A. Abbo, . Av-lyamin, J. Sloan, and . Hambleton, A C2 continuous approximation to the Mohr???Coulomb yield surface, International Journal of Solids and Structures, vol.48, issue.21, pp.3001-3010, 2011.
DOI : 10.1016/j.ijsolstr.2011.06.021

M. Antuono, A. Colagrossi, S. Marrone, and D. Molteni, Free-surface flows solved by means of SPH schemes with numerical diffusive terms, Computer Physics Communications, vol.181, issue.3, pp.532-549, 2010.
DOI : 10.1016/j.cpc.2009.11.002

A. Armanini, H. Capart, L. Fraccarollo, and M. Larcher, Rheological stratification in experimental free-surface flows of granular???liquid mixtures, Journal of Fluid Mechanics, vol.532, pp.269-319, 2005.
DOI : 10.1017/S0022112005004283

N. J. Balmforth, I. A. Frigaard, and G. Ovarlez, Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics, Annual Review of Fluid Mechanics, vol.46, issue.1, pp.121-146, 2014.
DOI : 10.1146/annurev-fluid-010313-141424

URL : https://hal.archives-ouvertes.fr/hal-00973814

T. Belytschko, Y. Krongauz, J. Dolbow, and C. Gerlach, On the completeness of meshfree particle methods, International Journal for Numerical Methods in Engineering, vol.88, issue.5, pp.785-819, 1998.
DOI : 10.1016/0045-7825(91)90093-L

C. R. Beverly and R. I. Tanner, Numerical analysis of three-dimensional Bingham plastic flow, Journal of Non-Newtonian Fluid Mechanics, vol.42, issue.1-2, pp.85-115, 1992.
DOI : 10.1016/0377-0257(92)80006-J

E. C. Bingham, An investigation of the laws of plastic flow, Bulletin of the Bureau of Standards, vol.13, issue.2, 1917.
DOI : 10.6028/bulletin.304

A. W. Bishop and G. Eldin, Undrained Triaxial Tests on Saturated Sands and Their Significance in the General Theory of Shear Strength, G??otechnique, vol.2, issue.1, pp.13-32, 1950.
DOI : 10.1680/geot.1950.2.1.13

J. Bonet and T. L. Lok, Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations, Computer Methods in Applied Mechanics and Engineering, vol.180, issue.1-2, pp.97-115, 1999.
DOI : 10.1016/S0045-7825(99)00051-1

J. Bonet and M. X. Rodríguez-paz, Hamiltonian formulation of the variable-h SPH equations, Journal of Computational Physics, vol.209, issue.2, pp.541-558, 2005.
DOI : 10.1016/j.jcp.2005.03.030

F. Brezzi and J. Pitkäranta, On the Stabilization of Finite Element Approximations of the Stokes Equations, Efficient solutions of elliptic systems, pp.11-19, 1984.
DOI : 10.1007/978-3-663-14169-3_2

H. H. Bui, R. Fukagawa, K. Sako, and S. Ohno, Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model, International Journal for Numerical and Analytical Methods in Geomechanics, vol.139, issue.1-4, pp.321537-1570, 2008.
DOI : 10.2208/journalam.7.775

C. S. Campbell, Rapid Granular Flows, Annual Review of Fluid Mechanics, vol.22, issue.1, pp.57-90, 1990.
DOI : 10.1146/annurev.fl.22.010190.000421

J. Campbell, R. Vignjevic, and L. Libersky, A contact algorithm for smoothed particle hydrodynamics Computer methods in applied mechanics and engineering, pp.49-65, 2000.

T. Capone, A. Panizzo, and J. J. Monaghan, SPH modelling of water waves generated by submarine landslides, Journal of Hydraulic Research, vol.181, issue.sup1, pp.80-84, 2010.
DOI : 10.1016/j.jcp.2004.05.019

J. Chauchat and M. Médale, A three-dimensional numerical model for incompressible two-phase flow of a granular bed submitted to a laminar shearing flow, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.9-12, pp.439-449, 2010.
DOI : 10.1016/j.cma.2009.07.007

URL : https://hal.archives-ouvertes.fr/hal-00619372

L. Chiron, Couplage et améliorations de la méthode SPH pour traiter des ´ ecoulementsàecoulementsà multi-´ echelles temporelles et spatiales, 2017.

A. Colagrossi and M. Landrini, Numerical simulation of interfacial flows by smoothed particle hydrodynamics, Journal of Computational Physics, vol.191, issue.2, pp.448-475, 2003.
DOI : 10.1016/S0021-9991(03)00324-3

A. N. Colagrossi, D. Durante, J. B. Avalos, and A. , Discussion of Stokes' hypothesis through the smoothed particle hydrodynamics model, Physical Review E, vol.18, issue.2, p.23101, 2017.
DOI : 10.1103/PhysRevE.93.053113

C. A. Couloumb, Essai sur une application des régles de maximis et minimis ´ a quelques problémes de statique relatifsàrelatifsà 1â??architecture Mémoires de la Mathématique et de physique, présentésprésentés`présentésà, 1, 1776. [25] P.A. Cundall. Computer simulations of dense sphere assemblies, Micromechanics of granular materials, 1988.

R. A. Dalrymple and O. Knio, SPH Modelling of Water Waves, Coastal Dynamics '01, pp.779-787, 2001.
DOI : 10.1061/40566(260)80

M. De-leffe, D. L. Touzé, and B. Alessandrini, Normal flux method at the boundary for SPH, 4th Int. SPHERIC Workshop, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01156281

R. G. Dean and R. A. Dalrymple, Water wave mechanics for engineers and scientists, 1991.
DOI : 10.1142/1232

W. Dehnen and H. Aly, Improving convergence in smoothed particle hydrodynamics simulations without pairing instability, Monthly Notices of the Royal Astronomical Society, vol.4, issue.2, pp.1068-1082, 2012.
DOI : 10.1007/BF02123482

J. K. Dienes, Zur Untersuchung der Rotations-und Spannungsgeschwindigkeit in sich deformierenden K???rpern, Acta Mechanica, vol.80, issue.IIa, pp.217-232, 1979.
DOI : 10.1007/978-3-642-88382-8

R. F. Dressler, Comparison of theories and experiments for the hydraulic dam-break wave, Int. Assoc. Sci. Hydrology, vol.3, issue.38, pp.319-328, 1954.

S. Dutta, D. Wang, P. Tassi, and M. H. Garcia, Three-dimensional numerical modeling of the bulle-effect: the non-linear distribution of near-bed sediment at fluvial diversions, Earth Surface Processes and Landforms, 2017.

P. Espanol and M. Revenga, Smoothed dissipative particle dynamics, Physical Review E, vol.187, issue.2, p.26705, 2003.
DOI : 10.1016/0378-4371(92)90012-F

R. Fatehi and M. T. Manzari, A remedy for numerical oscillations in weakly compressible smoothed particle hydrodynamics, International Journal for Numerical Methods in Fluids, vol.4, issue.1, pp.1100-1114, 2011.
DOI : 10.1007/BF02123482

J. Feldman and J. Bonet, Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems, International Journal for Numerical Methods in Engineering, vol.47, issue.3, pp.295-324, 2007.
DOI : 10.1142/9789812564405

M. Ferrand, D. L. Laurence, B. D. Rogers, and D. Violeau, Improved time scheme integration approach for dealing with semi-analytical wall boundary conditions in SPARTACUS2D, Proc. 5th International SPHERIC Workshop, pp.98-105, 2010.

M. Ferrand, D. R. Laurence, B. D. Rogers, D. Violeau, and C. Kassiotis, Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method, International Journal for Numerical Methods in Fluids, vol.153, issue.1, pp.446-472, 2013.
DOI : 10.1006/jcph.1999.6276

URL : https://hal.archives-ouvertes.fr/hal-00691603

A. Ferrari, M. Dumbser, E. F. Toro, and A. Armanini, A new 3D parallel SPH scheme for free surface flows, Computers & Fluids, vol.38, issue.6, pp.1203-1217, 2009.
DOI : 10.1016/j.compfluid.2008.11.012

G. Fourtakas and B. D. Rogers, Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU), Advances in Water Resources, vol.92, pp.186-199, 2016.
DOI : 10.1016/j.advwatres.2016.04.009

URL : https://doi.org/10.1016/j.advwatres.2016.04.009

G. Fourtakas, B. D. Rogers, and D. Laurence, 3-D SPH modelling of sediment scouring induced by rapid flows, Proc. 9th International SPHERIC Workshop, pp.9-16, 2014.

A. Ghaitanellis, D. Violeau, A. Leroy, A. Joly, and M. Ferrand, Application of the unified semi-analytical wall boundary conditions to multi-phase SPH, Proc. 10th international SPHERIC workshop, pp.333-340, 2015.

R. A. Gingold and J. J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly notices of the royal astronomical society, pp.375-389, 1977.
DOI : 10.1093/mnras/181.3.375

URL : https://academic.oup.com/mnras/article-pdf/181/3/375/3104055/mnras181-0375.pdf

I. Goldhirsch, Scales and kinetics of granular flows, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.54, issue.3, pp.659-672, 1999.
DOI : 10.1103/RevModPhys.71.435

I. Goldhirsch, Rapid granular flows Annual review of fluid mechanics, pp.267-293, 2003.

I. Goldhirsch and G. Zanetti, Clustering instability in dissipative gases. Physical review letters, p.1619, 1993.
DOI : 10.1103/physrevlett.70.1619

L. M. Gonzalez, J. M. Sanchez, F. Macia, and A. Souto-iglesias, Analysis of WCSPH laminar viscosity models, 4th international SPHERIC workshop, 2009.

J. P. Gray, J. J. Monaghan, and R. P. Swift, SPH elastic dynamics Computer methods in applied mechanics and engineering, pp.6641-6662, 2001.

N. Grenier, M. Antuono, A. Colagrossi, D. L. Touzé, B. Alessandrini et al., An Hamiltonian interface SPH formulation for multi-fluid and free surface flows, Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the us east coast. Natural hazards, pp.8380-8393353, 2009.
DOI : 10.1016/j.jcp.2009.08.009

C. Guan, J. Qi, N. Qiu, G. Zhao, Q. Yang et al., Macroscopic Young???s Elastic Modulus Model of Particle Packing Rock Layers, Open Journal of Geology, vol.02, issue.03, pp.198-202, 2012.
DOI : 10.4236/ojg.2012.23020

M. E. Gurtin, An Introduction to Continuum Mechanics, science and engineering, 1981.
DOI : 10.1115/1.3167763

C. B. Harbitz, F. Løvholt, G. Pedersen, and D. G. Masson, Mechanisms of tsunami generation by submarine landslides: a short review, Norwegian Journal of Geology, vol.86, issue.3, 2006.

M. R. Hashemi, M. T. Manzari, and R. Fatehi, Evaluation of a pressure splitting formulation for Weakly Compressible SPH: Fluid flow around periodic array of cylinders, Computers & Mathematics with Applications, vol.71, issue.3
DOI : 10.1016/j.camwa.2015.12.034

K. B. Haugen, F. Løvholt, and C. B. Harbitz, Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries. Marine and Petroleum Geology, pp.209-217, 2005.

D. J. Henkel, The Relationships Between the Strength, Pore-Water Pressure, and Volume-Change Characteristics of Saturated Clays, G??otechnique, vol.9, issue.3, pp.119-135, 1959.
DOI : 10.1680/geot.1959.9.3.119

D. J. Henkel, The Relationships between the Effective Stresses and Water Content in Saturated Clays, G??otechnique, vol.10, issue.2, pp.41-54, 1960.
DOI : 10.1680/geot.1960.10.2.41

X. Y. Hu and N. A. Adams, A multi-phase SPH method for macroscopic and mesoscopic flows, Journal of Computational Physics, vol.213, issue.2, pp.844-861, 2006.
DOI : 10.1016/j.jcp.2005.09.001

W. Research, . Inc, and . Mathematica, Version 10.4, 2017.

H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Granular solids, liquids, and gases, Reviews of Modern Physics, vol.16, issue.4, p.1259, 1996.
DOI : 10.1209/0295-5075/16/3/006

H. Jiang and Y. Xie, A note on the Mohr???Coulomb and Drucker???Prager strength criteria, Mechanics Research Communications, vol.38, issue.4, pp.309-314, 2011.
DOI : 10.1016/j.mechrescom.2011.04.001

P. Jop, Y. Forterre, and O. Pouliquen, A constitutive law for dense granular flows, Nature, vol.94, issue.2, pp.441727-730, 2006.
DOI : 10.1103/PhysRevLett.94.208001

URL : https://hal.archives-ouvertes.fr/hal-00118375

S. Kulasegaram, J. Bonet, R. W. Lewis, and M. Profit, A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications, Computational Mechanics, vol.33, issue.4, pp.316-325, 2004.
DOI : 10.1007/s00466-003-0534-0

M. N. Landers, Bridge scour data management, p.141, 1992.

A. Leroy, Un nouveau modèle SPH incompressible: vers l'applicationàapplicationà des cas industriels, 2014.

A. Leroy, D. Violeau, M. Ferrand, and C. Kassiotis, Unified semi-analytical wall boundary conditions applied to 2-D incompressible SPH, Journal of Computational Physics, vol.261, pp.106-129, 2014.
DOI : 10.1016/j.jcp.2013.12.035

URL : https://hal.archives-ouvertes.fr/hal-00945510

A. Leroy, D. Violeau, M. Ferrand, and A. Joly, Buoyancy modelling with incompressible SPH for laminar and turbulent flows, International Journal for Numerical Methods in Fluids, vol.53, issue.4, pp.78455-474, 2015.
DOI : 10.1016/j.ijheatmasstransfer.2009.10.026

URL : https://hal.archives-ouvertes.fr/hal-01557023

L. D. Libersky and A. G. Petschek, Smooth particle hydrodynamics with strength of materials Advances in the free-Lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method, pp.248-257, 1991.

L. D. Libersky, A. G. Petschek, T. C. Carney, J. R. Hipp, and F. A. Allahdadi, High Strain Lagrangian Hydrodynamics, Journal of Computational Physics, vol.109, issue.1, pp.67-75, 1993.
DOI : 10.1006/jcph.1993.1199

Q. Liu and J. Li, Effects of Water Seepage on the Stability of Soil-slopes, Procedia IUTAM, vol.17, pp.29-39
DOI : 10.1016/j.piutam.2015.06.006

H. Lo and P. L. Liu, On the analytical solutions for water waves generated by a prescribed landslide, Journal of Fluid Mechanics, vol.10, pp.85-116, 2017.
DOI : 10.1017/S0022112072002289

L. Lobovsk-`-lobovsk-`-y, E. Botia-vera, F. Castellana, and J. , Experimental investigation of dynamic pressure loads during dam break, Journal of Fluids and Structures, vol.48, pp.407-434, 2014.
DOI : 10.1016/j.jfluidstructs.2014.03.009

L. B. Lucy, A numerical approach to the testing of the fission hypothesis. The astronomical journal, pp.1013-1024, 1977.

S. Manenti, S. Sibilla, M. Gallati, G. Agate, and R. Guandalini, SPH Simulation of Sediment Flushing Induced by a Rapid Water Flow, Journal of Hydraulic Engineering, vol.138, issue.3, pp.272-284, 2011.
DOI : 10.1061/(ASCE)HY.1943-7900.0000516

S. Marrone, M. Antuono, A. Colagrossi, G. Colicchio, D. L. Touzé et al., ??-SPH model for simulating violent impact flows, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.13-16, pp.1526-154215, 2011.
DOI : 10.1016/j.cma.2010.12.016

A. Mendoza, J. D. Abad, E. J. Langendoen, D. Wang, P. Tassi et al., Effect of Sediment Transport Boundary Conditions on the Numerical Modeling of Bed Morphodynamics, Journal of Hydraulic Engineering, vol.143, issue.4, p.4016099, 2016.
DOI : 10.1061/(ASCE)HY.1943-7900.0001208

URL : https://hal.archives-ouvertes.fr/hal-01709906

G. Midi, On dense granular flows, European Physical Journal E?Soft Matter, vol.14, issue.4, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00000959

E. Mitsoulis, Flows of viscoplastic materials: models and computations. Rheology reviews, pp.135-178, 2007.

A. Mokos, B. D. Rogers, and P. K. Stansby, A multi-phase particle shifting algorithm for SPH simulations of violent hydrodynamics with a large number of particles, Journal of Hydraulic Research, vol.123, issue.3, pp.143-162, 2017.
DOI : 10.1016/j.cma.2012.10.005

J. J. Monaghan, Smoothed particle hydrodynamics Annual review of astronomy and astrophysics, pp.543-574, 1992.

J. J. Monaghan, Simulating Free Surface Flows with SPH, Journal of Computational Physics, vol.110, issue.2, pp.399-406, 1994.
DOI : 10.1006/jcph.1994.1034

J. J. Monaghan, Smoothed particle hydrodynamics. Reports on progress in physics, p.1703, 2005.

J. J. Monaghan and R. A. Gingold, Shock simulation by the particle method SPH, Journal of Computational Physics, vol.52, issue.2, pp.374-389, 1983.
DOI : 10.1016/0021-9991(83)90036-0

D. Morichon, J. Desombre, and B. Simian, VOF simulation of sediment transport under high velocity flow case of a dam break over a mobile bed, Coastal Dynamics, pp.1241-1250, 2013.

J. P. Morris, P. J. Fox, and Y. Zhu, Modeling Low Reynolds Number Incompressible Flows Using SPH, Journal of Computational Physics, vol.136, issue.1, pp.214-226, 1997.
DOI : 10.1006/jcph.1997.5776

M. A. Nabian and L. Farhadi, Multiphase Mesh-Free Particle Method for Simulating Granular Flows and Sediment Transport, Journal of Hydraulic Engineering, vol.143, issue.4, p.4016102, 2016.
DOI : 10.1061/(ASCE)HY.1943-7900.0001275

T. Nakamura, Y. Kuramitsu, and N. Mizutani, Tsunami Scour Around a Square Structure, Coastal Engineering Journal, vol.5, issue.12, pp.209-246, 2008.
DOI : 10.1063/1.858675

R. M. Nedderman, Statics and kinematics of granuular materials cambridge univ, 1992.
DOI : 10.1017/cbo9780511600043

C. T. Nguyen, C. T. Nguyen, H. H. Bui, G. D. Nguyen, and R. Fukagawa, A new SPH-based approach to simulation of granular flows using viscous damping and stress regularisation, Landslides, vol.16, issue.4, pp.69-81, 2017.
DOI : 10.1007/s10035-014-0505-5

M. Oda and K. Iwashita, Study on couple stress and shear band development in granular media based on numerical simulation analyses, International Journal of Engineering Science, vol.38, issue.15, pp.1713-1740, 2000.
DOI : 10.1016/S0020-7225(99)00132-9

E. J. O-'donovan and R. I. Tanner, Numerical study of the Bingham squeeze film problem, Journal of Non-Newtonian Fluid Mechanics, vol.15, issue.1, pp.75-83, 1984.
DOI : 10.1016/0377-0257(84)80029-4

G. Oger, M. Doring, B. Alessandrini, and P. Ferrant, An improved SPH method: Towards higher order convergence, Journal of Computational Physics, vol.225, issue.2, pp.1472-1492, 2007.
DOI : 10.1016/j.jcp.2007.01.039

T. C. Papanastasiou, Flows of Materials with Yield, Journal of Rheology, vol.31, issue.5, pp.31385-404, 1978.
DOI : 10.1122/1.549926

A. Peer, M. Ihmsen, J. Cornelis, and M. Teschner, An implicit viscosity formulation for SPH fluids, ACM Transactions on Graphics, vol.34, issue.4, p.114, 2015.
DOI : 10.1145/311535.311548

URL : http://cg.informatik.uni-freiburg.de/publications/2015_SIGGRAPH_viscousSPH.pdf

M. Peri´cperi´c, R. Kessler, and G. Scheuerer, Comparison of finite-volume numerical methods with staggered and colocated grids, Computers & Fluids, vol.16, issue.4, pp.389-403, 1988.
DOI : 10.1016/0045-7930(88)90024-2

O. Pouliquen, C. Cassar, P. Jop, Y. Forterre, and M. Nicolas, Flow of dense granular material: towards simple constitutive laws, Journal of Statistical Mechanics: Theory and Experiment, vol.2006, issue.07, pp.2006-07020, 2006.
DOI : 10.1088/1742-5468/2006/07/P07020

URL : https://hal.archives-ouvertes.fr/hal-01432168

N. J. Quinlan, M. Basa, and M. Lastiwka, Truncation error in mesh-free particle methods, International Journal for Numerical Methods in Engineering, vol.15, issue.13, pp.2064-2085, 2006.
DOI : 10.1142/9789812564405

URL : https://aran.library.nuigalway.ie/bitstream/10379/1170/3/truncationError_Quinlan2005_preprint.pdf

P. W. Randles and L. D. Libersky, Smoothed particle hydrodynamics: some recent improvements and applications. Computer methods in applied mechanics and engineering, pp.375-408, 1996.
DOI : 10.1016/s0045-7825(96)01090-0

T. Revil-baudard and J. Chauchat, A two-phase model for sheet flow regime based on dense granular flow rheology, Journal of Geophysical Research: Oceans, vol.115, issue.6, pp.619-634, 2013.
DOI : 10.1061/(ASCE)0733-9429(1989)115:6(825)

URL : https://hal.archives-ouvertes.fr/hal-00860868

C. M. Rhie and W. L. Chow, Numerical study of the turbulent flow past an airfoil with trailing edge separation, Wroth. Critical state soil mechanics, pp.1525-1532, 1968.

D. Sherpard, A two dimensional function for irregualarly spaced data, ACM National Conference, 1968.

B. Spinewine and Y. Zech, Small-scale laboratory dam-break waves on movable beds, Journal of Hydraulic Research, vol.45, issue.sup1, pp.73-86, 2007.
DOI : 10.1017/S002211200000286X

O. D. Strack and P. A. , The distinct element method as a tool for research in granular media, 1978.

K. Szewc, Développement d'une approche particulaire de type SPH pour la modélisation desécoulementsdesécoulements multiphasiques avec interfaces variables, 2013.

P. G. Tait, Report on some of the physical properties of fresh water and of sea water, Johnson Reprint Corporation, 1965.

H. Takeda, S. M. Miyama, and M. Sekiya, Numerical simulation of viscous flow by smoothed particle hydrodynamics. Progress of Theoretical Physics, pp.939-960, 1994.

R. I. Tanner and J. F. Milthorpe, Numerical simulation of the flow of fluids with yield stress. Numer Meth Lami Turb Flow Seattle, pp.680-690, 1983.

K. V. Terzaghi, The shearing resistance of saturated soils and the angle between the planes of shear, Proceedings of the 1st international conference on soil mechanics and foundation engineering, pp.54-56, 1936.

V. D. Than, S. Khamseh, A. M. Tang, J. Pereira, F. Chevoir et al., Basic Mechanical Properties of Wet Granular Materials: A DEM Study, Journal of Engineering Mechanics, vol.143, issue.1, p.4016001, 2016.
DOI : 10.1061/(ASCE)EM.1943-7889.0001043

URL : https://hal.archives-ouvertes.fr/hal-01515873

C. Thornton, Numerical simulations of deviatoric shear deformation of granular media, G??otechnique, vol.50, issue.1, pp.43-53, 2000.
DOI : 10.1680/geot.2000.50.1.43

C. Ulrich, Smoothed-particle-hydrodynamics simulation of port hydrodynamic problems, 2013.

H. A. Van and . Vorst, Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems, SIAM Journal on scientific and Statistical Computing, vol.13, issue.2, pp.631-644, 1992.

V. Vidyapati and S. Subramaniam, Granular rheology and phase transition: DEM simulations and order-parameter based constitutive model, Chemical Engineering Science, vol.72, pp.20-34, 2012.
DOI : 10.1016/j.ces.2011.12.037

J. P. Vila, On particle weighted methods and smooth particle hydrodynamics. Mathematical models and methods in applied sciences, pp.161-209, 1999.

D. Violeau, Dissipative forces for Lagrangian models in computational fluid dynamics and application to smoothed-particle hydrodynamics, Physical Review E, vol.80, issue.3, p.36705, 2009.
DOI : 10.1006/jcph.1995.1010

D. Violeau, Fluid mechanics and the SPH method: theory and applications, 2012.
DOI : 10.1093/acprof:oso/9780199655526.001.0001

D. Violeau and A. Leroy, On the maximum time step in weakly compressible SPH, Journal of Computational Physics, vol.256, pp.388-415, 2014.
DOI : 10.1016/j.jcp.2013.09.001

URL : https://hal.archives-ouvertes.fr/hal-00946833

D. Violeau, A. Leroy, and A. Mayrhofer, Exact computation of SPH wall renormalising integrals in 3-d, Proceedings of the 9th International SPHERIC Workshop, pp.95-102, 2014.

D. Violeau, S. Lind, and W. Dehnen, Convergence rate of the SPH poisson equation on a cartesian grid, Proc. 12th international SPHERIC workshop, pp.54-58, 2017.

D. Wang, P. Tassi, K. Kadi-abderrezzak, A. Mendoza, J. Abad et al., 2D and 3D numerical simulations of morphodynamics structures in largeamplitude meanders, Meeting Proceedings, pp.3-5, 2014.

H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Advances in Computational Mathematics, vol.4, issue.1, pp.389-396, 1995.
DOI : 10.1007/BF02123482

D. M. Wood, Geotechnical modelling, 2003.
DOI : 10.4324/9780203477977

A. M. Xenakis, S. J. Lind, P. K. Stansby, and B. D. Rogers, An ISPH scheme with shifting for newtonian and non-newtonian multi-phase flows, Proc. 10th international SPHERIC workshop, pp.84-91, 2015.

V. Zago, A. Hérault, L. Fortuna, and R. A. Darymple, Implicit integration of the viscous term and gpu implementation in gpusph for lava flows, Proc. 12th international SPHERIC workshop, pp.276-282, 2017.