) in a geometry of in-plane current

injection. The role of the InGaAs barrier introduced here is not to promote tunneling

although existing also here, but to uncouple the two magnetic states of GaMnAs at

its both sides to control a well-defined AP state. The asymmetry of the scattering (or

tunneling) rate from one GaMnAs layer to the second GaMnAs layer, Fig. 63, should

manifest itself by a measurable difference of conductivity (or resistivity) depending on

the direction of the in-plane current flow either +I or −I for the same AP configura-

tion like in recent USMR measurements. Such difference of conductivity between +I

and −I experimental configurations is zero in the PA state and becomes opposite in the

other AP configuration state. Such non-linearity of conductance in the current and cur-

rent sign should arise because the probability of scattering (transmission) at interfaces

depends on the carrier incidence. This could be quite easily seen in a diffusive picture

taking into account a difference in the transmission-reflection rates in the approach of

the Fuchs-Sondheimer model for interface diffusion. Such peculiarities of non-linearity

in I-V characteristics in metals have already been observed in Cambridge and ETH

Zürich on SMR and USMR effects.

Figure 63: (a) Schematic of the linear spin Hall magnetoresistance phenomenon. The

thin arrows represent the SHE-induced spin polarization; the thick arrows represent

the easy-axis (EA) magnetization of the ferromagnet. (b) Schematic of the device and

measurement geometry. (c) Longitudinal resistance measurements at 130 K and differ-

ent amplitudes and signs of the applied current as a function of the external magnetic

field. The steps correspond to the 180
◦
magnetization reversal. (d) Difference between

resistance states for opposite magnetizations, set by sweeping the magnetic field from

negative or positive values to the zero field, as a function of the applied current [77].
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8.2.3 Unidirectional magnetoresistance in a magnetic topological insulator

In very recent work [140], USMR in magnetic or nonmagnetic topological insulator

(TI) heterostructures is considered. These measurements lead to signals of magnitude

larger than in other reported systems [77, 80, 81].

Figure 64: (a) Schematic diagram of spin-momentum locking of the surface Dirac

state in TI. (b),(c) Schematic illustration of the concept for UMR in TI heterostruc-

tures (CrxBi1−ySby)2 Te3 (CBST/BST) on InP substrate under +J (b) and −J (c) dc

current. Here, magnetic field, magnetization, and dc current are along the in-plane di-

rection, where dc current is applied perpendicular to the magnetization direction. (d)

Schematic illustration of a “normal” CBST/BST heterostructure. (e) Magnetic field de-

pendence of resistance Rxx for the sample depicted in (d), measured under J = +1 µA
(red) and J = −1 µA (blue) at 2 K. (f) Difference of the resistance ∆Rxx of plus and

minus current shown in (e). (g)–(i) The same as (d)–(f) for the “inverted” BST=CBST

heterostructure. (j) ∆Rxx measured under various current for the normal CBST/BST

heterostructure. (k) Current J dependence of ∆Rxx at 2 K under B = 0.7T for the

normal CBST/BST. The black dotted line shows a slope in the low-J region [140].

8.3 Optical spin-pumping experiments on semiconductor/SOC

(heavy metal) systems

A last experimental investigation to perform would be to measure a transverse Hall volt-

age in GaAs/Pt systems after spin-selected optical pumping. The helicity-dependent

optical pumping would have for effect to promote well-selected spins in the conduc-

tion band of optically active semiconductors (GaAs in the present case) before being

transferred to the heavy metal material e.g. played by Pt. The optically pumped spin-

polarized carriers may experiment an asymmetry of transmission through Pt leading to

a transverse lateral current which could be measurable via the transverse voltage. Such

kind of experiments have been already been performed in international teams (Italy,
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Figure 65: (a) A schematic illustration of the band structure of GaAs and spin-polarized

electrons generated by the absorption of circularly polarized light. (b) A schematic il-

lustration of the Pt/GaAs hybrid structure used in this study; θ is the in-plane angle

between the incident direction of the illumination and the direction across the two elec-

trodes attached to the Pt layer; θ0=65◦ is the angle of the light illumination to the normal

axis of the film plane. (c) A schematic illustration of the inverse spin Hall effect induced

by photoexcited pure spin currents in the Pt/GaAs system [144].

Japan) on Ge/Pt [143] and GaAs/Pt [144] systems with successful results attributed to

Inverse Spin-Hall effects effects of Pt (see Fig. 65) .
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APPENDIX A

GEOMETRY OF THE SCATTERING MATRIX WITH

MAGNETIZATION INCLUDED: GENERAL

ARGUMENTS RELATED TO SCATTERING IN THE

PRESENCE OF SOI

As introduced in Sec. 4.7 in the general case, the total transmission coefficients of

the left and right incoming waves are equal, Tk‖ = T ′k‖ (see Fig. 66). In this work,

we deal wiht magnetic semiconductors where the internal magnetization is the local

magnetization of the atoms. Let us assume that this local magnetic field is represented

by a potential vector, i.e.,∇×A = M, analogous to an external field B = M.

Figure 66: The total transmission coefficient of the incoming wave from the left (a) is

equal to the tranmsission coefficient of the incoming wave from the right (b), T = T ′.

A.1 Without spin-orbit interaction

We first show the reciprocity property of the S-matrix without SOI in an external or

internal magnetic field.

Suppose that the electron Hamiltonian is:

H = Hkinetic +HM =
(i~∇+eA)2

2m
,

where e < 0 is the electron charge.
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Let us find the solution Ψ(r) of the Schrödinger equation:

(i~∇+eA)2

2m
Ψ(r) = EΨ(r), (175)

to obtain the S-matrix connecting the outgoing amplitude {b} to the incoming amplitude

{a}. Taking the complex conjugate of Eq. 175

(−i~∇+eA)2

2m
Ψ∗(r) = EΨ∗(r)

and, at the same time, reversing the vector potential A (and hence the magnetic field

B), we obtain

(i~∇+eA)2

2m
Ψ∗(r) = EΨ∗(r). (176)

Comparing Eq. 175 to Eq. 176, we deduce:

Ψ∗B(r) = Ψ−B(r).

In other words, if we know the solutions of the Schrödinger equation in a magnetic

field +B, we can obtain a solution that is valid for−B by taking its complex conjugate.

Taking the complex conjugate, however, turns an incoming wave into an outgoing wave

and vice versa. So if

{b} = [S]+B {a} ,

that is

{b∗} = [S∗]+B {a∗} ,

then we must have

{a∗} = [S]−B {b∗}

that is

{b∗} =
[
S−1

]
−B {a

∗} .

Therefore, [
S−1

]
−B = [S∗]+B .

From the unitary property of the S-matrix, we have

[
S−1

]
−B =

[
S+
]
−B .

Finally, we obtain

[S∗]+B =
[
S+
]
−B ,

that is

[S]+B =
[
ST
]
−B ,
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or, in a more detailed form[
r+B t′+B

t+B r′+B

]
=

[
r−B t−B

t′−B r′−B

]
(177)

We take the squared magnitude of both sides of Eq. 177, and we obtain,

|r+B|2 = |r−B|2 . (178)

Because of conserved current |t+B|2 + |r+B|2 = |t−B|2 + |r−B|2 = 1, one has:

|t+B|2 = |t−B|2 . (179)

This means that in the structure without SOI, the electron transmission coefficient in

the magnetic field +B is equal to the electron transmission coefficient in the magnetic

field −B. According to Eq. 177, we also obtain:∣∣t′+B∣∣2 = |t−B|2 . (180)

Eqs. 179 and 180 lead to

∣∣t′+B∣∣2 = |t−B|2 = |t+B|2 ,

we recover the balance of the total transmission coefficients for left and right incom-

ing waves, T = T ′ which is a well known property inferred by the scattering matrix

formalism.

Taking the magnetic field and the in-plane wavevector along the y direction and

applying the C2z symmetry to the structure under the −B magnetic field to reverse

both the magnetization and the in-plane wavevector, we obtain that the transmission

coefficient is independent of the sign of the in-plane wavevector. In other structures, it

always exists a C2 operator to reach a similar conclusion: the electron transmission is

independent of the sign of in-plane wavevector.

According to the result |t−B|2 = |t+B|2 , then rotating the structure by the C2y

operator, we find that the electrons with opposite in-plane wavevectors have the same

transmission coefficient in all configurations. Figure. 67 is as an example in the case

where the in-plane wavevector is parallel to the magnetization in the PA configuration.

A.2 Case of the spin-orbit interaction

In this part, we consider the scattering of electrons/holes in a tunnel junction grown

along the z direction, the exchange interaction is considered as a local magnetic field
−→
M = mx

−→x , the in-plane wavevector is parallel or perpendicular to the magnetic field

direction. The geometry of the scattering matrix is studied to predict the transmission
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Figure 67: Eq.(179) shows that, as long as SOI is not included, electron scattering at

the interface in the magnetic field +B (a ) leads to an equal transmission coefficient

in the magnetic field −B (b). Then the C2z operator reverses both the magnetizations

and the in-plane wavevectors (c). Comparing (a) to (c), we find that the transmission

coefficient is independent of the signs of the in-plane wavevectors.

coefficient of electrons with a respectively positive +
−→
k ‖ and negative −−→k ‖ in-plane

wavevector. The electrodes are made of identical materials with parallel of antiparallel

magnetization directions.

A.2.1 In-plane wavevector parallel to the magnetization direction

A.2.1.1 PA

Figure 68: (a) Tunnel junction with PA magnetizations in the electrodes, (b) apply

T = T ′, (c) apply the C2y rotations to structure (b) to obtain the incoming wave from

left sign with opposite in-plane wavevectors opposite and opposite magnetizations.

In this case (see Fig. 68), there is no conclusion for possible relationships between
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the transmission coefficient for opposite in-plane wavevectors. Therefore, it is neces-

sary to do the analytical or numerical calculation to obtain the transport asymmetry in

this case and the particular properties of the asymmetry will depend on the particular

Hamiltonian to be considered (ex. the spin filtering effect in Chapter 2).

A.2.1.2 AP

See Fig.69.

Figure 69: (a) Tunnel junction with AP magnetizations in the electrodes, (b) the scat-

tering matrix formalism leads to T = T ′, (c) apply the C2y rotation to the structure (b)

to recover the inital structure with opposite in-plane wavevectors.

The electron with opposite in-plane wavevectors have the same transmission coeffi-

cients.

A.2.2 In-plane wavevector perpendicular to the magnetization direction

A.2.2.1 PA

See Fig. 70.

The electron with opposite in-plane wavevectors have the same transmission coeffi-

cients.

A.2.2.2 AP

See Fig. 71

No conclusion concerning the relationships between the transmission coefficient for

opposite in-plane wavevectors can be reached.
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Figure 70: (a) Tunnel junction with PA magnetizations in the electrodes, (b) the scat-

tering matrix formalism leads to T = T ′, (c) apply the C2x rotation to the structure (b)

to recover the inital structure with opposite in-plane wavevectors.

Figure 71: (a) Tunnel junction with AP magnetization in the electrodes, (b) the scatter-

ing matrix formalism leads to T = T ′, (c) apply the C2x rotation to the structure (b) to

obtain the incoming wave in the left electrode with opposite in-plane wavevectors and

opposite magnetizations.

160



APPENDIX B

EXPRESSION OF THE SPIN-MATRIX

COMPONENTS AND PERTURBATIVE

SCATTERING CALCULATIONS IN THE

CONDUCTION BAND

B.1 Expression of the spin-matrix components

〈 ↑ |σz| ↑〉 = 〈↓ |σz| ↓〉 = 0, (181)

〈 ↑ |σz| ↓〉 =
[

1√
2

1√
2

] [ 1 0

0 −1

][ 1√
2

− 1√
2

]
= 1, (182)

〈 ↓ |σz| ↑〉 =
[

1√
2
− 1√

2

] [ 1 0

0 −1

] [ 1√
2

1√
2

]
= 1, (183)

〈 ↑ |σy| ↓〉 =
[

1√
2

1√
2

] [ 0 −i
i 0

] [ 1√
2

− 1√
2

]
= i,

〈 ↓ |σy| ↑〉 =
[

1√
2
− 1√

2

] [ 0 −i
i 0

][ 1√
2

1√
2

]
= −i; (184)

where |↑〉 =
[ 1√

2
1√
2

]
, | ↓〉 =

[ 1√
2

− 1√
2

]
are eigenvectors of σx.

B.2 Perturbative scattering calculations in the conduc-

tion band

B.2.1 Case of spin-orbit interactions on the left for incoming left electrons (Equa-

tion 147 )

τL =
m∗

i~2k1

0∫
−∞

Ψ0↑
L (z′)

[
−iγξ

2

2

∂

∂z′
+
iγξ

2

∂2

∂z′2

]
Ψ↓0R (z′)dz′

+
m∗

i~2k1

0∫
−∞

[
iγξ2

2

∂Ψ0↑
L (z′)

∂z′
+
iγξ

2

∂2Ψ0↑
L (z′)

∂2z′

]
Ψ↓0R (z′)dz′.

One may introduce the respective AL1, and AL2 parameters according to:
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AL1 =

0∫
−∞

Ψ↑0L (z′)

[
−iγξ

2

2

∂

∂z′
+
iγξ

2

∂2

∂z′2

]
Ψ↓0R (z′)dz′, (185)

and

AL2 =

0∫
−∞

[
iγξ2

2

∂Ψ0↑
L (z′)

∂z′
+
iγξ

2

∂2Ψ0↑
L (z′)

∂2z′

]
Ψ↓0R (z′)dz′,

so that:

τL =
m∗

i~2k1

(AL1 + AL2) .

We then calculate AL1, and AL2.

2AL1 =

0∫
−∞

Ψ0↑
L (z′)

(
−iξ2γ

∂

∂z
+ iξγ

∂2

∂z2

)
Ψ↓0R (z′)dz′ (186)

=

∫ 0

−∞
tL↑e

k2z′
{
−iγξ2 ∂

∂z′
+ iγξ

∂2

∂z′2

}(
eik1z′ + rR↓e

−ik1z′
)
dz′

=

∫ 0

−∞
tL↑e

k2z′
{
−iγξ2 ∂

∂z′

}(
eik1z

′
+ rR↓e

−ik1z′
)
dz′

+

∫ 0

−∞
tL↑e

k2z′
{
iγξ

∂2

∂z′2

}(
eik1z

′
+ rR↓e

−ik1z′
)
dz′

=

∫ 0

−∞
tL↑e

k2z′
(
−iγξ2

)
(ik1)(eik1z

′ − rR↓e−ik1z
′
)dz′

+

∫ 0

−∞
tL↑e

k2z′(iγξ)(−k2
1)
(
eik1z

′
+ rR↓e

−ik1z′
)
dz′

=

∫ 0

−∞
tL↑γξ

2k1e
k2z′(eik1z

′ − rR↓e−ik1z
′
)dz′

+

∫ 0

−∞
−itL↑γξk2

1e
k2z′
(
eik1z

′
+ rR↓e

−ik1z′
)
dz′

If one defines (I) as:

(I) =

∫ 0

−∞
tL↑γξ

2k1e
k2z′(eik1z

′ − rR↓e−ik1z
′
)dz′ (187)

=

∫ 0

−∞
tL↑γξ

2k1

(
e(k2+ik1)z′ − rR↓e(k2−ik1)z′

)
dz′

= tL↑γξ
2k1

{
1

k2 + ik1

− rR↓
k2 − ik1

}
=
tL↑γξ

2k1

k2
1 + k2

2

{(k2 − ik1)− rR↓(k2 + ik1)}

=
tL↑γξ

2k1

k2
1 + k2

2

2(k2
2 − k2

1)

k2 − ik1

=
2tL↑γξ

2k1(k2
2 − k2

1)

(k2
1 + k2

2)(k2 − ik1)

with
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k2 − ik1 − rR↓(k2 + ik1) = (k2 − ik1)− k1 − ik2

k1 + ik2

(k2 + ik1)

= (k2 − ik1) +
(k2 + ik1)(k2 + ik1)

k2 − ik1

=
(k2 − ik1)2 + (k2 + ik1)2

k2 − ik1

=
2(k2

2 − k2
1)

k2 − ik1

and

(II) =

∫ 0

−∞
−itL↑γξk2

1e
k2z′
(
eik1z

′
+ rR↓e

−ik1z′
)
dz′ (188)

=

∫ 0

−∞
−itL↑γξk2

1(e(k2+ik1)z′ + rR↓e
(k2−ik1)z′)dz′

= −itL↑γξk2
1

(
1

k2 + ik1

+
rR↓

k2 − ik1

)
=
−itL↑γξk2

1

(k2
1 + k2

2)
{(k2 − ik1) + rR↓(k2 + ik1)}

=
−itL↑γξk2

1

(k2
1 + k2

2)

−4ik1k2

(k2 − ik1)
=

−4tL↑γξk
3
1k2

(k2
1 + k2

2)(k2 − ik1)

with

(k2 − ik1) + rR↓(k2 + ik1) = (k2 − ik1) +
k1 − ik2

k1 + ik2

(k2 + ik1)

= (k2 − ik1)− (k2 + ik1)(k2 + ik1)

k2 − ik1

=
(k2 − ik1)2 − (k2 + ik1)2

k2 − ik1

=
−4ik1k2

k2 − ik1

2AL1 = (I) + (II) (189)

=
2tL↑γξ

2k1(k2
2 − k2

1)

(k2
1 + k2

2)(k2 − ik1)
− 4tL↑γξk

3
1k2

(k2
1 + k2

2)(k2 − ik1)
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2AL2 =


0∫

−∞

(
iξ2γ

∂Ψ0
L(z′)

∂z′
+ iξγ

∂2Ψ0
L(z′)

∂z′2

)
Ψ0
R(z′)dz′

 (190)

=

∫ 0

−∞

(
eik1z

′
+ rR↓e

−ik1z′
)(

iγξ2 ∂

∂z′
+ iγξ

∂2

∂z′2

)
t
L↑e

k2z′dz′

=

∫ 0

−∞

(
eik1z

′
+ rR↓e

−ik1z′
) (
iγξ2k2 + iγξk2

2

)
t
L↑e

k2z′dz′

= iγξk2tL↑(ξ + k2)

∫ 0

−∞
(e(ik1+k2)z′ + rR↓e

(k2−ik1)z′)dz′

= iγξk2tL↑(ξ + k2)

{
1

ik1 + k2

+ rR↓
1

k2 − ik1

}
=

iγξk2tL↑
k2

2 + k2
1

(ξ + k2) {(k2 − ik1) + rR↓ik1 + k2}

=
iγξk2tL↑
k2

2 + k2
1

(ξ + k2)
−4ik1k2

k2 − ik1

=
4t

L↑γξk1k
2
2(ξ + k2)

(k2
2 + k2

1) (k2 − ik1)

τL =
m∗

i~2k1

(AL1 + AL2) ,

=
m∗

i~2k1

[
tL↑γξ

2k1(k2
2 − k2

1)

(k2
1 + k2

2)(k2 − ik1)
− 2tL↑γξk

3
1k2

(k2
1 + k2

2)(k2 − ik1)
+

2t
L↑γξk1k

2
2(ξ + k2)

(k2
2 + k2

1) (k2 − ik1)

]
=

m∗

i~2k1

tL↑γξk1

(k2
1 + k2

2)(k2 − ik1)

[
ξ(k2

2 − k2
1)− 2k2

1k2 + 2k2
2(ξ + k2)

]
=

m∗

i~2k1

2k1

k1 + ik2

γξk1

(k2
1 + k2

2)(k2 − ik1)

[
ξ(3k2

2 − k2
1) + 2k2

(
k2

2 − k2
1

)]
=

2m∗

~2

γξk1

(k1 + ik2)2 (k2
1 + k2

2)

{
ξ(3k2

2 − k2
1) + 2k2

(
k2

2 − k2
1

)}
.

With the following notations, k1 = K (incoming propagative wavevector) and k2 =

λK (imaginary transmitted wavevector), one obtains:

τL =
2m∗

~2

γξK

(K + iλK)2 (K2 + λ2K2)

{
ξ(3λ2K2 −K2) + 2λK

(
λ2K2 −K2

)}
=

2m∗

~2

γξK

K4 (1 + iλ)2 (1 + λ2)
K3

{
ξ

K
(3λ2 − 1) + 2λ

(
λ2 − 1

)}
=

1

γC

γξ

(1 + iλ)2 (1 + λ2)

{
ξ

K
(3λ2 − 1) + 2λ

(
λ2 − 1

)}
=

1

γCK
2(1 + λ2)

γξK2

(1 + iλ)2

{
ξ

K
(3λ2 − 1) + 2λ

(
λ2 − 1

)}
=

1

2w

γξK2

(1 + iλ)2

{
ξ

K
(3λ2 − 1) + 2λ

(
λ2 − 1

)}
.
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B.2.2 Case of spin-orbit interactions on the right for incoming left electrons

τR =
m∗

i~2k1

+∞∫
0

Ψ0↑
L (z′)

[
−iγξ

2

2

∂

∂z′
+
iγξ

2

∂2

∂z′2

]
Ψ↓0R (z′)dz′

+
m∗

i~2k1

+∞∫
0

[
iγξ2

2

∂Ψ0↑
L (z′)

∂z′
+
iγξ

2

∂2Ψ0↑
L (z′)

∂2z′

]
Ψ↓0R (z′)dz′.

Let us introduce the notations AR1, and AR2.

AR1 =

∫ +∞

0

(
e−ik1z

′
> + rL↑e

ik1z′>
){
−iγξ2 ∂

∂z′
+ iγξ

∂2

∂z′2

}
tR↓e

−k2z′>dz′

=

∫ +∞

0

(
e−ik1z

′
> + rL↑e

ik1z′>
)

(iγξ)(ξk2 + k2
2)tR↓e

−k2z′>dz′

= iγξk2(ξ + k2)tR↓

∫ +∞

0

(e−(ik1+k2)z′ + rL↑e
(ik1−k2)z′)dz′

= −iγξk2(ξ + k2)tR↓

∫ −∞
0

(e(ik1+k2)z′ + rL↑e
(k2−ik1)z′)dz′

= iγξk2(ξ + k2)tR↓

∫ 0

−∞
(e(ik1+k2)z + rL↑e

(k2−ik1)z)dz′

= iγξk2(ξ + k2)tR↓

{
1

(ik1 + k2)
+ rL↑

1

(k2 − ik1)

}
=

iγξk2(ξ + k2)tR↓
(k2

1 + k2
2)

{(k2 − ik1) + rL↑(ik1 + k2)}

=
iγξk2(ξ + k2)tR↓

(k2
1 + k2

2)

−4ik1k2

k2 − ik1

=
4γξk1k

2
2(ξ + k2)tR↓

(k2
1 + k2

2) (k2 − ik1)
(191)

(k2 − ik1) + rL↑(ik1 + k2) = (k2 − ik1) + k1−ik2
k1+ik2

(ik1 + k2) = −4ik1k2
k2−ik1

AR2 =

∫ +∞

0

{
iγξ2∂

(
e−ik1z

′
+ rL↑e

ik1z′
)

∂z′
+ iγξ

∂2
(
e−ik1z

′
+ rL↑e

ik1z′
)

∂z′2

}
tR↓e

−k2z′dz′

=

∫ +∞

0

tR↓e
−k2z′(iγξ2)

(
−ik1e

−ik1z′ + ik1rL↑e
ik1z′
)
dz′

−
∫ +∞

0

tR↓e
−k2z(iγξk2

1)
(
e−ik1z> + rL↑e

ik1z>
)
dz′

=

∫ +∞

0

tR↓γξ
2k1(e−(ik1+k2)z′ − rL↑e−(k2−ik1)z′)dz′

−
∫ +∞

0

tR↓(iγξk
2
1)
(
e−(ik1+k2)z′ + rL↑e

−(k2−ik1)z′
)
dz′

=
2tR↓γξ

2k1(k2
2 − k2

1)

(k2
1 + k2

2)(k2 − ik1)
− 4tR↓γξk

3
1k2

(k2
1 + k2

2)(k2 − ik1)
(192)
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Therefore,

τR =
m∗

i~2k1

[
AR1 + AR2

2

]
=

m∗

i~2k1

[
2γξk1k

2
2(ξ + k2)tR↓

(k2
1 + k2

2) (k2 − ik1)
+

tR↓γξ
2k1(k2

2 − k2
1)

(k2
1 + k2

2)(k2 − ik1)
− 2tR↓γξk

3
1k2

(k2
1 + k2

2)(k2 − ik1)

]
.

Because tR↓ = tL↑, one can observe that τR = τL.

B.2.3 Case of SOI located in the barrier

δt↑↓ =
m∗

i~2k1

a∫
0

Ψ0↑
L (z′)

[
−iγξ

2

2

∂Ψ↓0R (z′)

∂z
+
iγξ

2

∂2Ψ↓0R (z′)

∂z2

]
dz′ (193)

+
m∗

i~2k1

a∫
0

[
iγξ2

2

∂Ψ0↑
L (z′)

∂z
+
iγξ

2

∂2Ψ0↑
L (z′)

∂z2

]
Ψ↓0R (z′)dz′,

We use the first term in Eq. 193

2A1 =

a∫
0

Ψ↑0L (z′)

(
−iξ2γ

∂

∂z′
+ iξγ

∂2

∂z′2

)
Ψ↓0R (z′)dz′

=

∫ a

0

t
L↑e

k2(z′−a)

{
−iγξ2 ∂

∂z′
+ iγξ

∂2

∂z′2

}
tR↓e

−k2zdz′

=

∫ a

0

t
L↑e

k2(z′−a)
{
iγξ2k2 + iγξk2

2

}
tR↓e

−k2zdz′ (194)

=

∫ a

0

e−k2at
L↑tR↓iγξk2(ξ + k2)dz′

= e−k2at
L↑tR↓iγξk2(ξ + k2)a

and the second term

2A2 =

a∫
0

(
iξ2γ

∂Ψ↑0L (z′)

∂z′
+ iξγ

∂2Ψ↓0L (z′)

∂z′2

)
Ψ↓0R (z′)dz′ (195)

=

∫ a

0

tR↓e
−k2z′

{
iγξ2 ∂

∂z′
+ iγξ

∂2

∂z′2

}
t
L↑e

k2(z′−a)dz′

=

∫ a

0

tR↓e
−k2(z′+a)

{
iγξ2k2 + iγξk2

2

}
t
L↑e

k2zdz′

= e−k2at
L↑tR↓iγξk2(ξ + k2)a

One obtains:
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δt↑↓ =
m∗

i~2k1

(A1 + A2) (196)

= e−k2a
m∗

i~2k1

(
t
L↑tR↓

)
iγξk2(ξ + k2)a

= e−k2a
m∗

i~2k1

[
2k1

k1 + ik2

2k1

k1 + ik2

]
iγξk2(ξ + k2)a

= e−k2a
2m∗

~2

2k1γξk2(ξ + k2)a

(k1 + ik2)2

=
e−k2a

γc

2γξk2k1a

(k1 + ik2)2 (ξ + k2).
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Titre : Effet Tunnel Hall Anormal à l’interface de semi-conducteurs contrôlé par les 

interactions d’échange et spin-orbite. Etude dans le cadre d’une approche k.p étendue 

Mots clés : transport tunnel dépendant du spin, spin-orbit, effet tunnel Hall, théorie k.p 

Nous avons étudié par des méthodes numériques et 

en théorie k.p avancée les propriétés tunnel 

d’électrons et de trous dans des systèmes modèles et 

hétérostructures composés de semi-conducteurs 

impliquant des interactions spin-orbite de volume. 

Nous démontrons que le couplage entre les 

interactions spin-orbite et d’échange à l’interface de 

jonctions tunnel résulte en un fort contraste de 

transmission de porteurs selon le signe de la 

composante de leur vecteur d’onde dans le plan de la 

jonction. Cet effet conduit à un effet tunnel anormal 

d’interface que nous appelons « Effet Hall Tunnel 

Anormal » (ATHE). De façon similaire, des 

processus tunnel non-conventionnels se manifestant 

sur des isolants topologiques ont été prédits par 

d’autres auteurs. Alors que l’ensemble de ces effets 

Hall anormaux sont liés aux interactions spin-orbite, 

les effets tunnel anormaux diffèrent des effets Hall 

tunnel, des effets Hall et des effets Hall de spin par la 

forte amplitude prédite ainsi que par des phénomènes 

de chiralité. Ces propriétés possèdent un lien non-

trivial avec la symétrie du système. L’ensemble de 

ces résultats démontre l’existence d’une nouvelle 

classe d’effets tunnel qui devaient être étudiés  

expérimentalement dans un futur proche. En ce qui 

concerne la bande de valence, nous démontrons, en 

utilisant un Hamiltonien 14x14 prolongeant un 

modèle 2x2, que le calcul décrivant l’ATHE repose 

sur un traitement subtil des états dits « spurious » 

(états non-physiques) et nous donnons quelques 

éléments d’amélioration et de compréhension. Dans 

ce mémoire de thèse, nous développons deux 

méthodes numériques pour résoudre le problème des 

états spurious en développant en parallèle des 

méthodes k.p respectivement à 14 bandes et 30 

bandes afin de décrire des matériaux semi-

conducteurs à gap indirect. Les calculs menés dans la 

bande de valence d’hétérostructures semi-

conductrice incluant interfaces et barrières tunnel 

(approches 6x6 et 14x14) sans centre de symétrie 

d’inversion mettent en évidence des propriétés 

d’asymétrie équivalente à celles obtenues dans la 

bande de conduction. De tels effets sont interprétés, 

dans le cadre de calculs de perturbation en transport 

basés sur des techniques de fonctions de Green, par 

des effets chiraux orbitaux lors du branchement 

tunnel des fonctions évanescentes dans la barrière. 

 

 

Titre : Interfacial skew tunneling in group III-V and group IV semiconductors driven by 

exchange and spin-orbit interactions; Study in the frame of an extended k.p theory  

Key words: spin-dependent tunneling, spin-orbit, tunnel Hall effect, skew tunneling, k.p theory 

The interplay of spin-orbit (SOI) and exchange 

interactions at interfaces and tunnel junctions results 

in spectacular transmission asymmetries and 

Anomalous Tunnel Hall Effects for electrons and 

holes (ATHE). Related tunneling phenomena in 

topological insulators have been predicted. While 

they all originate from the SOI anisotropy, ATHE 

differs from the tunneling Hall effect, spontaneous 

anomalous and spin Hall effects, or spin-galvanic 

effect, previously reported by its giant forward 

asymmetry and its chiral nature. All the results 

presented in this PhD report show that a new class of 

tunneling phenomena can now be investigated and 

experimentally probed. When valence bands (VB) 

are involved, we show - using by accurate 6x6, 

14x14 or 30x30 k.p (indirect bandgap 

semiconductor) and a 2x2 toy model - that ATHE 

rely on a subtle treatment of the spurious 

(unphysical) states.Calculations performed in the 

valence bands, without inversion asymmetry, more 

astonishingly highlight the same trends in the 

asymmetry A which appears to be related to the 

difference of orbital chirality and to the related 

branching (overlap) of the corresponding evanescent 

wave functions responsible for the tunneling current. 

Besides, we built an analytical model and developed 

scattering perturbative techniques based on Green’s 

function method to analytically deal with electrons 

and holes and to compare the output with numerical 

calculations. The agreement between the different 

approaches is very good. In the case of holes, the 

asymmetry appears to be robust and persists even 

when a single electrode is magnetic.  

 

 


