. Heidenre, W. M. Rd, L. L. Hess, and . Ban, A test object and criteria for high resolution electron microscopy, Journal of Applied Crystallography, vol.1, issue.1, p.1, 1968.
DOI : 10.1107/S0021889868004930

J. B. Donnet, Carbon Black : Science and Technology, Second Edition, 1993.

M. Frenklach, Private comunication, 2015.

K. H. Homann, Fullerenes and Soot Formation??? New Pathways to Large Particles in Flames, Angewandte Chemie International Edition, vol.37, issue.18
DOI : 10.1002/(SICI)1521-3773(19981002)37:18<2434::AID-ANIE2434>3.0.CO;2-L

H. Wang, Formation of nascent soot and other condensed-phase materials in flames, Proceedings of the Combustion Institute, pp.41-67, 2011.
DOI : 10.1016/j.proci.2010.09.009

V. I. Berezkin, Formation of closed carbon particles from fullerene nuclei, Physics of the Solid State, vol.1, issue.1, pp.967-972, 2001.
DOI : 10.1107/S0021889868004930

M. Balthasar and M. Frenklach, Monte-Carlo simulation of soot particle coagulation and aggregation: the effect of a realistic size distribution, Proceedings of the Combustion Institute, pp.1467-1475, 2005.
DOI : 10.1016/j.proci.2004.07.035

D. Aamir, J. Abid, D. A. Camacho, H. Sheen, and . Wang, Evolution of soot particle size distribution function in burner-stabilized stagnation n-dodecane-oxygen-argon flames, Energy & Fuels, vol.23, pp.4286-4294, 2009.

J. Singh, R. I. Patterson, M. Kraft, and H. Wang, Numerical simulation and sensitivity analysis of detailed soot particle size distribution in laminar premixed ethylene flames, Combustion and Flame, vol.145, issue.1-2, pp.117-127, 2006.
DOI : 10.1016/j.combustflame.2005.11.003

B. Apicella, P. Pre, M. Alfe, A. Ciajolo, V. Gargiulo et al., Soot nanostructure evolution in premixed flames by High Resolution Electron Transmission Microscopy (HRTEM), Proceedings of the Combustion Institute, pp.1895-1902, 2015.
DOI : 10.1016/j.proci.2014.06.121

URL : https://hal.archives-ouvertes.fr/hal-01204734

K. Dewa, K. Ono, A. Watanabe, K. Takahashi, Y. Matsukawa et al., Evolution of size distribution and morphology of carbon nanoparticles during ethylene pyrolysis, Combustion and Flame, vol.163, pp.115-121, 2016.
DOI : 10.1016/j.combustflame.2015.09.007

B. Zhao, K. Uchikawa, and H. Wang, A comparative study of nanoparticles in premixed flames by scanning mobility particle sizer, small angle neutron scattering, and transmission electron microscopy, Proceedings of the Combustion Institute, pp.851-860, 2007.
DOI : 10.1016/j.proci.2006.08.064

C. Caliot, G. Flamant, G. Patrianakos, M. Kostoglou, and A. G. Konstandopoulos, Twodimensional model of methane thermal decomposition reactors with radiative heat transfer and carbon particle growth, Aiche Journal, issue.8, pp.582545-2556, 2012.

A. Holmen, O. Olsvik, and O. A. Rokstad, Pyrolysis of natural gas: chemistry and process concepts, Fuel Processing Technology, vol.42, issue.2-3, pp.249-267, 1995.
DOI : 10.1016/0378-3820(94)00109-7

I. Deme, ContributionàContribution`Contributionà la modélisation de l'´ ecoulement dans un réacteur plasma pour la fabrication de noirs de carbone, 2002.

E. Kolbert, The Sixth Extinction : An Unnatural History, 2014.

T. M. Pringle and . Palmer, Accelerated modern human?induced species losses : Entering the sixth mass extinction, Science Advances, vol.1, issue.5, p.2015

K. Korosec, Elon musk : Only a carbon tax will accelerate the world's exit from fossil fuels, 2015.

G. Ip, The narrow path to a carbon tax, The Wall Street Journal, 2015.

L. Fulcheri, Direct decarbonization of methane by thermal plasma for the co synthesis of carbon black and hydrogen, The 14th High-Tech Plasma Processes Conference, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01436133

L. Fulcheri, Hdr : Nanostructures de carbone par plasma, 2003.

M. Moreno-couranjou, M. Monthioux, J. Gonzalez-aguilar, and L. Fulcheri, A nonthermal plasma process for the gas phase synthesis of carbon nanoparticles, Carbon, issue.10, pp.472310-2321, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00482005

. Lucintel, Global carbon black market 2015-2020 : Trends, forecast, and opportunity analysis, 2015.

L. Fulcheri and Y. Schwob, From methane to hydrogen, carbon black and water, International Journal of Hydrogen Energy, vol.20, issue.3, pp.197-202, 1995.
DOI : 10.1016/0360-3199(94)E0022-Q

URL : https://hal.archives-ouvertes.fr/hal-01425269

L. Fulcheri, Y. Schwob, and G. Flamant, Comparison Between New Carbon Nanostructures Produced by Plasma with Industrial Carbon Black Grades, Journal de Physique III, vol.6, issue.3, pp.491-503, 1997.
DOI : 10.1051/jp3:1997137

URL : https://hal.archives-ouvertes.fr/jpa-00249591

L. Fulcheri, Y. Schwob, F. Fabry, G. Flamant, L. F. Chibante et al., Fullerene production in a 3-phase AC plasma process, Carbon, vol.38, issue.6, pp.797-803, 2000.
DOI : 10.1016/S0008-6223(99)00153-0

URL : https://hal.archives-ouvertes.fr/hal-00538481

A. A. Koelmans, M. T. Jonker, G. Cornelissen, T. D. Bucheli, P. C. Van-noort et al., Black carbon: The reverse of its dark side, Chemosphere, vol.63, issue.3, pp.365-377, 2006.
DOI : 10.1016/j.chemosphere.2005.08.034

C. M. Long, M. A. Nascarella, and P. A. Valberg, Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions, Environmental Pollution, vol.181, pp.271-286, 2013.
DOI : 10.1016/j.envpol.2013.06.009

A. E. Witt, A preliminary investigation of the formation of carbon black by the pyrolysis of residual fuel oil, 1968.

F. C. Lockwood and J. E. Vanniekerk, Parametric study of a carbon black oil furnace, Combustion and Flame, vol.103, issue.1-2, pp.76-90, 1995.
DOI : 10.1016/0010-2180(95)00053-9

J. R. Rose, Process of and apparatus for producing carbon and gaseous fuel. United States Patent Office, p.85, 1920.

J. Gonzalez-aguilar, M. Moreno, and L. Fulcheri, Carbon nanostructures production by gas-phase plasma processes at atmospheric pressure, Journal of Physics D: Applied Physics, vol.40, issue.8, pp.402361-2374, 2007.
DOI : 10.1088/0022-3727/40/8/S16

URL : https://hal.archives-ouvertes.fr/hal-00196363

K. Warren and . Lewis, Method of producing carbon black, 1923.

H. K. Orbach, Production of carbon black, p.696, 1966.

B. F. Latham, Method for the production of carbon black in a high intensity arc, p.51, 1967.

M. Homer, . Bjornson, . Geir, and . Fox, Plasma preparation of carbon black, p.403, 1968.

W. Norman and . Ryan, Production of carbon black using plasma-heated nitrogen, p.632, 1969.

K. , S. Bolouri, and J. Amouroux, Reactor design and energy concepts for a plasma process of acetylene black production, Plasma Chemistry and Plasma Processing, vol.6, issue.4, pp.335-348

S. Lynum, K. Hox, and J. Hugdahl, Production of carbon black, 1993.

S. Lynum, K. Haugsten, K. Hox, and J. Hugdahl, Plasma torch device for chemical processes, 1996.

S. Lynum, K. Hox, K. E. Haugsten, and J. Langøy, System for the production of carbon black, 1993.

S. Lynum, K. Hox, and J. Hugdahl, Production of carbon black, 1996.

S. Lynum, K. Hox, N. Myklebust, and J. Hugdahl, Electrode consumption in plasma torches, 1999.

S. Lynum, N. Myklebust, and K. Hox, Decomposition of hydrocarbon to carbon black, 2000.

B. Gaudernack and S. Lynum, Hydrogen from natural gas without release of CO2 to the atmosphere, International Journal of Hydrogen Energy, vol.23, issue.12, pp.1087-1093, 1998.
DOI : 10.1016/S0360-3199(98)00004-4

R. Lal, K. Lorenz, R. F. Hüttl, B. U. Schneider, and J. Von-braun, Recarbonization of the biosphere, 2012.
DOI : 10.1007/978-94-007-4159-1

L. ;. Gervais-;-merlo-sosa and . Soucy, Dodecane decomposition in a radio-frequency (rf) plasma reactor, International Journal of Chemical Reactor Engineering, 2005.

K. S. Bolouri and J. Amouroux, Reactor design and energy concepts for a plasma process of acetylene black production, Plasma Chemistry and Plasma Processing, vol.38, issue.4, pp.335-348, 1986.
DOI : 10.1007/BF00565549

L. Fulcheri, N. Probst, G. Flamant, F. Fabry, E. Grivei et al., Plasma processing: a step towards the production of new grades of carbon black, Carbon, vol.40, issue.2, pp.169-176, 2002.
DOI : 10.1016/S0008-6223(01)00169-5

URL : https://hal.archives-ouvertes.fr/hal-00542343

L. Fulcheri, T. M. Gruenberger, J. G. Aguilar, F. Fabry, E. Grivei et al., PLASMA PROCESSING OF CARBON NANOMATERIALS, High Temperature Material Processes, pp.119-138, 2004.
DOI : 10.1615/HighTempMatProc.v8.i1.70

URL : https://hal.archives-ouvertes.fr/hal-00806879

F. Fabry, G. Flamant, and L. Fulcheri, Carbon black processing by thermal plasma. Analysis of the particle formation mechanism, Chemical Engineering Science, vol.56, issue.6, pp.2123-2132, 2001.
DOI : 10.1016/S0009-2509(00)00486-3

URL : https://hal.archives-ouvertes.fr/hal-00536936

L. Fulcheri, F. Fabry, S. Takali, and V. Rohani, Three-Phase AC Arc Plasma Systems: A Review, Plasma Chemistry and Plasma Processing, vol.11, issue.5, pp.565-585, 2015.
DOI : 10.1016/j.cap.2011.05.037

URL : https://hal.archives-ouvertes.fr/hal-01139833

F. Fabry, B. Ravary, P. Bertrand, J. M. Badie, L. Fulcheri et al., TEMPERATURE DISTRIBUTION IN A PLASMA PILOT REACTOR FOR CARBON BLACK PRODUCTION, High Temperature Material Processes, pp.283-291, 2011.
DOI : 10.1615/HighTempMatProc.v15.i4.40

URL : https://hal.archives-ouvertes.fr/hal-00720599

B. Ravary, Modélisation thermique et hydrodynamique d'un réacteur plasma triphasé : contributionàcontribution`contributionà la mise au point d'un procédé industriel pour la fabrication de noir de carbone, 1998.

B. Ravary, L. Fulcheri, J. A. Bakken, G. Flamant, and F. Fabry, Influence of the electromagnetic forces on momentum and heat transfer in a 3-phase ac plasma reactor, Plasma Chemistry and Plasma Processing, vol.19, issue.1, pp.69-89, 1999.
DOI : 10.1023/A:1021855916566

URL : https://hal.archives-ouvertes.fr/hal-00542379

B. Ravary, J. A. Bakken, J. Gonzalez-aguilar, and L. Fulcheri, CFD MODELING OF A PLASMA REACTOR FOR THE PRODUCTION OF NANO-SIZED CARBON MATERIALS, High Temperature Material Processes, pp.139-144, 2003.
DOI : 10.1615/HighTempMatProc.v7.i2.20

URL : https://hal.archives-ouvertes.fr/hal-00529749

C. Rehmet, ´ Etude théorique et expérimentale d'une torche plasma triphaséè a arcs libres associéè a un procédé de gazéification dematì ere organique. Thesis, 2013.

C. Rehmet, V. Rohani, F. Cauneau, and L. Fulcheri, 3D Unsteady State MHD Modeling of a 3-Phase AC Hot Graphite Electrodes Plasma Torch, Plasma Chemistry and Plasma Processing, vol.28, issue.2, pp.491-515, 2013.
DOI : 10.1007/s11090-008-9120-8

URL : https://hal.archives-ouvertes.fr/hal-00783778

C. Rehmet, F. Fabry, V. Rohani, F. Cauneau, and L. Fulcheri, Unsteady state analysis of free-burning arcs in a 3-Phase AC plasma torch: comparison between parallel and coplanar electrode configurations, Plasma Sources Science and Technology, vol.23, issue.6, p.12, 2014.
DOI : 10.1088/0963-0252/23/6/065011

URL : https://hal.archives-ouvertes.fr/hal-01086921

L. Fulcheri, F. Fabry, and V. Rohani, The influence of the carbon precursor, carbon feed rate and helium gas flow rate on the synthesis of fullerenes from carbon powder in an entrained flow 3-phase AC plasma reactor operating at atmospheric pressure, Carbon, vol.50, issue.12, pp.504524-4533, 2012.
DOI : 10.1016/j.carbon.2012.05.036

URL : https://hal.archives-ouvertes.fr/hal-00709895

J. R. Fincke, R. P. Anderson, T. A. Hyde, and B. A. Detering, Plasma Pyrolysis of Methane to Hydrogen and Carbon Black, Industrial & Engineering Chemistry Research, vol.41, issue.6, pp.1425-1435, 2002.
DOI : 10.1021/ie010722e

K. S. Kim, J. H. Seo, J. S. Nam, W. T. Ju, and S. H. Hong, Production of hydrogen and carbon black by methane decomposition using DC-RF hybrid thermal plasmas, The 31st IEEE International Conference on Plasma Science, 2004. ICOPS 2004. IEEE Conference Record, Abstracts., pp.813-823, 2005.
DOI : 10.1109/PLASMA.2004.1339821

R. Pristavita, N. Y. Mendoza-gonzalez, J. L. Meunier, and D. Berk, Carbon Nanoparticle Production by Inductively Coupled Thermal Plasmas: Controlling the Thermal History of Particle Nucleation, Plasma Chemistry and Plasma Processing, vol.97, issue.3, pp.31851-866, 2011.
DOI : 10.1063/1.3467468

S. Abanades, J. M. Badie, and G. Flamant, ON-LINE TEMPERATURE MEASUREMENT IN A PLASMA REACTOR FOR FULLERENE SYNTHESIS, High Temperature Material Processes, pp.43-49, 2003.
DOI : 10.1615/HighTempMatProc.v7.i1.70

URL : https://hal.archives-ouvertes.fr/hal-00529785

S. Abanades and G. Flamant, Experimental study and modeling of a high-temperature solar chemical reactor for hydrogen production from methane cracking, International Journal of Hydrogen Energy, vol.32, issue.10-11, pp.10-111508, 2007.
DOI : 10.1016/j.ijhydene.2006.10.038

S. Rodat, S. Abanades, and G. Flamant, Co-production of hydrogen and carbon black from solar thermal methane splitting in a tubular reactor prototype, Solar Energy, vol.85, issue.4, pp.645-652, 2011.
DOI : 10.1016/j.solener.2010.02.016

S. Rodat, S. Abanades, J. L. Sans, and G. Flamant, Hydrogen production from solar thermal dissociation of natural gas: development of a 10kW solar chemical reactor prototype, Solar Energy, vol.83, issue.9, pp.1599-1610, 2009.
DOI : 10.1016/j.solener.2009.05.010

S. Rodat, S. Abanades, E. Grivei, G. Patrianakos, A. Zygogianni et al., Characterisation of carbon blacks produced by solar thermal dissociation of methane, Carbon, vol.49, issue.9, pp.3084-3091, 2011.
DOI : 10.1016/j.carbon.2011.03.030

H. B. Zhang, T. F. Cao, and Y. Cheng, Preparation of few-layer graphene nanosheets by radio-frequency induction thermal plasma, Carbon, vol.86, pp.38-45, 2015.
DOI : 10.1016/j.carbon.2015.01.021

D. L. Sun, F. Wang, R. Y. Hong, and C. R. Xie, Preparation of carbon black via arc discharge plasma enhanced by thermal pyrolysis, Diamond and Related Materials, vol.61, pp.21-31, 2016.
DOI : 10.1016/j.diamond.2015.11.004

C. L. Tien and S. C. Lee, Flame radiation, Progress in Energy and Combustion Science, pp.41-59, 1982.
DOI : 10.1016/0360-1285(82)90008-9

K. P. Shine and P. M. Forster, The effect of human activity on radiative forcing of climate change: a review of recent developments, Global and Planetary Change, vol.20, issue.4, pp.205-225, 1999.
DOI : 10.1016/S0921-8181(99)00017-X

B. Karcher, Aviation-produced aerosols and contrails, pp.113-167, 1999.

M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, vol.286, issue.6821, pp.695-697, 2001.
DOI : 10.1126/science.286.5441.905

R. F. Service, CLIMATE CHANGE: Study Fingers Soot as a Major Player in Global Warming, Science, vol.319, issue.5871, pp.3191745-1745, 2008.
DOI : 10.1126/science.319.5871.1745

D. A. Kaden, R. A. Hites, and W. G. Thilly, Mutagenicity of soot and associated polycyclic aromatic-hydrocarbons to salmonella-typhimurium, Cancer Research, vol.39, issue.10, pp.4152-4159, 1979.

. Crespi, Mutagenicity of c(24)h(14)pah in human cells expressing cyp1a1, Mutation Research-Genetic Toxicology and Environmental Mutagenesis, vol.446, issue.1, pp.1-14, 1999.

J. Prado and G. Lahaye, Soot in combustion systems and its toxic properties, 1981.

G. Oberdorster, E. Oberdorster, and J. Oberdorster, Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles, Environmental Health Perspectives, vol.113, issue.7, pp.823-839, 2005.
DOI : 10.1289/ehp.7339

I. M. Kennedy, The health effects of combustion-generated aerosols, Proceedings of the Combustion Institute, pp.2757-2770, 2007.
DOI : 10.1016/j.proci.2006.08.116

H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, C-60 -buckminsterfullerene, Nature, issue.6042, pp.318162-163, 1985.

V. Ramarozatovo, A. Mansour, M. Razafinimanana, M. Monthioux, F. Valensi et al., Influence of chamber volume in single-walled carbon nanotube synthesis by an electric arc, Journal of Physics D: Applied Physics, vol.45, issue.34, pp.45-2012
DOI : 10.1088/0022-3727/45/34/345204

R. Whitesides, A. C. Kollias, D. Domin, . Jr, W. A. Lester et al., Graphene layer growth: Collision of migrating five-member rings, Proceedings of the Combustion Institute, pp.539-546, 2007.
DOI : 10.1016/j.proci.2006.07.034

R. Whitesides, D. Domin, R. Salomon-ferrer, J. Lester, W. A. et al., Embedded-ring migration on graphene zigzag edge, Proceedings of the Combustion Institute, pp.577-583, 2009.
DOI : 10.1016/j.proci.2008.06.096

K. Yoneda, M. Nakano, R. Kishi, H. Takahashi, A. Shimizu et al., Thirdorder nonlinear optical properties of trigonal, rhombic and bow-tie graphene nanoflakes with strong structural dependence of diradical character, Chemical Physics Letters, vol.480, pp.4-6278, 2009.

Z. J. Pan and R. T. Yang, The mechanism of methane formation from the Reaction between graphite and hydrogen, Journal of Catalysis, vol.123, issue.1, pp.206-214, 1990.
DOI : 10.1016/0021-9517(90)90169-K

G. Porter, Fourth symposium (international) on combustioncarbon formation in the combustion wave, Symposium (International) on Combustion, pp.248-252, 1953.

G. Porter, Combustion researches and reviews, pp.108-124, 1955.

A. Thomas, Carbon formation in flames, Combustion and Flame, vol.6, pp.46-62, 1962.
DOI : 10.1016/0010-2180(62)90066-4

C. F. Palmer and H. B. , Cullis. The formation of carbon from gases. Chemistry and Physics of Carbon, p.60, 1965.

K. H. Homann, H. Gg, and . Wagner, Some new aspects of the mechanism of carbon formation in premixed flames, Symposium (International) on Combustion, vol.11, issue.1, pp.371-379, 1967.
DOI : 10.1016/S0082-0784(67)80161-9

C. Bd and R. Long, Formation of polycyclic aromatics in rich premixed acetylene and ethylene flames, Combustion and Flame, vol.20, issue.3, pp.359-368, 1973.

A. Ciajolo, A. Tregrossi, R. Barbella, R. Ragucci, B. Apicella et al., The relation between ultraviolet-excited fluorescence spectroscopy and aromatic species formed in rich laminar ethylene flames, Combustion and Flame, vol.125, issue.4, pp.1225-1229, 2001.
DOI : 10.1016/S0010-2180(01)00242-5

H. Richter and J. B. Howard, Formation of polycyclic aromatic hydrocarbons and their growth to soot???a review of chemical reaction pathways, Progress in Energy and Combustion Science, pp.4-6565, 2000.
DOI : 10.1016/S0360-1285(00)00009-5

J. Appel, H. Bockhorn, and M. Frenklach, Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons, Combustion and Flame, vol.121, issue.1-2, pp.122-136, 2000.
DOI : 10.1016/S0010-2180(99)00135-2

M. Frenklach, Reaction mechanism of soot formation in flames, Physical Chemistry Chemical Physics, vol.4, issue.11, pp.2028-2037, 2002.
DOI : 10.1039/b110045a

M. Frenklach and J. Warnatz, Detailed Modeling of PAH Profiles in a Sooting Low-Pressure Acetylene Flame, Combustion Science and Technology, vol.87, issue.4-6, pp.4-6265, 1987.
DOI : 10.1080/00102208308923692

H. Bockhorn, F. Fetting, and H. W. Wenz, Investigation of the Formation of High Molecular Hydrocarbons and Soot in Premixed Hydrocarbon-Oxygen Flames, Berichte der Bunsengesellschaft f??r physikalische Chemie, vol.51, issue.11
DOI : 10.1098/rspa.1975.0101

M. B. Colket, Pyrolysis of c6h6. Abstracts of Papers of the, p.40, 1986.

P. R. Westmoreland, A. M. Dean, J. B. Howard, and J. P. , Forming benzene in flames by chemically activated isomerization, The Journal of Physical Chemistry, vol.93, issue.25, pp.938171-8180, 1989.
DOI : 10.1021/j100362a008

J. A. Miller and C. F. Melius, Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels, Combustion and Flame, vol.91, issue.1, pp.21-39, 1992.
DOI : 10.1016/0010-2180(92)90124-8

M. Frenklach and K. E. Spear, Growth mechanism of vapor-deposited diamond, Journal of Materials Research, vol.3, issue.01, pp.133-140, 1988.
DOI : 10.1557/JMR.1988.0133

S. E. Stein and A. Fahr, High-temperature stabilities of hydrocarbons, The Journal of Physical Chemistry, vol.89, issue.17, pp.3714-3725, 1985.
DOI : 10.1021/j100263a027

C. F. Melius, M. E. Colvin, N. M. Marinov, W. J. Pitz, and S. M. Senkan, Reaction mechanisms in aromatic hydrocarbon formation involving the C5H5 cyclopentadienyl moiety, Symposium (International) on Combustion, vol.26, issue.1
DOI : 10.1016/S0082-0784(96)80276-1

A. M. Dean, Detailed kinetic modeling of autocatalysis in methane pyrolysis, The Journal of Physical Chemistry, vol.94, issue.4, pp.1432-1439, 1990.
DOI : 10.1021/j100367a043

A. Kazakov, H. Wang, and M. Frenklach, Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar, Combustion and Flame, vol.100, issue.1-2, pp.111-120, 1995.
DOI : 10.1016/0010-2180(94)00086-8

. Jesen, Prediction of soot formation rates : a new approach, Proc Roy Soc London, p.21, 1974.

M. Frenklach and H. Wang, Detailed surface and gas-phase chemical kinetics of diamond deposition, Physical Review B, vol.341, issue.2, pp.1520-1545, 1991.
DOI : 10.1086/167501

A. M. Mebel and V. V. Kislov, Reaction Produce Naphthalene? An Ab Initio/RRKM Study, The Journal of Physical Chemistry A, vol.113, issue.36, pp.9825-9833, 2009.
DOI : 10.1021/jp905931j

J. H. Kiefer, L. J. Mizerka, M. R. Patel, and H. C. Wei, A shock tube investigation of major pathways in the high-temperature pyrolysis of benzene, The Journal of Physical Chemistry, vol.89, issue.10, pp.2013-2019, 1985.
DOI : 10.1021/j100256a043

M. E. Law, P. R. Westmoreland, T. A. Cool, J. Wang, N. Hansen et al., Benzene precursors and formation routes in a stoichiometric cyclohexane flame, Proceedings of the Combustion Institute, pp.565-573, 2007.
DOI : 10.1016/j.proci.2006.07.259

H. Wang and K. Brezinsky, Computational Study on the Thermochemistry of Cyclopentadiene Derivatives and Kinetics of Cyclopentadienone Thermal Decomposition, The Journal of Physical Chemistry A, vol.102, issue.9, pp.1530-1541, 1998.
DOI : 10.1021/jp9728262

D. M. Matheu, A. M. Dean, J. M. Grenda, and W. H. Green, Mechanism Generation with Integrated Pressure Dependence:?? A New Model for Methane Pyrolysis, The Journal of Physical Chemistry A, vol.107, issue.41, pp.8552-8565, 2003.
DOI : 10.1021/jp0345957

B. Shukla and M. Koshi, A highly efficient growth mechanism of polycyclic aromatic hydrocarbons, Physical Chemistry Chemical Physics, vol.9, issue.11, pp.2427-2437, 2010.
DOI : 10.1016/S0082-0784(89)80036-0

K. Wang, S. M. Villano, and A. M. Dean, Ab initio study of the influence of resonance stabilization on intramolecular ring closure reactions of hydrocarbon radicals, Physical Chemistry Chemical Physics, vol.9, issue.12, 2016.
DOI : 10.1002/cphc.200700469

K. H. Homann, Carbon formation in premixed flames, Combustion and Flame, vol.11, issue.4, p.265, 1967.
DOI : 10.1016/0010-2180(67)90017-X

P. J. Mayo and F. J. Weinberg, On the Size, Charge and Number-Rate of Formation of Carbon Particles in Flames Subjected to Electric Fields, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.319, issue.1538, p.319351, 1538.
DOI : 10.1098/rspa.1970.0183

H. F. Calcote, Mechanisms of soot nucleation in flames???A critical review, Combustion and Flame, vol.42, issue.3, pp.215-242, 1981.
DOI : 10.1016/0010-2180(81)90159-0

H. F. Gill and R. J. Calcote, Comparison of the ionic mechanism of soot formation with a free radical mechanism. Soot formation in combustion : mechanisms and models, 1994.

R. D. Kern, H. J. Singh, and K. Xie, Identification of chemi-ions formed by reactions of deuterated fuels in the reflected shock zone, The Journal of Physical Chemistry, vol.94, issue.8, pp.943333-3335, 1990.
DOI : 10.1021/j100371a025

M. Dors, H. Nowakowska, M. Jasinski, and J. Mizeraczyk, Chemical Kinetics of Methane Pyrolysis in Microwave Plasma at Atmospheric Pressure, Plasma Chemistry and Plasma Processing, vol.154, issue.2, pp.313-326, 2014.
DOI : 10.1016/0009-2614(89)85367-9

S. Abanades, S. Tescari, S. Rodat, and G. Flamant, Natural gas pyrolysis in double-walled reactor tubes using thermal plasma or concentrated solar radiation as external heating source, Journal of Natural Gas Chemistry, vol.18, issue.1, pp.1-8, 2009.
DOI : 10.1016/S1003-9953(08)60077-8

H. Richter, S. Granata, W. H. Green, and J. B. Howard, Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame, Proceedings of the Combustion Institute, pp.1397-1405, 2005.
DOI : 10.1016/j.proci.2004.08.088

M. Frenklach, Reaction mechanism of soot formation in flames, Physical Chemistry Chemical Physics, vol.4, issue.11, pp.2028-2037, 2002.
DOI : 10.1039/b110045a

J. Lahaye and G. Prado, Formation of carbon particles from a gas phase: Nucleation phenomenon, Water, Air, and Soil Pollution, vol.134, issue.10, pp.473-481, 1974.
DOI : 10.1007/BF00341000

P. D. Teini, D. M. Karwat, and A. Atreya, Observations of nascent soot: Molecular deposition and particle morphology, Combustion and Flame, vol.158, issue.10, pp.2045-2055, 2011.
DOI : 10.1016/j.combustflame.2011.03.005

M. L. Botero, E. M. Adkins, S. Gonzalez-calera, H. Miller, and M. Kraft, PAH structure analysis of soot in a non-premixed flame using high-resolution transmission electron microscopy and optical band gap analysis, Combustion and Flame, vol.164, pp.250-258, 2016.
DOI : 10.1016/j.combustflame.2015.11.022

D. Aamir, N. Abid, E. D. Heinz, D. J. Tolmachoff, C. S. Phares et al., On evolution of particle size distribution functions of incipient soot in premixed ethylene-oxygen-argon flames, Combustion and Flame, vol.154, issue.4, pp.775-788, 2008.

K. Ono, Y. Matsukawa, K. Dewa, A. Watanabe, K. Takahashi et al., Formation mechanisms of soot from high-molecular-weight polycyclic aromatic hydrocarbons, Combustion and Flame, vol.162, issue.6, pp.2670-2678, 2015.
DOI : 10.1016/j.combustflame.2015.03.022

N. Hansen, T. Kasper, S. J. Klippenstein, P. R. Westmoreland, M. E. Law et al., Initial Steps of Aromatic Ring Formation in a Laminar Premixed Fuel-Rich Cyclopentene Flame???, The Journal of Physical Chemistry A, vol.111, issue.19, pp.1114081-4092, 2007.
DOI : 10.1021/jp0683317

N. Hansen, T. A. Cool, P. R. Westmoreland, and K. Kohse-hoinghaus, Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry, Progress in Energy and Combustion Science, pp.168-191, 2009.
DOI : 10.1016/j.pecs.2008.10.001

Y. Li, L. Zhang, Z. Tian, T. Yuan, K. Zhang et al., Investigation of the rich premixed laminar acetylene/oxygen/argon flame: Comprehensive flame structure and special concerns of polyynes, Proceedings of the Combustion Institute, pp.1293-1300, 2009.
DOI : 10.1016/j.proci.2008.07.009

B. Oktem, M. P. Tolocka, B. Zhao, H. Wang, and M. V. Johnston, Chemical species associated with the early stage of soot growth in a laminar premixed ethylene???oxygen???argon flame, Combustion and Flame, vol.142, issue.4, pp.364-373, 2005.
DOI : 10.1016/j.combustflame.2005.03.016

U. Bonne, K. H. Homann, and H. G. Wagner, Carbon formation in premixed flames. tenth symposium (international) on combustion, the combustion institute, pittsburgh, p.9, 1965.

M. Frenklach, D. W. Clary, T. Yuan, W. C. Gardiner, and S. E. Stein, Mechanism of Soot Formation in Acetylene-Oxygen Mixtures, Combustion Science and Technology, vol.64, issue.1-3, pp.1-379, 1986.
DOI : 10.1021/ja01258a045

R. Becker and W. Doring, Kinetic treatment of germ formation in supersaturated vapour

J. B. Zeldovich, 10. On the Theory of New Phase Formation. Cavitation, Acta Physicochimica Urss, vol.18, issue.1, pp.1-22, 1943.
DOI : 10.1515/9781400862979.120

J. Lahaye, Particulate carbon from the gas phase, Carbon, vol.30, issue.3, pp.309-314, 1992.
DOI : 10.1016/0008-6223(92)90025-R

M. Frenklach and H. Wang, Detailed Mechanism and Modeling of Soot Particle Formation, pp.165-192, 1994.
DOI : 10.1007/978-3-642-85167-4_10

D. Ugarte, High-temperature behaviour of ???fullerene black???, Carbon, vol.32, issue.7, pp.1245-1248, 1994.
DOI : 10.1016/0008-6223(94)90108-2

N. Sano, H. Wang, I. Alexandrou, M. Chhowalla, K. B. Teo et al., Properties of carbon onions produced by an arc discharge in water, Journal of Applied Physics, vol.228, issue.5, pp.2783-2788, 2002.
DOI : 10.1063/1.123833

V. Z. Baldissarelli, L. O. Benetoli, F. A. Cassini, I. G. De-souza, and N. A. Debacher, Plasma-Assisted Production of Carbon Black and Carbon Nanotubes from Methane by Thermal Plasma Reform, Journal of the Brazilian Chemical Society, vol.25, issue.1, pp.126-132, 2014.
DOI : 10.5935/0103-5053.20130278

Q. L. Zhang, S. C. Obrien, J. R. Heath, Y. Liu, R. F. Curl et al., Reactivity of large carbon clusters: spheroidal carbon shells and their possible relevance to the formation and morphology of soot, The Journal of Physical Chemistry, vol.90, issue.4, pp.525-528, 1986.
DOI : 10.1021/j100276a001

J. B. Howard, J. T. Mckinnon, Y. Makarovsky, A. L. Lafleur, and M. E. Johnson, Fullerenes C60 and C70 in flames, Nature, vol.352, issue.6331, pp.352139-141, 1991.
DOI : 10.1038/352139a0

J. B. Howard, J. T. Mckinnon, M. E. Johnson, Y. Makarovsky, and A. L. Lafleur, Production of c-60 and c-70 fullerenes in benzene oxygen flames, Journal of Physical Chemistry, issue.16, pp.966657-6662, 1992.

W. J. Grieco, J. B. Howard, L. C. Rainey, and J. B. Vander-sande, Fullerenic carbon in combustion-generated soot, Carbon, vol.38, issue.4, pp.597-614, 2000.
DOI : 10.1016/S0008-6223(99)00149-9

J. B. Howard, K. Das-chowdhury, and J. B. Vander-sande, Carbon shells in flames, Nature, vol.370, issue.6491, pp.603-603, 1994.
DOI : 10.1038/370603a0

K. Das, J. B. Howard, and . Chowdhury, Fullerenic nanostructures in flames, J Mater Res, 1996.

T. Baum, S. Loffler, P. Loffler, P. Weilmunster, and K. H. Homann, Fullerene ions and their relation to PAH and soot in low-pressure hydrocarbon flames, Berichte der Bunsengesellschaft f??r physikalische Chemie, vol.109, issue.7, pp.96841-857, 1992.
DOI : 10.1007/978-1-4684-4463-6_10

M. Bachmann, J. Griesheimer, and K. H. Homann, The formation of c-60 and its precursors in naphthalene flames, Chemical Physics Letters, vol.223, pp.5-6506, 1994.

M. Bachmann, W. Wiese, and K. H. Homann, Fullerenes versus soot in benzene flames, Combustion and Flame, vol.101, issue.4, pp.548-550, 1995.
DOI : 10.1016/0010-2180(94)00276-X

B. Yang, Y. Li, L. Wei, C. Huang, J. Wang et al., An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization, Proceedings of the Combustion Institute, pp.555-563, 2007.
DOI : 10.1016/j.proci.2006.07.171

B. Zhao, Z. W. Yang, J. J. Wang, M. V. Johnston, and H. Wang, Analysis of Soot Nanoparticles in a Laminar Premixed Ethylene Flame by Scanning Mobility Particle Sizer, Aerosol Science and Technology, vol.6, issue.8
DOI : 10.1080/02786829008959441

B. Zhao, Z. W. Yang, M. V. Johnston, H. Wang, A. S. Wexler et al., Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame, Combustion and Flame, vol.133, issue.1-2, pp.173-188, 2003.
DOI : 10.1016/S0010-2180(02)00574-6

D. Aamir, J. Abid, D. A. Camacho, H. Sheen, and . Wang, Quantitative measurement of soot particle size distribution in premixed flames -the burner-stabilized stagnation flame approach, Combustion and Flame, vol.156, issue.10, pp.1862-1870, 2009.

J. Happold, H. H. Grotheer, and M. Aigner, Distinction of gaseous soot precursor molecules and soot precursor particles through photoionization mass spectrometry, Rapid Communications in Mass Spectrometry, vol.30, issue.7, pp.1247-1254, 2007.
DOI : 10.1007/978-3-322-98787-7

J. D. Herdman, B. C. Connelly, M. D. Smooke, M. B. Long, and J. H. Miller, A comparison of Raman signatures and laser-induced incandescence with direct numerical simulation of soot growth in non-premixed ethylene/air flames, Carbon, vol.49, issue.15, pp.495298-5311, 2011.
DOI : 10.1016/j.carbon.2011.07.050

C. A. Schuetz and M. Frenklach, Nucleation of soot: Molecular dynamics simulations of pyrene dimerization, Proceedings of the Combustion Institute, pp.2307-2314, 2002.
DOI : 10.1016/S1540-7489(02)80281-4

J. D. Herdman and J. H. Miller, Intermolecular Potential Calculations for Polynuclear Aromatic Hydrocarbon Clusters, The Journal of Physical Chemistry A, vol.112, issue.28, pp.6249-6256, 2008.
DOI : 10.1021/jp800483h

M. L. Botero, D. P. Chen, S. Gonzalez-calera, D. Jefferson, and M. Kraft, HRTEM evaluation of soot particles produced by the non-premixed combustion of liquid fuels, Carbon, vol.96, pp.459-473, 2016.
DOI : 10.1016/j.carbon.2015.09.077

H. Richter, T. G. Benish, O. A. Mazyar, W. H. Green, and J. B. Howard, Formation of polycyclic aromatic hydrocarbons and their radicals in a nearly sooting premixed benzene flame, Proceedings of the Combustion Institute, pp.2609-2618, 2000.
DOI : 10.1016/S0082-0784(00)80679-7

C. Allouis, B. Apicella, R. Barbella, F. Beretta, A. Ciajolo et al., Monitoring of fuel consumption and aromatics formation in a kerosene spray flame as characterized by fluorescence spectroscopy, Chemosphere, vol.51, issue.10, pp.511097-1102, 2003.
DOI : 10.1016/S0045-6535(02)00712-9

A. Violi, A. Kubota, T. N. Truong, W. J. Pitz, C. K. Westbrook et al., A fully integrated kinetic monte carlo/molecular dynamics approach for the simulation of soot precursor growth, Proceedings of the Combustion Institute, pp.2343-2349, 2002.
DOI : 10.1016/S1540-7489(02)80285-1

A. Violi, A. F. Sarofim, and G. A. Voth, KINETIC MONTE CARLO???MOLECULAR DYNAMICS APPROACH TO MODEL SOOT INCEPTION, Combustion Science and Technology, vol.48, issue.5-6, pp.5-6991, 2004.
DOI : 10.1080/02786828408959003

B. Hajgato, D. Szieberth, P. Geerlings, F. De-proft, and M. S. Deleuze, A benchmark theoretical study of the electronic ground state and of the singlet-triplet split of benzene and linear acenes, The Journal of Chemical Physics, vol.23, issue.22, p.131, 2009.
DOI : 10.1023/A:1008193805436

P. Rivero, C. A. Jimenez-hoyos, and G. E. Scuseria, Entanglement and Polyradical Character of Polycyclic Aromatic Hydrocarbons Predicted by Projected Hartree???Fock Theory, The Journal of Physical Chemistry B, vol.117, issue.42, pp.12750-12758, 2013.
DOI : 10.1021/jp401478v

M. Nakano, H. Nagai, H. Fukui, K. Yoneda, R. Kishi et al., Theoretical study of third-order nonlinear optical properties in square nanographenes with open-shell singlet ground states, Chemical Physics Letters, vol.467, issue.1-3, pp.1-3120, 2008.
DOI : 10.1016/j.cplett.2008.10.084

R. Michael, F. Philpott, Y. Cimpoesu, and .. .. Kawazoem=2, Bonding and magnetism in high symmetry nano-sized graphene molecules : Linear acenes c4m+2h2m+425) ; zigzag hexangulenes c6m**2h6m (m=2, 10) ; crenelated hexangulenes c6(3m**2-3m+1)h6(2m-1) (m=2

. De-en, S. Jiang, and . Dai, Electronic ground state of higher acenes, Journal of Physical Chemistry A, vol.112, issue.2, pp.332-335, 2008.

H. Nagai, M. Nakano, K. Yoneda, H. Fukui, T. Minami et al., Theoretical study on third-order nonlinear optical properties in hexagonal graphene nanoflakes: Edge shape effect, Chemical Physics Letters, vol.477, issue.4-6, pp.4-6355, 2009.
DOI : 10.1016/j.cplett.2009.07.035

M. Melle-franco, Uthrene, a radically new molecule?, Chemical Communications, vol.10, issue.25, pp.5387-5390, 2015.
DOI : 10.1021/ct400883m

M. Nakano, S. Ohta, K. Tokushima, R. Kishi, T. Kubo et al., First and second hyperpolarizabilities of donor???acceptor disubstituted diphenalenyl radical systems, Chemical Physics Letters, vol.443, issue.1-3, pp.1-395, 2007.
DOI : 10.1016/j.cplett.2007.05.104

D. Andrea and . Anna, Combustion-formed nanoparticles, Proceedings of the Combustion Institute, pp.593-613, 2009.

G. Blanquart and H. Pitsch, Analyzing the effects of temperature on soot formation with a joint volume-surface-hydrogen model, Combustion and Flame, vol.156, issue.8, pp.1614-1626, 2009.
DOI : 10.1016/j.combustflame.2009.04.010

B. S. Haynes and H. G. Wagner, Soot formation, Progress in Energy and Combustion Science, pp.229-273, 1981.
DOI : 10.1016/0360-1285(81)90001-0

P. A. Tesner, . Snegirio, V. G. Td, and . Knorre, Kinetics of dispersed carbon formation, Combustion and Flame, vol.17, issue.2, p.253, 1971.
DOI : 10.1016/S0010-2180(71)80168-2

S. J. Harris and A. M. Weiner, Surface Growth of Soot Particles in Premixed Ethylene/Air Flames, Combustion Science and Technology, vol.257, issue.3-4, pp.3-4155, 1983.
DOI : 10.1016/S0082-0784(73)80085-2

J. P. Cain, P. L. Gassman, H. Wang, and A. Laskin, Micro-FTIR study of soot chemical composition???evidence of aliphatic hydrocarbons on nascent soot surfaces, Physical Chemistry Chemical Physics, vol.42, issue.D23, pp.5206-5218, 2010.
DOI : 10.1029/2004GL021496

H. B. Zhang, D. Y. Hou, C. K. Law, and X. Q. You, Role of Carbon-Addition and Hydrogen-Migration Reactions in Soot Surface Growth, The Journal of Physical Chemistry A, vol.120, issue.5, pp.683-689, 2016.
DOI : 10.1021/acs.jpca.5b10306

C. Saggese, S. Ferrario, J. Camacho, A. Cuoci, A. Frassoldati et al., Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame, Combustion and Flame, vol.162, issue.9, pp.3356-3369, 2015.
DOI : 10.1016/j.combustflame.2015.06.002

P. Mitchell and M. Frenklach, Particle aggregation with simultaneous surface growth, Physical Review E, vol.26, issue.6, 2003.
DOI : 10.1016/0021-8502(94)00105-8

M. R. Kholghy, A. Veshkini, and M. Thomson, The core???shell internal nanostructure of soot ??? A criterion to model soot maturity, Carbon, vol.100, pp.508-536, 2016.
DOI : 10.1016/j.carbon.2016.01.022

D. Chen, T. S. Totton, J. W. Akroyd, S. Mosbach, and M. Kraft, Size-dependent melting of polycyclic aromatic hydrocarbon nano-clusters: A molecular dynamics study, Carbon, vol.67, pp.79-91, 2014.
DOI : 10.1016/j.carbon.2013.09.058

R. H. Hurt and Y. Hu, Thermodynamics of carbonaceous mesophase, Carbon, vol.37, issue.2, pp.281-292, 1999.
DOI : 10.1016/S0008-6223(98)00176-6

R. H. Hurt, G. P. Crawford, and H. S. Shim, Equilibrium nanostructure of primary soot particles, Proceedings of the Combustion Institute, pp.2539-2546, 2000.
DOI : 10.1016/S0082-0784(00)80670-0

J. P. Cain, J. Camacho, D. J. Phares, H. Wang, and A. Laskin, Evidence of aliphatics in nascent soot particles in premixed ethylene flames, Proceedings of the Combustion Institute, pp.533-540, 2011.
DOI : 10.1016/j.proci.2010.06.164

J. Cain, A. Laskin, M. R. Kholghy, M. J. Thomson, and H. Wang, Molecular characterization of organic content of soot along the centerline of a coflow diffusion flame, Phys. Chem. Chem. Phys., vol.109, issue.47, pp.25862-25875, 2014.
DOI : 10.1080/00102209508951900

R. A. Dobbins, G. J. Govatzidakis, W. Lu, A. F. Schwartzman, and R. A. Fletcher, Carbonization Rate of Soot Precursor Particles, Combustion Science and Technology, vol.34, issue.1-6, pp.103-121, 1996.
DOI : 10.1021/j100263a027

R. A. Dobbins, Soot inception temperature and the carbonization rate of precursor particles, Combustion and Flame, vol.130, issue.3, pp.204-214, 2002.
DOI : 10.1016/S0010-2180(02)00374-7

M. R. Kholghy, J. Weingarten, and M. Thomson, A study of the effects of the ester moiety on soot formation and species concentrations in a laminar coflow diffusion flame of a surrogate for B100 biodiesel, Proceedings of the Combustion Institute, pp.905-912, 2015.
DOI : 10.1016/j.proci.2014.07.019

M. Alfe, B. Apicella, J. N. Rouzaud, A. Tregrossi, and A. Ciajolo, The effect of temperature on soot properties in premixed methane flames, Combustion and Flame, vol.157, issue.10, pp.1959-1965, 2010.
DOI : 10.1016/j.combustflame.2010.02.007

M. Wales and . Kraft, Modelling the internal structure of nascent soot particles, Combustion and Flame, vol.157, issue.5, pp.909-914, 2010.

C. J. Dasch, The decay of soot surface growth reactivity and its importance in total soot formation, Combustion and Flame, vol.61, issue.3, pp.219-225, 1985.
DOI : 10.1016/0010-2180(85)90103-8

G. Basile, A. Rolando, A. D-'alessio, A. D. Anna, and P. Minutolo, Coagulation and carbonization processes in slightly sooting premixed flames, Proceedings of the Combustion Institute, pp.2391-2397, 2002.
DOI : 10.1016/S1540-7489(02)80291-7

X. Lopez-yglesias, P. E. Schrader, and H. A. Michelsen, Soot maturity and absorption cross sections, Journal of Aerosol Science, vol.75, pp.43-64, 2014.
DOI : 10.1016/j.jaerosci.2014.04.011

A. Kazakov and M. Frenklach, Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames, Combustion and Flame, vol.114, issue.3-4, pp.3-4484, 1998.
DOI : 10.1016/S0010-2180(97)00322-2

R. Watanabe, T. Shindoh, Y. Matsushita, H. Aoki, T. Miura et al., A Numerical Investigation of the Factors Influencing the Aggregate Shape of Carbon Black from the Furnace Process, JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, vol.43, issue.2, pp.150-157, 2010.
DOI : 10.1252/jcej.09we170

K. Ono, Y. Matsukawa, Y. Saito, Y. Matsushita, H. Aoki et al., Monte Carlo simulation for morphology of nanoparticles and particle size distributions: comparison of the cluster???cluster aggregation model with the sectional method, Journal of Nanoparticle Research, vol.156, issue.216, p.2015
DOI : 10.1016/j.combustflame.2008.10.022

Q. Zhang, H. Guo, F. Liu, G. J. Smallwood, and M. J. Thomson, Modeling of soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame with detailed PAH chemistry and an advanced sectional aerosol dynamics model, Proceedings of the Combustion Institute, pp.761-768, 2009.
DOI : 10.1016/j.proci.2008.06.109

S. Salenbauch, A. Cuoci, A. Frassoldati, C. Saggese, T. Faravelli et al., Modeling soot formation in premixed flames using an Extended Conditional Quadrature Method of Moments, Combustion and Flame, vol.162, issue.6, pp.2529-2543, 2015.
DOI : 10.1016/j.combustflame.2015.03.002

C. R. Herd, G. C. Mcdonald, and W. M. Hess, Euclidean Geometry, Rubber Chemistry and Technology, vol.65, issue.1, pp.107-129, 1992.
DOI : 10.5254/1.3538594

C. R. Herd, G. C. Mcdonald, R. E. Smith, and W. M. Hess, The Use of Skeletonization for the Shape Classification of Carbon-Black Aggregates, Rubber Chemistry and Technology, vol.66, issue.4, pp.491-509, 1993.
DOI : 10.5254/1.3538323

A. R. Imre, Artificial fractal dimension obtained by using perimeter???area relationship on digitalized images, Applied Mathematics and Computation, vol.173, issue.1, pp.443-449, 2006.
DOI : 10.1016/j.amc.2005.04.042

K. Ono, M. Yanaka, S. Tanaka, Y. Saito, H. Aoki et al., Influence of furnace temperature and residence time on configurations of carbon black, Chemical Engineering Journal, vol.200, issue.202, pp.541-548, 2012.
DOI : 10.1016/j.cej.2012.06.061

K. Ono, M. Yanaka, Y. Saito, H. Aoki, O. Fukuda et al., Effect of benzene???acetylene compositions on carbon black configurations produced by benzene pyrolysis, Chemical Engineering Journal, vol.215, issue.216, pp.128-135, 2013.
DOI : 10.1016/j.cej.2012.10.085

F. Shishido, H. Hashiguchi, Y. Matsushita, Y. Morozumi, H. Aoki et al., An Investigation of Primary Particle Growth and Aggregate Formation of Soot Using a Numerical Model Considering the Sintering of Primary Particles, KAGAKU KOGAKU RONBUNSHU, vol.33, issue.4
DOI : 10.1252/kakoronbunshu.33.306

C. R. Houska and B. E. Warren, X???Ray Study of the Graphitization of Carbon Black, Journal of Applied Physics, vol.228, issue.12, pp.1503-1509, 1954.
DOI : 10.1063/1.1699713

R. L. Vanderwal, Onset of carbonization : Spatial location via simultaneous lif-lii and characterization via tem, Combustion Science and Technology, vol.118, pp.4-6343, 1996.

R. A. Dobbins, R. A. Fletcher, and H. C. Chang, The evolution of soot precursor particles in a diffusion flame, Combustion and Flame, vol.115, issue.3, pp.285-298, 1998.
DOI : 10.1016/S0010-2180(98)00010-8

M. Kholghy, M. Saffaripour, C. Yip, and M. Thomson, The evolution of soot morphology in a laminar coflow diffusion flame of a surrogate for Jet A-1, Combustion and Flame, vol.160, issue.10, pp.2119-2130, 2013.
DOI : 10.1016/j.combustflame.2013.04.008

A. S. Feitelberg, J. P. Longwell, and A. F. Sarofim, Metal enhanced soot and PAH formation, Combustion and Flame, vol.92, issue.3, pp.241-253, 1993.
DOI : 10.1016/0010-2180(93)90036-3

A. Miller, G. Ahlstrand, D. Kittelson, and M. Zachariah, The fate of metal (Fe) during diesel combustion: Morphology, chemistry, and formation pathways of nanoparticles, Combustion and Flame, vol.149, issue.1-2, pp.129-143, 2007.
DOI : 10.1016/j.combustflame.2006.12.005

W. P. Wendt and . Linak, Environmental implications of iron fuel borne catalysts and their effects on diesel particulate formation and composition, Journal of Aerosol Science, vol.58, pp.50-61, 2013.

J. Gonzalez-aguilar, I. Deme, L. Fulcheri, G. Flamant, T. M. Gruenberger et al., Comparison of Simple Particle-Radiation Coupling Models Applied on a Plasma Black Process, Plasma Chemistry and Plasma Processing, vol.3, issue.4
DOI : 10.1007/s11090-004-7935-5

URL : https://hal.archives-ouvertes.fr/hal-00550448

M. Kogan and A. Kogan, Production of hydrogen and carbon by solar thermal methane splitting. I. The unseeded reactor, International Journal of Hydrogen Energy, vol.28, issue.11, pp.1187-1198, 2003.
DOI : 10.1016/S0360-3199(02)00282-3

A. Kogan, M. Kogan, and S. Barak, Production of hydrogen and carbon by solar thermal methane splitting. II. Room temperature simulation tests of seeded solar reactor, International Journal of Hydrogen Energy, vol.29, issue.12, pp.1227-1236, 2004.
DOI : 10.1016/j.ijhydene.2003.12.002

A. Kogan, M. Kogan, and S. Barak, Production of hydrogen and carbon by solar thermal methane splitting. III. Fluidization, entrainment and seeding powder particles into a volumetric solar receiver, International Journal of Hydrogen Energy, vol.30, issue.1, pp.35-43, 2005.
DOI : 10.1016/j.ijhydene.2004.03.028

A. Kogan, M. Israeli, and E. Alcobi, Production of hydrogen and carbon by solar thermal methane splitting. IV. Preliminary simulation of a confined tornado flow configuration by computational fluid dynamics, International Journal of Hydrogen Energy, vol.32, issue.18, pp.4800-4810, 2007.
DOI : 10.1016/j.ijhydene.2007.08.016

G. Patrianakos, M. Kostoglou, and A. Konstandopoulos, One-dimensional model of solar thermal reactors for the co-production of hydrogen and carbon black from methane decomposition, International Journal of Hydrogen Energy, vol.36, issue.1, pp.189-202, 2011.
DOI : 10.1016/j.ijhydene.2010.09.061

S. K. Friedlander, Smoke, Dust, and Haze : Fundamentals of Aerosol Dynamics, 2000.

D. Ramkrishna, Population Balances : Theory and Applications to Particulate Systems in Engineering, 2000.

F. Gelbard and J. H. Seinfeld, Simulation of multicomponent aerosol dynamics, Journal of Colloid and Interface Science, vol.78, issue.2, pp.485-501, 1980.
DOI : 10.1016/0021-9797(80)90587-1

G. Patrianakos, M. Kostoglou, and A. G. Konstandopoulos, Effect of seeding on hydrogen and carbon particle production in a 10??MW solar thermal reactor for methane decomposition, International Journal of Hydrogen Energy, vol.37, issue.21, pp.16570-16580, 2012.
DOI : 10.1016/j.ijhydene.2012.02.046

S. Rodat, S. Abanades, J. Coulie, and G. Flamant, Kinetic modelling of methane decomposition in a tubular solar reactor, Chemical Engineering Journal, vol.146, issue.1, pp.120-127, 2009.
DOI : 10.1016/j.cej.2008.09.008

M. Gautier, V. Rohani, L. Fulcheri, and J. P. Trelles, Influence of temperature and pressure on carbon black size distribution during allothermal cracking of methane, Aerosol Science and Technology, vol.1, issue.3, pp.26-40, 2016.
DOI : 10.1080/02786828408959003

URL : https://hal.archives-ouvertes.fr/hal-01236240

S. K. Friedlander, The Behavior of Constant Rate Aerosol Reactors, Aerosol Science and Technology, vol.2, issue.1, pp.3-13, 1982.
DOI : 10.1080/00102207708946822

D. R. Warren and J. H. Seinfeld, Nucleation and Growth of Aerosol From a Continuously Reinforced Vapor, Aerosol Science and Technology, vol.91, issue.2, pp.135-153, 1984.
DOI : 10.1016/0021-9797(83)90367-3

R. Dale, J. H. Warren, and . Seinfeld, Prediction of aerosol concentrations resulting from a burst of nucleation, Journal of Colloid and Interface Science, vol.105, issue.1, pp.136-142, 1985.

J. H. Seinfeld, T. E. Kleindienst, E. O. Edney, and J. B. Cohen, Aerosol growth in a steadystate , continuous flow chamber : Application to studies of secondary aerosol formation

S. E. Pratsinis, Simultaneous nucleation, condensation, and coagulation in aerosol reactors, Journal of Colloid and Interface Science, vol.124, issue.2, pp.416-427, 1988.
DOI : 10.1016/0021-9797(88)90180-4

S. E. Pratsinis, INTRODUCTION: The Role of Aerosols in Materials Processing, Aerosol Science and Technology, vol.19, issue.4, pp.409-410, 1993.
DOI : 10.1080/02786829308959649

S. E. Pratsinis, W. H. Zhu, and S. Vemury, The role of gas mixing in flame synthesis of titania powders, Powder Technology, vol.86, issue.1, pp.87-93, 1996.
DOI : 10.1016/0032-5910(95)03041-7

S. E. Pratsinis, Flame aerosol synthesis of ceramic powders, Progress in Energy and Combustion Science, pp.197-219, 1998.
DOI : 10.1016/S0360-1285(97)00028-2

F. Gelbard and J. H. Seinfeld, Exact solution of the general dynamic equation for aerosol growth by condensation, Journal of Colloid and Interface Science, vol.68, issue.1, pp.173-183, 1979.
DOI : 10.1016/0021-9797(79)90269-8

R. Mcgraw, Description of Aerosol Dynamics by the Quadrature Method of Moments, Aerosol Science and Technology, vol.4, issue.2
DOI : 10.1016/0021-9797(88)90180-4

A. Zucca, D. L. Marchisio, M. Vanni, and A. A. Barresi, Validation of bivariate DQMOM for nanoparticle processes simulation, AIChE Journal, vol.54, issue.4, pp.918-931, 2007.
DOI : 10.1016/0378-4371(87)90164-6

M. E. Mueller, G. Blanquart, and H. Pitsch, Hybrid Method of Moments for modeling soot formation and growth, Combustion and Flame, vol.156, issue.6, pp.1143-1155, 2009.
DOI : 10.1016/j.combustflame.2009.01.025

M. Shigeta and T. Watanabe, Two-Directional Nodal Model for Co-Condensation Growth of Multicomponent Nanoparticles in Thermal Plasma Processing, Journal of Thermal Spray Technology, vol.457, issue.5-6, pp.5-61022, 2009.
DOI : 10.1088/0022-3727/41/8/085302

V. Colombo, E. Ghedini, M. Gherardi, P. Sanibondi, and M. Shigeta, A two-dimensional nodal model with turbulent effects for the synthesis of Si nano-particles by inductively coupled thermal plasmas, Plasma Sources Science and Technology, vol.21, issue.2, p.12, 2012.
DOI : 10.1088/0963-0252/21/2/025001

D. Trommer, D. Hirsch, and A. Steinfeld, Kinetic investigation of the thermal decomposition of CH4 by direct irradiation of a vortex-flow laden with carbon particles, International Journal of Hydrogen Energy, vol.29, issue.6, pp.627-633, 2004.
DOI : 10.1016/j.ijhydene.2003.07.001

J. Gonzalez-aguilar, I. Deme, L. Fulcheri, T. M. Gruenberger, F. Fabry et al., 3D MODELLING OF CARBON BLACK FORMATION AND PARTICLE RADIATION DURING METHANE CRACKING BY THERMAL PLASMA, High Temperature Material Processes, pp.51-56, 2003.
DOI : 10.1615/HighTempMatProc.v7.i1.80

URL : https://hal.archives-ouvertes.fr/hal-00529703

M. F. Modest, Radiative heat transfer, pp.1-882, 2013.

F. Craig, D. R. Bohren, and . Huffman, Absorption and scattering of light by small particles, 1983.

C. Caliot, S. Abanades, A. Soufiani, and G. Flamant, Effects of non-gray thermal radiation on the heating of a methane laminar flow at high temperature, Fuel, vol.88, issue.4, pp.262-262, 2009.
DOI : 10.1016/j.fuel.2008.10.025

URL : https://hal.archives-ouvertes.fr/hal-00497854

M. Y. Perrin and A. Soufiani, Approximate radiative properties of methane at high temperature, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.103, issue.1, pp.3-13, 2007.
DOI : 10.1016/j.jqsrt.2006.07.018

URL : https://hal.archives-ouvertes.fr/hal-00259948

K. M. Leung, R. P. Lindstedt, and W. P. Jones, A simplified reaction mechanism for soot formation in nonpremixed flames, Combustion and Flame, vol.87, issue.3-4, pp.3-4289, 1991.
DOI : 10.1016/0010-2180(91)90114-Q

M. S. Khan and B. L. Crynes, Survey of recent methane pyrolysis literature -a survey of methane pyrolysis data is presented and discussed, Industrial and Engineering Chemistry, issue.10, p.6254, 1970.

E. K. Lee, S. Y. Lee, G. Y. Han, B. K. Lee, T. J. Lee et al., Catalytic decomposition of methane over carbon blacks for CO2-free hydrogen production, Carbon, vol.42, issue.12-13, pp.12-132641
DOI : 10.1016/j.carbon.2004.06.003

H. B. Palmer, J. Lahaye, and K. C. Hou, Kinetics and mechanism of the thermal decomposition of methane in a flow system, The Journal of Physical Chemistry, vol.72, issue.1, p.348, 1968.
DOI : 10.1021/j100847a068

C. J. Chen, M. H. Back, and R. A. Back, ChemInform Abstract: THE THERMAL DECOMPOSITION OF METHANE. I. KINETICS OF THE PRIMARY DECOMPOSITION TO C2H6 + H2, RATE CONSTANT FOR THE HOMOGENEOUS UNIMOLECULAR DISSOCIATION OF METHANE AND ITS PRESSURE DEPENDENCE, Chemischer Informationsdienst, vol.53, issue.17, pp.533580-3590, 1975.
DOI : 10.1139/v75-516

C. J. Chen, M. H. Back, and R. A. Back, Mechanism of the Thermal Decomposition of Methane
DOI : 10.1021/bk-1976-0032.ch001

C. J. Chen, M. H. Back, and R. A. Back, mixtures, Canadian Journal of Chemistry, vol.55, issue.10
DOI : 10.1139/v77-229

URL : https://hal.archives-ouvertes.fr/hal-01548931

J. M. Roscoe and M. J. Thompson, Thermal-decomposition of methane -auto-catalysis

F. Billaud, C. Gueret, and J. Weill, Thermal decomposition of pure methane at 1263 K. Experiments and mechanistic modelling, Thermochimica Acta, vol.211, pp.303-322, 1992.
DOI : 10.1016/0040-6031(92)87029-A

G. Fau, N. Gascoin, P. Gillard, and J. Steelant, Methane pyrolysis: Literature survey and comparisons of available data for use in numerical simulations, Journal of Analytical and Applied Pyrolysis, vol.104, pp.1-9, 2013.
DOI : 10.1016/j.jaap.2013.04.006

URL : https://hal.archives-ouvertes.fr/hal-00868606

N. A. Eaves, S. B. Dworkin, and M. J. Thomson, The importance of reversibility in modeling soot nucleation and condensation processes, Proceedings of the Combustion Institute, pp.1787-1794, 2015.
DOI : 10.1016/j.proci.2014.05.036

E. Ranzi, A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli et al., Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels, Progress in Energy and Combustion Science, pp.468-501, 2012.
DOI : 10.1016/j.pecs.2012.03.004

S. L. Girshick and C. P. Chiu, Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor, The Journal of Chemical Physics, vol.40, issue.2, pp.1273-1277, 1990.
DOI : 10.1063/1.456027

M. J. Hounslow, R. L. Ryall, and V. R. Marshall, A discretized population balance for nucleation, growth, and aggregation, AIChE Journal, vol.34, issue.11, pp.1821-1832, 1988.
DOI : 10.1002/aic.690341108