Skip to Main content Skip to Navigation

Mesure et modélisation de la contamination du sol dans les ouvrages de gestion à la source du ruissellement urbain

Abstract : Sustainable Urban Drainage Systems (SUDS) are increasingly used for stormwater management. However, the generalization of runoff infiltration in urban watersheds raises some concerns regarding the soil's ability to retain ubiquitous micropollutants. The present work addresses soil contamination by trace metals and polycyclic aromatic hydrocarbons (PAHs) in such infiltration devices, with the aims of: (i) appraising the levels and spatial extent of soil contamination, (ii) better understanding the mechanisms which govern the fate of contaminants in these systems, and (iii) identifying design and maintenance guidelines which may enhance long-term pollutant control through SUDS.The first part of the study consists in a series of experimental investigations in ten contrasting study sites, which have been in operation for more than ten years. The two-stage methodology successively leads to cartographies of metal contamination in the surface soil, and vertical profiles of metal and PAH concentrations, along with different explanatory variables. The spatial distribution of trace metals in the upper horizon displays a systematic structure with respect to the inflow area, and bears the time-integrated signature of the infiltration fluxes and flow pathways at the surface. In the most contaminated zone of the facilities, a significant enrichment of metals and PAHs is detectable until 10 to 40 cm depth. Contaminant retention results from the combination of different physicochemical and mechanical processes (resp. sorption and sedimentation/filtration), the contribution of which can be assessed via the zirconium deficit in urban sediment in comparison to the soil's geochemical background. The inter-site variability of contamination levels is attributable to (i) differences in the soil's retention capacities, and (ii) differences in pollutant loads from the watershed. Although surface contents may exceed intervention thresholds for “multi-functional” spaces in several study sites, the area which would require soil remediation is laterally and vertically limited.These experimental assessments are complemented by a modelling approach, to describe the long-term evolution of soil contamination, and to evaluate the effect of various SUDS designs and maintenance operations. A sensitivity analysis is first carried out so as to identify the “key elements” in the system description: the results show that a wrong estimation of the soil's dispersivity or sorption isotherm is likely to induce significant biases in the predicted contamination profiles. A method is then proposed to describe non-uniform water infiltration fluxes, and the filtration of particle-bound contaminants. The model is validated via a comparison between measured and predicted metal profiles in one of the study sites, where a comprehensive soil characterization is undertaken. Finally, a “scenario analysis” illustrates the benefits of (i) using soil enrichment products with enhanced sorption capacities, and (ii) facilitating water spreading at the surface, in terms of “lifespan” of the devices and maintenance requirements.
Document type :
Complete list of metadata
Contributor : ABES STAR :  Contact
Submitted on : Thursday, February 8, 2018 - 9:26:55 AM
Last modification on : Friday, August 5, 2022 - 2:38:11 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01703864, version 1


Damien Tedoldi. Mesure et modélisation de la contamination du sol dans les ouvrages de gestion à la source du ruissellement urbain. Ingénierie de l'environnement. Université Paris-Est, 2017. Français. ⟨NNT : 2017PESC1201⟩. ⟨tel-01703864⟩



Record views


Files downloads