A. Dalla-corte and D. , Effets du traitement chimique de la surface d'une électrode négative en silicium amorphe pour batterie lithium-ion : étude par spectroscopie infrarouge in situ, Thèse de doctorat, École Polytechnique. cité pages xvii, pp.31-90, 2013.

A. Dalla-corte, D. Caillon, G. Jordy, C. Chazalviel, J. N. Rosso et al., Spectroscopic Insight into Li-Ion Batteries during Operation: An Alternative Infrared Approach, Advanced Energy Materials, vol.509, issue.2, pp.42-45, 2016.
DOI : 10.1016/S0022-0728(01)00580-0

M. Armand, Intercalation Electrodes in Materials for Advanced Batteries, 1980.

D. Aurbach, B. Markovsky, A. Rodkin, E. Levi, Y. S. Cohen et al., On the capacity fading of LiCoO2 intercalation electrodes:, Electrochimica Acta, vol.47, issue.27, pp.4291-4306, 2002.
DOI : 10.1016/S0013-4686(02)00417-6

J. Ayache, L. Beaunier, J. Boumendil, G. Ehret, and D. Laub, Sample Preparation Handbook for Transmission Electron Microscopy, p.38, 2010.
DOI : 10.1007/978-1-4419-5975-1

URL : https://link.springer.com/content/pdf/bfm%3A978-1-4419-5975-1%2F1.pdf

A. Barai, G. H. Chouchelamane, Y. Guo, A. Mcgordon, and P. Jennings, A study on the impact of lithium-ion cell relaxation on electrochemical impedance spectroscopy, Journal of Power Sources, vol.280, pp.74-80, 2015.
DOI : 10.1016/j.jpowsour.2015.01.097

M. Battaglia, S. Piazza, C. Sunseri, and R. Inguanta, Amorphous silicon nanotubes via galvanic displacement deposition, Electrochemistry Communications, vol.34, pp.134-137, 2013.
DOI : 10.1016/j.elecom.2013.05.041

L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause, and J. R. Dahn, Colossal Reversible Volume Changes in Lithium Alloys, Electrochemical and Solid-State Letters, vol.60, issue.9, pp.137-52, 2001.
DOI : 10.1103/PhysRevE.60.6449

W. Beyer, R. Fischer, and H. Wagner, Lithium doping of amorphous silicon, Journal of Electronic Materials, vol.20, issue.2, pp.127-137, 1979.
DOI : 10.1139/p68-083

S. Biologic, Application note 23 -EIS measurements on Li-ion batteries EC- Lab®software parameters adjustment, p.103, 2010.

A. Bordes, D. Vito, E. Haon, C. Boulineau, A. Montani et al., Multiscale Investigation of Silicon Anode Li Insertion Mechanisms by ToF-SIMS Imaging Performed on In Situ FIB Cross Section, Chemistry of Materials, p.55, 2016.

S. Bourderau, T. Brousse, and D. M. Schleich, Amorphous silicon as a possible anode material for Li-ion batteries, Journal of Power Sources, vol.81, issue.82, pp.233-236, 1999.
DOI : 10.1016/S0378-7753(99)00194-9

J. Bullot and M. P. Schmidt, Physics of Amorphous Silicon???Carbon Alloys, physica status solidi (b), vol.35, issue.78, pp.345-418, 1987.
DOI : 10.1007/3-540-12807-7_20

H. Bülter, M. Sternad, E. D. Sardinha, J. Witt, C. Dosche et al., Layer, Journal of The Electrochemical Society, vol.163, issue.3, pp.504-512, 2016.
DOI : 10.1149/2.0731603jes

C. Bünzli, H. Kaiser, and P. Novák, Important Aspects for Reliable Electrochemical Impedance Spectroscopy Measurements of Li-Ion Battery Electrodes, Journal of the Electrochemical Society, vol.162, issue.1, pp.218-222, 2015.
DOI : 10.1149/2.1061501jes

J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacin, Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions, Advanced Materials, vol.127, issue.8, pp.170-192, 2010.
DOI : 10.1002/adma.201000717

URL : https://hal.archives-ouvertes.fr/hal-00528312

B. Campbell, R. Ionescu, M. Tolchin, K. Ahmed, Z. Favors et al., Carbon-Coated, Diatomite-Derived Nanosilicon as a High Rate Capable Li-ion Battery Anode, Scientific Reports, vol.8, issue.1, pp.33050-33064, 2016.
DOI : 10.1039/C5EE00239G

URL : http://www.nature.com/articles/srep33050.pdf

C. Cao, H. G. Steinrück, B. Shyam, K. H. Stone, and M. F. Toney, In Situ Study of Silicon Electrode Lithiation with X-ray Reflectivity, Nano Letters, vol.16, issue.12, pp.7394-7401, 2016.
DOI : 10.1021/acs.nanolett.6b02926

Y. J. Chabal, Surface infrared spectroscopy, Surface Science Reports, vol.8, issue.5-7, pp.211-357, 1988.
DOI : 10.1016/0167-5729(88)90011-8

C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang et al., High-performance lithium battery anodes using silicon nanowires, Nature Nanotechnology, vol.4, issue.8, pp.31-35, 2008.
DOI : 10.1038/nnano.2007.411

C. K. Chan, R. Ruffo, S. S. Hong, R. A. Huggins, and Y. Cui, Structural and electrochemical study of the reaction of lithium with silicon nanowires, Journal of Power Sources, vol.189, issue.1, pp.34-39, 2009.
DOI : 10.1016/j.jpowsour.2008.12.047

J. N. Chazalviel, B. H. Erné, F. Maroun, and F. Ozanam, In situ infrared spectroscopy of the semiconductor???electrolyte interface, Journal of Electroanalytical Chemistry, vol.509, issue.2, pp.108-118, 2001.
DOI : 10.1016/S0022-0728(01)00580-0

J. N. Chazalviel, S. Fellah, and F. Ozanam, In situ infrared spectroscopy: a powerful technique for semiconducting electrodes, Journal of Electroanalytical Chemistry, vol.524, issue.525, pp.137-143, 2002.
DOI : 10.1016/S0022-0728(01)00741-0

V. Chevrier, J. Zwanziger, and J. Dahn, First principles study of Li???Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations, Journal of Alloys and Compounds, vol.496, issue.1-2, pp.25-36, 2010.
DOI : 10.1016/j.jallcom.2010.01.142

V. L. Chevrier and J. R. Dahn, First Principles Model of Amorphous Silicon Lithiation, Journal of The Electrochemical Society, vol.156, issue.6, pp.454-58, 2009.
DOI : 10.1103/PhysRevB.46.2727

V. L. Chevrier and J. R. Dahn, First Principles Studies of Disordered Lithiated Silicon, Journal of The Electrochemical Society, vol.157, issue.4, pp.392-58, 2010.
DOI : 10.1149/1.1836972

H. B. Chew, B. Hou, X. Wang, and S. Xia, Cracking mechanisms in lithiated silicon thin film electrodes, International Journal of Solids and Structures, vol.51, issue.23-24, pp.4176-4187, 2014.
DOI : 10.1016/j.ijsolstr.2014.08.008

URL : https://doi.org/10.1016/j.ijsolstr.2014.08.008

J. Cho, Porous Si anode materials for lithium rechargeable batteries, Journal of Materials Chemistry, vol.9, issue.20, pp.4009-4014, 2010.
DOI : 10.1039/b923002e

M. Chon, V. Sethuraman, A. Mccormick, V. Srinivasan, and P. Guduru, Real-Time Measurement of Stress and Damage Evolution during Initial Lithiation of Crystalline Silicon, Physical Review Letters, vol.79, issue.4, pp.45503-45504, 2011.
DOI : 10.1149/1.3489374

F. A. Cotton and G. Wilkinson, Advanced inorganic chemistry: a comprehensive text, compl. rev. from the original literature edition, p.18, 1972.

P. Davuluri, An Introduction to Electron Microscopy booklet (FEI Thermo Fisher Scientific Group, 2015.

R. Dedryvère, H. Martinez, S. Leroy, D. Lemordant, F. Bonhomme et al., Surface film formation on electrodes in a LiCoO2/graphite cell: A step by step XPS study, Journal of Power Sources, vol.174, issue.2, pp.462-468, 2007.
DOI : 10.1016/j.jpowsour.2007.06.033

R. Dedryvère, D. Foix, S. Franger, S. Patoux, L. Daniel et al., Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel LiMn 1, 2010.

D. W. Dees, A. N. Jansen, and D. P. Abraham, Theoretical examination of reference electrodes for lithium-ion cells, Journal of Power Sources, vol.174, issue.2, pp.1001-1006, 2007.
DOI : 10.1016/j.jpowsour.2007.06.128

J. P. Diard, L. Gorrec, B. Montella, and C. , Cinétique électrochimique, p.101, 1996.

N. Dupré, P. Moreau, D. Vito, E. Quazuguel, L. Boniface et al., Multiprobe Study of the Solid Electrolyte Interphase on Silicon-Based Electrodes in Full-Cell Configuration, Chemistry of Materials, vol.28, issue.8, pp.2557-2572, 2016.
DOI : 10.1021/acs.chemmater.5b04461

K. Edström, T. Gustafsson, and J. O. Thomas, The cathode???electrolyte interface in the Li-ion battery, Electrochimica Acta, vol.50, issue.2-3, pp.397-403, 2004.
DOI : 10.1016/j.electacta.2004.03.049

K. Edström, M. Herstedt, and D. P. Abraham, A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries, Journal of Power Sources, vol.153, issue.2, pp.380-384, 2006.
DOI : 10.1016/j.jpowsour.2005.05.062

E. Gmbh, User Manual -Electrochemical Test Cell ECC-PAT-Core - Release 2.01, p.26, 2017.

V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy & Environmental Science, vol.196, issue.82, pp.3243-3262, 2011.
DOI : 10.1016/j.jpowsour.2010.06.093

S. Fang, M. Yan, and R. J. Hamers, Cell design and image analysis for in situ Raman mapping of inhomogeneous state-of-charge profiles in lithium-ion batteries, Journal of Power Sources, vol.352, pp.18-25, 2017.
DOI : 10.1016/j.jpowsour.2017.03.055

F. Farmakis, C. Elmasides, P. Fanz, M. Hagen, and N. Georgoulas, High energy density amorphous silicon anodes for lithium ion batteries deposited by DC sputtering, Journal of Power Sources, vol.293, pp.301-305, 2015.
DOI : 10.1016/j.jpowsour.2015.05.083

A. Faucheux, Nouvelles fonctionnalités de l'interface silicium/diélectrique pour la microélectronique, Thèse de doctorat, École Polytechnique, pp.30-31, 2005.

T. M. Fears, M. Doucet, J. F. Browning, J. K. Baldwin, J. G. Winiarz et al., Evaluating the solid electrolyte interphase formed on silicon electrodes: a comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry, Physical Chemistry Chemical Physics, vol.29, issue.20, pp.13927-13940, 2016.
DOI : 10.1021/om100106e

M. D. Fleischauer, M. N. Obrovac, J. D. Mcgraw, R. A. Dunlap, J. M. Topple et al., Al-M (M=Cr,???Fe,???Mn,???Ni) Thin-Film Negative Electrode Materials, Journal of The Electrochemical Society, vol.124, issue.3, pp.484-491, 2006.
DOI : 10.1149/1.1393884

M. D. Fleischauer, M. N. Obrovac, and J. R. Dahn, Al???Si Thin-Film Negative Electrodes for Li-Ion Batteries, Journal of The Electrochemical Society, vol.35, issue.82, pp.851-854, 2008.
DOI : 10.1149/1.1652421

J. Frank, Three-dimensional electron microscopy of macromolecular assemblies (Acad. Press), p.65, 1996.

S. Gaiaschi, Fabrication, caractérisation et modélisation de couches minces d'alliages silicium-carbone microcristallins, Thèse de doctorat, p.17, 2014.

M. Gauthier, Électrodes négatives à base de silicium pour accumulateurs au lithium: mécanisme réactionnel à l'échelle nanométrique et optimisation des performances, Thèse de doctorat Faculté des sciences et des tech- niques, pp.11-13, 2013.

M. Gauthier, T. J. Carney, A. Grimaud, L. Giordano, N. Pour et al., Electrode???Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights, The Journal of Physical Chemistry Letters, vol.6, issue.22, pp.4653-4672, 2015.
DOI : 10.1021/acs.jpclett.5b01727

L. Gireaud, S. Grugeon, S. Laruelle, S. Pilard, and J. M. Tarascon, Identification of Li Battery Electrolyte Degradation Products Through Direct Synthesis and Characterization of Alkyl Carbonate Salts, Journal of The Electrochemical Society, vol.142, issue.121, pp.850-857, 2005.
DOI : 10.1021/ma9914321

A. Gohier, B. Laïk, J. P. Pereira-ramos, C. S. Cojocaru, and P. Tran-van, Influence of the diameter distribution on the rate capability of silicon nanowires for lithium-ion batteries, Journal of Power Sources, vol.203, pp.135-139, 2012.
DOI : 10.1016/j.jpowsour.2011.12.023

URL : https://hal.archives-ouvertes.fr/hal-00793959

Z. P. Guo, Z. W. Zhao, H. K. Liu, and S. X. Dou, Lithium insertion in Si???TiC nanocomposite materials produced by high-energy mechanical milling, Journal of Power Sources, vol.146, issue.1-2, pp.190-194, 2005.
DOI : 10.1016/j.jpowsour.2005.03.113

P. P. Harks, F. M. Mulder, and P. H. Notten, In situ methods for Li-ion battery research: A review of recent developments, Journal of Power Sources, vol.288, pp.92-105, 2015.
DOI : 10.1016/j.jpowsour.2015.04.084

C. H. Hsu and F. Mansfeld, into a Capacitance, CORROSION, vol.57, issue.9, pp.747-748, 2001.
DOI : 10.5006/1.3280607

R. Huston and J. N. Butler, Standard potential of the lithium electrode in aqueous solutions, The Journal of Physical Chemistry, vol.72, issue.12, pp.4263-4264, 1968.
DOI : 10.1021/j100858a054

S. M. Hwang, H. Y. Lee, S. W. Jang, S. M. Lee, S. J. Lee et al., Lithium Insertion in SiAg Powders Produced by Mechanical Alloying, Electrochemical and Solid-State Letters, vol.40, issue.41, pp.97-100, 2001.
DOI : 10.1016/0167-2738(90)90062-V

S. S. Hwang, M. Sohn, H. I. Park, J. M. Choi, C. G. Cho et al., Effect of the Heat Treatment on the Dimensional Stability of Si Electrodes with PVDF Binder, Electrochimica Acta, vol.211, pp.356-363, 2016.
DOI : 10.1016/j.electacta.2016.05.183

Y. Ikezawa and T. Ariga, In situ FTIR spectra at the Cu electrode/propylene carbonate solution interface, Electrochimica Acta, vol.52, issue.7, pp.2710-2715, 2007.
DOI : 10.1016/j.electacta.2006.09.050

I. Gmbh, ToFSIMS5 Brochure, p.33, 2017.

U. Irfan, How Lithium Ion Batteries Grounded the Dreamliner Scientific American (https://www.scientificamerican.com/article/how-lithium-ion-batteries-grounded- the-dreamliner, 2014.

F. Joho and P. Novák, SNIFTIRS investigation of the oxidative decomposition of organic-carbonate-based electrolytes for lithium-ion cells, Electrochimica Acta, vol.45, issue.21, pp.3589-3599, 2000.
DOI : 10.1016/S0013-4686(00)00480-1

J. B. Jorcin, M. E. Orazem, N. Pébère, and B. Tribollet, CPE analysis by local electrochemical impedance spectroscopy, Electrochimica Acta, vol.51, issue.8-9, pp.1473-1479, 2006.
DOI : 10.1016/j.electacta.2005.02.128

URL : https://hal.archives-ouvertes.fr/hal-00476972

H. Jung, M. Park, Y. G. Yoon, G. B. Kim, and S. K. Joo, Amorphous silicon anode for lithium-ion rechargeable batteries, Journal of Power Sources, vol.115, issue.2, pp.346-351, 2003.
DOI : 10.1016/S0378-7753(02)00707-3

J. S. Kim, D. Byun, and J. K. Lee, Effect of Hydrogen Plasma Pretreatment on the Growth of Silicon Nanowires and Their Employment as the Anode Material of Lithium Secondary Batteries, Journal of Nanoscience and Nanotechnology, vol.12, issue.2, pp.1429-1433, 2012.
DOI : 10.1166/jnn.2012.4657

F. M. Kindermann, A. Noel, S. V. Erhard, and A. Jossen, Long-term equalization effects in Li-ion batteries due to local state of charge inhomogeneities and their impact on impedance measurements, Electrochimica Acta, vol.185, pp.107-116, 2015.
DOI : 10.1016/j.electacta.2015.10.108

J. C. Knights, Structural studies of hydrogenated amorphous silicon, Solar Cells, vol.2, issue.4, pp.409-419, 1980.
DOI : 10.1016/0379-6787(80)90017-4

J. C. Knights and G. Lucovsky, Hydrogen in amorphous semiconductors, Critical Reviews in Solid State and Materials Sciences, vol.43, issue.9, pp.211-283, 1980.
DOI : 10.1149/1.2129110

A. Kraytsberg and Y. Ein-eli, Higher, Stronger, Better?????? A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries, Advanced Energy Materials, vol.11, issue.19, pp.922-939, 2012.
DOI : 10.1149/1.2894902

A. Kraytsberg and Y. Ein-eli, A critical review-promises and barriers of conversion electrodes for Li-ion batteries, Journal of Solid State Electrochemistry, vol.160, issue.7, pp.1907-1923, 2017.
DOI : 10.1149/2.022311jes

M. Kubicek, G. Holzlechner, A. K. Opitz, S. Larisegger, H. Hutter et al., A novel ToF-SIMS operation mode for sub 100nm lateral resolution: Application and performance, Applied Surface Science, vol.289, pp.407-416, 2014.
DOI : 10.1016/j.apsusc.2013.10.177

T. L. Kulova, A. M. Skundin, Y. V. Pleskov, E. I. Terukov, and O. I. Kon-'kov, Lithium insertion into amorphous silicon thin-film electrodes, Journal of Electroanalytical Chemistry, vol.600, issue.1, pp.217-225, 2007.
DOI : 10.1016/j.jelechem.2006.07.002

S. Larfaillou, D. Guy-bouyssou, F. Le-cras, and S. Franger, Comprehensive characterization of all-solid-state thin films commercial microbatteries by Electrochemical Impedance Spectroscopy, Journal of Power Sources, vol.319, pp.139-146, 2016.
DOI : 10.1016/j.jpowsour.2016.04.057

E. Larquet, Cours de microscopie électronique en transmission, Licence Professionnelle 3, p.36, 2016.

A. Lasia, Electrochemical Impedance Spectroscopy and its Applications, p.107, 2014.
DOI : 10.1007/0-306-46916-2_2

P. G. Lecomber and W. E. Spear, Doped amorphous semiconductors, Amorphous Semiconductors, number 36 in Topics in Applied Physics, pp.251-285, 1979.
DOI : 10.1007/3-540-16008-6_163

G. Lee, S. L. Schweizer, and R. B. Wehrspohn, Electrochemical characteristics of plasma-etched black silicon as anodes for Li-ion batteries, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.32, issue.6, pp.61202-61213, 2014.
DOI : 10.1116/1.4897609

L. Leveau, B. Laïk, J. P. Pereira-ramos, A. Gohier, P. Tran-van et al., Silicon nano-trees as high areal capacity anodes for lithium-ion batteries, Journal of Power Sources, vol.316, pp.1-7, 2016.
DOI : 10.1016/j.jpowsour.2016.03.053

J. Li and J. R. Dahn, An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si, Journal of The Electrochemical Society, vol.10, issue.121, pp.156-161, 2007.
DOI : 10.1016/0038-1098(81)91028-0

M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing, p.22, 2005.
DOI : 10.1002/0471724254

L. Lin, X. Xu, C. Chu, M. K. Majeed, and J. Yang, Mesoporous Amorphous Silicon: A Simple Synthesis of a High-Rate and Long-Life Anode Material for Lithium-Ion Batteries, Angewandte Chemie International Edition, p.11, 2016.

D. Linden and T. B. Reddy, Handbook of batteries (McGraw-Hill), 2002.

W. R. Liu, Z. Z. Guo, W. S. Young, D. T. Shieh, H. C. Wu et al., Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive, Journal of Power Sources, vol.140, issue.1, pp.139-144, 2005.
DOI : 10.1016/j.jpowsour.2004.07.032

X. H. Liu, J. W. Wang, S. Huang, F. Fan, X. Huang et al., In situ atomic-scale imaging of electrochemical lithiation in silicon, Nature Nanotechnology, vol.109, issue.11, pp.749-756, 2012.
DOI : 10.1016/j.jpowsour.2010.11.155

Z. Luo, D. Fan, X. Liu, H. Mao, C. Yao et al., High performance silicon carbon composite anode materials for lithium ion batteries, Journal of Power Sources, vol.189, issue.1, pp.16-21, 2009.
DOI : 10.1016/j.jpowsour.2008.12.068

F. K. Lutgens and E. J. Tarbuck, Essentials of geology, 2000.

A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy et al., Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid, ACS Applied Materials & Interfaces, vol.2, issue.11, pp.3004-3010, 2010.
DOI : 10.1021/am100871y

F. Maroun, Spectroscopie infrarouge à l'interface électrochimique : des semiconducteurs vers les métaux, Thèse de doctorat, École Polytechnique, p.31, 1998.

F. A. Miller and C. H. Wilkins, Infrared Spectra and Characteristic Frequencies of Inorganic Ions, Analytical Chemistry, vol.24, issue.8, pp.1253-1294, 1952.
DOI : 10.1021/ac60068a007

S. S. Mirshafieyan and J. Guo, Silicon colors: spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability, Optics Express, vol.22, issue.25, pp.31545-31554, 2014.
DOI : 10.1364/OE.22.031545

K. Mizushima, P. Jones, P. Wiseman, and J. Goodenough, LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density, Materials Research Bulletin, vol.15, issue.6, pp.783-789, 1980.
DOI : 10.1016/0025-5408(80)90012-4

M. Moshkovich, Y. Gofer, and D. Aurbach, Investigation of the Electrochemical Windows of Aprotic Alkali Metal (Li, Na, K) Salt Solutions, Journal of The Electrochemical Society, vol.43, issue.4, pp.155-167, 2001.
DOI : 10.1016/0039-6028(74)90286-6

G. Nazri and R. H. Muller, Composition of Surface Layers on Li Electrodes in PC, LiClO[sub 4] of Very Low Water Content, Journal of The Electrochemical Society, vol.132, issue.9, pp.2050-2054, 1985.
DOI : 10.1149/1.2114288

G. Nazri and R. H. Muller, Effect of Residual Water in Propylene Carbonate on Films Formed on Lithium, Journal of The Electrochemical Society, vol.132, issue.9, pp.2054-2058, 1985.
DOI : 10.1149/1.2114289

R. Nesper, Structure and chemical bonding in zintl-phases containing lithium, Progress in Solid State Chemistry, vol.20, issue.1, pp.1-45, 1990.
DOI : 10.1016/0079-6786(90)90006-2

R. Nesper and H. G. Von-schnering, Li21Si5, a Zintl phase as well as a Hume-Rothery phase, Journal of Solid State Chemistry, vol.70, issue.1, pp.48-57, 1987.
DOI : 10.1016/0022-4596(87)90176-9

A. Netz, R. A. Huggins, and W. Weppner, The formation and properties of amorphous silicon as negative electrode reactant in lithium systems, Journal of Power Sources, vol.119, issue.121, pp.95-100, 2003.
DOI : 10.1016/S0378-7753(03)00132-0

M. N. Obrovac and V. L. Chevrier, Alloy Negative Electrodes for Li-Ion Batteries, Chemical Reviews, vol.114, issue.23, pp.11444-11502, 2014.
DOI : 10.1021/cr500207g

M. N. Obrovac and L. Christensen, Structural Changes in Silicon Anodes during Lithium Insertion/Extraction, Electrochemical and Solid-State Letters, vol.9, issue.121, pp.93-102, 2004.
DOI : 10.1149/1.1652421

S. Ohara, J. Suzuki, K. Sekine, and T. Takamura, A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life, Journal of Power Sources, vol.136, issue.2, pp.303-306, 2004.
DOI : 10.1016/j.jpowsour.2004.03.014

H. Okamoto, The Li-Si (Lithium-Silicon) system, Bulletin of Alloy Phase Diagrams, vol.54, issue.11, pp.306-312, 1990.
DOI : 10.1515/znb-1966-0204

F. Orsini, Étude par spectroscopie d'impédance et par microscopie électronique á balayage in-situ des interfaces électrode/électrolyte dans les batteries rechargeable au lithium, Thèse de doctorat, pp.110-112, 1999.

F. Ozanam and M. Rosso, Silicon as anode material for Li-ion batteries, Materials Science and Engineering: B, vol.213, pp.2-11, 2016.
DOI : 10.1016/j.mseb.2016.04.016

C. M. Park, J. H. Kim, H. Kim, and H. J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chemical Society Reviews, vol.148, issue.82, pp.3115-3141, 2010.
DOI : 10.1039/b919877f

M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim et al., Silicon Nanotube Battery Anodes, Nano Letters, vol.9, issue.11, pp.3844-3847, 2009.
DOI : 10.1021/nl902058c

E. Peled, The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems???The Solid Electrolyte Interphase Model, Journal of The Electrochemical Society, vol.126, issue.12, pp.2047-2051, 1979.
DOI : 10.1149/1.2128859

C. Pereira-nabais, J. ?wiatowska, A. Chagnes, F. Ozanam, A. Gohier et al., Interphase chemistry of Si electrodes used as anodes in Li-ion batteries, Applied Surface Science, vol.266, pp.5-16, 2013.
DOI : 10.1016/j.apsusc.2012.10.165

URL : https://hal.archives-ouvertes.fr/hal-00793814

C. Pereira-nabais, J. ?wiatowska, M. Rosso, F. Ozanam, A. Seyeux et al., Effect of Lithiation Potential and Cycling on Chemical and Morphological Evolution of Si Thin Film Electrode Studied by ToF-SIMS, ACS Applied Materials & Interfaces, vol.6, issue.15, pp.13023-13033, 2014.
DOI : 10.1021/am502913q

B. Philippe, R. Dedryvère, M. Gorgoi, H. Rensmo, D. Gonbeau et al., Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries ??? A Photoelectron Spectroscopy Study, Chemistry of Materials, vol.25, issue.3, pp.394-404, 2013.
DOI : 10.1021/cm303399v

URL : https://hal.archives-ouvertes.fr/hal-01560421

B. E. Pieters, Characterization of thin-film silicon materials and solar cells through numerical modeling, Thèse de doctorat, pp.16-17, 2008.

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, ChemInform Abstract: Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries., ChemInform, vol.407, issue.3, pp.496-499, 2000.
DOI : 10.1002/chin.200103013

M. J. Pourbaix and N. D. Zoubov, Atlas d'equilibres electrochimiques, 1963.
DOI : 10.1149/1.2426051

E. Radvanyi, K. Van-havenbergh, W. Porcher, S. Jouanneau, J. S. Bridel et al., Study and modeling of the Solid Electrolyte Interphase behavior on nano-silicon anodes by Electrochemical Impedance Spectroscopy, Electrochimica Acta, vol.137, pp.751-757, 2014.
DOI : 10.1016/j.electacta.2014.06.069

A. V. Rao, J. N. Chazalviel, and F. Ozanam, In situ characterization of the n -Si / acetonitrile interface by electromodulated infrared internal -reflection spectrocopy, Journal of Applied Physics, vol.60, pp.696-706, 1986.

M. V. Reddy, S. Rao, G. V. Chowdari, and B. V. , Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries, Chemical Reviews, vol.113, issue.7, pp.5364-5457, 2013.
DOI : 10.1021/cr3001884

K. Rerbal, J. N. Chazalviel, F. Ozanam, and I. Solomon, Tail widths in hydrogenated amorphous silicon and amorphous silicon carbon alloys measured by photomodulated infrared spectroscopy, Physical Review B, vol.47, issue.302, p.54, 2002.
DOI : 10.1103/PhysRevB.47.9435

A. Rohou and N. Grigorieff, CTFFIND4: Fast and accurate defocus estimation from electron micrographs, Journal of Structural Biology, vol.192, issue.2, pp.216-221, 2015.
DOI : 10.1016/j.jsb.2015.08.008

M. Rosso, L. Touahir, A. Cheriet, I. Solomon, J. N. Chazalviel et al., Anodes of Li-Ion Batteries, pp.2715839-2715840, 2014.

J. Saint, M. Morcrette, D. Larcher, L. Laffont, S. Beattie et al., Towards a Fundamental Understanding of the Improved Electrochemical Performance of Silicon???Carbon Composites, Advanced Functional Materials, vol.73, issue.82, pp.1765-1774, 2007.
DOI : 10.1002/adfm.200600937

URL : https://hal.archives-ouvertes.fr/hal-00169730

F. Shi, P. N. Ross, H. Zhao, G. Liu, G. A. Somorjai et al., Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy, Journal of the American Chemical Society, vol.137, issue.9, pp.3181-3184, 2015.
DOI : 10.1021/ja5128456

F. Shi, P. N. Ross, G. A. Somorjai, and K. Komvopoulos, ATR-FTIR Spectroscopy, The Journal of Physical Chemistry C, vol.121, issue.27, p.114, 2017.
DOI : 10.1021/acs.jpcc.7b04132

H. C. Shin, J. A. Corno, J. L. Gole, and M. Liu, Porous silicon negative electrodes for rechargeable lithium batteries, Journal of Power Sources, vol.139, issue.1-2, pp.314-320, 2005.
DOI : 10.1016/j.jpowsour.2004.06.073

I. Solomon, M. P. Schmidt, and H. Tran-quoc, Selective low-power plasma decomposition of silane-methane mixtures for the preparation of methylated amorphous silicon, Physical Review B, vol.92, issue.60, pp.9895-9901, 1988.
DOI : 10.1016/S0022-3093(87)80362-9

F. A. Soto, Y. Ma, J. M. Martinez-de-la-hoz, J. M. Seminario, and P. B. Balbuena, Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries, Chemistry of Materials, vol.27, issue.23, pp.7990-8000, 2015.
DOI : 10.1021/acs.chemmater.5b03358

W. Spitzer and H. Y. Fan, -Type Silicon, Physical Review, vol.106, issue.2, pp.268-271, 1957.
DOI : 10.1103/PhysRev.106.882

A. Staller, Why Batteries Explode: Safety Concerns for Samsung. The Electrochemical Society Redcat Blog (http://www.electrochem.org/redcat-blog/batteries- explode-safety-concerns-samsung, 2016.

R. A. Street, Hydrogenated amorphous silicon. Cambridge solid state science series, 1991.

T. Swamy and Y. M. Chiang, Electrochemical Charge Transfer Reaction Kinetics at the Silicon-Liquid Electrolyte Interface, Journal of The Electrochemical Society, vol.162, issue.13, pp.7129-7134, 2015.
DOI : 10.1149/2.0181513jes

J. R. Szczech and S. Jin, Nanostructured silicon for high capacity lithium battery anodes, Energy Environ. Sci., vol.11, issue.121, pp.56-72, 2010.
DOI : 10.1149/1.2888173

T. Takamura, M. Uehara, J. Suzuki, K. Sekine, and K. Tamura, High capacity and long cycle life silicon anode for Li-ion battery, Journal of Power Sources, vol.158, issue.2, pp.1401-1404, 2006.
DOI : 10.1016/j.jpowsour.2005.10.081

J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol.81, issue.8, pp.359-367, 2001.
DOI : 10.1016/S0378-7753(98)00241-9

C. Wang, J. Appleby, A. Little, and F. E. , Electrochemical study on nano-Sn, Li4.4Sn and AlSi0.1 powders used as secondary lithium battery anodes, Journal of Power Sources, vol.93, issue.1-2, pp.174-185, 2001.
DOI : 10.1016/S0378-7753(00)00576-0

C. S. Wang, G. T. Wu, X. B. Zhang, Z. F. Qi, and W. Z. Li, Lithium Insertion in Carbon-Silicon Composite Materials Produced by Mechanical Milling, Journal of The Electrochemical Society, vol.145, issue.8, pp.2751-2758, 1998.
DOI : 10.1149/1.1838709

G. X. Wang, L. Sun, D. H. Bradhurst, S. Zhong, S. X. Dou et al., Innovative nanosize lithium storage alloys with silica as active centre, Journal of Power Sources, vol.88, issue.2, pp.278-281, 2000.
DOI : 10.1016/S0378-7753(00)00385-2

J. W. Wang, Y. He, F. Fan, X. H. Liu, S. Xia et al., Two-Phase Electrochemical Lithiation in Amorphous Silicon, Nano Letters, vol.13, issue.2, pp.709-715, 2013.
DOI : 10.1021/nl304379k

L. J. Webb, S. Rivillon, D. J. Michalak, Y. J. Chabal, and N. S. Lewis, Transmission Infrared Spectroscopy of Methyl- and Ethyl-Terminated Silicon(111) Surfaces, The Journal of Physical Chemistry B, vol.110, issue.14, pp.7349-7356, 2006.
DOI : 10.1021/jp054618c

Z. Wen, G. Lu, S. Mao, H. Kim, S. Cui et al., Silicon nanotube anode for lithium-ion batteries, Electrochemistry Communications, vol.29, pp.67-70, 2013.
DOI : 10.1016/j.elecom.2013.01.015

M. S. Whittingham, The Role of Ternary Phases in Cathode Reactions, Journal of The Electrochemical Society, vol.123, issue.3, pp.315-320, 1976.
DOI : 10.1149/1.2132817

N. Wiener, Extrapolation, Inerpolation, and Smoothing of Stationary Time Series (The M.I, 1975.

D. B. Williams and C. B. Carter, Transmission electron microscopy: a textbook for materials science, p.37, 2009.

D. L. Williamson, A. H. Mahan, B. P. Nelson, and R. S. Crandall, :H alloys studied by small???angle x???ray scattering, Applied Physics Letters, vol.36, issue.21, pp.783-785, 1989.
DOI : 10.1103/PhysRevB.36.9722

J. Wolfenstine, CaSi2 as an anode for lithium-ion batteries, Journal of Power Sources, vol.124, issue.1, pp.241-245, 2003.
DOI : 10.1016/S0378-7753(03)00731-6

C. Xiao, N. Du, H. Zhang, and D. Yang, Improved cyclic stability of Mg2Si by direct carbon coating as anode materials for lithium-ion batteries, Journal of Alloys and Compounds, vol.587, pp.807-811, 2014.
DOI : 10.1016/j.jallcom.2013.10.115

K. Xu, Electrolytes and Interphases in Li-Ion Batteries and Beyond, Chemical Reviews, vol.114, issue.23, pp.11503-11618, 2014.
DOI : 10.1021/cr500003w

K. Xu, G. V. Zhuang, J. L. Allen, U. Lee, S. S. Zhang et al., Syntheses and Characterization of Lithium Alkyl Mono- and Dicarbonates as Components of Surface Films in Li-Ion Batteries, The Journal of Physical Chemistry B, vol.110, issue.15, pp.7708-7719, 2006.
DOI : 10.1021/jp0601522

S. Xun, X. Song, L. Wang, M. E. Grass, Z. Liu et al., The Effects of Native Oxide Surface Layer on the Electrochemical Performance of Si Nanoparticle-Based Electrodes, Journal of The Electrochemical Society, vol.71, issue.12, pp.1260-1266, 2011.
DOI : 10.1021/jp901594g

J. Yang, N. Solomatin, A. Kraytsberg, and Y. Ein-eli, In-Situ Spectro-electrochemical Insight Revealing Distinctive Silicon Anode Solid Electrolyte Interphase Formation in a Lithium-ion Battery, pp.572-576, 2016.

R. Yazami and P. Touzain, A reversible graphite-lithium negative electrode for electrochemical generators, Journal of Power Sources, vol.9, issue.3, pp.365-371, 1983.
DOI : 10.1016/0378-7753(83)87040-2

T. Yim, S. J. Choi, Y. N. Jo, T. H. Kim, K. J. Kim et al., Effect of binder properties on electrochemical performance for silicon-graphite anode: Method and application of binder screening, Electrochimica Acta, vol.136, pp.112-120, 2014.
DOI : 10.1016/j.electacta.2014.05.062

S. Yoon, C. M. Park, and H. J. Sohn, Electrochemical Characterizations of Germanium and Carbon-Coated Germanium Composite Anode for Lithium-Ion Batteries, Electrochemical and Solid-State Letters, vol.175, issue.4, pp.42-45, 2008.
DOI : 10.1515/znb-1972-1009

B. T. Young, D. R. Heskett, C. C. Nguyen, M. Nie, J. C. Woicik et al., Hard X-ray Photoelectron Spectroscopy (HAXPES) Investigation of the Silicon Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries, ACS Applied Materials & Interfaces, vol.7, issue.36, p.89, 2015.
DOI : 10.1021/acsami.5b04845

G. Zhang, C. E. Shaffer, C. Y. Wang, and C. D. Rahn, In-Situ Measurement of Current Distribution in a Li-Ion Cell, Journal of the Electrochemical Society, vol.160, issue.4, pp.610-615, 2013.
DOI : 10.1149/2.046304jes

S. Zhang, K. Xu, and T. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery, Electrochimica Acta, vol.51, issue.8-9, pp.1636-1640, 2006.
DOI : 10.1016/j.electacta.2005.02.137

S. S. Zhang, A review on the separators of liquid electrolyte Li-ion batteries, Journal of Power Sources, vol.164, issue.1, pp.351-364, 2007.
DOI : 10.1016/j.jpowsour.2006.10.065

W. J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, Journal of Power Sources, vol.196, issue.1, pp.13-24, 2011.
DOI : 10.1016/j.jpowsour.2010.07.020