1. Dd, 1. 3j6-'s, and H. , 5' 5.1, 5J6',3' 0.6 Hz,H-6'), 5J6,3 0.9 Hz, p.685647, 1941.

. Hz, H-8 " ' or H-10, 25 (dd, 1H, 3J 7.9, 4J 0.8 Hz20 (d, 1H, 3J 9.0 Hz08 (d, 1H, 3J 8.1 Hz90 (d, 1H, 3J 9.3 Hz, p.298432

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

L. V. Radushkevich and L. , O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte, 1952.

A. Oberlin, M. Endo, and T. Koyama, Filamentous growth of carbon through benzene decomposition, Journal of Crystal Growth, vol.32, issue.3, pp.335-349, 1976.
DOI : 10.1016/0022-0248(76)90115-9

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, pp.603-605, 1993.
DOI : 10.1038/363603a0

D. S. Bethune, C. H. Klang, M. S. De-vries, G. Gorman, R. Savoy et al., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, vol.363, issue.6430, pp.605-607, 1993.
DOI : 10.1038/363605a0

R. Vidu, M. Rahman, M. Mahmoudi, M. Enachescu, T. D. Poteca et al., Nanostructures: a platform for brain repair and augmentation, Frontiers in Systems Neuroscience, vol.37, issue.74, pp.1-24, 2014.
DOI : 10.1364/OL.37.004841

URL : https://doi.org/10.3389/fnsys.2014.00091

J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek et al., Methods for carbon nanotubes synthesis???review, Journal of Materials Chemistry, vol.52, issue.40, p.15872, 2011.
DOI : 10.1016/j.tetlet.2010.10.033

M. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman spectroscopy of carbon nanotubes, Physics Reports, vol.409, issue.2, pp.47-99, 2005.
DOI : 10.1016/j.physrep.2004.10.006

P. R. Wallace, The Band Theory of Graphite, Physical Review, vol.16, issue.9, pp.622-634, 1947.
DOI : 10.1063/1.1710273

J. C. Charlier, X. Blase, and S. Roche, Electronic and transport properties of nanotubes, Reviews of Modern Physics, vol.96, issue.2, pp.677-732, 2007.
DOI : 10.1021/nl0604311

T. Ando, The electronic properties of graphene and carbon nanotubes, NPG Asia Materials, vol.2, issue.1, pp.17-21, 2009.
DOI : 10.1038/nmat2082

S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, Tight-binding description of graphene, Physical Review B, vol.33, issue.3, p.35412, 2002.
DOI : 10.1088/0305-4470/33/37/308

Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, Polarization Dependence of the Optical Absorption of Single-Walled Carbon Nanotubes, Physical Review Letters, vol.42, issue.8, p.87402, 2005.
DOI : 10.1103/PhysRevB.71.085403

J. Lefebvre, J. M. Fraser, P. Finnie, and Y. Homma, Photoluminescence from an individual single-walled carbon nanotube, Physical Review B, vol.3, issue.7, pp.1-5, 2004.
DOI : 10.1021/nl034428i

R. Saito, G. Dresselhaus, and M. Dresselhaus, Trigonal warping effect of carbon nanotubes, Physical Review B, vol.133, issue.4, pp.2981-2990, 2000.
DOI : 10.1038/133174c0

A. G. Souza, A. Jorio, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus et al., Probing the electronic trigonal warping effect in individual single-wall carbon nanotubes using phonon spectra, Chemical Physics Letters, vol.354, issue.1-2, pp.62-68, 2002.
DOI : 10.1016/S0009-2614(02)00102-1

M. Y. Sfeir, Optical Spectroscopy of Individual Single-Walled Carbon Nanotubes of Defined Chiral Structure, Science, vol.312, issue.5773, pp.554-556, 2006.
DOI : 10.1126/science.1124602

T. Ando, Excitons in Carbon Nanotubes, Journal of the Physics Society Japan, vol.66, issue.4, pp.1066-1073, 1997.
DOI : 10.1143/JPSJ.66.1066

C. L. Kane and E. J. Mele, Ratio Problem in Single Carbon Nanotube Fluorescence Spectroscopy, Physical Review Letters, vol.66, issue.20, p.207401, 2003.
DOI : 10.1103/PhysRevB.36.4337

URL : http://arxiv.org/pdf/cond-mat/0303528

V. N. Popov, Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetryadapted non-orthogonal tight-binding model, New Journal of Physics, vol.6, 2004.

D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and R. Kaschner, Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon, Physical Review B, vol.36, issue.19, pp.12947-12957, 1995.
DOI : 10.1103/PhysRevB.36.3373

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki et al., Optical properties of single-wall carbon nanotubes, Synthetic Metals, vol.103, issue.1-3, pp.2555-2558, 1999.
DOI : 10.1016/S0379-6779(98)00278-1

K. Sato, R. Saito, J. Jiang, G. Dresselhaus, and M. S. Dresselhaus, Discontinuity in the family pattern of single-wall carbon nanotubes, Physical Review B, vol.76, issue.19, p.195446, 2007.
DOI : 10.1103/PhysRevB.70.085403

A. R. Nugraha, R. Saito, K. Sato, P. T. Araujo, A. Jorio et al., Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes, Applied Physics Letters, vol.97, issue.9, p.91905, 2010.
DOI : 10.1103/PhysRevLett.92.257402

T. W. Ebbesen, Carbon Nanotubes, Annual Review of Materials Science, vol.24, issue.1, pp.235-64, 1994.
DOI : 10.1146/annurev.ms.24.080194.001315

Y. Ando, The Preparation of Carbon Nanotubes, Fullerene Science and Technology, vol.2, issue.2, pp.173-180, 1994.
DOI : 10.1143/JJAP.32.L1342

Y. Saito, K. Nishikubo, K. Kawabata, and T. Matsumoto, Carbon nanocapsules and single???layered nanotubes produced with platinum???group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge, Journal of Applied Physics, vol.243, issue.5, p.3062, 1996.
DOI : 10.1016/0009-2614(95)00250-8

A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit et al., Crystalline Ropes of Metallic Carbon Nanotubes, Science, vol.273, issue.5274, pp.483-487, 1996.
DOI : 10.1126/science.273.5274.483

T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert et al., Self-Assembly of Tubular Fullerenes, The Journal of Physical Chemistry, vol.99, issue.27, pp.10694-10697, 1995.
DOI : 10.1021/j100027a002

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Catalytic growth of single-walled manotubes by laser vaporization, Chemical Physics Letters, vol.243, issue.1-2, pp.49-54, 1995.
DOI : 10.1016/0009-2614(95)00825-O

R. Sen, Y. Ohtsuka, T. Ishigaki, D. Kasuya, S. Suzuki et al., Time period for the growth of single-wall carbon nanotubes in the laser ablation process: evidence from gas dynamic studies and time resolved imaging, Chemical Physics Letters, vol.332, issue.5-6, pp.5-6, 2000.
DOI : 10.1016/S0009-2614(00)01320-8

M. Yudasaka, Y. Kasuya, F. Kokai, K. Takahashi, M. Takizawa et al., Causes of different catalytic activities of metals in formation of single-wall carbon nanotubes, Applied Physics A: Materials Science and Processing, pp.377-385, 2002.
DOI : 10.1007/s003390101070

S. Bandow, S. Asaka, Y. Saito, L. Rao, E. Grigorian et al., Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes, Physical Review Letters, vol.30, issue.17, pp.3779-3782, 1998.
DOI : 10.1080/00018738100101367

H. Kataura, Y. Kumazawa, Y. Maniwa, Y. Ohtsuka, R. Sen et al., Diameter control of single-walled carbon nanotubes, Carbon, vol.38, issue.11-12, pp.1691-1697, 2000.
DOI : 10.1016/S0008-6223(00)00090-7

O. Jost, A. A. Gorbunov, W. Pompe, T. Pichler, R. Friedlein et al., Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy, Applied Physics Letters, vol.75, issue.15, p.2217, 1999.
DOI : 10.1016/0009-2614(95)00825-O

Y. Ando, X. Zhao, T. Sugai, and M. Kumar, Growing carbon nanotubes, Materials Today, vol.7, issue.10, pp.22-29, 2004.
DOI : 10.1016/S1369-7021(04)00446-8

C. Journet, M. Picher, and V. Jourdain, Carbon nanotube synthesis: from large-scale production to atom-by-atom growth, Nanotechnology, vol.23, issue.14, p.142001, 2012.
DOI : 10.1088/0957-4484/23/14/142001

URL : https://hal.archives-ouvertes.fr/hal-00808416

S. Hofmann, C. Ducati, J. Robertson, and B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition, Applied Physics Letters, vol.239, issue.1, pp.135-137, 2003.
DOI : 10.1063/1.1525854

D. Varshney, B. R. Weiner, and G. Morell, Growth and field emission study of a monolithic carbon nanotube/diamond composite, Carbon, vol.48, issue.12, pp.3353-3358, 2010.
DOI : 10.1016/j.carbon.2010.05.025

B. C. Satishkumar, A. Govindaraj, R. Sen, and C. N. Rao, Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures, Chemical Physics Letters, vol.293, issue.1-2, pp.47-52, 1998.
DOI : 10.1016/S0009-2614(98)00727-1

K. Bladh, L. Falk, and F. Rohmund, On the iron-catalysed growth of single-walled carbon nanotubes and encapsulated metal particles in the gas phase, Applied Physics A: Materials Science & Processing, vol.70, issue.3, pp.317-322, 2000.
DOI : 10.1007/s003390050053

A. G. Nasibulin, A. Moisala, D. P. Brown, and E. I. Kauppinen, Carbon nanotubes and onions from carbon monoxide using Ni(acac)2 and Cu(acac)2 as catalyst precursors, Carbon, vol.41, issue.14, pp.2711-2724, 2003.
DOI : 10.1016/S0008-6223(03)00333-6

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, vol.313, issue.1-2, pp.91-97, 1999.
DOI : 10.1016/S0009-2614(99)01029-5

D. Takagi, Y. Homma, H. Hibino, S. Suzuki, and Y. Kobayashi, Single-Walled Carbon Nanotube Growth from Highly Activated Metal Nanoparticles, Nano Letters, vol.6, issue.12, pp.2642-2645, 2006.
DOI : 10.1021/nl061797g

Y. Qian, B. Huang, F. Gao, C. Wang, and G. Ren, Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes on Substrate by Europium Oxide, Nanoscale Research Letters, vol.8, issue.10, pp.1578-1584, 2010.
DOI : 10.1007/s11671-010-9679-x

B. Liu, W. Ren, L. Gao, S. Li, Q. Liu et al., Manganese-Catalyzed Surface Growth of Single-Walled Carbon Nanotubes with High Efficiency, The Journal of Physical Chemistry C, vol.112, issue.49, pp.19231-19235, 2008.
DOI : 10.1021/jp8060587

D. Yuan, L. Ding, H. Chu, Y. Feng, T. P. Mcnicholas et al., Horizontally Aligned Single-Walled Carbon Nanotube on Quartz from a Large Variety of Metal Catalysts, Nano Letters, vol.8, issue.8, pp.2576-2579, 2008.
DOI : 10.1021/nl801007r

M. Swierczewska, I. Rusakova, and B. Sitharaman, Gadolinium and europium catalyzed growth of single-walled carbon nanotubes, Carbon, vol.47, issue.13, pp.3139-3142, 2009.
DOI : 10.1016/j.carbon.2009.07.021

D. E. Resasco, J. E. Herrera, and L. Balzano, Decomposition of Carbon-Containing Compounds on Solid Catalysts for Single-Walled Nanotube Production, Journal of Nanoscience and Nanotechnology, vol.4, issue.4, pp.398-407, 2004.
DOI : 10.1166/jnn.2004.064

V. Jourdain and C. Bichara, Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition, Carbon, vol.58, pp.2-39
DOI : 10.1016/j.carbon.2013.02.046

URL : https://hal.archives-ouvertes.fr/hal-01067024

R. S. Wagner and W. C. Ellis, VAPOR???LIQUID???SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, Applied Physics Letters, vol.33, issue.5, pp.89-90, 1964.
DOI : 10.1063/1.1777195

R. T. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene, Journal of Catalysis, vol.26, issue.1, pp.51-62, 1972.
DOI : 10.1016/0021-9517(72)90032-2

J. Tessonnier and D. S. Su, Recent Progress on the Growth Mechanism of Carbon Nanotubes: A Review, ChemSusChem, vol.49, issue.7, pp.824-847, 2011.
DOI : 10.1002/anie.201003024

M. Picher, P. A. Lin, J. L. Gomez-ballesteros, P. B. Balbuena, and R. Sharma, Nucleation of Graphene and Its Conversion to Single-Walled Carbon Nanotubes, Nano Letters, vol.14, issue.11, pp.6104-6108, 2014.
DOI : 10.1021/nl501977b

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert et al., Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chemical Physics Letters, vol.260, issue.3-4, pp.3-4, 1996.
DOI : 10.1016/0009-2614(96)00862-7

Y. Shibuta and S. Maruyama, Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method, Chemical Physics Letters, vol.382, issue.3-4, pp.381-386, 2003.
DOI : 10.1016/j.cplett.2003.10.080

H. Amara, C. Bichara, and F. Ducastelle, Understanding the Nucleation Mechanisms of Carbon Nanotubes in Catalytic Chemical Vapor Deposition, Physical Review Letters, vol.12, issue.5, pp.23-27, 2008.
DOI : 10.1063/1.1896089

URL : https://hal.archives-ouvertes.fr/hal-00303796

J. Zhao, P. B. Martinez-limia, and . Balbuena, Understanding catalysed growth of single-wall carbon nanotubes, Nanotechnology, vol.16, issue.7, pp.575-81, 2005.
DOI : 10.1088/0957-4484/16/7/035

A. M. Cassell, J. A. Raymakers, J. Kong, and H. Dai, Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry B, vol.103, issue.31, pp.6484-6492, 1999.
DOI : 10.1021/jp990957s

S. Hofmann, R. Blume, C. T. Wirth, M. Cantoro, R. Sharma et al., State of Transition Metal Catalysts During Carbon Nanotube Growth, The Journal of Physical Chemistry C, vol.113, issue.5, pp.1648-1656, 2009.
DOI : 10.1021/jp808560p

S. Esconjauregui, C. M. Whelan, and K. Maex, The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies, Carbon, vol.47, issue.3, pp.659-669, 2009.
DOI : 10.1016/j.carbon.2008.10.047

C. Wirth, S. Hofmann, and J. Robertson, State of the catalyst during carbon nanotube growth, Diamond and Related Materials, vol.18, issue.5-8, pp.940-945, 2009.
DOI : 10.1016/j.diamond.2009.01.030

Z. He, J. Maurice, A. Gohier, C. S. Lee, D. Pribat et al., C or Both?, Chemistry of Materials, vol.23, issue.24, pp.5379-5387, 2011.
DOI : 10.1021/cm202315j

URL : https://hal.archives-ouvertes.fr/hal-00752981

C. T. Wirth, B. C. Bayer, A. A. Gamalski, S. Esconjauregui, R. S. Weatherup et al., The Phase of Iron Catalyst Nanoparticles during Carbon Nanotube Growth, Chemistry of Materials, vol.24, issue.24, pp.4633-4640, 2012.
DOI : 10.1021/cm301402g

S. Hofmann, R. Sharma, C. Ducati, G. Du, C. Mattevi et al., In situ Observations of Catalyst Dynamics during Surface-Bound Carbon Nanotube Nucleation, Nano Letters, vol.7, issue.3, pp.602-608, 2007.
DOI : 10.1021/nl0624824

H. Yoshida, T. Shimizu, T. Uchiyama, H. Kohno, Y. Homma et al., Atomic-Scale Analysis on the Role of Molybdenum in Iron-Catalyzed Carbon Nanotube Growth, Nano Letters, vol.9, issue.11, pp.3810-3815, 2009.
DOI : 10.1021/nl9019903

M. He, H. Jiang, B. Liu, P. V. Fedotov, A. I. Chernov et al., Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles, Scientific Reports, vol.26, issue.1, p.1460, 2013.
DOI : 10.1179/026708310X12756557336355

M. He, B. Liu, A. I. Chernov, E. D. Obraztsova, I. Kauppi et al., Growth Mechanism of Single-Walled Carbon Nanotubes on Iron???Copper Catalyst and Chirality Studies by Electron Diffraction, Chemistry of Materials, vol.24, issue.10, pp.1796-1801, 2012.
DOI : 10.1021/cm300308k

L. Zhang, M. He, T. W. Hansen, J. Kling, H. Jiang et al., Transmission Electron Microscopy, ACS Nano, vol.11, issue.5, pp.6-05941, 2017.
DOI : 10.1021/acsnano.6b05941

URL : https://hal.archives-ouvertes.fr/hal-00556063

M. C. Hersam, Progress towards monodisperse single-walled carbon nanotubes, Nature Nanotechnology, vol.3, issue.7, pp.387-394, 2008.
DOI : 10.1557/mrs2004.76

B. S. Flavel, M. M. Kappes, R. Krupke, and F. Hennrich, Separation of Single-Walled Carbon Nanotubes by 1-Dodecanol-Mediated Size-Exclusion Chromatography, ACS Nano, vol.7, issue.4, pp.3557-3564, 2013.
DOI : 10.1021/nn4004956

X. Tu, S. Manohar, A. Jagota, and M. Zheng, DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes, Nature, vol.126, issue.7252, pp.250-253, 2009.
DOI : 10.1038/nature08116

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography, Nature Communications, vol.2, p.309, 2011.
DOI : 10.1021/cm060563v

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, Sorting carbon nanotubes by electronic structure using density differentiation, Nature Nanotechnology, vol.82, issue.1, p.60, 2006.
DOI : 10.1063/1.1564291

F. M. Chen, B. Wang, Y. Chen, and L. J. Li, Toward the Extraction of Single Species of Single-Walled Carbon Nanotubes Using Fluorene-Based Polymers, Nano Letters, vol.7, issue.10, pp.3013-3017, 2007.
DOI : 10.1021/nl071349o

M. C. Fiawoo, A. Bonnot, H. Amara, C. Bichara, J. Thibault-pénisson et al., Evidence of Correlation between Catalyst Particles and the Single-Wall Carbon Nanotube Diameter: A First Step towards Chirality Control, Physical Review Letters, vol.108, issue.19, p.195503, 2012.
DOI : 10.1063/1.1605793

URL : https://hal.archives-ouvertes.fr/hal-01002327

W. L. Wang, X. D. Bai, Z. Xu, S. Liu, and E. G. Wang, Low temperature growth of single-walled carbon nanotubes: Small diameters with narrow distribution, Chemical Physics Letters, vol.419, issue.1-3, pp.81-85, 2006.
DOI : 10.1016/j.cplett.2005.10.140

K. Tanioku, T. Maruyama, and S. Naritsuka, Low temperature growth of carbon nanotubes on Si substrates in high vacuum, Diamond and Related Materials, vol.17, issue.4-5, pp.589-593, 2008.
DOI : 10.1016/j.diamond.2007.10.028

N. Li, X. Wang, F. Ren, G. L. Haller, and L. D. Pfefferle, Diameter Tuning of Single-Walled Carbon Nanotubes with Reaction Temperature Using a Co Monometallic Catalyst, The Journal of Physical Chemistry C, vol.113, issue.23, pp.10070-10078, 2009.
DOI : 10.1021/jp903129h

C. Z. Loebick, R. Podila, J. Reppert, J. Chudow, F. Ren et al., Selective Synthesis of Subnanometer Diameter Semiconducting Single-Walled Carbon Nanotubes, Journal of the American Chemical Society, vol.132, issue.32, pp.11125-11131, 2010.
DOI : 10.1021/ja102011h

K. Cui, A. Kumamoto, R. Xiang, H. An, B. Wang et al., Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts, Nanoscale, vol.22, issue.3, pp.1608-1617, 2016.
DOI : 10.1002/adma.200904366

F. Zhang, P. Hou, C. Liu, B. Wang, H. Jiang et al., Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution, Nature Communications, vol.20, p.11160, 2016.
DOI : 10.1002/adma.200801088

B. Hou, C. Wu, T. Inoue, S. Chiashi, R. Xiang et al., Extended alcohol catalytic chemical vapor deposition for efficient growth of single-walled carbon nanotubes thinner than (6,5), Carbon, vol.119, pp.502-510, 2017.
DOI : 10.1016/j.carbon.2017.04.045

P. W. Voorhees, The theory of Ostwald ripening, Journal of Statistical Physics, vol.3, issue.1-2, pp.231-252, 1985.
DOI : 10.1002/bbpc.19830870410

M. Picher, E. Anglaret, R. Arenal, and V. Jourdain, Situ Raman Measurements, Nano Letters, vol.9, issue.2, pp.542-549, 2009.
DOI : 10.1021/nl802661z

URL : https://hal.archives-ouvertes.fr/hal-00561033

C. Lu and J. Liu, Controlling the Diameter of Carbon Nanotubes in Chemical Vapor Deposition Method by Carbon Feeding, The Journal of Physical Chemistry B, vol.110, issue.41, pp.20254-20257, 2006.
DOI : 10.1021/jp0632283

B. Wang, L. Wei, L. Yao, L. Li, Y. Yang et al., ) Selectivity on Co???Mo Catalysts, The Journal of Physical Chemistry C, vol.111, issue.40, pp.14612-14616, 2007.
DOI : 10.1021/jp0762525

T. Saito, S. Ohshima, T. Okazaki, S. Ohmori, M. Yumura et al., Selective Diameter Control of Single-Walled Carbon Nanotubes in the Gas-Phase Synthesis, Journal of Nanoscience and Nanotechnology, vol.8, issue.11, pp.6153-6157, 2008.
DOI : 10.1166/jnn.2008.SW23

G. Lolli, L. Zhang, L. Balzano, N. Sakulchaicharoen, Y. Tan et al., ) Structure of Single-Walled Carbon Nanotubes by Modifying Reaction Conditions and the Nature of the Support of CoMo Catalysts, The Journal of Physical Chemistry B, vol.110, issue.5, pp.2108-2115, 2006.
DOI : 10.1021/jp056095e

M. He, H. Jiang, E. I. Kauppinen, and J. Lehtonen, Diameter and chiral angle distribution dependencies on the carbon precursors in surface-grown single-walled carbon nanotubes, Nanoscale, vol.5, issue.23, pp.7394-7398, 2012.
DOI : 10.1021/nn2040457

D. A. Tsyboulski, J. D. Rocha, S. M. Bachilo, L. Cognet, and R. B. Weisman, Structure-Dependent Fluorescence Efficiencies of Individual Single-Walled Carbon Nanotubes, Nano Letters, vol.7, issue.10, pp.3080-3085, 2007.
DOI : 10.1021/nl071561s

URL : https://hal.archives-ouvertes.fr/hal-00169314

R. Arenal, P. Löthman, M. Picher, T. Than, M. Paillet et al., Direct Evidence of Atomic Structure Conservation Along Ultra-Long Carbon Nanotubes, The Journal of Physical Chemistry C, vol.116, issue.26, pp.14103-14107, 2012.
DOI : 10.1021/jp212540n

URL : https://hal.archives-ouvertes.fr/hal-00808429

Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, and S. Maruyama, Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol, Chemical Physics Letters, vol.387, issue.1-3, pp.198-203, 2004.
DOI : 10.1016/j.cplett.2004.01.116

M. He, L. Zhang, H. Jiang, H. Yang, F. Fossard et al., Fe Ti O based catalyst for large-chiral-angle single-walled carbon nanotube growth, Carbon, vol.107, pp.865-871, 2016.
DOI : 10.1016/j.carbon.2016.06.099

URL : https://hal.archives-ouvertes.fr/hal-01426080

S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco et al., )-Distribution of Single-Walled Carbon Nanotubes Grown Using a Solid Supported Catalyst, Journal of the American Chemical Society, vol.125, issue.37, pp.11186-11187, 2003.
DOI : 10.1021/ja036622c

X. Li, X. S. , .. C. Tu, S. Zaric, K. Welsher et al., Selective Synthesis Combined with Chemical Separation of Single-Walled Carbon Nanotubes for Chirality Selection, Journal of the American Chemical Society, vol.129, issue.51, pp.15770-15771, 2007.
DOI : 10.1021/ja077886s

M. Krause and . Niemela, Predominant ( 6 , 5 ) Single-Walled Carbon Nanotube Growth on a Copper-Promoted Iron Catalyst, Journal of the American Chemical Society, vol.132, pp.13994-13996, 2010.

M. He, P. V. Fedotov, A. Chernov, E. D. Obraztsova, H. Jiang et al., Chiral-selective growth of single-walled carbon nanotubes on Fe-based catalysts using CO as carbon source, Carbon, vol.108, pp.521-528, 2016.
DOI : 10.1016/j.carbon.2016.07.048

H. Wang, L. Wei, F. Ren, Q. Wang, L. D. Pfefferle et al., Catalyst for (9,8) Single-Walled Carbon Nanotube Growth, ACS Nano, vol.7, issue.1, pp.614-626, 2013.
DOI : 10.1021/nn3047633

W. Chiang and R. M. Sankaran, Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning Ni x Fe1???x nanoparticles, Nature Materials, vol.301, issue.11, pp.882-886, 2009.
DOI : 10.1038/nmat2531

Z. Z. Wang, F. Xu, X. Peng, R. Li, Y. Y. Li et al., Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts, Nature, vol.510, issue.7506, pp.522-526, 2014.

F. Yang, X. Wang, D. Zhang, K. Qi, J. Yang et al., Growing Zigzag (16,0) Carbon Nanotubes with Structure-Defined Catalysts, Journal of the American Chemical Society, vol.137, issue.27, pp.8688-8691, 2015.
DOI : 10.1021/jacs.5b04403

F. Yang, X. Wang, J. Si, X. Zhao, K. Qi et al., Water-Assisted Preparation of High-Purity Semiconducting (14,4) Carbon Nanotubes, ACS Nano, vol.11, issue.1, pp.6-06890, 2016.
DOI : 10.1021/acsnano.6b06890

Y. Yao, Q. Li, J. Zhang, R. Liu, L. Jiao et al., Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions, Nature Materials, vol.44, issue.4, pp.283-286, 2007.
DOI : 10.1038/nmat1865

F. Zhang, P. Hou, C. Liu, and H. Cheng, Epitaxial growth of single-wall carbon nanotubes, Carbon, vol.102, pp.181-197, 2016.
DOI : 10.1016/j.carbon.2016.02.029

R. E. Smalley, Y. Li, V. C. Moore, B. K. Price, R. Colorado et al., Single Wall Carbon Nanotube Amplification:?? En Route to a Type-Specific Growth Mechanism, Journal of the American Chemical Society, vol.128, issue.49, pp.15824-15829, 2006.
DOI : 10.1021/ja065767r

Y. Wang, M. J. Kim, H. Shan, C. Kittrell, H. Fan et al., Continued Growth of Single-Walled Carbon Nanotubes, Nano Letters, vol.5, issue.6, pp.997-1002, 2005.
DOI : 10.1021/nl047851f

J. Liu, C. Wang, X. Tu, B. Liu, L. Chen et al., Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy, Nature Communications, vol.19, issue.1, p.1199, 2012.
DOI : 10.1088/0957-4484/19/44/445605

H. Omachi, T. Nakayama, E. Takahashi, Y. Segawa, and K. Itami, Initiation of carbon nanotube growth by well-defined carbon nanorings, Nature Chemistry, vol.48, issue.7, pp.572-576, 2013.
DOI : 10.1039/c2cc33885h

B. Liu, J. Liu, H. B. Li, R. Bhola, E. A. Jackson et al., Nearly Exclusive Growth of Small Diameter Semiconducting Single-Wall Carbon Nanotubes from Organic Chemistry Synthetic End-Cap Molecules, Nano Letters, vol.15, issue.1, pp.586-595, 2015.
DOI : 10.1021/nl504066f

J. R. Sanchez-valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller et al., Controlled synthesis of single-chirality carbon nanotubes, Nature, vol.128, issue.7512, pp.61-64, 2014.
DOI : 10.1021/ja060944+

URL : https://digital.csic.es/bitstream/10261/103973/1/Nature_Sanchez-Valencia_FinalRev.pdf

W. Chiang, M. Sakr, X. P. Gao, and R. M. Sankaran, Catalysts for Gas-Phase, Selective Synthesis of Semiconducting Single-Walled Carbon Nanotubes, ACS Nano, vol.3, issue.12, pp.4023-4032, 2009.
DOI : 10.1021/nn901222t

A. R. Harutyunyan, G. Chen, T. M. Paronyan, E. M. Pigos, O. A. Kuznetsov et al., Preferential Growth of Single-Walled Carbon Nanotubes with Metallic Conductivity, Science, vol.35, issue.12, pp.116-120, 2009.
DOI : 10.1021/ar010152e

B. Yu, C. Liu, P. X. Hou, Y. Tian, S. Li et al., Bulk Synthesis of Large Diameter Semiconducting Single-Walled Carbon Nanotubes by Oxygen-Assisted Floating Catalyst Chemical Vapor Deposition, Journal of the American Chemical Society, vol.133, issue.14, pp.5232-5235, 2011.
DOI : 10.1021/ja2008278

X. Qin, F. Peng, F. Yang, X. He, H. Huang et al., Growth of Semiconducting Single-Walled Carbon Nanotubes by Using Ceria as Catalyst Supports, Nano Letters, vol.14, issue.2, pp.512-517, 2014.
DOI : 10.1021/nl403515c

L. Ding, A. Tselev, J. Wang, D. Yuan, H. Chu et al., Selective Growth of Well-Aligned Semiconducting Single-Walled Carbon Nanotubes, Nano Letters, vol.9, issue.2, pp.800-805, 2009.
DOI : 10.1021/nl803496s

Y. Wang, Y. Liu, X. Li, L. Cao, D. Wei et al., Direct Enrichment of Metallic Single-Walled Carbon Nanotubes Induced by the Different Molecular Composition of Monohydroxy Alcohol Homologues, Small, vol.17, issue.9, pp.1486-1490, 2007.
DOI : 10.1002/smll.200700241

W. Li, P. Hou, C. Liu, D. Sun, J. Yuan et al., High-Quality, Highly Concentrated Semiconducting Single-Wall Carbon Nanotubes for Use in Field Effect Transistors and Biosensors, ACS Nano, vol.7, issue.8, pp.6831-6840, 2013.
DOI : 10.1021/nn401998r

W. Zhou, S. Zhan, L. Ding, and J. Liu, General Rules for Selective Growth of Enriched Semiconducting Single Walled Carbon Nanotubes with Water Vapor as in Situ Etchant, Journal of the American Chemical Society, vol.134, issue.34, pp.14019-14026, 2012.
DOI : 10.1021/ja3038992

G. Hong, B. Zhang, B. Peng, J. Zhang, W. M. Choi et al., Direct Growth of Semiconducting Single-Walled Carbon Nanotube Array, Journal of the American Chemical Society, vol.131, issue.41, pp.14642-14643, 2009.
DOI : 10.1021/ja9068529

M. Diarra, A. Zappelli, H. Amara, F. Ducastelle, and C. Bichara, Importance of Carbon Solubility and Wetting Properties of Nickel Nanoparticles for Single Wall Nanotube Growth, Physical Review Letters, vol.109, issue.18, pp.1-5, 2012.
DOI : 10.1038/nmat2531

URL : https://hal.archives-ouvertes.fr/hal-00773480

P. Avouris, Z. Chen, and V. Perebeinos, Carbon-based electronics, Nature Nanotechnology, vol.4, issue.10, pp.605-620, 2007.
DOI : 10.1038/nature06037

P. Stallinga and W. Interscience, Online service), Electrical characterization of organic electronic materials and devices, 2009.

S. Tans, A. Verschueren, and C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature, vol.22, issue.6680, pp.669-672, 1989.
DOI : 10.1016/0167-9317(93)90121-K

R. Vargas-bernal and G. Herrera-prez, Carbon Nanotube- and Graphene Based Devices, Circuits and Sensors for VLSI Design, pp.41-66, 2012.
DOI : 10.5772/38743

URL : https://doi.org/10.5772/38743

Z. Chen, J. Appenzeller, J. Knoch, Y. Lin, and P. Avouris, The Role of Metal???Nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transistors, Nano Letters, vol.5, issue.7, pp.1497-502, 2005.
DOI : 10.1021/nl0508624

A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Ballistic carbon nanotube field-effect transistors, Nature, vol.3, issue.6949, pp.654-657, 2003.
DOI : 10.1021/nl0259232

S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller et al., Carbon Nanotubes as Schottky Barrier Transistors, Physical review letters, p.106801, 2002.
DOI : 10.1119/1.15722

URL : http://arxiv.org/pdf/cond-mat/0207397

P. Avouris and J. Chen, Nanotube electronics and optoelectronics, Materials Today, vol.9, issue.10, pp.46-54, 2006.
DOI : 10.1016/S1369-7021(06)71653-4

URL : https://doi.org/10.1016/s1369-7021(06)71653-4

H. Dai, Carbon Nanotubes:?? Synthesis, Integration, and Properties, Accounts of Chemical Research, vol.35, issue.12, pp.1035-1044, 2002.
DOI : 10.1021/ar0101640

V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, Carbon Nanotube Inter- and Intramolecular Logic Gates, Nano Letters, vol.1, issue.9, pp.453-456, 2001.
DOI : 10.1021/nl015606f

URL : http://www.crhc.uiuc.edu/ece497nc/fall01/papers/nl015606f.pdf

C. M. Aguirre, P. L. Levesque, M. Paillet, F. Lapointe, B. C. St-antoine et al., The Role of the Oxygen/Water Redox Couple in Suppressing Electron Conduction in Field-Effect Transistors, Advanced Materials, vol.305, issue.30, pp.3087-3091, 2009.
DOI : 10.1002/adma.200900550

W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li et al., Hysteresis Caused by Water Molecules in Carbon Nanotube Field-Effect Transistors, Nano Letters, vol.3, issue.2, pp.193-198, 2003.
DOI : 10.1021/nl0259232

P. Bondavalli, P. Legagneux, and D. Pribat, Carbon nanotubes based transistors as gas sensors: State of the art and critical review, Sensors and Actuators B: Chemical, vol.140, issue.1, pp.304-318, 2009.
DOI : 10.1016/j.snb.2009.04.025

J. Kong, Nanotube Molecular Wires as Chemical Sensors, Science, vol.287, issue.5453, pp.622-625, 2000.
DOI : 10.1126/science.287.5453.622

J. Zhang, A. Boyd, A. Tselev, M. Paranjape, and P. Barbara, Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors, Applied Physics Letters, vol.88, issue.12, pp.10-14, 2006.
DOI : 10.1103/PHYSREVLETT.88.126801

S. Auvray, J. Borghetti, M. F. Goffman, A. Filoramo, V. Derycke et al., Carbon nanotube transistor optimization by chemical control of the nanotube???metal interface, Applied Physics Letters, vol.772, issue.25, pp.5106-5108, 2004.
DOI : 10.3891/acta.chem.scand.45-1093

S. M. Bachilo, Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes, Science, vol.298, issue.5602, pp.2361-2366, 2002.
DOI : 10.1126/science.1078727

K. Besteman, J. O. Lee, F. G. Wiertz, H. A. Heering, and C. Dekker, Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors, Nano Letters, vol.3, issue.6, pp.727-730, 2003.
DOI : 10.1021/nl034139u

A. Hirsch, Functionalization of Single-Walled Carbon Nanotubes, Angewandte Chemie International Edition, vol.41, issue.11, pp.1853-1859, 2002.
DOI : 10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N

S. Campidelli, B. Ballesteros, A. Filoramo, D. D. Diaz, G. De-la-torre et al., Facile Decoration of Functionalized Single-Wall Carbon Nanotubes with Phthalocyanines via ???Click Chemistry???, Journal of the American Chemical Society, vol.130, issue.34, pp.11503-11509, 2008.
DOI : 10.1021/ja8033262

D. M. Guldi, G. N. Rahman, J. Ramey, M. Marcaccio, D. Paolucci et al., Donor???acceptor nanoensembles of soluble carbon nanotubes, Chemical Communications, vol.35, issue.18, pp.2034-2035, 2004.
DOI : 10.1039/b406933a

URL : https://shareok.org/bitstream/11244/19834/1/okds_Ford_CC_2004-08-10.pdf

M. S. Strano, Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization, Science, vol.301, issue.5639, pp.1519-1522, 2003.
DOI : 10.1126/science.1087691

Y. Piao, B. Meany, L. R. Powell, N. Valley, H. Kwon et al., Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects, Nature Chemistry, vol.413, issue.10, pp.840-845, 2013.
DOI : 10.1016/j.chemphys.2012.10.010

A. Setaro, M. Adeli, M. Glaeske, D. Przyrembel, T. Bisswanger et al., Preserving ??-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications, Nature Communications, vol.113, issue.10, p.14281, 2017.
DOI : 10.1063/1.1323224

URL : http://www.nature.com/articles/ncomms14281.pdf

D. M. Guldi, G. M. Rahman, F. Zerbetto, and M. Prato, Carbon Nanotubes in Electron Donor???Acceptor Nanocomposites, Accounts of Chemical Research, vol.38, issue.11, pp.871-878, 2005.
DOI : 10.1021/ar040238i

C. Roquelet, J. Lauret, V. Alain-rizzo, C. Voisin, R. Fleurier et al., Pi-stacking functionalization through micelles swelling: Application to the synthesis of single wall carbon nanotube/porphyrin complexes for energy transfer, pp.1-6, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00495765

P. D. Tran, A. L. Goff, J. Heidkamp, B. Jousselme, N. Guillet et al., Noncovalent Modification of Carbon Nanotubes with Pyrene-Functionalized Nickel Complexes: Carbon Monoxide Tolerant Catalysts for Hydrogen Evolution and Uptake, Angewandte Chemie International Edition, vol.126, issue.6, pp.1371-1374, 2011.
DOI : 10.1021/ja0395240

URL : https://hal.archives-ouvertes.fr/cea-00960638

L. Hu, Y. L. Zhao, K. Ryu, C. Zhou, J. F. Stoddart et al., Light-Induced Charge Transfer in Pyrene/CdSe-SWNT Hybrids, Advanced Materials, vol.87, issue.5, pp.939-946, 2008.
DOI : 10.1557/mrs2005.8

X. Dang, H. Yi, M. Ham, J. Qi, D. S. Yun et al., Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices, Nature Nanotechnology, vol.324, issue.6, pp.377-384, 2011.
DOI : 10.1021/jz100863b

J. Borghetti, V. Derycke, S. Lenfant, P. Chenevier, A. Filoramo et al., Optoelectronic Switch and Memory Devices Based on Polymer-Functionalized Carbon Nanotube Transistors, Advanced Materials, vol.292, issue.19, pp.2535-2540, 2006.
DOI : 10.1103/PhysRevB.68.125208

URL : https://hal.archives-ouvertes.fr/hal-00127137

C. Ehli, C. Oelsner, D. M. Guldi, A. Mateo-alonso, M. Prato et al., Manipulating single-wall carbon nanotubes by chemical doping and charge transfer with perylene dyes, Nature Chemistry, vol.101, issue.3, pp.243-249, 2009.
DOI : 10.1038/nchem.214

Y. Chen, G. Royal, E. Flahaut, S. Cobo, V. Bouchiat et al., Light Control of Charge Transfer and Excitonic Transitions in a Carbon Nanotube/Porphyrin Hybrid, Advanced Materials, vol.12, issue.18, p.1605745, 2017.
DOI : 10.1039/b301514a

URL : https://hal.archives-ouvertes.fr/hal-01505016

A. M. Rao, P. C. Eklund, S. Bandow, A. Thess, and R. E. Smalley, Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering, Nature, vol.355, issue.6639, pp.257-259, 1997.
DOI : 10.1038/355712a0

R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M. S. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes, Advances in Physics, vol.67, issue.3, pp.413-550, 2011.
DOI : 10.1126/science.1184289

C. Thomsen and S. Reich, Raman Scattering in Carbon Nanotubes, Carbon Nanotubes, vol.232, pp.115-234, 2007.

M. S. Dresselhaus, Fifty years in studying carbon-based materials, Physica Scripta, vol.146, pp.1-10, 2012.
DOI : 10.1088/0031-8949/2012/T146/014002

URL : http://iopscience.iop.org/article/10.1088/0031-8949/2012/T146/014002/pdf

A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter et al., ) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering, Physical Review Letters, vol.80, issue.6, pp.1118-1121, 2001.
DOI : 10.1103/PhysRevLett.80.3779

P. T. Araujo, S. K. Doorn, S. Kilina, S. Tretiak, E. Einarsson et al., Third and Fourth Optical Transitions in Semiconducting Carbon Nanotubes, Physical Review Letters, vol.5, issue.6, p.67401, 2007.
DOI : 10.1103/PhysRevLett.94.207401

P. T. Araujo, I. O. Maciel, P. B. Pesce, M. A. Pimenta, S. K. Doorn et al., Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes, Physical Review B, vol.77, issue.24, p.241403, 2008.
DOI : 10.1088/0957-4484/18/43/435705

M. A. Pimenta, A. Jorio, S. D. Brown, A. G. Souza-filho, G. Dresselhaus et al., -band in isolated single-wall carbon nanotubes, Physical Review B, vol.84, issue.230, p.41401, 2001.
DOI : 10.1103/PhysRevLett.84.1324

A. Ghedjatti, Etude structurale des nanotubes de carbone double parois, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01366671

L. Catala, D. Brinzei, Y. Prado, A. Gloter, O. Stéphan et al., Core-Multishell Magnetic Coordination Nanoparticles: Toward Multifunctionality on the Nanoscale, Angewandte Chemie International Edition, vol.47, issue.1, pp.183-187, 2009.
DOI : 10.1021/ja804516q

Y. Prado, L. Lisnard, D. Heurtaux, G. Rogez, A. Gloter et al., Tailored coordination nanoparticles: assessing the magnetic single-domain critical size, Chem. Commun., vol.8, issue.3, pp.1051-1053, 2011.
DOI : 10.1021/cm960077f

S. Tricard, B. Fleury, F. Volatron, C. Costa-coquelard, S. Mazerat et al., Growth and density control of nanometric nickel???iron cyanide-bridged objects on functionalized Si(100) surface, Chemical Communications, vol.38, issue.192, pp.4327-4336, 2010.
DOI : 10.1039/c003039b

URL : https://hal.archives-ouvertes.fr/cea-01022787

A. Ludi and H. U. , Structural chemistry of polynuclear transition metal cyanides, Inorganic Chemistry, pp.1-21, 1973.
DOI : 10.1007/BFb0016869

L. Catala, T. Gacoin, J. P. Boilot, É. Rivière, C. Paulsen et al., Cyanide-Bridged CrIII???NiII Superparamagnetic Nanoparticles, Advanced Materials, vol.15, issue.10, pp.826-829, 2003.
DOI : 10.1002/adma.200304696

T. Mallah, S. Tricard, and F. Charra, Sequential growth at the sub 10 nm scale of cyanide bridged coordination networks on inorganic surfaces, Dalton Transactions, pp.15835-15845, 1990.

T. B. Massalski, Binary Alloy Phase Diagrams, 1990.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang et al., Creation of Nanostructures with Poly(methyl methacrylate)-Mediated Nanotransfer Printing, Journal of the American Chemical Society, vol.130, issue.38, pp.12612-12613, 2008.
DOI : 10.1021/ja805070b

Y. He, D. Li, T. Li, X. Lin, J. Zhang et al., Metal-film-assisted ultra-clean transfer of single-walled carbon nanotubes, Nano Research, vol.89, issue.7, pp.981-989, 2014.
DOI : 10.1103/PhysRevLett.89.106801

Y. Zhang, J. Zhang, H. Son, J. Kong, and Z. Liu, Substrate-Induced Raman Frequency Variation for Single-Walled Carbon Nanotubes, Journal of the American Chemical Society, vol.127, issue.49, pp.17156-17157, 2005.
DOI : 10.1021/ja056793c

G. Lolli, L. Zhang, L. Balzano, N. Sakulchaicharoen, Y. Tan et al., ) Structure of Single-Walled Carbon Nanotubes by Modifying Reaction Conditions and the Nature of the Support of CoMo Catalysts, The Journal of Physical Chemistry B, vol.110, issue.5, pp.2108-2115, 2006.
DOI : 10.1021/jp056095e

Y. Magnin, A. Zappelli, H. Amara, F. Ducastelle, and C. Bichara, Size Dependent Phase Diagrams of Nickel-Carbon Nanoparticles, Physical Review Letters, vol.115, issue.20, 2015.
DOI : 10.1103/PhysRevLett.108.195503

URL : https://hal.archives-ouvertes.fr/hal-01228658

M. Picher, E. Anglaret, R. Arenal, and V. Jourdain, Processes Controlling the Diameter Distribution of Single-Walled Carbon Nanotubes during Catalytic Chemical Vapor Deposition, ACS Nano, vol.5, issue.3, pp.2118-2125, 2011.
DOI : 10.1021/nn1033086

URL : https://hal.archives-ouvertes.fr/hal-00626944

H. Jeong, L. Eude, M. Gowtham, B. Marquardt, S. Lim et al., ATOMIC HYDROGEN-DRIVEN SIZE CONTROL OF CATALYTIC NANOPARTICLES FOR SINGLE-WALLED CARBON NANOTUBE GROWTH, Nano, vol.393, issue.03, pp.145-153, 2008.
DOI : 10.1142/S1793292006000070

URL : https://hal.archives-ouvertes.fr/hal-00795000

F. Z. Bouanis, C. S. Cojocaru, V. Huc, E. Norman, M. Chaigneau et al., Direct Synthesis and Integration of Individual, Diameter-Controlled Single-Walled Nanotubes (SWNTs), Chemistry of Materials, vol.26, issue.17, pp.5074-5082, 2014.
DOI : 10.1021/cm502282x

A. Castan, S. Forel, L. Catala, I. Florea, F. Fossard et al., New method for the growth of single-walled carbon nanotubes from bimetallic nanoalloy catalysts based on Prussian blue analog precursors, Carbon, vol.123, pp.583-592, 2017.
DOI : 10.1016/j.carbon.2017.07.058

URL : https://hal.archives-ouvertes.fr/hal-01572413

M. He, H. Amara, H. Jiang, J. Hassinen, C. Bichara et al., Key roles of carbon solubility in single-walled carbon nanotube nucleation and growth, Nanoscale, vol.8, issue.47, pp.20284-20289, 2015.
DOI : 10.1021/nn5042812

H. Amara and C. Bichara, Modeling the Growth of Single-Wall Carbon Nanotubes, Topics in Current Chemistry, vol.7, issue.596, p.55, 2017.
DOI : 10.1039/C5NR06045A

A. Moisala, A. G. Nasibulin, and E. I. Kauppinen, The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes???a review, Journal of Physics: Condensed Matter, vol.15, issue.42, pp.3011-3035, 2003.
DOI : 10.1088/0953-8984/15/42/003

E. Einarsson, Y. Murakami, M. Kadowaki, and S. Maruyama, Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements, Carbon, vol.46, issue.6, pp.923-930, 2008.
DOI : 10.1016/j.carbon.2008.02.021

B. Straumal, B. Baretzky, A. Mazilkin, S. Protasova, A. Myatiev et al., Increase of Mn solubility with decreasing grain size in ZnO, Journal of the European Ceramic Society, vol.29, issue.10, pp.1963-1970, 2009.
DOI : 10.1016/j.jeurceramsoc.2009.01.005

H. Yasuda and H. Mori, Phase diagrams in nanometer-sized alloy systems, Journal of Crystal Growth, vol.237, issue.239, pp.234-238, 2002.
DOI : 10.1016/S0022-0248(01)01881-4

G. Ouyang, X. Tan, C. X. Wang, and G. W. Yang, Solid solubility limit in alloying nanoparticles, Nanotechnology, vol.17, issue.16, pp.4257-4262, 2006.
DOI : 10.1088/0957-4484/17/16/042

J. P. Petropoulos, T. R. Cristiani, P. B. Dongmo, and J. M. Zide, A simple thermodynamic model for the doping and alloying of nanoparticles, Nanotechnology, vol.22, issue.24, p.245704, 2011.
DOI : 10.1088/0957-4484/22/24/245704

E. A. Sutter and P. W. Sutter, Giant carbon solubility in Au nanoparticles, Journal of Materials Science, vol.320, issue.5872, pp.7090-7097, 2011.
DOI : 10.1126/science.1155200

URL : https://link.springer.com/content/pdf/10.1007%2Fs10853-011-5663-9.pdf

F. Ding and K. Bolton, The importance of supersaturated carbon concentration and its distribution in catalytic particles for single-walled carbon nanotube nucleation, Nanotechnology, vol.17, issue.2, pp.543-548, 2006.
DOI : 10.1088/0957-4484/17/2/034

H. Navas, M. Picher, A. Andrieux-ledier, F. Fossard, T. Michel et al., Unveiling the Evolutions of Nanotube Diameter Distribution during the Growth of Single-Walled Carbon Nanotubes, ACS Nano, vol.11, issue.3, pp.3081-3088, 2017.
DOI : 10.1021/acsnano.7b00077

URL : https://hal.archives-ouvertes.fr/hal-01516691

J. M. Aguiar-hualde, Y. Magnin, H. Amara, and C. Bichara, Probing the role of carbon solubility in transition metal catalyzing single-walled carbon nanotubes growth, Carbon, vol.120, pp.226-232, 2017.
DOI : 10.1016/j.carbon.2017.05.035

URL : https://hal.archives-ouvertes.fr/hal-01473560

G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li et al., Selective Etching of Metallic Carbon Nanotubes by Gas-Phase Reaction, Science, vol.314, issue.5801, pp.974-977, 2006.
DOI : 10.1126/science.1133781

H. Okamoto, Ni-Ru (Nickel-Ruthenium), Journal of Phase Equilibria and Diffusion, vol.56, issue.15, p.412, 2009.
DOI : 10.1007/s11669-004-0113-x

P. G. Collins, M. S. Arnold, and P. Avouris, Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown, Science, vol.292, issue.5517, pp.706-709, 2001.
DOI : 10.1126/science.1058782

URL : http://www.cc.gatech.edu/computing/nano/documents/Avouris - Engineering Carbon Nanotubes Gates and Nanotube C.pdf

G. J. Brady, A. J. Way, N. S. Safron, H. T. Evensen, P. Gopalan et al., Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs, Science Advances, vol.2, issue.9, pp.1601240-1601240, 2016.
DOI : 10.1126/sciadv.1601240

URL : http://advances.sciencemag.org/content/advances/2/9/e1601240.full.pdf

P. Laiho, K. Mustonen, Y. Ohno, S. Maruyama, and E. I. Kauppinen, Dry and Direct Deposition of Aerosol-Synthesized Single-Walled Carbon Nanotubes by Thermophoresis, ACS Applied Materials & Interfaces, vol.9, issue.24, pp.20738-20747, 2017.
DOI : 10.1021/acsami.7b03151

D. Sun, M. Y. Timmermans, Y. Tian, A. G. Nasibulin, E. I. Kauppinen et al., Flexible high-performance carbon nanotube integrated circuits, Nature Nanotechnology, vol.17, issue.3, pp.156-161, 2011.
DOI : 10.1002/adma.200500759

K. Otsuka, T. Inoue, Y. Shimomura, S. Chiashi, and S. Maruyama, Water-assisted self-sustained burning of metallic single-walled carbon nanotubes for scalable transistor fabrication, Nano Research, vol.130, issue.9, pp.1-13, 2017.
DOI : 10.1021/ja805070b

B. Gao, Y. Zhang, J. Zhang, J. Kong, and Z. Liu, Systematic Comparison of the Raman Spectra of Metallic and Semiconducting SWNTs, The Journal of Physical Chemistry C, vol.112, issue.22, pp.8319-8323, 2008.
DOI : 10.1021/jp800035s

J. Li, Y. Lu, Q. Ye, J. Han, and M. Meyyappan, Carbon Nanotube Based Chemical Sensors for Gas and Vapor Detection, Chemical Physics Letters, vol.313, issue.2, p.91, 1999.
DOI : 10.1021/nl034220x

J. Zhao, A. Buldum, J. Han, and J. P. Lu, Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology, vol.13, issue.2, pp.195-200, 2002.
DOI : 10.1088/0957-4484/13/2/312

URL : http://arxiv.org/pdf/cond-mat/0110375

X. Liu, Z. Luo, S. Han, T. Tang, D. Zhang et al., Band engineering of carbon nanotube field-effect transistors via selected area chemical gating, Applied Physics Letters, vol.86, issue.24, pp.1-3, 2005.
DOI : 10.1021/nl034010k

S. Peng and K. Cho, Chemical control of nanotube electronics, Nanotechnology, vol.11, issue.2, pp.57-60, 2000.
DOI : 10.1088/0957-4484/11/2/303

C. Ehli, G. M. Rahman, N. Jux, D. Balbinot, D. M. Guldi et al., Interactions in Single Wall Carbon Nanotubes/Pyrene/Porphyrin Nanohybrids, Interactions in Single Wall Carbon Nanotubes/Pyrene/Porphyrin Nanohybrids, pp.11222-11231, 2006.
DOI : 10.1021/ja0624974

Y. Zhao, L. Hu, J. F. Stoddart, and G. Grüner, Pyrenecyclodextrin-Decorated Single-Walled Carbon Nanotube Field-Effect Transistors as Chemical Sensors, Advanced Materials, vol.71, issue.10, pp.1910-1915, 2008.
DOI : 10.1002/adma.200702804

Y. Choi, I. S. Moody, P. C. Sims, S. R. Hunt, B. L. Corso et al., Single-Molecule Lysozyme Dynamics Monitored by an Electronic Circuit, Science, vol.33, issue.1, pp.319-324, 2012.
DOI : 10.1021/ar970172+

URL : https://cloudfront.escholarship.org/dist/prd/content/qt8sg4h5mm/qt8sg4h5mm.pdf

C. Roquelet, J. Lauret, V. Alain-rizzo, C. Voisin, R. Fleurier et al., ??-Stacking Functionalization of Carbon Nanotubes through Micelle Swelling, ChemPhysChem, vol.1, issue.8, pp.1667-1672, 2010.
DOI : 10.1021/am900369g

S. Berger, F. Iglesias, P. Bonnet, C. Voisin, G. Cassabois et al., Optical properties of carbon nanotubes in a composite material: The role of dielectric screening and thermal expansion, Journal of Applied Physics, vol.7, issue.9, p.94323, 2009.
DOI : 10.1142/p080

URL : https://hal.archives-ouvertes.fr/hal-00384084

T. Ando, Environment Effects on Excitons in Semiconducting Carbon Nanotubes, Journal of the Physical Society of Japan, vol.79, issue.2, 2010.
DOI : 10.1143/JPSJ.79.024706

F. D. Souza, R. Chitta, A. S. Sandanayaka, N. K. Subbaiyan, L. D. Souza et al., Supramolecular Carbon Nanotube-Fullerene Donor???Acceptor Hybrids for Photoinduced Electron Transfer, Journal of the American Chemical Society, vol.129, issue.51, pp.15865-15871, 2007.
DOI : 10.1021/ja073773x

A. Setaro, P. Bluemmel, C. Maity, S. Hecht, and S. Reich, Non-Covalent Functionalization of Individual Nanotubes with Spiropyran-Based Molecular Switches, Advanced Functional Materials, vol.117, issue.11, pp.2425-2431, 2012.
DOI : 10.1063/1.1507579

G. Magadur, Assemblage de complexes inorganiques sur nanotubes de carbone monoparoi : Applications a la spintronique moleculaire et a la photocatalyse, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00869742

S. H. Hur, C. Kocabas, A. Gaur, O. O. Park, M. Shim et al., Printed thin-film transistors and complementary logic gates that use polymer-coated single-walled carbon nanotube networks, Journal of Applied Physics, vol.98, issue.11, 2005.
DOI : 10.1021/nl049612y

J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind et al., Field-Modulated Carrier Transport in Carbon Nanotube Transistors, Physical Review Letters, vol.273, issue.12, p.126801, 2002.
DOI : 10.1063/1.1419055

D. A. Britz and A. N. Khlobystov, Noncovalent interactions of molecules with single walled carbon nanotubes, Chemical Society Reviews, vol.38, issue.7, pp.637-59, 2006.
DOI : 10.1143/JJAP.44.469

L. Alvarez, Y. Almadori, A. Belhboub, R. Le-parc, R. Aznar et al., Supramolecular organization of pi-conjugated molecules monitored by single-walled carbon nanotubes, Journal of Nanophotonics, vol.10, issue.1, p.12514, 2015.
DOI : 10.1117/1.JNP.10.012514

URL : https://hal.archives-ouvertes.fr/hal-01325319

T. Hertel, R. E. Walkup, and P. Avouris, Deformation of carbon nanotubes by surface van der Waals forces, Physical Review B, vol.102, issue.20, pp.13870-13873, 1998.
DOI : 10.1021/jp9734686

G. J. Wilson, A. Launikonis, W. H. Sasse, and A. W. Mau, Excited-State Processes in Ruthenium(II) Bipyridine Complexes Containing Covalently Bound Arenes, The Journal of Physical Chemistry A, vol.101, issue.27, pp.4860-4866, 1997.
DOI : 10.1021/jp970667g

G. J. Bahun and A. Adronov, Interactions of carbon nanotubes with pyrene-functionalized linear-dendritic hybrid polymers, Journal of Polymer Science Part A: Polymer Chemistry, vol.42, issue.5, pp.1016-1028, 2010.
DOI : 10.1002/pola.23855

P. A. Anderson, F. R. Keene, T. J. Meyer, J. Moss, G. F. Strouse et al., Manipulating the properties of MLCT excited states, Journal of the Chemical Society, Dalton Transactions, vol.107, issue.20, p.3820, 2002.
DOI : 10.1021/ja00302a009

T. Yanai, D. P. Tew, and N. C. Handy, A new hybrid exchange???correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chemical Physics Letters, vol.393, issue.1-3, pp.51-57, 2004.
DOI : 10.1016/j.cplett.2004.06.011

A. D. Mohite, T. S. Santos, J. S. Moodera, and B. W. Alphenaar, Observation of the triplet exciton in EuS-coated single-walled nanotubes, Nature Nanotechnology, vol.51, issue.7, pp.425-429, 2009.
DOI : 10.1103/PhysRevB.73.241406

D. Stich, F. Späth, H. Kraus, A. Sperlich, V. Dyakonov et al., Triplet???triplet exciton dynamics in single-walled carbon nanotubes, Nature Photonics, vol.40, issue.2, pp.139-144, 2013.
DOI : 10.1246/cl.2011.239