Adapting machine learning methods to U-statistics - PASTEL - Thèses en ligne de ParisTech Accéder directement au contenu
Thèse Année : 2016

Adapting machine learning methods to U-statistics

Adaptation des méthodes d’apprentissage aux U-statistiques

Résumé

With the increasing availability of large amounts of data, computational complexity has become a keystone of many machine learning algorithms. Stochastic optimization algorithms and distributed/decentralized methods have been widely studied over the last decade and provide increased scalability for optimizing an empirical risk that is separable in the data sample. Yet, in a wide range of statistical learning problems, the risk is accurately estimated by U-statistics, i.e., functionals of the training data with low variance that take the form of averages over d-tuples. We first tackle the problem of sampling for the empirical risk minimization problem. We show that empirical risks can be replaced by drastically computationally simpler Monte-Carlo estimates based on O(n) terms only, usually referred to as incomplete U-statistics, without damaging the learning rate. We establish uniform deviation results and numerical examples show that such approach surpasses more naive subsampling techniques. We then focus on the decentralized estimation topic, where the data sample is distributed over a connected network. We introduce new synchronous and asynchronous randomized gossip algorithms which simultaneously propagate data across the network and maintain local estimates of the U-statistic of interest. We establish convergence rate bounds with explicit data and network dependent terms. Finally, we deal with the decentralized optimization of functions that depend on pairs of observations. Similarly to the estimation case, we introduce a method based on concurrent local updates and data propagation. Our theoretical analysis reveals that the proposed algorithms preserve the convergence rate of centralized dual averaging up to an additive bias term. Our simulations illustrate the practical interest of our approach.
L’explosion récente des volumes de données disponibles a fait de la complexité algorithmique un élément central des méthodes d’apprentissage automatique. Les algorithmes d’optimisation stochastique ainsi que les méthodes distribuées et décentralisées ont été largement développés durant les dix dernières années. Ces méthodes ont permis de faciliter le passage à l’échelle pour optimiser des risques empiriques dont la formulation est séparable en les observations associées. Pourtant, dans de nombreux problèmes d’apprentissage statistique, l’estimation précise du risque s’effectue à l’aide de U-statistiques, des fonctions des données prenant la forme de moyennes sur des d-uplets. Nous nous intéressons tout d’abord au problème de l’échantillonnage pour la minimisation du risque empirique. Nous montrons que le risque peut être remplacé par un estimateur de Monte-Carlo, intitulé U-statistique incomplète, basé sur seulement O(n) termes et permettant de conserver un taux d’apprentissage du même ordre. Nous établissons des bornes sur l’erreur d’approximation du U-processus et les simulations numériques mettent en évidence l’avantage d’une telle technique d’échantillonnage. Nous portons par la suite notre attention sur l’estimation décentralisée, où les observations sont désormais distribuées sur un réseau connexe. Nous élaborons des algorithmes dits gossip, dans des cadres synchrones et asynchrones, qui diffusent les observations tout en maintenant des estimateurs locaux de la U-statistique à estimer. Nous démontrons la convergence de ces algorithmes avec des dépendances explicites en les données et la topologie du réseau. Enfin, nous traitons de l’optimisation décentralisée de fonctions dépendant de paires d’observations. De même que pour l’estimation, nos méthodes sont basées sur la concomitance de la propagation des observations et l’optimisation local du risque. Notre analyse théorique souligne que ces méthodes conservent une vitesse de convergence du même ordre que dans le cas centralisé. Les expériences numériques confirment l’intérêt pratique de notre approche.
Fichier principal
Vignette du fichier
thesis_colin.pdf (2.97 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01701636 , version 1 (06-02-2018)

Identifiants

  • HAL Id : tel-01701636 , version 1

Citer

Igor Colin. Adapting machine learning methods to U-statistics. Machine Learning [cs.LG]. Télécom ParisTech, 2016. English. ⟨NNT : 2016ENST0070⟩. ⟨tel-01701636⟩
363 Consultations
448 Téléchargements

Partager

Gmail Facebook X LinkedIn More