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R�esum�e

Au travers du processus d'�evolution, les esp�eces v�eg�etales d�eveloppent pr�ef�erentiellement
au �l des g�en�erations des traits qui am�eliorent leur aptitude �a faire face aux challenges
environnementaux qui se pr�esentent �a elles. En particulier, la 
exibilit�e des individus
est positivement corr�el�ee avec l'intensit�e des chargements 
uides dans les di��erents
habitats. En e�et, la d�eformation des structures 
exibles expos�ees �a des �ecoulements
permet classiquement, dans le r�egime statique, de r�eduire la trâ�n�ee �a laquelle elles sont
soumises. Dans le domaine de la biom�ecanique, cette d�eformation d'�el�ements v�eg�etaux

exibles conduisant �a une r�eduction du chargement endur�e est d�esign�ee par le terme de
`recon�guration' pour souligner le caract�ere avantageux de ce processus adaptatif.

Dans le cadre d'une d�emarche de bioinspiration, l'objectif de cette th�ese est d'ap-
pr�ehender les di��erents m�ecanismes physiques qui sous-tendent le processus de recon-
�guration, par l'�etude de syst�emes mod�eles th�eoriques. Des extensions de la th�eorie
classique de recon�guration statique sont propos�ees pour �evaluer l'impact de di��erents
e�ets jusqu'�a lors n�eglig�es dans la litt�erature. Dans un souci de simplicit�e, nous nous
concentrons dans cette th�ese sur le cas de structures �elanc�ees, encastr�ees-libres, et
transverses �a l'�ecoulement. La plupart des r�esultats pr�esent�es sont issus de simula-
tions num�eriques bas�ees sur des mod�eles simpli��es d'interactions 
uide-structure. Sont
analys�es successivement, dans les di��erents chapitres, les e�ets de la variabilit�e spatiale
du syst�eme 
uide-structure, ainsi que l'impact de la dynamique provenant au choix de
l'instationnarit�e de l'�ecoulement de base, d'un couplage 
uide-structure conduisant �a
une instabilit�e de 
ottement, ou de vibrations induites par vortex.

Dans le cas d'un syst�eme non-uniforme, nous montrons que la loi d'�evolution de la
trâ�n�ee avec la vitesse de l'�ecoulement d�epend de la distribution spatiale des propri�et�es
du syst�eme 
uide-structure �a l'�echelle d'une longueur de courbure localis�ee �a proximit�e
du bord encastr�ee. Par ailleurs, la faible sensitivit�e de cette loi d'�evolution vis-�a-vis des
d�etails des variations spatiales du syst�eme constitue un �el�ement d'explication �a la grande
homog�en�eit�e des lois de trâ�n�ee mesur�ees dans la nature. Dans le cas d'un �ecoulement
oscillant, nous mettons en lumi�ere l'existence de di��erents r�egimes cin�ematiques de
d�eformation selon l'amplitude et la fr�equence de l'�ecoulement. La r�eduction des e�orts
par recon�guration est g�en�eralement pr�eserv�ee dans ce cadre dynamique, �a l'exception
de possibles situations de r�esonance du syst�eme dans le r�egime des tr�es faibles ampli-
tudes. Les lois d'�evolution de l'e�ort maximal en fonction des propri�et�es de l'�ecoulement
d�ependent par ailleurs du r�egime cin�ematique. L'�etude de l'instabilit�e de 
ottement
montre de plus que l'apparition d'une dynamique spontan�ee n'augmente g�en�eralement
pas su�samment la trâ�n�ee sur le syst�eme pour contrebalancer le b�en�e�ce apport�e par
la d�eformation statique sous-jacente. De rares et courts �episodes d'accroissement ex-
ceptionnel des e�orts peuvent survenir dans le cas de structures lourdes et peu �elanc�ees,
susceptibles de pr�esenter une dynamique chaotique. En�n, nous montrons de plus que
la recon�guration pr�esente l'avantage suppl�ementaire de permettre la r�eduction des
vibrations induites par vortex qui accroissent la trâ�n�ee sur le syst�eme.

Ainsi, dans cette th�ese, nous montrons que l'aptitude des structures 
exibles �a



r�eduire le chargement impos�e par l'�ecoulement est pr�eserv�ee en pr�esence de non-uni-
formit�es ou de dynamique, �a condition que le design de la structure soit tel que la
trâ�n�ee r�esistive domine les forces inertielles. Les structures l�eg�eres et �elanc�ees sont �a ce
titre les mieux adapt�ees pour limiter les risques d'origine inertielle. De plus, l'e�cacit�e
de la r�eduction du chargement par recon�guration �elastique d�epend faiblement de la
distribution spatiale des propri�et�es du syst�eme. Finalement, la r�eduction des e�orts
r�esulte toujours, ind�ependamment du r�egime de recon�guration, de la concentration
de la d�eformation sur une longueur caract�eristique inf�erieure �a la longueur r�eelle de la
structure.
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Chapter 1

Introduction

The process of natural selection described by Charles Darwin is believed to have led
to the di�erentiation of species based on their ability to survive and thrive in varying
environments (Darwin, 1859). Through the adaptive process of evolution, the di�erent
species most likely developed traits that enhance their �tness to the challenges they
face as they grow. Building on that assumption, the process of bioinspiration aims at
transposing the design principles that have proved appropriate responses to given envi-
ronmental challenges to the design of man-made structures facing similar constraints.
With this in mind, arises �rst the need to identify the traits responsible for the par-
ticular �tness of given species to a speci�c constraint and to understand the physical
mechanisms underlying their e�ciency.

Among the many traits that may a�ect the di�erential survivorship of plants, the

exibility of the individuals is positively correlated to the magnitude of the 
ow-induced
forces in their habitat (Usherwood et al., 1997; Miler et al., 2012). As in the fable
of Le chêne et le roseau(The Oak and the Reed) by Jean de la Fontaine, 
exible
plants able to deform in response to the 
ow appear better suited to resist the large
mechanical constraints due to 
ow-induced forces. This observation is inconsistent with
the usual strategy adopted in engineering, where structures exposed to large 
uid loads
are usually sti�ened in order to minimize their deformation. Of course, the design of
an engineered structure has to be in accordance with speci�cations much more diverse
than the sole ability not to break, but the same holds for the plants that also have to
accommodate their biological needs. Hence, to the very least, there should be room
for improvement and innovation if we prove able to understand the process and the
limits of the mechanisms that make 
exibility an evolutionary advantage for plants
living in 
ow-dominated habitats. Besides, knowledge about the plant-
ow interactions
is of paramount importance in many �elds such as agronomy, ecology, biology, land
management, or even video processing (de Langre, 2008).

Plenty of work has already been carried on over the past decades, some of which
will be detailed in the subsequent pages of this introduction. Yet, given the diversity
of situations and the complexity of the 
ow-structure interactions in the �eld, much
remains to be done. The purpose of this work is to provide insight regarding the in
u-
ence of 
exibility on the internal stresses in structures deformed in 
ows, in situations
more complex than the overly idealized cases studied thus far. In particular, we analyse
possible limitations of the existing theories to assess whether 
exibility is uncondition-
ally advantageous or if there are situations in which it might become detrimental to the
structural integrity.

In this introductory chapter, we �rst detail some of the motivations that have led to



2 Chapter 1 Introduction

the study of plant-
ow interactions, and in particular to the speci�c role of 
exibility
in these interactions. We then present a review of the state of the art regarding the
response of 
exible structures in 
uid 
ows.

1.1 Motivations

1.1.1 Bioinspiration: 
exibility as a strategy for surviving the
mechanical loads in 
ow-dominated environments

Plants living in 
ow-dominated habitats have to cope with the mechanical loads to
ensure their survival. In the perspective of designing sustainable, robust structures
able to withstand large 
ow-induced forces, we may be interested in the solutions that
evolution has brought to best accommodate this problem.

First, it is important to emphasize that the 
uid forces are not necessarily the only
mechanical loads plants have to withstand. In fact, terrestrial plants are usually subject
to loads due to gravity greater than those due to the surrounding air. Growing sti�
notably appears as a necessary condition to avoid buckling under their own weight
(Usherwood et al., 1997; Ennos, 1999). On the other hand, water plants may rely on
buoyancy to avoid gravity loads, but the larger density of water compared to air makes
the 
uid loadings absolutely dominant in aquatic environments.

Besides, it should be noted that survival does not necessarily mean avoiding break-
age. On the contrary, some species such as the feather boa kelpEgregia menziesiimay
take advantage of the weakness of their tissue to avoid uprooting by self-pruning dur-
ing the most extreme events such as winter storms (Demes et al., 2013). The ability to
sacri�ce some fronds in order to reduce the overall force on the root system acts as a
kind of \mechanical fuse" (Usherwood et al., 1997) that may prevent the whole plant
from being dislodged (Krumhansl et al., 2015). The details of this mechanism have
been theoretically analysed in Lopez et al. (2011) and Lopez et al. (2014). For some
coral species, 
ow-induced breakage may even constitute the main mechanism of repro-
duction by dispersing broken-o� pieces that survive on their own and settle somewhere
else (Highsmith, 1982). But in the case ofEgregia menziesii, self-thinning comes at the
expense of the reproductive output (Demes et al., 2013), and the weakness of its tissues
results from a trade-o� between the necessity to survive and other considerations.

In fact, the morphology and tissue properties of the plants are meant to accommo-
date not only the mechanical loads, but also the biological needs such as light inter-
ception, nutrient, carbon and oxygen uptake or reproductive e�ciency (Puijalon et al.,
2005; Bal et al., 2011). Generally speaking, growing large is bene�cial in terms of these
biological considerations (Denny et al., 1985; Krumhansl et al., 2015; Bal et al., 2011),
but this comes at the cost of greater 
ow-induced forces that endanger the individuals.

To cope with the 
uid forces while keeping the ability to reach large sizes, kelps grow
either strong tissues able to endure large stress levels, or 
exible blades that provide the
ability to deform substantially to reduce the drag in a given 
ow (Starko and Martone,
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2016). Breaking strength and 
exibility furthermore appear to be negatively correlated,
which suggests that drag avoidance and tolerance are two incompatible strategies in
nature that both lead to a greater chance of surviving large hydrodynamic loads.

The potential that 
exibility bears for reducing the drag on plants with relatively
weak tissues is now believed to be one of the key factors that allow them to thrive in

ow-dominated habitats (Harder et al., 2004). Thus, understanding the mechanisms
responsible for alleviating the drag on 
exible plant elements is undoubtedly of interest
from a bioinspired perspective.

1.1.2 Other motivations

Apart from possible applications in bioinspired design, knowledge about the plant-
ow
interactions has been sought for many other reasons in diverse scienti�c communities.

In the agricultural sector, the e�ects of the wind on biomass production for the
food or wood industries may be the cause of massive economic losses. The damages
on cereal crops are responsible each year for productivity losses that may amount up
to 30% of the harvest (Berry et al., 2004). Similarly, the violent storms that swept
through France in December 1999 have caused the destruction of about 140 million
cubic meters of wood (Birot et al., 2000), which represents about 3 times the average
annual usage.

In biology, the wind-induced motion of leaves is believed to hinder foliage destruc-
tion due to herbivory (Yamazaki, 2011), to enhance water holding in the fog (Merriam,
1973), and to alter the photosynthesis and gazeous exchanges at the scale of the leaves
(Clark et al., 2000; Roden and Pearcy, 1993) and the light shedding at the scale of the
canopy (Pearcy, 1990; Roden, 2003). On a longer time-scale, the mechanical perception
of the stresses induced in the plant structure results in a selective biomass allocation
during the growth called thigmomorphogenesis. Eventually, this process improves the
morphological and mechanical �tness of the plant to its environment (Ja�e, 1973; Mou-
lia et al., 2011). For instance, the branches of the well-named `
ag tree' shown on
Figure 1.1(a) grow in the direction of the wind. Koehl and Alberte (1988) also reported
that the giant kelps Nereocystis luetkeanafeature large ru�ed blades in calm water
environments and thin 
at blades in fast 
ows (see Figure 1.1(b)). This intra-speci�c
phenotypical di�erence most likely stems from di�erent adaptive growth patterns in
response to the 
ow-induced loads in the two types of habitat.

In ecology, the depletion of the macrophyte population due to the currents in fresh-
water lakes may have dramatic consequences on the stability of the ecosystem (Carpen-
ter and Lodge, 1986) and the quality of the water (Van den Berg et al., 1998; Albertoni
et al., 2014). Moreover, the aquatic vegetation opposes a resistance to the 
ow that
a�ects the transport of the sediments and nutrients, or the erosion of river banks and
foreshores. In coastal ecosystems such as salt marshes, mangrove forests or reed swamps,
the 
ow dissipation due to vegetative resistance reduces the intensity of the waves and
protect the shores from being too severely impacted (Anderson et al., 2011; Vuik et al.,
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Figure 1.1: Examples of thigmomorphogenesis. (a) Flag tree with its branches aligned
with the direction of the wind, from WEB01. (b) Ru�ed and strap-like blades of
Nereocystis luetkeanadepending on the magnitude of the 
ow in their habitat, from
Koehl (1999).

2016). The e�ciency of the wave attenuation is obviously highly dependent on the
standing biomass on the foreshore, so that 
ow-induced breakage of the vegetation may
substantially increase the impact of the wave loads on the shorelines or the 
ood de-
fense structures (Vuik et al., 2017). Similarly, riparian and 
oodplain vegetation are
increasingly seen as a potential protection against 
ooding that is both e�cient and
sustainable. To this day, most available models of vegetated 
ow-resistance lack the
consideration of some critical plant characteristics such as their ability to deform due to
their 
exibility (Anderson et al., 2011; Aberle and J•arvel•a, 2013). Some improvements
have been made recently to remedy this 
aw (Whittaker et al., 2013, 2015; Luhar and
Nepf, 2013; Luhar et al., 2017), based on new progress made in the understanding of
the mechanical behaviour of 
exible model systems in 
uid 
ows, but much remain to
be done.

More generally, the determination of the key factors in
uencing the deformation of
plant elements in di�erent types of 
uid 
ows, the magnitude of the 
uid forces that are
imposed on them, and the risk of breakage or uprooting they are subjected to all �nd
applications in the domains cited above. In order to further deepen our knowledge of
the plant-
ow interactions, re�ned mechanical analyses of coupled 
ow-structure model
systems are necessary. In the following section, we present some of the existing theories
and results.

1.2 The mechanism of elastic recon�guration

The process of elastic deformation resulting in an alleviation of the drag force on a 
ex-
ible structure is usually referred to as `recon�guration'. This term was introduced by
Vogel (1984) in the �eld of biomechanics in order to emphasize the adaptive nature of
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the deformation: \Shape becomes a function of speed, and the scaling of drag with speed
assumes unusual interest. Indeed the word `recon�guration' may be more appropriate
than `deformation' | we suspect speci�c adaptation and the latter carries some patho-
logical odor of disfunction." Depending on the features of the 
ow and the structure,
the mechanisms involved in this phenomenon may vary. We �rst focus on the case of a
static deformation in a steady 
ow.

1.2.1 Recon�guration in steady 
ow

According to observations made in Vogel (1984); Koehl (1984); Koehl and Alberte
(1988); Vogel (1989); Boller and Carrington (2006), the mechanisms by which recon�g-
uration a�ects the intensity of the 
uid loads in a steady 
ow are manifold. The two
most well-documented e�ects are the frontal area reduction and the streamlining of the
shape. Indeed, the pressure drag force on a rigid object in a steady 
ow classically
reads

F =
1
2

�C D A f U2 (1.1)

where � is the density of the 
uid, A f is the frontal area of the object (projected
on the plane normal to the 
ow), U the characteristic velocity of the 
ow through
the frontal area, and CD a drag coe�cient (Taylor, 1952). The drag coe�cient of
rigid objects depends essentially on the Reynolds numberRe and on the shape of the
object. However, the Reynolds number on macroscopic plants in 
ows fast enough to
deform them is typically large enough (Re � 105 � 107, see Harder et al., 2004) so that
the Reynolds-related variations are negligible andCD is essentially a shape-dependent
quantity. The large value of the Reynolds number, and the geometry of the plants
generally facing the 
ow more than being aligned with it further justi�es that friction
drag should be negligible compared to pressure drag. In the case of a 
exible structure,
the shape of the object varies with the 
ow velocity, as illustrated on Figure 1.2 in the
cases of a tulip tree leaf and a red alder tree.

As a consequence, both the frontal areaA f and the drag coe�cient CD are functions
of the 
ow velocity U. In most cases, recon�guration results in a reduction of the frontal
area. This is clearly visible in the case of the red alder tree on Figure 1.2(b). Besides,
the deformation of the plant generally leads to a more streamlined shape that allows a
better pressure recovery in its wake, so that the drag coe�cient is lowered as well. For
instance, the experimental results of Boller and Carrington (2006), displayed on Figure
1.3, clearly show a reduction of both the frontal area and the drag coe�cient of the
algaesChondrus crispusas the water velocity increases. Thus, overall, the drag force
on a deforming plant does not increase quadratically with the 
ow velocity, but with a
di�erent scaling

F / U2+ � (1.2)
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Figure 1.2: (a) Rolling-up recon�guration of a tulip tree leaf (side view, air 
ow from
left to right), from Vogel (1989) (b) Bending recon�guration of a red alder tree (front
view, air 
ow from front to back of the page), from Vollsinger et al. (2005)

where the so-called Vogel exponent� , �rst introduced in Vogel (1984), includes the
dependency on the 
ow velocity of the frontal area and drag coe�cient. In most cases,
it takes negative values so that the drag increases subquadratically due to the e�ects
of the deformation. The e�ects of the deformation are not necessarily the same at
low and large velocities, so that the Vogel exponent is not necessarily a constant value
throughout the whole range of 
ow velocities.

Figure 1.3: Variations with the 
ow velocity of (a) the frontal area normalized by the
frontal area at rest and (b) the drag coe�cient, for algaesChondrus crispusin a water

ume, from Boller and Carrington (2006).

The �rst study to provide theoretical predictions of the drag reduction by elastic
recon�guration on a model system was that of Alben et al. (2002, 2004). The authors
considered an elastic one dimensional �bre in an inviscid two dimensional 
ow, both
experimentally and numerically (see Figure 1.4(a)). Their model for the drag predicts
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a transition from the classical rigid-bodyU2 law to a new U4=3 scaling law at large

ow velocities (see Figure 1.4(b)), corresponding to a Vogel exponent in the asymptotic
regime (when the deformation is signi�cant)� 1 = � 2=3.

Figure 1.4: (a) Experimental setup of Alben et al. (2004) and (b) evolution of the drag
force on the 
exible �bre as a function of the velocity of the soap �lm.

Their study also revealed the importance of a single control parameter, which
they call the elastohydrodynamical number. This quantity is the square root of the
more commonly used Cauchy numberCY (Tickner and Sacks, 1969; Chakrabarti, 2002;
de Langre, 2008) that scales the competing e�ects of 
uid loading to the elastic restor-
ing force. When the Cauchy number is smallCY < 1, deformation of the object is
negligible. On the other hand, whenCY > 1, the drag on the structure is signi�cant
enough to substantially deform it and we expect the scaling of the drag to deviate
from the quadratic law. In the case of slender structures bending under the e�ects of a
transverse 
ow, the Cauchy number reads

CY =
�U 2WL3

2EI
(1.3)

whereW is the width of structure in the direction transverse to the 
ow, L its length,
and EI its bending sti�ness (E the Young's modulus of the material andI the area
moment of inertia of the cross-section). Subsequently, the study of Gosselin et al. (2010)
considered the recon�guration of two dimensional plates clamped at the centre in a wind
tunnel (see Figure 1.5). To isolate the contribution of 
exibility to the velocity-drag law
throughout the whole range of 
ow velocities, the authors de�ned the recon�guration
number R as the drag on the 
exible structure normalized by that on a geometrically
similar but rigid structure

R =
F

Frigid
/ U� : (1.4)

As the Cauchy number is proportional to the 
ow velocity squaredCY / U2, the Vogel
exponent can be inferred from the slope of the loglog plotR(CY ) according to



8 Chapter 1 Introduction

� = 2
@logR
@logCY

: (1.5)

A schematic view of the correspondence between the di�erent representations of the
velocity-drag relationship is shown on Figure 1.6 in arbitrary units. In this particular
case, the Vogel exponent asymptotically goes to� 1 for large Cauchy numbers, so that
the velocity-drag law goes from quadratic to linear. The work of Gosselin et al. (2010)
showed that variations in the drag coe�cient of the cross-sections of the plates due to
blockage e�ects in the wind tunnel prevented the data from di�erent plates to collapse
on a single curve. The proper de�nition of the Cauchy number should consequently
include the cross-section drag coe�cientfCY = CD CY . The model used in this study
further leads to an asymptotic Vogel exponent� 1 = � 2=3 similar to that found by
Alben et al. (2004).

Figure 1.5: Experimental setup of Gosselin et al. (2010): a rectangular plate is clamped
in the middle in a transverse 
ow of velocityU.

Figure 1.6: Schematic view of the loading-drag relationship in the di�erent parameter
spaces (arbitrary units). U: reference 
ow velocity,F : drag force,CY : Cauchy number,
R : recon�guration number, and � : Vogel exponent.

Recon�guration may also occur through other modes of deformations. In order to
explain the drag reduction due to the rolling up of da�odil leaves originally observed by
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Vogel (1989) and shown on Figure 1.2(a), Schouveiler and Boudaoud (2006) obtained
theoretical and experimental estimates of the asymptotic Vogel exponent for circular
plastic sheets cut along a radius (experimental setup shown on Figure 1.7). They found
a drag scaling asU2=3, while a theoretical and numerical study by Alben (2010) on
the same system concludes that the drag should increase asU1. From the assumption
that the scaling of drag reduction results from the loss of one typical length scale,
de Langre et al. (2012) showed that the Vogel exponent of any structure made of beams
and plates (such as most plants) should exhibit approximately the same behaviour.
By a simple dimensional analysis, they recovered the classical� 2=3 Vogel exponent
found by Alben et al. (2004) and Gosselin et al. (2010) in the asymptotic regime.
They further claimed that non-linearity in the material constitutive law should have
little impact on the scaling of drag. Subsequently, the work of Luhar and Nepf (2011)
additionally proved that the e�ects of gravity or buoyancy should not signi�cantly
alter the aforementioned results as long as the 
ow is the dominant source of loading
on the structure. On the other hand, the results of Zhu and Peskin (2007) and Zhu
(2008) regarding the recon�guration of 1D �ber in 2D 
ows at low Reynolds number
concluded that viscosity mitigates the bene�ts of recon�guration. Their study showed
a variation of the asymptotic Vogel exponent from� 2=3 at Re = 800 to approximately
0 at Re = 10.

Figure 1.7: Experimental setup of Schouveiler and Boudaoud (2006): a circular plastic
sheet cut along a radius rolls up into a cone as the 
ow velocity (from left to right) is
increased, from left to right.

All these studies considered individual elements plunged in a uniform 
ow so that
the reference velocityU that appears in the expression of the drag (1.1) is not a�ected
by the deformation. However, when plants form bundles as is the case for instance for
the giant bull kelp Nereocystis luetkeana, a reduction of the drag due to the reduction
of the 
ow velocity inside the bundle was reported in Koehl and Alberte (1988); Koehl
et al. (2008). The 
ow impinging on the inner blades may thus be slowed down due to
a reduction of the porosity of the bundle as the blades clump together under the e�ect
of the 
ow. In this particular case, the drag force is of a di�erent nature as it stems
from the friction on the blades aligned with the 
ow, but similar sheltering e�ects may
cause the alleviation of the pressure drag as well. In that regard, the work of Gosselin



10 Chapter 1 Introduction

and de Langre (2011) found that the Vogel exponent of a poroelastic system made of
beams decreases from� 2=3 when the beams are far enough to be considered isolated to
� 1 when they shelter each other. The recent study of Barsu et al. (2016) also reported
the existence of sheltering e�ects in laterally con�ned two dimensional canopies, when
the spacing is small enough so that the downstream blades feel the in
uence of the
recirculating 
ow in the wake of the upstream blades.

Finally, the reference velocity may be a�ected by the deformation even in the case
of isolated elements, if the 
ow is non-uniform. This eventuality is suggested in Koehl
(1984), in the case where de
ection might allow a structure to dive and encounter the
lower velocity of the boundary layer close to the substratum. We may also imagine
that a non-uniform distribution of the structural properties may lead to variations
in the deformation behaviour possibly leading to di�erent scalings of the drag force
with the 
ow velocity. The in
uence of non-uniformities in the free-stream or
in the structure have nonetheless never been theoretically accounted for in
full. The properties of the 
ows and plants in the �eld are very unlikely to be uniformly
distributed, and a range of models is clearly missing to �ll the gap between the idealized
cases studied thus far and the more complex natural con�gurations.

In spite of the large diversity of the plant-
ow systems, it is quite remarkable to
see how robust the mechanism of drag reduction by elastic recon�guration appears to
be. A plethora of experimental measurements of Vogel exponents of plants or model
systems can be found in the literature, and the vast majority of them indicate that the
drag on 
exible systems of almost any type grow close to linearly with respect to the

ow velocity, � � � 1 (de Langre, 2008). For instance, experiments on multiple species
of pines in wind-tunnels presented in Vogel (1984) or Rudnicki et al. (2004) conclude
to an approximately linear velocity-drag relation. Wilson et al. (2010) measured the
hydrodynamic drag over full-scale trees towed in a water tank and also reported a
linear increase of the drag. A similar conclusion was drawn by Sand-Jensen (2003) for
freshwater macrophytes and strap-like plastic blades in water. Finally, the extensive
lists of Vogel exponents for marine or aerial species of varying morphologies and sizes
provided in Harder et al. (2004) or de Langre et al. (2012) display values between 0
and � 1:3, generally close to� 1. None of the geometrical properties of the structure,
the nature of the 
uid, or the mode of deformation appear to play a critical role in this
mechanism.This remarkable uniformity of the Vogel exponents with respect
to the properties of the particular 
ow-structure systems remains so far
unexplained.

1.2.2 Sources of dynamics in steady 
ow

Whether they explicitly mention it or not, most of the studies mentionned thus far
have focused on the static or averaged deformation and drag of plants or structures in
steady currents. The dynamic deformation of whole canopies in response to the Kelvin-
Helmoltz instability of the 
ow at their surface has received attention for some time
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(Inoue, 1955; Py et al., 2006; de Langre, 2008; Ackerman and Okubo, 1993; Ghisalberti
and Nepf, 2002; Okamoto and Nezu, 2009), but only little work has been devoted to
the 
apping motion of individual plant elements in steady 
ows and the impact it may
have on the internal stress they have to bear. Such dynamics may arise on top of the
static deformation, in response to the turbulence in the free-stream, from coupling with
the vorticity wake of the object, or from 
uid-structure instabilities (Blevins, 1990;
Pa•�doussis, 1998; Pa•�doussis et al., 2010).

The work of Siniscalchi and Nikora (2012) and Denny (1994) has brought to light
the close relation between the upstream turbulence and the variations of the drag force
on water-swept organisms. However, further results in Siniscalchi and Nikora (2013)
underline that the dynamic deformation of these plants is not related to turbulence
but most likely stems from a 
ag-like 
utter instability. Based on the work of Lighthill
(1960); Barrett et al. (1999); Dong and Lu (2005) regarding the reduction of drag in
�sh-like locomotion, the authors of Siniscalchi and Nikora (2013) suggest that this reg-
ular, large-amplitude dynamic deformation might similarly improve the drag reduction
ability of these plants. On the other hand, based on the work of Chang and Moretti
(2002); Moretti (2003); Morris-Thomas and Steen (2009) about the drag of 
uttering

ags, the authors also mention the potential for drag enhancement that this instability
may bear. Similar 
uttering motion have also been reported in Koehl and Alberte
(1988) and Koehl et al. (2008) for the giant bull kelpNereocystis luetkeana, as well
as in Usherwood et al. (1997) for some aquatic buttercup species. All these studies
suggest that the inertial forces associated with the 
apping motion should most likely
enhance the drag and potentially endanger the plants.However, none of them have
assessed the actual impact of 
utter on the drag or internal stress inside the
plants. Whether 
utter would help alleviating the loads, would counteract
the drag reduction due to recon�guration, or would even fully o�set the
bene�ts of recon�guration and enhance the drag compared to a rigid struc-
ture remains an open question. More background elements regarding the problem
of 
utter will be provided in Chapter 4.

Regarding the coupling of the structure with the vorticity wake, two di�erent types
of interactions are observed depending on the geometry of the system.

First, in the case of the planar bending of large plates, equivalent to the one-
dimensional �bre bending in a two-dimensional 
ow studied by Alben et al. (2002,
2004) (voir Figure 1.4), vortex shedding may occur at the tips of the �ber. If this e�ect
was neglected in the model of Alben et al. (2004), it has subsequently been accounted
for. In the case of low Reynolds numberRe 2 [80; 300], the numerical simulations of
Zhu (2007) show that the coupling between the �bre and its wake is responsible for
small oscillations of the �bre about its mean position. The drag force similarly os-
cillates about its mean value. The features of the wake furthermore depends on the
Reynolds number (see Figure 1.8), and the dynamics of the structure is a�ected ac-
cordingly. The transition of the asymptotic Vogel exponent (for the average drag) from
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0 at low Re to � 2=3 at Re = 800 shown in Zhu (2008) accounts for the coupling with
the wake. However, the variation of the scaling of the drag force is most likely due to
the switch of dominant 
uid loading from skin friction to pressure drag and the e�ects
of the wake-induced dynamics are most likely secondary. Additional results presented
in Miller et al. (2012) show that the amplitude of the vortex-induced vibrations are
enhanced if the �bre is attached at its center to a 
exible tether instead of a rigid one.

Figure 1.8: Flow past a 
exible �bre at varying Reynolds number (a)Re = 82:5, (a)
Re = 165, (a) Re = 330 (a) Re = 660, for a �xed Cauchy number, from Zhu (2007).

In the large Reynolds number situation of Alben et al. (2004), the numerical study
of Yang and Liu (2016) concluded to the existence of four di�erent bending modes
displayed on Figure 1.9, essentially depending on the value of the Cauchy number. As
the two de
ecting branches of the �bre get closer to each other, the stability of the
U-shaped mode considered by Alben et al. (2004) is lost and alternate vortex shedding
forces the structure into slight oscillations. When the gap between the branches closes
further, 
apping is enhanced until the two branches �nally come together in a stable
closed shape. The scaling of the drag found in Alben et al. (2004) or Gosselin et al.
(2010) is valid in the stable U-shaped mode, but Yang et al. (2014) explains that the
e�ect of the dynamics in the 
apping mode increases the drag substantially. Finally, the
closed mode exhibits a quadratic drag increase because its shape remains unchanged as
the velocity increases further.

The other con�guration in which the e�ect of vortex shedding may impact the
dynamics is that of elongated structures that are thin in the direction transverse to
the 
ow. In this situation, the structure may locally be considered in�nite in the axial
direction and the 
uid-structure interactions in neighbouring cross-sections along the
span may be considered independent. As a consequence, vortex shedding from the tip
of the structure in the direction of the free-stream is of negligible in
uence, but the
vorticity shed locally in the wake of each cross-section may induce structural vibrations
(see Figure 1.10). Indeed, the wake behind a cylindrical object destabilizes at large
Reynolds number, and forms a Von-Karman street in which vortices of alternating signs
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Figure 1.9: Bending modes found by Yang and Liu (2016): (a) stable U-shaped mode,
(b) slight swing, (c) violent 
apping, (d) closed mode.

are shed with a natural frequencyf w = StU=D, where U is the velocity of the free-
stream, D the diameter of the cylinder and the Strouhal numberSt is typically of the
order of 0:2 for circular cross-sections (Blevins, 1990). This results in an oscillating lift
that forces the structure into a transverse motion of self-limited amplitude comparable
to the transverse dimension of the objectD. The evolutions of the frequency and
amplitude of the oscillations of a 
exibly mounted cylinder of natural frequencyf s is
displayed on Figure 1.11 as functions of the reduced velocityUR = StU=fsD = f w=f s.
When the wake frequency is far away from the natural frequency of the structure, the
structure responds at the wake frequencyf w with a very small amplitude. On the other
hand, when the natural frequencies of the wake and the structure are close to each other
UR � 1, the vibrations and vortex shedding both occur at a frequencyf that deviates
from the Strouhal law f = f w . This phenomenon is classically referred to asfrequency
lock-in and stems from a strong bilateral coupling between the structure and its wake
(Williamson and Govardhan, 2004; de Langre, 2006). In the range of 
ow velocities
where that happens, the amplitude of the oscillations is enhanced due to the extended
resonance in the system. In the more complex case of elongated 
exible cables, the
interaction between the structure and the distributed forcing by the wake along the
span is made much more complex due to the multiplicity of the natural frequencies
of the structure and the possible spanwise non-uniformity of the 
ow (see for instance
King, 1995; Trim et al., 2005; Facchinetti et al., 2004b; Mathelin and de Langre, 2005).
Additional background elements regarding the problem of the vortex-induced vibrations
will be provided in Chapter 5.

Flexible elongated cylindrical structures, whether natural or man-made, are liable to
such vortex-induced vibrations even when they are de
ected under the e�ect of the 
ow.
The VIVs have been a prominent subject of research for many years, mostly because of
the threat they constitute for civil and marine engineering structures such as buildings,
power transmission lines, marine risers, towing cables, or mooring lines. In the case
of a structure heavily de
ected under the e�ect of the 
ow, one might argue that the
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Figure 1.10: Vortex-induced vibration of a cable in transverse 
ow, from Violette et al.
(2010). The wake vortices alternatively shed in the plane of the cross-sections force the
structure into transverse oscillations.

Figure 1.11: Lock-in of a 
exibly mounted, rigid circular cylinder, from Khalak and
Williamson (1997). Evolution of (a) the frequencyf of the VIVs normalized by the
natural frequency f s of the solid oscillator, and (b) the amplitude of vibrationsY
normalized by the diameter of the cylinderD, as functions of the reduced velocity
UR = StU=fsD. The grey zone corresponds to lock-in.

additional stress due to the VIVs is negligible, as the amplitude of the vibration scales
with the diameter of the structure D when the amplitude of the static in-line de
ection
is comparable to its lengthL � D. However, the VIVs are the source of a fast cyclic
load that may be the cause of fatigue fracture after the repetition of a large number of
cycles, even though the amplitude of the load itself is small. Besides, the drag coe�-
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cient of transversely vibrating cylinders is magni�ed by an amplitude-dependent factor
(Vandiver, 1983; Blevins, 1990; Chaplin et al., 2005), due to a larger apparent exposure
to the 
ow. The onset of VIVs may thus be responsible for a drag force up to twice as
large, in comparison to a structure that does not vibrate.Correctly predicting the
VIVs of immersed structures is therefore of paramount importance in order
to accurately assess their operating lifespans and risks of breakage. The fea-
tures of the VIVs, and particularily their amplitude, are surely a�ected by
the in-line deformation of the cylinder. No study has nonetheless explicitly
accounted for this e�ect thus far.

1.2.3 Recon�guration in time-dependent 
ows

Compared to all the literature on the mechanisms of recon�guration in steady 
ow
presented above, relatively little work has been done regarding the consequences of the
elastic deformations of 
exible structures in time-dependent 
ows. Yet, as mentioned in
Section 1.1, this question is of paramount importance for the prediction of wave-energy
dissipation over coastal ecosystems, as well as for the understanding of the evolutionary
trade-o�s that have led the near-shore kelps to reach such large sizes.

In fact, it is not even clear whether or not 
exibility should systematically result in
an alleviation of the 
uid loads in such circumstances, owing to the di�erent nature of
the 
uid forces. In the formulation of Morison et al. (1950), the force on a rigid object
in an oscillatory 
ow is the sum of the drag force (1.1) and an additional 
uid inertial
force (Blevins, 1990; Gaylord et al., 1994)

Fa = �V _U + Cm �V _U (1.6)

The �rst term, often referred to as `virtual buoyancy' (Koehl, 1984), is due to the
pressure gradient induced by the absolute acceleration of the 
uid_U. It is equivalent to
the Archimedes force, only the acceleration of gravity is replaced by that of the 
uid. It
is proportional to the displaced mass of 
uid�V whereV is the volume of the object.
The second term, called `added mass force', arises from the potential pressure �eld
due to the relative acceleration of the 
uid and the object. As for the drag coe�cient
in (1.1), the added mass coe�cient Cm is of order O(1) and depends on the shape
of the object and on the Reynolds number. In an oscillatory 
ow of peak velocity
U and frequencyf , both coe�cients also depend on an additional parameter called
the Keulegan-Carpenter numberK C = U=Wf (Keulegan and Carpenter, 1958), that
compares the typical excursion of the 
uid particles over one cycleU=f to the typical
size of the object in the direction transverse to the 
owW.

Koehl (1984) pointed out that the 
uid acceleration forces in an oscillatory 
ow,
proportional to the volume of the plant when the drag is only proportional to its frontal
area, may be the dominant load that large organisms have to withstand. The author
thus suggests that the mechanical loads may set the upper size limit of organisms in
wave-swept habitats (see also Denny et al., 1985). However, the very large sizes reached
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by giant kelps seems to indicate that the morphology of these algae must be �nely tuned
in order to overcome this limitation.

In fact, Koehl (1984) further suggests that 
exible organisms may be able to reduce
the 
uid loads by moving with the water, thus reducing the magnitude of the relative

ow. This mechanism of \going with the 
ow" (as worded in Gaylord et al. (1994))
should nonetheless have a drag-reducing e�ect only if the kelp is long enough not to
reach the end of its tether during the wave-cycle. Otherwise, the momentum of the algae
may impose large inertial forces when it reaches the end of its course. Hence, Koehl
(1984) is actually suspecting that two possible dynamic regimes may exist, delimited by
a condition on the length of the structure relative to the maximum excursion of the 
uid
particles: one in which the structure \goes with the 
ow" and reduces the hydrodynamic
loads, and the other in which the structure may have to withstand large inertial forces.
In the �rst regime, the total drag should furthermore become independent of the actual
structure length, provided that it is large enough.

Di�erent mechanical models have subsequently been proposed to replicate the mo-
tion of real macroalgae with di�erent types of mechanical properties under the action
of waves. Two such models are schematically shown on Figure 1.12 (for more details,
see Friedland and Denny (1995) for fully submerged 
exible plants, Utter and Denny
(1996); Denny and Cowen (1997) for algae larger than the water depth, and Gaylord
and Denny (1997) for stipitate kelps). Overall, the results of these simulations support
Koehl's predictions of a regime where the force is reduced, for structures larger than
the wave excursion, as well as the potential for excessive swaying motion leading to
increased forces when this criterion is not met. The results of Denny and Cowen (1997)
further indicate that juvenile Nereocystis luetkeanawould not be able to withstand the
hydrodynamic loads when they grow if they maintained the same aspect ratio through
isometric growth. Slenderness thus also appears as a factor a�ecting the intensity of
the 
ow-induced loads.

In order to better characterize the di�erent dynamic regimes, Denny et al. (1998)
analysed the dynamic behaviour of simple unidimensional heuristic models subjected to
the hydrodynamic forces in an oscillatory 
ow. This work highlighted the importance
of an additional parameter, the `jerk number' that basically compares inertial and
drag forces. For high jerk numbers, resonances between the 
ow and the structure were
found responsible for peak forces when the frequency of the 
ow was close to the natural
frequency of the solid oscillator. On the other hand, drag reduction was observed only
at low jerk numbers and far away from resonance frequencies.

This series of studies is very insightful and provides many leads regarding possible
key factors and parameters in
uencing the magnitude of the 
ow-induced forces on

exible systems. However, the variety and the complexity of the systems considered,
and the diversity of the models used in these papers make it hard to draw general
conclusions from them. Besides, a proper analysis of the mechanisms ruling the di�erent
regimes and of the precise role of the di�erent parameters involved, as well as the various
scalings of the total force on the structure depending on them are still missing from
those studies.
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Figure 1.12: Examples of models used in the numerical work of Mark Denny: A.
cantilever beam model with lumped mass at the top, for the modelling of the bending
deformation of the stipitate kelpEisenia arboarea. B. Spring-chain model with lumped
mass at the top, for the modelling of the tensile deformation ofNereocystis luetkeana,
from Denny et al. (1998).

Some of these issues were recently addressed in Luhar and Nepf (2016). Their
work suggests, based on experimental results, that the drag on deformable structures
may be expressed as that on a rigid structure with an e�ective length corresponding
to the part of the actual structure over which signi�cant relative 
uid motion occurs.
A scaling of this e�ective length with the 
exibility was provided, with the aim to
provide a tool to account for the deformability of near-bed organisms in the models
of wave-energy dissipation (see also Luhar et al., 2017). But the work of Luhar and
Nepf (2016) focuses on the speci�c case where the amplitude of the 
ow is at most of
the order of the length of the structure. They do not investigate either the dynamic
interactions (such as possible resonance e�ects) due to high frequency loading. Besides,
for particular values of the parameters, Luhar and Nepf (2016) notice an increase of
the total drag force compared to the rigid case that is still not fully understood.Thus,
in order to identify and understand the di�erent mechanisms involved in
the deformation and modulation of the drag and internal stress of 
exible
structures in oscillatory 
ow, a systematic analysis exploring the space of
parameters is still required.
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1.3 Organization of the present thesis

From the presentation of the existing work on recon�guration detailed in this introduc-
tion, we see that many of its aspects remain unexplored or poorly understood. The
static recon�guration of simple model systems in steady, uniform 
ows has been exten-
sively analysed, and the main mechanisms enabling the 
uid load to be reduced in this
simple case are quite understood. But actual plants or even engineered structures in
the �eld are likely to present more complex geometries and material properties, to be
exposed to non-uniform, unsteady 
ows, and to undergo some dynamics due to some
sort of coupling with the 
ow. It seems nonetheless that the ability to deform should
still lead to a reduction of the 
uid loads, at least in the range of parameters that
characterizes natural systems, otherwise 
exibility would likely not be as widespread
among the live organisms in 
ow-dominated habitats. We thus claim that:

\The alleviation of the internal stress by elastic recon�guration of 
exible
structures subjected to 
uid 
ows is a robust phenomenon with respect to
both the possible non-uniformities of the 
ow-structure system, and the
dynamics that may arise from various physical origins."

In the following chapters, we discuss this assertion, the physical mechanisms under-
pinning it, and also its domain of validity. In order to simplify the analysis and provide
general conclusions, we choose in the whole manuscript the same model system of a
slender, cantilever structure, clamped perpendicular to the 
ow. Most of the results
presented rely on numerical simulations of the behaviour of such systems, based on
suitable reduced order models depending on the situation considered. The technical
details regarding these models are referred to the �rst pages of each chapter.

To defend this thesis, we propose to analyse, in the following chapters, the re-
spective in
uence of di�erent phenomena. The e�ect of the spatial variability of the

ow-structure system is discussed in Chapter 2, while the scaling of the internal stresses
due to the 
ow-induced dynamic recon�guration in an oscillatory 
ow is addressed in
Chapter 3. Then, Chapter 4 focuses on the consequences of a self-induced 
uttering
motion on the expected bene�ts of recon�guration in terms of drag reduction, while
Chapter 5 analyses the impact of the recon�guration on the severity of the vortex-
induced vibrations of circular cylinders. Finally, Chapter 6 summarizes the �ndings of
this thesis and o�ers some perspectives for future work.



Chapter 2

Static recon�guration of spatially
variable 
ow-structure systems

Preamble

The mechanisms and scalings of drag reduction by static recon�guration are well-known
in the idealized case of a uniform 
ow-structure system. Actual plants or man-made
structures and the 
ow they are plunged in are on the other hand very likely to show
some spatial variability. In this �rst chapter, we address the question of the in
uence
of such non-uniformities on the scaling of the drag with the 
ow velocity, through a
dimensional analysis and numerical simulations based on a reduced order modelling of
the problem.

In order to simplify the analysis and provide general conclusions, we restrict our
study to the simple model geometry of a cantilever slender beam, clamped perpen-
dicular to a unidirectional and steady 
ow. Our model accounts for most possible
non-uniformities in the 
ow or structural properties, but it neglects the additional ef-
fects of viscosity, unsteadiness in the wake or in the background 
ow, or other external
forces such as gravity. This con�guration is the most commonly used in theoretical
studies on drag reduction by recon�guration (see for instance Alben et al., 2004; Gos-
selin et al., 2010; Luhar and Nepf, 2011, 2016), which provides us with reference points
and validation cases. In accordance with what is classically done in the context of
static recon�guration, we characterize the drag reduction through the use of the Vogel
exponent� such that the total drag force scales with the 
ow velocity asF / U2+ � . In
some aspects, the results presented in this chapter generalize the �ndings of Gosselin
et al. (2010), de Langre et al. (2012) and Luhar and Nepf (2011).

After providing an analytical expression for the asymptotic Vogel exponent (for large
de
ections) of idealized systems with self-similar variations of their spatial properties,
we discuss the practical applicability of this expression for realistic systems. We also
analyse the weak sensitivity of the asymptotic Vogel exponent with respect to the spatial
variability of the system in realistic ranges, which provides an explanation to the rather
reduced scattering of the Vogel exponents measured on very diverse systems around the
value � 1.
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The results presented in this chapter have been published in the Journal of Fluids
and Structures. The paper (Leclercq and de Langre, 2016) is attached at the end of
the thesis. Compared to the present chapter, the paper includes an additional
introduction and a comparison of the results for the asymptotic Vogel exponent in
shear 
ow with preliminary results obtained in Henriquez and Barrero-Gil (2014).
Apart from a few notations, the rest of the content is similar.
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2.1 Model

The model used in this chapter is represented in Fig. 2.1, and a nomenclature of the
main variables used throughout this chapter is given in Appendix A. The elastic body
is a cantilever beam of lengthL bending in the xz-plane. The width W, thicknessD
and material sti�ness may all vary with the curvilinear coordinates. The height z(s)
and curvature � (s) are related to the local angle of the beam with the vertical axis� (s)
by the kinematic relationships

z =
Z s

0
cos� (s0)ds0 , � =

@�
@s

: (2.1)

We assume a rather general form of the constitutive law relating the internal bending
moment M to the curvature �

M (s; � ) = b(s)g(� ); (2.2)

whereb(s) is a local coe�cient that accounts for the local sti�ness and geometry, while
g(� ) is characteristic of the material constitutive law, which we take to be uniform on
the beam. For instance, in the case of linear elasticity,g(� ) = � and b(s) = EI (s) is
the local bending sti�ness of the beam. Under the assumption that the local radius
of curvature 1=� remains large compared to the thicknessD (�D � 1), Kircho�'s
equations for rods (see for instance Audoly and Pomeau, 2010) relates the internal
shear forceQ to the internal bending momentM by

Q = �
@M
@s

: (2.3)

Figure 2.1: Description of the system. (a) Side view of the beam bending in the 
ow.
(b) Front view of the unbent structure.

We further assume that the structure is subject to a horizontal 
owU(z) of a 
uid
of density � (z). Both U and � may vary with the vertical coordinatez, Fig. 2.1(a) only
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displaying a velocity pro�le U(z) for clarity. We restrict our study to large Reynolds
numbers, so that viscosity e�ects are neglected. The local 
uid forceq is then purely
normal. In the case of uniform 
ow, it is usually considered that the normal 
uid force
include one term due to the so-called \reactive force" (� �U 2W 2� in the steady limit of
the model of Lighthill (1971) (see also Candelier et al., 2011)) and one other term due
to 
ow separation (\resistive force" � �U 2W in the model of Taylor (1952)). Thus, the
resistive force is dominant in the slender body assumption�W � 1. We assume that
this is still the case for our vertically varying 
ow, and so we takeq as purely resistive
and independent of the body curvature. We assume a somewhat general form

q(s; z; � ) = p(z)w(s)c(� ); (2.4)

wherep(z) accounts for the local dynamic pressure due to the undisturbed background

ow at height z on the beam,w(s) is a shape coe�cient that accounts for the interactions
of the normal 
ow with the local cross-section, andc(� ) is a projection term due to
the local angle of the cross-section with respect to the background 
ow. It is not
always obvious that thes- and � -dependency can be decoupled, as the structure of
the boundary layer and of the recirculating 
ow downstream will be modi�ed by the
angle of incidence. However, it is usually considered that to the �rst order, the resistive
normal force only depends on the interaction between the cross-section and the 
ow in
a plane normal to it, hence the expression chosen. The most classical example of such
model is the resistive pressure drag derived by Taylor (1952):q = 1=2�C D WU2

n where
� is the 
uid density, W the local width of the structure, Un = U cos� the normal
projection of the local 
ow velocity, and CD a drag coe�cient that accounts for the
shape of the local cross-section. Speci�cally, Taylor's model is equivalent to considering

p(z) =
1
2

� (z)U2(z) , w(s) = CD (s)W(s) , c(� ) = cos2 � . (2.5)

Note that the model chosen here only gives an approximation of the exact loading. In
particular, the modi�cations of the 
ow caused by the structure itself are neglected.
However, the close similarity of the results obtained, on the one hand by Gosselin et al.
(2010) with the present model, and on the other hand by Alben et al. (2002, 2004)
who computed the pressure force distribution on the actual structure using a much
more complex algorithm, indicates that the exact form of the force has little impact
on the asymptotic scaling of the drag. Unless otherwise stated,c(� ) = cos2 � is used
everywhere in the remaining of this chapter. The framework of the present chapter
includes the study of the in
uence of the still unspeci�ed form ofp(z) / U2(z), w(s),
b(s) and g(� ). Note that the dynamic pressure due to the background 
ow at a given
point in space does not depend on the position of the structure, sop(z) only depends
on the cartesian coordinatez (assuming the 
ow is invariant in the x-direction). On
the other hand, the elasticity factor b(s) and the cross-section shape coe�cientw(s)
are structural properties that are speci�c to a given location along the beam spans,
even though the cartesian coordinates (x; z) of that physical point change as the beam
bends. The internal bending momentM (s) depends on the curvilinear coordinates
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explicitly via the local sti�ness factor b(s), but also implicitly via the the local value of
the curvature � (s) in the material constitutive law g(� ).

Following Luhar and Nepf (2011), the local equilibrium at a given points� between
the local internal shear force and the normal 
uid loads yields the governing equation

@M
@s

�
�
�
�
s�

= �
Z L

s�
q(s) cos (� (s) � � (s� )) ds (2.6)

where the force-free boundary conditionQ = 0 at the free end s = L has been used.
Non-dimensionalizing this equation yields one governing parameter called the Cauchy
number

CY =
q0L

M 0=L
�

typical external 
uid load
typical elastic restoring force

; (2.7)

considering thatq0 and M 0 are the orders of magnitude of the 
uid loadq and internal
moment M in equation (2.6). Besides, the total drag of the beam reads

F =
Z L

0
q(s) cos (� (s)) ds: (2.8)

The focus of this chapter is the scaling of the drag force,F , with the velocity of the 
ow.
In the case of a 
ow that may not be uniform, we have to choose a reference velocity
U0 that scales the velocity at any point in the 
ow �eld. We are then interested in
the variations of the Vogel exponent� such that F scales asU2+ �

0 . At large Reynolds
number and in the limit of a rigid structure, the drag force is expected to grow as
U2

0 . Following Gosselin et al. (2010), to isolate the contribution of 
exibility to the
velocity-drag law, we de�ne the recon�guration number

R =
F

Frigid
; (2.9)

so that R / U�
0 . The actual governing parameter being the Cauchy number, we will

prefer to work in the CY � R space rather than theU0 � F space. The Cauchy number
being proportional to the typical 
uid load q0 / U2

0 , the local Vogel exponent can be
computed directly in the CY � R space as

� = 2
@logR
@logCY

: (2.10)

In the remaining of this chapter, unless otherwise stated, the Cauchy number is
always de�ned based on the 
ow and structural properties at the tip of the upright
beam.
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2.2 Drag reduction in a self-similar framework

2.2.1 Asymptotic Vogel exponent

First, we further assume that the pressure, cross-section shape and sti�ness parameters
p(z), w(s) and b(s) can be expressed as power functions of their respective arguments,
namely

p(z) = p0

� z
L

� �
, w(s) = w0

� s
L

� 

, b(s) = b0

� s
L

� �
: (2.11)

Note that, although these power-law formulations of the structural parametersw and b
may recall those of Lopez et al. (2011) for a slender cone, or those of Lopez et al. (2014)
for a tree-like structure, they actually describe quite di�erent distributions because the
curvilinear coordinates used in these studies was de�ned from the free tip towards the

oor instead of the other way around here. We also assume that the material constitu-
tive law may di�er from linear elasticity by considering a more general dependency on
curvature, still in the form of a power law

g(� ) = � � : (2.12)

Substituting (2.11), (2.12) and the particular formc(� ) = cos2 � into (2.6), the equilib-
rium equation reads

@
@s

�
s� � �

�
�
�
�
�
s�

= � CY

Z 1

s�

� Z s

0
cos� (s0)ds0

� �

s
 cos2(� ) cos (� � � � ) ds; (2.13)

where all the space variables have been made non-dimensional using the beam length
L, and the Cauchy numberCY has been de�ned as

CY =
p0w0L

b0L � 1� �
: (2.14)

From (2.8), the total drag force on the beam in this framework reads

F = p0w0L
Z 1

0

� Z s

0
cos� (s0)ds0

� �

s
 cos3 (� ) ds: (2.15)

We further assume that the drag is bounded by that on a rigid structure, namely

Frigid = p0w0L
Z 1

0
s� + 
 ds =

p0w0L
1 + � + 


: (2.16)

For this quantity to be �nite, it is required that � + 
 > � 1. Using (2.9), (2.15) and
(2.16), the recon�guration number now reads

R =

 

1 + � + 


! Z 1

0

� Z s

0
cos� (s0)ds0

� �

s
 cos3(� )ds: (2.17)
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Within this framework, the asymptotic Vogel exponent for large Cauchy numbers,
noted � 1 , can now be inferred from a dimensional analysis that accounts for the par-
ticular power-like form of the 
ow and structural parameters. The 
ow pressurep, the
cross-section shape coe�cientw and the bending sti�nessb are characterized by their
respective invariants

I p =
p(z)
z�

=
p0

L �
[kg:m� 1� � :s� 2];

I w =
w(s)
s


=
w0

L 

[m1� 
 ];

I b =
b(s)
s�

=
b0

L �
[kg:m2+ � � � :s� 2]:

(2.18)

The Vaschy-Buckingham theorem predicts three non-dimensional �gures which we choose
to be the non-dimensional drag force, the Cauchy number and the aspect ratio

eF =
F

I pI wL1+ � + 

, CY =

I pI wL1+ � + 


I bL � 1� � + �
, � =

L
w0

: (2.19)

Following Gosselin et al. (2010), we disregard the e�ect of the aspect ratio �. This
assumption is actually valid for elongated structures � � 1, as will be discussed in
Chapter 3 and more speci�cally in Appendix D. The problem now reduces to �nding
the relationship betweeneF and CY , or equivalently to determining the functionG such
that

F = I pI wL1+ � + 
 G
�

I pI w

I b
L2+ � + 
 + � � �

�
: (2.20)

For highly bent structures, Gosselin et al. (2010) demonstrated that the drag no longer
depends on the beam lengthL. Hence, functionG must be taken as a power function
G(CY ) / C '

Y that cancels the overall exponent ofL in (2.20), meaning
 

1 + � + 


!

+ '

 

2 + � + 
 + � � �

!

= 0: (2.21)

Consequently, the asymptotic drag force scales as

F /
(I pI w)1+ '

I '
b

with ' = �
1 + � + 


2 + � + 
 + � � �
: (2.22)

We are interested in the scaling of the drag force with the velocityU0, which only
appears in the 
ow pressure invariant throughI p / p0 / U2

0 . Therefore, F scales as
U2+2 '

0 and the asymptotic Vogel exponent naturally appears as� 1 = 2' . Ultimately,

� 1 = � 2
1 + � + 


2 + � + 
 + � � �
: (2.23)
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For a uniform, linearly elastic, rectangular plate bending in a uniform 
ow, (�; �; 
; � ) =
(1; 0; 0; 0), so that � 1 = � 2=3, which is consistent with Alben et al. (2002, 2004) and
Gosselin et al. (2010). In the case of a non-linear stress-strain relationship� / "1=N

considered in de Langre et al. (2012), we get� = 1=N in our model, and so we recover
the asymptotic result � 1 = � (2N )=(2N + 1).

2.2.2 Bending length

If it is well-known that the e�ects of 
exibility are negligible below CY � 1, no study
has ever predicted the threshold above which the Vogel exponent should �nally reach
its asymptotic value. This threshold can however be estimated by looking at the global
balance of forces on the beam. Assuming that the beam lengthL loses its relevance
when the beam is highly bent implies that there must exist a smaller region of length`,
function of the level of loading only, on which all the signi�cant interactions between the
beam and the 
ow concentrate. This inner region is thus responsible for the dominant
contribution to the drag, and show large curvature responsible for the balancing force.
Assuming that the contribution of the regions > ` to the drag is negligible, (2.15) gives
the dominant contribution to the drag as

F � p0w0L` 1+ � + 
 : (2.24)

On the other hand, using (2.3), (2.2), (2.11) and (2.12), the internal shear force at the
base can be roughly estimated as

Q(0) � b0` � (L` )� 1� � = b0L � 1� � ` � 1� � + � : (2.25)

Balancing these two quantities yields

` � (2+ � + 
 + � � � ) �
p0w0L

b0L � 1� �
; (2.26)

which is the Cauchy number de�ned in equation (2.14). We now choose the speci�c
value of ` as follows

` = C
�

1
2+ � + 
 + � � �

Y : (2.27)

This analysis highlights the emergence of an intrinsic characteristic length` that char-
acterizes the region of the beam on which the interactions governing its behaviour
concentrate. If ` is larger than 1 (or equivalently CY < 1), the 
ow interacts with
the beam on its whole length and the structural behaviour is close to that of a rigid
beam. On the other hand, if` � 1, then the interactions in the region of length̀
dominate the behaviour of the beam, and so the asymptotic regime is reached. This
regime, where the Vogel exponent given by (2.10) has become constant, should thus be
expected to be obtained above a threshold that is expressed in terms of some critical
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value of ` instead of CY . Depending on the exponent of the power law relating̀ to
CY , the gap between the onset of signi�cant bending (CY = 1) and the convergence of
the asymptotic regime (̀ � 1) might cover a wider or smaller range of loadings. This
analysis is consistent with the dimensional analysis above. Indeed, injecting (2.27) into
(2.24) and using the fact that the pressure of referencep0 and the Cauchy numberCY

both scale asU2
0 easily yields

F � U
2� 2

1+ � + 

2+ � + 
 + � � �

0 ; (2.28)

and so the asymptotic Vogel exponent given by equation (2.23) is obviously recovered.

Note that the choice of expression (2.27) to de�nè is somewhat arbitrary, as no
actual \bending length" can be uniquely de�ned on the physical system. (2.27) essen-
tially represents a scaling of the Cauchy number that transforms a ratio of forces into
the ratio of some characteristic bending length over the length of the beam. As such, it
gives a di�erent interpretation of the Cauchy number, but it does not correspond to a
physical quantity that can be easily measured or obtained as the output of a numerical
simulation.

2.3 Applications

2.3.1 Numerical method

To check the validity of our equation (2.23) for the asymptotic Vogel exponent as well
as the predicted threshold discussed above, we numerically compute the Vogel exponent
in di�erent cases by solving (2.13). To solve the integrodi�erential equation, we use a
�rst order centred �nite di�erence scheme with the discrete boundary conditions� 1 = 0,
� N +1 � � N = 0 (Thomas, 1995). The integrals are computed by the trapezoidal rule.
The resulting non-linear system of equations is solved using a pseudo-Newton solver (so-
called method of Broyden, see Broyden 1965). The beam is discretized withN = 30
panels. ForCY � 1, the beam bends very little, so we use a uniform mesh. When the
beam recon�gures signi�cantly, we have seen that its curvature tends to concentrate
in a small region of characteristic non-dimensional length̀ near the clamped edge. In
order to model the curved region with accuracy whenCY � 1, we use a non-uniform
meshsk = ( k=(N + 1)) � with � = log `= log 2 so that s(( N +1) =2) = `, meaning that half
of the points are in the curved regions � `. This mesh scales with the characteristic
bending length in the curved region, and so it is not necessary to increase the number
of points to maintain a good accuracy when the beam is highly bent. Convergence
was checked on a few cases by measuring the relative error on the asymptotic Vogel
exponent. On all the cases tested, doubling the number of points changed the value of
the asymptotic Vogel exponent by less than 0:1%.
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2.3.2 A uniform beam in a shear 
ow

One �rst situation that is of particular interest is the case of recon�guration in a sheared

ow. This situation is observed for instance for aquatic organisms in underwater bound-
ary layers or within canopies. We consider a plate of constant widthW and cross-section
drag coe�cient CD , made of a linearly elastic material of uniform bending sti�nessEI ,
deforming in a 
ow of uniform density � with a sheared velocity pro�le

U = U0

� z
L

� �= 2
: (2.29)

Assuming Taylor's model for the local 
uid load, the parameters of the model speci�cally
read

p(z) =
1
2

�U 2
0

� z
L

� �
, w(s) = CD W , c(� ) = cos2 � , b(s) = EI , g(� ) = � ,

(2.30)
which corresponds to a constitutive law, sti�ness and cross-section shape exponents
respectively (�; �; 
 ) = (1 ; 0; 0) with the shear exponent� being the only varying pa-
rameter. Hence, from (2.23), the theoretical asymptotic Vogel exponent is predicted
as

� 1 = � 2
1 + �
3 + �

: (2.31)

In the case of a uniform 
ow � = 0, we recover the classical� 1 = � 2=3 of Gosselin
et al. (2010). From (2.27), the characteristic bending length reads here

` = C
�

1
3+ �

Y (2.32)

To numerically con�rm these predictions, we solve the non-dimensional governing
equation (2.13) that reads in this speci�c case,

@2�
@s2

�
�
�
�
s�

= � CY

Z 1

s�

� Z s

0
cos� (s0)ds0

� �

cos2 � (s) cos (� (s) � � (s� )) ds; (2.33)

with the Cauchy number

CY =
�U 2

0 CD WL3

2EI
: (2.34)

Fig. 2.2 shows the results of the computational approach. On Fig. 2.2(a), the de
ec-
tion of the beam for increasing loads is shown in the case of a linear 
ow�= 2 = 1. As
expected, signi�cant bending is observed whenCY > 1. The evolution of the recon�gu-
ration number and of the Vogel exponent on Fig.s 2.2b and 2.2c stresses the existence of
two asymptotic regimes. At low Cauchy numbers, the structure behaves as a rigid beam
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so the Vogel exponent is null no matter the 
ow pro�le. At very large Cauchy numbers
however, the Vogel exponent converges towards a constant that depends on the shear
exponent � . We re-plot on Fig. 2.3 the evolution of the Vogel exponent as a function
of the characteristic bending length̀ given by (2.32) instead of the Cauchy number
CY . In the three cases displayed, the Vogel exponent was within 2% of the asymptotic
value for ` < 0:2. This con�rms that the threshold for the asymptotic regime is well
expressed, for any value of the parameter� , in terms of the same critical value of̀ .

2.3.3 A uniform beam in a Blasius boundary layer

The particular power-like form of the pressure, cross-section shape and sti�ness distri-
butions p(z), w(s), b(s), as well as the constitutive lawg(� ), is a necessary assumption
for the theoretical derivation of the asymptotic expression (2.23) that may appear like
a strong limitation of the model above. It seems however that the actual scope of ap-
plicability of (2.23) encompasses a much wider range of practical situations. For highly
bent structure, the curvature tends to concentrate in a small \inner" regions < ` near
the clamped edge. As explained in Alben et al. (2002, 2004), the \outer" portion of the
system located abovè \sits" in the wake created by the de
ection of the incident 
ow
heading to the inner region upstream, and so it only endures very little 
uid loading.
Consequently, the outer domain only has negligible in
uence on the overall shape and
drag of the structure, and only the spatial dependency of the 
ow and structural param-
eters inside the inner domain is actually relevant to the modelling of the system. The
whole theory above should thus remain valid as long as power function approximations
can accurately model these parameters at the scale of` only, and not necessarily at the
scale of the whole beam length.

To better understand the implications above, we consider the recon�guration of a
non-tapered, elastic, homogeneous beam, in a Blasius boundary layer. In this case, all
the structural parameters are spatially invariant, but the 
ow exhibits a more intricate
shear pro�le than a simple power-law �t in z. For the sake of clarity, all the space
variables have been normalized by the length of the beam, or equivalentlyL = 1. In
the model of Blasius, the vertical velocity is negligible and the horizontal velocity is
expressed as

U(x; z) = U1 f 0(� ) : (2.35)

with the similarity variable � = z
p

RL
e =x, the Reynolds number based on the length of

the beam and outer 
ow velocityRL
e , and f the solution of the Blasius boundary layer

equations

2f 000+ f f 00= 0 , f (0) = f 0(0) = 0 , f (� ) �!
� !1

1: (2.36)

The resulting 
ow pro�le, shown on Fig. 2.4(a) for a �xed value ofx, is characterized by
a smooth transition from a linear increase with slopeU1 =LB (x) near the wall saturating
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Figure 2.2: A uniform beam in a shear 
ow. (a) Deformation of the beam in a linear

ow pro�le �= 2 = 1. (b) and (c) Recon�guration number R and Vogel exponent� as
functions of the Cauchy numberCY : uniform 
ow pro�le �= 2 = 0 (||), linear 
ow
pro�le �= 2 = 1 (� � � ), quadratic 
ow pro�le �= 2 = 2 (� � � ). Asymptotic Vogel
exponent predicted by equation (2.23), uniform 
ow pro�le �= 2 = 0 (� ), linear 
ow
pro�le �= 2 = 1 (� ), quadratic 
ow pro�le �= 2 = 2 (4 ).
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Figure 2.3: A uniform beam in a shear 
ow. Variation of the Vogel exponent in the
` � � space, uniform 
ow pro�le �= 2 = 0 (||), linear 
ow pro�le �= 2 = 1 (� � � ),
quadratic 
ow pro�le �= 2 = 2 (� � � ). Asymptotic Vogel exponent predicted by
equation (2.23), uniform 
ow pro�le �= 2 = 0 (� ), linear 
ow pro�le �= 2 = 1 (� ),
quadratic 
ow pro�le �= 2 = 2 (4 ).

to a uniform magnitude U1 far from it. The two domains are roughly delimited, at
each locationx, by the dimensionless characteristic length scale

LB (x) =
1

f 00(0)

r
x

RL
e

; (2.37)

such that,

U(x; z) � U1 for z � LB (x) and U(x; z) �
U1

LB (x)
z for z � LB (x): (2.38)

The approach presented in this chapter is based on the assumption that the 
ow is
invariant in the x-direction, and so thex-dependency of the Blasius 
ow inside the
boundary layer would a priori prevent (2.23) to be valid. However, the region of space
swept by the deforming beam extends at most one beam length downstream of its
anchorage pointx0 (see Fig. 2.4(b)). If the structure is placed far enough from the
origin of the boundary layer (x0 � 1), then LB (x) � LB (x0) anywhere in the vicinity
of the beam, and so the 
ow can be considered locally horizontally invariant. The
coexistence of the two 
ow regimes along the vertical axis makes room for two di�erent
characteristic velocities according to (2.38):U0 = U1 in the uniform domain, and
U0 = U1 =LB in the linear domain. Two Cauchy numbers can subsequently be de�ned
according to (2.14):CY;uni is based on the uniform outer 
ow velocityU0 = U1 , while
CY;lin = CY;uni =L2

B is based on the inner characteristic velocityU0 = U1 =LB . Fig.
2.5(a) displays the evolution of the Vogel exponent as the loading increases, for several
�xed values of LB � 1. The parameter chosen to describe the 
uid loading is the
Cauchy number based on the uniform outer 
ow,CY;uni .
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Figure 2.4: Description of the recon�guration in a Blasius boundary layer. (a) Blasius
pro�le U(x; z) at a �xed x. (b) Beam deforming in a Blasius boundary layer.

Evidently, if LB � 1, then the beam lies entirely in a linearly sheared 
ow even
when it stands upright. This situation is strictly equivalent to the shear 
ow case
studied in Section 2.3.2 with pressure shear exponent� = 2, if the Cauchy number CY

is identi�ed with the linear 
ow Cauchy number CY;lin . For LB = 1, CY;lin = CY;uni and
the evolution of the Vogel exponent shown on Fig. 2.5(a), is very similar to the curve
obtained for a linear velocity pro�le in Fig. 2.2(c).

On the other hand, structures recon�guring in boundary layers smaller than their
lengths (LB < 1) experience much more intricate behaviours. Fig. 2.5(b) shows a zoom
on the near-wall region of a beam recon�guring in a Blasius boundary layer a hundred
times smaller than its size (LB = 10� 2). This plot should be analysed jointly with the
corresponding curve in 2.5a. When the Cauchy number is small, the linear 
ow region
is much smaller than the portion of the beam that experiences signi�cant bending. The
inner domains < ` is mostly subjected to the uniform 
owU = U1 , and the in
uence of
the linear 
ow on the very bottom of the beam is negligible. Consequently, the evolution
of the Vogel exponent forCY;uni < 102 is very similar to that obtained for a uniform

ow on Fig. 2.2(c). As the loading increases, the beam bends more and more and as a
result the linear 
ow covers an increasing portion of the inner region. It follows that the
Vogel exponent decreases forCY;uni > 102. Asymptotically, when the bending region
is fully con�ned inside the boundary layer, the Vogel exponent catches up with the
asymptotic value characteristic of linear shear,� 1 = � 6=5. The same analysis remains
valid for other boundary layers smaller than the beamLB < 1. If the loading increases
enough, the beam will always eventually dive entirely inside the boundary layer and
the Vogel exponent will asymptotically reach the theoretical value predicted for a linear

ow pro�le. But the threshold above which this asymptotic regime is reached depends
on the thickness of the boundary layerLB . The larger LB , the sooner the shear 
ow
will dominate. Precisely, the relative impacts of the uniform and linear 
ow regions
can be estimated by comparing the thickness of the boundary layerLB to the size of
the bending region`. However, the expression of̀ depends on which of the uniform or
linear 
ow dominates. In the uniform outer 
ow, (2.27) yields `uni = C � 1=3

Y;uni , while in

the linear region it would predict` lin = C � 1=5
Y;lin = L2=5

B C � 1=5
Y;uni = L2=5

B `3=5
uni . At the threshold
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between the two regimes,̀ uni = ` lin = LB , which also yieldsCY;uni = L � 3
B . Note that

this threshold speci�cally sets the lower bound (in terms of the Cauchy number) to
the purely linear 
ow approximation, but the purely uniform 
ow approximation loses
its validity for much smaller loads. Indeed, for̀ smaller but close toLB , the region
of the beam that concentrates the interaction with the 
ow is already con�ned inside
the boundary layer so that the in
uence of the uniform domain above totally vanishes.
Conversely, for` > L B , the in
uence of the linear domain never strictly vanishes, and
its in
uence becomes negligible only for̀ � LB . This result is consistent with the
thresholds for convergence towards the linear regime observed for the di�erent cases
on Fig. 2.5(a). For LB equal to 10� 1; 10� 2 and 10� 3, the Vogel exponent was within
2:5% of its expected asymptotic value� 1 = � 6=5 for CY;uni respectively superior to
102:9, 105:85 and 108:8. If the thickness of the boundary layerLB is small enough, the
in
uence of the linear region may remain negligible for loadings large enough to permit
convergence of the Vogel exponent in the uniform domain, before it reaches the linear
domain. This is observed for instance on Fig. 2.5(a), where the Vogel exponent for
LB = 10� 3 displays a plateau around the asymptotic uniform 
ow Vogel exponent
� = � 2=3 for CY;uni � 102 � 105, before switching to the asymptotic linear 
ow Vogel
exponent � 1 = � 6=5 above CY;uni � L � 3

B = 109. On the other hand, for thicker
boundary layers (LB � 10� 2), the in
uence of the linear domain may not be neglected
for loadings large enough to reach convergence in the uniform domain. ForLB = 10� 1,
convergence to the asymptotic regime is approximately concomitant with the switch
from uniform to linear 
ow regime. The small hump aroundCY;uni = 102 illustrates the
successive dominance of the uniform 
ow that tends to bring the Vogel exponent closer
to � = � 2=3 as the asymptotic regime approaches, soon overcome by the linear 
ow
whose in
uence is to decrease it to� = � 6=5. When LB = 1, the linear 
ow region
dominates as soon as recon�guration occurs, so the early e�ects of the uniform domain
are not even noticeable on Fig. 2.5(a).

This example shows that our approach based on self-similarity actually provides
understanding of the behaviour of much more complex con�gurations. Strictly speaking,
there will always be an asymptotic regime, should it be reached for extremely large
Cauchy numbers. Indeed, as the structure bends, curvature always concentrate in a
region of characteristic length̀ that gets smaller and smaller, so that it eventually gets
small enough for all the parameters to be well-approximated by power laws at its scale.
Thus, the actual asymptotic Vogel exponent is given by (2.23) using the exponents of
the �rst order in the power law expansions of the structural and 
ow parameters at
the foot of the beam. Yet, the threshold above which these power law approximations
all hold may be too large to be ever reached in practice. In this case, intermediate
asymptotic regimes may arise on whole ranges of Cauchy numbers. We may conclude
that convergence of the Vogel exponent towards a constant independant of the loading
may occur if the bending length` is either much larger or much smaller than any of
the other characteristic length scales involved.
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Figure 2.5: Recon�guration in a Blasius boundary layer, anchorage pointx0 = 107.
(a) Vogel exponent� as a function of the Cauchy numberCY;uni , LB = 10� 3 (||),
LB = 10� 2 ( � � � ), LB = 10� 1 (� � � ), LB = 1 ( � � � ). Asymptotic Vogel exponent
predicted by equation (2.23), uniform 
ow pro�le (� ), linear 
ow pro�le ( � ). (b) Zoom
near the clamped edge of a beam bending in a Blasius boundary layer,LB = 10� 2.

2.3.4 A non-uniform beam in a uniform 
ow

To further check the validity of the asymptotic expression (2.23), we compared it to
the numerically computed asymptotic Vogel exponent in some other cases involving
variations of the material constitutive law, material sti�ness or structural cross-section
shape. To make sure that the asymptotic regime was reached in the numerical simula-
tions, a large enough value of the Cauchy number (CY = 105) was chosen so that the
characteristic bending length` would be inferior to 0:1 in all cases. The results are
shown on Table 2.1, along with the corresponding̀-value. Agreement is excellent in
all the cases considered.

A more intricate example is that of a linearly tapered beam of increasing widthW,
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System � � 
 �
theoretical � 1 numerical � ` -value (2.27)

(2.23) at CY = 105 at CY = 105

benchmark case 1 0 0 0 -2/3 -0.6681 0.02

elastoplatic behaviour 0.5 0 0 0 -0.8 -0.8013 0.01

rigid base 1 -1 0 0 -0.5 -0.5006 0.06

linear width 1 0 1 0 -1 -1.0024 0.06

Table 2.1: Comparison of the theoretical and numerically computed Vogel exponents
for varying systems

namely

W(s) = W1 + ( W0 � W1)s; (2.39)

as shown on Fig. 2.6. In most cases, we would then expect the bending sti�ness to
also vary, but to highlight the e�ect of the cross-
ow area alone, we assume here that
the variations of the cross-sectional shape and elastic modulus are chosen such that
the bending sti�ness remains uniform. Consistently with (2.14), we de�ne the Cauchy
number as in equation (2.34) using the width at the tipW0 as characteristic width.
Note that the caseW0 � W1 = 0 corresponds to the constant width problem
 = 0,
while the caseW1 = 0 corresponds to the linear width problem
 = 1. We de�ne the
characteristic length� as shown on Fig. 2.6, such thatW(� � ) = 0:

� =
W1

W0 � W1
: (2.40)

Figure 2.6: Tapered beam

This quantity can be seen as the length on which the width must vary to signi�cantly
deviate from W1 due to the given slope. Notably, the relative gap betweenW(s) and
W1 can be expressed as
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W(s) � W1

W1
=

s
�

: (2.41)

In other words, the quantity � is a measure of the length of validity of the uniform
width approximation, asLB was characteristic of the length of validity of the linear 
ow
approximation in the Blasius boundary layer. Hence, the evolution of the computed
Vogel exponents shown on Fig. 2.7 for several values of� and for increasing Cauchy
numbers may be explained in a similar fashion. The Vogel exponent converges at large
Cauchy numbers towards the theoretical value� 1 = � 2=3, consistently with the �rst
orderW1 in the power function expansion (2.39). For� > 1, the Vogel exponent deviates
very little from that of a beam of uniform width ( � = 1 ). Conversely, for very small�
such as 10� 3, the structure behaves as a beam of linear width, long enough to exhibit an
intermediate asymptotic regime� = � 1 on a broad range of loadings. Structures with
intermediate � -values show an earlier shift from linear-like to uniform-like behaviour
that do not allow intermediate convergence of the Vogel exponent. Finally, it should be
noted that the characteristic bending lengths reads herè= C � 1=4

Y in the linear width
regime. Hence, the threshold between the two regimes,`=� = 1, reads in this case
CY � � � 4. Contrary to the case of recon�guration in a boundary layer, this threshold
here must be thought of as a reference load around which both the uniform and linear
terms of the width (2.39) in
uence the behaviour of the beam equally. It is not a
critical load above or under which one of the two regimes loses all in
uence. This is
so because, while the two 
ow domains of the boundary layer were spatially separated
(above and belowLB ), the two terms of W(s) coexist everywhere, including at the
clamped edge. If each term can be neglected, respectively far above or far below the
threshold CY = � � 4, none of them can be ignored in the transition range around this
value. This is consistent with the evolutions displayed on Fig. 2.7. AtCY = � � 4, the
Vogel exponent is equal to� 0:79 for all three values� = 10� 1, 10� 2 and 10� 3.

One may wonder what would happen if the width was decreasing from base to tip
instead of increasing. In this case,� < � 1 means that the e�ects of the slope are only
noticeable near the tip, but never near the base where the �nite value dominates in
any case. In other words, the e�ects of taper may slightly a�ect the Vogel exponent for
low Cauchy numbers, but the drag rapidly resembles that of a beam of constant width
W1 as soon as bending is signi�cant. These expectations are con�rmed by numerical
simulations, not shown.

These results shed light on the apparent contradiction between the two asymptotic
Vogel exponents for a disk cut along many radii derived respectively by numerical
computations (� 1 = � 2=3) and by dimensional analysis (� 1 = � 1) in Gosselin et al.
(2010). In the latter, it was assumed that because the inner radiusRi was 4 to 6 times
smaller than the exterior radius the small width at the baseW1 / Ri could be neglected.
However, because the bending sti�nessEI , proportional to the width W, cannot vanish
at the base, it was assumed that the inner radius still in
uenced the drag through its
�nite contribution to the characteristic bending sti�ness at the base. Consequently,
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Figure 2.7: Vogel exponent� of a tapered beam for increasing Cauchy numbersCY ,
� = 10� 3 (||), � = 10� 2 ( � � � ), � = 10� 1 (� � � ), � = 1 ( � � � ), � = + 1 (thick
||). Asymptotic Vogel exponent predicted by equation (2.23), constant width ( � ),
linear width ( r ).

their analysis corresponds to the case of a purely linear increase of the width from 0
at the base (
 = 1), on a beam with a non-vanishing bending sti�ness (� = 0), hence
the predicted Vogel exponent� 1 = � 1. However Fig. 2.7 clearly shows that for� as
small as 10� 1, we do not see a plateau at� = � 1 before the e�ects of the actually
non-vanishing width are observed. The two taper ratios considered in Gosselin et al.
(2010),� = 0:22 and 0:32 are even larger, and so the assumption of negligible base width
does not hold there. A Vogel exponent of� 2=3 is in fact to be expected, and that was
indeed the result of their numerical computations. Note that the experimental results
in Gosselin et al. (2010) do not match either� = � 2=3 nor � = � 1, neither for the
cut-disk nor for the single rectanglular plate. The largest Cauchy number considered
in the experiments barely exceeded 102, so it is very likely that the asymptotic regime
was simply not reached. However, the close values of the Vogel exponents computed
in both cases (� = � 1:3 for the cut-disk and � = � 1:4 for the rectangular plate) may
indicate that the cut-disk behaves similarly to the rectangular plate, consistently with
our expectations.

It should also be noted that the in
uence of other types of tapering was also ad-
dressed by Lopez (2012), for slender cones and tree-like structures with rectangular
cross-sections (see also Lopez et al. (2014)). It was found in both cases that taper had
no in
uence on the scaling of drag, as numerical computations all yielded the same
asymptotic Vogel exponent� 1 = � 2=3. As a matter of fact, as the vertical axis used
in these studies was reversed with respect to ours, both the cross-
ow width and the
thickness of the beam would reach �nite values at the clamped edge for any of the
geometries considered. Consequently, according to the present study, the drag expe-
rienced by such structures in the limit of large loadings scales as that on a beam of
uniform properties (�; �; 
; � ) = (1 ; 0; 0; 0). According to equation (2.23), this indeed
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yields � 1 = � 2=3.

2.4 Discussion

2.4.1 Implications for the Vogel exponents of realistic systems

Equation (2.23) gives the Vogel exponent for large Cauchy numbers in the general case
as a function of the exponents� (constitutive law g(� )), � (sti�ness distribution b(s)),

 (cross-section shape distributionw(s)), � (pressure distribution p(z)). Interestingly,
(2.23) can also be written in a simpler form

� 1 = �
2

1 +  =�
(2.42)

that highlights the in
uence of only two parameters: on the one hand, ageometrical
parameter � = 1 + � + 
 that accounts for the distribution of 
uid loading on
the structure, and on the other hand, amaterial parameter  = 1 + � � � that
characterizes the restoring stresses.

In practice, the ranges accessible to the exponents� , � , 
 and � are bounded by
limitations of multiple kinds. First, considering the rigid-body force a limiting value,
the �niteness of the drag force mathematically requires that
 + � > � 1 (see Section
2.2). But in fact, neither the structural cross-section nor the 
ow pro�le of actual
systems can possibly diverge ats = 0, so 
 and � must actually be both positive or null
in practice. Moreover, to ensure that the structural stress vanishes for zero curvature,
the exponent� of the material constitutive law g(� ) has to be strictly positive. Finally,
the bending moment at the base cannot vanish when a loading exists. If the sti�ness at
the baseb(0) was null, the curvature there would need to be in�nite and the resulting
discontinuity in the angle � across the boundarys = 0 would make the problem ill-
posed. The minimum energy solution would obviously be the straight horizontal beam,
which experiences neither drag nor internal stress. To eliminate this case,b(0) must
be di�erent from 0, so the exponent� of the self-similar sti�ness functionb(s) must be
negative or null. Note that a system with zero-sti�ness at the base would essentially
revert to a pin joint free to rotate, with a Neumann boundary condition ats = 0. This
would de�ne a di�erent system that falls out of the scope of this study, and that would
experience zero drag no matter the magnitude of the 
uid loading. Consequently, the
lower physically admissible boundaries for the geometrical and material parameters of
our system are > 1 and � � 1.

Moreover, practical considerations further set upper boundaries to the typical values
expected for these parameters. First, the vast majority of actual structures have �nite
width, and only quite exotic systems would exhibit cross-sections increasing more than
linearly. It also seems unlikely that an actual 
ow would show more than linear shear,
so we may reasonably expect the geometrical parameter� to remain approximately
below 3 in most cases. Besides, the constitutive law of most elastic materials should
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not deviate much from linearity (� = 1). Even the extreme case of perfect plasticity
may be represented by taking� = 0, as noted by de Langre et al. (2012), and a larger
value � = 2 would already be a very strong exponent. Besides, continuous structures
generally show rather smooth variations of their sti�ness, so that the magnitude of
the exponent of the sti�ness distribution, j� j, should really not deviate much at all
from 0. Nonetheless, the use of the present model with� 6= 0 might constitute a valid
approach to handle the overall behaviour of compound or branched structures such as
trees. Indeed, the drag of such structure is the sum of the individual drag forces on
each of its constitutive elements: trunk, branches, leaves. The relative contribution
of each term is proportional to the projected area of each element. If we model the
structure as an equivalent beam with local sti�ness based on the weighted mean of
the individual elements at a given height, we would expect the equivalent sti�ness to
decrease by several orders of magnitude from bottom (trunk) to top (leaves). At this
point, the validity of this modelling is purely speculative and further investigations
should be carried on to analyse its relevance. In any case, the variations corresponding
to � = � 1 seems already quite sharp, and we do not expect the material parameter 
to exceed 3 by much in general.

Considering all these limitations, we may now estimate the expected range of vari-
ation of the Vogel exponent. The isovalues of the asymptotic Vogel exponent� 1 pre-
dicted by (2.42) are displayed on Fig. 2.8. They clearly indicate that, in these typical
ranges of the geometrical and material parameters� 2 [1; 3] and  2 [1; 3], � 1 may
approximately vary between� 1=2 and � 4=3 at most. To illustrate the diversity of
situations included in this rather narrow parameter space domain, a few practical con-
�gurations are marked with crosses on (2.42). Case A is the benchmark case of Alben
et al. (2002, 2004) and Gosselin et al. (2010), where all is homogeneous and the con-
stitutive law is linear: (�; �; 
; � ) = (1 ; 0; 0; 0). Case B is the linear 
ow case shown
on Fig. 2.2(a): (�; �; 
; � ) = (1 ; 0; 0; 2). Case C would correspond to a uniform, per-
fectly plastic beam, in a uniform 
ow: (�; �; 
; � ) = (0 ; 0; 0; 0). Finally, case D would
characterize a system with either (�; �; 
; � ) = (2 ; 0; 0; 0) (non-linear constitutive law
g(� ) = � 2) or (�; �; 
; � ) = (1 ; � 1; 0; 0) (global model of a tree with in�nite sti�ness at
the base and 
exible branches). Overall, we expect that in most situations of practical
interest, the Vogel exponent at large Cauchy numbers will not deviate much from� 1.
This is consistent with observations on plants, as discussed in the Introduction. Case
E will be discussed in Section 2.4.3.

2.4.2 On the robustness of the results

The use of the equation (2.23) to predict the asymptotic Vogel exponent of a given sys-
tem relies on the ability to �t a power-law on the spatial distributions of the structural
and 
ow parameters, at least at the scale of the typical length on which signi�cant
bending is observed. This requirement may appear as a very limiting factor, because
some parameters may exhibit complex variations, and because accurate assessment of
the exponents might be challenging. However these two apparent issues might not be
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Figure 2.8: Absolute value of the Vogel exponent in the reduced parameter space �
� . The domain shaded in grey corresponds to non-physical ranges. Practical cases:
A,B,C,D,E (see text for the details).

as problematic as one might expect.

First, it follows from Sections 2.3.3 and 2.3.4 that discrepancies between the actual
distributions of the parameters and their best power-law approximations a�ects very
little the validity of the analytical estimation of the Vogel exponent by (2.23). For
instance, it is striking that a beam with taper ratio as large as 10, or even close to 100,
still does not exhibit any intermediate plateau similar to the asymptotic regime of a
linearly tapered one. In fact, drag reduction on a beam with taper ratio of order 10 is
very similar to that of a beam of constant width equal to the base width. Similarly,
a structure in a Blasius boundary layer of thickness one order of magnitude smaller
than its size is well described, as far as the asymptotic scaling of drag is concerned,
by a beam entirely inside the boundary layer. In other words, the ability of (2.23) to
provide accurate estimation of the Vogel exponent of actual systems seems very robust
with respect to the accuracy of the self-similar �t of the system parameters. Crude
power-law �ts at the scale of the bending length are likely to yield rather good results.

Second, the consequences of poor estimations of the exponents of the 
ow and
structural parameter distributions � , � , 
 , � also appear limited. It is noticeable on
Fig. 2.8 that the asymptotic Vogel exponent� 1 does not vary much in the domain
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under consideration. The larger the geometrical and material parameters� and/or  ,
the less sensitive the Vogel exponent becomes to small variations of the parameters. As
already noted in de Langre et al. (2012), in the case of a uniform beam in a uniform

ow, a quadratic material constitutive law (case D on Fig. 2.8) is expected to lead to a
Vogel exponent of� 0:5, which di�ers very little from the � 2=3 exponent characteristic
of linear elasticity (case A). Similarly, changing a linearly elastic, uniform beam from
a linearly sheared 
ow (case B,� = 2 so � = 3) to an environment with half less shear
(� = 1 so � = 2) would only reduce the Vogel exponent from� 6=5 to � 1. Hence,
the estimation of the asymptotic Vogel exponent given by (2.23) is expected to be also
robust with respect to the possible errors made in estimating the �tting exponents.

To conclude, it may be said that the prediction of the Vogel exponent using equation
(2.23) is quite robust with regards to the parameters of the model.

2.4.3 On the limits of the model

The whole theory derived in this chapter is based on assumptions of three di�erent
levels.

First, assumptions have been made regarding the way the action of the 
ow on the
deforming structure is handled. The choice of the simpli�ed form for the local 
uid
loading (2.4) has already been discussed in Section 2.1. As to the speci�c form of the
projection term in the 
uid loading distribution c(� ) = cos2 � used all along the present
study following Taylor (1952), alternative admissible formsc(� ) = cosn � with n � 1
were numerically tested, and did not lead to any signi�cant alteration of the results.

Second, the study is limited to the in
uence of the steady background 
ow at large
Reynolds number, in an otherwise force-free environment. Namely, other e�ects such
as gravity, viscosity, vortex shedding or dynamic e�ects have been neglected here. De-
pending on the situation, these additional forces may impact the Vogel exponent of
natural systems and explain some of the scattering noted in the measurements per-
formed on actual biological or man-made systems. Yet, consistently with the results
of Luhar and Nepf (2011) and Zhu (2008), we do not expect that the present results
will be largely a�ected by the e�ects of gravity or viscosity. The �eld of dynamics
however still requires further investigations (see Kim and Gharib (2011) or Luhar and
Nepf (2016)).

Third, as to the type of system chosen, we have considered exclusively the recon�gu-
ration of 
exible cantilever beams in cross-
ow. Equation (2.23) might actually remain
valid for a broader range of systems, if the mechanism of recon�guration is resemblant
enough to the axial bending considered here. Formula (2.42) directly embodies the
competition between the 
uid loading, characterized by the geometrical parameter� ,
and the structural restoring force, characterized by the material parameter . All along
this chapter, we have considered the restoring force to be the internal elastic bending
force, but it might very well be of a di�erent nature. For instance, Barois and de Langre
(2013) showed that a ribbon with a weight at one end exhibits a constant drag. In that
case, the 
uid loading is of the same nature as in the present study, but the restoring
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force is the constant axial tension due to the weight. For such system, the material
parameter is = 0 because there is no length scale associated with the restoring force.
It lies out of the admissible range de�ned earlier, and equation (2.42) yields an asymp-
totic Vogel exponent� 1 = � 2 (case E on Fig. 2.8). This does indeed correspond to a
constant drag. Conversely, there does not seem to be any obvious analogy between the
present study and the rolling up of sheets cut along one radius treated by Schouveiler
and Boudaoud (2006) and Alben (2010). In their case, drag reduction is the result of a
more complex three dimensional bending process that does not resemble the mechanism
considered here.

Finally, it should be noted that the approach used here may easily be adapted to
assess the asymptotic e�ect of elastic recon�guration on other physical quantities such
as the torque at the base of the structure. After some straightforward calculations, the
analytical expression found for the Vogel exponent is similar to (2.42) except that the
geometrical and material parameters� and  must be respectively replaced by 1 +�
and 1 +  .

2.5 Conclusions

To conclude, we may say that this work provides a framework for the understanding
of the typical values of Vogel exponents observed in nature. It was shown that the
scaling of drag with respect to the 
ow velocity, in the limits of large loadings, mostly
depends on the best power-law approximation of the 
ow and structural parameters
distributions at the scale of the length on which signi�cant bending occurs. An analyti-
cal formula relating the asymptotic Vogel exponent to the �tting exponents was derived
in equation (2.23), and the sensitivity of this expression with respect to the accuracy
of the modelling was shown to be weak.

More importantly, the application of equation (2.23) to a variety of actual systems
highlighted the fact that scattering of the Vogel exponents due to non-uniformities
in the structural or 
ow distributions is expected to remain small. Consistently with
experimental observations, the predicted Vogel exponents for large loadings always lie
around � 1. Consequently, the scaling of the drag on bending beams appears as a
characteristic of the mechanism of elastic recon�guration that depends only to a very
limited extent on the actual features of the system.

For the sake of consistency with previous work on the subject, the results presented
in this chapter are relative to the total drag on the structure, not to the internal
stress generated inside it. However, the results of the next chapter incidentally prove
that the recon�guration number used here also represents the ratio of the maximum
shear stress in the deformed and rigid structure, so that the results regarding the
reduction of the total drag force are equivalently valid for the maximum shear stress
in the structure. Besides, the results of the next chapter also prove that the scalings
of both the tensile and shear stress (compared to the rigid case) can be expressed in
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terms of the bending length, so that the results of this chapter regarding the scaling
of the bending length readily provides the scaling laws for the internal stresses. The
present study is however limited to quasi-static con�gurations. The dynamic e�ects
arising from possible couplings between the structure and the 
ow are investigated in
the following chapters.
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Chapter 3

Dynamic recon�guration in
oscillatory 
ow

Preamble

In the preceding chapter, we have provided an extension of the theory of recon�guration
to the case of spatially varying 
ow-structure systems. In the following chapter, we
present another extension, this time for the case of uniform 
exible structures exposed
to a uniform, but oscillatory 
ow. As detailed in the general introduction of this
thesis, in spite of the diversity of studies that have tackled this problem, a systematic
characterization of the di�erent regimes of 
ow-structure interaction is still missing.
We thus intend to elucidate the nature of the dynamical response of 
exible structures,
depending in particular on the amplitude and frequency of the oscillatory 
ow, and to
provide the scaling laws for the maximum internal stress generated in the structure in
the di�erent regimes, depending on the relevant parameters.

We consider in this chapter a model system very similar to that used in Chapter
2, a cantilever slender beam, clamped perpendicular to the 
ow. However, contrary to
Chapter 2, we further restrict this study to neutrally buoyant 
at plates with in�nitely
small thickness in the direction of the 
ow. We do so in order to neglect the structural
inertia in the balance of forces, so that the dynamics of the structures in our analysis
results exclusively from the forcing by the 
ow. This con�guration is furthermore
realistic in regard to the features of the macroalgae that endure the oscillatory 
ow due
to the passing waves in the �eld. Compared to Chapter 2, the governing equation is
modi�ed owing to the inclusion in the balance of forces of additional 
uid forces due to
the unsteadiness of the interaction.

Contrary to the previous chapter, we do not make use of the Vogel exponent in
the following work to characterize the drag reduction. Indeed, because of the time-
variability of the 
ow, the (maximum) total hydrodynamic force on a rigid structure
does not necessarily scale with the 
ow velocity squared. The very concept of Vogel
exponent is consequently ill-de�ned in the context of an oscillatory 
ow. We may on
the other hand still de�ne recon�guration numbers to compare directly the maximum
forces generated respectively in a 
exible and a rigid structure. In this chapter, we do
not de�ne the recon�guration number based on the total drag force on the structure as
in Chapter 2, but based on the spatio-temporal maximum of the internal stress in the
structure. Besides, we de�ne two di�erent such quantities, to evaluate respectively the
modulations of the tensile and shear stress compared to the rigid con�guration.
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After introducing the theoretical model and the numerical method we chose to repro-
duce the dynamics of the system, we present an experimental setup used for visualizing
the actual deformation of blades in oscillatory forced motion and to validate the model.
We then identify four di�erent kinematic regimes for varying ranges of the forcing am-
plitude and frequency, before discussing the resulting 
exibility-induced scalings of the
structural stresses and the di�erent mechanisms underpinning them. We notably prove
that 
exibility always leads to a reduction of the internal stresses, as long as the resistive
drag dominates over the inertial forces.

The �ndings of this chapter have been published in the Journal of Fluid Mechanics.
The paper (Leclercq and de Langre, 2018a) is attached at the end of the thesis. Com-
pared to the present chapter, it includes an additional introduction, but the rest of the
content is similar.
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3.1 Model

3.1.1 Theory

In this chapter, we consider a neutrally buoyant, cantilever beam of lengthL, width W
and thicknessD, placed perpendicular to a uniform oscillatory 
ow of velocityU (t) =
A
 sin (
 t) ex in a 
uid of density � (see Figure 3.1). The amplitudeA corresponds to
the maximal horizontal excursion of the 
uid particles over one cycle, while 
 is the
angular frequency of the oscillations.

Figure 3.1: (a) Side view of the bending structure. (b) Dimensions of the undeformed
blade.

We assume the thickness of the plate is small compared to its width (D � W)
so that de
ection under the e�ect of the 
ow is con�ned in the xz-plane. We also
assume the structure is slender (L � W) so we can model it as a two-dimensional
inextensible Euler-Bernoulli beam of bending sti�nessEI and mass per unit lengthm
(see Audoly and Pomeau, 2010). The curvilinear coordinates represents the distance
from the clamped edge along the span, and we use the prime symbol (� )0 to denote
di�erentiation with respect to s. Hereafter, � is the local angle of the tangent� = r 0

with the vertical axis ez , wherer = x(s; t)ex + z(s; t)ez is the position vector. Following
Audoly and Pomeau (2010), the dynamic equilibrium reads

m•r = F 0+ q (3.1)

where q is the external load per unit length on the structure,F = T� + Qn is the
internal force vector, with T the tension andQ the shear force, and the overdot stands
for time derivation. The internal bending momentM is related to the local curvature
� = � 0 by M = EI� , and the shear forceQ is given by Q = � M 0 = � EI� 0. Clamping
implies x = z = � = 0 at s = 0, while the free tip condition readsT = M = Q = 0 at
s = L.
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Because the structure is neutrally buoyant, its density is also� and gravity and
buoyancy forces cancel each other. We assume large Reynolds number so that fric-
tion forces are negligible. Following Eloy et al. (2012); Singh et al. (2012b); Michelin
and Doar�e (2013); Pi~neirua et al. (2017) we model the e�ect of the relative 
ow as a
combination of two external loads distributed along the span. First, the resistive drag
(Taylor, 1952)

qd = � 1=2�C D WjUn jUnn (3.2)

due to the pressure in the wake is purely normal. It is proportional to the square of
the normal componentUn of the relative velocity U rel = U� � + Unn = _r � U . The
drag coe�cient CD depends on the geometry of the cross-section and is typically of
order O(1). In pure sinusoidal 
ow, it slightly varies with the frequency through the
Keulegan-Carpenter numberK C = U=Wf = 2�A=W (Keulegan and Carpenter, 1958).
But in the case of a deformable body, the relative 
ow varies along the span and is not
purely sinusoidal because of the motion of the structure itself. The exact value ofCD is
however not critical here so we will simply use the value for steady 
ows. We will also
assume a rectangular cross-section so we will useCD = 2. The second force component
is the reactive (or added mass) force (Lighthill, 1971; Candelier et al., 2011)

qam = � ma

�
@t (Unn ) � @s(UnU� n ) +

1
2

@s(U2
n � )

�
(3.3)

where the added mass is given byma = ��W 2=4. This expression involves the normal
component but also the tangential componentU� of the relative velocity. In the case
of an inextensible beam, this force becomes purely normal and its expression may be
simpli�ed in

qam = � ma

� �
•r � _U

�
� n � 2_�U � + �

�
U2

� �
1
2

U2
n

��
n : (3.4)

as explained in Appendix B. Finally, because the 
uid itself is accelerated, a third force
component has to be considered, called the virtual buoyancy force (Blevins, 1990)

qvb = md
_U : (3.5)

This term is due to the pressure gradient induced by the acceleration of the 
uid. It
is equivalent to the Archimedes force, only the acceleration of gravity is replaced by
the acceleration of the 
uid. It is proportional to the displaced mass per unit length
md = �WD . We have assumed so far that the structure is �xed in an oscillating 
uid.
If the clamped edge of the structure was set into a forced horizontal motion of velocity
U f = Uf ex , then the equilibrium equation in the frame of the structure Eq. (3.1) would
include an additional load due to the inertial pseudo-forceqi = � m _U f . For a neutrally
buoyant structure the displaced mass is equal to the structural mass (md = m), so
this inertial force has the same expression as the virtual buoyancy term Eq. (3.5) if
Uf = � U. Thus, oscillating a plate in a still 
uid is actually equivalent to having a
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�xed structure in an oscillating 
ow, providing that the structure has the same density
as the 
uid.

In the following, we will only consider very thin bladesD � W (equivalently m =
md � ma) so that we may neglect the structural inertia and the virtual buoyancy. The
dynamic equilibrium Eq. (3.1) then reads

�
T +

1
2

EI� 2

� 0

� +
�
�T � EI� 00

�
n + qd + qam = 0: (3.6)

After projection on the tangential and normal directions and elimination of the unknown
tension T, we �nally obtain a single di�erential equation for the kinematic variables� ,
� , r

EI
�
� 00+

1
2

� 3

�
+

1
2

�C D WjUn jUn

+ ma

�
•r � n + �

�
U2

� �
1
2

U2
n

�
� 2_�U � � 
 2A cos� cos(
 t)

�
= 0: (3.7)

We non-dimensionalize all the variables using the length of the structureL and the
scale of the natural period of the structure in small-amplitude oscillations in the 
uid
Ts = L2

p
ma=EI . We �nally obtain, in non-dimensional form

� 00+
1
2

� 3 + � jUn jUn + •r � n + �
�

U2
� �

1
2

U2
n

�
� 2_�U � � ! 2� cos� cos(!t ) = 0 (3.8)

with boundary conditions r = 0 and � = 0 at the clamped edges = 0 and � = � 0 = 0
at the free tip s = 1, and the tangential and normal relative velocitiesU� = _r � � �
�! sin(!t ) sin � and Un = _r � n � �! sin(!t ) cos� . This system is ruled by three non-
dimensional parameters that are

� =
A
L

; ! = 
 Ts; � =
�C D WL

2ma
=

�
2
�

CD

�
L
W

: (3.9)

The �rst two parameters � and ! respectively scale the amplitude and frequency of
the background 
ow to the length and natural frequency of the structure, while� =
O(L=W) is mostly a slenderness parameter speci�c to the structure alone. Because our
model is only valid for slender structures, we are restricted to� � 1. Note that, when
studying the in
uence of 
exibility on the loads endured by a structure, the classical
non-dimensional parameter that describes the competition between the 
uid loading
stemming from the resistive drag and the elastic restoring force is the Cauchy number
CY (Tickner and Sacks, 1969; Chakrabarti, 2002; de Langre, 2008). Following the
de�nition of Gosselin et al. (2010) in the case of the static recon�guration of cantilever
beams, we may here de�ne a Cauchy number based on the maximum velocity of the

ow ( A
) as CY = �C D WL3(A
) 2=EI = �� 2! 2. In the governing equation (3.8),



50 Chapter 3 Dynamic recon�guration in oscillatory 
ow

given the scaling of the normal relative velocity componentUn = O(�! ), the resistive
drag term � jUn jUn directly scales as�� 2! 2 = CY owing to the choice of characteristic
length and time chosen for normalization.

3.1.2 Numerical resolution

We numerically solve Eq. (3.8) along with the boundary conditions using a time-
stepping scheme. The one-dimensional structure is discretized using the Gauss-Lobatto

distribution sk =
1
2

�
1 � cos(

k � 1
N � 1

� )
�

with N = 100 points. The curvilinear deriva-

tives and integrals are computed respectively by Chebyshev collocation and the Clenshaw-
Curtis quadrature formulae. We evaluate the time-derivatives at timetn with implicit
second order accurate �nite di�erences with 103 time steps per forcing cycle in most
cases. The time step is reduced further to maintain good accuracy when a smaller time
scale is involved in Sections 3.3.2 and 3.4.4. At each time step, we solve the boundary
value problem in� n (s) with a pseudo-Newton solver (method of Broyden (1965)). The
computations are carried on until a limit cycle is found.

3.2 Experiments and validation of the model

We conducted experiments to visualize the actual kinematics of slender blades in an
oscillatory 
ow and validate our model. The setup of the experiment is depicted on
Figure 3.2.

Figure 3.2: Schematic view of the experimental setup.

The 
exible object is made of a rectangular piece of 20 cm� 2 cm (so that � = 12:7)
and bending sti�nessEI = 1:68� 10� 4 N.m2 that was cut out of a plastic document
cover of thickness 0.49 mm and density 895 kg.m-3. This plate has a mass per unit
length m = 8:72 � 10� 3 kg.m-1 and added mass per unit lengthma = 3:14 � 10� 1

kg.m-1, so that m=ma = 2:8 � 10� 2. In order to get the desired relative 
ow, we forced
the clamped edge of the blade into an oscillatory translation of opposite velocity� U (t)
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and analysed the dynamic deformation of the structure in the oscillating frame. The

exible structure is clamped at the bottom of a vertical rigid rod and fully immersed in
a rectangular water tank of horizontal dimensions 58 cm� 35 cm and 48 cm of water
depth. The rod crossing the free-surface is streamlined in the direction of the motion
in order to induce as little perturbation as possible in the 
uid. The forcing motion is
obtained through a DC motor driving an arm of lengthA in rotation. The speed of
rotation 
 is tuned by changing the voltage at the terminals of the motor. The arm is
attached to a carriage freely translating on a vertical rail, which in turn is �xed on an
another carriage sliding on an horizontal rail. The mounting rod is linked to the latter
carriage so that it is driven into the desired sinusoidal translation of amplitudeA and
angular frequency 
 as the arm rotates. The amplitudeA could be varied continuously
between 5.4 cm (� = 0:27) and 13 cm (� = 0:65), and the frequency between 0.21 Hz
(! = 2:3) and 1.08 Hz (! = 12:0). The motion of the whole structure is �lmed with a
�xed camera in front of the tank at 100 fps and the position and deformation of the blade
through time is extracted from each frame. The deformation in the oscillating frame is
then phase-averaged over a minimum of 10 cycles to get a unique cycle representative
of the whole run.

The results for three di�erent amplitudes and frequencies spanning the experimental
domain are shown on Figure 3.3. In this range of forcing parameters, we notice a
diversity of behaviours. For a given frequency ratio! , the maximum de
ection of the
blade increases with the amplitude of the forcing� . However, the horizontal excursion
of the structure is obviously limited by its own length, so the amplitude of the motion
has to saturate when� is increased even more. Besides, the maximum de
ection is
clearly increasing with the forcing frequency for the largest forcing amplitude� = 0:65,
but this is much less obvious for the smallest amplitude� = 0:27. On the other hand,
for any given forcing amplitude� , the dynamics of the deformation is greatly a�ected
when the forcing frequency is increased. For the smallest frequency ratio! = 2:3,
the tip follows the same trajectory during both half-cycles and remains close to the
unit circle. The motion of the whole blade is therefore approximately in phase, and
curvature is concentrated near the clamped edge while the rest of the beam remains
straight. This deforming shape is similar to the static recon�guration that occurs in
steady 
ow (Gosselin et al., 2010). Conversely, when the frequency is increased, the
tip follows a �gure-of-eight trajectory and we notice curvature waves propagating along
the span in the course of the cycle indicating an increasing spanwise phase-shift. This
indicates a highly dynamic response that cannot be considered quasi-steady a priori.
Besides, the propagation of curvature waves may induce large loads anywhere along the
span and not restricted to the clamping point.

In order to validate the numerical model of Section 3.1, we also compared these
experimental observations to the output of the numerical simulations. As shown on
Figure 3.4(a), the numerical results for the amplitude of de
ection at the tipX tip

match very closely the experimental measurements. The snapshots displayed on Figure
3.4(b) for two cases at the boundaries of our experimental domain (indicated on Figure
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Figure 3.3: Phase-averaged experimental oscillation cycle for varying amplitudes� and
frequencies! . Snapshots of the structural shape (|) and tip trajectory ( �� ).

3.4(a)) also show very good agreement between the observations and the simulations.
Additional experimental validation of the model for smaller forcing amplitudes can be
found in Pi~neirua et al. (2017).

These results con�rm the validity of our model, and we will therefore use it in
the following to systematically explore the parameter space within and beyond the
experimentally accessible range.



3.3. Kinematics 53

Figure 3.4: Comparison between experimental observations and numerical simulations.
(a) Amplitude of the de
ection at the tip against the frequency ratio, for � = 0:27 (nu-
merical �� , experimental � ), � = 0:65 (numerical |, experimental 4 ). (b) Deformed
shape found experimentally (left) and numerically (right), in case A (top,� = 0:27,
! = 2:3) and case B (bottom,� = 0:65, ! = 12:0).

3.3 Kinematics

3.3.1 Small amplitude of 
ow oscillation

Let's �rst consider the situation where the amplitude of forcing is small (� � 1). The
excursion of the 
uid particles being small compared to the length of the blade, we may
also assume that the de
ection remains small as welljx(s; t)j � 1. Neglecting all the
geometrical non-linearities in Eq. (3.8) thus yields the small-amplitude equation

x(4) + •x = �! 2 cos(!t ) � � j _x � �! sin(!t )j ( _x � �! sin(!t )) (3.10)
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with boundary conditions x = x0 = 0 at s = 0 and x00= x000= 0 at s = 1. Eq. (3.10) is
the standard cantilever beam linear oscillator, forced on the right-hand side by the 
uid
inertia and the resistive drag. Note that only the non-linearities of geometrical nature
have been removed but the quadratic relative velocity term of the resistive drag has
been retained at this point. Indeed, the slenderness parameter� that scales this term
is large and the order of magnitude of the whole resistive drag term depends as much
on the scaling of� as it depends on that of� . Besides, no assumption has been made
regarding the characteristic time scale for the variations ofx, and there is no reason to
presume that _x should be small compared to the free-stream velocity based on the sole
assumption that x is small.

If the period of the forcing is large compared to the characteristic response time of
the structure (! < 1), we may assume that the structure is in static equilibrium with the

uid forcing at all times. Consequently, we may neglect the velocity and acceleration
of the structure and Eq. (3.10) reduces to the small-amplitude static equation

x(4) = �! 2

�
cos(!t ) + ( �� ) jsin(!t )j sin(!t )

�
(3.11)

The left-hand side of this equation now involves only the linearized sti�ness force, while
the 
uid forcing on the right-hand side is the same as that a perfectly rigid blade would
endure.

On the other hand, if the forcing varies with a period comparable to the characteris-
tic structural response time or faster (! > 1), we may then assume that the amplitude
and the frequency of the response will scale as those of the forcing, as is usually the
case for linear oscillators (see for instance Blevins, 1990). We thus de�ne the rescaled
de
ection and time ~x = x=� , ~t = !t , so that the small-amplitude equation (3.10) can
be written

1
! 2

~x(4) + •~x = cos(~t) � K C

�
� _~x � sin(~t)

�
� � _~x � sin(~t)

�
(3.12)

which now only depends on two parameters: the frequency parameter! and a new
amplitude parameter K C = �� = (2 CD =� )A=W that compares the 
uid particles
excursion to the width instead of the length of the blade. This parameter is a problem-
speci�c formulation of the classical Keulegan-Carpenter number that compares the
respective magnitudes of the drag and the 
uid inertial forces. WhenK C is small, the

uid inertia dominates over drag and vice versa.

Let's �rst look at the asymptotic limit of in�nitely small amplitude of the forcing
K C ! 0. The non-linear drag term can be neglected and Eq. (3.12) then simply
describes a linear oscillator with sinusoidal forcing due to the 
uid inertial term. It can
be solved analytically and the solution is
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~x(s;~t) = 2
+ 1X

m=0

� m

km

! 2

k4
m � ! 2

X m (s) cos~t (3.13)

with the wavenumberskm satisfying coskm coshkm + 1 = 0, the classical cantilever
beam modesX m (s) = [cosh(kms) � cos(kms)] � � m [sinh(kms) � sin(kms)] and � m =
(sinhkm � sinkm ) =(coshkm + coskm ) (see Weaver et al., 1990).

Figure 3.5(a) compares the amplitude of the maximum de
ection for di�erent values
of K C , and for the asymptotic solution Eq. (3.13), as a function of! . This analytical
solution is in good agreement with the model predictions for anyK C � 1, and it shows
that the system behaves as a high-pass �lter in this range of the parameter space. As
the frequency increases, successive beam modes are excited and resonances occur when
the frequency of the forcing matches one of the natural modes of the structure! = k2

m .
For �nite but small K C , drag acts as a damping term that saturates the amplitude
of the resonances but does not seem to a�ect signi�cantly the modal shape of the
deforming structure. The deformation of the beam close to the �rst three resonances
(! 1 = 3:5, ! 2 = 22:0, ! 3 = 61:7) for K C = 10� 2 on Figure 3.5(b) is indeed similar to the
corresponding beam modesX 1, X 2, X 3 involved in the asymptotic solution Eq. (3.13).
Note that when K C is close to 1, the non-linear drag term is also responsible for a drift
of the resonance frequencies that has been studied in Arellano Castro et al. (2014).
This e�ect is not obvious on Figure 3.5(a) because of the very strong attenuation of
the resonance peak forK C = 1, but is more visible in the structural stress analysis of
Figure 3.9(a).

On the other hand, if we increase the 
uid particles excursion beyond the width
of the structure (K C � 1), a change in physical behaviour occurs. Drag becomes
the dominant term in Eq. (3.12). The leading order solution now is ~x(s;~t) = cos ~t,
which amounts to considering that the structure is convected exactly with the 
uid
particles. Therefore, we may call this regime the convective regime. This solution is
however incompatible with the boundary condition at the clamped edge ~x(0; ~t) = 0, so
an elastic boundary layer develops close to the clamping point. The relative magnitude
of the terms in Eq. (3.12) suggests that the thickness of the boundary layer scales as
� = ( K C ! 2)� 1=4. Rescaling the curvilinear coordinate ^s = s=� in Eq. (3.12) provides
the leading order equation for the inner solution

@4
ŝ ~x =

�
� _~x � sin(~t)

�
� � _~x � sin(~t)

�
(3.14)

with boundary conditions ~x = @̂s~x = 0 at ŝ = 0 and @2
ŝ ~x = @3

ŝ ~x = 0 at ŝ = 1=� .
The dynamic deformation of the structure displayed on Figure 3.5(c) forK C = 102

for the same values of frequency ratios as on Figure 3.5(b) clearly shows the concen-
tration of the curvature close to the clamped edge and the passive convection of the
main part of the structure. The resonances previously observed in the modal regime on
Figure 3.5(a) are now completely damped out whenK C = 102. Compared to the case
K C = 1, this curve is shifted one decade to the left as the proper scaling parameter is
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Figure 3.5: (a) Amplitude of the maximum scaled de
ection obtained with Eq. (3.12)
against the frequency ratio.K C = 10� 2 (|{), K C = 100 (� � � ), K C = 102 (� � � ).
Analytical solution for K C ! 0 ( � � � � ). (b) Snapshots of the beam over one cycle
obtained with Eq. (3.12) for K C = 10� 2 (modal regime) and for! = ! 1 (resonance of
mode 1), ! = ! 2 (resonance of mode 2),! = ! 3 (resonance of mode 3). (c) Same as
(b) but with K C = 102 (convective regime).

now
p

K C ! instead of ! , and
p

K C = 10 for K C = 102. The scaling of the boundary
layer thickness� is similar to that of the e�ective length of Luhar and Nepf (2016),
as it is based on the equilibrium between the same forces. A similar problem had also
been considered in Mullarney and Henderson (2010). In the case of a wave-like 
ow,
the authors neglected the quadratic non-linearity in order to get an analytical solution.
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3.3.2 Large amplitude of 
ow oscillation

In the convective regime discussed above, the structure is purely convected with the 
uid
particles on most of its span over the whole cycle. But when the amplitude becomes
larger than the length of the structure, geometric saturation of the de
ection occurs
because the structure cannot extend further than its own length. The de
ection is now
of order x = O(1) and so we cannot neglect the geometrical non-linearities of Eq. (3.8)
anymore. The slenderness� becomes the relevant parameter to compare drag to the

uid inertial forces in lieu of the Keulegan-Carpenter numberK C . Because we only
consider elongated structures� � 1 in this study, drag will always be the dominant
term in the large-amplitude regime.

The dynamic deformations obtained with Eq. (3.8) in two cases with similar ampli-
tude � = 102 and slenderness� = 12:7 but di�erent frequencies are compared on Figure
3.6 with 100 snapshots per cycle with constant time interval. In the small frequency
case (a), the deformation looks quasi-static. Transition from one side to the other is
slow (many snapshots distributed from left to right) and the curvature is essentially
concentrated near the clamped edge during the whole cycle. On the other hand, in the
larger frequency case (b), the structure switches sides very fast (few snapshots visible in
the center while many are superimposed on the sides) and curvature waves propagate
very quickly along the span during reversal. Therefore, the cycle may be decomposed
into two steps: �rst, a fast reversal period during which the structure switches from one
side to the other immediately after 
ow reversal, followed by a longer period of quasi-
static adaptation to the increasing magnitude of the drag. Because the dominant drag
force � jUn jUn / �� 2! 2 is proportional to ! 2, the maximum drag is larger in the large
frequency case on Figure 3.6, which explains why the maximum de
ection is enhanced.

Figure 3.6: Snapshots of the deforming structure over one cycle (|{) and tip trajectory
(� � � ) obtained with Eq. (3.8) for � = 12:7, � = 102. (a) ! = 10� 2, (b) ! = 1.

To estimate the time scale of reversalTr , let's assume that shortly before 
ow
reversal, the structure is fully recon�gured on one sidex(s = 1; t = 0) = � 1. At 
ow
reversal t = 0, drag starts pushing the structure to the other side. Let's assume that
the blade is purely convected until it is fully recon�gured on the other side at the end
of the reversal timex(s = 1; t = Tr ) = 1. In that case, we may write



58 Chapter 3 Dynamic recon�guration in oscillatory 
ow

2 = x tip (Tr ) � x tip (0) =
Z Tr

0
�! sin(!t )dt '

Z Tr

0
�! 2tdt =

1
2

� (!T r )2 (3.15)

where the linearization holds owing to the fact that reversal occurs on a time scale much
smaller than the period of the cycle (!T r � 2� ). We �nally obtain Tr = 2=(!

p
� ).

This expression of the reversal time is normalized by the scale of the natural period
of the structure. It is more relevant than ! to assess the quasi-steady nature of the
deformation in the large-amplitude regime because it compares only the time scale
on which structural motion is signi�cant (instead of the whole cycle period) to the
characteristic structural response time. Indeed, on Figure 3.6(a), the large reversal time
Tr = 20 allows the structure to be in quasi-static equilibrium with the 
uid loading at
all times. Conversely, on Figure 3.6(b) the small reversal timeTr = 0:2 is responsible
for the propagation of curvature waves during reversal. Hence, whenTr � 1, the
structure is in static equilibrium with the 
uid forces during the whole cycle, while the
quasi-static character of the deformation is lost during the fast reversal whenTr � 1.

A zoom on the trajectory of the tip around 
ow reversal in the case of Figure 3.6(b)
shown on Figure 3.7 (solid line) con�rms that reversal occurs approximately between
t=Tr = 0 and t=Tr = 1. When the slenderness parameter is increased (broken lines,
� = 127), the time scale of the dynamics remains unchanged. The same graphs for the
sameTr but for a smaller or a larger amplitude (� = 10 and � = 103 respectively),
not shown here, are practically indistinguishable from that on Figure 3.7. This result
con�rms that the amplitude and frequency parameters in
uence the kinematics of the
reversal exclusively through the combined parameterTr . Besides, because the structural
mass was neglected, no dynamic excitation possibly resulting from the violent reversal
is allowed to persist afterTr .

Figure 3.7: Horizontal displacement of the tip during 
ow reversal against the rescaled
time t=Tr , for � = 102, Tr = 0:2 (! = 1) and � = 12:7 (|{), � = 127 (� � � ).
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3.3.3 Summary of the kinematic regimes

So far we have found that depending on the amplitude and frequency of the oscillating

ow with respect to the dimensions and natural frequencies of the blade, four di�erent
kinematic regimes may exist. Their respective locations in the parameter space are
summarized on Figure 3.8.

First, if the amplitude is much smaller than the length of the blade (� � 1 or
equivalently A � L) and the frequency of the 
ow smaller than that of the structure
(! < 1 or equivalently 
 < 1=Ts), the structure is in static equilibrium with the 
uid
forces at all times. On the other hand, if the frequency is now comparable or larger
than the characteristic structural frequency (! > 1 or equivalently 
 > 1=Ts), the
kinematics further depends on the ratio of the amplitude of the 
ow to the width of
the structure. If the amplitude is much smaller than the width of the blade (A � W,
or equivalently K C = �� � 1), the structure behaves as a linear oscillator and we
are in the modal regime. If the amplitude is large compared to the width, but small
compared to the length (W � A � L, or equivalently K C = �� � 1 and � � 1), an
elastic boundary layer develops close to the clamped edge in which all the curvature is
con�ned, while the rest of the structure is passively convected with the 
uid particles.
This convective regime occurs because of the saturation of the drag term in the small-
amplitude equation (3.10).

Now, if the amplitude is increased further and becomes larger than the length of the
blade (A � L or equivalently � � 1), the convection of the blade by the 
uid is limited
to its own length and the blade deformation is subject to geometric saturation. The
convection process is therefore limited in time to a short reversal period, right after 
ow
reversal, and during which the blade switches side at the speed of the 
uid particles,
followed by a longer period of quasi-static adaptation to the increasing magnitude
of the drag force. If reversal occurs on a longer time scale than the characteristic
structural response time (Tr � 1=(!

p
� ) � 1), the structure has time to reach the

static equilibrium with the 
uid forces at all time. Conversely, if reversal is faster than
the characteristic time of the structure (Tr � 1=(!

p
� ) � 1), the quasi-static nature of

the large-amplitude structural response is lost during the short time needed for reversal.
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Figure 3.8: Schematic view of the kinematic regimes in the amplitude-frequency space.

3.4 Structural stress analysis

3.4.1 Stress reduction due to 
exibility

Depending on the kinematic regime, we expect that the consequences of 
exibility in
terms of magnitude and repartition of the internal stresses will vary. Our main interest
is to assess whether 
exibility makes a blade more or less likely to break in a given

ow. Structural failure may occur when, at a given timet, the stress due to the loads
exceeds a given threshold called the breaking strength, at some location within the
structure. For an Euler-Bernoulli beam in two dimensional bending, the stress tensor
may essentially be reduced to two components, the tensile (or compressive) stress� �

and the shear stress� n . Both quantities vary along the span but also within the cross-
section. The maximum tensile stress is reached at the edges of the cross-section and
depends linearly on the internal bending moment� � / MD=I / M=WD 2. Conversely,
the shear stress reaches its maximum on the neutral axis and it is proportional to
the internal shear force� n / Q=WD. Thus, following the dedicated terminology of
Gosselin et al. (2010), we may de�ne two recon�guration numbers

R � =
maxjM (s; t)j

maxjM rigid (s; t)j
; R n =

maxjQ(s; t)j
maxjQrigid (s; t)j

(3.16)

that compare the maximum stresses endured over a cycle at any point along the struc-
ture to the maximum value the same structure would have to endure if it were rigid.
The recon�guration numbers are smaller than one if the 
exibility is bene�cial in terms
of internal stresses, and larger than unity if it is detrimental.

Our shear recon�guration numberR n is equivalent to the recon�guration number
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de�ned in Gosselin et al. (2010) and used in Chapter 2, in the static case. Their
de�nition is based on the total drag Q(s = 0) instead of the maximum of the shear
force maxjQj, but the shear force is in fact maximum at the clamped edge in their case
so it is equal to the total drag. Our R n is also quite similar to the e�ective length
de�ned by Luhar and Nepf (2016), only the latter was based on the RMS value of the
total drag Q(s = 0) instead of the spatio-temporal maximum ofQ. This is so because
the goal of Luhar and Nepf (2016) was to provide insight about how 
exibility a�ects
energy dissipation in the background 
ow, while our focus is the ability of the structure
to withstand the 
uid loads. For the sake of simplicity, in the rest of this chapter we
will only present results about the shear stress� n and shear recon�guration number
R n . The results about the tensile stress are actually quite similar and will be provided
in Appendix C.

3.4.2 Rigid case

In the case of a perfectly rigid structure, the combination of the external 
uid forces
Eqs. (3.2) and (3.4) results in a span-invariant, purely horizontal load

qrigid (t) = �! 2

�
cos(!t ) + ( �� ) jsin(!t )j sin(!t )

�
(3.17)

that also reads, in terms of the Cauchy number (CY = �� 2! 2) and Keulegan-Carpenter
number (K C = �� )

qrigid (t) =
CY

K C

�
cos(!t ) + K C jsin(!t )j sin(!t )

�
: (3.18)

The �rst term is an inertia term, proportional to the 
ow acceleration, while the second
term is the resistive drag force proportional to the velocity squared. Integration from
the free tip provides the internal bending moment and shear force

M rigid (s; t) = �
1
2

qrigid (t) (1 � s)2 ; Qrigid (s; t) = � qrigid (t) (1 � s) (3.19)

that are maximum at the clamped edge and maxjM rigid (s; t)j =
1
2

maxjQrigid (s; t)j =
1
2

maxjqrigid (t)j with

maxjqrigid (t)j =
CY

K C
if K C �

1
2

; CY

�
1 +

1
4K 2

C

�
if K C �

1
2

: (3.20)

3.4.3 Small amplitude of 
ow oscillation

As for the kinematics, let's �rst consider the case where the amplitude of forcing is
small compared to the length of the structure (� � 1). Depending on the value of the
Keulegan-Carpenter numberK C , the system will be in the modal or convective regime.
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The variations of the shear recon�guration number with the frequency ratio are
shown on Figure 3.9(a) for di�erent values ofK C in the modal regime. Because the
system behaves as a high-pass �lter, the blade remains rigid in the quasi-static limit! <
1 and so there is no drag reduction in this regimeR n � 1. For larger frequencies, the
recon�guration number decreases overall but peaks at the successive resonances. The
magnitude of the peaks is mitigated when the Keulegan-Carpenter number is increased
due to damping by the drag term. The resonance frequencies are decreased as well owing
to the non-linearity of the drag term, as explained in Arellano Castro et al. (2014). But
when K C is small enough, the recon�guration number may even exceed unity close to
the �rst resonances. In these particular cases, 
exibility may therefore be responsible
for a magni�cation of the shear stress. Apart from the resonances, the slope of the
overall decay may be estimated by a scaling argument. Far from the resonances, the
amplitude of the de
ection is of the order of the 
uid particles excursionx = O(� ). The
non-dimensional shear forceQ = � 0, is thus of orderO(� � k3) with the wavenumber of
the dominant modek �

p
! , while the rigid shear force is of orderO(CY =KC ) = O(�! 2)

according to Eq. (3.20). Thus, the shear recon�guration number isR n � k� 1 � ! � 1=2,
which is consistent with the slope observed on Figure 3.9(a).

Figure 3.9: Shear recon�guration number (a) and location of maximum shear stress
along the span (b), in the modal regime, against the frequency ratio, forK C = 10� 2

(|{), K C = 10� 1 (� � � ), K C = 100 (� � � ), and analytical solution for K C ! 0
( � � � � ).

As shown on Figure 3.9(b), the locationsn along the span of the blade where the
maximum shear stress max(� n ) is reached varies with the frequency. In the rigid domain
! < 1 the maximum stress remains at the clamped edge, until the �rst resonance is
reached. After ! 1, the maximum stress starts moving from the clamped edge towards
the free tip asR n decreases, before suddenly going back to the clamping point asR n

starts increasing again, until the second resonance is attained. Similarly, after! 2, the
locus moves again asR n decreases and then comes back asR n starts increasing towards
the next resonance, and so on. This trajectory of the most solicited spot is independent
of K C , except close to the transition towards the convective regime. Indeed, forK C = 1,
the maximum shear stress remains at the clamping point for any value of the frequency
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ratio.

In the convective regimeK C > 1, we have shown that all the curvature concen-
trates within an elastic boundary layer of typical size� = ( K C ! 2)� 1=4 close to the
attachment point. Consequently, the location of the maximum stress is always located
at the clamping point in the convective regime. Besides, the variations of the shear
recon�guration number R n , displayed as a function of the frequency ratio on Figure
3.10(a), all collapse on the same curve when replotted as a function ofK C ! 2 on Figure
3.10(b). Even the transition caseK C = 1 also follows the same trend on average, but
still exhibits some variations and small resonances due to the persistent modal nature
of the response. WhenK C ! 2 < 1, the scale of the boundary layer exceeds the length
of the structure so the blade behaves rigidly andR n � 1. Conversely whenK C ! 2 > 1,
the motion allowed by the 
exibility is responsible for an alleviation of the internal
shear stress. We may estimate the slope of the asymptotic decay by a similar argu-
ment as in the modal regime. Assuming that the characteristic bending length scales
as the boundary layer thickness� , we now haveQ � O(� � � � 3) and the rigid shear
force of orderO(CY ) = O(�� � 4). We thus obtain R n � � � (K C ! 2)� 1=4, in agree-
ment with Figure 3.10(b). Note that, as illustrated on Fig. 3.10(a), recon�guration
in the elastic boundary layer occurs even in the quasi-static regime! < 1 provided
that K C ! 2 > 1. Indeed, in this particular case, the rigid forceqrigid that appears on
the right-hand side of the small-amplitude static equation (3.11) would actually lead to
static deformations exceeding the excursion of the 
uid particles. This is not possible
in this drag-dominated regime as only strong inertial forces can cause the structure to
overshoot the 
uid particles. The drag term of Eq. (3.12) thus ensures the limitation
of the structural excursion to that of the 
uid particles, while only the elastic boundary
layer that develops close to the clamped edge actually satis�es the quasi-static equi-
librium between the elasticity forces and the drag (which amounts to neglecting the_~x
terms in the boundary layer equation (3.14)). Consequently, the scaling of the drag as-
sociated with recon�guration in the elastic boundary layer remains valid in this domain
as well.

3.4.4 Large amplitude of 
ow oscillation

In the large-amplitude regime (� > 1), we have proven that signi�cant structural motion
may only occur during a short period of timeTr following 
ow reversal (!t = 0). During
that time, the 
ow magnitude is close to zero and the drag force is at its minimum. Drag
being the dominant term of the equation, we expect the largest stress to be experienced
when it is at its maximum around!t = � �= 2, at a time where the structure is in quasi-
static equilibrium with the 
ow forces. Besides, the 
ow acceleration cancels out when
the 
ow magnitude is maximum so that, at the time where the stress peaks, Eq. (3.8)
reduces to the static equation



64 Chapter 3 Dynamic recon�guration in oscillatory 
ow

Figure 3.10: Shear recon�guration number in the convective regime against (a) the
frequency ratio! , (b) the rescaled parameterK C ! 2, for K C = 100 (� � � ), K C = 101

(� � � ), K C = 102 (|{).
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= 0: (3.21)

In the quasi-static part of the cycle, the amplitude and frequency parameter in
uence
the shape of the structure and the internal stress only through the Cauchy number
CY = �� 2! 2. Consequently, the evolution of the shear recon�guration number shown
on Figure 3.11(a) as a function of the frequency ratio! (for � = 12:7) collapse very well
on the static curve obtained with Eq. (3.21) when replotted as a function of the Cauchy
number on Figure 3.11(b). The curves are perfectly superimposed for� = 10, but even
for � as small as 1, agreement is already very good. When the Cauchy number is inferior
to 1, de
ection is negligible so Eq. (3.21) actually reduces to the small-amplitude static
equation (3.11). In this limit, even though the amplitude of the forcing is large� > 1,
we actually recover the small-amplitude static regime in which the structure experiences
the same amount of stress as if it were rigidR n � 1.

On the other hand, when the Cauchy number is largeCY > 1, the stress is much
reduced. In the limit where drag dominates over the added mass corrective term (limit
of in�nite slenderness� ! 1 ), the static equation (3.21) has a self-similar structure.
The scaling of the terms of the equation provides the length of the self-similar boundary
layer `s = C � 1=3

Y within which all the curvature concentrates. Consequently we may
here again estimate the asymptotic behaviour of the shear recon�guration number by
a scaling argument. In this case, the saturated angle� is of order O(1) so the shear
force Q = � 0 � O(1 � ` � 2

s ). The rigid shear force is of orderO(CY ) = O(` � 3
s ) so we

get R n � `s � C � 1=3
Y . The slope on Figure 3.11(b) is close but di�er slightly from

that estimation. The analysis of Appendix D shows that this discrepancy is due to
the rather small value of� = 12:7. For any larger slenderness, the asymptotic scaling
provided here matches very well the numerical results. Note that this bending length is
similar to that previously found by Gosselin et al. (2010) who neglected the cubic term
in curvature in their governing equation, as well as that found by Alben et al. (2004)
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for the case of a 2D plate (opposite limit of in�nite width). The extended validity of
this static bending length to the case of large-amplitude unsteady 
ows was moreover
suggested in Luhar and Nepf (2016).

Note �nally that this analysis is independent of the magnitude of the reversal time
Tr . The key point of this analysis lies in the fact that even if signi�cant dynamics may
be involved during reversal whenTr � 1, the maximum stress is endured at a time
when the structure is in static equilibrium with the 
uid forces. This remains obviously
true when Tr � 1 and static equilibrium is enforced at all times.

Figure 3.11: Shear recon�guration number in the large-amplitude regime for� = 12:7,
against (a) the frequency ratio! , (b) the Cauchy number CY , for � = 100 (� � � ),
� = 101 (|{). Static solution obtained with Eq. (3.21) ( � � � � , on (b) only).

3.5 Discussion

3.5.1 Stress alleviation due to 
exibility and bending length

Depending on the values of the amplitude and frequency of the oscillating 
ow, we have
identi�ed four distinct kinematic regimes summarized on Figure 3.8. In each regime, the
consequences of the 
exibility on the magnitude of the internal stress are di�erent. The
varying scalings of the shear recon�guration numberR n depending on the amplitude
and frequency of the 
ow are schematically displayed on Figure 3.12.

As long as the forcing is dominated by the inertial forces (in the modal regime
A � W), there exists a risk of resonance if the frequency of the 
ow matches one of
the natural frequencies of the structure. This is a case where the dynamical motion
allowed by the 
exibility may be responsible for a magni�cation of the internal stress.
However, this is also the region in the parameter space where the loading is the lowest
and so this is unlikely to cause any severe damage. Far from the resonances and in all
other cases, 
exibility always alleviates the magnitude of the internal stress.

The general scaling of the recon�guration numbers is related to some characteristic
bending length `b such that R n � `b and R � � `2

b (see Appendix C), but the scaling
of that very bending length depends on the recon�guration regime. In the modal
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Figure 3.12: Schematic view of the recon�guration regimes in the amplitude-frequency
space.

regime (A � W), the bending length is proportional to the wavelength of the dominant
mode that varies as`b = k� 1 = ! � 1=2. In the convective regime (W � A � L),
curvature is con�ned in the elastic boundary layer so naturallỳ b = � = ( �� )� 1=4! � 1=2.
The characteristic bending length varies continuously between the two small-amplitude
regimes as their expressions are similar at the transition whenK C = �� = 1. On the
other hand, in the large-amplitude regime (A � L) the bending length transitions to
`b = `s = C � 1=3

Y = ( �� 2! 2)� 1=3. The boundary of the rigid domain with the three
di�erent recon�guration regimes is nonetheless continuous as illustrated on Fig. 3.12.

3.5.2 Consequences in terms of growth pattern of aquatic 
ex-
ible plants

In any of the three recon�guration regimes, the recon�guration numbers scale in di-
mensional form with the length of the blade asR n � L � 1 and R � � L � 2. Given the
scalings of the rigid loads and of the internal stresses in Section 3.4.1, we thus obtain
the cancellation of the dependency of the dimensional forces and internal stresses on
the actual length of the blade� n / Q � L0 and � � / M � L0. This loss of relevance
of the true length of the structure in aid of a smaller characteristic bending length was
already pointed out in the steady case (see de Langre et al., 2012) and remains valid
in the oscillatory case. Consequently, it does not seem as if there is any mechanical
limit to size in wave-swept 
exible kelps, as long as growth is concentrated in the axial
direction.

But real plants grow according to more complex allometric patterns (Gaylord and
Denny, 1997; Denny and Cowen, 1997). Following the growth of a plant in the vari-
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ables of Figure 3.12 amounts to decreasing� from the top. In the static recon�guration
regime, the internal stresses� n and � � are both independent of any of the three dimen-
sionsD, W, L and so growth does not a�ect the magnitude of the stresses in a given
environment, no matter the allometry of the plant. When the structure reaches the
convective regime (L � A), the stresses become decreasing functions of the thicknessD
but remain independent ofW and L. One might think that a growth pattern favouring
thickness would be advantageous, but this is only so for thin platesD < W for which
the elastic e�ects are con�ned in the plane of the 
ow. A thicker structure might expe-
rience 3D deformations that would considerably complexify the dynamics. Finally, in
the modal regime (W � A), the stresses now start increasing with the widthW, and
the risk of resonances may enhance the stresses even more depending on the frequency
of the 
ow. It thus appears detrimental for a 
exible plant to grow in width in excess
of the 
uid particle excursion.

These remarks come as complementary answers to the work of Koehl (1984) and
especially Denny et al. (1985), Gaylord et al. (1994) and Denny (1999). Koehl (1984)
�rst noted that \
exibility in combination with great length provides a mechanism of
avoiding bearing large forces in habitats subjected to oscillating 
ow", in comparison
to rigid organisms that need to remain small. However the question of whether there
might be size limits imposed on wave-swept 
exible organisms due to the oscillatory

uid loading has never received a de�nitive answer. Our results indicate that for slen-
der, neutrally buoyant blades, the hydrodynamic loads do limit the width, but put no
constraints on the axial growth.

3.5.3 Remarks on previous work about the convective regime

Most aquatic plants are close to neutrally buoyant and the horizontal amplitude of the
passing waves is typically much larger than the width if not the length of these plants
(see Gaylord et al., 1994; Gaylord and Denny, 1997; Denny and Cowen, 1997). Thus it
seems that plants growing larger than the 
uid particles excursion are likely to remain
in the convective regime in order to avoid large 
ow-induced stresses. The work of
Mullarney and Henderson (2010) and Luhar and Nepf (2016) has focused mainly on
this convective regime. The latter show on their Figure 11 that their e�ective length
(analogous to our normal recon�guration numberR n ) seems to scale as (CY =� )� 1=4 =
(��! 2)� 1=4 = � . This result is consistent with the scaling of the elastic boundary
layer that develops in the convective regime, and indeed almost all the experimental
cases of Luhar and Nepf (2016) were obtained within the appropriate range� � 1 and
K C � 1 (more precisely 0:06 � � � 1:32 and 0:76 � K C � 4:2). However, because the
slenderness parameter of their blades is rather low (between� = 3:2 and � = 12:7), �
and K C are quite close to each other and consequently most of their points are very
close to either one of the boundaries of that regime. Some particular points in that
study show an increase of the load compared to the rigid case. The authors suggested
that this might result from an interaction between the blade and the vortex shed at
the tip. But these points are characterized by a rather small amplitude� = O(10� 1)
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and Keulegan-Carpenter numberK C � 0:7 � 1:2, and forcing frequencies close to the
resonance frequency! � 1� 5. For instance, the largest load was obtained for (� = 0:12,
K C = 0:76 and! = 2:30). It is thus a possibility that the load enhancement is simply
the consequence of a resonance of the impinging wave with the �rst natural mode of
the structure, due to the persistent modal nature of the dynamic response for such
values of the parameters. Conversely, other points obtained for� = O(1) seem to
collapse quite well with the others. We have shown that for such high values of the
amplitude parameter, at least when� = 12:7, the recon�guration number should be
close to its static equivalent. But if very slender structures exhibit a clear asymptotic
regime R n � C � 1=3

Y , decreasing the slenderness belowO(10) mitigates the e�ciency
of the recon�guration and increases the slope so that it may be di�cult to know the
di�erence with the scaling of the convective regime.

3.5.4 Limits and extensions of the model

In all this study we have focused exclusively on the case of an in�nitely thin, neutrally
buoyant blade. These two assumptions have allowed us to neglect both the displaced
mass and the structural mass. In practice however, aquatic plants are not strictly
speaking of the same density as the water and their thickness might not be negligible.

First, if the thickness of the neutrally buoyant blade is not negligible anymore, we
need to consider the inertial and virtual buoyancy forces. These forces might be re-
sponsible for additional inertial e�ects in the large-amplitude regime, such as persistent
oscillations following the quick reversal withTr < 1, or a 
utter instability similar to
that observed on axial 
ags. The e�ects of such 
apping motion is discussed in detail
in the next chapter. The dynamics induced would then be responsible for additional
loads that may challenge the �ndings of that study. However, we expect the conse-
quences to remain marginal, as damping by the drag term would still dominate. This
is even more so as the slenderness is increased and for in�nite slenderness, we do not
expect any signi�cant discrepancy with the present work. Besides, the small-amplitude
regimes would not be a�ected in any way as equation (3.10) would remain the same,
providing that the characteristic time of the structure used for non-dimensionalization
is rede�ned to account for the structural massTs = L2

p
(ma + m)=EI .

If the structure is now lighter than the 
uid, then its inertia is even more negligible.
Buoyancy may still modify our results, but this e�ect should become negligible as soon
as the 
uid loading is dominant as explained in Luhar and Nepf (2011) and Luhar and
Nepf (2016).

On the other hand, if the structure is much denser than the 
uid, some more compli-
cated dynamical e�ects might come into play due to the large structural inertia possibly
overcoming even drag. We do not expect the conclusions of the present work to hold
in that case.
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3.6 Conclusion

The work presented in this chapter provides a dynamical extension of the theory of
recon�guration to the case of oscillatory 
ow. Focusing on neutrally buoyant cantilever
slender blades, we proved that 
exibility is always favourable to reducing the internal
stresses as long as drag dominates the 
uid inertial forces. In fact, drag appears as
the motor of recon�guration. In large-amplitude oscillations (or equivalently in steady

ow), drag is responsible for the static de
ection that reduces the stress. In small-
amplitude oscillations, it is also the saturation of the drag term that forces the passive
convection of the structure with the 
uid particles if the Keulegan-Carpenter number
is large. Even in the less favourable case of small Keulegan-Carpenter numbers, it is
the small drag term that saturates the resonances that occur due to the 
uid inertia,
even when the structural inertia is negligible. We also expect that drag would saturate

utter-like oscillations that might occur if the structural mass were not negligible, thus
limiting the enhancement of the internal stresses to a bearable extent (see Chapter 4
for more details).

As in the static case, we have shown that dynamic recon�guration results in the
concentration of the stresses on a short bending length near the clamped edge, only the
scaling of that bending length varies depending on the dynamic regime. Besides, the
scaling of the bending length in the static regime also depends on the spatial variability
of the system, and the scaling of the bending length depending on the intensity of the
non-uniformities was provided earlier in Chapter 2.

Note that the dependency of the internal stresses on the actual length of the struc-
ture disappears in the recon�guration regimes, so there does not seem to be any me-
chanical limitation to the axial growth of plants living in wave-swept environment due
to the hydrodynamic loads. However, in order to avoid deleterious inertial e�ects, it
seems preferable to keep a width much smaller than the excursion of the 
uid particles.
In other words, if there is no limitations to growth in itself, there is an incentive to
grow slender based on mechanical considerations. Of course, the actual growth pattern
of aquatic plants also involves other aspects such as the optimization of its biological
functions that we do not take into account here.

Finally, only the inertia of the 
uid has been accounted for in this work. We expect
the inclusion of signi�cant structural inertia should considerably modify the results of
the present work. Even in the case of a uniform and steady 
ow, we anticipate that
the inclusion of the structural inertia in the balance of forces may result in a dynamic
instability. This e�ect is investigated in the next chapter.
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Chapter 4

Flutter of recon�guring structures

Preamble

In Chapter 3, the inertia of the structure was neglected based on the assumption that
it was 
at and neutrally buoyant. The dynamics of the structure was consequently
entirely due to the unsteadiness of the free-stream itself. In this chapter, we relax
this assumption in order to investigate the possible dynamic coupling that may arise
between the 
ow and the structure, and the consequences it may have on the drag of
the structure.

As explained in the introductory chapter, most existing studies on recon�guration
in steady 
ows assume a static structural de
ection, but the 
ow-structure coupling
may be the source of a dynamic motion similar to that observed on 
ags 
apping in
the wind, in a time-varying or even in a steady free-stream. The very occurrence of
dynamics induces inertial loads on the structure, and one may wonder whether 
exibility
is associated with lower or larger drag in that case, compared to a rigid structure that
does not recon�gure but does not 
ap either.

As in the whole thesis, we still consider in this chapter the model system of a can-
tilever slender beam clamped transverse to the 
ow, and perform numerical simulations
based on reduced order models. In order to relax the assumption on the structural mass,
we do not make additional assumptions regarding the geometry of the cross-section or
the density of the structure anymore. For the sake of simplicity, we limit this study to
the self-induced, two-dimensional dynamics of structures that recon�gure in a uniform
and steady background 
ow.

As in Chapter 2, the results are presented in terms of the modulation of the total
drag force to remain consistent with previous work on recon�guration in steady free-
streams. Note however that here again, the maximum shear stress in the structure is
located at the clamped edge and balances the total drag force, so that the results for
the drag displayed in this chapter are equivalently valid for the internal shear stress.
Besides, due to the absence of asymptotic regime for the drag in the limit of large
de
ections when 
utter occurs, the concept of Vogel exponent does not seem relevant
in this context so we directly discuss the variations of the recon�guration number.

After a short introduction to provide some speci�c background elements regarding
the problem of 
utter, we present the model and important parameters used throughout
the study. We then discuss the domain of stability of the static recon�guration, the
post-critical 
apping behaviour of the de
ected structure, and �nally the consequences
of 
exibility in terms of total drag modulation when recon�guration and 
utter are both
considered. We �nally conclude that the additional drag due to the 
apping motion
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does mitigate the bene�ts of recon�guration, but only rarely o�sets the drag reduction
it provides. Isolated and brief snapping events may transiently raise the drag above
that of a rigid structure in the particular case of heavy, moderately slender beams.
But apart from these short peak events, the drag force remains otherwise signi�cantly
reduced in comparison with a rigid structure.

The results presented in this chapter have been published in the Proceedings of
the Royal Society of London A: Mathematical, Physical and Engineering Sciences.
The paper (Leclercq et al., 2018) is attached at the end of the thesis. Compared to
the present chapter, the paper includes a slightly more furnished introduction, and
more details about the model that have already been provided in the previous
chapter. The rest of the content is similar.
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4.1 Speci�c background elements about 
utter

The 
apping of 
ags in the wind illustrates that structures parallel to the 
ow are
prone to self-induced dynamic oscillations (Kornecki et al., 1976; Huang, 1995; Watan-
abe et al., 2002; Connell and Yue, 2007; Michelin et al., 2008; Shelley and Zhang, 2011).
This 
ag 
utter instability results from the competition between the destabilizing aero-
dynamic pressure forces and the stabilizing rigidity of the structure, so slender struc-
tures in axial 
ow are liable to it as well (Datta and Gottenberg, 1975; Yadykin et al.,
2001; Pa•�doussis et al., 2002; Semler et al., 2002; Lemaitre et al., 2005; de Langre et al.,
2007). A few authors have tried and assessed the drag of such structures theoretically
(Moretti, 2003), numerically (Yadykin et al., 2001), and experimentally (Fairthorne,
1930; Hoerner, 1965; Taneda, 1968; Carruthers and Filippone, 2005; Morris-Thomas
and Steen, 2009; Wilk and Skuta, 2009; Virot et al., 2013). All these studies prove that
the onset of 
utter is associated with a large increase of the drag force, whose magnitude
is strongly correlated to the periodicity and the envelope of the 
utter mode.

Cantilever structures that bend in a transverse 
ow become more and more aligned
with it, so that the 
ow about su�ciently de
ected beams becomes mostly axial. If
recon�guration is known to have a drag-lowering e�ect that protects the structural
integrity, the possible 
uttering of highly recon�gured beams may on the other hand
be responsible for a magni�cation of the drag possibly leading to damage or breakage.
In the literature, the small-amplitude vibrations of a naturally curved rod in a 
ow has
been considered in Ni et al. (2014), as well as the 
apping dynamics of plates clamped
in axial 
ow at their trailing edge instead of their leading edge (the so-called inverted

ag problem (Gurugubelli and Jaiman, 2015; Tang et al., 2015; Sader et al., 2016)), and
the 
ow-induced instability of �laments clamped at their trailing edge but de
ected by
gravity (Schouveiler et al., 2005). However, very little is known about the self-induced
dynamics of structures passively bending under the e�ect of the 
ow, and even less
about whether the resulting drag force is overall enhanced or reduced. The goal of this
work is thus to determine if, and to what extent, the occurrence of 
utter may impair
the drag reduction abilities of 
exible structures in transverse 
ow compared to rigid
ones. We will focus on the case of cantilever, elongated beams of arbitrary but uniform
cross-section.

4.2 Model

We consider the problem depicted on Figure 4.1. A structure of lengthL, width W,
thicknessD and mass per unit lengthm is clamped perpendicular to a uniform and
steady 
ow of velocity U of a 
uid of density � . As in the previous chapters, we
still assume the structure may only bend in thexz-plane, and we model it as a two
dimensional Euler-Bernoulli beam (Audoly and Pomeau, 2010).

To model the dynamic behaviour of the structure in the 
ow, we use the same
reduced order models for the structure and for the 
uid forces as in Chapter 3. We
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Figure 4.1: (a) Side view of the deforming structure. (b) Examples of geometries of
two undeformed structures with di�erent cross-section shapes.

disregard the in
uence of gravity and buoyancy forces in this problem, and we restrict
our study to large Reynolds numbers so that friction drag is neglected (see de Langre
et al., 2007, for more details about the e�ect of friction on the 
utter instability).
Besides, because the 
ow in this chapter is steady, the virtual buoyancy force (3.5)
does not contribute to the balance of forces. Thus, the external forcing by the 
uid
reduces, as in Chapter 3, to the combination of the resistive dragqd given in equation
(3.2) and reactive forceqam given in equation (3.4). However, we do not make any
assumption regarding the mass of the structure, so we cannot neglect the inertia of the
structure on the left hand-side of the dynamic equilibrium equation (3.1) anymore. The
governing equation (3.6) supplemented with the inertial term now reads

m•r =
�
T +

1
2

EI� 2

� 0

� +
�
�T � EI� 00

�
n + qam + qd : (4.1)

This model is consistent with previous work on 
utter of slender beams in axial

ow. The expression (3.4) (from Lighthill, 1971; Candelier et al., 2011) for the reactive
term qam has been extensively used in the literature for the linear stability analysis of
straight beams in axial 
ow (Pa•�doussis, 1998; Lemaitre et al., 2005; de Langre et al.,
2007). Indeed, as emphasized in Eloy et al. (2007) and Singh et al. (2012a), it is the
potential component of the 
ow that is driving the instability. Moreover, when studying
the large-amplitude post-critical oscillations, an additional resistive contributionqd

associated with 
ow separation in the plane of the cross-sections has proved necessary to
avoid unrealistically large 
apping amplitude (Singh et al., 2012a). The semi-empirical
formulation (3.2) of Taylor (1952) is unambiguously used in the literature as 
apping
amplitude-limiting term in 
utter studies such as Eloy et al. (2012), Singh et al. (2012a),
Singh et al. (2012b) or Michelin and Doar�e (2013). Besides, in our case, the beam is
statically de
ected by the e�ect of the cross-
ow before it starts 
uttering. The reactive
term qam vanishes on a straight and motionless beam, so the resistive contributionqd
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is essential to bend the beam into a con�guration prone to 
utter.

After projection on the tangential and normal directions and elimination of the
unknown tensionT, Eq. (4.1) �nally yields a single integro-di�erential equation on the
kinematic variables� , � , r

(m + ma) •r � n � m�
Z s

L
•r � � + EI

�
� 00+

1
2

� 3

�

+ ma

�
�

�
U2

� �
1
2

U2
n

�
� 2_�U �

�
+

1
2

�C D WjUn jUn = 0: (4.2)

As in Chapter 3 and following Pa•�doussis (1998) and de Langre et al. (2007), we non-
dimensionalize all the variables using the length of the structureL and the scale of
the natural period of the structure in small-amplitude oscillations in the 
uid Ts =
L2

p
(m + ma)=EI . We �nally obtain, in non-dimensional form

•r � n � (1 � � )�
Z s

1
•r � � + � 00+

1
2

� 3 + �
�
�

�
U2

� �
1
2

U2
n

�
� 2_�U �

�
+ �� jUn jUn = 0 (4.3)

with the inextensibility condition r 0 = � , the boundary conditionsr = 0, � = 0 at
the clamped edges = 0 and � = � 0 = 0 at the free tip s = 1. The non-dimensional
relative velocity is given byU� � + Unn = _r � u=

p
� ex . This system is ruled by three

non-dimensional parameters that are

� =
ma

ma + m
, u = UL

r
ma

EI
, � =

�C D WL
2ma

=
�

2
�

CD

�
L
W

: (4.4)

The mass ratio� represents the amount of 
uid inertia within the total inertia of the
system. It take values between 0 and 1. For instance,� ! 0 for a very dense structure,
� = 0:5 for a neutrally buoyant cylinder with circular cross-section, and� ! 1 for very
thin plates (D � W). Note for instance that the assumption of small structural mass
m � ma made in Chapter 3 is equivalent to taking� = 1. The reduced velocity u
compares the relative magnitude of the 
uid inertial (or reactive) load to the internal
elasticity forces. Both are classically used in studies about the 
utter of slender beams in
axial 
ow, as in Pa•�doussis (1998) or de Langre et al. (2007), while the third parameter
� = O(L=W) is the same slenderness parameter as in Chapter 3. It can be seen as
the ratio of the resistive drag to the reactive force. Because our model is only valid for
elongated structures, we are restricted to� � 1.

As already mentioned, the 
utter instability results from the competition between
the destabilizing e�ect of the reactive force and the stabilizing e�ect of the rigidity of the
structure. The reduced velocityu is therefore the natural parameter that governs this
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phenomenon. On the other hand, the static recon�guration of the beam is primarily
due to the resistive drag overcoming the bending sti�ness of the structure. The classical
non-dimensional parameter that compares these two forces is the Cauchy numberCY

(Tickner and Sacks, 1969; Chakrabarti, 2002; de Langre, 2008). In the case of a slender
structure bending in transverse 
ow, we de�ne the Cauchy number following Gosselin
et al. (2010) asCY = �C D WL3U2=2EI . These two non-dimensional parameters are
redundant as they both provide scaling of the 
ow velocity with respect to the structural
sti�ness. They are related via the slenderness parameter byCY = �u 2. However, the
Cauchy number is more relevant to describe recon�guration while the reduced velocity
is more relevant to discuss features of the 
utter instability.

4.3 Stability of the static recon�guration

In order to discuss the joint e�ect of 
utter and recon�guration, we �rst need to identify
the domain in which 
utter may happen, and that in which the structure will recon�gure
without 
apping. To do so, let's �rst look for the stationary equilibrium solutions of the
governing equation (4.3). Removing all unsteady terms in Eq. (4.3) yields the static
equation

� 00+
1
2

� 3 +
CY

�

�
sin2 � �

1
2

cos2 �
�

� � CY cos2 � = 0 (4.5)

with boundary conditions � = 0 at s = 0 and � = � 0 = 0 at s = 1. This equation is
independent of the mass ratio� , and depends exclusively on the Cauchy numberCY

and the slenderness parameter� . It is similar to the large-amplitude static equation
(3.21) found in Chapter 3. In the limit of in�nite slenderness� ! + 1 , we recover the
model of (Gosselin et al., 2010), used in Chapter 2, based on the equilibrium between
the elastic forces and the resistive drag to describe static recon�guration. In Chapter
3 and particularly in Appendix D, we have proved that the static contribution of the
reactive forceO(CY =� ) is negligible as soon as the slenderness� & 10 so that the
known results for the recon�guration in steady 
ow remain valid for slender structures,
regardless of their actual aspect ratio, as long as the de
ection remains static. However,
by analogy with beams in axial 
ow, we expect the static shape solution of Eq. (4.5) to
become unstable to some 
utter instability as the 
ow velocity exceeds some threshold
and the structure aligns with the 
ow.

To determine the stability threshold, we make use of Lyapunov's indirect method
as advocated in Dupuis and Rousselet (1992) and applied in Lundgren et al. (1979)
regarding the stability of cantilever 
uid-conveying pipes with an inclined terminal
nozzle. Namely, for each value of the parameters, we perform a global linear stability
analysis of the dynamic governing equation (4.3) with the corresponding boundary
conditions, about the stationary equilibrium solution of Eq. (4.5) for that particular
set of parameters. Thus, we expand the instantaneous position vector and angle� as
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r (s; t) = r 0(s) + � (s; t) � 0(s) + � (s; t) n 0(s) , � (s; t) = � 0(s) + �� (s; t) (4.6)

where the subscript0 refers to quantities related to the stationary solution, and� , �
and �� are small-amplitude time-dependent perturbations of the same order. At the
linear order, the tangential and normal vectors read

� (s; t) = � 0(s) + �� (s; t) n 0(s) , n (s; t) = n 0(s) � �� (s; t) � 0(s): (4.7)

Linearisation of the inextensibility condition r 0 = � provides two relations between the
small variables

� 0 � � 0� = 0 , �� = � 0+ � 0�: (4.8)

Making use of the boundary condition� = 0 at s = 0, we may rewrite the tangential
perturbation as

� =
Z s

0
� 0�: (4.9)

Finally, injecting the expansion (4.6) in Eq. (4.3) and making use of (4.7), (4.8), (4.9),
we obtain the governing equation for the small-amplitude normal perturbation
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where the notationsC0 = cos� 0 and S0 = sin � 0 have been used for brevity, and with
the boundary conditions� = � 0 = 0 at s = 0 and � 00= � 000= 0 at s = 1. This equation
is consistent with previous work on slender beams in axial 
ow. Indeed, for� 0(s) = �= 2
and � 0(s) = 0 (structure parallel to the 
ow in the static equilibrium con�guration),
Eq. (4.10) reduces to

•� + 2u
p

� _� 0+ u2� 00+ � (4) = 0 (4.11)

which is the classical small-amplitude 
utter equation for an undamped beam in axial

ow with no friction or gravity, used for instance in Pa•�doussis (1998), Lemaitre et al.
(2005), or Pa•�doussis et al. (2002).
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Following de Langre et al. (2007), we then assume a perturbation of the form
� (s; t) = � (s)ei!t so that Eq. (4.10) turns into the quadratic eigenvalue problem
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with the boundary conditions � = � 0 = 0 at s = 0 and � 00= � 000= 0 at s = 1.

To solve this numerically, the beam is discretized usingN = 100 Gauss-Lobatto
points sk = 1

2 (1 � cos((k � 1)=(N � 1)� )), and the derivatives and integrals are com-
puted respectively by Chebyshev collocation and using the Clenshaw-Curtis quadrature
formulae. For a given slenderness� and mass ratio� , we �rst compute the static so-
lution of Eq. (4.5) iteratively by increasing the Cauchy number from the upright case
CY = 0. After each increment, we solve Eq. (4.5) with a pseudo-Newton solver (method
of citepbroyden1965) using the solution at the previous step as initial guess. Then, for
each value ofCY (equivalently of u), we compute the eigenmodes� (s) and eigenfrequen-
cies ! by solving Eq. (4.12) with the MatLab function quadeig (Hammarling et al.,
2013). To check convergence of the results with respect to the mesh, computations
with twice the number of points N = 200 were conducted and led to no signi�cant
modi�cation of the results. For instance, the static angle at the tip of the structure
� 0(s = 1) (solution of Eq. (4.5)) varied by less than 10� 10 for any Cauchy numberCY

between 10� 1 and 105 and for the three values of� considered (10, 102 or 103).

The stability thresholds are shown on Figure 4.2 in the� � u plane for di�erent values
of the slenderness� . Similarly to the axial case, the critical velocity increases with the
mass ratio so making the structure heavier or the 
uid lighter has a destabilizing e�ect.
For instance, a given structure is much more likely to 
ap in air than in water, and
neutrally buoyant structures are always stable if they are close to 
at (� ! 1, situation
of Chapter 3) while they lose stability between aroundu � 16 and 21 if they have a
circular cross-section (� = 0:5). For a given mass ratio, the critical velocity depends
very little on the slenderness. Therefore, it is indeed the relative magnitude of the
reactive 
uid force and the structural sti�ness that sets the onset of 
utter regardless
of the magnitude of the resistive drag.

On the other hand, the same stability thresholds re-drawn in terms of the Cauchy
number on Figure 4.3 are obviously shifted with respect to one another asCY / �
for a givenu. Consequently, the static equilibrium shapes at the critical velocity (also
shown on Figure 4.3) are more and more de
ected as slenderness is increased. Thus,
we may deduce that the critical velocity does not depend on the preexisting curvature
distribution in the static equilibrium shape. More importantly, we may conclude that
elongation stabilizes recon�guration. Indeed, the more slender a structure is, the larger
its critical Cauchy number CY;c, and so the more it may recon�gure statically before
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Figure 4.2: Critical velocity uc as a function of the mass ratio� , for � = 10 (||),
� = 102 (� � � ), � = 103 ( � � � ).

it loses stability and starts 
uttering. Note �nally that the critical Cauchy number is
always much larger than 1. Consequently, 
utter may only occur on highly recon�gured
structures.

Figure 4.3: Critical Cauchy numberCY;c as a function of the mass ratio� and static
equilibrium shape at the stability threshold for two speci�c values of the mass ratio, for
� = 10 (||), � = 102 (� � � ), � = 103 ( � � � ).

Note that even for the most de
ected cases (corresponding to� ! + 1 ) that are
almost parallel to the 
ow, the critical velocity does not converge to that of slender
beams in axial 
ow. This point is discussed in Appendix E.
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4.4 Post-critical kinematics

When the stability threshold is exceeded, the static solution of Eq. (4.5) cannot phys-
ically exist anymore. The static recon�guration models are not valid in the unstable
domain and we ought to account for the self-triggered dynamics to properly assess the
drag. In this Section, we start by analysing the kinematics that takes place in the
post-critical regime in order to discuss its consequences in terms of drag in Section 4.5.

Hence, we now solve the full time-dependent non-linear equation (4.3) using a time-
stepping method. The time derivatives are computed using implicit second order accu-
rate �nite di�erences. The time step is tuned for each case using the periodTlin and
growth rate � lin of the most unstable eigenmode found in the linear stability analysis.
It is chosen so that 100 iterations are performed overTlin or 1=� lin , whichever is the
shortest. At t = 0, we combine a small contribution of the most unstable eigenmode
to the static solution to initialize the system. Then, at each time step, the boundary
value problem is solved with the pseudo-Newton solver used in the static case (Broyden,
1965). Computations are carried on a horizon such that 120Tlin has passed, and the
amplitude of the most unstable eigenmode would have had time to grow by a factor of
1010 in the linear framework, whichever lasts the longest.

4.4.1 Kinematic regimes

For the sake of clarity, let's �rst focus on the reference case of a neutrally buoyant cir-
cular cylinder (� = 0:5) with moderately large aspect ratio (� = 10), before discussing
the in
uence of varying slenderness or mass ratio in Sections 4.4.2. We analyse both the
average and the extreme features of the dynamics, respectively through the standard
deviation and the amplitude (de�ned as half of the peak-to-peak amplitude measured
over the simulation horizon) of the tip vertical displacement on Figure 4.4. As is classi-
cal in 
ag 
utter studies, three distinct regimes are identi�ed depending on the value of
u (Connell and Yue, 2007; Alben and Shelley, 2008; Alben, 2008; Michelin et al., 2008).
Each regime is illustrated on Figure 4.4 for particular values ofu in the thumbnails.
Below the critical velocity uc = 16:5, the structure is statically stable so the amplitude
of 
apping is null. Right above the stability threshold, periodic 
apping takes place.
The amplitude and standard deviation both sharply increase from zero, then decrease
very slowly for increasingu. The bumpy shape of these curves is most likely associated
with 
apping mode switches (Alben, 2008; Michelin et al., 2008). The amplitude is con-
tinuous at the onset of the 
utter, thus indicating that the instability is supercritical.
Periodic 
apping is observed untilu � 62:7. Above that threshold, no limit cycle can be
identi�ed in most cases and the motion is generally either quasi-periodic or chaotic. In
this non-periodic regime, the standard deviation of the tip displacement remains rather
continuous and of the same order of magnitude as in the periodic regime. On the
other hand, the amplitude of 
apping measured over the simulation horizon is rather
erratic, due to the random nature of the dynamics. Overall, our results indicate that
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the amplitude jumps from being of the order of 0.12 to approximately 0.2. In fact, if
the loss of periodicity preserves the 
apping amplitude on average, it is also associated
with the random occurrence of isolated, short, extreme events characterised by violent
accelerations. These so-called \snapping events" have also been reported in the axial
con�guration (Connell and Yue, 2007; Alben and Shelley, 2008) and are known to be
responsible for drag peaks probably at the origin of the tearing of 
ags (Virot et al.,
2013). Note that, owing to the random occurrence of these peaks, their magnitude
may actually depend on the horizon of the simulation. Longer simulations would allow
more of the most extreme events to occur and would consequently lead most likely to
a larger, and smoother amplitude. The precise features of the non-periodic dynamics
such as its frequency spectrum or the probability distribution of the magnitude of the
snapping events are however out of the scope of this article. Note also that regular 
ap-
ping is still observed for some values of reduced velocity betweenu � 72 andu � 93,
corresponding to the lower 
apping amplitudes on Figure 4.4. These occurrences are
disseminated among irregular 
apping cases without a clear separation, so the bound-
ary of the periodic regime drawn on Figure 4.4 is actually more of a threshold above
which non-periodic motion is observed, but not exclusively.

Figure 4.4: Vertical amplitude of 
apping at the tip (blue) and standard deviation
(orange) versus the reduced velocityu, for � = 0:5, � = 10. Static regime (S), periodic
regime (P) and non-periodic regime (NP). Examples of deformation modes are shown in
the thumbnails for u = 16:4 (� , static regime),u = 22:7 (� , periodic regime),u = 67:3
(4 , non-periodic regime). Static equilibrium shape superimposed (� � � ).
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4.4.2 In
uence of the slenderness and mass ratio

The kinematic regimes described above are a�ected if the slenderness or mass ratio are
varied.

For instance, the same data as in Figure 4.4 is displayed on Figure 4.5 for a structure
100 times more elongated� = 103. First, the order of magnitude of the non-dimensional
amplitude of 
apping is drastically decreased. Actually, it even seems that� � ztip =
O(1) so that the dimensional amplitude of 
apping would scale with the width of
the structure, independently of its length. Similarly to the previous case, limit cycle

apping takes place above the critical velocityuc = 20:8. But contrary to the previous
case, the motion remains periodic for the whole range of reduced velocity tested. As
u is increased, period multiplications and divisions successively take place, leading to
more complex 
apping dynamics illustrated in the thumbnail foru = 78:0 on Figure
4.5. The trajectory of the tip makes several loops within a single period of the system
while it simply follows an eight-shaped trajectory in the simpler caseu = 59:0. These

apping modes are elaborate but remain nonetheless regular and no snapping event
is observed. Slenderness thus has a stabilizing e�ect on the non-linear dynamics as it
saturates the 
apping amplitude and prevents irregular motion to take place at large

ow velocities.

Figure 4.5: Vertical amplitude of 
apping at the tip (blue) and standard deviation
(orange) versus the reduced velocityu, for � = 0:5, � = 103. Static regime (S) and
periodic regime (P). Examples of deformation modes are shown in the thumbnails for
u = 20:0 (� , static regime), u = 59:0 (� , periodic regime), u = 78:0 (4 , periodic
regime as well). Static equilibrium shape superimposed (� � � ).

The mass ratio also has an in
uence on the post-critical dynamics. We show on
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Figure 4.6 the case of a 
at plate with smaller mass ratio� = 0:1, and moderate
slenderness similar to the �rst situation� = 10. Similarly to the reference case, periodic

apping is triggered right above the critical velocity uc = 5:24 until periodicity is lost
above some other thresholdu � 18:5. The amplitude of 
apping is however larger,
and the domain of regular 
apping is reduced. Thus, reducing the mass ratio has a
destabilizing e�ect on the non-linear dynamics, as it enhances the 
apping amplitude
and favours the early transition towards irregular motion.

Figure 4.6: Vertical amplitude of 
apping at the tip (blue) and standard deviation
(orange) versus the reduced velocityu, for � = 0:1, � = 10. Static regime (S), periodic
regime (P) and non-periodic regime (NP). Examples of deformation modes are shown
in the thumbnails for u = 5:2 (� , static regime),u = 13:2 (� , periodic regime),u = 36:7
(4 , non-periodic regime). Static equilibrium shape superimposed (� � � ).

4.5 Drag reduction in the post-critical regime

The very occurrence of 
utter, be it periodic or not, is known to be responsible for
a signi�cant additional drag force. Besides, its magnitude is strongly related to the
amplitude of the 
apping motion, but also to its regularity as the violent accelerations
associated with snapping events are responsible for enhanced drag peaks (Virot et al.,
2013). We thus expect the drag reduction abilities of the three structures introduced
in Section 4.4 to be at least mitigated above the stability threshold. In this Section, we
discuss the modulation of drag due to 
exibility for the same three structures, based on
the computational results of the previous Section, and in the light of the observations
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regarding the post-critical kinematics.
In order to quantify drag reduction by recon�guration, the recon�guration number is

de�ned in Gosselin et al. (2010) as the ratio of the drag force on the de
ected structure
to that on the similar but upright beam R = F=Frigid . The total drag force F is
equal to the internal shear force at the baseQ(s = 0) = � EI� 0(s = 0), while the
rigid drag is the integral of the resistive drag on the vertical structure of lengthL,
Frigid = 1=2�C D WLU 2, so that the recon�guration number reads in terms of the non-
dimensional quantitiesR = � � 0(s = 0) =CY . When R < 1, 
exibility is responsible for
lowering the drag, while it enhances it whenR > 1. Because the drag forceF on the
de
ected structure is time-dependent when 
utter occurs, we will focus in the following
on the time-averaged and maximum values ofR. The variations of the maximum and
average recon�guration numbers are related respectively to that of the amplitude and
standard deviation of 
apping.

First, Figure 4.7 displays the variations of these two quantities with the Cauchy
number CY in the reference case (� = 0:5, � = 10), along with the corresponding static
recon�guration curve. The maximum and average recon�guration numbers diverge
from the static curve at the critical Cauchy numberCY;c = �u 2

c = 2:71� 103, because
of the triggering of 
utter. Further increasing CY , the average recon�guration number
remains always larger than the static one. The self-induced dynamics is therefore
responsible for an additional drag that signi�cantly contributes to the total drag on
average. However, the average recon�guration number is decreasing with increasingCY

so that a larger 
exibility is still associated with an enhanced drag reduction above
the stability threshold, on average. This trend carries on in the non-periodic regime as
well as in the periodic regime. On the other hand, similarly to the 
apping amplitude,
the maximum drag sharply increases when periodicity is lost due to the occurrence
of snapping events, as will be discussed in further details later in the low mass ratio
case. But most importantly, the maximum recon�guration number remains inferior to
1 for all values ofCY . Therefore, no matter how large the 
ow velocity, the drag force
remains at all times inferior to what it would be if the structure were rigid and standing
upright. In other words, the additional drag due to 
apping is not large enough in this
case so as to completely o�set the drag reduction due to recon�guration.

This conclusion holds for more stable structures as well, such as the more slender
structure (� = 0:5, � = 103) of Section 4.4.2. In fact, we have shown in Section 4.4.2
that the amplitude of regular 
apping is reduced compared to the reference case, so
that the associated 
utter-induced drag contribution is smaller. Besides, the results of
Section 4.3 indicate that the instability is restricted to more de
ected structures (the
critical Cauchy numberCY;c = 4:33� 105 is higher), associated with larger static drag.
Consequently, the relative contribution of 
utter-induced drag to the total drag is now
almost negligible, and the recon�guration numbers displayed on Figure 4.8 are almost
superimposed on the static curve.

The situation of a less stable structure such as the low mass ratio plate (� = 0:1,
� = 10) of Section 4.4.2 is actually more intricate. As for the two previous cases, the
averageR displayed on Figure 4.9 keeps decreasing slowly (or remains almost constant)
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Figure 4.7: Recon�guration numberR versus the Cauchy numberCY , time average
(orange) and maximum (blue), for� = 0:5, � = 10. Static recon�guration number
(black). The same examples of deformation modes as in Figure 4.4 are shown in the
thumbnails, corresponding respectively toCY = 2:69 � 103 (� , static regime), CY =
5:15 � 103 (� , periodic regime), CY = 4:53 � 104 (4 , non-periodic regime). Static
equilibrium shape superimposed (� � � ). (b) is simply a zoom on the lower right
corner of (a).
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Figure 4.8: Recon�guration numberR versus the Cauchy numberCY , time average
(orange) and maximum (blue), for� = 0:5, � = 103. Static recon�guration number
(black). The same examples of deformation modes as in Figure 4.5 are shown in the
thumbnails, corresponding respectively toCY = 4:00 � 105 (� , static regime), CY =
3:48� 106 (� , periodic regime),CY = 6:08� 106 (4 , periodic regime as well). Static
equilibrium shape superimposed (��� ). (b) is simply a zoom on the lower right corner
of (a).
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above the stability threshold, regardless of the regularity of the 
apping motion. Thus,
a larger 
exibility is still responsible for an alleviation (or at least no enhancement) of
the drag on average even when 
utter is triggered at an early stage of recon�guration,
when the amplitude of 
apping is large, and in spite of the early loss of periodicity. On
the other hand, the sharp increase of the 
apping amplitude in the non-periodic regime
may induce large enough 
utter-induced drag forces so as to increase the total drag in
excess of its static value. The maximum recon�guration number raises above 1 in these
cases, as for instance in the caseCY = 1:35� 104 on Figure 4.9. The variations ofR
through time for this case on Figure 4.10 con�rm that this peak of drag is related to
a very brief, rare, snapping event. If the peak value of the drag during one of those
snapping events exceeds the largest load the structure may endure, 
exibility may in
this particular case and at this particular moment be responsible for structural failure.
Nonetheless, the rareness and brevity of these events make their contribution negligible
on average, and 
exibility remains responsible for a large overall reduction of drag, at
almost any moment, in spite of 
apping.

Figure 4.9: Recon�guration numberR versus the Cauchy numberCY , time average
(orange) and maximum (blue), for� = 0:1, � = 10. Static recon�guration number
(black). The same examples of deformation modes as in Figure 4.6 are shown in the
thumbnails, corresponding respectively toCY = 2:70 � 102 (� , static regime), CY =
1:74 � 103 (� , periodic regime), CY = 1:35 � 104 (4 , non-periodic regime). Static
equilibrium shape superimposed (� � � ).
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Figure 4.10: Time-series of the recon�guration number in the non-periodic regime of
case� = 0:1, � = 10, CY = 1:35 � 104 (equivalently u = 36:7) corresponding to the
thumbnail shown on Figures 4.6 and 4.9. Level of the static recon�guration number
drawn for comparison (� � � ). The time interval displayed corresponds to the whole
simulation, apart from the transient regime. Largest snapping event attsnap = 1:019
(4 ). The shape of the structure attsnap is shown in the thumbnail (|-), along with
the static shape (� � � ) and the average shape (� � � ).

4.6 Conclusion

We have addressed the question of how 
exibility may a�ect the drag of structures ex-
posed to transverse 
ows, when the competing in
uences of recon�guration and 
utter
are simultaneously considered. First, we performed a linear stability analysis to deter-
mine the domain in which dynamics comes into play. Then we performed non-linear
simulations in the time domain to analyse how the occurrence of dynamics alters the
total drag force in the post-critical domain.

We may �nally draw the following conclusions. First, it appears that in spite of an
additional 
utter-induced drag contribution, the total drag of 
exible structures is still
reduced overall in comparison with rigid structures. Flutter may only occur when the
structure reaches an advanced level of recon�guration, so that the drag associated with
the 
apping motion is never large enough to fully o�set the already signi�cant reduction
due to bending. Thus, 
utter does not prevent drag reduction by recon�guration.

However, the triggering of dynamics does lower the extent to which the drag of

exible structures is reduced, depending on the slenderness� and mass ratio� of the
structure. Increasing either of these parameters have a threefold stabilizing e�ect that
tends to abate the 
utter-induced contribution to drag. Firstly, both parameters are
positively correlated with the stability threshold in terms of the Cauchy numberCY;c,
so the level of recon�guration reachable before losing stability is enhanced when any
of the two parameters is increased. Secondly, the amplitude of 
apping is negatively
correlated with � and � , and so is the magnitude of the additional drag force. Thirdly,
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both parameters have a regularizing e�ect on the post-critical dynamics in the sense
that the larger � and � , the larger the 
ow velocity may get before periodicity of the
dynamics is lost. This last point is particularly important because when 
apping is
irregular, very large inertial forces may transiently raise the total drag in excess of
the rigid value during short snapping events. In that case, 
exibility may possibly be
the cause of structural damage if the failure threshold is reached. But this situation
may only happen for moderately slender, rather heavy structures, and only during rare
and very brief occurrences. The order of magnitude of the drag remains otherwise
comparable to its mean value, which is much reduced compared to the rigid case in
any situation. Therefore, we may �nally conclude that the ability of 
exible structures
to alleviate drag by recon�guration, albeit lessened by the 
apping motion, generally
prevails nonetheless in spite of 
utter.



90 Chapter 4 Flutter of recon�guring structures



Chapter 5

Reduction of the vortex-induced
vibrations by recon�guration

Preamble

So far in this thesis, we have successively considered the respective in
uences of the
spatial variability of the system, the 
ow dynamics, and the self-induced dynamics
on the magnitude of the 
ow-induced loads on 
exible structures. As explained in
the introductory chapter, structural dynamics may also arise due to the coupling of
the structure with the vortices shed in its wake. In the case of the slender structures
considered in this thesis, the interactions of the structure with the surrounding 
uid are
essentially local along the span, so that the e�ects of the wake are essentially caused by
the vorticity shed in the plane of each cross-section. The vortices shed alternatively in
this plane are responsible for an oscillating lift that forces the structure into transverse
vibrations in the direction perpendicular to the direction of the static de
ection. As
mentionned in the introduction, the amplitude of the vortex-induced vibrations (VIVs)
are known to scale with the diameter of the cylinder, while the large static de
ection
is typically of the order of its length. In the case of slender structures, the additional
stress due to the VIVs is consequently likely to be small. The VIVs may nonetheless
still have important consequences, because of the cyclic nature of the load that may
lead to fatigue damage, but also through the magni�cation of the drag coe�cient due
to the transverse vibrations that may result in a signi�cant increase of the drag. The
point of view in this chapter is therefore slightly di�erent from the other chapters. In
the preceding chapters, the focus was on how the mechanism of recon�guration might
be a�ected when some additional e�ect (spatial variability of the system, 
ow-induced
or self-induced dynamics) was accounted for. The aim of this chapter is conversely
to assess the in
uence of the recon�guration on the features of the VIVs, in order to
determine whether and why the ability to recon�gure may alleviate or amplify the
vibrations.

In this chapter, we still consider the same model geometry of a cantilever slender
structure clamped perpendicular to the 
ow. However, we restrict this study to the case
of a circular cross-section, and we relax the assumption of two-dimensional deformation
to authorise the transverse vibrations due to the forcing by the wake.

First, we present some background elements about the speci�cities of the problem of
the VIVs on a structure deformed by the 
ow, as well as a review of some existing work
on the topic. We then explain how the model used throughout this thesis is adapted
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to handle transverse VIVs as well. We �nally discuss the consequences of the 
ow-
induced de
ection on the VIVs and identify the mechanisms at play, from the results
of numerical simulations based on our reduced order modelling of the problem. We
�nally conclude that the primary e�ect of the 
ow-induced de
ection is the inhibition
of lock-in and the reduction of the vibration amplitude, as a result of the broadening of
the wake excitation spectrum and of the localization of the energy transfer due to the
variations induced in the normal 
ow pro�le. We also �nd that the curvature-induced
tension is of negligible in
uence, but that the axial 
ow component may on the other
hand signi�cantly alter the dynamics owing to the destabilizing e�ect of the reactive
force on the structural modes.

The �ndings of this chapter are currently being considered for publication in the
Journal of Fluids and Structures. The paper (Leclercq and de Langre, 2018b), sub-
mitted to the journal and currently under review, is attached at the end of the thesis.
Apart from a few wording di�erences, the paper is identical to the following chapter.
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5.1 Speci�c background elements about vortex-in-
duced vibrations

The vortex-induced vibrations (VIVs) of slender cylindrical structures has been a promi-
nent subject of research for many years. Originally, a better understanding of this phe-
nomenon was sought in the civil and marine engineering community mostly because
of the damage it may cause on a number of 
ow-exposed structures such as buildings,
power transmission lines, marine risers, towing cables, or mooring lines. For extensive
reviews regarding VIVs, the reader is referred to Williamson and Govardhan (2004);
Sarpkaya (2004); Williamson and Govardhan (2008); Bearman (2011); Wu et al. (2012).
More recently, a renewed interest for the VIVs has arisen from the potential they bear
as an alternative source of energy (Bernitsas et al., 2008).

The large majority of existing studies focus on the VIVs of straight cylinders in a
variety of con�gurations: rigid or 
exible, perpendicular to the 
ow or slanted, exposed
to a uniform or a sheared 
ow. However, most of the o�-shore 
exible structures such
as those cited above are actually greatly deformed in the direction of the 
ow under the
e�ect of the free-stream. This con�guration di�ers from the case of a straight cylinder
on several aspects. First, the de
ection in the plane of the free-stream of a cylinder
is responsible for a curvature-induced tension inside the structure. The tensioning of
the cylinder may a�ect its natural frequencies, and consequently its dynamic response
to the wake excitation. Secondly, de
ected structures are not locally perpendicular to
the 
ow, which modi�es the features of vortex shedding in the wake and the associated
forces on the structure. Besides, a curved structure experiences a spanwise variation of
its angle with the free-stream. Finally, the recon�guration of the structure leads to a
large axial component of the 
ow on the most inclined portion of the structure that may
even become dominant when the de
ection is signi�cant. The consequences of some of
these speci�cities have been individually studied, see for instance Srinil et al. (2009);
Srinil (2010) for the structural e�ect of the curvature, Lucor and Karniadakis (2003);
Facchinetti et al. (2004b); Franzini et al. (2009); Jain and Modarres-Sadeghi (2013);
Bourguet et al. (2015) for the e�ect of the inclination, or Vandiver (1993); Chaplin et al.
(2005); Trim et al. (2005); Lucor et al. (2006); Violette et al. (2010); Bourguet et al.
(2013) for the e�ect of non-uniform normal 
ow pro�les, but their combined e�ects may
lead to a signi�cant alteration of the wake-structure interaction that has not yet been
fully investigated.

As a �rst step towards the understanding of VIVs of bent cylinders, Miliou et al.
(2007) and de Vecchi et al. (2008) numerically explored the vortex shedding process
in the wake of a rigid cylinder in the shape of a convex or concave quarter of a ring,
when the structure is respectively �xed or forced into an oscillatory motion. Building
on these results, Assi et al. (2014) and Seyed-Aghazadeh et al. (2015) experimentally
investigated the free vibrations of similar structures and found that the amplitude of
the oscillations is much reduced compared to the straight con�guration. Two studies
provided experimental observations regarding the VIVs of 
exible structures about a
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curvy shape: the experimental work of Zhu et al. (2016) considered the vibrations of
a naturally concave-shaped cylinder subjected to a shear 
ow, while that of Morooka
and Tsukada (2013) tested a model riser deformed in the shape of a concave catenary
under the e�ect of a uniform free-stream. Finally, Bourguet et al. (2012) and Bourguet
et al. (2015) numerically investigated the VIVs of tensioned 
exible beams respectively
exposed to a normal sheared 
ow and an inclined uniform 
ow. Both studies considered
the in
uence of a small average in-line deformation and noted the transition from a
mono-frequency to a multi-frequency response associated with a modi�cation of the
normal 
ow pro�le due to the bending. A reduction of the amplitude of the VIVs was
also reported in Bourguet et al. (2015). At this point however, a theoretical study is
still missing to clarify the consequences of 
ow-induced bending on the VIVs of slender
cylinders in large deformations and identify the physical mechanisms at play. One may
for instance wonder how the bending-induced shear in the normal 
ow might impact
the vibration spectrum, whether lock-in may or may not still occur, or furthermore how
the amplitude of vibration might be a�ected?

But the 
ow-induced bending of the structure may have even more dramatic conse-
quences. Indeed, slender structures in axial 
ows are liable to a 
utter instability (Datta
and Gottenberg, 1975; Yadykin et al., 2001; Pa•�doussis et al., 2002; Semler et al., 2002).
This self-induced dynamics results from the destabilizing e�ect of the inviscid pressure
forces associated with the deformation of the structure in a free-stream with a signi�-
cant axial component (Eloy et al., 2007; Singh et al., 2012a). When a cylinder de
ects
in a transverse 
ow, the increasing spanwise component of the free-stream may thus
be the cause of such instability. More generally, the in
uence of the inviscid pressure
forces on the structural modes may have consequences on the vortex-induced dynamics
even in a domain of the parameter space where the system does not 
utter.

The purpose of the present chapter is to provide an analysis of the small-amplitude
vibrations of slender cylinders bent by the 
ow by means of reduced order models to
identify the physical mechanisms at play. In particular, a formulation of the inviscid
pressure forces based on Lighthill's large-amplitude elongated body theory (Lighthill,
1971) will be used to account for the destabilizing e�ect of the axial component of the
free-stream. We will also make use of a wake oscillator to describe the lift resulting from
vortex shedding. This class of models was originally derived to represent the dynamics
of the free wake behind a �xed structure (Birkho� and Zarantonello, 1957; Bishop and
Hassan, 1964), and they have been proved able to capture some characteristic features
of the vortex shedding mechanism, such as the formation of cells in shear 
ow (Noack
et al., 1991; Mathelin and de Langre, 2005). Such models have also been proved useful
in qualitatively describing the physics of VIVs when coupled with a structural oscillator
(Hartlen and Currie, 1970; Skop and Balasubramanian, 1997; Balasubramanian et al.,
2000; Mukundan et al., 2009; Srinil and Zanganeh, 2012), and they have been validated
against experimental and numerical results (Violette et al., 2007). In this regard, the
work of Facchinetti et al. (2004a) demonstrated that features such as the boundaries of
the lock-in range, the amplitude of the vibrations or the phase between the structure and
the wake are correctly predicted when a coupling term proportional to the structural
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acceleration is used. The subsequent work of de Langre (2006) and Violette et al. (2010)
further demonstrated that many features of the nonlinear limit-cycle dynamics can be
interpreted through the linear analysis of the coupled wake-structure oscillators.

In Section 2, the model for the 
ow-structure interactions and its speci�c adapta-
tions to the problem in question are detailed. The consequences of the 
ow-induced
bending on the VIVs are then discussed in Section 3 based on the results of numerical
simulations.

5.2 Model

5.2.1 Theoretical modeling

We consider the model system represented on Fig. 5.1. A circular cylinder of length
L, diameter D and mass per unit lengthm is clamped perpendicular to a uniform and
steady 
ow of velocity Uex of a 
uid of density � . As in the preceding chapters, we
assume the cylinder is slender (D � L) and we model it as an inextensible Euler-
Bernoulli beam of bending sti�nessEI (see more details about the structural model in
Appendix F.1.1). In this chapter we focus on the small-amplitude transverse oscillations
so we consider that the structure is primarily de
ected in thexz� plane under the e�ect
of the 
ow into a leading order con�guration r 0(s) (broken black line on Fig. 5.1,
speci�cally shown on Fig. 5.1(c)). Vortex shedding in the wake of the bent structure
is then responsible for an oscillatory lift force in they� direction that induces small-
amplitude transverse vibrations (solid grey line on Fig. 5.1, speci�cally shown on Fig.
5.1(d)) such that r (s; t) = r 0(s) + Y(s; t)ey .

Here again, we disregard the in
uence of gravity and buoyancy, and we restrict our
study to large Reynolds number 
ows so that friction forces are neglected. Following
Mukundan et al. (2009) and Violette et al. (2010), we model the e�ect of the 
uid as the
combination of three load distributions along the spanp = pam + pd + pw , wherepam

and pd are respectively the reactive and resistive terms used in the preceding chapters,
and pw is the additional oscillating lift force due to the vorticity wake. The expressions
of these forces involve the projections (U� ; UN ) on the direction tangent to the structure
and on the plane normal to it, of the relative velocity between the cylinder and the 
uid
U rel = _Yey � Uex = U� � + UN N , where the overdot still stands for time di�erentiation.
Note that, contrary to the previous chapters, the direction of the normal component
of the 
ow is noted with an upper caseN . This is so to emphasize the di�erence
with the lower case vectorn used in Appendix F.1, which is materially attached to
the structure. The upper case vectorN is not materially attached to the structure,
but is de�ned as the direction of the projection of the relative velocityU rel on the
plane orthogonal to the axis of the structure� . In the previous chapters where the
deformation was contained in a plane, the two de�nitions were strictly equivalent, but
the three dimensionality of the deformation in this chapter now creates a distinction
between the two directions (see Appendix F.1).
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Figure 5.1: (a) Dimensions of the undeformed cylinder and centerline (broken line).
(b) 3D view of the centerline of the vibrating cylinder, static de
ectionr 0(s) (broken
black line), fully deformed shaper (s; t) (solid grey line). The � � plane in grey indicates
the surface upon which the vibration occurs. (c) Projection of the deformation on the
plane of static de
ection (xz� plane). (d) Projection of the deformation on the surface
of vibration ( � � surface orsy� surface).

Firstly, in the case of an elongated body such as those considered in this study, the
expression of the added mass force for large-amplitude 3D motions reads (Candelier
et al., 2011)

pam = � ma

�
@t (UN N ) � @s(U� UN N ) +

1
2

@s(U2
N � )

�
(5.1)

with the added massma = 1=4��D 2. This expression di�ers from the usual added
mass force used in VIV studies because it is designed to account for the e�ects of the
curvature as well as a large axial 
ow component. The additional terms thus introduced
cancel in the speci�c case of a straight structure so this choice is nonetheless consistent
with the usual expression used in previous works on the topic.

Secondly, in this three dimensional case, we express the resistive drag force following
Taylor (1952) as
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pd = �
1
2

�C D DjUN jUN N (5.2)

with CD the cross-section drag coe�cient. Due to the transverse vibrations, this coef-
�cient may be dynamically enhanced by an amplitude-dependent factor classically of
the order of 2 (Vandiver, 1983; Blevins, 1990; Chaplin et al., 2005). The exact value
of the drag coe�cient should however have only a limited impact on the qualitative
features of the VIVs. For the sake of simplicity, we hereafter takeCD = 2 for a vibrat-
ing cylinder (Blevins, 1990; Chaplin et al., 2005; Mathelin and de Langre, 2005). This
term is responsible for the leading order static de
ection of the beam in thexz� plane
(see Gosselin et al. 2010 and previous chapters) and acts here also as hydrodynamic
damping for the transverse vibrations.

Finally, following Antoine et al. (2016) the local e�ect of vortex shedding is modeled
as an oscillating lift force orthogonal to the cylinder axis and to the component of the
free-stream normal to the still cylinder

pw =
1
4

�C 0
L DU 2 cos2 � 0 q ey (5.3)

where the �xed cylinder lift coe�cient C0
L is multiplied by a local magni�cation factor

q(s; t) that satis�es a nonlinear Van der Pol equation forced by the transverse acceler-
ation of the structure

•q+ "
�

2�
StU
D

cos� 0

�
�
q2 � 1

�
_q+

�
2�

StU
D

cos� 0

� 2

q = A
•Y
D

: (5.4)

We assume in this study the classical valuesSt = 0:2, C0
L = 0:3 in the sub-critical range

300< R e < 1:5 � 105 (Blevins, 1990; Facchinetti et al., 2004a). Following Facchinetti
et al. (2004a), we further assumeA = 12, " = 0:3. Even though these parameters
were derived from experiments on rigid cylinders, this approach was validated in the
case of 
exible structures in Facchinetti et al. (2004b) and Violette et al. (2007). It
was then successfully used in subsequent theoretical studies (Mathelin and de Langre,
2005; Violette et al., 2010; Meng and Chen, 2012; Dai et al., 2013, 2014). No direct
spanwise coupling between the wake oscillators is considered in Eq. (5.4) as the work of
Mathelin and de Langre (2005) has demonstrated that the coupling with the structural
oscillator is the main source of synchronisation in the wake. Similar observations have
been reported by de Vecchi et al. (2008) from direct numerical simulations that showed
parallel vortex shedding in the wake of a curved cylinder in forced oscillations, in con-
trast with the spanwise phase shift reported by Miliou et al. (2007) in the wake behind
a �xed cylinder. Moreover, this local modeling is based on the so-calledindependence
principle that states that the physics of vortex shedding is primarily governed by the
component of the free-stream normal to the structure only (see Lucor and Karniadakis,
2003; Franzini et al., 2009; Jain and Modarres-Sadeghi, 2013). The work of Bourguet
et al. (2015) has demonstrated the validity of that principle when applied locally at
each location along the span in the case of the VIVs of 
exible cylinders inclined at
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60� of incidence. In this case, due to the in-line deformation of the structure, the local
incidence of the cylinder could reach values as large as 75� . The local lift force (5.3) is
thus taken quadratic in the locally normal projection of the free-stream velocityU cos� 0

and the local natural shedding frequency that appears in (5.4) satis�es the Strouhal law
expressed in terms of that normal component as wellf w = StU cos� 0=D (Williamson,
1996; Facchinetti et al., 2004b).

Note that vortex shedding in the wake is also responsible for an oscillating drag
term that creates slight temporal variations of the in-line de
ection. Besides, recent
studies have shown that the coupling between the in-line and transverse vibrations
may considerably a�ect the transverse dynamics (Jauvtis and Williamson, 2003, 2004;
Marcollo and Hinwood, 2006; Srinil and Zanganeh, 2012; Srinil et al., 2013). However,
for the sake of simplicity and given the leading-order nature of the resistive drag term
considered here, we choose to disregard the in
uence of the in-line 
uctuations in this
study.

5.2.2 Governing equations

We non-dimensionalize all variables but the transverse displacement using the lengthL
of the cylinder as characteristic length, and the inverse of the natural shedding frequency
on the undeformed straight cylinderf 0

w = StU=D as characteristic time scale. Because
the amplitude of the VIVs classically scales with the diameter of the structure, we non-
dimensionalize the transverse displacementY using D instead ofL. We also de�ne the
following non-dimensional parameters: the Cauchy numberCY , the reduced velocityv,
the aspect ratio �, the mass ratio �

CY =
�C D DU 2L3

2EI
, v =

StU
D

L2

r
m + ma

EI
, � =

L
D

, � =
ma

m + ma
(5.5)

and rescaled drag and lift coe�cientscd = 2CD =� and cl = C0
L =� . This de�nition of

the Cauchy number is classical in studies of the static de
ection of slender structures
(Gosselin et al., 2010; Hassani et al., 2016) and consistent with the previous chapters.
Note that the reduced velocity used here is di�erent from that used in Chapter 4. The
present formulation is consistent with the classical de�nition used in VIV studies of
systems with only one degree of freedom (see for instance Khalak and Williamson,
1999; Pa•�doussis et al., 2010), in the sense that it compares the characteristic scale
of the natural period of the structureTs = L2

p
(m + ma)=EI to the reference vortex

shedding period 1=f 0
w = D=StU. The mass ratio� is on the other hand similar to that

used in Chapter 4, while the aspect ratio � is related to the slenderness parameter�
used in Chapters 3 and 4 by� = cd�. The proper linearization of the model presented
in Section 5.2.1 is detailed in Appendix F.1, and its appropriateness for the modelling
of VIVs is discussed in Appendix F.2. In terms of the non-dimensional variables, the
governing equation for the leading order static de
ection in thexz� plane then reads
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� 00
0 +

1
2

� 3
0 +

CY

cd�

�
S2

0 �
1
2

C2
0

�
� 0 � CY C2

0 = 0 (5.6)

where the prime notation stands for curvilinear di�erentiation, the notationsS0 = sin � 0

and C0 = cos� 0 have been used for brevity, and with the curvature� 0 = � 0
0. The

corresponding boundary conditions are� 0 = 0 at the clamped edges = 0 and � 0 =
� 0

0 = 0 at the free tip s = 1. This equation is the same as the large-amplitude equation
(3.21) of Chapter 3 in the regime of static recon�guration, and the static equilibrium
equation (4.5) of Chapter 4. At the linear order, the equation for the non-dimensional
transverse vibrationY(s; t) is

v2 •Y +
�v 2

St �

h
2S0

_Y 0+ C0 (� 0 + cd�) _Y
i

+
��

�v 2

S2
t � 2

�
S2

0 +
1
2

C2
0

�
+

3
2

� 2
0

�
Y 0

� 0

+ cd
�v 2

S2
t �

C0S0Y 0+ Y (4) = cl
�v 2

S2
t

C2
0q (5.7)

with Y = Y 0 = 0 at the clamped edges = 0 and Y 00= Y 000= 0 at the free tip s = 1.
The lift magni�cation factor q(s; t) then satis�es the Van der Pol equation

•q+ " (2�C 0)
�
q2 � 1

�
_q+ (2 �C 0)2 q = A •Y : (5.8)

5.2.3 On the governing parameters

Within the four non-dimensional parameters de�ned above (CY , v, �, � ), only three are
necessary to fully characterize the problem. In fact, for a given structure with a �xed
mass and aspect ratios, the Cauchy number and the reduced velocity are redundant
parameters that are related byCY = ( cd�=S 2

t �) v2. Both quantities scale the in
uence
of the 
ow to the rigidity of the structure, but from di�erent perspectives. The Cauchy
number expresses the ratio between the leading order drag force and the restoring
structural sti�ness (Tickner and Sacks, 1969; Chakrabarti, 2002; de Langre, 2008).
Consequently, it controls the level of static de
ection in thexz� plane. For smallCY <
1, de
ection is negligible and the structure stands upright in the 
ow, while forCY � 1
the cylinder is highly deformed in the direction of the free-stream (Gosselin et al., 2010).
On the other hand, the reduced velocity compares the natural shedding frequencyf 0

w
(on the straight structure) to the scale of the natural period of the structureTs, so it
controls the dynamic behaviour of the coupled wake-structure system.

The mass ratio� represents the amount of 
uid inertia within the total inertia of
the system. We do not expect the precise value of� should signi�cantly in
uence the
qualitative features of the VIVs presented in this chapter. We also expect the in
uence
of the gravity and buoyancy forces on the static de
ection due to the 
ow to remain
small (Luhar and Nepf, 2011). Thus, for the sake of simplicity, we restrict this study
to the case of a neutrally buoyant cylinder� = 0:5. Finally, as was shown in Chapter
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3 and 4, the aspect ratio � = L=D scales the relative contributions of the resistive
and reactive terms. In the case of slender structures �� 1 as those considered in this
thesis, the contribution of the reactive forceO(CY =�) to the static equilibrium shape
in Eq. (5.6) has been proved negligible (see Chapter 3 and Appendix D). On the other
hand, Chapter 4 has proved that the reactive force may be responsible for triggering a
large-amplitude 
utter instability in the xz� plane. As will be shown in Section 5.3.3,
the same 
utter instability may also be initiated in the transversey� direction, and its
in
uence on the vortex-induced dynamics may be signi�cant near the critical threshold
when the de
ection is large. Thus we may not neglect a priori the terms originating
from the reactive force in Eq. (5.7).

Our main interest in this study is the e�ect of the 
ow-induced bending on the
properties of the vortex-induced vibrations. In other words, we wish to compare the
dynamics of structures with varying levels of de
ection in the direction of the free-
stream (varying Cauchy numbersCY ), at a given reduced velocityv. However, as
explained above, for a given 
uid-structure system of �xed mass and aspect ratios
(�; �), the Cauchy number and the reduced velocity vary together asCY / �v 2=�.
Therefore, increasing the Cauchy numberwith a �xed reduced velocityrequires to change
the structure to lower the aspect ratio �. This may seem counter-intuitive, as a lower
aspect ratio is classically associated with lower de
ections. Indeed, the Cauchy number
is an increasing function of the aspect ratioCY / � 3 when the dimensional 
ow velocity,

uid density, and Young's modulus of the solid material are kept constant. In our case
however, we allow these dimensional quantities to vary in order to keep the reduced
velocity v constant instead, and consequently the Cauchy number becomes a decreasing
function of the aspect ratio. In the limit of an in�nitely slender structure � ! + 1 ,
the Cauchy number remains much smaller than 1 even for arbitrarily large reduced
velocities. This asymptotic case is therefore equivalent to considering a structure that
remains straight in the free-stream. For this benchmark case, the dynamic system
(5.7)-(5.8) reduces to

v2 •Y + cd
�v 2

St

_Y + Y (4) = cl
�v 2

S2
t

q (5.9)

•q+ " (2� )
�
q2 � 1

�
_q+ (2 � )2 q = A •Y (5.10)

which is the standard system of equations for the modeling of VIVs by means of a
wake oscillator, in the case of a straight slender cylinder with 
exural sti�ness and
hydrodynamic damping (Mukundan et al., 2009).

5.3 Numerical results

In order to analyse the vibration behaviour, we solve the problem de�ned by equations
(5.6),(5.7),(5.8) numerically. The beam is discretized usingN = 100 Gauss-Lobatto
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points sk = 1
2(1 � cos((k � 1)=(N � 1)� )), and the curvilinear derivatives are computed

by Chebyshev collocation. For a given aspect ratio �, we �rst compute the static
solution of Eq. (5.6) iteratively by increasing the Cauchy number from the upright case
CY = 0. After each increment, we solve Eq. (5.6) with a pseudo-Newton solver (method
of Broyden, 1965) using the solution at the previous step as initial guess. Then, for
each value ofCY (corresponding to a givenv), we solve the nonlinear system (5.7)-(5.8)
using a time-stepping method, with time stepdt = 10� 2. The time derivatives are
computed using implicit second order accurate �nite di�erences. At each time step, the
nonlinear boundary value problem involving the unknown spanwise distributions (Y; q)
is solved thanks to the pseudo-Newton solver. The simulations are run for 200 periods
and the last 100 periods are considered for the analysis in order to cut the transient.

5.3.1 Wake excitation bandwidth and inhibition of single mode
lock-in

First, we discuss the in
uence of the de
ection on the modal content of the dynamics. To
do so, we compare the vibrations of a structure that bends (�nite aspect ratio � = 103)
to that of a structure that remains straight (� ! + 1 ), on the same range of reduced
velocities. For the structure with �nite aspect ratio � = 10 3, the variations of v within
the range considered will be associated with variations in the Cauchy numberCY /
v2=� leading to varying levels of de
ections. On the other hand, the in�nitely slender
cylinder will remain straight because the Cauchy number will remain asymptotically
small in the same �nite range ofv. We recall here that the cylinder with the �nite
aspect ratio is the one that de
ects while the in�nitely slender one remains unbent
because we compare the dynamics of the two structureson the same range of reduced
velocities (see Section 5.2.3 for more details).

As explained in Section 5.2.1, the independence principle states that the natural
frequency of vortex sheddingf w(s) decreases along the span when the structure is de-
formed because of the projection of the free-stream on the normal directionf w(s)=f 0

w =
Un0 =U = cos� 0(s). The deforming structure is therefore subjected to a forcing by the
wake on a continuum of frequencies that broadens when the de
ection is enhanced with
increasing Cauchy numbers, as shown on Fig. 5.2.

The enrichment of the excitation spectrum signi�cantly alters the modal content
of the response. This is illustrated on Fig. 5.3 for the vibration spectrum and Fig.
5.4 for the spanwise localization of the vibration. In the straight case, the structure
is subject to a forcing by the wake at a single frequency along the whole span. The
frequency of the vibration remains close to the Strouhal law (f ' 1 on Fig. 5.3(a)), but
slightly deviates to follow an evolution closer to that of the nearest structural mode.
As v varies, lock-in with the successive structural modes occurs in turn and frequency
discontinuities mark the transitions between consecutive lock-ins. This phenomenon is
a well-known feature of the VIVs of 
exible structures perpendicular to the 
ow (King,
1995; Chaplin et al., 2005; Violette et al., 2010). As expected, this behaviour remains
unchanged for as long as the de
ection is negligible (CY < 1 on Fig. 5.3(b)) in the case
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Figure 5.2: (a) De
ection in the xz� plane and (b) normal velocity pro�le normalized by
the horizontal velocity, in the straight case (grey |{), and in de
ected cases CY = 100

( � � � ), CY = 101 (� � � ), and CY = 102 (black |{) for � = 10 3.

� = 10 3. However, at the early stages of recon�guration (CY . 101 on Fig. 5.3(b)), the
ranges of reduced velocities within which lock-in with a given mode occurs are slightly
widened and increasingly shifted towards larger reduced velocities (see Table 5.1). For
instance, lock-in with mode 4 persists on a slightly larger rangev 2 [16:3; 29:9] when the
structure is bent compared tov 2 [15:2; 27:0] when it is not. The modal shapes in both
con�gurations remain on the other hand almost identical, as illustrated forv = 19:8 in
Fig. 5.4(c), which proves that the curvature of the structure in thexz� plane only has
a very limited impact on the eigenmodes.

Following the method of Violette et al. (2010), we may interpret these results by
comparing the spectrum of the nonlinear dynamics to the frequencies of the eigenmodes
found by a linear stability analysis (see Fig. 5.5). The details of the linear stability
analysis can be found in Appendix G.1. The eigenmodes thus found can be classi�ed
in 3 distinct types. Firstly, a series ofN unstable modes (whereN is the number of
discretization pointssk) with eigenvalues matching almost exactly the eigenvalues of the
linearized wake oscillator without structural coupling! k ' cos� 0(sk)(2�

p
1 � ("=2)2 �

i�" ) are observed. They have no signi�cant structural component (� k(s) ' 0), and
their wake components are localized respectively at each discretization point (j k(s)j '
� (s � sk) with � the Dirac function). These modes thus correspond to the naturally
unstable free wake modes. For the sake of clarity, the continuous spectrum of the free
wake oscillator itself is represented in grey on Fig. 5.5(b) instead of theN individual
eigenmodes spanning the area. Secondly, the modes in blue correspond closely to the
eigenmodes of the structural equation (5.7) without coupling with the wake. These
modes may thus be designated as the free structural modes. Finally, the four modes in
black are coupled modes that each arise from lock-in with one of the structural modes.
They are all unconditionally unstable and will be referred to as the lock-in modes.
Following Violette et al. (2010), we expect lock-in with a given mode to persist in
the nonlinear limit-cycle if the corresponding linear lock-in mode is the most unstable.
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The comparison of the linear and nonlinear lock-in ranges in Table 5.1 con�rms these
�ndings and we may thus lean on the linear analysis to interpret the dynamics observed
in the limit-cycle. In particular, as de
ection increases, we notice on Fig. 5.5 that the
broadening of the free wake spectrum allows the structural frequencies to remain within
the excitation bandwidth on a larger range of reduced velocities. Lock-in with these
modes may consequently occur on these larger ranges as well. Hence, it appears that the
primary consequence of the de
ection is the broadening of the free wake spectrum due
to the increased shear in the normal component of the free-stream. At leading order, a
bending structure in a uniform 
ow is therefore equivalent to a straight structure in a
sheared 
ow whose pro�le varies, depending on the Cauchy number, according to that
of the normal 
ow shown on Fig. 5.2(b).

straight case bent case � = 103 bent case � = 103

(nonlinear) (nonlinear) (linear)
mode 1 0 � 2:3 0 � 2:3 0 � 2:16
mode 2 2:4 � 6:8 2:4 � 6:9 2:16� 6:80
mode 3 6:9 � 15:1 7 � 16:2 6:80� 15:86
mode 4 15:2 � 27:0 16:3 � 29:9 15:86� 28:70

Table 5.1: Reduced velocity ranges for lock-in in the straight and bent cases (nonlinear
and linear ranges).

When bending is more pronounced (CY > 101), not only one but several frequencies
are involved in the spectrum of the nonlinear limit-cycle Fig. 5.3(b), and the localiza-
tion of the transverse vibration signi�cantly deviates from the single-mode shape on
Fig. 5.4. Indeed, when the wake spectrum becomes large enough, several structural
modes are excited simultaneously at di�erent locations along the span (several struc-
tural modes appear within the wake excitation bandwidth on Fig. 5.5). Consequently,
single mode lock-in is replaced by a multi-frequency response of the whole structure
associated with the spatial fragmentation of the wake into multiple cells of locally uni-
form frequency. As illustrated on Fig. 5.6, the frequency within each wake cell matches
that of the structural mode that is closest (in the frequency space) from the Strouhal
law, so that it might be said that single mode lock-in is actually replaced by multiple
occurrences of lock-in along the span. It is however noteworthy that the local wake
dynamics is essentially monochromatic, while the structural dynamics involves compa-
rable contributions from all the excited modes at any location along the span. Besides,
the linear analysis shows that, pastv > 28:7, the most unstable mode is not one of the
coupled lock-in modes anymore, but is found instead within one of the free wake modes.
No �fth coupled mode that would appear because of lock-in with the �fth structural
mode is observed. It thus appears that the large shear in the normal 
ow hinders single
mode lock-in, but leads to the simultaneous excitation of multiple structural modes
that all participate in the dynamics.

We may �nally conclude that bending primarily a�ects the dynamics through its
in
uence on the component of the free-stream normal to the cylinder. More speci�cally,
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Figure 5.3: Comparison between the power spectral densities of the motion at the tip
Y(s = 1; t) in (a) the straight case and (b) the de
ected case � = 103, for varying
reduced velocitiesv. The natural wake excitation bandwidth (WEB) is superimposed.
The particular values of the reduced velocityv corresponding to Fig. 5.2 are indicated
as well.

the growing shear in the normal 
ow is responsible for broadening the wake spectrum.
When the de
ection remains moderate, the wake excitation bandwidth remains narrow
enough so that single-mode lock-in still prevails, but on a slightly larger range of reduced
frequencies. On the other hand, when the de
ection is large, several structural modes
may be simultaneously excited, leading to the inhibition of single mode lock-in replaced
by a multi-frequency response to the broadband excitation. These conclusions are
consistent with the observations of Bourguet et al. (2012), Bourguet et al. (2015) for
a pinned-pinned cylinder experiencing small in-line deformations, as well as those of
Vandiver (1993); Ge et al. (2011); Srinil (2011) for straight pinned-pinned cylinders in
shear 
ow.

5.3.2 Localization of the excitation and VIV mitigation

As emphasized in the introduction, the experimental work of Assi et al. (2014) and
Seyed-Aghazadeh et al. (2015) has shown that the amplitude of the vibrations of rigid
cylinders is much reduced under the e�ect of the curvature. The same observation was
made by Bourguet et al. (2015) regarding the VIVs of pinned-pinned 
exible cylinders.
Similarly, the works of Trim et al. (2005); Ge et al. (2011); Srinil (2011) have also
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Figure 5.4: Comparison between the spanwise localizations of the transverse deforma-
tion in (a) the straight case and (b) the de
ected case � = 103, for varying reduced
velocities v. The colorplots show the temporal RMS ofY(s; t), normalized to 1 along
the span. The particular values of the reduced velocityv corresponding to Fig. 5.2
are indicated as well. (c) Comparison of the envelopes of the transverse deformation in
the straight case (� � � ) and de
ected case � = 103 (|{), for particular values of v
corresponding to successive structural modes in the straight case.

shown that sheared incoming 
ows entailed lower structural responses than uniform

ows. Our numerical simulations indicate that this observation holds true as well for

exible cantilever cylinders curved by the 
ow. Indeed, the amplitude of the VIVs of
the de
ecting cylinder (� = 10 3) reduces progressively on Fig. 5.7(a) compared to the
straight case above the bending thresholdCY > 1. For large de
ectionsCY > 10, the
amplitude settles around approximately 1=3 of the amplitude of the straight case.

We may explain this reduction of amplitude by considering the energy transferred
to the structure from the wake oscillator. In non-dimensional form, the work of the
oscillating lift force at a given location along the span readse = _Y � qcos2 � 0, so that the
total energy E transferred to the structure over one cycle of oscillations is the temporal
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Figure 5.5: Evolution of the linear frequencies of the coupled wake-structure system
with the reduced velocityv, for (a) the straight case and (b) the de
ected case � = 103.
The unconditionally unstable free wake spectrum is represented by the grey area. The
structural modes in blue are always stable. The coupled modes, displayed in black, are
always unstable. The most unstable mode for a given range ofv is emphasized in bold.

mean of e, integrated over the whole span. The evolution ofE with the reduced
velocity on Fig. 5.7(b) proves that de
ection drastically mitigates the transfer. A more
detailed look at the spanwise distribution of the mean energy transfer on Fig. 5.8
indicates that the excitation by the wake, which is equally distributed in the straight
case, concentrates arounds � 0:2 as the de
ection increases. This is actually quite
intuitive, because the lift force varies with the square of the normal component of the
free-stream/ cos2 � 0. When de
ection is important, only the small region close to the
clamping point remains close enough to the vertical so as to signi�cantly contribute to
the excitation. As the Cauchy number increases and the cylinder bends more and more,
the size of that region reduces progressively. The amount of energy transferred overall
is consequently reduced, and the amplitude of the vibrations accordingly mitigated.

Note that the discontinuities observed in the straight and low-de
ection cases on
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Figure 5.6: Spanwise distribution of power spectral density of (a) the structural motion
Y and (b) the wake oscillatorq, for � = 10 3 and v = 49:0. The natural shedding
frequencyf 0

w(s) given by the Strouhal law is superimposed in (b) (|{).

Fig. 5.7 correspond to mode switches. The disappearance of these jumps abovev > 30
in the de
ected case is consistent with the continuous evolution of the spectrum and
vibration shape reported in Figs. 5.3(b) and 5.4(b) due to the inhibition of lock-in.

5.3.3 In
uence of the reactive force

Finally, we discuss the in
uence of the large axial component of the free-stream when the
structure is highly recon�gured. Indeed, as the 
ow velocity increases, the inclination of
the structure switches from perpendicular to mostly parallel to the 
ow. As explained
in Section 5.2.3, the level of de
ection is controlled by the Cauchy numberCY / v2=�.
We focus here on a case where the de
ection increases more rapidly with the reduced
velocity than before, that is to say a structure with a smaller aspect ratio � = 10.

At �rst, the amplitude of vibrations on Fig. 5.9(a) follows the same trend as in
the previous case: belowCY < 1, the e�ect of bending is unnoticeable, while it results
in a constant amplitude much reduced compared to the straight case when bending
is signi�cant. The amplitude is even reduced as low as 1=10� th of the straight case.
But conversely to the previous case, the vibrations start growing again slowly past
v � 20 and they even exceed the amplitude of the straight case forv & 33:5. Above
some critical thresholdv � 35, the amplitude �nally grows continuously during the
whole time of the simulation. The VIVs are by nature a self-initiated and self-limited
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Figure 5.7: Comparison of (a) the RMS amplitude of vibrationYrms and (b) the total
energy transferE from the wake to the structure, between the straight case (blue� ) and
the de
ected case � = 103 (orangeO) for varying reduced velocitiesv. The particular
values of the reduced velocityv corresponding to Fig. 5.2 are indicated as well.

phenomenon. In the model, the onset of the VIVs is ensured by the negative damping of
the Van der Pol wake oscillator when the amplitude ofq is small, while the limitation of
the amplitude is ensured by the nonlinear saturation of that same term. This unbounded
growth is therefore not related to the VIVs, but is instead the consequence of the onset
of a 
utter instability caused by the destabilizing in
uence of the hydrodynamic reactive
force on the large portion of the cylinder that is aligned with the free-stream (Eloy et al.,
2007; Singh et al., 2012a).

This is con�rmed by the results of the linear stability analysis presented on Fig.
5.9(b) and (c). Lock-in with structural mode 1 occurs for the smallest reduced velocities
(the coupled linear mode is the most unstable as long asv < 2:30), when 
ow-induced
bending is still small. When de
ection becomes signi�cant (CY � 1), several structural
modes are simultaneously excited by the wake on Fig. 5.9(b) and lock-in is consequently
hindered (no discontinuities on Fig. 5.9(a)). But in this case, one of the structural
modes (mode 3) is progressively destabilized asv increases. Abovev & 20, the growth
rate of this mode starts increasing on Fig. 5.9(c) until it �nally becomes unstable at the
critical threshold vc = 34:9 (marked by the orange cross on Fig. 5.9(b) and (c)). If the
e�ect of the curvature on the structural modes has been proved negligible in Section
5.3.1, these observations prove on the other hand that the in
uence of the reactive
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Figure 5.8: Comparison of the spanwise distributions of energy transfer from the wake
to the structure between (a) the straight case and (b) the de
ected case � = 103, for
varying reduced velocitiesv. The colorplots show the mean work of the oscillating lift
force < e > normalized by the total energy transferE. The particular values of the
reduced velocityv corresponding to Fig. 5.2 are indicated as well.

force may be very signi�cant in the vicinity of the critical threshold. The progressive
increase of the vibration amplitude fromv � 20 until the actual onset of the instability
vc = 34:9 is indeed concomitant with the destabilization of structural mode 3. Hence,
the larger vibration amplitudes observed in this range of reduced velocities are most
likely attributable to the growing in
uence of the gradually destabilizing structural
mode 3.

The 
ow-induced bending thus has competing consequences on the amplitude of the
vibrations. On the one hand, we have shown in Section 5.3.2 that the shrinkage of the
wake excitation zone considerably mitigates the VIVs. We demonstrate here that on
the other hand, the reorientation of the structure in the direction of the free-stream may
amplify the vibrations because of the destabilizing e�ect of the reactive force on the
structural modes. This last e�ect becomes signi�cant in the vicinity of the structural
stability threshold. As explained in Appendix G.2, the structural stability threshold in
terms of either the reduced velocityv or the Cauchy numberCY is close to proportional
to the aspect ratio �. More slender structures may consequently reach much higher
modes and larger de
ections before feeling the destabilizing in
uence of the reactive
force.
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Figure 5.9: (a) Comparison of the RMS amplitude of vibration between the straight case
(blue � ) and the de
ected case � = 10 (yellow � ). (b) and (c) Linear frequenciesf lin and
growth rates � of the coupled wake-structure system, for � = 10. The unconditionally
unstable free wake spectrum is represented by the grey area. The structural modes
are in blue when stable, and in bold orange when unstable. The orange cross marks
the stability threshold for structural mode 3. The coupled mode, displayed in black, is
always unstable. It is emphasized when it is the most unstable mode.
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5.4 Discussion and conclusion

In this chapter, we have provided a qualitative analysis of the consequences of 
ow-
induced bending on the vortex-induced dynamics of slender 
exible cylinders based on
reduced order models. Overall, the e�ects of the de
ection may impact the features of
the vibrations on two levels.

Firstly, the deformation of the cylinder changes the spanwise pro�le of the compo-
nent of the free-stream normal to the structure. We have shown that the increasing
non-uniformity of the normal 
ow leads to the spreading of the wake excitation spec-
trum and the localization of the energy transfer from the wake to the structure, owing to
the independence principle. These two e�ects result in a strong mitigation of the ampli-
tude of the vibrations coupled with the inhibition of single mode lock-in replaced by the
simultaneous excitation of multiple structural modes. These mechanisms were indeed
evidenced in several experimental and numerical studies about the VIVs of straight
cylinders in shear incoming 
ow, such as Vandiver (1993); Trim et al. (2005); Srinil
(2011); Ge et al. (2011); Bourguet et al. (2013) for instance. As any deformation of a
straight cylinder in the direction of the free-stream would induce shear in the normal

ow, we expect that these conclusions are independent of the initial structural con�gu-
ration, boundary conditions, or the features of the in-plane deformation. For instance,
similar observations have been reported by Bourguet et al. (2015) for a pinned-pinned
cylinder initially inclined and slightly deformed by the 
ow. Similarly, the smaller am-
plitudes of vibrations reported in Assi et al. (2014) and Seyed-Aghazadeh et al. (2015)
for rigid curved cylinders compared to straight ones is likely also the consequence of
the di�erence in the normal 
ow pro�les between the two con�gurations. The loss of
harvesting e�ciency reported in Antoine et al. (2016) when increasing the sag (and
consequently the deformation) in the in-
ow catenary con�guration also results from
the induced shear in the normal 
ow.

Secondly, the deformation of the structure is responsible for a modi�cation of the
structural modes resulting from both the 
ow-induced tension and the axial component
of the 
ow through the reactive forcing term.

The e�ect of the tension is negligible in our case, but it should be noted that it
may be of signi�cant importance in other situations. Indeed, the structural frequencies
depend on the total sti�ness of the system, which can be decomposed in the natu-
ral bending sti�ness EI speci�c to the structure, and an additional tension-induced
sti�ness. In our case, the structural tensionT = � 1=2EI� 2

0 itself is the physical con-
sequence of the structural sti�nessEI , and so it is understandable that the in
uence
of the tension-induced sti�ness on the natural frequencies of the structure be small
compared to that of the natural sti�ness that originated it. However, in the rather
common case of tensioned cables, the structural tension is either externally controlled
or 
ow-induced but it is in any case independent of the usually small bending sti�ness.
Its in
uence on the structural frequencies and thus on the vortex-induced dynamics



112 Chapter 5 Reduction of the vortex-induced vibrations by recon�guration

may then be totally dominant (see for instance the study of Antoine et al., 2016), but
this e�ect is out of the scope of the present work as the tension in this case is not
related to the 
ow-induced deformation of the structure.

The e�ect of the axial 
ow component may on the other hand be dramatic in the
con�guration chosen in this chapter. When the de
ection is very large, the axial 
ow
may become the dominant component, and the added damping and sti�ness stemming
from the reactive forcing on the inclined portion of the cylinder may signi�cantly alter
the structural modes. Above some critical velocity threshold, the cylinder might un-
dergo some large-amplitude oscillations originating from a 
utter instability. It should
be noted that only the transverse stability along they� direction has been considered in
this chapter, but 
utter may also be initiated in the xz� plane, as was shown in Chap-
ter 4. However, we do not expect the in-plane destabilization to have consequences on
the vortex-induced dynamics below the stability threshold. Indeed, the geometrical lin-
earization performed in Appendix F.1.2 results in the decoupling of the small-amplitude
dynamics in the two directions. There should consequently be no interactions between
the in-plane structural modes and the transverse vibrations as long as the amplitude of
vibration remains small. On the other hand, we have shown that the progressive desta-
bilization of the transverse structural modes may enhance the amplitude of the VIVs
even in the stable domain. These conclusions may not easily be generalized to other
structural con�gurations as the stability of the structural modes is highly dependent
on the boundary conditions of the structure. The choice of the cantilever con�gura-
tion in our work merely demonstrates the potentially large consequences the axial 
ow
may bear through the reactive force, and neglecting the terms originating from it must
only be done with great care. Nonetheless, we also found that the magni�cation of the
vibrations due to the reactive force becomes signi�cant for higher modes of vibrations
and larger levels of de
ection as the structure is made more slender. In this regard, it
may thus be considered as a secondary e�ect that sets a limit to the strong abatement
of the vortex-induced vibrations more commonly observed.

We may thus conclude that the primary consequence of 
ow-induced deformations
on the vortex-induced dynamics of 
exible cylinders is the hindrance of lock-in, replaced
by a multi-frequency response of the structure, and the strong mitigation of the vibra-
tions that rest on the modi�cation of the spanwise pro�le of the normal component
of the free-stream. Neglecting the in-line deformation when assessing the features of
the VIVs should therefore generally result in an overestimation of the severity of the
vibrations.
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Conclusion

6.1 Contributions

To conclude, we have shown in this thesis that the ability of 
exible structures to reduce
the magnitude of the 
ow-induced loads is preserved in many situations involving some
spatial or temporal variability of the 
ow-structure system, provided that the design of
the structure is such that drag dominates over the structural and 
uid inertial forces.

In the case of a non-uniform system, we found that the scaling of the total drag
with the 
ow velocity could be related to the spatial variability of the 
ow-structure
system at the scale of a bending length located in the vicinity of the clamped edge.
This indicates that, apart from the well-known mechanisms of frontal area reduction
and streamlining, drag reduction by elastic recon�guration may also rely on a third
mechanism of localization of the 
ow-structure interaction in a small region at the scale
of which the average properties of the system are more favourable. For instance, this
may occur when a structure in a boundary layer 
ow dives into the region of lower 
ow
velocity as it recon�gures.

Besides, we have derived an analytical expression relating the Vogel exponent in
the limit of large de
ections to the parameters that provide the best �t of the system
properties as power functions of the spatial coordinates. Given the weak sensitivity of
the Vogel exponent to all these parameters in the ranges accessible to realistic systems,
we have concluded that the Vogel exponents of plants and model systems should never
deviate much from� 1 regardless of the precise features of the system. This conclusion is
consistent with most experimental measurements performed either in the �eld or in the
laboratory, and suggests that the mechanism of drag reduction by elastic recon�guration
is weakly sensitive to the spatial distribution of the system properties.

In the case where the background 
ow is oscillatory, we have shown that di�er-
ent regimes exist for the response of the structure, depending on the amplitude and
frequency of the 
ow. Overall, the dynamic recon�guration of 
exible structures in
oscillatory 
ow always results in the alleviation of the internal stresses, as long as the
resistive drag is the dominant source of 
uid loading. When the amplitude of the 
ow
is smaller than the width of the structure, the 
uid inertia dominates over the drag.
In this regime, the structure essentially behaves as a linear oscillator and exhibit reso-
nances responsible for a large magni�cation of the internal stress, when the frequency
of the 
ow matches the natural frequencies of the structure. Apart from these reso-
nances, the internal stress is reduced due to the shortening of the characteristic scale
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of deformation from the whole length of the structure to the typical wavelength of the
modal shape. On the other hand, when the amplitude of the 
ow is larger than the
structural width, the resistive drag is the dominant source of 
uid loading. As long
as the amplitude remains smaller than the structural length, the internal stress in the
structure is reduced by the concentration of the deformation in an elastic boundary
layer close to the clamping point. The rest of the structure is passively convected with
the 
ow particles thanks to the saturation of the drag term, which corresponds to the
mechanism of \going with the 
ow" foreseen by Koehl (1984). When the amplitude of
the 
ow is now larger than the length of the structure, drag still dominates over inertial
forces on slender structures, but the passive convection of the structure is limited to
its �nite length. The deformation of the structure becomes quasi-static, apart from a
swift reversal period, and the known results about static recon�guration apply.

It appears from this systematic study that whatever the regime of recon�guration,
the reduction of the structural stress always results from the concentration of the de-
formation on a characteristic bending length smaller than the actual length of the
structure. This loss of relevance of the actual size of the structure in aid of a smaller
bending length had already been noted in the static regime in Gosselin et al. (2010)
and used as the key assumption leading to di�erent scaling laws for the drag on 
exible
structures in di�erent situations in de Langre et al. (2012). Our work indicate that
this mechanism appears to be the common feature to all (static or dynamic) regimes of
recon�guration, and the source of the alleviation of the load.

The dynamic 
ow-structure couplings that may occur when the structure has a
signi�cant inertia may however set some limitations to the bene�ts of recon�guration.
The spontaneous 
apping dynamics that arises in steady 
ows is indeed responsible
for additional loads on the structure that mitigate the e�ciency of the drag reduction
process. However, apart from some rare and brief snapping events during which very
large peak forces may be recorded, the additional contribution due to the dynamics
never o�sets the signi�cant drag reduction stemming from the static de
ection.

Furthermore, the destabilization of the structure leading, �rst, to the triggering of

utter, and eventually, to the loss of regularity of the 
apping dynamics, is dependent on
the density and geometry of the structure. Heavier structures are naturally more prone
to inertial forces, while slender structures are e�ciently damped due to the dominance
of drag over the added mass force. The mass and aspect ratio are consequently critical
parameters in the evaluation of the disturbance brought about by inertial e�ects to the
recon�guration process. Our work indicates that a good design strategy in order to
make 
ow-resistant 
exible structures is to build light and slender structures. For that
matter, these design instructions should seem reasonable from a biologist's point of
view, as they are consistent with the morphology of the macroalgae that have managed
to grow to large sizes in 
ow-dominated habitats.

Finally, we have also demonstrated that the ability to statically deform under the ef-
fect of the 
ow has the added bene�t of reducing the magnitude of the vortex-induced
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vibrations. These vibrations are usually undesirable in engineering applications, be-
cause of the risks of fatigue damage associated with the cyclic nature of the load, and
the magni�cation of the static drag that they bring about. Our study shows that the
modi�cation of the normal 
ow pro�le due to the reorientation of the structure broadens
the wake excitation spectrum and localizes the energy transfer, thus inhibiting single
mode lock-in and mitigating the amplitude of vibration. The abatement of the VIVs
due to the de
ection may however be thwarted by the destabilizing in
uence of the re-
active added mass force on the transverse structural modes. This last e�ect is likely to
depend on the boundary conditions imposed to the structure, and other con�gurations
should be considered in order to draw general conclusions regarding the impact of the
reactive force on the VIVs of deforming structures.

6.2 Perspectives

In this thesis, we have provided some extensions of the theory of recon�guration to more
realistic situations in contrast to the overly idealized cases considered thus far in the
literature. But the con�gurations considered in this work are still simpli�ed to a large
extent. In particular, the choice of a cantilever beam clamped transverse to the 
ow
limits the validity of the conclusions drawn here to structures that deform assuming a
two dimensional 
exion mode. For instance, some �ndings of Chapter 2 do not seem
to be readily applicable to the rolling-up of plastic sheets of Schouveiler and Boudaoud
(2006), probably because of the more complex three dimensional recon�guration mech-
anism. Besides, we did not observe in Chapter 3 the \jerking" e�ect predicted by Koehl
(1984), Denny and Cowen (1997), Denny et al. (1998), that would create large inertial
forces when the structure reaches the end of its tether after the short reversal period.
This, of course, is partly due to the fact that the structural inertia was neglected in
the model. But the e�ect of the added mass that is virtually a�ected to the structure
could still cause such inertial e�ects. We believe likely that we did not observe any
jerking e�ect because of the reversal mechanism of bending structures, characterized
by the propagation of a single curvature wave from the clamped edge to the free tip
over the reversal time. The progressive reversal of the structure thus prevents any bru-
tal deceleration at the end of the reversal. In the case of tensile structures, such as
those considered in the aforementioned studies, the mass at the end of the chain-spring
system is convected freely during the reversal, but the momentum acquired during this
time may induce large tensioning e�ects in its tether when the mass brutally reaches
the end of its course. When subjected to 
ows, the behaviour of systems with more
complex deformation mechanisms remains to this day largely unexplored.

Besides, when considering the in
uence of the time-variability of the free-stream in
Chapter 3, we have restricted our study to the particular case of a sinusoidally oscillating

ow. But 
exible benthic organisms are also subjected to brief, potentially larger loads,
due for instance to the impingement of breaking waves (Gaylord et al., 2008; Jensen
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and Denny, 2016). The response of 
exible structures to such impulsive loads has been
considered in a few situations (see for instance Gaylord et al., 2001; Kim and Gharib,
2011), but relatively few studies have analysed the potential that 
exible structures
bear in alleviating the large loads due to transient 
ow forces. Moreover, the actual
variations of the 
ow in the �eld are likely to be more complex, involving non-linear
random waves possibly combined with a steady current such as the Stoke's drift. A
few studies have recently considered more complex and realistic time-variations of the

ow (see for instance Gaylord et al., 2003; Henry et al., 2015). We believe the present
thesis provides some insight regarding the behaviour of 
exible structures in time-
varying 
ows, but more work is undoubtedly necessary to understand the mechanisms
of deformation and predict the magnitude of the loads imposed on such structures in
transient or irregular 
ows. Besides, some interesting phenomena remain to be explored
even in the simple case of a sinusoidally oscillating 
ow. Some results (not included in
this thesis) of the experiments presented in Chapter 3 have for instance shown that the
deformation of the structure is not necessarily symmetric. For some particular values
of the forcing parameters, the structure has sometimes been seen oscillating about an
average position that slowly drifted to one side. The impact on the internal stress of
such large average de
ection might be signi�cant and certainly needs to be investigated.

Finally, we have demonstrated that 
exibility was responsible for an alleviation
of the loads, at the condition that the resistive drag was dominant over the inertial
e�ects. Incidentally, we have also shown that inertial e�ects are generally responsible
for destabilizing the structure and enhancing the loads it has to bear. In the perspective
of harvesting energy from 
ows, it might be of use to investigate ways not to mitigate
but to increase and control the 
ow-induced oscillations. We have already proven that
resonances of a virtually massless structure may occur in an oscillatory 
ow, when the
amplitude of the forcing is small compared to the width of the structure. The results
of numerical simulations, not shown in this thesis, suggest that increasing the mass of
the structure enhances the amplitude of its response. However, when the amplitude of
the 
ow increases further than the structural length, the structure may exhibit erratic
oscillations. Further investigations regarding the in
uence of the structural mass on
the response of elastic structures in di�erent types of 
ows may be useful in assessing
the potential and the limits of using such structures as 
ow-energy harvesters. Besides,
even in the bioinspired perspective of designing structures that best accommodate the

ow-induced loads, it might not always be possible to lower the structural mass to the
level required to avoid the inertial risks. A more detailed analysis of the consequences
of inertial loads would therefore be of use in that regard as well.



Appendix A

Nomenclature for Chapter 2

L, W(s), D(s) length, width and thickness of the beam
EI (s) bending sti�ness in the case of linear elasticity
CD (s) cross-section drag coe�cient
� (z) 
uid density distribution
U(z), U0 
ow pro�le and reference velocity
� (s), � (s) inclination angle of the beam from the vertical axis and curvature
M (s), M 0 internal bending moment and reference value
Q(s) internal shear force
q(s), q0 local normal 
uid load and reference value
c(� ) angular dependence of the normal 
uid load
g(� ), � function and exponent associated with the material constitutive law
b(s), b0, � distribution, reference and exponent associated with the sti�ness

factor
w(s), w0, 
 distribution, reference and exponent associated with the cross-

section shape factor
p(z), p0, � distribution, reference and exponent associated with the pressure
� ,  geometrical and material parameter
F , Frigid drag force on the 
exible/rigid beam
R recon�guration number
CY Cauchy number
� , � 1 local and asymptotic Vogel exponents
` characteristic non-dimensional bending length
LB characteristic non-dimensional boundary layer thickness
� characteristic non-dimensional tapering length
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Appendix B

Simpli�cation of the reactive force
for inextensible structures

In the particular case of an inextensible structure, the reactive force (3.3) is purely
normal and may be simpli�ed in (3.4). Indeed, developing and sorting the terms in Eq.
(3.3) yields

qam = � ma

��
_Un � U0

nU� � UnU0
� +

1
2

�U 2
n

�
n +

�
U0

n + �U � � _�
�

�
�

: (B.1)

Di�erentiating the relative velocity equation U� � + Unn = _r � U with respect to s and
using the inextensibility condition r 0 = � provides

(U0
� � �U n ) � + ( U0

n + �U � ) n = _r 0 = _� = _� n : (B.2)

so that the tangential component of Eq. (B.1) vanishes andU0
� = �U n and U0

n = _� � �U � .
Using these expressions, Eq. (B.1) further simpli�es in

qam = � ma

�
_Un � _�U � + �

�
U2

� �
1
2

U2
n

��
n : (B.3)

Di�erentiating the relative velocity with respect to time now provides
�

_U� � _�U n

�
� +

�
_Un + _�U �

�
n = •r � _U (B.4)

so that projection on the normal vector gives _Un =
�

•r � _U
�

� n � _�U � . Making use of

that expression in Eq. (B.3) �nally yields Eq. (3.4).
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Appendix C

Scaling laws for the tensile stress

Similarly to the shear recon�guration number considered in Chapter 3, the variations of
the tensile recon�guration number are displayed on Figure C.1(a) for the modal regime,
along with the location of the maximum stress on Figure C.1(b). Figures C.1(c) and
C.1(d) respectively show the results in the convective and large-amplitude (or static)
regime. All the conclusions drawn about the shear recon�guration number are still
valid for the tensile number. The only noticeable di�erence is the asymptotic scaling
for large loadings. Indeed, the non-dimensional bending momentM = � involves one
less derivative in space than the shear forceQ = � � 0 so that M � Q � `b, while the
non-dimensional rigid load is unchanged. Therefore,R � � R n � `b � `2

b. Finally, this
provides R � � ! � 1 in the modal regime,R � � (K C ! 2)� 1=2 in the convective regime
and R � � C � 2=3

Y in the large-amplitude (or static) regime, in agreement with the results
shown on Figure C.1.

Figure C.1: (a) Tensile recon�guration number and (b) location of maximum tensile
stress along the span, in the modal regime, against the frequency ratio, forK C = 10� 2

(|{), K C = 10� 1 (� � � ), K C = 100 (� � � ), and analytical solution for K C ! 0
( � � � � ). (c) Tensile recon�guration number againstK C ! 2 in the convective regime
K C = 100 (� � � ), K C = 101 (� � � ), K C = 102 (|{). (d) Tensile recon�guration
number in the large-amplitude regime for� = 12:7, against the Cauchy numberCY for
� = 100 (� � � ), � = 101 (|{), and static solution obtained with Eq. (3.21) ( � � � � ).
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Appendix D

In
uence of the slenderness on the
static recon�guration

In the large-amplitude regime, most of the cycle is quasi-static and the system is well
modeled by equation 3.21. The di�erent static recon�guration curves for varying slen-
derness parameters shown on Figure D.1 prove that the recon�guration numbers con-
verge on an asymptotic trend as the slenderness is increased. For any �nite� , the
discrepancy with the asymptotic curve remains quite small for the shear stress, and
almost completely imperceptible for the tensile stress. The asymptotic scaling provided
in Section 3.4 can therefore be used even for moderately large slenderness.

Figure D.1: Variations of the static recon�guration numbers obtained with Eq. 3.21
((a) shear, (b) tensile) as a function of the Cauchy numberCY , for � = 12:7 (|{),
� = 127 (� � � ), � = 1270 (� � � � ).
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Appendix E

Comparison of the stability
thresholds of Chapter 4 with the

axial con�guration

For asymptotically large slenderness� ! + 1 , the structure aligns with the 
ow and
one might expect it to behave similarly to the classical axial con�guration. However,
Figure E.1 shows that the critical velocity for large slenderness does not converge to the
threshold expected for an elongated beam in axial 
ow. In fact, even though� 0 ! �= 2
almost everywhere, the product�C 0 remains of orderO(1) so that the contribution of
the resistive drag remains signi�cant even on the part of the structure that is nearly
parallel to the 
ow. Consequently, in the limit of in�nite slenderness, Eq. (4.10) actually
reduces to the classical elongated small-amplitude equation in axial 
ow Eq. (4.11),
but supplemented by the non-vanishing resistive drag contribution

•� + 2u
p

� _� 0+ u2� 00+ � (4) + 2�C 0

�
u

p
� _� + u2� 0

�
= 0: (E.1)

The stability curve found for � = 103 with this asymptotic equation on Figure E.1 is
indistinguishable from that obtained with the full equation (4.10). Quite understand-
ably, this persistent drag term introduces some additional damping that stabilizes the
system compared to the axial con�guration, as soon as� & 0:024.

Figure E.1: Linear stability thresholds obtained with the full equation (4.10) for� = 103

( � � � ), with the equation relative to the axial con�guration (4.11) (� � � ), and with the
asymptotic equation (E.1) for � = 103 (||).
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Appendix F

Details on the model of Chapter 5

F.1 Derivation of the governing equations

F.1.1 Details about the structural model

Following Audoly and Pomeau (2010), we de�ne a local direct orthonormal frame
ei =1 ;2;3 = ( n ; w ; � ), materially attached to the structure and such that (n ; w ; � )js=0 =
(ex ; ey ; ez ). We also de�ne the Darboux vector
 = � nn + � ww + 
 � where � n and
� w are the material curvatures and
 is the twist of the cylinder. By de�nition, the
Darboux vector is such thatei

0 = 
 � ei . For an Euler-Bernoulli beam of bending
sti�ness EI in both (n ; w )� directions, torsional sti�nessGJ , and subjected to an ex-
ternal force q and no external torque, the Kirchho� equations governing the dynamics
of the structure read

m•r = F 0 + q , 0 = M 0+ � � F (F.1)

with the internal force vector F = T� + Qn + Pw and the constitutive law for the
internal bending momentM = GJ
 � + EI� nn + EI� ww. The inextensibility condition
readsr = � , and for a cantilever beam, the boundary conditions readr = 0 and r 0 = ez

at the clamped edges = 0, and F = M = 0 at the free end s = L. Using the second
Kirchho� law (F.1) and the boundary conditions for the twist, we �nd that


 = 0 , Q = � EI� 0
w , P = EI� 0

n (F.2)

so that �nally the curvilinear derivatives of the material frame simplify in

� 0 = � wn � � nw , n 0 = � � w � , w 0 = � n � (F.3)

and the curvilinear derivative of the internal force vector that appears on the right hand
side of the �rst Kirchho� equation (F.1) reads

F 0 =
�

T +
1
2

EI
�
� 2

n + � 2
w

�
� 0

� +
�

� wT � EI� 00
w

�
n �

�
� nT � EI� 00

n

�
w : (F.4)

The boundary conditions readr = � = 0 at s = 0 and T = � n = � 0
n = � w = � 0

w = 0 at
s = 1.
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F.1.2 Linearization of the structural model

As explained in Section 5.2, we expandr (s; t) = r 0(s) + Y(s; t)ey where the transverse
displacementY is taken as a �rst order perturbation to the static shaper 0. At the
leading order the deformation is contained exclusively in thexz� plane so� n is a �rst
order perturbation as well and we also expand� w = � 0 + �� and the frame vectors

� = � 0 + �� , n = n 0 + �n , w = ey + �w : (F.5)

Using (F.3), the inextensibility condition and all the expansions above mentioned, we
obtain after some calculations the expansions of the material frame

� = � 0 + Y 0ey , n = n 0 + � ey , w = ey � Y 0� 0 � � n 0 (F.6)

where the small angle� and the small curvature� n satisfy

� 0 = � � 0Y 0 , � n = � 0� � Y 00 (F.7)

and �� w = 0. Besides, expanding all the terms in (F.4), we obtain up to the linear
order

F 0 =
�

T +
1
2

EI� 2
0

� 0

� 0+
�

� 0T � EI� 00
0

�
n 0+

�
�
T � EI� 2

0

�
Y 00�

3
2

EI
�
� 2

0

� 0
Y 0 � EIY (4)

�
ey :

(F.8)

F.1.3 Linearization of the 
uid forces

The oscillating lift force pw de�ned in (5.3) is a linear order term by assumption. On
the other hand, the resistive and reactive forces (5.1),(5.2) both include a leading order
and a linear order term. First, the expansion of the relative velocity up to the linear
order in Y givesU rel = _Yey � Uex = _Yey � US0� 0 � UC0n 0 so that projection on the
tangent direction and its orthogonal plane using (F.6) yields

U� � = � US0� 0 � US0Y 0ey , UN N = � UC0n 0 +
�

_Y + US0Y 0
�

ey : (F.9)

Making use of that decomposition in (5.1) and (5.2), we obtain the linearized 
uid loads

pam = � maU2

�
S2

0 �
1
2

C2
0

�
� 0n 0 � ma

�
•Y + 2US0

_Y 0+ UC0� 0Y 0+ U2

��
S2

0 +
1
2

C2
0

�
Y 0

� 0�
ey

(F.10)

pd =
1
2

�C D DU 2jC0jC0n 0 �
1
2

�C D DUjC0j
�

_Y + US0Y 0
�

ey : (F.11)
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F.1.4 Governing equations

Finally, the linearized structural acceleration reads•r = •Yey so that substitution of
(F.8),(F.10),(F.11) and (5.3) in the �rst Kirchho� equation (F.1) provides, after pro-
jection along � 0 and n 0, the leading order system of equation

�
T +

1
2

EI� 2
0

� 0

= 0 ,
�

� 0T � EI� 00
0

�
+

1
2

�C D DU 2jC0jC0� maU2

�
S2

0 �
1
2

C2
0

�
� 0 = 0

(F.12)
with leading order boundary conditions� 0 = 0 at s = 0 and T = � 0 = � 0

0 = 0 at
s = L. The �rst equation provides the expression of the tensionT = � 1=2EI� 2

0.
Replacing T in the second equation yields the static equilibrium equation (5.6) after
non-dimensionalization. Similarly, projection of (F.1) oney yields

m •Y =
�

�
T � EI� 2

0

�
Y 00�

3
2

EI
�
� 2

0

� 0
Y 0 � EIY (4)

�

� ma

�
•Y + 2US0

_Y 0+ UC0� 0Y 0+ U2

��
S2

0 +
1
2

C2
0

�
Y 0

� 0�

�
1
2

�C D DUjC0j
�

_Y + US0Y 0
�

+
1
4

�C 0
L DU 2C2

0q (F.13)

which gives the VIV equation (5.7) after replacement of the tension and non-dimensionalization.

F.2 Validity of the linearization

The model derived above and used throughout Chapter 5 is based on the assumption
that the only relevant source of nonlinearity in the dynamics comes from the damping
term in the Van der Pol wake oscillator. This term is indeed su�cient to ensure the
saturation of the vibration amplitude in the limit-cycle to a magnitude consistent with
physical observations. However, the linearization leading to the governing equation for
the structure (5.7) relies on the assumption that the transverse displacementY is a
small perturbation to the leading order deformationr 0(s), while the amplitude of the
limit-cycle oscillations due to VIVs is not in�nitesimal. Thus, the adequacy of the
linearization detailed in Appendix F.1 for modeling VIVs requires veri�cation.

The linearization of the structural model performed in Appendix F.1.2 is purely
geometrical and holds as long asY � L. The numerical results displayed on Fig.
5.7(a) and 5.9(a) indicate that the amplitude of the transverse perturbation does not
exceedY . 0:5D in the case of VIVs. The geometrical linearization thus still holds in
the limit-cycle for the slender structures considered in this work � =L=D � 1.

On the other hand, the linearization of the 
uid forces performed in Appendix F.1.3
relies on the additional assumption that the transverse velocity is small compared to the
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free-stream _Y � U. The frequency of the VIVs is approximately equal tof 0
w = StU=D

as shown on Fig. 5.3. Assuming an amplitudeY � 0:5D and with St = 0:2, the order
of magnitude of the transverse velocity scales as_Y � 2�f 0

wY � 0:6U, which is at the
mathematical limit of validity of the linearization. Nonetheless, considering only the
linear contribution of the 
uid forces in the dynamic equation is consistent with the
leading-order nature of the models generally used in VIV studies involving wake oscil-
lator models (Skop and Luo, 2001; Facchinetti et al., 2004b; Mathelin and de Langre,
2005; Mukundan et al., 2009). A more detailed discussion about the appropriateness of
such an approximation can be found in Skop and Balasubramanian (1997). If the non-
linearity in the Van der Pol wake oscillator is critical in the limitation of the amplitude
of the vibrations in the limit-cycle, we expect that the in
uence of other nonlineari-
ties should be less signi�cant on a qualitative point of view. More details about the
in
uence of nonlinearities arising from the structure, the 
uid forces, or the coupling
between them can be found in Srinil and Zanganeh (2012).

Finally, when the system becomes unstable to 
utter, the amplitude of the oscilla-
tions becomes too large for the geometrical linearization of Appendix F.1.2 to remain
valid. In this case, nonlinear coupling between the transverse and in-plane directions in
the structural equation would eventually lead to a complex large-amplitude 3D motion.
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Linear analysis for the transverse
vibrations

G.1 Linear stability analysis for the coupled wake-
structure system

To perform the linear stability analysis of the coupled system (5.7)-(5.8), we neglect
the nonlinear term in Eq. (5.8) and assume a perturbation of the form (Y; q) (s; t) =
(� (s);  (s)) ei!t . The coupled system (5.7)-(5.8) then yields

� v2! 2� + i!
�v 2

St �
[2S0� 0+ C0 (� 0 + cd�) � ]

+
��

�v 2

S2
t � 2

�
S2

0 +
1
2

C2
0

�
+

3
2

� 2
0

�
� 0

� 0

+ cd
�v 2

S2
t �

C0S0� 0+ � (4) � cl
�v 2

S2
t

C2
0  = 0 (G.1)

� ! 2 ( � A� ) � i!" (2�C 0)  + (2 �C 0)2  = 0 (G.2)

with boundary conditions � = � 0 = 0 at s = 0 and � 00= � 000= 0 at s = 1. We then solve
the coupled quadratic eigenvalue problem (G.1)-(G.2) at the discretization points with
the MatLab function quadeig of Hammarling et al. (2013). The linear frequencyf lin

and growth rate � of the linear modes are then related to the eigenvalues thus found
by ! = 2�f lin � i� .

G.2 Thresholds for the transverse 
utter instability

The destabilization of the structural modes is due to the in
uence of the reactive force
in the structural equation (5.7), and the e�ect of the oscillatory lift force due to the
wake is most likely negligible in this regard. To compute the stability threshold for the
structural modes only, we may thus neglect the coupling between equations (5.7)-(5.8)
and consider exclusively the left-hand side of (5.7). Besides, the frequency of shedding
f 0

w is irrelevant in this case and we rescale the dimensional time with respect to the
characteristic structural time Ts = L2

p
(m + ma)=EI (as in Chapter 4) instead off 0

w .
The governing equation then reduces to
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•Y + u
p

�
h
2S0

_Y 0+ C0 (� 0 + cd�) _Y
i

+
��

u2

�
S2

0 +
1
2

C2
0

�
+

3
2

� 2
0

�
Y 0

� 0

+ cd� u2C0S0Y 0+ Y (4) = 0 (G.3)

where the 
utter-speci�c reduced velocity u = UL
p

ma=EI (similar to that used in
Chapter 4) is related to the VIV-speci�c reduced velocity used throughout Chapter
5 through v = ( St=

p
� )� u, and to the Cauchy number throughCY = cd� u2. The

stability thresholds found by linear stability analysis of Eq. (G.3) for� = 0:5 and three
di�erent aspect ratios are provided in Table G.1 in terms of the three parametersu, v
and CY .

The threshold for � = 10 in terms of the VIV-speci�c reduced velocity vc = 35:8 is
very close to that found in Section 5.3.3 for the coupled system (5.7)-(5.8),vc = 34:9.
This con�rms the very limited in
uence of the wake coupling on the structural stability.
Besides, the thresholds expressed in term of the 
utter-speci�c reduced velocityu seems
almost insensitive to the aspect ratio �. Consequently, according to the scalings of the
VIV-speci�c reduced velocity v / � u and Cauchy numberCY / � u2 provided here,
the stability thresholds in terms of both these parameters is close to proportional to
the aspect ratio �.

critical velocity uc critical velocity vc critical Cauchy number CY;c

� = 10 12:7 3:58� 101 2:04� 103

� = 10 2 16:1 4:55� 102 3:30� 104

� = 10 3 17:1 4:85� 103 3:74� 105

Table G.1: Structural stability thresholds in terms of the 
utter-speci�c reduced veloc-
ity u, VIV-speci�c reduced velocity v, and Cauchy numberCY .
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R�esum�e : La d�e
ection statique d'une structure 
exible expos�ee �a un �ecoulement transverse permet classiquement
de r�eduire la trâ�n�ee �a laquelle elle est soumise. Dans le domaine de la biom�ecanique, la d�eformation induite par
l'�ecoulement d'�el�ements v�eg�etaux 
exibles conduisant �a une r�eduction du chargement est d�esign�ee par le terme
`recon�guration' pour souligner le caract�ere avantageux de ce processus adaptatif. Dans cette th�ese, nous examinons
les m�ecanismes qui sous-tendent le processus de recon�guration, dans des syst�emes 
uide-structure pr�esentant une
variabilit�e spatiale, ou de la dynamique provenant au choix de l'instationnarit�e de l'�ecoulement de base, d'un couplage

uide-structure conduisant �a une instabilit�e, ou de vibrations induites par vortex. Nous montrons que l'aptitude
des structures 
exibles �a r�eduire l'intensit�e du chargement impos�e par l'�ecoulement est pr�eserv�ee en pr�esence de
non-uniformit�es ou de dynamique, �a condition que le design de la structure soit tel que la trâ�n�ee r�esistive domine
les forces inertielles. Nous montrons de plus que la capacit�e �a se d�eformer pr�esente l'avantage suppl�ementaire de
permettre la r�eduction des vibrations induites par vortex. Notre travail indique �egalement que des structures l�eg�eres
et �elanc�ees sont les mieux adapt�ees pour supporter les chargements induits par l'�ecoulement en se recon�gurant,
et que l'e�cacit�e de la r�eduction du chargement par recon�guration �elastique d�epend faiblement de la distribution
spatiale des propri�et�es du syst�eme. Finalement, la r�eduction des chargements r�esulte toujours, ind�ependamment
du r�egime de recon�guration, de la concentration de la d�eformation sur une longueur caract�eristique inf�erieure �a la
longueur r�eelle de la structure.
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exibility
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Abstract : The static de
ection of a 
exible structure exposed to a transverse 
ow is classically known to reduce the
drag it has to withstand. In the �eld of biomechanics, the 
ow-induced deformation of 
exible plant elements leading
to a reduction of the loads is referred to as `recon�guration', in order to highlight the alleged bene�ts of such adaptive
process. In this thesis, we investigate the mechanisms underpinning the recon�guration in 
ow-structure systems
featuring some spatial variability, or some dynamics arising either from the unsteadiness of the free-stream, from
a 
ow-structure coupling leading to an instability, or from vortex-induced vibrations. We show that the ability of

exible structures to reduce the magnitude of the 
ow-induced loads is preserved in the presence of non-uniformities
or dynamics, provided that the design of the structure is such that resistive drag dominates over inertial forces. We
also show that the ability to deform has the added bene�t of reducing the magnitude of the vortex-induced vibrations.
Our work further indicates that light, slender structures are better suited to accommodate the 
ow-induced loads by
recon�guring, and that the e�ciency of the process of load reduction by elastic recon�guration is weakly sensitive to
the spatial distribution of the system properties. Finally, regardless of the regime of recon�guration, the reduction
of the load always results from the concentration of the deformation on a characteristic bending length smaller than
the actual length of the structure.
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