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Nomenclature

Ymaz maximum stress during the loading cycles

Smaz maximum deviatoric stress during the loading cycles
Om mean stress

oH hydrostatic stress

o_1 fatigue limit for fully reversed condition

S5_1 tensile fatigue limit for R = —1

b back stress

oy macroscopic yield stress

N current number of cycles

Np number of cycles to failure

D accumulated plastic strain rate given as \/g 154
D damage variable

Oq stress amplitude

Ou ultimate tensile stress

() Macaulay bracket symbol which keeps

the positive value and set negative value to zero

w energy dissipation rate at a certain scale

1474 energy dissipation rate at all scales

Weye dissipated energy per cycle

Ep rate of effective plastic strain

D accumulated plastic strain rate given as \/g 153

E Young’s modulus

k =500 ~ 800M Pa hardening parameter

B weakening scales distribution exponent

¥ material parameter from Chaboche law

« characterizes non-linearity of damage accumulation
a material parameter from Chaboche law

A=0~3 hydrostatic pressure sensitivity

S= devg deviatoric part of the stress tensor

Arr = Toct,a = %Jza the amplitude of octahedral shear stress

E€p rate of effective plastic strain

Wo reference density of damage energy

Jo The second principal invariant of the stress deviatoric tensor

ovym = V3Js Von Mises stress






Résumé en francais

La recherche des meilleures performances au meilleur colit en mécanique et dans le domaine des
transports conduit a des conditions d’utilisation des composants mécaniques de plus en plus séveres.
Les ruptures par fatigue sont largement étudiées car elles représentent 90% de toutes les défaillances
en service dues a des causes mécaniques (Sohar [2011]). Les ruptures par fatigue se produisent lorsque
un métal est soumis a une contrainte répétitive ou fluctuante et rompt a une contrainte trés inférieure
a sa résistance a la traction, et le processus se déroule sans aucune déformation plastique (pas d’aver-
tissement).

Ces problemes pratiques peuvent entrainer 1’apparition de la fatigue a des niveaux tres élevés de
gradient de contrainte, a petite échelle ou sur des strucutures a géométrie complexe et pour des trajets
de chargement multiaxiaux et non-constants. Pour ces contraintes dites "extrémes", les mécanismes
d’endommagement ainsi que les niveaux de résistance a la fatigue sont pour la plupart inconnus.
Ceci pose un probleme important lors de la phase de conception puisque, d’une part, les criteres
d’endurance existants peinent a rendre compte du comportement pour ce type de chargement, et
d’autre part, les données de fatigue qui permettraient d’identifier un modele adapté a ce probleme
sont presque inexistantes.

D’autre part, les composants mécaniques sont généralement de nature complexe et subissent des
chargements complexes. Les fabricants recherchent un modele pour la durée de vie de leurs com-
posants qui soit simple a utiliser, applicable aux matériaux métalliques et qui traite presque tous
les cas de chargements possibles. Dans le domaine de 1’endurance limitée, treés peu de criteres sont
disponibles. A I’heure actuelle, aucun d’entre eux qui réponde pleinement a la demande d’un outil
predictif de durée de vie ne peut étre utilisé en bureau d’études. En effet, la plupart des approches
existantes s’appuient sur des méthodes de comptage de cycles, dont I’extension au cas de contraintes
multiaxiales s’avere difficile voire impossible en raison de la difficulté a extraire et définir des cycles.

Des travaux antérieurs réalisés en collaboration avec I’entreprise PSA indiquent que les criteres
d’endurance multiaxiale utilisés pour les calculs de fatigue (modele de Papadopoulos et critere de
Dang Van) peinent a rendre compte efficacement de ces cas particuliers (Koutiri [2011]). Il apparait
donc essentiel de caractériser les mécanismes d’endommagement pour ce type de chargement et de
concevoir un modele capable de rendre compte de ces conditions particulieres de fatigue.

Ainsi, le but de cette these est d’établir un modele de durée de vie déterministe pour des structures
métalliques travaillant dans le domaine de 1’endurance limitée a grand nombre de cycles, et qui soit
capable de traiter tous les trajets de chargement (avec des amplitudes constantes et variables) sans
recours au comptage de cycles.

Ce travail de thése s’inscrit dans un projet régional de la "Chaire André Citroén", dont I’un des
objectifs est de développer les aspects d’enseignement en encourageant les initiatives dans le secteur
automobile et en confrontant les étudiants aux innovations technologiques typiques et aux grands
défis scientifiques. Le but de ce travail est d’étudier les criteres de fatigue a grand nombre de cycles,
en tenant compte des effets des changements dans le temps ou 1’espace. Trois contributions ont été
apportées :

- L’extension des criteres de fatigue pour prendre en compte 1’effet de gradient.
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- Le développement et la mise en oeuvre de méthodes d’accumulation non-linéaire de I’endom-
magement.

- La mise en oeuvre d’une stratégie de mesure de la fatigue a travers une analyse multi-échelle de
I’énergie dissipée, permettant ainsi de traiter des états de chargement tridimensionnels et complexes
en évitant la notion de cycle de chargement.

L’étude présentée dans ce rapport se concentre plus particulierement sur le dernier point, avec,
comme nous le verrons, une attention particuliere portée sur I’effet des hétérogénéités microstructu-
relles sur la fatigue.

L’approche pour résoudre le probleme posé comporte quatre étapes principales :

e La proposition d’une stratégie pour découpler I’effet de gradient de contrainte et I’effet de taille.

ol e passage en revue des descriptions existantes des non-linéarités d’accumulation d’endomma-
gement et des effets d’histoire du chargement.

ela construction d’un modele de comportement a la fatigue qui rende compte des effets de la
plasticité microscopique ainsi que de I’accumulation de I’endommagement et des effets de I’histoire
du chargement.

e La réalisation de simulations numériques avec ce modele, a la fois sur des conditions de char-
gement cycliques et sur des trajets de chargement aléatoires.

L’ étude bibliographique menée dans la premiere partie de cette these (Chapitre 2) vise a donner
un apergu des criteres de fatigue multiaxiaux classiques et des bases physiques de leur origine. Nous
comparons les modeles utilisant le concept de “elastic shakedown™ avec ceux basés sur la plasticité /
I’endommagement a 1’échelle mésoscopique ainsi que ceux utilisant 1’énergie. Nous montrerons que
certains effets de chargement sont correctement représentés, mais pour d’autres, les prédictions sont
tres différentes d’une approche a 1’autre.

La seconde partie (Chapitre 3) est consacrée a I’extension de certains criteres classiques de fa-
tigue a grand nombre de cycle (HCF) afin de prendre en compte une sensibilité des criteres aux
variations spatiales de contraintes, et de comparer les performances de ces extensions a travers plu-
sieurs essais expérimentaux de fatigue. L’effet bénéfique du gradient sur les essais de flexion-torsion
par rapport aux essais de tension-compression est présenté. Les mécanismes des différentes approches
sont comparés et une expression plus pratique et simple est proposée en tenant compte du gradient
de I’amplitude de la contrainte et de la contrainte hydrostatique maximale. La généralisation de 1’ap-
proche a d’autres critéres de fatigue multiaxiale est également proposée. Ces propositions sont ensuite
testées et appliquées a différentes situations simples telles que la flexion rotative en porte-a-faux. Les
erreurs relatives entre les solutions exactes et les données expérimentales sont estimées. Des essais de
flexion-torsion biaxiaux sont également simulés pour démontrer les capacités de 1’approche.

La non-linéarité de 1’accumulation de I’endommagement est abordée dans la troisiéme partie
(Chapitre 4). L’ objectif de cette section est de discuter et d utiliser le modele de durée de vie qui prend
en compte la présence de variations complexes dans le cycle de chargement. Nous nous concentrons
sur la loi d’accumulation d’endommagement de Chaboche dans le cas de la fatigue multiaxiale a grand
nombre de cycle. Des formulations heuristiques avec des criteres de fatigue multiaxiaux différents ont
été proposées et seront brievement passées en revue.

Le Chapitre 5 considere ensuite le probleéme de la gestion des trajets temporels complexes en
chargement multiaxial. La méthode de comptage de cycles pour comparer 1’effet des historiques de
chargement d’amplitude variable aux données de fatigue et aux courbes obtenues avec des cycles de
charge simples a amplitude constante est présentée, ainsi que différentes approches et limitations pour
le chargement multiaxial.

De ce contexte, nous développons ensuite notre nouveau modele. Il est basé sur une description
probabiliste a priori et simplifiée des points matériels locaux faibles. A chacun de ces points, un mo-
dele de plasticité local a écrouissage cinématique est introduit, avec une distribution donnée p(s) des
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facteurs d’affaiblissement de la limite d’élasticité. Pour prendre en compte une dépendance du com-
portement macroscopique en fatigue a la contrainte hydrostatique, la limite d’élasticité a chaque point
local est supposée dépendre de cette contrainte hydrostatique macroscopique. Le modele supposera
alors que I’accumulation de la fatigue dépend de I’énergie dissipée par la plasticité de tous ces points
au cours de I’histoire du chargement. Cette énergie, a travers toutes les échelles s, sera combinée avec
les lois d’accumulation d’endommagement non-linéaires du Chapitre 4 pour produire un modele “
multi-échelles” simplifié de I’évolution de I’endommagement microscopique.

Le sixieme chapitre traite de la mise en uvre numérique de notre méthode et de sa validation sur
différents résultats expérimentaux. Au lieu de faire I’intégration directement, ce qui peut s’ avérer dif-
ficile pour un chargement complexe, la reégle de quadrature gaussienne avec des points de Legendre
est utilisée pour donner la valeur du taux d’énergie dissipée locale. Les essais cycliques et aléatoires
sur I’alliage d’aluminium utilisé pour le bras de suspension automobile sont calibrés avec notre mo-
dele. Enfin, dans le dernier chapitre, nous faisons une application multidimensionnelle qui montre les
capacités de prédiction de la durée de vie en fatigue pour différents matériaux et types de chargement.
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1.1 General introduction

The fatigue of metallic structures subjected to cyclic stresses is a phenomenon which is tradition-
ally studied at two levels. The fatigue is respectively qualified “low cycle" or “high cycle" if the load
causing the rupture is applied during a relatively small or a large number of cycles. In turn, “high
cycle fatigue" is divided in two domains: “limited endurance" where we speak of the finite lifetime
regime and "unlimited endurance" where the structure can support a number of cycles theoretically
infinite without breaking.

The threshold value dividing low- and high-cycle fatigue is somewhat arbitrary, but is generally
based on the raw materials behavior at the micro-structural level in response to the applied stresses.
Low cycle failures typically involve significant plastic deformation. An example would be reversed
90° bending of a paper clip. Gross plastic deformation will take place on the first bend, but failure will
not occur until approximately 20 cycles. Plastic deformation does play a role in high cycle fatigue;
however, the plastic deformation is very localized and not necessarily discernible by a macroscopic
evaluation of the component. Most metals with a body centered cubic crystal structure have a charac-
teristic response to cyclic stresses. These materials have a threshold stress limit below which fatigue
cracks will not initiate. This threshold stress value is often referred to as the endurance limit. In steels,
the life associated with this behavior is generally accepted to be 2 x 10° cycles (Stone [2012]). In other
words, if a given stress state does not induce a fatigue failure within the first 2 x 10° cycles, future
failure of the component is considered unlikely. For spring applications, a more realistic threshold
life value would be 2 x 107 cycles (Stone [2012]). Metals with a face center cubic crystal structure
(e.g. aluminum, austenitic stainless steels, copper, etc.) do not typically have an endurance limit. For
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these materials, fatigue life continues to increase as stress levels decrease; however, a threshold limit
is not typically reached below which infinite life can be expected.

1.1.1 Industrial background and motivation

The search for the best performance at the best cost in mechanics and transport leads to increas-
ingly severe conditions of use of the mechanical components. Fatigue failures are widely studied
because it accounts for 90% of all service failures due to mechanical causes (Sohar [2011]). Fatigue
failures occur when metal is subjected to a repetitive or fluctuating stress and will fail at a stress much
lower than its tensile strength and the process happens without any macroscopic plastic deformation
(no warning).

These practical problems can lead to the emergence of fatigue for very high level of stress gradient
for small scale or complex geometric structures and non-constant multiaxial loading history . For
these so-called "extreme" stresses, the mechanisms of damage as well as fatigue resistance levels are
mostly unknown. This poses an important problem during the design phase since, on the one hand,
the existing endurance criteria struggle to account for behavior for this type of loading, and on the
other hand, the fatigue data that would allow to identify a model adapted to this problem are almost
non-existent.

On the other hand, the mechanical components are generally of complex nature undergoing com-
plex loads. Manufacturers are looking for a model of lifetime of their components, which is simple
to use, great applicability to metallic materials and which treats almost all cases of possible loads. In
the domain of limited endurance, very few criteria are available. At present, none of them can be used
in design offices, and does fully meet the demand for predictive tool for lifetime. Indeed, most of the
existing approaches rely on methods of counting cycles, whose extension to the case of multiaxial
stresses turns out to be difficult or even impossible because of the difficulty of extracting and defining
cycles.

Previous work carried out in collaboration with the PSA company indicates that the criteria of
multi-axial endurance used for fatigue design (Papadopoulos model and Dang Van’s criterion) strug-
gle to account effectively for these very specific cases (Koutiri [2011]). It therefore seems essential
to characterize the mechanisms damage of this type of loading and to implement a modeling able to
reflect these particular fatigue conditions.

The aim of this thesis is thus to establish a deterministic model of lifetime on metal structures
working in limited endurance in high cycle fatigue, which handles almost all load cases (with constant
and variable amplitudes) without recourse to cycle counting.

This thesis work is part of a regional project of "Chaire André Citroén"; one of whose objectives is
to develop teaching by encouraging initiatives in the automotive sector and confronting students with
typical technological innovations and major scientific challenges. The aim of this work is to study the
fatigue-related criteria with a large number of cycles, taking into account the effects of variation in
time or space. Three contributions were developed:

- Extension of the fatigue criteria to take into account the gradient effect.

- Development and testing of nonlinear accumulation methods of damage.

- Implementation of a strategy for measuring fatigue through a multi-scale analysis of the dissi-
pated energy, thus enabling three-dimensional and complex states of charge to be treated and avoiding
the notion of loading cycle.

The study presented in this report focuses more particularly on the last theme, with, as will be
seen, a particular emphasis on the effect of micro-structural heterogeneities on fatigue.

The approach for solving the problem posed has four main stages:

e Proposing a strategy to decouple the effects of stress gradient and size effect.
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e Review of the existing description of the non-linearity of damage accumulation and history
dependent sequence effects.

e Construction of a model of fatigue behavior that accounts for the effects of microscopic plastic-
ity as well as damage accumulation and history sequencing effects.

e Numerical simulation with such a model both on cyclic loading conditions and on random
loading history.

1.1.2 Context and background

The fatigue of materials with many cycles is one of the phenomena that can lead to rupture of
machine parts or structures in operation. Its progressive character masked until sudden breakage does
not allow easy prediction of the durability of the structure.

The main factors influencing the fatigue resistance of materials are numerous (loading mode,
temperature, micro-structural heterogeneities, residual stresses ...), making it a complex phenomenon
to study. A lot of work has been done in the goal of better understanding the influence of these
different factors. One of the main parameters influential, repeatedly studied, is the damage mechanism
of the time varying stress.

Numerous experimental observations made on metallic materials have shown that the damage
mechanisms operating in fatigue with large number of cycles and leading to breakup are of two cat-
egories. In a first step known as the priming step, micro-plasticity mechanisms, generally operating
around heterogeneities specific to the material (inclusions, porosities, etc.), are the origin of the ap-
pearance of micro-cracks. If the load level is high enough, these cracks increase and cross a number
of micro-structural barriers (e.g. grain boundaries). When the crack has reached a size sufficiently
large in relation to the plasticized zone, a second phase intervenes where it propagates according to,
the laws of fracture mechanics.

Two types of very distinct approaches are often used to model these mechanisms. The first con-
cerns initiation and mainly uses the framework of the mechanics of the micro-plasticity considered to
be the main cause of onset of a crack. The second uses the fracture mechanics framework to estimate
the number of cycles necessary for the propagation of a pre-existing crack (Koutiri [2011]).

In our work we concentrate on the first phase and consider the mechanisms related to the stochas-
tic distribution of pre-existing micro-cracks at different scales which undergo strong plastic yielding
in cyclic load history. The number of cycles to failure is determined from the plastic shakedown cycle
occurring at these microscales.

1.1.3 Outline of the work

The bibliographical study conducted in the first part of this thesis (Chapter 2) aims to overview
the basic multiaxial fatigue criteria and the physical basis of their origin. Models using the elastic
shakedown concept, plasticity / damage on the mesoscopic scale as well as energy are compared. We
will show that some loading effects are correctly reflected, however for others, the predictions are
very different from one approach to another.

The second part (Chapter 3) is devoted to the extension of some classic high cycle fatigue (HCF)
criteria in order to take into account a sensitivity of the criteria to stress spatial variations, and sec-
ond to compare the performances of the extensions through several experimental fatigue tests. The
gradient beneficial effect on bending-torsion in comparison with tension-compression is presented.
Different approaches are compared and a more practical and simple expression is proposed taking
into account the gradient of the stress amplitude and the maximum hydrostatic stress. The general-
ization of the approach to other multiaxial fatigue criteria is also proposed. The proposition is then
tested and applied to different simple situations such as cantilever rotative bending. The relative errors



8 CHAPTER 1. INTRODUCTION

between the exact solutions and the experimental data are estimated. Biaxial bending-torsion tests are
also simulated to demonstrate the capabilities of the approach.

The non-linearity of damage accumulation in fatigue is discussed in the third part (Chapter 4).
The objective of this section is to review and use the developed life model that takes into account the
presence of complex variations of the load cycle. We focus on Chaboche damage accumulation law in
case of multiaxial high cycle fatigue. Heuristic formulations with different multiaxial fatigue criteria
have been proposed and will be briefly reviewed.

Chapter 5 then considers the problem of handling complex time histories in multiaxial loading.
Cycle counting method to compare the effect of variable amplitude load histories to fatigue data
and curves obtained with simple constant amplitude load cycles is presented, together with different
approaches and limitations for handling multiaxial loading.

From this context, we then develop our new model. It is based on a probabilistic description of
local material weak points. At each such point, a local plastic model with kinematic hardening is
introduced, with a given distribution p(s) of yield weakening factors. To take into account a depen-
dence of the macroscopic fatigue behavior to the hydrostatic stress, the yield limit at each local point
is supposed to depend on this macroscopic hydrostatic stress. The model will then suppose that the
fatigue accumulation depends on the energy which is dissipated by plasticity of all these points dur-
ing the loading history. This energy through all scales s will be combined with the nonlinear damage
accumulation laws of chapter 4 to produce a simplified “multiscale” model of microscopic damage
evolution.

The sixth chapter of the document deals with the numerical implementation of our method and
its validation on different experimental results. Instead of doing the integration directly which can be
difficult for complex loading, the Gaussian Quadrature rule with Legendre points is used to give the
value of local dissipated energy rate. Cyclic and random tests on aluminum alloy used for automobile
suspension arm is calibrated with our model. Then in the last chapter a multidimensional application
is performed showing the capability of prediction on fatigue life of different material and loading
patterns.
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To obtain a better knowledge of the impact of different types of stresses and mechanism of en-
ergy dissipation in high cycle fatigue(HCF), many researchers have carried out tests often difficult to
implement and to control. From the data obtained and sometimes from the observations of the associ-
ated mechanisms, they have developed models that account more or less faithfully for the experiment.
The approaches used are quite varied, but since the field of fatigue that interests us (HCF) is often
governed by crack initiation, we make the choice in this chapter to treat only models established in
the framework of continuum mechanics. It will therefore be a question of the state of the art of the
most successful existing models but above all we will try to compare the predictions obtained when
dealing with the equivalent stress and energy dissipation. This study will make it possible to reveal
the great variety of the predictions obtained and to direct our work towards a better understanding of
the behavior for the loads appearing the most problematic.

2.1 Basquin curve

Stress-Life Diagram (S-N Diagram)

The basis of the Stress-Life method is the Wohler S-N diagram. The S-N diagram plots nominal
stress amplitude S versus cycles to failure N. There are numerous testing procedures to generate the
required data for a proper S-N diagram. S-N test data are usually displayed on a log-log plot, with the
actual S-N line representing the mean of the data from several tests.

9
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Figure 2.1 — Idealized S-N curve for high cycle fatigue.

Certain materials have a fatigue limit or endurance limit which represents a stress level below
which the material does not fail and can be cycled infinitely. If the applied stress level is below the
endurance limit of the material, the structure is said to have an infinite life. This is characteristic of
steel and titanium in benign environmental conditions. A typical S-N curve corresponding to this type
of material is shown in Figure 2.1.

Many non-ferrous metals and alloys, such as aluminum, magnesium, and copper alloys, do not
exhibit well-defined endurance limits. These materials instead display a continuously decreasing S-N
response. In such cases a fatigue strength Sy for a given number of cycles must be specified. An
effective endurance limit for these materials is sometimes defined as the stress that causes failure at
1 x 10% or 5 x 10® loading cycles.

The concept of an endurance limit is then used in infinite-life or safe stress designs. The possi-
bility of infinite cycling is due to interstitial elements (such as carbon or nitrogen in iron) that pin
dislocations, thus preventing the slip mechanism that leads to the formation of microcracks. Care
must be taken when using an endurance limit in design applications because infinite cycling poten-
tiality can disappear due to:

e Periodic overloads (unpin dislocations)
e Corrosive environments (due to fatigue corrosion interaction)
e High temperatures (mobilize dislocations)

The endurance limit by itself is not a true property of a material, since other significant influences
such as surface finish cannot be entirely eliminated. However, a test values (S.) obtained from pol-
ished specimens provide a baseline to which other factors can be applied. Influences that can then
affect the endurance limit include:

e Surface Finish

e Temperature

o Stress Concentration
e Notch Sensitivity

e Size

e Environment

Power Relationship

When plotted on a log-log scale, an S-N curve can be approximated by a straight line as shown
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in Figure 2.1. Basquin’s equation is a power law relationship as Eq.(2.1.1) which describes the linear
relationship between the applied stress cycles (S) in the y-axis and the number of cycles to failure in
the x-axis plotted on a log-log scale.

N = BS# 2.1.1)

To calculate the slope of the Basquin equation from two significant curve points, we need to solve the

1
S\ b
N1 = No (S;) ;

~ logS1 —logSs
~ logN; — logN,’
where b is the slope of the line. Then the coefficient B in Eq.(2.1.1) is given by

system of equations:

yielding

_1
B=NS, " =NyS,¢,

o=

with S; denoting the stress range value of the considered test.

For the constant B, in industry the stress range value (from the maximum cyclic stress to the
minimum cyclic stress) is often considered. If the stress values of the S-N curve are given as alter-
nating stresses (which is the common practice), multiply these stresses by 2 to calculate the constant
B (stress range = 2* alternating stress, assuming a zero mean stress and full reversal of the cyclic
load). If the S-N curve data are given in stress range values, apply them directly in the equation for
estimating the constant B.

The power relationship is only valid for fatigue lives that are on the design line. For ferrous metals
this range is from 1 x 103 to 1 x 10° cycles. For non-ferrous metals, this range is from 1 x 103 to
5 x 102 cycles.

Basquin curves are quite simple but how can we apply them to more complex loadings?

This limitation is at the origin of the development of more detailed criteria to be described in the
next section.

2.2 Basic fatigue criteria

This bibliographic chapter reviews different methods to calculate the lifetime of multiaxial high
cycle fatigue. In fact, the difficulty of defining the equivalent stress in situations with multiaxial
loading and variable amplitude loading reveals the necessity of study these methods. These criteria
allows to determine whether the stress trajectory in the stress space leads to the failure of the points
concerned.

Papadopoulos suggested, in particular, to group families of fatigue criteria into four categories:

¢ Criteria based on strain
¢ Criteria based on stress
* Criteria based on energy

* Criteria based on plasticity-damage coupling.

Generally, the criteria developed in strain and sometimes in energy are adapted to the oligocyclic
fatigue where the tests are often carried out with imposed strain. Approaches in stress and sometimes
in energy, as well as those based on the coupling of plasticity and damage which have begun to emerge
in recent years are being applied in the domain of endurance. Therefore, we will focus on the last
three categories and analyze the different approaches.
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2.2.1 Criteria based on stress

Three types of approach can be distinguished:

* Critical plan approaches
* Approaches based on stress invariants

* The criteria based on mean stress in an elementary volume

For simplicity and to avoid too costly identification procedures of fatigue data, criteria are often
expressed using two parameters to characterize the local load. The first relates generally to a shear
stress (on a plane or on average over an elementary volume) while the second reflects the normal
stress effects (mean and amplitude) through the hydrostatic stress or the normal stress. The criteria
using the hydrostatic stress are the most numerous (Crossland [1956], Sines [1959], Morel [1998],
Thu [2008]). The micro-macro approach applied to the field of endurance was born with the work of
(Dang Van [1973]), and since it has been used many times, including by (Papadopoulos [1993]) to
take better account of loading path effects.
Many fatigue limit criteria can thus be written as:

f(r)+g(0) <0 (2.2.1)

where f and g are given functions of the shear stress 7 and of the normal stress o respectively, as
applied to different interfaces within the material.

The normal and shear stress acting on the material planes and used in Eq.(2.2.1) are sometimes
defined from a critical plane (Findley [1959a]), or through integration at every plane of an elementary
volume (Liu and Zenner [1993]). Thu [2008] proposes, in particular, a probabilistic approach based
on this type of integration.

Crossland Criterion

Using traditional fatigue criteria, a near hyperbolic relationship between stress and fatigue life is
assumed, with an asymptotic limit defined as the endurance stress. To predict this asymptotic limit,
the Crossland Criterion is probably the most widely known. Crossland proposed that the second
invariant of the deviatoric stress tensor and the hydrostatic pressure are the variables governing the
endurance limit.

The classical Crossland criterion defines the fatigue limit of metallic specimens subjected to
multi-axial in-phase cyclic stress (Crossland [1956]) :

f( V JQ,CH Pmaz) = Teq t+ aPaz —b <0 (2.2.2)
where 7.4 = 4/J2, measures the amplitude of variation of the second invariant of the de-

viatoric stress and P4, is the maximum hydrostatic stress observed during a loading cycle. If
f (\/E , Pz 18 negative or null, there is no damage. If f (\/E , Prnag) 1s positive, there is likely
to be damage and hence limited endurance. The physical constants ¢ and b are material constants that
needs to be determined experimentally. The amplitude of the square root of the second invariant of
the stress deviator can be defined, in general case, as the radius of the smallest hypersphere of the
deviatoric stress path (Papadopoulos et al. [1997]):

Toa = \}i min {mae (80— 1) = (8() 50} (2.2.3)

Recall that the deviatoric stress S associated to a stress tensor ¢ is defined by

S=0-<(tro) L. (2.2.4)
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The maximum value that the hydrostatic stress reaches during the loading cycle is on the other
hand: )
Prox = mtax{gtr(a(t))}. (2.2.5)

For a proportional cyclic loading, if one introduces the two extreme stress tensors i and i
observed during the loading path, together with the stress amplitude

Ag=g8 —o? (2.2.6)

and its deviatoric part As, the variation of the second invariant of the stress deviator reduces to

1 /
\/JQVGZEHI?X gg

1
= NG max \/(As%1 + Asdy 4+ Asdy + 2A82, + 2AsT, + 2As3,).
The physical constants a and b can be related to the limit 7_; of endurance in alternate pure shear
with

(2.2.7)

0 2t 0
P = 0, é.._.é = 2t 0 0
0 0 O

and to the limit f_; of endurance in alternate pure traction and compression where there is

4
. i o0 0
Pmaa} = gfv g: 0 _%f 0
0o 0 -3
by
(-3
a:——7:i13 b=14. (2.2.8)
3

Thus the classical Crossland criterion can be written as:

V2.0 + aPraz — b < 0. (2.2.9)

with a and b given by Eq.(2.2.8).
Dang Van Criterion

In multiaxial fatigue with large number of cycles, the important role of local plasticity on the
appearance of a fatigue limit is widely accepted and fully justifies the use of a multi-scale approach.
Among the existing approaches, one of the most known and used is that of Dang Van [1999]. This
criterion is used in particular in the design of certain automotive structures at PSA and Renault. The
criterion (Dang Van et al. [1986]) belongs to the family of critical plane type approaches. The main
physical basis of this criterion focuses on the theory of elastic shakedown at two scales, mesoscopic
and macroscopic. The macroscopic behavior of the material often remains elastic, only a grain ori-
ented unfavorably undergoes plastic deformation. The author states the following hypothesis: *“ The
multiscale approach is settled on the assumption that under high cycle fatigue loading, a structure
will not be fractured by fatigue if an elastic shakedown is reached at the macroscopic scale as well as
at mesoscopic scale." (Dang Van [1999]). The approach developed first is to describe the plasticity
across the grain, assuming a yield criterion. The yield criterion is the law of Schmid with a linear
isotropic hardening. The author then search the elastic adaptation formula and defines a fatigue test
locally as shown in Figure 2.2 (A represents the tensor defining the orientation of the sliding system,
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YA Cycle macroscopique
asymétrique

max "

min * o

Cycle microscopique
symeétrisé

Figure 2.2 — Elastic adaptation at the two scales (Dang Van [1999])

v is the plastic slip and 7 is the amplitude of shear stress on the defined plan). Finally, a micro to
macro upscaling strategy is applied to determine the criteria on the macroscopic scale. The local-
ization law which is used is Lin-Taylor model that assumes equality of deformations at two scales.
Using empirical relationships, the harmful role of the mean stress on the fatigue strength of the ma-
terial is shown for type of uniaxial tensile stress. Dang Van shows the effect of the mean stress with
hydrostatic stress term in the criteria expressed as a linear combination of mesoscopic shear stress on
the maximum shear plane 7, and the hydrostatic stress > z7.
The resulting Dang Van criterion presented in Ballard et al. [1995] is expressed as:

max {mtax{ra(@, t) + aDEH(t)}} < bp. (2.2.10)

where 7, denotes the mesoscopic shear stress amplitude and is obtained from a mesoscopic stress
tensor & defined by:

a(t) = ((t) — 59).

Here s* is the center of the smallest hypersphere circumscribed to the loading path in deviatoric stress

llen

space. It is obtained by solving a “min-max" problem as follows:

§* = argmin {max | s(t) —s, ||} .
s 5 ax || £ s
In the case of fully reversed loading, the values s* = 0 can be directly deduced without solving the

“min-max problem" as in general case.
The principal stress values of stress tensor g being denoted by 6777(t) < 677(t) < 7(t), one

gets the amplitude of shear stress by:

m,?XT“(t) = 5((3[(15) — &]1[(15)).
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Here Xy (¢)is the hydrostatic stress as a function of the time, given by:

okk(t) .

Yu(t) = 3

The Dang Van criterion then writes

! (61(t) = 6111(t)) +ap 2 < bp. (2.2.11)

2
The material characteristic parameters ap and bp of the Dang Van criterion, can be related to the
fully reversed bending or tension- compression fatigue limit because of the same stress state between
them, denoted by f_; (or s_1), and to the torsion fatigue limit, denoted by 7_1,

3r—1 3
ap = 5

In the particular case of the uniaxial tension with average load X, ,,, and amplitude >, 4, the

1 a a
E:m:,a <2 + 3D> + sz,m (?D) = bD-

criterion is written as:

Papadopoulos Criterion

The approach proposed by Papadopoulos [1993] also uses the concept of elastic adaptation and
even the localization law. According to him, “the observations at the mesoscopic scale show that the
initiation of a fatigue crack is defined as the occurrence of micro-cracks corresponding to the rupture
of the most deformed crystal grains in an aggregate. Thus, a fatigue limit criterion can be modeled by
a limit value of the accumulated plastic strain in the most distorted grain."

Yeum < Yoo-

He proposes to opt for a mean value of the accumulated plastic strain on all possible slip systems of
representative elementary volume (REV). So he chose to use a average value of accumulated plastic
deformation rather than looking at failure of a single crystal. A spherical coordinate system is shown
in Figure 2.3 to guide the normal vector in the material plane, and the unit direction vector r linked
to a sliding direction of this plan is used to conduct the integration over all possible orientations.

More precisely, at any point O of a body, a material plane A can be defined by its unit normal
vector n. This vector n makes an angle 6 with the z-axis of a Oxyz frame attached to the body, and
its projection on the xy plane makes an angle ¢ with axis x. For each plane A a new quantity is
introduced called generalised shear stress amplitude and denoted as T,.This shear stress quantity
was first introduced in Papadopoulos [2001] and was subsequently used by other researchers.The
critical plane according to our proposal is that onto which T} (¢, #) achieves its maximum value. The
fatigue limit criterion is written as:

marTy, + oo Xhmazr < Yoo (2.2.12)

where o, and 7., are material parameters to be determined (Papadopoulos [2001]), and where we
take

hanas = g { 3ir(e()}
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ZA

X

Figure 2.3 — Material plane A passing through point O of a body and its associated (n, 1, r)
frame(Papadopoulos [1993]).

To define T, he introduced the resolved shear stress 7:

T =[sinfcospoy, + sinfsingpoy, + cosbo,,](—sinpcosy — cosbcospsiny)+
[sinfcospoyy + sinbsingpoy, + cosfoy.|(cospcosy — cosfsingsiny)+ (2.2.13)

[sinfcospo,, + sinBsingpoy, + cosho,;]sindsiny.

It is clear that the resolved shear stress is a function of ¢, 6, x and of time ¢ in the case of variable
loading, i.e. 7 = 7(¢p,0, x,t). Upon fixing a couple (p, d) (i.e. a plane A) and an angle x (i.e. a
line £ on A), one can define the amplitude of the resolved shear stress 7,, acting on A along £ by the
formula:

1 .
Ta(p,0,%) = 5 [rtnee}gwa(so, 0,x,t) — min (¢, 6, X, t)]. (2.2.14)

Finally, for a given plane A, i.e. for a fixed couple (¢, 6), the generalized shear stress amplitude T,
is defined as:

1 27
Tu(p,0) = \/W/ OTE(w,H,x)dx (2.2.15)
X:

We note the fatigue limit in fully reversed torsion 7_; and the fatigue limit in fully reversed bending
f—1. From these two tests we get the parameters:

The Papadopoulos fatigue limit criterion achieves the form (Papadopoulos [2001]):

1
mazT, + 3 <;1 - 2) Shmaz < T—1. (2.2.16)
1
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In the particular case of the fully reversed uniaxial tension, the criterion is written as (Papadopoulos
[2001]):

Exm a Txr,m
I + a 3
2 3
In conclusion of this part in stress based criteria, we need to observe that these criteria are all based

< Yoo
on the notion of cyclic loading, which can be a limitation in general case.

2.2.2 Criteria based on energy

Depending on the type of density of deformation energy considered per cycle, the Energy criteria
are divided into three groups (Macha and Sonsino [1999]):

* criteria based on elastic energy
* criteria based on plastic energy
* criteria based on the sum of elastic and plastic energies.

The criteria based on the elastic deformation energy can be used in fatigue with a large number
of cycles, whereas those based on the plastic deformation energy are more suitable for oligocyclic
fatigue.

Ellyin [1974] is one of the first to propose a fatigue criterion based on cyclic shear deformation
energy. This approach was taken up and complemented by Lefebvre [1981] and Ellyin et al. [1991]
for the case of multiaxial loadings. In France, this approach is reflected in the work of Froustey et al.
[1992] and then in Palin-Luc [1996] and Banvillet [2001].

Energy dissipation based on strain energy density

In their fatigue criterion, Froustey et al. [1992] have considered a complete cycle of stresses. They
use the mean value on one cycle of the volumic density of the elastic strain energy, W,,, whatever the
point M in the mechanical part.

1
Wo (M) = T /0 50ij(M7 t)es; (M, t)dt

where 0;;(M, ) and ef;(M, ) are respectively the tensor of stresses and the tensor of elastic
strains at the considered point M function of time ¢. Thus, in low cycle fatigue W, can be considered
as the mean value on one cycle of the total strain energy density at the considered point. However,
in high cycle fatigue usually the endurance limit is low enough to consider that the material remains
elastic at the macroscopic scale (Chaboche and Lesne [1988a]).

In 1998 Thierry PALIN-LUC and Serge LASSERRE (Palin-Luc and Lasserre [1998]) proposed a
failure criterion based on W,. Their studies show that another limit, called ¢*, can be defined below
the usual endurance limit of the material, op. At a considered point a stress amplitude below this
new limit does not initiate observable damage at the microscopic scale (no micro-cracks). Two static
characteristics of the material are necessary: E and v. Three experimental endurance limits under
fully reversed loadings are needed: the endurance limit in traction,a%acﬁl, the endurance limit in
rotative bending, ok . - d,—1- and the endurance limit in torsion, 7790771.

This stress limit ¢* can be estimated from fatigue test results in fully reversed tension and in
rotating bending

of = \/2(0%"(10,*1)2 B (U}[%)otBend,—l)2'
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From ¢* and by analogy with a sinusoidal traction load the corresponding mean value of the strain
energy volumetric density, W+, can be calculated , where E is the Young modulus of the material.

W = 15

Around each point it is always possible to define the volume V*(C;) by the set of points M where
W, (M) is higher than W+ (C;) . They postulate that the part of W, (M) exceeding W+ (C;) is the
damaging part of the strain energy volumetric density. They thus calculate @, (C;) the volumetric
mean value of the strain energy around the critical point C;

V*(C;) = {points M(z,y, z) around C; such that Wo(M) > Wy« (C;) }

50 = gy | [ ] Wolw:2) = Wor (€l

At the endurance limit and at the critical point C;, this new quantity @, (C;) is supposed to be
constant, whatever the uniaxial stress state. If we note @2 (Uniaz) its value at the endurance limit
for any uniaxial stress state our criterion can be written by Eq.(2.2.17). Failure occurs if this equation
is not verified.

Ta(Cy) < TP (Uniax). (2.2.17)

The limitation of this criterion is that it only deals with constant amplitude load case.

A critical plane approach based on energy concepts

Lagoda et al. [1999] proposed that under multiaxial loadings the normal strain energy density in
the critical plane (i.e. the plane of the maximum damage) to be the energy parameter and translated
into deformation or stress amplitude in a given experimental fatigue curve. The history of strain
energy density is schematized with use of the rain-flow algorithm. Fatigue damage is accumulated
according to Palmgren-Miner hypothesis and endurance limit uses the standard fatigue characteristic
of the material, rescaled with use of the considered energy parameter.

W(t) = %a(t)a(t)sgn[a(t),a(t)} (2.2.18)
sgn(z) + sgn(y)

2

sgn(x), sgn(y) = 0, 1, —1 for distinguishing positive and negative works in a fatigue cycle. Thus,

sgn(x,y) =

it allows to distinguish energy (specific work) for tension and energy (specific work) for compression.
If the stress and strain reach their maximum values, o, and €., then the maximum energy density
value is
1

Wy = 5%afa (2.2.19)

Taking W (t) as the fatigue damage parameter according to Eq.(2.2.18), we can rescale the stan-
dard characteristics of cyclic fatigue (0, — Nr) and (¢, — Nr) and obtain a new one, (W, — Ng ). In
the case of high-cycle fatigue, when the characteristic curve (o, — Np) is used in order to predict the
number of cycles N to failure, the axis o, should be replaced by W,, where W, and o, are related
by:
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In the case of low and high-cycle fatigue, when the characteristic (¢, — Nr) is used, we can do
similar rescaling.

The full approach is described in Figure 2.4. Having tensors of strain and stress histories we can
determine histories of normal strain energy density (stage 3) in all the planes according to Eq.(2.2.18)
with the distinguished direction 7.

W, (t) = 0.25¢, (t)0,(t) [sgney (t) + sgnoy,(t)] (2.2.20)

where
oy(t) = [2oaa(t) + mioy,(t)], (2.2.21)
en(t) = [Zega(t) + mleyy(t) + ile..(t), (2.2.22)

with 52, m?2, n? = direction cosines of the unit vector 7.

In the plane stress state, the normal vector orientation to the fracture plane may be described with
use of one angle « in relation with the x-axis. Thus, the direction cosines of the axis 7 are: Zn = cosa,
m, = sina, n, = 0. In stage 4 the critical plane is determined by choosing the plane of maximal

1 Measurement of strain components €y (t),€yy (t)

2 Calculation of stress COmMPponents Gy, (t),Gyy (1)

3 Determination of normal strain energy density histories Wy, (t) on all
the planes

4 Determination of the critical plane with use of the damage
accumulation method

|

lS l Calculation of the equivalent energy history ]
I 6 | Cycle counting on the critical plane |
] 7 l Fatigue damage accumulation and fatigue life determination I

Figure 2.4 — Algorithm of fatigue life determination with use of the energy parameter in the critical
plane under biaxial random tension-compression (fL.agoda et al. [1999]).

energy variation max AW, (t) according to the damage accumulation method Eq.(2.2.20). Fatigue
n

lives were determined at particular expected planes according to the following stages. When the
energy density history at the given plane in stage 6 has been determined, the energy cycles are counted
with the rain flow method; next damage is accumulated according to Palmgren- Miner hypothesis
taking into account energy cycles of amplitude larger than a W, (with a = % and W, the fatigue
limit expressed in strain energy density).

J
ng
Ty) = ai> afs
S0) =3 i g o Wi > aWar

S(Ty) =0 for Wy <aWyy,
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where S(T)) is material damage up to time T ; j is number of class intervals of the histogram of the
amplitudes of the strain energy density; W, is fatigue limit expressed by strain energy density; m’
is slope of fatigue curve; Ny is a number of cycles corresponding to the fatigue limit W, ; n; is a
number of cycles with amplitude W;.

When the degree of damage at observation time 7y is determined, the fatigue life is calculated by

extrapolation:
T

Teal = =—~.
cal S(TO)
This method is able to handle general loadings, but still requires cycle counting. And the determi-
nation of critical plane in multiaxial load is laborious. Also, they use the Miner’s damage law which
can not account for the sequencing effect.

Lamefip Criterion

The so-called Lamefip criterion, presented here with its latest version (Benabes [2006]), makes it
possible to handle all types of loads and to take into account the effect of the stress gradients. This
criterion is based on the notion of the volume of influence around the “critical point" and uses as a
parameter the volume density of straining work supplied per cycle to each volume element.

Ellyin [2012] showed that the use of both the plastic and elastic strain work can be used as damage
parameter in multiaxial fatigue. The LAMEFIP criterion (Banvillet et al. [2003a]), devoted to the field
of endurance or limited endurance, uses for damage parameter, the volumetric density of the strain
work given to the material per loading cycles after elastic shakedown is supposed to be reached after
a few thousands cycles.

The proposal is based on two main hypothesis : (i) the strain work given to the material per
loading cycle is considered as the driving force for fatigue crack initiation and (ii) it is calculated
after macroscopic elastic shakedown.

Many authors use cycle counting techniques (chapter 4) to extract, from a random stress ten-
sor sequence, cycles from which the damage could be estimated. These techniques have two main
drawbacks : (i) the choice of the cycle counting algorithm influences the calculated fatigue life since
the number of counted cycles is algorithm dependent (Dowling [1983]), and (ii) for multiaxial non-
proportional stress states, in many approaches from the literature, the variable chosen for cycle count-
ing differs from the damage parameter. To avoid such drawbacks an incremental model has been
developed. The strain work density given at a point M is written in an incremental way as follows :

AWy(M,t) =)

=17

(0ij (M, t) &5 (M, 1)) dt.

3 3
=1

- where €;; (M, t) are the strain tensor components and & = dx/dt,
-0 (M, t) are the stress tensor components,
- and (m) gives the positive value of m according to : (m) = 1if m > 0; (m) = 0if m < 0.
As underlined by Ellyin [2012], the strain work can be calculated as the sum of elastic and plastic
strain works, so that :

AW, (M, t) = dW(M, 1) + dWP(M, ).

The framework of this study being HCF and MCEF, they choose to consider only the elastic part
of the strain work (Eq.(2.2.23)) in the elastic shakedown state. The cumulated strain work on a
time sequence of duration 7' is equivalent to the integral of dW;(M ,t) over T' as in Eq.(2.2.24).
Banvillet et al. [2003a] has shown that for an uniaxial stress state 1V, is not shape dependent (sinus,
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triangle,square, etc...).

3 3
AWg(M,t) = Y (o (M, t) €5 (M, 1)) dt. (2.2.23)
i=1 j=1
W,(M,T) = / AW, (M, t). (2.2.24)
t

To take into account the material sensitivity to the stress triaxiality, the triaxiality degree, d7, at a
point M is defined by the ratio of the strain work associated with the spherical part of the stress tensor
over the total strain work of Banvillet et al. [2003a], but in an incremental way :

AWM (M, t)

AT (M, 1) = AW, (M, t)

if dWy(M,t) # 0, otherwise dT'(M,t) =0,

with ,
AWM (M, t) < Z ope(M, 1) > éf(M, t)> dt
= I=1
The material sensitivity to stress triaxiality is con51dered by using an empirical function F'(dT, ,,)
(Eq.(2.2.25)) depending on the material parameter 3, identified from two fully reversed fatigue limits
(rotating bending and torsion). At any instant, for a multiaxial stress state, the strain work given to
the material is corrected to evaluate an uniaxial equivalent strain work dee (M, t) (Eq.(2.2.26)):

F(AT (M, 1), B) = 1_dT1W [ B—mzn [1 + dT(M, t)(ePm 1)H . (2.2.25)

(M, 1) = AW,y (M, t) = (L uniaz )

F(dT (M, t), Bm)
A threshold W is introduced. It represents the volume density of the minimum elastic deformation

aw,

Jeq

(2.2.26)

work to be provided to create, after a large number of cycles, irreversible damage in a REV. The
volume influencing fatigue crack initiation V'* is thus defined whatever the stress state is at the critical

point.
. 2.2.27
Wy = Wounia F(dT(umaaz) Bm)’ ( )
V*C;) = {points M(z,y, z) around C; so that Wy (M,1) > W;} . (2.2.28)

Assuming that the set of points of the volume of influence plays a significant role in the initiation
of a fatigue crack at the critical point C};, the volume mean value of the damaging work provided in
the V* of influence is written:

WQC V*gC) /V*(C) |:Wgeq(M7T) _Wg*:|
In the case of uniaxial loading, the values of W, which serves as reference in Eq.(2.2.27) are
given by:
wW* _ 282—1 - Eot—l
g,uniax E
frot—1 and s_1 denote respectively the endurance limits in alternating rotational bending and traction.

The final criterion proposed by Banvillet et al. [2003a] is summarized in the following relation:

Wy o, < Wy

eq’

where Wgeq is the permissible limit value of Wy, at the limit of fatigue.

This approach is possible to predict the SN curves from a uniaxial one since the proposal is load
type and mean load sensitive. However, the threshold work is another form of the fatigue limit which
can be inaccurate microscopically.
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2.2.3 Criteria based on plasticity-damage coupling

In recent years, a new class of criteria coupling mesoplasticity and damage has emerged. Lemaitre
etal. [1999] have, for example, used the approach introduced by Lemaitre and Chaboche [1985] based
on the thermodynamics of irreversible processes and the mechanics of continuous media. Flaceliere
[2004] also proposed a model based on a plasticity-damage coupling and attempted to account for the
phenomena of damage observed experimentally on a C35 steel. In this work, we will focus on a more
recent approach proposed by Monchiet [2006].

Criterion of Monchiet et al

In order to account for the coupling plasticity-damage in high cycle fatigue, Monchiet [2006] uses
a micro-mechanical approach based on the work of Gurson et al. [1977]. The damage is represented
by a magnitude f related to the development of porosity in the sliding bands at the origin of the
initiation of the fatigue cracks.

The model is built on the following main assumptions.

* Initiation of cracks in sliding bands by the presence of a high level of porosity in these bands.
* A localization law gives access to the mechanical fields at the mesoscopic scale.
* The elastic adaptation concept is used to access local mechanical fields in a stabilized state.

* A plasticity potential of Gurson type is introduced on the mesoscopic scale in order to show the
effects of the plasticity-damage coupling.

The function of charge used (with A tensor of order two defining the orientation of the system of

slip considered and equals to 3 (n ® m + m ® n) where n is normal to slip plan and m the sliding

B:A) V3B
F= < i ) + 2fcosh (Th) —1- %<0, (2.2.29)
h

T4 2

direction)

where B=%- ?, with 3 the macroscopic stress tensor and X the kinematic hardening variable.
X decomposes into a hydrostatic part X} and a slip component on the predominant system, denoted
X 4. Y. Isotropic hardening is introduced by replacing the plasticity threshold 79 by two parameters
Td and 7 h-

Without going into the details of this model adapted to the problem of fatigue at large number
of cycles, it seems very important, in order to understand the rest of the work, to resume the way
in which hardening is introduced into the load function. The main difference with the conventional
charge function proposed by Gurson is the existence of a isotropic combined kinematic hardening
with decomposition into deviatoric parts (parameters 75 and X ) and hydrostatic (parameters 75, and
Xp).

To obtain the expressions of these variables, the authors follow the same approach as Leblond
et al. [1995], by postulating paths of pure deviatoric stress and pure effect of fatigue damage at high
mean hydrostatic values. The aim is to identify the parameters of hardening from specific exact
solutions. The authors reach the relationships:

Ta = To + R (2.2.30)

T = To + Rp, (2.2.31)
Rq = RoYeum (2.2.32)
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Ry, = hRoYeum + Rof?um (2.2.33)

with Ry isotropic hardening parameter and / latent hardening parameter. It is important to note that
plastic slip  and the parameter ¢” are cumulative, due to applications to fatigue. In the rest of the
presentation ..., and £ represent the quantities in the adapted state. For kinematic hardening, the
parameters obtained are as follows:

Xa= (1= fle)y (2.234)
_ 2pic
VE]

with ¢ the parameter of kinematic hardening, p; the parameter of cubic anisotropy. The variable

Xn ¢ (2.2.35)
&M equals

¢h = \% {dilog <J;j> — dilog (1 — fg)} (2.2.36)

/
with dilog(z) = [}" llnixm), dx’.
The criterion therefore postulates that a fatigue crack appears in a sliding band when the fraction
of porosity inside this band reaches a critical value f,
Plasticity occurs locally when the equivalent stress reaches the yield limit. The authors take into
account two mechanisms of damage in the evolution of the porosity:

* The first is related to the creation of gaps by annihilation of dislocations. This mechanism
is at the origin of the accumulation of point defects of the lacunar or interstitial type along the
persistent slip bands (PSB). The phenomenological model proposed by Essmann and Mughrabi
[1979] gives access to the porosity f,:

fa = Ao {kaYeum — 1 + exp (—kaYeum)} - (2.2.37)

* The second mechanism is related to the growth of micro-cavities. Using an incompressibility
hypothesis, f, is defined by:

fo=1{1—exp(3¢;)}. (2.2.38)

It is important to note that the first mechanism involves the accumulated plasticity Yeum, related
to amplitude effects. The second mechanism depends on the hydrostatic plastic deformation GZ, and
allows the taking into account of the mean stress effects.

The fatigue criterion is established on the basis of the following hypothesis: “a sufficient condition
for nucleation of a fatigue crack is obtained if the porosity reaches a critical value f.".

f (Yeums €7) = fa+ fg < fe (2.2.39)

Noting ., the critical value of the cumulative plasticity for which the fatigue criterion is reached
when €], = 0, it becomes:

fe= {AO {ka’}/c —1+exp (_ka’Yc)}} . (2.2.40)
Yeum = Ta : Ag. (2.2.41)

The use of Eq.(2.2.39) and Eq.(2.2.40) leads, for the limiting cases k, > 1 to Eq.(2.2.42), and
for k, < 1 to Eq.(2.2.43), when noting e, the critical plastic deformation, equal to f./3 in the case
of Yeum = 0. In other words, we have

either

p
€
'Yf;“” =1 (ke < 1), (2.2.42)
4 (&
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or 2 P
(W> + o (> 1) (2.2.43)
Ye €c

kg is a parameter involved in the crack nucleation law along the sliding bands. The author re-
calls that this mechanism is characterized by a saturated state for high values of cumulated plastic
deformations. This coefficient k£, makes it possible to adjust the speed of convergence towards this
saturated state. e%m is the average hydrostatic part of the plastic deformation due to the growth of the
cavities.

In order to relate these two quantities to the macroscopic constraints, the authors seek the adapted
state. They indicate that a necessarily safe condition is obtained when every state of stress satisfies
the condition F'(X(¢)) < 0 (Figure 2.5a). A sufficient condition for the macroscopic affine loading
paths is obtained when the ends of the cycle belong to the load surface, Let >4 and Xp satisfy
F(Xa(t)) = F(Xp(t)) = 0 (Figure 2.5b). In a suitable regime, the loading cycle is symmetrized
around the mean stresses (Figure 2.5¢).

a b C

Figure 2.5 — Finding the appropriate state for an affine load path A-B(Koutiri [2011]).

The effect of the mean stress is taken into account by the term of hydrostatic deformation. The
hydrostatic pressure is related to the hydrostatic plastic deformation.

S = <4p%c(1 —£) +3k:*> & (2.2.44)
N\ fdn(fe) o

In Eq.(2.2.44), c and k* are parameters related respectively to the kinematic hardening and to the

homogenization scheme.

The parameters of the loading can be linked to the parameters of work-hardening thanks to the
relations representative of the adapted state, which are presented in Eq.(2.2.29), Eq.(2.2.44) and
Eq.(2.2.30) to Eq.(2.2.33).

The parameter £" . can not be obtained analytically. On the basis of numerical simulations, the
authors propose an approximate expression:

h \/ETO Eh,a Eh,a
_ -1 — . 2.2.45
Seum Ry { 270 +erp ( 270 > } ( )

The implementation of this criterion requires the identification of 12 parameters:

- two parameters, . and ¢, linked to the local criterion.

- two parameters, Ag and k,, related to the mechanisms of nucleation of cracks.

- three parameters related to hardening, Ry And 7g linked to the isotropic hardening, ¢
linked to the kinematic hardening

- two coefficients linked to the homogenization scheme, i and k.

- a cubic anisotropy coefficient of the grain p;
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- a latent coefficient of strain hardening h
- a critical porosity coefficient f.

All of these parameters are microscopic, which poses a problem in their identification. Some ele-
ments of this modeling have been taken up by Charkaluk et al. [2009], Charkaluk and Constantinescu
[2007] in dissipative approaches. The limitation of this method is that it still requires cycle counting
which in complex load case is not feasible.

2.3 Calculation method without cycle counting

This part presents the existing method of prediction of lifetime, which does not need the algorithm
of cycle counting. These kind of methods are still minority and usually more delicate to implement,
but present the advantage of free the choice of variable of counting proved to be “dangerous”. The
method presented here is the morel method which is based on stress.

2.3.1 Morel’s method

Morel’s method (Morel [2000]) is based on a mesoscopic approach of critical plane type with the
choice of plastic deformation as mesoscopic cumulative damage variable. The description below is
taken from his paper. Multiaxial and variable amplitude loading can be analyzed with this method.
To depict the fatigue crack initiation phenomenon in polycrystalline metallic materials, two scales
of description of a material will be distinguished: the usual macroscopic scale and a mesoscopic
one. The macroscopic scale is defined with the help of an elementary volume V determined at any
point O of a body as the smallest sample of the material surrounding O that can be considered to be
homogeneous. V contains a large number of grains (crystals) and the mesoscopic scale is defined as
a small portion of this volume. In the high cycle fatigue regime, some grains undergo local plastic
strain while the rest of the matrix behaves elastically (the overall plastic strain is negligible).

Macroscopic quantities. They are:

macroscopic stress tensor

macroscopic strain tensor

macroscopic shear stress vector

macroscopic resolved shear stress vector acting on an easy glide direction
amplitude of the macroscopic resolved shear stress

N S8R

macroscopic hydrostatic stress.

Mesoscopic quantities. They are:

g MESOSCOopiC stress tensor

€  mesoscopic strain tensor

7  mesoscopic resolved shear stress vector acting on an easy glide direction
P mesoscopic shear plastic strain

I'  accumulated plastic mesostrain

H  phase-difference coefficient.
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Constant amplitude loading

Local stress estimation in high cycle fatigue

By assuming that only one glide system (defined by a normal vector n to a plane and a vector (di-
rection) m within this plane) is active for every plastically deforming grain of the metal, Papadopoulos
[1993] established a macromeso passage for a glide system activated in a flowing crystal:

r=1T—puy"m (2.3.1)

where 7 and 7' are the mesoscopic and macroscopic resolved shear stresses acting along the slip
direction m and are defined by:

ﬁ
|
8
S
B
3

(2.3.2)
T=(m-X-n)m (2.3.3)

and +? is the magnitude of the plastic mesoscopic shear strain deduced from the plastic flow rule
associated to Eq.(2.3.4).

Figure 2.6 — Path of the macroscopic shear stress C' acting on a material plane A and the corre-
sponding path of the macroscopic resolved shear stress 1" acting on an easy glide direction (Morel
[2000]).

Schmid’s law with isotropic and kinematic hardening:
flz.bry)=(x—b) - (z-b)—7 =0 (2.34)

where b is the kinematic back stress, and 7, is the yield limit subjected to hardening.

Three successive linear isotropic hardening rules have been adopted on 7, to describe the crystal
behavior from initial yield to failure (Figure 2.7a). The damage variable is the accumulated plastic
mesostrain I' (Figure 2.7b). In the first phase, we have a linear increase 7, = gf‘, in the second phase
when 7, reaches a saturation 7, 7, = 0, and then above a certain threshold, we have softening
y = —hl.

In the description and implementation of his method, Morel draws heavily on the work developed
by Papadopoulos including the use of a measure of cumulative mesoscopic plastic deformation and
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modeling the behavior of grain in three distinct phases (hardening, saturation and softening); he
considers the cumulative mesoscopic plastic deformation I' as damage parameter and assumes that
the initiation of a fatigue crack occurs when the latter reaches a critical value D = Dr = T'p
(Figure 2.7).

A
Ty
Tiim
8 W I o
- : S T
1 : hardening
p 4 1 : saturation
I : softening |
1 Y O A N
b)
Dy
Dy | = |
' N[ N|+N|| NR>N

Figure 2.7 — (a) Yield limit evolutions and (b) damage evolution in the three behavior phases (hard-
ening, saturation and softening) when a cyclic loading is applied (Morel [2000]).
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Figure 2.8 — Different paths of loading in the plane and corresponding values of the phase-difference
coefficient H (Morel [2000]). For a proportional loading, H is equal to /7. In the case of a particular
circular path, H reaches the maximum value /27 (Figure 2.8). The linear path and the circular one
lead to two bounds of the coefficient H.

Number of cycles to failure

Once the accumulated plastic mesostrain I' along the particular gliding system reaches a critical
value I'g, these grains are said to be broken. An analytical expression of the number of cycles to
initiation (SN curve) can be achieved:

Ca Tlim r
=1 N; = a4 — ) - — 2.3.
L pin <CA_Tlim> +q<C'A—mm> Ca 23:5)

where p, ¢ and r are functions of the hardening parameters of the three phases defined above.



28 CHAPTER 2. FATIGUE LIFE CALCULATION METHODS

From Eq.(2.3.6) we can find the yield point 7, of the crystal in the saturation phase as a function
of the amplitude P, and the mean value P,, of the hydrostatic pressure, the phase difference of
coefficient H and two material related parameters o and S :

—aP, + 6

(2.3.6)
ag—z + H

Tiim = Ts =
In the last relation Eq.(2.3.5), the detrimental effect of out- of-phase loading is introduced through
Tiim- As the coefficient H increases, 7, as well as IV; decrease and therefore more damage is
accumulated. The identification of the model parameters requires two endurance limits (parameters a
and b of the endurance criterion) and a single SN curve (parameters p, ¢ and r).
The fatigue control mechanism is embedded in the construction of the saturation limit 7y, of
T, which is constructed separately on each slip system using fatigue test data. More precisely, we
assume that the given material has an endurance limit in uniaxial loading given as in Papadopoulos
by
AT/2+ aPpar =0

with material coefficients o and 3, AT/2 the amplitude of the resolved shear stress, and P,,,, the
maximum hydrostatic stress. For a given cyclic shear loading on the considered slip line of amplitude
T,, average hydrostatic stress P, and amplitude of hydrostatic stress P,, we introduce the amplitude
scaling k where we have

kTa‘i‘a(kPa‘i‘Pm) :5
which is given by
_ B —abPp,
C Tu+ab,
and which will send this loading to the endurance curve, and a shape factor /7 < H < V27 char-
acterizing the shape of the loading path in the considered plane of normal n (Figure.2.8). The local

k

saturation limit 77;,,, (m, n) is then defined by the amplitude of the shear loading T, once multiplied
by the scaling factor k and corrected by the shape factor H, giving

k 1 8—aPy,
Tiim(m, n) = —To(m, n) f-a

— T mep .
H YEHT, +ab, ol )

General loading

In this framework, Morel’s method uses three successive steps for computing the damage created
by repeated loading sequences:

1. Find the critical plane n maximizing the in-plane plastic deformation fm P which will be
induced by the loading sequence, assuming linear isotropic hardening without saturation.

2. On this plane n

n,, on each direction m, compute the plastic history, that is

(a) compute the shear history T'(t) = m - X n.
(b) decompose in local loading cycles (i) counted n(;) times with load amplitude Ta(i), mean

hydrostatic load of mean P,Sf) and amplitude chi), using a standard scalar rainflow count-
ing method (chapter 4)

(c) compute the local saturation limit

Lo L B-aPV
lim H Téz) N OzPOEi) a

and its sequence average Ty, )
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(d) compute the accumulated plastic strain

4 S
Ui, = (Z): "6t (Téz) - Tl(”al>+ (2.3.7)

3. Find the critical direction m, maximizing among the directions m with the accumulated plas-
tic strain 'y, 5, , and use this accumulated plastic strain to compute the incremental damage
occurring during the repeated loading sequence

ms,ng

<Tlim>%7ﬂs

AD =1 (2.3.8)

thus assuming linear damage accumulation.

With the present way, a new counting method is defined. Indeed, damage is deduced step by
step from the hardening rules. Each time the plasticity criterion is violated (the yielding sphere is
exceeded) some plastic strain is accumulated and then damage increases. This fact is quite new
because most of the fatigue life prediction methods in the literature successively apply a counting
method (e.g. “Rainflow method”) and a damage law (e.g. Miner rule), without any link between
them. The choice of accumulated plastic mesostrain as damage variable and the use of appropriate
hardening rules seem then to be a promising and efficient way to understand and describe the physical
mechanisms of crack nucleation.

Experimental verification
In case of constant amplitude test

The author Morel [1998] takes the example of an out-of-phase bending-torsion test on a high
strength steel (30NCD16). The endurance limits of this material in reversed bending and torsion are,
respectively, f = 680 MPa and ¢ = 426 MPa. The multiaxial sinusoidal loading is characterized
by the amplitudes ¥1;, = 600 MPa, ¥15, = 335 MPa (no mean stresses) and the phase difference
B12 = 90.

The maximum value of T, (denoted as T ) can be deduced numerically. For this loading, we find
Ty, = 697 MPa. On the critical material plane (where T, is reached), C 4 is estimated to be 282 MPa.
The phase difference coefficient H is then simply deduced: H = T /C'4 = 2.47.

Besides noting that P,,, = 0 MPa, P, = 200 MPa and a = 0.67, b = 775 MPa, Tyy;,, is readily
computed with the help Eq.(2.3.6): Txy;, = 633 MPa. Finally, 755, = Tsim/H = 256 MPa. Once
p, q and 7 have been identified from a SN curve with the least squares line method, C 4and 7y;,,, can
be introduced into Eq. (2.3.7) and the number of cycles to initiation can be finally calculated, i.e.
Np =2 x 10° cycles.

In case of variable amplitude test

According to the previous endurance data and the definition of the generalized fatigue limit (for
bending 7, = f/2 and for torsion 74;,,, = t), one can estimate the parameter ¢ = 20800.

Let us consider now a block sequence composed of 10% cycles of bending (X, = 350 MPa) fol-
lowed by 10* cycles of combined in-phase bending-torsion (£,, T, = 250 MPa, 144 MPa) followed
by 10* cycles of torsion (T, = 200 MPa). This sequence is repeated until the initiation of a crack.
The mean lifetime is found to be N = 1.73 x 10° .

The three generalized fatigue limits relative to the three blocks are estimated according to Eq.(2.3.6):

T — 155 MPa

lim
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Bending
+
Torsion
Bending
S4=350 MPa| 5_=250 MPa Ll

Ta=144 MPa [T ~200 MPa

10* cycles

4
10° cycles 10 cycles

Figure 2.9 — block sequence tests (bending/bending+torsion/torsion) performed on a mild steel XC18.

T " = 179 MPa
rpend+iors — 157 MPa

These three values and the parameter ¢ are enough to accumulate the damage in the three blocks
using Eq.(2.3.8):

T'(bending) T (bend+tors) T (torsion)

— + + — =
(bending) (bend+tors) (torsion)
FR FR FR

The corresponding number of cycles to initiation is: Nprediction < 1.5 X 10° , that is to say
five successive applications of the sequence. This prediction, close to the experimental result N =
1.73 x 10°, is a conservative one.

It is important to note that if only one critical plane (either from bending, torsion or bend-
ing+torsion loading) is used for damage accumulation, one-third of the damage would be calculated,
resulting in a nonconservative prediction.

Morel’s method is promising in its description aspect of limited endurance fatigue phenomenon,
through the choice of the mesoscopic plastic deformation. By using cumulative plasticity, a fatigue
mechanisms occurring at the mesoscopic scale takes into account the main factors affecting the life-
time cycle fatigue (hydrostatic pressure and influence of phase shift).

However, at the present stage, it does not completely meet the demand of a predictive tool. In-
deed, it is a relatively complicated method (search critical plane A, and accumulated damage in each
direction in the plan); its application for multiaxial variable amplitude fatigue loads requires data that
are still not available (an S-N curve, two endurance limits and a particular damage accumulation test).
Moreover, it is not completely free of counting method because its author uses the counting of the
extrema of the evolution of the resolved shear 7, to get the macroscopic resolved shear stress 7’4 and
the corresponding amplitude P, and mean values P, of the hydrostatic stress in each direction (m)
in A.. Again, this makes it difficult and daunting task.
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This chapter is based on the paper entitled*“Multi-axial Fatigue Criteria with Length Scale
and Gradient Effects” (Ma et al. [2015])

The objective of the work is first to extend some classic high cycle fatigue (HCF) criteria (as
Crossland, Dang Van, Papadopoulos, ...) introduced in Chapter 2 in order to take into account a
sensitivity of the criteria to stress spatial variations occurring at length scale [, and second to compare
the performances of the extensions through several experimental fatigue tests. After an introduction of
the basic criteria and their gradient based extensions proposed by Luu et al., we focus on the Crossland
criterion and we propose a more practical and simple expression taking into account the gradient of
the stress amplitude and the maximum hydrostatic stress. The generalization of the approach to other
multiaxial fatigue criteria is also proposed. The proposition is then tested and applied to different
simple situations such as 4-point bending and cantilever rotative bending. The relative errors between
the exact solutions and the experimental data are estimated. Biaxial bending-torsion tests are also

31
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simulated to demonstrate the capabilities of the approach. In this work only stress gradient with a
beneficial effect on fatigue have been considered.

3.1 Introduction

In several industries, the required design lifetime of many components often exceeds 108 cycles.
This requirement is applicable to aircraft (gas turbine disks 10'° cycles), automobiles (car engine
108 cycles), and railways (high speed train 109 cycles) (Wachtman et al. [2009]). Although a large
amount of fatigue data has been published in the form of S-N (where S is stress and N the number of
cycles to fatigue) curves, the data in the literature have been usually limited to fatigue lives up to 107
cycles. Beyond that, a near hyperbolic relationship between stress and fatigue life is assumed, with
an asymptotic limit defined as the fatigue limit (or endurance stress). A large number of multiaxial
fatigue criteria, generalizing this notion of fatigue limit, are available in the literature (Papadopoulos
et al. [1997], Ballard et al. [1995], Suresh [1998],...). They are used to design industrial compo-
nents against failure. Nevertheless, most of these criteria present some drawbacks, for instance when
dealing with out-of-phase loading or with metals of different kinds from those used to develop the
criteria. In fact, most of them are not designed to cope with high stress gradients such as those in-
troduced by surface treatments or notches, or to handle scale effects as specially present in nano or
micro components.

More precisely, as mentioned by Luu et al. (Luu et al. [2014]), in problems related to small
electronic components and electro-mechanical devices, at sufficiently small sizes, factors as size,
gradient and loading effects affecting fatigue limits are not captured by classical fatigue criteria.
In particular, for the same stress distribution as well as nominal maximum stress of the material, the
smaller the sample size is, the smaller the surface or the volume of the most stressed zone is, the higher
the fatigue limit is. Moreover, the nominal fatigue limit increases in the presence of stress gradient
corresponding to a decreasing stress from the surface. Papadopoulos illustrates with experimental
example and makes clearer the “beneficial gradient effect” (Papadopoulos and Panoskaltsis [1996]).

The quantitative estimate of the contribution of the pure size effect made in Papadopoulos and
Panoskaltsis [1996], using the results of the constant moment tests on specimens of the same radius
but different lengths (Figure 3.1(a)) or of the same length with different radius (Figure 3.1(b)), is
recalled and used. The slope of the linear trend observed for the (fatigue limit-R) data in Figure 3.1(b)
is much higher than the one for the (fatigue limit-L) data in Figure 3.1(a).
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Figure 3.1 — Constant moment bending fatigue limit data: (a) constant radius R; (b) constant length L.
(Results of Pogoretskii [1966], represented by Weber [1999]).



3.1. INTRODUCTION 33

The results of the constant moment tests on specimens of the same radius but different lengths
shows that the gradient effect is an order of magnitude higher than the pure size effect. In this case,
size effect is proved insignificant compared to the gradient effect at the considered scale. Once the
gradient correction is made and a proper multiaxial criterion is used, it appears that the size effect
due to increasing the loaded surface area at the notch tip for the different geometries is negligible
compared to the gradient effect.

From above it is concluded that the stress gradient factor is the most important contributer to the
beneficial effect phenomenon. Fatigue criteria have been generalized by several authors by including
a gradient dependence (Papadopoulos and Panoskaltsis [1996]) in order to introduce a sensitivity of
the endurance limit to difference in stress as a function of length along a gradient field occurring at
length scale [,. Uniaxial normal cyclic stress states with non-zero and zero normal stress gradients,
respectively, give some indication about the normal stress gradient effect. The larger the normal stress
due to bending, the larger the difference between bending test points and tension-compression ellipse
arc (as is shown in Figure 3.2).

Ta
N/m?2

Tension-Compression Bending

O N/m?

Figure 3.2 — Schematic representation of the nominal fatigue limit (ellipse arc) for two different
tests: the arc is larger in the case of bending-torsion (presence of stress gradient) than in tension-
compression.

Apart from gradient approaches (Amargier et al. [2010], Papadopoulos and Panoskaltsis [1996]),
to take into account the beneficial effect, others approaches such critical volume (Maitournam et al.
[2009]), critical distance (Taylor [2010], Aradjo et al. [2007]), critical layer (Flavenot and Skalli
[1983]), averaging over a specific volume (Palin-Luc [2000], Banvillet et al. [2003b]) are used. In
fact, all the approaches are equivalent to introducing a length scale.

In the paper, we consider specifically the gradient approach. We start from the proposition of Luu
et al., and propose and analyze a simpler way to account for the gradient effect at a specific length
scale. The Crossland criterion (Crossland [1956]), one of the most widely known HCF criteria, is
used to illustrate the approach. Crossland proposed that the second invariant of the deviatoric stress
tensor and the hydrostatic stress are the variables governing the endurance limit.

The new proposition adds two gradient terms; it is then calibrated and its predictions are compared
to experimental results to check its relevancy.
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3.2 A first gradient approach

3.2.1 General formulation

Luu et al. [2014] proposed extensions of classical HCF fatigue criteria using the gradients of the
shear and normal stress to account for the gradient effect. In the case of critical plane type criteria,
they defined a generalized shear stress amplitude including shear stress gradient and a generalized
maximum normal (or hydrostatic) stress. A general form of classical fatigue limit criteria can be
written as follows:

f(Ca(n™), Nppaz(n®)) = Co(n™) + aNpaz (n™) — b <0, (3.2.1)

with a, b being two material parameters. f is a function, chosen in many cases as linear, and n* is the
normal vector of the critical plane; C(n*), Npqez(n*) are respectively the amplitude of shear stress
and the maximum value of the normal stress on the critical plane.

A new class of fatigue criteria extended from classical ones with stress gradient terms introducing
not only in the normal stress but also in the shear stress components, was proposed in Luu et al.
[2014]. It concerns only defect free materials and can model both phenomena “smaller is Stronger
and Higher Gradient is Stronger".

Besides the stress gradient term appearing in the normal stress part in form of G = A(o11+ 022+
o33), another gradient term, the gradient of the stress tensor amplitude (or alternatively of deviatoric
stress tensor amplitude) || Y, ||= Ao, is added to the shear stress amplitude part. Basing on all these
analyses a new form of fatigue criteria taking into account gradient effects, is proposed:

— —_— —

F(Ca(n*), Noaze (1)) = Ca(n*) + aNmaa(n*) — b <0, (3.2.2)

where al(n*) and Ny,q.(n*) are extended definitions of the amplitude of shear stress and of the
normal stress taking into account the presence of local gradient.
In the following we first focus on the Crossland criterion and its extension.

3.2.2 The classical Crossland criterion

The classical Crossland criterion (Crossland [1956]) defines the fatigue limit of metallic speci-
mens subjected to multi-axial cyclic stress by :

f( J2,a70'H,ma:r) =V JQ,a + a0 mar — b <0, (3.2.3)

where \/E measures the amplitude of variation of the second invariant of the deviatoric stress and
O H,mag 15 the maximum hydrostatic stress observed during a loading cycle. The parameters a and b
are material constants to be calibrated experimentally. The amplitude of the square root of the second
invariant of the stress deviator can be defined, in general case, as the half-length of the longest chord
of the deviatoric stress path or as the radius of the smallest hypersphere circumscribing the stress
deviator loading path (Papadopoulos et al. [1997])

Va = \/ s min {ma ((S(6) — $1) + (8() ~ 5)) }. (3.24)

The deviatoric stress S associated with a stress tensor g is defined by

lny

e I, (3.2.5)

:g—

W —

where trg is the trace of the stress tensor g and I the second order unit tensor.
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The maximum value that the hydrostatic stress reaches during the loading cycle is on the other
hand:

O H,maz = Max {;tr(g(t))} . (3.2.6)

For a proportional cyclic loading, if one introduces the two extreme stress tensors g** and g”

observed during the loading path, together with the stress range
Ag=g" — g 3.2.7)

and its deviatoric part As, the variation of the second invariant of the stress deviator reduces to

1 1 1
5% :As = 5 Max \/2 (As%l + As3y + Asdy + 2As2, + 2As2, + 2As§3).

(3.2.8)
The material constants ¢ and b can be related to the limit ¢_; of endurance in alternate torsion and

)

Jo o = — max
2t

to the limit s_; of endurance in alternate tension-compression by

t
L V3, b=t_1. (3.2.9)

3.2.3 Formulation of Crossland criterion with gradient effect

In particular, using as a basis the classical Crossland criterion Eq.(3.2.3) and the general frame-
work for the development of a gradient dependent fatigue limit criterion Eq.(3.2.2), a new version can
be written in the form:

Joa + QG fomar < b. (3.2.10)
This formula takes into account the indicator of the influence of the gradient of the stress deviator
which reflects the spatial non-uniform distribution of stress state.
In practice, Luu et al. [2014] had proposed:

nr

” £ ||,CL || G H No
Joa | 1= | =] +a0Hmar (1 - <l,, > > ~b<0. (3.2.11)
” S || a 0 H,max

=1

Here || Y || is the full stress gradient and || G || is used as an indicator of the influence of the

normal stresses gradient.

. . aO'H,max 2 8O'H,mcwv 2 8O'H,ma:zs 2
G =l Vormas 1= \/(&6> b (e} () G2

3.3 Optimized Crossland Criterion formulation

The precedent Luu and al. formula has six materials parameters a,b,l;,l,,n;,n, to be identified
experimentally. The calibration can be complicated ; it does not lead to a unique set of parameters.
Physical considerations, such as the length scales, have to be taken into account for choosing the
optimized material constants. For practical application in an industrial context, it is essential to reduce
the number of parameters. We therefore wish to investigate a simpler construction, departing from
the classical Crossland criterion.
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Surfaces with stresses decreasing in depth are, here and after, considered. Failure occurs at the
point  when, (\/J2,4+00 i maz—b)(z) = 0. To be more general and avoid singularity, this condition
should be satisfied in some z neighboring volume of size [,, leading to a criterion given by:

inf | (V720 + a0 tmaz — b) () > 0. (3.3.1)

z€B(z0,ly

To obtain a suitable expression, an expansion of Eq.(3.3.1) in performed in the neighborhood of
x. The sought formula should account for the beneficial effect of the stress gradient. Considering that
the stress is decreasing in depth, we consider the most favorable point in the neighborhood (inf), thus
a negative sign is associated with the norm of the gradient of stress tensor in the proposed formula.
In addition, the gradient term should not only affect hydrostatic stress but also shear stress.

An objective formulation based on the maximum value of deviatoric stress invariants \/E and
of 0 H maz 1n the neighborhood, is finally:

V J2,a + a0 Hmaz — lg || Vv J2,a + avaH,maz H< b, 3.3.2)

In this updated model, we keep the same material parameters a and b as before, and [, is a charac-
teristic length to be optimized to match the experimental results. The approach has thus only one
supplementary material constant, /,, whose calibration is easy.

3.4 Optimized Papadopoulos Criterion formulation

As seen in Chapter 2, Papadopoulos [1993] has proposed to opt for a mean value of the accu-
mulated plastic strain on all possible slip systems of representative elementary volume (REV). So he
chose to use an average value of accumulated plastic deformation rather than looking at failure of a
single crystal. A spherical coordinate system (Figure 3.3) to guide the vector of normal in material
plane, and the unit orientation vector r linked to a sliding direction of this plane is used to conduct
the integration over all possible orientations.

At any point O of a body, a material plane A can be defined by its unit normal vector n. This
vector n makes an angle # with the z-axis of a Oxyz frame attached to the body, and its projection
on the zy plane makes an angle  with axis x. For each plane A a new quantity is introduced as the
quadratic mean value, over all the sliding directions of the considered plane, of the resolved shear
stress amplitude and denoted as 7,.This shear stress quantity was first introduced in Papadopoulos
and Panoskaltsis [1996] and was subsequently used by other researchers.The critical plane according
to his proposal is that onto which T}, (¢, #) achieves its maximum value. The fatigue limit criterion is
written as:

maxly + CooOhmazr < Yoo 3.4.1)

where oo and 7., are material parameters to be determined (Papadopoulos [2001]).

1
Oh,max = Hltax {3t7"(0’(t))} :
As seen earlier, the construction of T}, is based on the calculation of a local shear stress 7:

T =[5in0cospo s + sinfsingoy, + cosfo,.|(—singcosx — cosfcospsiny)+
[sitnfcospoyy + sinbsingoy, + cosboy;|(cospcosx — cosbsinpsiny)+ (3.4.2)
[sinfcospo,, + sinfsingo,, + cosbo,.]sindsiny

It is clear that this shear stress is a function of ¢, 6, x and of time ¢ in the case of variable amplitude
and out-of-phase loading, i.e. 7 = 7(, 0, x,t). Upon fixing a pair of angles (¢, #) (i.e. a plane A)
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ZA

X

Figure 3.3 — Material plane A passing through point O of a body and its associated (n, 1, r) frame.

and an angle y (i.e. aline £ on A), one can define the amplitude of the resolved shear stress 7,, acting
on A along £ by the formula:

L [maXTa<90767Xat) - ?%TQ(SD?Hath)] (343)
€

Ta(,0,X) = 5 mas

Now, for a given plane A, i.e. for a fixed pair of angles (i, €), the generalized shear stress amplitude
T, is defined as the L? average in the plane A of the amplitude of resolved shear stress:

1 27
Ta(p,0) = \/F/ [ Tales 0, x)dx (3.4.4)
X:

We note the fatigue limit in fully reversed torsion £_; and the fatigue limit in fully reversed bending
f—1. From these two tests we get the parameters from Eq.(3.4.1):

Yoo = t—la
t1 1
=3(——-=].
e ( f-1 2 >
The Papadopoulos fatigue limit criterion is therefore:
maxTly, + 3 (t_l/f_l — 1/2) Ohymaz < t-1. (3.4.5)
Now, the Papadopoulos Criterion can be simply extended to cases with gradient effects by

maxTy + o0 H maz — lg || VmazT, + oo VoH maz ||< Yoo (3.4.6)
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3.5 Optimized Dang Van Criterion formulation

The Dang Van criterion as presented in Ballard et al. [1995] and reviewed in Chapter 2 is ex-
pressed as:
IntaX {T(t) + aDUH<t)} < bp. (3.5.1)

Here, 7, denotes the mesoscopic shear stress amplitude and is obtained from a mesoscopic stress
tensor & defined by:

a(t) = (a(t) - £°).

Here s* is the center of the smallest hypersphere circumscribed to the loading path in deviatoric stress

space. It is obtained by solving a “min-max" problem as follows:

s = argmin {max | s(t) — s H} .
In the case of fully reversed loading, the values s* = 0 can be directly deduced without solving the
“min-max problem" as in general case.
The principal stress values of stress tensor g being denoted by 6777(t) < 677(t) < 7(t), one

gets the amplitude of shear stress by:

L .
mr?x Ta(t) = 5(0[@) — O'[[[(t)).
Moreover, oy (t) denotes the hydrostatic stress as a function of the time. The material characteristic

parameters ap and bp are finally given from traction compression and torsion fatigue limits by :

3t 3

ap
S_1 27

bp =t_1.

Now, the Dang Van criterion can be extended to a gradient dependent criterion by

max {T(t) +apou(t)} —14 | max {V7(t)+apVou(t)} ||< bp. (3.5.2)

3.6 Calibration of the criteria

In this section, two different uniaxial fatigue tests with stress gradient effects are used to calibrate
the optimized gradient Crossland, Papadopoulos and Dang Van criteria. An application to a biaxial
test fatigue test shows the ability of the proposed approach to account for stress gradient in multiaxial
cases.

3.6.1 Fully reversed 4-point bending and rotating cantilever bending fatigue tests
With Crossland criterion

The model of 4-point bending is first considered. The bar made of steel has both ends fixed. The
radius R is a variable ranging from 1mm to 30mm in order to challenge the fact “the smaller, the
stronger". The length L of the bar is 100 mm.

The bending moment is the same in the interval L < x < L+ and equalto M = F'L (Figure 3.4).
For L < x < L+ land —R < y < R, the bending stress o is

L
Y sin(wt)es ® eq (3.6.1)

a(t) = ogzsin(wt)e, ® e; =
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Figure 3.4 — 4-point bending test (Papadopoulos and Panoskaltsis [1996])

with I = mR*/4, w is the angular velocity. The maximum stress during the cyclic loading in the

FLy

bar is thus 0,02 = , while the macroscopic stress range is Ag(t) = 20maz€s ® €4, and the

hydrostatics stress takes the value

1 1 FLy
From the value of the deviatoric stress
4
—Omaz 0 0
1 3 2
AS = Ag — g(trAa)L = 0 —30mas 0 , (3.6.3)
2
0 0 —go'max

we can compute the second invariant of the stress deviator :

Omazx FLy
J a = = —.
> \f AS: A5 V3 V3I

Then the gradient part is given by:

o 6\/J2a a«/Jga 8«/J2aiz (0 FL ) 365

Ea Ay €yt 0z V3l

(3.6.4)

and
FL

317
The parameters a and b of the standard Crossland criterion, are obtained from fully reversed tension-

Vot .maz = (0, =, 0). (3.6.6)

compression fatigue limit s_; and torsion fatigue limit ¢_; using Eq.(3.2.9).
From Eq.(3.2.3), standard Crossland criterion without gradient effect (for radius R) is:

FLR aFLR

J = — <b. 3.6.7
VJ2,a + O H maz 3l + 57 (3.6.7)
The gradient term here is given by:
FL aFL
| Vi/J2,0 +aVoH mas [|= fI 37 (3.6.8)

By comparison we can see in 4-point bending test the difference between classical and modified
Crossland criterion corresponds to the product of the characteristic length [, by the term (3.6.8) asso-
ciated to the decrease of the stress in depth. This value shows how much the modification affects the
Crossland criterion.

Crossland criterion with beneficial gradient term as shown in Eq.(3.3.2) is given by:

\/ JQ,a + 0 H max — lg(H v\/ J2,a + ang,max ”) =
FLR+GFLR_ <FL+CLFL)_
V3I 31 I\ V31 B

1 N a ; < 1 N a ) <b
Omax 5 %max — Omax Omazx | X 0,
73 3 '\ V3R 3R

(3.6.9)
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which is to say:
b

(3.6.10)

Omaz <
1 a

1 a
VAR RUI& e

The material parameters a and b are obtained using their classical expressions as Eq.(3.2.9) from
tests free of stress gradient. The corresponding fatigue limit are denoted s,.. ¢ for the alternate tension-
compression test, and ¢,y = b for the alternate torsion test. For a specimen of radius R the alternate

bending fatigue limit is denoted f.(R). We can observe that:

b b
a>/7‘ef— 1

fe(R) = 4—— . , (3.6.11)
I E A S (S T
ﬁ*s 9(\/§R+3R

and that f.(R) tends to s, for large values of R.

\/§+

wl e

With Papadopoulos criterion

From Eq.(3.6.1), the resolved shear stress 7 acting along a line £ of a plane A is given by
Eq.(3.4.2), which in this case leads to:

7(p, 0, X,t) = zesin(27t/ P)sinfcosfsiny. (3.6.12)

Clearly, for the worse case in Y, the resolved shear stress amplitude is equal to:

Ta(, 0, X) = 0y |sinfcosfsiny]|. (3.6.13)
The generalized shear stress amplitude 7}, becomes:
1 2w
To(p,0) = /= / (022 |sinfcosOsiny|)2dx (3.6.14)
s x=0
The maximum value of 7}, is obtained at (¢ = 7w /4) and at (§ = 37 /4). It is equal to:
mazTy, = 0y /2 (3.6.15)
The hydrostatic stress is given by:
1
op(t) = gamsin(%rt/P) (3.6.16)

The maximum value of o reached in a loading cycle is:
OH,max = U:L‘x/?’ (3.6.17)
Papadopoulos criterion with beneficial gradient term as shown in Eq.(3.4.6) is then given by:

maxTy + o0 H maz — lg || VmazT, + o0l maz | =
FLR o FLR FL oasFL
+ - lg =

21 31 or Tl (3.6.18)
1 o 1 «
io'mam + %Umax - lg (ﬂ%gmax + £Jmax> < Yoo = t’refv
which is to say:
Omar < T4 o T (3.6.19)
S T® (g =@
2 + 3 g (2R + BR)
For a specimen of radius R the alternate bending fatigue limit is denoted f,,(R). We can observe that:
Voo VYoo
= > = 3.6.20
fp(R) 1 O 1 Qoo Sref 1 aﬁ ( )

e P [P R -+
273 9<2R 3R> 2 3
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With Dang Van criterion

Under fully reversed loading we have:

1

(1) = 3 (0aalt) = 0)

From Eq.(3.5.2) we can deduce Dang Van criterion.

max {r(t) +apou(t)} =1, || VT (t) + apVou(t) | =

FLR . aFLR FL n aF LY
21 31 Y\2r " 3 ) (3.6.21)
L e + 2 by ( o5 Omaz + = <bp=t
2amax 3O'ma:p g QRUmax 3Ramax X 0D = lpef
which is to say:
b
Omax < . (3622)
2 3 Y9\2R 3R
We can observe that the corresponding bending limit is thus
R) = b > _ b 3.6.23
fD()_1+a | 1+a /Sref—m- (3.6.23)
2 3 Y9\2R 3R 2 3
Comparison with experimental data
F
¥
= X

Figure 3.5 — Cantilever bending test (Papadopoulos and Panoskaltsis [1996])

The case of cantilever fully reversed bending corresponds to the four point bending test except
that there, the bending moment is function of x. Thus, the maximum stress o,,4, for a given section
is a function of x. But, the y dimension of the beam is much smaller than its x dimension, which
allows us to neglect gradients in = . All expressions of the four point bending case thus apply to this
case.
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Carbon steel
Rotating Cantilever Bending
(data from Massonet 1955)

340 5
; =—Crossland_Classical
320 = ©-Crossland_Gradient
~-Papadopoulos_Gradient
;o480 DangVan_Gradient
£ 280
© E
260 5
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Figure 3.6 — Fatigue limits with gradient effect for different radii (Massonnet [1955]).

SAE 1220 steel
Rotating Cantilever Bending
(data from Moore 1944)

320 3
==Crossland_Classical
300 ©-Crossland_Gradient
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« 260 =
© 3
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© 240
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200 3
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Figure 3.7 — Fatigue limits with gradient effect for different radii (Moore and Morkovin [1944]).
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SAE 1035 steel
Rotating Cantilever Bending
(data from Moore 1944)
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Figure 3.8 — Fatigue limits with gradient effect for different radii (Pogoretskii [1966]).

40Kh steel
Rotating Constant Moment Bending
(data from Pogoretskii 1965)
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Figure 3.9 — Fatigue limits with gradient effect for different radii (Papadopoulos and Panoskaltsis
[1996]).
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Figure 3.6 to Figure 3.9 shows some test results of rotating bending fatigue limits from the lit-
erature in which the fatigue limits are plotted against the specimen radii. In the absence of gradient
effect, we get the horizontal lines indicated in black. We observe that the three criteria here give very
similar results when they are calibrated on uniaxial tests. Figure 3.6, Figure 3.7 and Figure 3.8 are
related to cantilever bending tests and Figure 3.9 depicts constant moment tests.

Eq.(3.6.11) with a et b calibrated from given S,.; and ¢,.y is used to estimate the characteristic
length [, in order to give the best correlation between simulated and experimental fatigue limit ob-
tained in rotating cantilever bending tests for different materials and radii. The results are sketched
and the corresponding parameters are shown in Table.3.1.

Table 3.1 — Length scales of different materials

1220 steel Carbon steel 1035 steel 40Kh steel

Sref 191 222 234 297
[MPa]

bres 143 151 172 180
[MPa]

g 0.3755 0.3297 0.2861 0.1424
[mm]

We can observe a very interesting phenomenon that the smaller fatigue limit is, the larger influence
of gradient effect is. This phenomenon maybe due to the fact that the smaller the grain size, the higher
the strength. This happens because of the greater interactions between dislocations as the grain size
and the available room for their gliding through the lattice, is reduced. With this experimental result
we can say there is positive correlations between the length scale [, and the grain size.

3.6.2 Bending-torsion fatigue tests
With Crossland criterion

The bending moment is a linear function of x, M, = —F(L — z). The twisting moment is
denoted M;. The stress o,, now varies along the depth (i.e. y-axis) and the length (i.e. x-axis) of
the specimen, but as above we will neglect the gradient in & as compared to the gradient in y. The
bending stress is given here by :

My . TR*

. - . M, . TR .
while the twisting shear stress is given by 7, = Tty with J = - The stress tensor g is then:

ogsin(wt) Tusin(wt) 0
a(t) = | 7asin(wt) 0 0 |. (3.6.25)
0 0 0
Its range tensor is:
20, 21, O
Aa=| 2, 0 0], (3.6.26)
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with deviator

%O'a 274 0
1 3 2
AS =Ag — g(trAg)L =| 27, ~3% 0 . (3.6.27)
0 0 —20
3 a

The second invariant of the stress deviator is then:

1 1 M2 M?
VJoa=—= JAS:AS = /=02 +72 ==L+ —Ly. 3.6.28
2, 2\@ § § 3ga+Ta 3[2+ ng ( )

As for the hydrostatics stress, we have

1 . M
OHmaz = MaxX {Btr(a(t))} =Ja_ 0y (3.6.29)

Then the gradient part has the value:

O/ J2.a O/ Jo.a O/ Jo.a M? 2
v J2 — 2a Q + 2) Q + 2? Q — 0’ 7b+%’0
Voo or oy Y 0z °* 312 J2

(3.6.30)
\/%Jg + 72
= O? | )
Yy
and Iy
b Oq
maxr — s o1 ) = et . 3.6.31
Vou, <o 51 0) (o . 0> (3.6.31)

The parameters a and b of the standard Crossland criterion, are obtained from fully reversed tension-
compression fatigue limit s, s and torsion fatigue limit ¢,.. y using Eq.(3.2.9).
From Eq.(3.2.3), standard Crossland criterion without gradient effect writes:

V20 + Q0 mas = % 724 % <b. (3.6.32)
The gradient term here is given by:
2
3w
IV a0V mas [|= = ——+ @ (3.6.33)

Crossland criterion with beneficial gradient term as shown in Eq.(3.3.2) now writes

V JQ,a + a0 H max — lg ” V\/ J2,a + avaH,max H =

2

Ja
R W 5t Lo | (3.6.34)
-— +T — -+ — | 0.
3 “ 3 g Yy 3y

With Papadopoulos criterion

We can find the resolved shear stress 7(p, 0, x,t) with Eq.(3.4.2). Although the intermediate
calculations are complicated, the result achieves the very simple form Papadopoulos et al. [1997].
The generalized shear stress amplitude 7}, is then:

1 [ o2
Tu(e.) =7 [ r(e00000= %+
X:
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1

OHmax — 50a

3
The modified Papadopoulos criterion from Eq.(3.4.6) is:

mazTy + o0 H maz — lg || VmazT, + doc0H maz || < Yoo,

From the above calculation and the linear dependance of the stress field as function of y, Papadopou-
los criterion with beneficial gradient term reduces to

mazTy + Qo0 maz — lg || VmazT, + qocO0H maz || =
2

Ua
\/027_’_2_’_ Qoo0q I 3 +73 L Qo0 < (3.6.35)
Za 4 . Qoo0a < .
3 “ 3 9 y 3y ,YOO

With Dang Van criterion

The principal stresses in 2D tensor are expressed as:

2
o =20+ (&> + 72

2 2
o 00\ 2
n- g5+
With this one gets the amplitude of shear stress by:
1 0o\ 2
mtaXT(t) = 5(01 —09) = (f) + 72

Dang Van criterion with beneficial gradient term as shown in Eq.(3.6.36) now becomes :
max {r(t) +apou(t)} =14 || V7(t) + apVou(t) || =

(ﬁ)z + 72 (3.6.36)

Oq\ 2 apo ao,
(—“) +7E 2y+3y“ < bp.

Comparison with experimental data

This classical Crossland ellipse arc delimits in the s, f —1,. s plane the safe domain against fatigue
failure. In the case of fully reversed in-phase tension-compression and torsion fatigue tests, it gives
the “ellipse arc equation” (Papadopoulos and Panoskaltsis [1996]) which is Eq.(3.6.34) with b = t,..f

Stre
and a = 2ref _ V3:

Sref
Ta 2 2Sref Oq 2 28ref Oq
< > + -1 < ) +|2- — <1 (3.6.37)
tT@f \/gtref Sref \/gtref Sref
However, if one tries to predict the behavior of the material in combined bending and torsion,
which involves the gradients of normal and shear stresses, high discrepancies between predictions

and experimental data will be found.
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By introducing the values of \/J>, and o ymq. in the the classical Crossland criterion, along

3t_ 3t_

with the change of parameter a from (1 — \/§> to (fl — \/§) in Eq.(3.2.3), we obtain the
5-1 -1

“Papadopoulos ellipse arc" based on (t_1, f_1) in the plane of amplitudes o, and 7,:

Ta 2 2f—1 Oq 2 2f—1 Oq
@) G- (7) +-as) s e

This apparent size effect, which is actually a gradient effect, in taken into account intrinsically by

gradient fatigue criteria, as for instance proposed in Papadopoulos and Panoskaltsis [1996]. Never-
theless, these criteria do not take into account the possible dependence of the fatigue limit on the
shear stress gradient and consequently do not distinguish between ¢_1 and £, .

It can be seen from Figure 3.10 that the Crossland ellipse arc (Eq. 3.6.37) based on the S.¢ -t f
fatigue limits and the Crossland ellipse arc (Eq. 3.6.38) based on f_;-t_ are different demonstrating
clearly the effect of stress gradient. The first curve, obtained within zero normal stress gradient
assumption, does not fit the experimental data from combined bending-twisting tests having a non-
zero stress gradient. The difference between test points and classical Crossland ellipse arc near the
x-axis where the normal load is predominant, is a proof of the beneficial “size and gradient effects.
Indeed, the difference between two kinds of fatigue test can be clearly seen: the bending test (test
points) includes the beneficial effects of the normal stress gradient; the tension-compression test
(Crossland ellipse arc) excludes these effects due to the gradient-free stress state. To account for the
shear gradient amplitude effect, a clear distinction must be made between ¢,y determined at the radius
R of specimen large enough and ¢_; determined at the radius R of the considered specimen. Then
all these above analyses affirm, first, the “size effect” on fatigue limits (Smaller is Stronger) as well
as the beneficial effect of the normal stress gradient (Higher Gradient is Stronger), and second, the
necessity of a distinction between ¢,. = t(R«) and t_; (R) when applied to the classical Crossland
criterion and the new gradient criterion, respectively. With all such conceptions, the experimental data
now agree very well with the ellipse arc based on the new criteria proposed, as plotted in Figure 3.10.
It is also noticed that the substitution of the material parameters by the bending and torsion limits is
an unorthodox way to bypass the above described problems for classical criterion. The same ellipse
arc is obtained in a more intrinsic way using the proposed criterion.

Our proposal takes into account both gradients of hydrostatic stress and shear stress. For SAE
4340 steel, the tension-compression fatigue limit S,y = 397 MPa and the torsion fatigue limit ¢,y =
258 MPa. We use the same set of parameters as the original criteria except the gradient term with
length scale ;. Choosing the proper [, (here [, = 2.5mm ) allows us to predict the experiments
within the acceptable range as shown in Figure 3.10 at the critical locations y = R. These results,
represented in the o4, 7, plane (the so called fatigue ellipse arc) illustrate that our proposal is quite
satisfactory in biaxial case.

The bigger value of [, in SAE 4340 steel biaxial tests whose grain size is smaller can be explained
by micro-structural analysis that in bending-torsion tests show hierarchical deformation mechanisms.
In difference with homogeneous deformation in the pure bending tests, in the small grain region,
the volume fraction of grain boundaries increases with the decrease of grain size. Thus, the large
interaction between dislocations and grain boundaries takes place. Fatigue crack initiation mechanism
transforms from slip bands and grain boundaries cracking in the bending case to the shear bands
cracking in the bending-torsion case. And the length of shear band is larger than grain boundary.
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SAE 4340 steel
Fully reversed bending and torsion
(data from Findley)

350 7
E Crossland_Classical
1t = Papadopoulos_based on (t,f)
300 —Crossland_Gradient
3 === Papadopoulos_Gradient
250 —_t _—— - DangVan_Gradient
1 “ref @ Experiments
@ 200
= E
S
® 150 5
100 3
50 =
: Sref f-1--‘i
O_||||||||||||||||||||||||||||||||||||||.|||||‘|—|—|—|
0 100 200 300 400 500

(ra(l\/lPa)

Figure 3.10 — Fully reversed combined bending-twisting fatigue limit data (Findley et al. [1956], Pa-
padopoulos and Panoskaltsis [1996]) compared with updated values computed with gradient effects
using Eq.(3.6.34), Eq.(3.6.35), Eq.(3.6.36), Eq.(3.6.37) and Eq.(3.6.38) with [, = 2.5mm. In ab-
sence of gradient effect, we would get the inner gray ellipse corresponding to classical Crossland
criterion.

3.7 Discussion

Remark 1 (Gradient terms). In this work, the pure size effect has not been considered and only
stress gradient effect is modeled. Whereas the latter is dominant rather than the pure size effect as
usually believed. A unique gradient term is enough to model the gradient and loading effects. This is
introduced either in the normal stress component of the classical fatigue criterion as Papadopoulos and
Panoskaltsis [1996] proposed, or in the shear stress part as presented in Massonnet [1956]. However,
in multiaxial fatigue tests, combining both normal and shear stress gradient terms is in principle
indispensable to capture the previous effects.

Remark 2 (Material characteristic length scale [,). The values of [, of the model proposed extend
from several hundredths of a micron to about a millimeter for cases considered, while the one of
the model proposed very recently by Ferré et al. [2013] takes about a micron. The very difference
between them is physically explained by the following reason: we study here the fatigue endurance
of macroscopic specimens and components for which the crack initiation is generally detected by loss
of stiffness corresponding to crack length which can reach a millimeter; whereas Ferré et al. consider
crack nucleation in the scale is few dozen microns.

Remark 3 (Extensions to other load case). The dependence of fatigue limits on both “size" and
gradient effects according to the specimen size (e.g. length, radius) has a “saturated” or “insensitive"
threshold. That means, there always exists a certain “saturated" value for the specimen size (Loo, Roo
) from which the fatigue behavior is insensitive to both effects and the proposed criteria exactly reduce
to the respective classical ones. Nevertheless, it is not easy to compute the gradient in multiaxial
loading case.



3.8. CONCLUSION AND PERSPECTIVES 49

3.8 Conclusion and perspectives

The present work develops a simple formulation of gradient multiaxial fatigue criteria extending
the classical HCF criteria. The objective is to model the “size", surface gradient and loading effects,
not included yet in classical mechanics but become important at small scale, by taking into account
just the gradient effect. Basing on some experimental observations, and departing from classical
fatigue criteria, new class of criteria with stress gradient terms entering not only in the normal stress
but also in the shear stress amplitude, are proposed. Such a formulation allows the new criteria to
capture the “size" and gradient effects, and to cover a large range of loading mode (traction, bending,
shearing). These new criteria are then generalized to multiaxial cases to capture both well-known
phenomena “Smaller is Stronger" and “Higher Gradient is Stronger" and thus can reproduce fatigue
experimental data even at small scale. Here in this work, the nature of these two phenomena is
also clarified. "Higher Gradient is Stronger" is only related to the gradient effect, while "Smaller is
Stronger" is related to both pure size and gradient effects where the latter is dominant - rather than
totally to the pure size effect as usually believed. Extensions of some classical fatigue limit criteria
such Crossland and Dang Van are done as illustrations. The proposed criteria