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Chapter 1

Motivations, context and working

environment

1.1 General Introduction

The engineering problems encountered today in the �eld of materialforming processes

are getting more and more complex, due to the fast evolution of technology forex-

isting processes, the design of new materials and the need to produce more and more

sophisticated devices. This leads engineers, guided by economic andquality products

constraints, to try to achieve a better understanding of those processes, and therefore

gain a better control of those processes. To this end, two main di�erent approaches can

be adopted to reach the required level of understanding:

� The �rst is to use experimental devices to monitor the process: by measuring

relevant physical quantities ( temperature, heat 
ux , velocity of the air,...) at

several locations of the considered facility. This approach is widelyused in many

situations, and its e�ciency is not to be demonstrated anymore, but, on the one

hand, a particular experimental set up remains largely facility-dependant, and,

on the other hand, when applied to "real" devices, that is to say the ones used

for the industrial processes, the cost can easily become substantial, due to the

experimenters, energy for the device and raw material.

� The second consists in the numerical modelling and simulation of thesystem of

interest: the �rst step is the modelling step, when physics is used to describe

the physical phenomena ( 
ow, heat transfer, electromagnetism, material defor-

mations, ...) formally, most of the time by means of partial di�erential e quations

1
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(PDE), referred to as models in the following. When di�erent physical phenom-

ena are at stake, a coupling strategy has to be conceived to ensure the exchange

between models. Since in most cases corresponding to real situations, analytical

solutions of those PDE are not available, alternative means are needed to obtain

a quantitative description of system output. Hence, the second stepconsists in

working on the model to convert it into a form where a computer can be used to get

an approximation of the system output; this step, related to the �eld of applied

mathematics, is often referred to as numerical analysis. The third step, closely

related to the second one, consists in the implementation of the designed method,

using softwares ( MATLAB c
 , SciLab c
 ) or programming languages (C++, FOR-

TRAN) to concretely obtain the desired output. The result of this pro cess will

be referred to as a "code" in the following. Once this work has been done, one

needs to ensure that the simulated result is realistic, or, in other words, one has

to ensure the global model properly mimics the considered system.

If the engineers used methods, both experimental or numerical, that are well established

and mastered, the diversity of industrial problems poses new problems everyday, and

the duty to propose answers to those new problems belongs to researchers. Even if

experimental and numerical approaches correspond to two very di�erent ( sometimes

distinct) communities, the two approaches present complementaryfeatures, and a per-

formant framework for analysis of real industrial systems should, from the author's point

of view, combine the two approaches. For example, a numerical simulation tool should

be at �rst tested on "academic" examples ( i.e examples not corresponding to physical

situations) in order to assess the robustness and performances of the designed tools.

Once the obtained results are considered satisfactory, the tool can undergo the trial of

a real industrial investigation. Then, the results can be compared toexperimental data,

provided by an appropriate monitoring of the facility. An analysis of the deviation be-

tween experimental and numerical datas will help to improve the code. This PhD comes

within a such approach, applied to the study of heat transfer in industrial furnaces and

quenching problems. Since the PhD is part in the Thost consortium,all the involved

compagnies will be brie
y presented. Then, the working environment will be described,

with a particular focus on the computational tools used for the numerical simulations.

Finally, a short description of the physics of industrial furnaces will be given, in order

to highlight the critical points that will be adressed in this PhD and to recall the past

and ongoing research on this topic
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1.2 General Context

1.2.1 Industrial Context

The consortium Thost, created in 2006, composed of the following industrial partners:

AUBERT & DUVAL Created in 1907, Aubert & Duval is part of the Eramet group.

The group employs about 4:700 collaborators and declares a turnover of 991 million euros

in 2015. They are specialized in hot material forming processes for steeland aluminium

alloys for various applications within the high standards requirements: aeronautics,

automotive and medical among others.

SAFRAN AIRCRAFT ENGINE Formerly the national society for study and de-

sign of aircraft engines (SNECMA) founded in 1945, it is now part of the Safran group.

They produce engines for the aerospace and aeronautics (both civilian andmilitary) in-

dustry. They employ about 11:600 people over 12 di�erent sites in France. The declared

turnover in 2015 is 7:6 billions euros in 2015.

AREVA Created in 2001, AREVA is a French group in the �eld of Energy, the core

business being the nuclear energy, with various tasks as uranium extraction, operation

of nuclear plants and management of nuclear wastes. Composed of about 42:000 collab-

orators, the declared turnover was 8:3 billions euros in 2014.
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FAURECIA Created in 1997, Faurecia produces various automotive equipements,

and is the world leader of equipments for automotive interior and seating.Employing

99:000 collaborators all around the world, the declared turnover is about 18:83 billions

euros in 2014.

LISI AEROSPACE Part of the LISI group, founded in 1899, Lisi Aeropsace is spe-

cialized in the fabrication of clamping devices and components for the aeronautics in-

dustry. Employing about 11:000 collaborators, the declared turnover in 2015 is of 1:458

millions euros.

SCIENCE COMPUTERS CONSULTANTS Created in 2001, Science Comput-

ers Consultants is not an industrial partner, but the society that pr oduces the software

to be used by the industrial partners from the C++ code developed in the CEMEF, as

well as other products as XIMEX c
 , LUDOVIC c
 and SOLID c
 . It is a SME of 5

collaborators with a declared turnover of 401:880 euros in 2015.

1.2.2 Academic Context
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This PhD was conducted in the CEMEF ( Center for Material Forming). Fou nded

in 1976, it is part of Mines Paristech, a French Engineering school created in 1783.

Originally specialized in the modelling of material forming processes for polymers and

metallurgy, it has recently acquired an expertise in the �eld of computational 
uid

dynamics and heat transfer, with PhD's on Finite Element method for 
uid 
ow and

heat transfer [1], numerical simulation of boiling [2], Fluid Structure Interaction [ 3],

space time adaptation [4] and NURBS for complex geometries [5].

1.3 Working environment

1.3.1 Computational environment

All the numerical methods that will be described in this PhD will have to be imple-

mented. This will be done in the CIMLIB library [ 6]: it is a collaborative C++ library,

developed since 15 years. It is connected with external libraries,as PETSC [7] to handle

the linear algebra ( vector and matrix manipulation, linear system resolution) and MPI

[8] (Message passing interface) to handle the parrallel processing. Itis worth mention-

ning that we have at our disposal advanced tools for parrallel meshing and remeshing

[9] that will be at the heart of this work.

1.3.2 General assumptions

We detail here all the common features of the results that will be presented in this thesis,

that will not be repeated again, with the exception of chapter 5 where a new formulation

will be presented:

� All physical properties will be expressed in units of the international system, so

the unities will not be repeated in this thesis.

� For all �nite element simulations, we will make use of P1 approximations, on

meshes of tetrahedral elements (triangles in 2d). Moreover, the objects related

with discrete formulations will be denoted with a subscript h.

� All along this work, di�erential operators, as gradients and divergences will be

manipulated : it is understood that that we use the general tensorial de�nition, so

that those operators apply regardless the order of the considered tensor,knowing

that the gradient of a n th order tensor gives a tensor of ordern + 1, and the

divergence of a tensor gives a a tensor of ordern � 1.
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� In the same vein than the previous observation, the inner products and associated

norms in functional space will be used indi�erently for scalar or vector valued

functions, the computations being performed componentwise.

1.4 Physics of industrial furnaces

Navier-Stokes

T

T

(u; p)

Radiation

Energy Balance

Combustion

u � r T

qr

Er

qr Errelation coupling-Radiative properties

convection of species

chemical source term

thermal activation of reactions

� g� � T

Figure 1.1: Illustration of the fully coupled physics in an industrial furnace

Navier-Stokes

T(u; p)

Energy Balance

u � r T

� g� � T

Radiation

qr Er

T qr

Er

Figure 1.2: Illustration of the coupled physics in an industrial furnace without com-
bustion

A lot of coupled physical phenomena are occuring in a furnace or in a quenching chamber:

Burners or nozzles generate a 
ow that drives convective heat transfer, with heat transfer
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of other types ( conduction inside solid parts, radiation between wallsand pieces). Some

other phenomena are involved as well, but will not be touched upon in this work:

� In the case of burner, combustion is occuring. It consists in the mixing of di�erent

chemical species reacting to form a 
ame. Modelling this phenomenon requires

to deal with a system of convection-di�usion-reaction equations coupled by sti�

source terms related to the chemical reaction. It could serve as a PhDtopic within

itself, and increase the complexity of the full problem, since it would in
uence the

thermal balance due to the energy generated by chemical reactions, thereaction

being thermo-active itself. It could even in
ucence the radiative transfer with

a growing concentration of combustion products in the enclosure. Dueto the

increase of complexity it would induce, combustion will be neglected in this thesis,

but appears as a promising lead for future work.

� Some metallurgic transformation could occur during the cooling or heating of solid

parts. There is some expertise on this �eld in our laboratory [10], and a coupling

with another software could be considered, but it will not be coveredin this work.

� In the case of water quenching, heat transfer is caused by boiling and phase change.

A PhD on this topic is actually ongoing in the laboratory [ 11].

Since this thesis will be focused on radiative heat transfer, one could be tempted to

evaluate the importance of this phenomenon regarding others: since it is an interface

phenomenon, it should be compared with convective heat transfer, so �rst, it is important

to have a simple way to determine the order of magnitude of those transfers. We de�ne

Tc = 20C = 293K and Th = 1000C = 1273K to be the operative temperature of a

generic system. Those values are representative of furnaces situations ( Tingot = Tc and

Tenclosure = Th) or quenching ( Tingot = Th and Tenclosure = Tc), so we will omit signs in

further computations.

� The order of magnitude of the radiative heat transfer can be evaluated byqrad =

� r (T4
h � T4

c ).

� The order of magnitude of the convective heat transfer can be evaluated byqconv =

hconv(Th � Tc), hconv being the convection coe�cient.

Determining the value of hconv for a given application is not a straightforward task. It

mostly depends on the thermophysical properties of the considered 
uid, and the "char-

acteristics" of the considered situation. If thermophysical properties are temperature

dependent only, the "characteristics" of the situations include various di�erent parame-

ters: type of convection ( natural or forced), geometry of the enclosure and the object,
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nature of the device that generates the 
ow, etc. Most of the time, it is determined by

applying inverse analysis, but can be obtained by using correlations between adimen-

sional numbers relating to the Nusselt numberNu = hconv L
� that relates the total heat

transfer to the conductive heat transfer ( other adimensional numbers appearing here

will be de�ned in the chapter 2 ).

� for forced convection, one has correlations of type

Nu = f (Re; P r) (1.1)

� for natural convection, one has correlations of type

Nu = g(Ra; P r ) (1.2)

In order to set the ideas, we will consider the very simple case of a plate of characteristic

dimensionL = 1m. The thermophysical properties of the air ( considered at atmospheric

pressure) will be computed at the temperatureTav = Tc+ Th
2 = 510C = 783K . If we

approximate X (T = 510C) ' X (T = 500C), some realistic values are� = 0 :441,

� = 3 :63:10� 5, cp = 1098, � = 0 :0578, � = 1 :25:10� 3. We also takeg = kgk2 = 10. The

radiative 
ux will be the same value for natural and forced convection.

qrad = 1 :485:105 W:m� 2 (1.3)

Natural Convection Those values leads toRa = 1 :246:109 and Pr = 0 :689, so that

the natural convection can be considered turbulent. Following the lines in [12], we use

the following relation:

p
Nu = 0 :825 +

0:387Ra
1
6

(1 + ( 0:492
P r )

9
16 )

8
27

(1.4)

We therefore obtain Nu = 130:945 andhconv = 7 :568. It follows that

qconv = 7 :417:103 W:m� 2 (1.5)

One can see for those cases, the convective transfer does not exceed 5%of the radiative

transfer.
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Forced convection Here, one needs to determine a Reynolds number. It might be

very dependent on the situations, but when the surrounding 
uid is air, a typical value

is Re = 105. Here, the Nusselt number is determined by [13] :

Nu = 0 :036Re0:8Pr 0:43(
� h

� c
)

1
4 (1.6)

With � h = � (T = Th) and � c = � (T = Tc). We get here Nu = 390:7 and hconv = 22:5,

from which we deduce

qconv = 2 :21:104 W:m� 2 (1.7)

Here again, the order of magnitude of the convection is about 15% of the radiative 
ux,

underlining the importance of the phenomenon.

Even if the estimation just presented is not representative of a real industrial situation,

it shows the crucial importance of radiative transfer in such situations. Hence, it is

mandatory to have at hand performant tools for the modelling of such a phenomenon.

This will be the object of this thesis, of which the outline is detailed below

1.5 Outline of the thesis

� First, we will describe the physics of interest here and the formulations used to

obtain numerical solutions. This will be the object of chapter 2.

� Then, the framework to deal with complex problems involving di�erent compo-

nents will be explained in chapter 3.

� Next, we will see the main contribution of this thesis which concerns radiative

transfer. To this end, the chapter 4 will give a short overview of the physics of

radiation, most common models for our range of applications, and the approach

we developed for modelling surface radiation.

� Formerly, we will depict the method developed for volume radiation. Since the

model we chose is quite recent ( the unifying publication is datedin 1999, even if

there exists some previous work), so we will take the time to detailthe model, its

derivation and its main properties.

� In the chapter 6, we will present real problems rising from our industrials partners

to illustrate how all the presented concepts work in unison.
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� Finally, chapter 7 will be devoted to some concluding remarks, things that could

be improved and ideas for future work.

R�esum�e fran�cais

Les probl�ematiques rencontr�ees dans le domaine de l'ing�enieriedeviennent, du fait de

l'�emergence des nouveaux proc�ed�es et technologies, de plus en plus complexes. Dans

cette perspective, il est de plus en plus fr�equent de recourir �a la mod�elisation num�erique

a�n d'atteindre une meilleure compr�ehension et, par suite, une meilleure maitrise de

ces proc�ed�es. C'est dans ce contexte que s'inscrit ce travail, plus pr�ecis�ement pour la

mod�elisation des transferts thermiques dans le cadre de la mise en forme des mat�eriaux.

Ce chapitre constitue un introduction g�en�erale de la probl�emat ique; on y pr�ecise les

acteurs acad�emiques et industriels impliqu�es dans le projet,on y d�etaille le cadre de

travail qui sera utilis�e, tant du point de vue th�eorique que cel ui de l'impl�ementation.

On expose ensuite les di��erents ph�enom�enes mis en jeu dans unfour industriel, a�n de

d�emontrer que le rayonnement thermique y joue une rôle pr�epond�erant, ce qui l�egitime

ce travail de th�ese. En�n on y pr�esente le plan de ce manuscrit.
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Stabilized Finite Element Method

for 
ow and heat transfer

As it was stated previously, even if thermal radiation is the dominant physical phe-

nomenon in industrial furnaces, the approach retained for modelling radiation will be

detailed in further chapters. The objective of this chapter is to detail the physical models

of phenomena occuring in furnaces. We will see that most of those phenomena can be

cast under the form of a convection-di�usion-reaction equation, at the exception of the


ow that will be modelled by the Navier Stokes equations. The outline of the chapter

will be as follows: we will �rst give details on the equations, their physical signi�ca-

tion and an overview on the di�erent possibilities for the boundary conditions. Then,

the stabilized �nite element formulations used in this work will b e described, and some

illustrative benchmarks will be given to demonstrate the potential of the methods. In

what follows, we will denote by 
 2 Rd the computational domain, and @
 its boundary,

assumed to be regular. The time interval of interest is [0;T]

2.1 Physical models

2.1.1 The Navier-Stokes equations

The Navier-Stokes (NS) equations can be considered as the "standard" model for the


uid dynamics. The paternity for this group of equations is to be credited to Claude

Navier (1785-1836), a French engineer and physicist of "Ecole Nationale Superieure des

Ponts et Chaussees" specialized in mechanics and Georges Stokes (1819-1903),physicist

and mathematician of Cambridge university. The point of view di�ers fr om the classical

Lagrangian mechanics point of view, where a closed system is considered for the study,

11
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Eulerian

Lagrangian

t

V(x,t) V(x+dx,t)

Vp(t)

t+dt

V(x,t+dt) V(x+dx,t+dt)

Vp(t+dt)

Figure 2.1: Illustration of Eulerian and Lagrangian points of view

and is "followed" over time. If this point of view �ts for the descrip tion of motion of

rigid and deformable solids, it is not well adapted for description of 
uids, for the reason

that it is not easy to "follow" a particle of 
uid along its motion. For this p roblem an

Eulerian approach is more adapted: it consists in considering local quantities passing

through a �xed certain elementary volume ( referred to as "particle of 
 uid" hereafter)

and consider the 
uid passing through it over time. This volume should be big enough

to perform statistical averages, so that the local quantities of interest will be average of

microscopic quantities. Here, the quantities of interest will be:

� A velocity vector u (x ; t), being an average of velocities of all discrete particles (

atoms or molecules ) contained in the "particle of 
uid". u (x ; t) is a vector of Rd,

and x stands for the position. For boundary conditions, it is sometimes useful to

work with the components separately, asu(x ; t) = ( ui (x ; t)) i 2k 1;dk.

� A scalar pressure �eld p(x ; t), representing the average e�ect of discrete particles

on the elementary volume boundary, all contributing to a global surfacicforce.

Even though modern physics provides di�erent ways to derive the NS equations, begining

from the Boltzmann equation to the use of the continuum mechanics framework, we will

derive it here in a way close to the original one given by Navier and Stokes, by evaluating

the momentum balance over the particle of 
uid. However, for the kinematics description

of the "particle of 
uid", one needs to take into account not only the time v ariations,

but also spatial variations due to what is entering and leaving the volume of interest.

The appropriate description is given by

Du
Dt

=
@u
@t

+ ( u � r )u (2.1)

This variation of momentum is balanced by all the forces applied on the volume; we can

denote:
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� the gravity forces, coming from the gravitation �eld of the earth, given by Fgrav =

� g. A modi�ed form of this term can be considered to take into account natu-

ral convection, but this will be detailed when the fully coupled problem will be

presented

� the viscosity forces, caused by the friction due to velocity gradients within the


ow. This is given by Fvisc = r � (� r (u )). We restrain ourselves to the case of

Newtonian 
uids, so that � will remain constant in the whole 
uid, even though

temperature-dependancy could be considered.

� The pressure forces: as stated before, the pressure represents the average e�ect of

particles acting on the border of the volume of interest. It is given by Fpress =

� r (p).

The momentum balance can now be written, and is given by:

�
Du
Dt

= Fgrav + Fvisc + Fpress (2.2)

which can be re-arranged in

�
�

@u
@t

+ ( u � r )u
�

= � r (p) + r � (� r (u )) + � g (2.3)

It is now necessary to model the fact that we consider incompressible 
uids. A 
uid

is said to be incompressible when its volume remains constant underthe action of an

external pressure. In practice, there exists no fully incompressible 
uids, but it was

stated that, in cases where the characteristic velocity is low compared to the velocity of

the sound in the considered medium, the 
ow can be treated as an incompressible 
ow.

This formally can be written under the form

r � u = 0 (2.4)

We are now able to write the NS equations, describing the incompressible 
ow of a

Newtonian 
uid.

Find ( u ; p) such 8(x ; t) 2 
 � [0;T] (2.5)
(

�
� @u

@t + ( u � r )u
�

= � r (p) + r � (� r (u )) + � g

r � u = 0
(2.6)
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These equations have received, and are still receiving, interestform researchers, math-

ematicians as well as engineers, and one of the millenium problems is related to the

existence and regularity of solutions in 3d. We now turn to the the di�erent types of

boundary conditions.

2.1.2 Initial and boundary conditions for the Navier-Stokes equations

2.1.2.1 Initial Conditions

In the incompressible version presented above, since there is no transient term for the

pressure, no initial condition is needed. For the velocity, one needs to specifyu 0(x ), so

we have

u(x ; 0) = u 0(x ) 8x 2 
 (2.7)

Note that, for the well posedness of the problem,u 0(x ) should be consistent with the

incompressibilty constraint, that is to say, we should haver � u 0(x ) = 0.

2.1.2.2 Boundary Conditions

As it is usually done, we make the di�erence between Dirichlet and Neumann boundary

conditions, since the superposition of di�erent types of boundary conditions at the same

location would lead to an ill posed problem. Formally, we denote by@
 D and @
 N the

location of Dirichlet (Neumann respectively) boundary conditions. They should verify:

@
 D [ @
 N = @
 (2.8)

@
 D \ @
 N = ? (2.9)

For the Dirichlet type, the imposed values will be related to the "role" of the boundary

or to the way friction is taken into account:

� u = u D with u D 6= 0 corresponds to the inlet ( a burner for a furnace, a nozzle

for quenching problems). u D can be constant or dependant on a local coordinate

to obtain a parabolic pro�le.

� u = 0 is used for classical solid boundaries, known as a no slip bounday condition.

It is also possible to only set to zero the component normal to the boundary.
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The Neumann boundary conditions are sometimes referred to as traction boundary

conditions, since in the continuum mechanics framework, the stress tensor is related

to the velocity gradient by the constitutive relation. De�ning bou ndary conditions at

the outlet of the domain is not straightforward, and remains an open question, so a

zero Neumann boundary condition will be used for the velocity. One cansee [14] for

boundary condition related problem of NS equations.

The pressure boundary conditions are of primary importance in the case where@
 N = ? .

In this case, the pressure is de�ned up to an arbitrary constant, and imposing a speci�ed

pressure on a part of the boundary helps to determine this constant.

There exists many ways of with dealing boundary conditions: the penalty method [15],

Lagrange multipliers [16], but the Nitsche method has received a growing interest over

the past years: it is a way to impose the boundary conditions weakly by remaining

consistent with the original PDE, at the contrary of penalty method: it also provides a

way to impose conditions on boundaries not �tting the mesh and yields to a symmetric

positive de�nite matrices [17, 18].

2.1.3 The Convection-Di�usion-Reaction equation

If the particular structure of the Navier-Stokes requires a special analysis and treatment,

most of the physical phenomena that will be encountered in our context( at the exception

of radiation) can be cast in the general form of a convection-di�usion-reaction (CDR)

equation that will be detailed in this subsection. An abstract form wil l be given, and

the physical meaning and particular boundary conditions will be enumerated in the next

section.

The abstract form reads:

�nd v(x ; t) such 8(x ; t) 2 
 � [0;T] (2.10)

@v
@t

+ � � r (v) � r � (� r (v)) + �v = f (2.11)

the di�erent terms in this equation will be referred to as followi ng:

� the term � � r (v) is the convection term. � is the convection �eld, or advection

velocity.

� the term �r � (� r (v)) is the di�usion term. � stands for the di�usion coe�cient.
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� the term �v is the reaction term, � being the reaction coe�cient.

� f represents the source term, or forcing term.

All the particular cases of this abstract form share the need of prescribing an initial

condition of the form

v(x ; 0) = v0(x ) 8x 2 
 (2.12)

The di�erent physical situations and associated boundary conditions are detailed below,

but what was said about @
 D and @
 N holds for the CDR equation as well.

2.1.4 Di�erent physical exemples of Convection-Di�usion-Reaction eq ua-

tions

2.1.4.1 The energy equation

This equation, issued from the �rst principle of thermodynamics ( energy balance) gov-

erns the variations of temperature. It is sometimes presented withthe NS equations,

for schemes where all equations are solved together, referred to as "strong" coupling.

In all this work, a weak coupling will be used, that is to say, all equations are solved

consecutively, and the quantities involved in the coupling termsare treated explicitly,

as known quantities from the previous time stepping.

�c p

�
@T
@t

+ u � r T
�

� r � (� r T) = f (2.13)

u represents here the velocity �eld coming from the NS equation. For this reason, the

assumption of a divergence-free velocity �eld is often made in the analysis of the CDR

equation. f might be temperature-dependent, as it will be the case for theP1 radiation

model that will be described below, but it will always be treated in an explicit manner.

For the energy equation, the following boundary condtions will be considered:

� T = TD will be used for illustrative benchmarks mostly, or at nozzles for quenching

problems. However this type of boundary condition is rarely representative of real

situations.

� r (T) � n = qN will be encountered more often, a zero value corresponding to an

adiabatic wall, a constant prescribed value representing the interaction between a

volumic boundary and the outer environment. Modelling radiation by computing

a 
ux involving border temperatures and geometric quantities is alsoa possibility,

and will be the object of chapter 4.
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2.1.4.2 k � " Turbulence model

It is known that, for turbulent 
ows (roughly speaking, with high vel ocities or low viscos-

ity, but this will be detailed further) often encountered in ind ustrial furnaces, a chaotic

behaviour of the 
ows is observed, resulting from large structuresand small structures.

The large scale is responsible of the transport of the major part of the conserved quan-

tities and the small scale is composed of whirlpools of changing characteristics being

zero on average. It is in theory possible to model those e�ects by a direct resolution

of the transient NS equations, but the computation power to perform such simulations

is in practice out of range, since the grid size required is related toRe
9
4 ( with Re to

be de�ned later on). To circumvent this issue, modelling turbulence allows to properly

model the large scale by taking into account the small structures e�ects. Many options

are possible for modelling of turbulence, and the one retained here is to solve supple-

mentary equations, the resulting quantities being used to include turbulence e�ects in

physical parameters, like viscosity and thermal conductivity. Thek� " model was chosen

here: the idea is to introduce two equations governing the turbulent kinetic energy k

and its dissipation rate " . The more general model, derived from the NS equations [19]

presents unknown constants, for which values are situation-dependent, and are available

in literature [ 20]. There also exists a well established one equation model, the Spallart-

Allmaras model [21], but on the one hand, it is more dedicated to external 
ows and on

the other hand, the way to properly derive a turbulent conductivi ty has not been clearly

investigated yet, so the following version of thek � " model will be used here :

� (
@k
@t

+ u:r (k)) � r (� + � t r (k)) + �" = Pt (2.14)

� (
@"
@t

+ u :r (k)) � r (� + � t )r " ) + C1�
"2

k
= C2

"
k

Pt (2.15)

with C1 = 1 :92, C2 = 1 :44 and C3 = 0 :09. Pt = � t
2

�
(r (u ) + r (u )T

�
is the turbulent

production. The results are used to compute turbulent and e�ective viscosity as well as

conductivity � t ;; � t and � ef f ;; � ef f

� ef f = � + C3
�k 2

"| {z }
= � t

; � ef f = � +
cp� t

0:85| {z }
= � t

(2.16)

where the constantP r t = 0 :85 corresponds to a turbulent Prandtl number ( to be de�ned

later on). The boundary conditions are related to the ones used for NS equations. At

an inlet, for a prescribed velocity uD , one has
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k = cbckuD k2
2 (2.17)

" = C3
k

3
2

L
(2.18)

where cbc is an empirical constant (set to 0:02 here) andL is a characteristic length of

the model.

At the out
ow boundary, zero Neumann boundary condition are usually applied.

The boundary conditions on solid walls require a more sophisticated treatment. A law

wall on a layer of thickness� is considered, with a tangential stress� w opposite to the

local velocity, given by

kuk2q
� w
�

�
1
�

ln(E
��
� t

r
� w

�
) = 0 (2.19)

where E is related to the roughness of the wall and� = 0 :41. De�ning u� =
q

� w
� , the

following values are imposed as Dirichlet boundary conditions fork and " :

k =
u2

�p
C3

(2.20)

" =
u3

�

�
(2.21)

An interesting property of those turbulent models is to be noted: the results obtained

with turbulence modelling should correspond to the ones obtained by direct resolution

of NS equations averaged over space and time. This property is useful tocheck that the

turbulence model is implemented correctly.

2.1.4.3 P1 Radiation model

As we will see in further chapters, the major issue when dealing with numerical modelling

of radiation is the angular dependency. Moreover to be something very unusual in the

"engineering physics", it introduces a supplementary dimensionto discretize, and for

each point. An interesting lead is to consider models where angular dependency is

eliminated. This can be done in several ways: expansion using spherical harmonics [22,

23], asymptotic expansion with respect to opacities [24, 25], or averaging over directions



Chapter 2 19

[26]. The simplest model that can be obtained within this approach is given by the

following equation

8
>>><

>>>:

r �
�

1
3�

r (G)
�

� �G = 4 ��T 4

@Gw
@n

=
3�� w

2(2 � � w)
) (4�T 4

w � Gw)

(2.22)

The boundary condition used here is of Robin type, which is a combination of Dirichlet

and Neumann boundary conditions. This model has well known limitationswhich will

be detailed in a further chapter, but it will be useful to perform comparisons with the

new method that will be presented in the same chapter.

2.1.5 Fully coupled aerothermal problem

As it can be seen in equation (2.13), a 
ow of velocity has an e�ect on the temperature

through the term u �r T; that kind of exchange is referred to asconvectiveheat transfer.

It is easy to understand the e�ect when the 
ow is generated independently of the

heat transfer (burner, nozzle, turbines,...): this type of transfer is referred to asforced

convection. However, some 
ows are generated by a temperature gradient( atmosphere

wind formation, earth mantle convection, curls of smoke above hot liquids), referred to

as natural convection. The physical cause of this phenomenon is the surrounding
uid

receiving heat becomes less dense and it rises. A proper modelling would be to consider

compressible 
ows, by modifying equation (2.4) as done in [27], but it leads to a more

complex model, whereas most of the 
ows of interest here can be treated as weakly

compressible 
ows. A good compromise is the Boussinesq approximation, consisting in

ignoring the density variations except in the gravity term � g. The Boussinesq term

reads Fgrav = �� (T(x ; t) � T0)g, where T0 is a reference temperature. Under this

approximation, the fully coupled aerothermal problem can be formulatedas follows:

Find ( u ; p; T) such 8(x ; t) 2 
 � [0;T] (2.23)
8
>><

>>:

r � u = 0

�
� @u

@t + ( u � r )u
�

+ r (p) � r � (� r (u )) = �� (T � T0)g

�c p
� @T

@t + u � r T
�

� r � (� r T) = f

(2.24)

When the situation requires it, e�ective viscosity and conductiv ity, computed by ( 2.16)

will replace � and � . At this point, it is interesting to introduce some adimensional
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numbers characterizing the di�erent "regimes" for this coupled problem. In the fol-

lowing, L is characteristic distance of the considered phenomenon, andU stands for a

characteristic velocity

� The Reynolds Number Re = �UL
� . This number represents the ratio between

inertial forces � (u � r )u and viscous forcesr � (� r (u )). A low value corresponds

to a dominant transfer of momentum by di�usion (laminar regime), whereas a high

value corresponds to a dominant transfer of momentum by convection ( turbulent

regime).

� The Rayleigh number Ra = � 2cp g� � T L 3

�� is characteristic of the dominant mode of

heat transfer within a 
ow: the low values corresponding to conduction, and high

values corresponding to natural convection.

� The Prandtl number P r = �c p
� compares the di�usion of momentum and the ther-

mal di�usion: the higher the value of the Prandtl number, the more the velocity

pro�le will have an e�ect on the temperature distribution.

� The Grashof numberGr = g� � T L 3 � 2

� , that characterizes the natural convection in

a 
uid. It can be understood as the ratio of gravity forces on viscous forces and

can be related to the Rayleigh and Prandtl number byGr = Ra
P r .

� The Peclet number Pe = �c p LU
� is the ratio of convective and conductive heat

transfer. When applied to a CDR equation with an high value of Pe, the classical

formulations will produce numerical solutions of poor accuracy, and justify the

stabilization methods that will be exposed in latter parts.

Now all the continous models ( at the exception of radiation) that will be used in this

thesis have been presented, the formulations used for the numerical approximations will

be detailed.

2.2 Formulations for numerical approximations

The Finite Element Methods, since their emergence in the 1950's, have gained more

attention from researchers and engineers with the evolution of computers( see [28] for a

short historical review). The main features are the conversion of the initial PDE into

a variational problem integrated over the computational domain, and using apiecewise

approximation on a triangulation 
 h that stands for an approximation of the original

domain 
. It permits to work only at the local level ( the level of an elem ent of the
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triangulation), the assembling procedure being standard and independent of the con-

sidered PDE. Moreover, functional analysis o�ers a setting to predict the quality of

the computed approximation (existence, regularity, error estimates). Traditionally used

in the �eld of structural mechanics, its utilisation in other �elds of physics draws the

attention of many researchers ( see [29] for applications to a large class of problems).

However, the classical FEM fails to produce accurate solutions when applied to the type

of problems described in the precedent part, justifying the design of Stabilized FEM

that will be the topic of the next part.

2.2.1 Classical Finite Element Formulation for the Navier-Stokes equa-

tions

Let us start by de�ning the functional setting and the Hilbertian str uctures necessary

for a weak formulation

L 2(
) =
�

w; such
Z



wd
 < 1

�
(2.25)

H 1(
) =
�

w 2 L 2(
) ; such
Z



kr (w)k2d
 < 1

�
(2.26)

The de�nition of H 1 is given for scalar valued functions, but the de�nition straightfor-

wardly extends for vector valued functions componentwise. The subscript 0 for those

functional spaces means that the elements of the respective spaces are zero-valued on

@
 D . On those spaces the following form de�nes an inner product and an associated

Hilbertian norm

(u; w) =
Z



uvd
 (2.27)

The functional space forp will be P = L 2(
), with a possible zero mean condition, since

the pressure is de�ned up to a additional constant. For u , one needs to introduce the

boundary conditions in the de�nition of the space, the associated testfunctions being

de�ned for homogeneous boundary conditions

U =
n

u 2 (H 1(
)) d; u j@
 D
= u D

o
(2.28)

U0 =
n

u 2 (H 1(
)) d; u j@
 D
= 0

o
(2.29)
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U and U0 are referred to as the trial and test spaces, respectively. The weakformulation

of (2.5) is obtained by mutiplying by test functions, integrating over th e domain and

performing integration by parts on certain terms. The weak formulation reads

Find (u ; p) 2 U � P such 8(w ; q) 2 U0 � P (2.30)
( �

� @u
@t; w

�
+ ( � (u � r )u ; w ) + ( � r (u ); r (w )) + ( r (p); w ) = ( � g; w )

(r � u ; q) = 0
(2.31)

At this stage, even though the pressure was de�ned as a primary variable, this mixed

formulation can be viewed as an augmented formulation, the pressure being a Lagrange

multiplier associated to the incompressibility constraint. The Galerkin approximation

consists in constructing a approximation 
 h of 
 into a partition Kh of non overlapping

elementsK covering the whole domain. Only triangular elements ( thetrahedral in 3d)

will be used here. This partition is then used to construct approximation spaces from

(2.26) and (2.25), spanned by basis polynomial functions ( shape functions (� h;K )K 2K h )

on each element of the partition, the global approximated �elds (u h ; ph) being continuous

over the whole domain

Uh =
n

u h 2 (C0(
)) d; u hjK 2 (P1(K ))d; 8K 2 K h

o
(2.32)

Ph =
n

ph 2 (C0(
)) d; phjK 2 P1(K ); 8K 2 K h

o
(2.33)

Expressing (u h ; ph) on the basis of shape functions and evaluting (v; q) for all the shape

functions in (2.30) lead to a linear system, the uknown being the values of the �elds at

points of the triangulation.

2.2.2 Stabilization using the Variational Multiscale Method

2.2.2.1 The need of stabilization

The presented formulation is known to fail for two reasons:
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� the theory of mixed �nite elements (see [29] for a detailed analysis) state that the

approximation spaces should verify an inf-sup condition ( also known asBabuska-

Brezzi condition), formulated as follows:

9� such inf
u h 2 Uh; 0

sup
qh 2 Ph

(r � u h ; qh)
kqhkPh ku hkUh; 0

� � > 0 (2.34)

where � is independent of the mesh sizeh. It imposes a compatibility between

velocity and pressure approximation spaces (rougly speaking, the velocity space

has to be "bigger" than the pressure space ). An option would be to use a di�erent

order of interpolation for velocity and pressure (P1 � P0 or P2 � P1), but a pressure

constant is sometimes not accurate enough for drag and lift computations, and

using a P2 approximation ( or higher) is prohibitive in terms of computation time

when applied to 3d coupled problems. So equal order interpolation pair will be

used in this work.

� For turbulent 
ows, the non-linear convective term ( u � r )u is the predominant

one and might generate spurious oscillations, leading to a poorly accurateapprox-

imation.

2.2.2.2 Scale Splitting

Most of the stabilization methods rely on enrichment of functional spaces used in the

variational formulation. An option is to add extra di�usion in the upwind d irection,

but this will be detailed with the variational formulation for CDR equat ions. For mixed

variational formulation, a powerful framework to design a stabilized Finite Element

method is the Variational Multiscale method (VMS): proposed by Hughes [30, 31], the

idea is to model the e�ect of the smallest scale structures of the 
ows, but to numerically

resolve only the large scales, so that the small scales are taken into account without an

explicit resolution. Formally, it consists in splitting both unkn owns and test functions

into a large ( resolved) part and a small ( unresolved) part. This decomposition is

then introduced in (2.30) leading to a large scale problem, with supplementary small

scale terms that will provide the desired stabilization, and a �ne scale problem, with

right hand sides being some residuals of the large scale. This problem is solved in an

approximate manner, and the �ne scale is reintroduced in the large scale problem. The

splitting for the unknowns and test functions is performed as follows:
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U = Uh

M
eU ) u = u h + eu (2.35)

V = Vh

M
eV ) v = vh + ev (2.36)

P = Ph

M
eP (2.37)

) p = ph + ep and q = qh + eq (2.38)

Introducing these decompositions in (2.30), one gets the large scale and �ne scale prob-

lems:

8
<

:

�
� @(u h + eu )

@t ; vh

�
+ ( � (u h + eu) � r (u h + eu); vh) + ( r (ph + ep); vh) + ( � r (u h + eu); r (vh)) = ( � g; vh)

(r � (u h + eu); qh) = 0
(2.39)

8
<

:

�
� @(u h + eu )

@t ; ev
�

+ ( � (u h + eu) � r )(u h + eu); ev) + ( r (ph + ep); ev) + ( � r (u h + eu); r (ev))) = ( � g; ev)

(r � (u h + eu); eq) = 0
(2.40)

2.2.2.3 Approximation for the �ne scale problem

The next step is to solve (2.40) to reintroduce ( eu ; ep) into ( 2.39). The �rst step is to

move all the large scale terms at the right hand side of the �ne scale problem, leading

us to de�ne large scale residuals:

R u;h = � g �
�

�@u h

@t
+ � (u h � r )u h) + r (ph) � r � (� r (u h))

�
(2.41)

R p;h = � r � u h (2.42)

To solve the �ne scale problem, some assumptions have to be made, the quality of the

stabilization depending on these assumptions, leading to di�erentfeatures of the �ne
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scale problem. See [32] for a detailed description of VMS methods for incompressible


ows:

� The subscales will not be tracked in time, but will remain time dependent, driven

by the large scale residuals. For examples with dynamic subscales, see [33, 34] and

[35]

� The non-linear convective term only retains the large scale velocity((u h + eu) �

r )(u h + eu) ' (u h � r )(u h + eu). The �ne scale problem is therefore linear. For

non-linear subscales, see [32].

� The subscales are assumed to vanish on inter-element boundaries, leading to lo-

cal contributions of each element to the global stabilization term. An extension

to non-zero inter-element subscales consists in treating the subscales values with

appropriate transmission conditions, see [36]

Now, the �ne scale problem can be expressed, in an abstract form, as follows:

Bu( eu ; ep) = R u (2.43)

Bp( eu ) = R p (2.44)

The principle is now to express the �ne scale only in terms of large scale residuals.

It consists in �nding a "good" approximation of inverses of operators Bu and Bp in a

spectral sense. This is done by using a Fourrier analysis [37], so that one �nally gets:

eu = � u � eU (R u;h ) (2.45)

ep = � p� eP (R p;h) (2.46)

where � eU and � eP stands for projection operator onto the spaceseU and eP. Taking the

projection operators equal to the identity on the considered space isusually referred to

as "Algebric Subgrid Scale", and will be done in this work. It is also possible to take as

orthogonal projection onto �nite element spaces, known as "Orthogonal Subscales" [37].

The values of the stabilization parameters� u and � p are obtained through the Fourrier

analysis of the �ne scale problem, leading to the following values, computed at element

level
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� u =
1

q
( c1 �

�h 2 )2 + ( c2ku h kK; 2
h )2

(2.47)

� p =

s

(
�
�

)2 + (
c2ku hkK; 2h

c1
)2 (2.48)

where h is the characteristic mesh size,ku hkK; 2 is the L 2 norm of the velocity on the

element. c1 and c2 are algorithmic constants. An interpretation about those constants,

available in [37], will be detailed for the CDR equation. It gives conditions on the values

of those constants, so that we will take herec1 = 4 and c2 = 2.

The particular VMS approach that we presented have demonstrated its e�ciency in

many situations: for NS problems only [38, 39], but also for coupled problems rising

from industrial applications [40{ 42] . However, we want to emphazise the fact the

VMS framework o�ers 
exibility to design other stabilized formulation s: Codina and

coworkers have proposed other formulations based on a di�erent treatment of the �ne

scale problem for incompressible 
ows [34, 37], 
ows with Corriolis forces [43], and

aerothermal coupled 
ows [33, 44]. An interesting interpretation about the dissipative

structure of the VMS was also presented [45]. We can also quote the work of Jiang and

coworkers [46] providing error estimates, the work of Gravemeier [47, 48] using a three-

scale VMS method, and publications with special treatment for turbulence [49],[50] and

compressible 
ows [51]. Similar techniques have also been successfully used for Stokes

[52, 53] and Darcy [54, 55] [56] 
ows. In a forthcoming chapter, we will see that the

VMS framework can be used for physical models very di�erent of 
uid dynamics.

2.2.3 Standard Galerkin Finite Element Method for the CDR equation

Since the CDR equation only involves one scalar equation, the classical Finite Element

theory applies here. Even though we demonstrated that this type of equation can be

encountered in various situations, the formulation and the stabilization is independent

of the physics. If we de�ne the following space:

V =
�

v 2 H 1(
) vj@
 D
= vD

	
(2.49)

homogeneousV0 and discreteVh spaces are naturally de�ned in the same manner than

in the previous section.

Multipliying by a test function w and integrating over the domain, one gets



Chapter 2 27

Find v 2 V such 8w 2 V0 (2.50)
(

( @v
@t; w) + B(v; w) = ( f; w )

B(v; w) = ( � � r (v); w) + ( � r (v); r (w)) + ( �v; w )
(2.51)

However, it can be shown that the formulation presented above fails forhigh Peclet

numbers. The following part is then dedicated to stabilization techniques.

2.2.4 Stabilization Techniques for the CDR equation

All the stabilization techniques relies, form a theoritical point of v iew, on modi�cation

of the test function. That kind of Finite Element methods, where t rial and test spaces

are not the same, is referred to as Petrov-Galerkin methods, at the contrary of Bubnov-

Galerkin method, when trial and test spaces are the same.

2.2.4.1 Streamline Upwind Petrov Galerkin (SUPG)

Historically, some numerical pollution were observed for High Peclet numbers. The

instability is therefore related to the convective phenomenon. The pioneering work of

Hughes [57] was based on the following idea: a one dimensional analysis with help of �nite

di�erences show that the upwind schemes give more accurate solutions when the Peclet

number rises (this can be related to the condition number of the globalmatrix), that can

be interpreted as the arti�cial di�usion coming from the numerical ap proximation of the

derivatives. A similar term can be obtained in a �nite element context by a modi�cation

of test function in the following manner:

e' = ' + � � � r (' ) (2.52)

2.2.4.2 Shock Capturing Petrov Galerkin (SCPG)

However, in some situations, the streamline direction is not the upwind direction (where

arti�cial di�usion is needed to stabilize the solution). For those si tuations, Galeo and

coworkers [58] extended the SUPG method in the direction of the gradient of the velocity.

The test functions are modi�ed accordingly
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Flow

x ix i � 1 x i +1

x ix i � 1 x i +1

' SUP G

' Galerkin

' = 0

' = 1

' = 1

' = 0

Figure 2.2: Illustration of 1 d shape function modi�cation

e' = ' + � SUP G� � r (' ) + � SCP Gw � r (' ) (2.53)

w =

8
<

:

� � r (' )
kr (' )k2

r (' ) if r (' ) 6= 0

0 if r (' ) = 0
(2.54)

The additional velocity w is nothing but an orthogonal projection of the advection �eld

� onto the gradient of the shape functions.

2.2.4.3 Derivation of the stabilization parameters: a link between SUP G

and VMS

The SUPG and SCPG both rely on adding arti�cial di�usion in a certain dir ection.

However, adding "too much" extra di�usion can modify substantially the solution, ren-

dering it physically irrelevant. Two parameters � SUP G and � SCP G were introduced in

the previous section, in order to tune the stabilization to only add the required amount

of di�usion. An appropriate choice of those parameters is therefore critical in the design

of a stabilized Finite Element Method. The values for those parameters were obtained

following the lines in [57{ 59], are:
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� SUP G =
1

q
(c1

2k� kK; 2
h )2 + ( c2

�
h2 )2 + � 2

(2.55)

� SCP G =
h

2k� kK;c

 (

k� kK;c

k� kK; 2
) (2.56)

where 
 (x) = 2 x(1 � x) and k� kK;c ==

8
<

:

� � r (' )
kr (' )k2

if r (' ) 6= 0

0 if r (' ) = 0
. c1 and c2 being

algorithmic coe�cient similar to the ones evoked for NS equations.

A fully detailed derivation is available in the references quoted above. However, the VMS

framework presented in the context of NS equation o�ers a systematic andrigorous

way for deriving the SUPG parameter ( The SCPG term consists just in a di�erent

computation of the upwind velocity), and such a derivation provides insight about the

values of the algorithmic constants.

The �rst step consists in a scale splitting for both trial and test fu nctions

V = Vh

M
eV ) v = vh + ev (2.57)

V0 = V0;h

M
eV0 ) w = wh + ew (2.58)

Introducing ( 2.57) in ( 2.50) gives one coarse scale problem and one �ne scale problem

(
@(vh + ev)

@t
; wh) + B((vh + ev); wh) = ( f; w h) (2.59)

(
@(vh + ev)

@t
; ew) + B((vh + ev); ew) = ( f; ew) (2.60)

The methodology is similar as before: the �ne scale problem has to be approximated to

be reintroduced in the coarse scale problem. To this end, we de�nea residual for the

CDR equation, and using similar notations

R(vh) = f �
@vh
@t

� � � r (vh) + r � (� r (vh)) � �v h (2.61)

under the same assumptions which detailed for the �ne scale problem ofNS equations,

(2.60) can be re-arranged into
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(� � r (ev); ew) � (r � (� r (ev); ew) + ( � ev; ew) = (� eV (R(vh)) ; ew) (2.62)

) (� � r (ev) � r � (� r (ev) + � ev � � eV (R(vh)) ; ew) = 0 8 ew 2 eV (2.63)

The last equality says nothing other than the left term of the inner product is zero. To

obtain an approximation of the �ne scale ew = � � eV (R(vh)), we follow the pioneering

work of [37] by introducing a Fourrier transform over an element K with respect to the

space dimension.

bv(k ) =
Z

K
v(x ) exp(� i

x � k
h

)dK (2.64)

applying this transform to ( 2.62), one gets

(
i � � k

h
�

kkk2�
h2 + � )bev = \� eV (R(vh)) (2.65)

Using the Plancherel equality and the mean value theorem, the following expression for

� can be obtained

� =
1

q
(kk kK; 2k� kK; 2 cos((� �k ))

h )2 + ( � kk kK; 2
2

h2 )2 + � 2
(2.66)

by setting c1 = kkkK; 2 cos((� � k )) and c2 = kkkK; 2, it is straightforward that c2
1 � c2,

therefore c1 = 2 and c2 = 4 are appropriate values. Some modi�ed parameters can

be considered, to include unsteady e�ects or to ensure a correct asymptotic behaviour

regarding the Peclet number, so that the stabilization vanishes when not needed, but we

refer the reader to [1] and references therein. The choice of a characteristic mesh sizeis

not straighforward either, and will be detailed in the next chapter.

Now that all the ingredients for the numerical approximation of the physical models

presented above was detailed, the next section is devoted to several numerical examples

to assess the robustness and accuracy of the presented formulations. Cases of natural

convection will be presented, in 2d as well as in 3d.
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2.3 Numerical experiments

2.3.1 Natural convection in an empty cavity

The considered case models a square cavity of lenghtL = 1 :0m, with left and right

walls maintained at �xed temperatures Th and Tc, respectively. Compressibility e�ects

are modelled using the Boussinesq approximation. The physical parameters are chosen

here to obtain the desired Rayleigh and Prandtl numbers, as depicted in the appendix

A. The horizontal walls are considered adiabatic. The initial condition for temperature

is T0 = Tc+ Th
2 . Regarding the 
ow computation, classical boundary conditions are used.

We plot the adimensionnal temperature � , de�ned by � = T � Tc
Th � Tc

. We propose here

to explain the variations of temperature and velocity patterns with varying Rayleigh

numbers from 102 to 108.

Figure 2.3: 2d Empty cav-
ity: iso temperature for Ra =

102

Figure 2.4: 2d Empty cav-
ity: streamlines for Ra = 102

Figure 2.5: 2d Empty cav-
ity: iso temperature for Ra =

103

Figure 2.6: 2d Empty cav-
ity: streamlines for Ra = 103

For Ra = 102 and Ra = 103, the temperature patterns correspond to almost only the

di�usion, with a single recirculation zone at the center of the cavity. For Ra ranging

from 104 to 107, the iso-lines becoming closer to southwest and northeast boundaries,

showing the formation of thermal boundary layers, as we can see on the curves. The
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Figure 2.7: 2d Empty cav-
ity: iso temperature for Ra =

104

Figure 2.8: 2d Empty cav-
ity: streamlines for Ra = 104

Figure 2.9: 2d Empty cav-
ity: iso temperature for Ra =

105

Figure 2.10: 2d Empty cav-
ity: streamlines for Ra = 105

Figure 2.11: 2d Empty cav-
ity: iso temperature for Ra =

106

Figure 2.12: 2d Empty cav-
ity: streamlines for Ra = 106

recirculation becomes more curved asRa increases, creating secondary recirculation

zones at the vicinity of the main one ( 2 for Ra = 105, 3 for Ra = 106 and 5 for

Ra = 107). The results for Ra = 108 shows streamlines becoming chaotic, the 
ow

becoming turbulent for those values. The use of a turbulence modelwould be necessary

for higher values ofRa.

However, even though each value ofRa produces a curve of a certain shape, di�erent set

of parameters can lead to such a value. Hence, these curves are not a su�cient tool for
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Figure 2.13: 2d Empty cav-
ity: iso temperature for Ra =

107

Figure 2.14: 2d Empty cav-
ity: streamlines for Ra = 107

Figure 2.15: 2d Empty cav-
ity: iso temperature for Ra =

108

Figure 2.16: 2d Empty cav-
ity: streamlines for Ra = 108
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Figure 2.17: 2d Empty cavity: �
along y = 0 :5 for the considered range

of Ra
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Figure 2.18: 2d Empty cavity: u2

along y = 0 :5 for the considered range
of Ra

the validation of our code. The comparison will then be performed on a local version of

the Nusselt number presented in the chapter 1, de�ned as follows:

Nuconv =
L

� (Th � Tc)

Z 1

0

@T
@x

(0; y)dy (2.67)
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The obtained values are compared with some of the ones available in literature in the

table below:

P P P P P P P PPreference
Ra

103 104 105 106

De Vahl [60] 1.118 2.243 4.519 8.8
Kalita and al. [ 61] 1.118 2.243 4.521 8.831
Dixit and al. [ 62] 1.118 2.286 4.5463 8.652
present work 1.13 2.445 4.661 8.446

Table 2.1: 2d Empty cavity: comparisons with benchmark solutions

One can see that the maximum discrepancy between the obtained results and the ref-

erences does not exceed 5%. It is straightforward to extend this caseinto a three

dimensional version by an extrusion in thez dimension. All quantities are symetric

around the point x c = (0 :5; 0:5; 0:5). The temperature remains invariant by translations

in the z direction, since adiabatic walls have no in
uence on the temperature patterns,

and the velocity pro�le is symetric around the z = 0 :5 plane, as it is displayed on the

streamlines, plotted along the linel c = (1; 1; 1) and the center point x c.

Figure 2.19: 3d Empty cav-
ity: streamlines along l c for

Ra = 103

Figure 2.20: 3d Empty cav-
ity: streamlines around x c

for Ra = 103

Figure 2.21: 3d Empty cav-
ity: streamlines along l c for

Ra = 104

Figure 2.22: 3d Empty cav-
ity: streamlines around x c

for Ra = 104

For symmetry reasons exposed earlier, the pro�les of temperature and velocity are sim-

ilar to the ones obtained in the two dimensionnal case, but we will perform a similar
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Figure 2.23: 3d Empty cav-
ity: streamlines along l c for

Ra = 105

Figure 2.24: 3d Empty cav-
ity: streamlines around x c

for Ra = 105

Figure 2.25: 3d Empty cav-
ity: streamlines along l c for

Ra = 106

Figure 2.26: 3d Empty cav-
ity: streamlines around x c

for Ra = 106

Figure 2.27: 3d Empty cav-
ity: iso temperature surfaces

for Ra = 103

Figure 2.28: 3d Empty cav-
ity: iso temperature surfaces

for Ra = 104

Figure 2.29: 3d Empty cav-
ity: iso temperature surfaces

for Ra = 105

Figure 2.30: 3d Empty cav-
ity: iso temperature surfaces

for Ra = 106

validation than in 2 d by comparing values of Nusselt numbers to the ones available in

literature, even though there are less references available for the3d case. These results

are summarized in the following table
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P P P P P P P PPreference
Ra

103 104 105 106

Wakashima and al. [63] - 2.0634 4.3713 8.77
Tric and al. [64] 1.07 2.054 4.337 8.64
present work 1.09 2.188 4.76 8.22

Table 2.2: 3d Empty cavity: comparisons with benchmark solutions

2.3.2 Natural convection in a cavity containing a plate

The second problem, proposed in [65], is another natural convection example with a

heated plate atTh inside a cavity of lenght L = 1 :0m with horizontal walls maintained at

Tc. Two con�gurations, with a plate at horizontal and vertical positions, are c onsidered.

No mention about the plate thickness is available in the reference, so we set a thickness of

0:02m, corresponding approximately to one characteristic mesh size. As inthe previous

case, homogeneous Neumann boundary conditions are applied on horizontal walls.The

following pictures represent the iso-temperature lines on the left, and velocity patterns

on the right. The results, in terms of iso temperature and streamlines, are in good

agreement with [65] for Ra = 106, but like in the previous case, we display the evolution

of the results with increasing Rayleigh. The patterns for lowRa will not be displayed,

since they are representative of di�usion only. Three dimensionnalversions of these

cases will be presented, but, to the best of author's knowledge, results about such cases

are not available in literature, so the validation step will not be adressed.

2.3.2.1 Horizontal plate

A similar behaviour of the aforementionned can be observed than in the previous case

with boundary layers forming on the upper part of the vertical walls. The patterns in

the lower part of the cavity are almost homogeneous cold temperature and low velocity,

the compressibility e�ects making the hot 
uid rise in the upper part of the cavity. The

plate impacts the 
ows, small recirculation zone forming close to thehorizontal limits

of the plate and regrouping in a bigger one as the convection e�ect increases.

The obtained results were compared with the ones with the reference, in terms of adi-

mensional temperature on the top horizontal wall

A small di�erence is observed, which can be explained by the fact that a high order

�nite di�erence method was used in the reference. In fact, in order to eliminate bias,

it would be more coherent to make comparison between BF results obtained using our
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Figure 2.31: 2d Horizon-
tal plate: iso temperature for

Ra = 104

Figure 2.32: 2d Horizontal
plate: velocity for Ra = 104

Figure 2.33: 2d Horizon-
tal plate: iso temperature for

Ra = 105

Figure 2.34: 2d Horizontal
plate: velocity for Ra = 105

Figure 2.35: 2d Horizon-
tal plate: iso temperature for

Ra = 106
Figure 2.36: 2d Horizontal
plate: velocity for Ra = 106

code with the same numerical formulation, and the consistency of the method which we

will expose in the next chapter.

A three dimensional version of this case was considered, as an extrusionof the two-

dimensional case in thez direction to consider a unit cube. The plate thickness in thez

direction was set to 0:5 in order to have symmetric results in thez direction likewise in

the x direction. This symmetry can be observed on the normalized temperature patterns

and on streamlines.
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Figure 2.37: 2d Horizontal plate: �
along y = 0 :65 for the considered range

of Ra
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Figure 2.38: 2d Horizontal plate: u2

along y = 0 :65 for the considered range
of Ra
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Figure 2.39: 2d Horizontal plate: � along y = 1 :0

Figure 2.40: 3d Horizontal
plate: temperature pattern
in symetry planes for Ra =

103

Figure 2.41: 3d Horizontal
plate: temperature pattern
in symetry planes for Ra =

104

It would be possible to only simulate a quarter of the e�ective domain with appropriate

boundary conditions, and deduce the whole results by symmetry, as itcan be seen on
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Figure 2.42: 3d Horizontal
plate: temperature pattern
in symetry planes for Ra =

105

Figure 2.43: 3d Horizontal
plate: temperature pattern
in symetry planes for Ra =

106

Figure 2.44: 3d Horizontal
plate: streamlines in symetry

planes for Ra = 103

Figure 2.45: 3d Horizontal
plate: streamlines in symetry

planes for Ra = 104

Figure 2.46: 3d Horizontal
plate: streamlines in symetry

planes for Ra = 105

Figure 2.47: 3d Horizontal
plate: streamlines in symetry

planes for Ra = 106

the 3d isotemperature surfaces.

Figure 2.48: 3d Horizontal
plate: iso temperature sur-

faces forRa = 103

Figure 2.49: 3d Horizontal
plate: iso temperature sur-

faces forRa = 104
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Figure 2.50: 3d Horizontal
plate: iso temperature sur-

faces forRa = 105

Figure 2.51: 3d Horizontal
plate: iso temperature sur-

faces forRa = 106

2.3.2.2 Vertical plate

For this case, it is interesting to remark that for Ra = 105 and Ra = 106, close to the

center of the plate, the situation is similar to what happens in the empty cavity. One

can note that, at this location, the iso temperature lines display the same shape as in the

empty cavity. However, the velocity is di�erent due to the absence of a solid boundary

at the upper limit of the plate. We can observe two symmetric small recirculation zones

between the plate and solid boundaries, in the direction of the iso-temperature lines for

Ra = 104, the shape becoming more complex when convection increases.

Figure 2.52: 2d Vertical
plate: iso temperature for

Ra = 104

Figure 2.53: 2d Vertical
plate: velocity for Ra = 104

Figure 2.54: 2d Vertical
plate: iso temperature for

Ra = 105

Figure 2.55: 2d Vertical
plate: velocity for Ra = 105
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Figure 2.56: 2d Vertical
plate: iso temperature for

Ra = 106

Figure 2.57: 2d Vertical
plate: velocity for Ra = 106
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Figure 2.58: 2d Vertical plate: �
along y = 0 :8 for the considered range

of Ra
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Figure 2.59: 2d Vertical plate: u2

along y = 0 :8 for the considered range
of Ra

As in the previous case, we compared the obtained results in terms of temperature

along the top horizontal wall. For the same reasons exposed earlier, a small di�erence

is observed but the discrepancy remains small.

The 3d version of this problem was adressed, the extension being in the samefashion as

in the two other cases. One can observe the symmetry of the temperature with respect to

the plane of equationz = 0 :5 , and symmetry of the velocity streamlines with respect to

x c, the above pictures presenting temperature patterns and streamlines in planez = 0 :3,

z = 0 :5 and z = 0 :7, respectively.

The iso temperature surfaces display, as for the horizontal case, someartifacts can be

seen at the location of thermal boundary layers. It would be possible tohave more proper

iso surfaces by using a �ner mesh, but on the one hand, the mesh usedhere is made up

of about 1 million elements, so using a �ner mesh could seem like an exageration, and

on the other hand, we will see in the next chapter that the monolithic methods we will

make use require �ne meshes.
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Figure 2.60: 2d Vertical plate: � along y = 1 :0

Figure 2.61: 3d Vertical
plate: temperature patterns

for Ra = 103

Figure 2.62: 3d Vertical
plate: streamlines for Ra =

103

Figure 2.63: 3d Vertical
plate: temperature patterns

for Ra = 104

Figure 2.64: 3d Vertical
plate: streamlines for Ra =

104

Conclusions

This chapter has demonstrated the potential of the stabilized �nite element formulations

for the physical models of interest presented above. The resultsshown are satisfactory in

the range ofRa, and were validated in terms of local quantites ( temperature) as wellas

on global quantities ( Nusselt numbers). 2d and 3d problems can be treated indi�erently,

even though �ner meshes have to be considered for 3d simulations. The question of the
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Figure 2.65: 3d Vertical
plate: temperature patterns

for Ra = 105

Figure 2.66: 3d Vertical
plate: streamlines for Ra =

105

Figure 2.67: 3d Vertical
plate: temperature patterns

for Ra = 106

Figure 2.68: 3d Vertical
plate: streamlines for Ra =

106

Figure 2.69: 3d Vertical
plate: iso temperature for

Ra = 103

Figure 2.70: 3d Vertical
plate: iso temperature for

Ra = 104

Figure 2.71: 3d Vertical
plate: iso temperature for

Ra = 105

Figure 2.72: 3d Vertical
plate: iso temperature for

Ra = 106

convergence with respect to the mesh size was not adressed in this chapter, but will be

in the next, along with the type of meshes that will be introduced in the next chapter.
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R�esum�e fran�cais

Ce chapitre d�ecrit les mod�eles physiques et les m�ethodes de r�esolution num�erique utilis�ees

tout au long de ce travail. On d�etaille pour la m�ecanique des 
uides incompressibles,

les �equations de Navier-Stokes, les di��erents types de conditions aux limites et initiales

envisag�ees. Le reste de la physique mod�elis�ee ici, �a l'exception du rayonnement, peut

être d�ecrit au moyen d'une equation de convection-di�usion-r�e action g�en�erale, ou les

sp�eci�cit�es relatives �a chaque mod�ele ( equation de l'�ener gie, mod�ele de turbulence,

mod�ele de rayonnement P1) sont introduites et d�etaill�ees une par une. Le probl�eme

d'a�erothermie coupl�ee est ensuite pr�esent�e. La seconde partie de ce chapitre est con-

sacr�ee aux formulations aux �el�ements �nis utilis�ees: on d�eriv e les formulations faibles �a

partir des probl�emes continus, on y rappelle les notions n�ecessaires aux approximations

�el�ements �nis classiques ainsi que leurs limitations pour les probl�emes consid�er�es. On

pr�ecise ensuite les m�ethodes de stabilisation utilis�ees, bas�e sur l'approche variationnelle

multi-�echelle, en terme de laquelle on peut interpr�eter les m�ethodes plus classiques, telles

que la m�ethode SUPG. Ces m�ethodes sont illustr�ees sur des exemples illustratifs issus

de la litt�erature en 2 d et 3d, ou l'on observe une bonne corr�elation entre les r�esultats

obtenus et ceux pr�esent�es dans les r�ef�erences.
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The Monolithic approach:

levelset methods, anisotropic

mesh adaptation and mixing laws

The previous chapter was dedicated to the physical models of interest in this work,

and the mathematical formulations to obtain numerical solutions of the aforementioned

models. However, problems rising from industrial applications often present di�erent

components: in a furnace, not only the surrounding 
uid is of interest, but also the

solid boundaries that limit the enclosure, and, the most important, the ingots inside the

enclosure. Let us recall that the goal of this work is the direct numerical simulation

of heat transfer in material forming processes. Therefore, even though an accurate

description of the 
ow and heat transfer inside the 
uid is important to achieve a better

control of the facility, the critical point is the temperature insid e the ingots, since the

temperature time story inside the solid parts have a strong in
uence on the mechanical

properties of the �nal products, at the macroscale ( yield limit, fati gue strenght) as well

at the microscale ( microstucture, cluster, surface roughness). The classical approach,

usually referred to as the "Body-�tted" approach, is what we used in the previous

chapter: the solid and the 
uid computations are performed on separated meshes, the


uid domain containing a "hole" at the location of the solid part, and an appropr iate

coupling is required to ensure the communication at the interface between models. Even

though this approach is used in many commercial softwares, it has some well-known

drawbacks:

� When complex geometries for the ingots are considered, the construction of an

appropriate mesh can be very time consuming. Moreover, di�erent softwares are

45



Chapter 3 46

based on di�erent numerical methods, therefore the mesh requirements are di�er-

ent for each software, rendering more di�cult the task of designing a mesh for a

speci�c application.

� A change in the position of the ingots means rede�ning the whole mesh. This

becomes more problematic when solids move during the process, as itis often

the case, since at each change of mesh, all the boundary conditions have tobe

rede�ned, which is a tedious task for complex geometries.

� The Body �tted approach often models the convection at the interface 
uid-solid

with boundary conditions of type � � r (T) � n = hconv(T � Tw), hconv being the

convection coe�cient. As explained in chapter 1, this convection coe�cient can be

obtained by di�erent ways: correlations between adimensional numbers through

the Vaschy-Buckingham or inverse problems, but such coe�cients are very depen-

dent on the con�guration inside the facility ( position of ingots and burne r/nozzles,

inlets velocities, physical properties of the 
uid).

For all the reasons mentionned, as we want to design "general" numerical tools, in the

sense that it should be adapted to a broad range of situations, a classical body-�tted

approach does not seem well adapted. To circumvent these issues, wepropose to use

an immersed volume method (IVM), consisting in treating both solids and 
uids on a

single mesh and with a single set of equations being solved for the wholedomain, that is

to say, in a monolithic way. The �eld of immersed methods have attracted the attention

of many researchers in the past few years, with applications to di�erent types of 
ows,

such as Stokes 
ows [66], incompressible viscous 
ows [67, 68], 
uid-structure interaction

with rigid [ 69],[70],[71] and 
exible bodies [72]. Heat transfer in a monolithic context

was only adressed very recently, with applications to biology [73] and phase change [74].

The immersed volume method that is going to be described was already successfully

applied to di�erent situations [ 38, 40, 42], but the main characteristics will be recalled

in this chapter, and supplementary validation test will be performed.

The three main features of an immersed method are:

� The representation of interfaces.

� The construction of a mesh to properly capture the interface phenomena.

� The assessment of e�ective physical properties for di�erent domains.

Each of the three aforementionned points will be the object of a subsection in this

chapter
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3.1 Representing interfaces using a levelset framework

The �rst issue is how to represent the interfaces between 
uidand di�erent solids. To

this end, an interesting approach constists in using levelset functions (see [75] for a good

review). It is used in many domains as computer vision, optimization [76] and image

processing. The principle is to de�ne a signed distance function� (x ), positive inside the

considered object and negative outside. Formally, it reads, � representing the 
uid-solid

interface:

� (x ) =

(
d(x ; �) if x 2 
 solid

� d(x ; �) if x =2 
 solid
(3.1)

where d(x ; �) is given by

d(x ; �) = min
y 2 �

kx � yk2 (3.2)

For simple geometries, as with circles of polygons,� can be determined analytically

from geometric parameters. For more complex geometries, the consideredobject is �rst

modelled using CAD tools, (CATIA c
 for instance) and a surface mesh of the object is

generated. This surface mesh is then "merged" into a background mesh,and we make

use of the algorithm depicted in [77] to compute the levelset on the main mesh. Here

we see displayed the levelset functions a circle and a square centered on (0:5; 0:5), the

computational domain being [0; 1] � [0; 1].

Figure 3.1: levelset Func-
tion of a circle

Figure 3.2: levelset Func-
tion of a square

It is also possible to make the levelset function "move" in the computational domain.

This is achieved by introducing a supplementary equation ruling the evolution of the

levelset function as follows:
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@�
@t

+ U � r (� ) = 0 (3.3)

U being a transport velocity ( a rigid body velocity in the case of moving objects, a

convective velocity in the case of multiphase 
ows ). Many researchers have worked

on those reinitialization techniques for interface tracking [78{ 80], with applications for

Stokes 
ows [81] . levelset functions can be used in a di�erent context as well, like

contact- mechanics [82] and metal microstructure modelling [10]. Some applications

to Fluid-Structure interaction [ 83] can be noted as well. This approach, consisting in

modelling the solid using levelset functions is interesting, since it provides a convenient

representation of the solid , and this representation has the potentialto model solids of

very complex geometries [5]. However, since most of the critical phenomena occur at the

interface 
uid-solid ( boundary layers, convective transfer, forces applied on the solid,..),

it is desirable to dispose of an appropriatediscrete representation of the interface, since

the interface will, in the end, be represented on a mesh. Di�erent options are possible

to track the interface: by using another mesh or by moving on the background principal

mesh as done [84], in order to track the interface, follow "e�ective" nodes and edgesof

the mesh being representative of the interface following the lines in [85]. However, this

is di�cult to achieve, particularly when complex geometric forms are of interest. We

will follow another approach that consists in the construction of a mesh "adapted" to

the representation of the considered levelset function, in a sense to be de�ned later on.

The purpose of the next section is to introduce the tools necessaryto the construction

of such meshes

3.2 Error estimators, metric �elds and anisotropic mesh

adaptation

3.2.1 Error estimation

3.2.1.1 Motivations

Formally, a mesh is de�ned as a collection of polygons, composed of vertices, edges and

faces, that de�nes a polyhedral object. As stated in the previous chapter, it is a natural

way to construct an approximation 
 h of the computational domain 
. If di�erent forms

of polygons ( also referred to as simplices, cells in a �nite volume context, elements in

a Finite Element context) can be considered ( triangles, quandrangles, hexahedras),

the question of buidling a mesh suitable for the desired applicationis common to all

kinds of meshes. It is common to introduce more elements in the location of "sharp"
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phenomena ( close to boundary for instance), but this requires ana priori knowledge

of the considered system. Therefore, it is desirable to have at handgeneral tools to

achieve such an understanding of the underlying model, sometimesa �rst calculation is

necessary to have ana posteriori knowledge of the solution and adapt the computation

afterwards. To introduce the concepts necessary to such an analysis, let us consider an

abstract problem under the following form:

L (u) = f (3.4)

whereL (� ) stands for a di�erential operator representing the considered PDE( including

the boundary conditions, forcing terms and model parameters),f is a forcing term

and u is the solution that we are looking for. Under certain assumptions (regularity,

coercivity) on L and f , functional analysis theory can provide information (existence,

unicity, regularity regarding datas) regarding the exact solution of this problem, that

will be denoted uex in the following. Using the techniques described in the previous

chapter, one can transform the problem into a weaker one, in order to be able to obtain

an approximate solution uh , so that the discrete abstract problem reads:

B(uh ; v) = l(v) 8v 2 Vh (3.5)

Knowing this, one can de�ne the approximation error e h , as follows:

eh = uex � uh (3.6)

eh will be evaluated with an appropriate norm, depending on the considered problem.

Two main approaches to study the behaviour of this error can be quoted:

� A priori error estimation: this approach consists in using the functional analy-

sis theory to assess the order of convergence of the considered method, based on

mathematical assumptions ( properties of the PDE, regularity of the datas, type

of boundary conditions, properties of the numerical formulation). Sucherror es-

timations are often presented in the form kehk � Chp, where C is a constant

independent of the mesh,h is the characteristic mesh size, and the exponantp

is related to the order of interpolation of the chosen approximation. However,

that kind of result is valid only asymptotically (i.e. when h ! 0), hence such an

approach is impossible to use in pratice.
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� A posteriori error estimation: this approach is di�erent in the sense that it makes

use of the approximated solution to compute the approximation erroreh . This can

be done by di�erent ways, depending on the considered physics.

The following subsection is dedicated to a short overview of error estimations techniques.

3.2.1.2 Approximation error

Since the Finite Element method was originally applied to structural mechanics, the

foundations of error estimation are related to such problems. One can quote at least

three di�erent approaches:

� Following the pioneering work in [86], an option is to make use of Finite Element

residuals: using the Galerkin orthogonality, one can show that the erroreh is the

solution of a variational problem similar to the original one, with a Finite Element

residual as a right hand side. It is interesting to remark how such residual-based

methods echoe with the VMS stabilization evoked in the previous chapter.

� Another option is to exploit the lack of regularity of the Finite Element solution

[87{ 89]. The computation of the approximation error therefore consists in the

construction of a smoothed approximation. Such methods are really simple and

easy to implement, but they su�er from a lack of good properties, even though

improved versions can be considered.

� A third option consists in de�ning a measure of the error with respect to the

constitutive relationship [90], but with a step for the construction of a more regular

solution with techniques such as 
ux equilibration. It o�ers a inte resting framework

but not suited for CFD, since the non linearity comes from the convective term

and not from the constitutive relation.

One can see [91], [92] or [93] for reviews on error estimation foradaptive Finite Element

formulations, but such topics are still attracting interest of many research teams, ex-

tending error estimation approaches to new problems: for linear elasticity, we can quote

[94] in the context of model reduction, [95] for mixed augmented method with Lagrange

multipliers and [96] for VMS formulation in elasticity. Some examples in di�erent con-

texts are available as well, adressing the question ofgoal oriented estimation, when one

wants to estimate not the global error of the problem, but on a quantity of interest: [97]

for Poisson equation, [98] for linear transport and di�usion, [ 99] for di�usion-reaction

systems and [100] for Maxwell equations. A great e�ort was also devoted to such studies
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for Navier-Stokes equations, with special focus on turbulence [101] [102] [103], and some

study for VMS based stabilization methods [104]. However, in our context, on the one

hand we are considering multiphysic problems, so it is desirable to use an error esti-

mation valid for all models, and on the other hand, we are looking for an estimator to

adapt the mesh only. Therefore, the next subsection introduces the framework to study

the interpolation error that will be used in this work.

3.2.1.3 Interpolation error

We start by recalling the Cea lemma that states, for linear problems:

9C 2 R; 8v 2 Vh ; kuex � uhk � Ckuex � vk (3.7)

where C is again a constant independent of the mesh. One can see that, for a suitable

choice ofv, it is possible to obtain a quantity that is an upper bound for the approxima-

tion error. We introduce the Clement interpolation operator, where V is the functional

space whereuex lies

� h : V ! Vh (3.8)

Roughly speaking, � h can be understood as a projection operator onto the Finite element

mesh. Settingv = � h(uex), the quantity kuex � � h(uex)k, referred to as theinterpolation

error appears to be a good choice to control the approximation error. Moreover,the

interpolation error only measures the error made when a function is represented on a

mesh, and therefore seems a natural tool to use for mesh adaptation. The general idea of

the mesh adaptation is to compute such an interpolation error once a �rst calculation has

been done, and to construct a new mesh by equidistributing the error. However, as it was

shown in the previous chapter with the SUPG and SCPG methods, some phenomenoma

present a natural anisotropy ( in the direction of the upwinding velocity). Following the

same idea, an interesting lead is to consider a mesh composed of elements presenting

similar characteristics, i.e. with a prefered direction aligned with the one of the gradient

of the �eld to be represented. The purpose of the next sections is to introduce the

theoritical framework necessary for the construction of such meshes using the notion of

metrics.
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3.2.2 Change of geometry: metric �elds

It is classical to say that a geometry is de�ned once a scalar product andits associated

norm are at hand. The usual Euclidian space considers what we refer to as the "canon-

ical" scalar product. However, it is possible to de�ne many other scalar products just

with the help of a symmetric de�nite postive matrix M 2 Rd� d, such that the associated

scalar products and norms are as follows:

(x ; y )M = x T M y (3.9)

kx kM =
p

x T M x (3.10)

If we consider an element of the mesh, the de�nition of a single characteristic mesh size

for the element ( even more for the whole mesh) is not well suited for anisotropy. Hence,

if we want to de�ne characteristic mesh sizes in each direction (hx ; hy ; hz), a natural way

to de�ne a metric M K for the element is the following:

M =

2

6
6
4

1
(hx )2 0 0

0 1
(hy )2 0

0 0 1
(hz )2

3

7
7
5 (3.11)

By doing so, each tetrahedron ( triangle in 2d) is equilateral with respect to its natural

metric. For the case of an isotropic element of sizeh, the metric is an homothety of ratio
1

h2 . Therefore, the problem of the construction of a mesh adapted to the representation

of a given function is replaced by the following problem: for a given error estimate, how

to build local metrics for each element, so that they will be adaptedto represent a given

function. We notify that the use of such elements make the de�nition of a characteristic

length for an element even more di�cult. Even if di�erent options are possible, for the

length appearing in the de�nition of the stabilization parameters in chapter 2, we follow

the lines in [40].

Even though other alternatives are possible ( see [105] and references therein), we will

present two di�erent approaches that are used in our library

3.2.2.1 Metric construction by length distribution tensor

In this case, the metric map is constructed directly at the nodes ofthe mesh. The

construction of the metric relies on the notion of length distribution tensor and permits
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Figure 3.3: Illustration of anisotropic elements

to de�ne an edge� basederror estimator. We will recall here the main steps of the

construction, but for more information, the reader can refer to [106] or [4]: let us start

by introducing some useful notations:

Table 3.1: Notations for the mesh.

Notations De�nitions
d dimension of space

K set of elements

N set of nodes

K 2 K mesh element

X i , i 2 N vector of coordinates for thei th node

X ij = X i � X j edge vector made of nodesi and j sharing at least one element

hij = jX ij j edge length

�( i ) = f j 2 N ; 9K 2 K ; X ij 2 K g set of nodes connected to nodei ("patch")

j�( i )j cardinal of the set �( i )

The Length Distribution Tensor is de�ned by

X i =
d

j�( i )j

X

j 2 �( i )

X ij 
 X ij (3.12)

This tensor will appear in the construction of an interpolation error that measures

the accuracy of the process of building a continuous gradient from values at nodes of

the mesh. This reconstructed gradientG i is de�ned using the following minimization

problem
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G i = arg min
G

0

@
X

j 2 �( i )

jG :X ij � U ij j2

1

A (3.13)

where U ij is the nodal value of a �eld approximated in the interpolation space. The

solution of this problem is given by:

G i = ( X i ) � 1U i (3.14)

We can now turn to the de�nition of the interpolation error estimator eij , which is given

by:

eij = G ij � X ij (3.15)

This estimator is then used to to compute a stretching factorsij , based on a principle

of equidistributed error e for all lengths, with a �xed number of nodes N , which leads

to the following de�nition of the stretching factor

sij =
�

e
e(N )

� � 1
2

=

0

@

P

i
ni

N

1

A

2
d

e� 1=2
ij ; (3.16)

with ni = det

 
d

j�( i ) j

P

j 2 �( i )
s� 1

ij
X ij

jX ij j 
 X ij

jX ij j

!

Then, the new metric can �nally be de�ned:

fM i =
j�( i )j

d

�
fX i

� � 1
; (3.17)

where fX i is computed by substituting X ij with gX ij = sij X ij . However, even though

this approach is interesting in the sense that it exploits an analogy with an orientation

tensor, the construction of the metric relies on geometric characteristics only. Another

approach is possible, based on a di�erent philosophy, and will be detailed in the next

part.
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3.2.2.2 Metric construction using an hessian based error estimator

Here again, the reader can refer to [107], but we recall here the components of the

approach. This philosophy is di�erent than the previous one in the sense that we make

use of higher order derivatives. If we come back to (3.7), one can show

kuex � uhkp � Ckuex � vkp � C(
X

K 2K

kH (uex)(x )kp
K;p )

1
p (3.18)

where H (uex)(x) = D2(uex)(x )(x � xK )(x � xK ), D2(uex)(x) stands for the hessian

matrix of uex and xK being the barycenter of elementK . The computation of the error

estimator is based on a recovered HessianHR (uex)(x), obtained through techniques

depicted in [88, 89]. Using this the following error estimates can be obtained, with

� � 0:

kuex � uhkp � Ckuex � vkp �
C

0

card(K) � kHR (uex)(x )kp (3.19)

The local metric is de�ned acording to the recovered Hessian, related to its eigenvectors

(ei )1� i � d ( HR (uex)(x ) is a real symmetric matrix due to the Schwartz theorem) and

the mesh sizes in each corresponding directions (hi )1� i � d, as follows:

M =
dX

i =1

1
hi

ei 
 ei (3.20)

However, even thoughH (uh)(x) appears as a good candidate for the recovered hessian,

it cannot be used directly as a metric, since it is not guaranteed to bepositive-de�nite.

If we denote by (� i )1� i � d its eigenvalues, we can de�ne

H = R� R T (3.21)

with R being a rotation matrix formed of (ei )1� i � d as column vectors ( the order being

re-arranged to form an orthonormal basis), and � = diag(j� i j1� i � d). That allows us to

de�ne an error estimator "K on each elementK and an upper bound
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"K =
� Z

K
(H (uh)(xK )(x � xK )(x � xK ))p

� 1
p

(3.22)

) "K �

 Z

K

dX

i =1

� i (xK )h2
i

! 1
p

(3.23)

In the following, the two metrics will be referred to as "Edge-based" metric and "Hessian-

based" metric, respectively. A proper comparison of the two metrics could be performed

by using "exotic" analytical functions, but will not be performed in t his thesis, since

the two approaches lead to similar results, even though the "Hessian-based" approach is

simpler to implement. Now that we exposed two approaches to compute anisotropic error

estimators, it is necessary to construct a mesh with respect to those error estimators, in

a way described in the next section.

3.2.3 Mesh adaptation algorithms

The construction of a mesh is, in general, not an easy task. It is easy in the case of

structured mesh, but becomes more tricky for unstructured meshes, and could serve as

a PhD topic on itself. Even though the principle is always to equidistribute the error on

each element, some geometric considerations are of interest:

As described in [108, 109] relying on a discrete point of view, a mesh is a set of node

and a topology. Within this view, an optimal mesh is constructed using criterions such

as minimal volume for simplices, by performing "cut and paste" operations for node

generation and deletion.

The mesh adaptation procedure is illustrated below on the case of a circle, where the

mesh is adapted on the levelset of the circle. One can see that the mesh obtained through

this procedure is gradually re�ned at the interface, enabling a sharp description of the

interface on the one hand and ensuring an accurate description of interface quantities

(Temperature, velocity), mandatory for industrial applications on th e other hand. The

four pictures illustrate that the static mesh adaptation is an iterativ e process. One could

argue that such a mesh adaptation is costly in terms of computational ressources, but

such a mesh adaptation process is "o�ine", because it is done before any calculation.

The procedure has also been tested on 3d examples, displayed in the following. The

results show the perfomances of the procedure, on simple geometricforms as well as on

more complicated geometries coming from our industrial partners.
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Figure 3.4: Mesh adapta-
tion procedure: initial mesh

Figure 3.5: Mesh adapta-
tion procedure: �rst remesh-

ing

Figure 3.6: Mesh adap-
tation procedure: third

remeshing

Figure 3.7: Mesh adap-
tation procedure: �fteenth

remeshing

Figure 3.8: Zoom on the re�ned interface

The whole industrial facility ( an overview is depicted below) wasmodelled as well, with

an explicit description of boundaries and a sand layer, demonstratingthe potential of

the method to properly capture several interfaces. A special treatment is required to

adapt simultaneoulsy on ingots, walls and sand, but this will be detailedin the chapter

regarding industrial applications.
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Figure 3.9: 3d Adapted mesh: brick
Figure 3.10: 3d Adapted mesh:

cylinder

Figure 3.11: View of the industrial ingot

Figure 3.12: Cross section along the
x axis

Figure 3.13: Cross section along the
y axis

Figure 3.14: Whole Facility: overview
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Figure 3.15: Whole Facility: cross section along thexz plane

Figure 3.16: Whole Facility: cross section along thexy plane

Figure 3.17: Whole Facility: cross section along theyz plane

It is also possible to apply those mesh adapation techniques on the computed �elds

such as temperature or velocity. In this case, the mesh adaptation and resolution of the

equation become strongly coupled, in the sense that a solution is computed on a mesh,

which is then adapted to the computed solution. This coupling is attained by iterating at

a �xed point algorithm. Such an adaptation is illustrated on pictures bel ow, on problems

considered in the past chapter, namely the 2d natural convection in an empty cavity,

and the 3d natural convection with an horizontal plate. The bene�t of such a dynamic

mesh adaptation can be substantial, particularly in terms of computational time.

Now that the tools for the construction of an apropriate mesh are introduced, the next

section is dedicated to the method for dealing with multidomain problems.
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Figure 3.18: 2d Empty Cavity for
Ra = 106: Temperature lines

Figure 3.19: 2d Empty Cavity for
Ra = 106: adapted mesh on temper-

ature

Figure 3.20: 2d Empty Cavity for
Ra = 106: streamlines

Figure 3.21: 2d Empty Cavity for
Ra = 106: adapted mesh on velocity

Figure 3.22: 3d Horizontal plate: adapted mesh on temperature
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Figure 3.23: 3d Horizontal plate: adapted mesh on velocity

3.3 Multidomain problems

Let us recall that we want to perform monolithic simulations in the sense that both

solids and 
uids are represented on a single mesh leading to one singlecomputation.

However, 
uids and solids are characterized by di�erent thermophysical properties, so

the question is now : how to assess physical properties to each "subdomain"? The

most straightforward option would be to consider conform meshes, with nodes on the

real interface, but on the one hand, the interface is only implicitely de�ned, and on the

other hand, such a conform mesh is hard to construct for complex geometries. Another

options is to make use of Generalized Finite Elements [110]: the idea is to enrich the

Finite Element space with a suitable function, allowing to capture e�ects that a classical

Finite Element fails to represent. It has been sucessfully applied to di�erent problems

with heterogeneous materials [111, 112] [113] and crack propagation [114]. However, the

theoritical analysis is restricted to elliptic problems, and it was shown that the classical

version lead to ill conditioned matrixes, even though improved versions can be considered

[115]. Here, we are considering another approach based on "mixing laws". We illustrate

it by taking the example of the density � : if we denote by � f and � s the densities of


uid and solid respectively, the "e�ective" density � (x ) is given by :

� (x ) = � f H (� (x )) + � s(1 � H (� (x ))) (3.24)

where H (� (x )) is a Heaviside function, so that the density has the appropriate value

in each region. However, this version produces a very sharp transition, and leads to

inaccurate results. To circumvent this issue, we consider a smoothed Heavisde function

by introducing an interface thickness� , verifying � = O(h). The Heaviside function will

be smoothed on the thickness with respect to the following expression:
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H (� (x )) =

8
>><

>>:

1 if � (x ) > �
1
2

�
1 + � (x )

� + 1
� sin( �� (x )

� )
�

if j� (x )j � �

0 if � (x ) < � �

(3.25)

All thermophyiscal properties will be computed in the same manner, referred to as

linear mixing law at the exception of thermal conductivity, which has to be mixed using

an harmonic mixing law to ensure conservation of conductive 
uxes. It also can be

understood by thinking of the way equivalent thermal resistances are obtained from

assemblies in series.

� (x ) = � f H (� (x )) + � s(1 � H (� (x ))) (3.26)

T(x ) = Tf H (� (x )) + Ts(1 � H (� (x ))) (3.27)

� (x ) = � f H (� (x )) + � s(1 � H (� (x ))) (3.28)

� (x ) = � f H (� (x )) + � s(1 � H (� (x ))) (3.29)

�c p(x ) = � f cp;f H (� (x )) + � scp;s(1 � H (� (x ))) (3.30)

� (x ) =
1

H (� (x ))
� f

+ 1� H (� (x ))
� s

(3.31)

Even though the temperature is one of the variables of the problem, sucha mixing law

will be useful to prescribe initial values in solid and 
uid. For th e viscosity, since there

exists no de�nition of the viscosity for a solid, we will set a very important value (

typically � s = 106) in order to ensure a zero velocity inside the solid. This method,

known as the penalty viscosity method, show satisfactory results to �t with classical

body �tted results. For the case of moving objects, an augmented formulation can be

considered [116], the constraint being to have a solid body (rigid or elastic) velocity in

the solid obstacle. Regarding the thermal behaviour, a solid boundary with a Dirichlet

boundary condition in temperature can easily be modelled in a monolithic context, by

setting an important value of the thermal conductivity. To illustrat e the use of such

mixing laws, we come back to the case of the facility, where we display the e�ective heat

capacity and viscosity.

It is interesting to note that the computation is driven by those spat ially dependent

properties: the velocity �eld, due to the high value of the viscosity at solid boundaries,

coupled to appropriate physical properties of each component, properlymimics the con-

vective transfer naturally, with no supplementary e�ort. The met hod allows to consider
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Figure 3.24: Industrial Facility: e�ective heat capacity

Figure 3.25: Industrial Facility: e�ective viscosity

various industrial con�gurations, the price to pay being the fact that the construction of

the mesh can be time consuming, but, as stated previoulsy, the construction of the mesh

is an "o�ine" operation. Once the mesh has been constructed, the overall method has a

computational cost similar to more classical methods, but allows to perform simulations

that would be di�cult to set up using a body �tted approach, as the res ults of chapter

6 will show.

Before moving to the numerical experiments regarding the immersed volume method, it

is important to recall that the three features of this monolithic approach are strongly

coupled: there might be several iterations to �nd a good couple between a well adapted

mesh, properly represented interfaces and well assessed physical properties, due mostly

in the choice of � : a to small value of interface thickness would consume too many

elements to represent the interface and a too large value would lead to an oversized

interface that would modify the physical output of the system, leading to non-relevant

results. The next section is dedicated to numerical experiments to demonstrate the

consistency of the monolithic approach.
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3.4 Numerical experiments

When a novel approach such as the IVM described upper is developed, the �rst validation

step consists in the comparison of the obtained results with the ones obtained using a

classical ( boddy-�tted here ) approach. Since the BF results werecompared to results

from literature in the last chapter, they will be considered as a reference here. We will

see that the convergence of both results is essentially related to the construction of an

appropriate mesh. In fact, it is not an easy task to construct a "monolithic" mesh that

is comparable with a classical one; on the one hand, it is di�cult to properly control

the number of elements necessary to represent the interface over the total number of

elements, and on the other hand, in the case of unstructured anisotropic meshes, what

stands for the characteristic mesh size? To validate the approach we will make use of

the problems presented in the previous part, in 2d as well in 3d.

3.4.1 Natural convection in an empty cavity

For the 2d version, we will enlarge the domain model with slabs of a very highly con-

ductive solid body (in order to replace the thermal boundary conditions) of lenght

l = 0 :25m, so that the computational domain that was [0; 1] � [0; 1] will �nally be


 = [ � 0:25; 1:25] � [0; 1]. Adiabatic boundary conditions are imposed on lower and

upper walls, and slip boundary conditions are imposed on all the boundaries for the

velocity. We set hereP r = 0 :71 and Ra = 106 for the 2d and 3d validation. Since an

error analysis similar to the one in [44] will be performed in 2d, we chose the same values

for the temperature which are Th = 960K , Tc = 240K and T0 = 600K .

Figure 3.26: 2d Empty cavity: mesh
for the body-�tted approach

Figure 3.27: 2d Empty cavity: mesh
for the immersed volume method

The meshes used for the computations highlight the extension of the domain and the

obtained anisotropic mesh at the interface. Note that the same background mesh size

was used elsewhere. Patterns of the temperature and the velocity are presented in �gures

3.28 and 3.29 and compared to results obtained with a classical body-�tted approach.
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Figure 3.30: 2d Empty cavity: T for
several meshes
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Figure 3.31: 2d Empty cavity: u2 for
several meshes
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Figure 3.32: 2d Empty cavity: T
along x = 0 :5
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Figure 3.33: 2d Empty cavity: u2

along x = 0 :5
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Figure 3.34: 2d Empty cavity: error
analysis on the temperature
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Figure 3.35: 2d Empty cavity: error
analysis on the velocity

An 3d extension of this case was proposed, the volumic boundaries being represented in

the same manner than in the 2d case with no di�culties, since the problem is invariant

with respect to the third cordinate. The adapted meshes are presented below. Note that

if the "edge-based" metric was used for the 2d computations, the 3d case was adapted by
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means of the "Hessian-based" metric, showing both metrics lead to approximately the

same results. The temperature and velocity pro�les are exhibitedas well, demonstrating

the same coincidence between BF and IVM results than in 2d, but a rigorous analysis of

this coincidence requires to investigate the agreement between local quantities, likewise

in the 2d case.

Figure 3.36: 3d Empty cavity: meshes used for the "BF" (left) and "IVM" (right)
simulations

Figure 3.37: 3d Empty cavity: temperature pro�les for "BF" (left) and "IVM" (right)
simulations

First of all, we study the quantities which are the equivalent of the ones studied for

the 2d case, that is to say the lines corresponding to the intersection of two planes

l1 = f y = 0 :5 \ z = 0 :5g, l2 = f x = 0 :5 \ z = 0 :5g and l3 = f y = 0 :5 \ z = 0 :5g. The

pattern of the third component of the velocity is also presented.
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Figure 3.38: 3d Empty cavity: velocity pro�le for "BF" (left) and "IVM" (right)
simulations
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Figure 3.39: 3d Empty cavity: u1

along l1
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Figure 3.40: 3d Empty cavity: �
along l1
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Figure 3.41: 3d Empty cavity: u3

along l1

Figure 3.42: 3d Empty cavity: pro�le
of u3 for the considered line
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Figure 3.43: 3d Empty cavity: u3

along l2
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Figure 3.44: 3d Empty cavity: �
along l2
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Figure 3.45: 3d Empty cavity: u1

along l2

Figure 3.46: 3d Empty cavity: pro�le
of u1 for the considered line

3.4.2 Natural convection in a cavity containing a plate

Recall that, the "immersed" versions were considered naturally by introducing a levelset

Function for the heated plate. For the duration of study, we keepRa = 106 and Pr =

0:71. An interesting feature of our immersed method is that the set up forthe vertical and

horizontal cases are exactly the same, except for the de�nition of the levelset function.

The meshes used for the computations are displayed below. Note that there are very

few elements inside the plate, which makes sense since the quantities are expected to

remain constant inside. Controlling the number of elements insideand outside is possible

with our implementation of the "edge-based" metric. As in the previous case, we used

body �tted meshes with approximately the same background mesh sizethan the ones

displayed.

However, the validation would not be complete without a quantitative study, so we chose

to study some relevant quantities along some lines aty = cst. We want to verify the
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Figure 3.47: 3d Empty cavity: u2

along l3

Figure 3.48: 3d Empty cavity: pro�le
of u2 for the considered line

Figure 3.49: Mesh for the 2d hori-
zontal case

Figure 3.50: Mesh for the 2d vertical
case

Figure 3.51: 2d Horizontal plate: � for IVM and BF

results close to the surface of the plate in order to check if the interface behaviour is

properly captured. To this end we chose four lines for each case, listed in the table

below:
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Figure 3.52: 2d Horizontal plate: velocity for IVM and BF

Figure 3.53: 2d Vertical plate: � for IVM and BF

Figure 3.54: 2d Vertical plate: velocity for IVM and BF
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y Horizontal Vertical
y1 0.3 0.1
y2 0.4875 0.2475
y3 0.5125 0.7525
y4 0.65 0.9

Table 3.2: 2d plates: y for the chosen lines
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Figure 3.55: 2d Vertical obstacle: �
along considered lines 1/2
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Figure 3.56: 2d Vertical obstacle: u2

along considered lines 1/2
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Figure 3.57: 2d Vertical obstacle: �
along considered lines 2/2
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Figure 3.58: 2d Vertical obstacle: u2

along considered lines 2/2

As it can be seen on the patterns, for the horizontal case, the results between y2 and

y3 are almost symmetric, with a zone where the quantities are constant (u2 = 0 and

� = 1), as it can be expected in the vicinity of the heated plate. It should be pointed out

that during previous computations, it was observed that a gap between BFand IVM

values can be observed if the mesh is not well adapted at the interface,even though the

results appear to be the same "to the eye".
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Figure 3.59: 2d Horizontal obstacle:
� along considered lines 1/2
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Figure 3.60: 2d Horizontal obstacle:
u2 along considered lines 1/2
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Figure 3.61: 2d Horizontal obstacle:
� along considered lines 2/2
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Figure 3.62: 2d Horizontal obstacle:
u2 along considered lines 2/2

The 3d extension for those cases were performed similarly to the 3d BF cases. We display

three cutting planes for each mesh, showing that the interface is properly captured in

all directions

One can see that the obtained results in the planez = 0 :5 are, for both cases, the

same results that the ones obtained for the 2d cases. The results in the plate plane are

presented as well, showing once again a good agreement for both problems.

Here again, we will verify that we obtain the same results quantitatively. As for the 2d,

we will verify the consistency on quantitites at middle locations between the plate and

the boundaries and close to the interface. To this end, we chose di�erent locations in

the cavity. The chosen locations are listed in the table below. We considered the two

directions, in order to verify the quantitites at the interfaces in the two directions.
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Figure 3.63: 3d Horizontal plate: IVM mesh

Figure 3.64: 3d Vertical plate: IVM

l coordinate 1 coordinate 2
l4 y = 0 :75 x = 0 :5
l5 y = 0 :75 z = 0 :5
l6 y = 0 :9 x = 0 :5
l7 y = 0 :9 z = 0 :5

Table 3.3: 3d plates: coordinates of the chosen lines
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Figure 3.65: 3d Horizontal plate: � in the z = 0 :5 plane

Figure 3.66: 3d Horizontal plate: velocity in the z = 0 :5 plane

Figure 3.67: 3d Horizontal plate: � in the y = 0 :5 plane
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Figure 3.68: 3d Horizontal plate: velocity in the y = 0 :5 plane

Figure 3.69: 3d Vertical plate: � in the z = 0 :5 plane

Figure 3.70: 3d Vertical plate: velocity in the z = 0 :5 plane
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Figure 3.71: 3d Vertical plate: � in the y = 0 :5 plane

Figure 3.72: 3d Vertical plate: velocity in the y = 0 :5 plane
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Figure 3.73: 3d Horizontal plate: u2

along l4
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Figure 3.74: 3d Horizontal plate: �
along l4
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Figure 3.75: 3d Horizontal plate: u3

along l4

Figure 3.76: 3d Horizontal plate:
corresponding velocity pro�le
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Figure 3.77: 3d Horizontal plate: u2

along l5
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Figure 3.78: 3d Horizontal plate: �
along l5
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Figure 3.79: 3d Horizontal plate: u1

along l5

Figure 3.80: 3d Horizontal plate:
corresponding velocity pro�le



Chapter 3 79

0 0:2 0:4 0:6 0:8 1
� 0:1

� 5 � 10� 2

0

5 � 10� 2

z(m)

u 3
(m

�s
�

1
)

BF
IVM

Figure 3.81: 3d Vertical plate: u3

along l6
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Figure 3.82: 3d Vertical plate: �
along l6
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� Regarding the results in temperature, the small discrepancy mightcome from the

stabilization technique: one of the stabilization term implies the thermal di�usiv-

ity �
�c p

, and since important values were prescribed inside the plate to ensure a

constant temperature, the gap for this stabilization parameter across theinterface

could be signi�cant. It shows that the "tuning" of stabilization paramete rs is not

yet perfect, and could be improved.

Nevertheless, a curious fact was observed during comparisons between BF and IVM

simulations, particularly on the case of the vertical plate: sometimesthe results looked

"better" with the immersed volume method, even when a similar number of elements

was used. This can be be explained by the fact that, in the case of the immersed

volume method, the elements are more "intelligently" located, where one can expect

to encounter the thermal boundary layers. This is another argument in favor of the

immersed volume method, when one knows the di�culty to construct a mesh before any

computation.

We recall that this study regarding the consistency of the IVM is to be linked with the

ones previously done in [41, 117].

R�esum�e fran�cais

Ce chapitre pr�esente les m�ethodes utilis�ees pour le traitement de probl�emes multi-

domaines tels que les fours industriels ou les proc�ed�es de trempe. La g�eom�etrie des

di��erents composants est repr�esent�ee par le biais de fonctions levelset, qui peuvent

être calcul�ees de mani�ere syst�ematique �a partir d'un mod�e le CAO de l'objet consid�er�e.

On d�ecrit ensuite les outils n�ecessaires �a la construction d'un maillage appropri�e �a

la repr�esentation des interfaces. On introduit les notions d'erreur d'approximation et

d'interpolation ainsi que celle de m�etrique, dont on d�etaille les deux exemples qui sont

utilis�es dans ce travail. On pr�ecise ensuite les lois de m�elange utilis�ees pour d�eduire

des propri�et�es physiques e�ectives �a partir de celles des di��erents composants. Ces trois

�el�ements constituent la m�ethode dite d"immersion de volume", quali��ee de monolithique

au sens ou tous les composants sont trait�es sur une même maillage. Ces m�ethodes sont

ensuite illustr�ees sur les probl�emes illustratifs trait�es dans le chapitre 2, et l'on v�eri�e

que l'approche pr�esent�ee est consistante avec l'approche classique.
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Monolithic Surface Radiation:

The "Immersed-Surface-to-

Immersed-Surface" (IS2IS)

method

Now that the retained approach has been presented and illustrated on several examples,

we turn to the major contribution of this work, the numerical modell ing of the radiation.

In many engineering situations, such as glass treatment [118], nuclear engineering [119],

combustion and 
ame modelling [120{ 122] and industrial furnaces [123{ 125], thermal

radiation is the dominant mode of heat transfer. However, at the contrary of other

physics presented in chapter 2, that can be stated asmacroscopic physics, in the sense

that, even if the pheneomena can be related to the action ofparticles (atoms, molecules),

the constitutive equations are, in some sense, averaged. This approachis not valid for

the radiation, the considered particles being photons, and the point ofview of the

statiscal physics have to be considered, when the particles are notdirectly considered,

but only density of probability of their presence. This leads to an equation of Boltzmann

type, the Radiative Transfer Equation, for which the numerical tools usually employed

in the "Engineer" physics are not well suited, for many reasons that will be detailed

in this chapter, but the main one being the complexity of the RTE. Therefore, some

simpli�cations have to be made in order to be able to obtain a numericalsolution. The

main one being based on the fact that radiative e�ects can be split in twocontributions:

� Surface radiation: when the medium separating the surfaces that de�ne the en-

closure does not a�ect the exchanges between surfaces, the medium is said to be

83
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transparent . This assumption is valid for vacuum, and for air at low and moder-

ate temperature. Those exchanges constitute the major part of interest, and the

method exposed in this chapter aims to take these e�ects in account.

� Volume radiation: when the medium cannot be considered as transparent,one

has to take in account the interaction with the surrounding medium, by means of

emission, absorption and de
ection of photons. Methods to deal with this type of

transfer will be described in this chapter, but the speci�c method we developed

will be detailed in a following chapter.

Before turning to the method we designed, we will brie
y recall the basics of radiative

transfer and give an overview of the existing methods.

4.1 The Radiative Transfer Equation

4.1.1 Equation and boundary conditions

Let 
 be the computational domain and @
 its boundary. The considered time interval

is [0; T]. A direction of the space ! can be parametrized by two angles (' ,� ), so that

we can write the direction vector as

! =

2

6
6
4

cos(� ) sin(' )

sin(� ) sin(' )

cos(' )

3

7
7
5 (4.1)

Let S denote the unit sphere. In what follows, the symbol
R

S means that the integration

is performed over all the directions, i.e., for all ! 2 S, which is equivalent to say that

' 2 [0; 2� ] and � 2 [0; � ].

The grey medium assumption is considered, and this yields to equations integrated

all over the frequency range, therefore all the considered quantities will be frequency

independent. The RTE permits to determine the speci�c radiative intensity I (x ; t; ! ),

which describes the density of photons at a given position, time and ina given direction.

By considering an isotropic scattering to simplify the exposition, the full RTE reads:

1
c

@I
@t

+ ! � r I =
� r

�
�T 4 � (� + � )I +

�
4�

Z

S
I (! 0)d! 0 (4.2)

Here, � � 0 is the absorption coe�cient, � � 0 the scattering coe�cient, � r the Stefan-

Boltzmann constant, c the light speed andT the (given) temperature �eld, acting as a

right hand side in this case.
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As boundary condition, di�erent choices are possible. The most simpleis to prescribeI

at in
ows to a given function I 0, i.e.,

I (x ; t; ! ) = I 0 for x 2 @
 such that ! � n < 0 (4.3)

However, this kind of boundary condition is a bit simplistic, and a more realistic bound-

ary condition would be to consider a re
ected part (related to the solution) and an

emitted part (related to the Planck distribution)

I (x ; t; ! ) =
(1 � " )

�

Z

! �n < 0
I (x ; t; ! 0)j! 0� n jd! 0+

"� r

�
T4

w for x 2 @
 such that ! � n < 0

(4.4)

4.1.2 Physical meaning of the di�erent terms

" �

� "in"

� "in"

� "out"

� "out"

!

! 0

! 0

x

x0

Figure 4.1: Illustration of the photon balance on an elementary volume

Equation (4.2) is obtained by a photon balance over an elementary volume, as illustrated

in 4.1. We detail now the contributions of the di�erent terms:

� the term 1
c

@I
@t+ ! � r I corresponds to the space-time variations of photons in the

considered volume.

� � (� + � )I designs the transmitted part to the outer, coming from two contribu-

tions: what is absorbed by the matter during interaction with photons, related

to the absorption opacity � , and what is de
ected by the matter ( out scattering),

corresponding to the scattering opacity� . Those opacities are homogeneous to the

inverse of a length, and can be understood as the inverse of the mean-free-path of

the absorption (for � ) of the de
ection (for � ) of a photon.
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� the term � r
� �T 4 stands for what is emitted inside the volume. The term � r

� T4 is

the black-body intensity integrated over the frequency range ( wehave � r
� T4 =

R1
0

2h� 3

c2
1

exp(� h�
kT )� 1

d� . The di�erence from a blackbody to a real body is contained

in � , which can be related to the emissive properties thanks to the Kircho� law,

even though � is used as a volume property, whereas the emissivity" is preferred

for surface description.

� Finally, �
4�

R
S I (! 0)d! 0 represents the radiative energy de
ected from all the di-

rections of the space through the considered volume (in scattering). Even though

isotropic scattering was considered, anisotropic e�ects could be taken into account

by means of a phase function� (! ! ! 0) ( we have � (! ! ! 0) = 1
4� for isotropic

scaterring), so that this term become
R

S � (! ! ! 0)I (! 0)d! 0.

4.1.3 Numerical di�culties

There are at least two main reasons which make this equation di�cult to solve :

� The presence of the scattering term �
4�

R
S I (! 0)d! 0, so that we have to deal with

an integro di�erential equation, and things get even worse with anisotropic phase

functions. However, this is not the most important in the situations we will con-

sider, and, in �rst approximation, this term can be neglected.

� The major di�culty lies in the term ! � r I , and, more generally the fact that I is

a function of the direction ! . On the one hand, it is not a common thing, so that

conventional discretization methods are di�cult to apply to such an e quation, and

on the other hand, it introduces a supplementary dimension to discretize, followed

by an increase in the computational cost.

We will see in the following sections, that, all discretizations methods di�er in the way

that the angular dependency is treated. An approach is to consider an averaged version

of the RTE, leading to model such as theP1 model evoked in the chapter 2, or theM 1

model [126], but this will be detailed in the next chapter. We now turn to th e methods

of discretization of the radiative transfer equation, for which a good review can be found

in [127].
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4.2 Numerical formulations for the RTE

4.2.1 Monte Carlo Method

This approach, introduced by [128], is an application of the well-known Monte Carlo

Method to radiative transfer. It is based on sampling a random walks of photons, intro-

ducing probability laws for the travelling of photons without inter action. This approach

is mentionned in order to demonstrate a complete study, but due to its computational

cost, it is una�ordable in situations coupled with other physics that ar e considered in

this work, and as such, it will not be detailed here. A good summary of the principles

can be found in [129].

4.2.2 Finite Element Methods

Here, the angular dependency is treated by means of angular shape functions. A variable

separation can be performed to separate the contributions of classical spatial shape

functions and angular shape functions. This leads us to consider innerproducts and

decompositions of the solution of the following forms

(u; v) 
 �S =
Z




Z

S
uvdxd! (4.5)

I h(x ; ! ) =
N xX

i =1

N !X

k=1

� i;k ' i (x ) k (! ) (4.6)

Since, for a given ! , the RTE can be viewed as an advection-reaction equation, so

it is natural to consider stabilized formulations, with SUPG stabiliz ation for instance.

We can quote several contributions, [130] for a "sparse tensor product" formulation of

spatial and angular shape functions and with an extensive theoritical analysis, [131] in

a domain decomposition context, [132, 133] for a formulation coupled with a di�usion

approximation that will be detailed later on, [ 134, 135] for stabilized formulations using

the VMS approach and [136] for a discontinuous Galerkin formulation.

4.2.3 SN : Discrete Ordinates Method

A more straightforward idea, initially introduced by Chandrasekhar [137] in the context

of astrophysics, would be to consider discrete directions in a collocation fashion, that

is to say, exhibit couples (wi ; ! i ) i 2 [1;N ], ! i being discrete directions andwi being some
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weight to approximate the scattering term. Hence the DOM RTE reads, I i being the

intensity on the i th ordinate:

8i 2 [1;N ];
1
c

@Ii
@t

+ ! i � r I i + ( � + � )I i = 4 � r �T 4 + �
X

j 2 I;j 6= i

wj �( ! j � ! i )I j (4.7)

This leads to a system of "ordinary" partial di�erential equations, coup led by the scater-

ring term. However, even though the angular dependency is adressed this manner, a

spatial discretization has to be performed, and there exits several approaches to do so:

by means of �nite volume [138] in the context of furnaces (see [139] for a complete re-

view about Finite Volume and DOM), [ 140] with a discontinous galerkin method, [141]

using a classical �nite element method in space, [142, 143] for matrix implementations.

Recently, studies regarding the high performance computing aspects (Preconditiong,

Krylov acceleration, fast resolution) can be quoted [144{ 146].

4.2.4 PN : Spherical Harmonics

This approach, originally proposed by Jeans [147] in the context of the study of gaseous

stars, consists in eliminating the angular dependency of the radiative intensity by ex-

panding it in terms of a generalized Fourrier series. Formally, it reads:

I =
1X

l=0

lX

m= � l

I m
l Y m

l (�; ' ) t
NX

l=0

lX

m= � l

I m
l Y m

l (�; ' ) (4.8)

where � and ' are according to (4.1), and I m
l (x ) are the unknowns of the problem.

Y m
l (�; ' ) is the spherical mode, given by

Y m
l (�; ' ) =

(
cos(m' )Pm

l (cos(� )) if m � 0

sin(m' )Pm
l (cos(� )) if m < 0

(4.9)

Pm
l (x) being the associated Legendre polynomial, de�ned by

Pm
n (x) = ( � 1)m (1 � x2)

j m j
2

2nn!
dn+ jmj(x2 � 1)n

dxn+ jmj
(4.10)

This leads to a set of coupled partial di�erential equations, the integerN giving the order

of the approximation. It is known that even order approximation gives irrelevant results



Chapter 4 89

( the obtained intensity can be negative), so that only odd order approximations are

used, even though it can be improved by a �ltering operation [23]. It can be shown [26]

that the spherical harmonics are equivalent to the DOM when a gaussian quadrature

is chosen for ForN = 1, one recovers theP1 approximation of chapter 2. However,

the complexity of those equations greatly increases for high orderN , particularly for

multidimensional problems [22], leading to the use of so called simpli�ed approximations

SPN , which has driven the interest of many researchers in the past years. One can see [25]

for a derivation of time-dependant SPN equations, [148] which adresses the structure of

matrixes obtained from the discretization of such equations, [149] for rigorous derivation

of boundary conditions, [150] which introduces a corrected approximation to account

di�usive e�ects, [ 151] with adaptive �nite elements and [ 152] for an multidimensional

formulation using tensor products. A detailed construction, when the time dependance

is neglected, using a di�erent method, is available in [24] or [153], but the main ideas are

to perform an asymptotic development with respect to opacities and the use of formal

Neumann series, the order of the approximation being related to the index at which the

truncation of the formal series is operated. We give the �rst members ofthis family

below, the unknown ' r being related to the radiative energy and� = 1
(� + � )L :

SP1 Approximation

� � 2r � (
1

3(� + � )
r ' r ) + �' r = � (4� r T4) (4.11)

SP2 Approximation

� � 2r �
�

1
3(� + � )

r (' r �
4
5

(' r � 4� r T4))
�

+ �' r = � (4� r T4) (4.12)

SP3 Approximation

' r is here a linear combination of 1 et  2, solutions of the following equations

� � 2r �
�

� 1

(� + � )
r  1

�
+ � 1 = � (4� r T4) (4.13)

� � 2r �
�

� 2

(� + � )
r  2

�
+ � 2 = � (4� r T4) (4.14)

' r =
1
30

(5 � 3

r
5
6

) 1 +
1
30

(5 � 3

r
5
6

) 2 (4.15)

where

� 1;2 =

s
3
7

�
2
7

r
6
5

(4.16)



Chapter 4 90

One can note theSP1 approximation is nothing but the P1 approximation, obtained by

a di�erent approach. We will see in the next chapter that there exists a third way to

derive these equations.

Now that a short overview of the existing method for the numerical resolution has been

given, one can note that, since we are only interested here in surface radiation e�ects,

it is not necessary to consider a full version of (4.2); in fact, for a transparent medium,

we have� = 0 and � = 0, so that the right-hand side of the RTE vanishes. Moreover,

the characteristic speed of the radiative phenomenon is very large compared to other

phenomena, so that the transient term can be dropped as well. It leads us to consider

a simpli�ed model, where only the boundary of the domain @
 is to be considered,

and involves only geometric quantities. In the next part, we will give a state of the

art explanation about this method, called the radiosity method, net radiative exchange

or surface-to-surface method, and we will detail the extension we propose within our

monolithic framework.

4.3 The Surface-to-Surface Method: state of the art

4.3.1 The view factor: a geometric function

As stated before, we are working in situations where the medium that separates the

surfaces does not a�ect the energy exchange between them. Hence, thein
uent quan-

tities here are the surface temperatures, its physical parameters( area and emissivity "

mostly), and the most important, its geometric characteristics. The geometric charac-

teristics have to be taken into account, not for a surface alone, but forcouples of surfaces,

that is to say, the relative orientation and distance are of importance. To introduce this

notion, let us consider to in�nitesimal surfaces dSi and dSj .

SidSi

dSj

ni

nj
� i

� j Sj

�

gj;l

gi;k

� k;l

Figure 4.2: Geometric characteristics of the two surfaces
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The view factor (sometimes referred to asconf iguration factor , angle factor or shape

factor ) is de�ned as the part of energy leaving the surfacedSi that directly strikes dSj .

It is given by, according to notations of �gure 4.2:

dFdSi ! dSj = (cos(� i )dSi )d
 i =
cos(� i ) cos(� j )dSi dSj

� 2 (4.17)

The view factor between those two surfaces is then obtained by performing integration

over surfacesSi and Sj .

FSi ! Sj = Fij =
1
Si

Z

Si

Z

Sj

cos(� i ) cos(� j )
� 2 dSi dSj (4.18)

It can be proved that the view factor veri�es the following relations :

Reciprocity law:

Fij Si = Fji Sj (4.19)

This relation is useful to save computation time, because it allows the computation of a

view factor from the knowledge of the other.

Summation law
NFX

j =1

Fij = 1 (4.20)

(4.20) is only a consequence of the energy conservation principle: all the radiation leaving

the surface i is entirely intercepted by other surfaces of the enclosure. Thisrelation

will be useful for code veri�cation. The view factors are usually stored in a matrix

F = ( Fij )1� i;j � NF . Here, we made the assumption ofdif fuse view factors, in the sense

that the energy absorbed by the surface is then re-emitted isotropically in all directions.

This assumption is valid for many considered surfaces, but become less appropriate for

polished surfaces; in this case, one has to computespecular view factors [154]. For simple

geometric con�gurations, the view factor can be determined analytically (catalogue for

well-known con�gurations are available in [155]), but the calculation of a view factor for

a particular con�guration can serve as a publication on itself [156{ 158]. However, as we

will see in the following, we intend to perform surface calculation using some faces of

the �nite element mesh, so we will have to deal with arbitrary con� gurations. Hence, a

general approach is necessary to numerically compute the view factor. One can see [159]

for a review of existing methods, but here we detail a few the most common methods:
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Si

Sj

a b

c d

Figure 4.3: Illustration of the crossed strings method

� Area integration: the most straighforward approach, consists in computingnu-

merically the two surface integrals by using a quadrature rule. However, since the

integrand is non polynomial, high order integration might be required.

� Analytic integration: where the considered surfaces are polygons, analytic formulas

can be obtained, but it implies using complex functions such as dilogarithm [ 160],

which have to be evaluated numerically. Another analytic expressionhas been

proposed for polygons [161], but at the price of a complicated analysis.

� Statistical determination: the view factor can be calculated by statistical sampling,

using the Monte-Carlo method depicted earlier. The computation isexpensive, but

it often serves as a benchmark to assess the accurracy of new methods.

� Alternative methods: view factors can be determined by using basicproperties

and relations (4.19) and (4.20), but is only valid for a limited number of surfaces.

The unit sphere method, making use of geometric projection can be quoted as

well, as an interesting alternative [162],[163].

We want now to detail two particular approaches that will be used in this work: for

2d calculations, an interesting approach, developed by Hottel and Saro�lm [164] is the

crossed string method. Using this, the view factor can be written,using notations

according to �g ( 4.3)

Fij =
ac+ db� (ad + bc)

2ab
(4.21)

Even though this formula is really simple and easy to implement, on the one hand, it does

not involve any orientation of the surface, and, on the other hand, remains limited to

2d geometries. For 3d cases, eq (4.18) can be transformed into a double line integration

[165] using the Stokes theorem, leading to the following relation, using notations of �g

(4.2).



Chapter 4 93

Fi;j =
1

4�A i

3X

k=1

3X

l=1

Z

gi
k

Z

gj
l

ln( � k;l )gi
kgj

l dgi
kdgj

l (4.22)

This method has gained popularity over the past years [166],[167], since it reduces to

two simple integrals. However, since the integrand involves a logarithm function, the

integral might be singular for surfaces sharing one edge. An analytical treatment of

this singularity has been proposed in [168]. An interesting implementation, available in

[169], is used here, and some details about the implementation are given in appendix B.

4.3.2 Visibility and obstructions

As mentionned above, the expressions (4.21) and (4.22) do not involve the relative orien-

tation of surfaces. However, for some situations, depending on the relative orientation,

there might be no radiative exchange between certain surfaces, because the two sur-

faces do not "see" each other or because the view can be obstructed by a third surface.

Therefore, some view factors will not be calculated, because it would lead to a wrong

contribution to the thermal balance on the one hand, and it permits to save compu-

tational time on the other hand. More details about this questions can be found in

[170],[171] for visibility and [ 159], [171] for obstructions.

n

n

n

n

n

n

no shadowing

total shadowing

partial shadowing

Figure 4.4: Di�erent possibility for surfaces relative orientations

4.3.2.1 Visibility

It is actually easy to determine if two surfaces can see each other: onejust needs to

compute surface normalsn i ,n j and a distance between faces centroidsd ij . The visibility

test will be related to the sign of psI = d ij � n i and psJ = d ij � n j .
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Sjdij

Si

ni

nj

Figure 4.5: Notations for visibility test

For implementation considerations, we will de�ne a boolean NOVISIB, which is false

when faces can "see" each other. Formally we have

NOV ISIB 1 = ( psI == 0) AND ( psJ == 0)) (4.23)

NOV ISIB 2 = ( psI > 0) AND ( psJ > 0) (4.24)

NOV ISIB 3 = ( psA � psB < 0) (4.25)

NOV ISIB 4 = ( psI == 0) AND ( psJ > 0) (4.26)

NOV ISIB = NOV ISIB 1 OR NOV ISIB 2 OR NOV ISIB 3 OR NOV ISIB 4

(4.27)

4.3.2.2 Obstruction

Sk

Si

Sj
x

z

y

Figure 4.6: Two surfaces obstructed by a third

Obstruction calculation are di�erent of visibility in the sense th at obstruction between

surfacesSi and Sj involves a third surface Sk . The approach retained for obstruction

calculation is the following: given the points of surfacesSi and Sj , one can compute face
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Si

Sj

ni

nj
(Pk )

nk

Figure 4.7: Notations for obstruction test

"centroids" ( with a barycenter for example) C i = ( x i
0;p)(1� p� d) and C j = ( x j

0;p)(1� p� d)

and the distance between those centroidsd ij = ( dij
p )(1� p� d) . For surface Sk , given a

centroid Ck = ( xk
0;p)(1� p� d) and the normal n k = ( nk

p)(1� p� d) , one equation of the plane

de�ned by Sk is , with X = ( xp)(1� p� d) being the current point:

(X � CK ) � nK = 0 (4.28)

dX

p=1

nk
p � xp �

dX

p=1

nk
p � xk

0;p = 0 ( Pk ) (4.29)

with this equation, one easily gets the distance between the current point and the plane

K, with the help of an orthogonal projection.

� =

P d
p=1 nk

p � xp �
P d

p=1 nk
p � xk

0;pq P d
p=1 (nk

p)2
(4.30)

We now want to check if the intersection point betweenPk and d ij belongs to the triangle

Sk . To this end, we use a parametric representation ford ij .

dij
p = x i

0;p + t(x j
0;p � x i

0;p) t 2 [0; 1] (4.31)

making � = 0 and replacing the coordinates using (4.31), one can get the parameter

corresponding to the intersection point t I

t I =

P d
p=1 nk

p � x i
0;p �

P d
p=1 nk

p � xk
0;p

P d
p=1 nk

p � (x j
0;p � x i

0;p)
(4.32)

substituting ( 4.32) in ( 4.31) gives the coordinates of the intersection pointX I = ( x I;p )(1� p� d) .

The �nal step is to check if the intersection point belongs to Sk . This is achieved by
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de�ning a parametric representation of Sk similar to ( 4.31), �nd the parameter tK corre-

sponding to X I , and check if 0� tK � 1. A brutal approach for obstruction calculation

would be to perform a loop over all surfaces for all pairs of surfaces (Si ; Sj ) to check

if, in the set of surfaces, there exists a surface that obstructs the view betweenSi and

Sj . However, this method was observed to be prohibitive in terms of computational

time, even when used on relatively "light" meshes. To circumventthis issue, we will

perform obstruction calculation at the level of the obstacle in the enclosure, since most

obstructions encountered are between objects inside the enclosure and border faces. To

this end, we extract the faces corresponding to the object interface, and we identify

the minimum and maximum coordinates in each directionX min = ( X min;i )(1� i � d) and

X max = ( X max;i )(1� i � d) . Those minimum and maximum coordinates are then used to

build an "encompassing" box de�ning lines in 2d and planes in 3d that will be used for

the obstruction calculations.

4.3.3 Total exchange area, real surfaces and coupling with thermal

balance

The notion of view factor as it was discussed in the begining of this chapter holds

for black surfaces, that absorb all the incoming radiation. However, for real surface

(characterized by an emissivity " , 0 � " � 1, there exists a fraction of the incoming

radiation ( corresponding to � = 1 � " ) that is re
ected, and thus emited through other

surfaces. On the other hand, the computation of the radiative 
ux requires the solution

of a non sparse linear system ( the considered matrix being related toF), which can

be computationaly demanding. Hence, an interesting approach, based on theidea of

[172] or [173], consists in introducing another view factor, the total view factor ( or

total exchange area) that takes into account both the mutlire
ections and the non-gray

surfaces. We recall here the basic features by setting up the equations for the surface

radiation problem.

If we denote by H i the incoming 
ux density on the surface zonei and Wi the outgoing


ux density, one has the following equations:

H i A i =
NFX

j =1

Fij Wj 8i 2 k1;NF k (4.33)

Wi = " i � r T4
i + (1 � " i )H i 8i 2 k1;NF (4.34)



Chapter 4 97

Qr;i = A i (Wi � H i ) 8i 2 k1;NF (4.35)

Using a matrix notation, it gives, using the following notations:

� I = ( � ij )1� i;j � NF

� W = ( Wi )1� i � NF

� H = ( H i )1� i � NF

� E = ( " i � r T4
i )1� i � NF

� Q r = ( Qi )1� i � N [F

� " = ( diag(" i ))) 1� i � NF

� � = ( diag((1 � " i ))) 1� i � NF

� A = ( diag(A i ))1� i � NF

AH = FW (4.36)

W = "E + � H (4.37)

Q r = A(W � H ) (4.38)

One can see that, to get the appropriate radiative 
ux to prescribe as a boundary

condition, it is necessary to solve a non sparseNF � NF system with temperature as

input, which is not very convenient, since all the solvers for linear systems we have

at hand are designed for sparse matrixes rising from �nite element formulations. To

circumvent this issue, we follow the lines described in [172], by using some total exchange

area, that can be readily used to compute the needed radiative 
uxQ r . The matrix of

total exchange areasF is de�ned by:

Q r = "AE � F E (4.39)

F can be explicitly determined by a general elimination procedure.Substituting ( 4.37)

in (4.36) leads to
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(A � � F)
| {z }

= R

H = "FE =) H = R� 1"FE (4.40)

one �nally gets

F = A"R� 1"F (4.41)

and the associated radiative boundary 
ux on the facei is given by

Q r;i =
� r

A i

NX

j =1

A j F ij (T4
i � T4

j ) (4.42)

A "naive" approach to compute the total exchange factors would need to invert the

matrix R. However it can be shown [173] that the total exchange factors can be obtained

from the view factors and surfaces characteristics (" k ; � k ) using the following algorithm

Given (F; A ; " ; � );

for i=1..N do
for j=1..N do

for k=1..N do

Fkk = " 2
k Fkk

1:0� � k Fkk
;

F ik = " k F ik
1:0� � k Fkk

;

Fkj = " k Fkj
1:0� � k Fkk

;

F ij = Fij + � k F ik Fkj
1:0� � k Fkk

;

end
end

end
Algorithm 1: Plating algorithm

The S2S method, or its extension to radiation in participative media, the zonal method,

has been successfully applied in di�erent contexts: furnaces [174, 175], urban canyons

[176], combustion and �re modelling [177, 178], human modelling [165], electronic cooling

[158][179] and solar re
ectors [180] among others.
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4.4 The IS 2IS method

4.4.1 Motivations and features

Our goal is to design a computational framework based on the same principlesas theS2S

method, but adapted to the immersed volume method. Here, the main di�culty relies

in the representation of the interfaces, since the interfaces between 
uids and solids are

implicitly de�ned by the zero iso-value of the levelset. Hence, one needs to reconstruct an

approximation of the interface before performing a surface-to-surface calculation. This

interface approximation will be reconstructed in terms of �nite el ement mesh: in fact,

the set of faces, that can be viewed as a submanifold of the one de�ned by the elements,

gives a natural approximation of the interface, particularly in the fram ework depicted

in the previous chapter, with a mesh appropriately re�ned around the interface. The

next subsection is devoted to the description of the procedure used for the selection of

suitable faces for the radiation calculation. We will see that a such approximation of

the interface will permit to naturally handle complex geometries, in the sense that, as

demonstrated in the previous chapter, our method is able to automatically generate a

mesh for a given levelset, regardless of its geometric complexity.

4.4.2 Interface reconstruction

Our starting point is to come back to the �nite element triangulation 
 h . We recall

some useful notations for the interface reconstruction procedure:

Notations De�nitions
d dimension of space

D topological dimension

K set of elements

N set of nodes

K 2 K mesh element

N (K ) = ( N i (K )) i 2k 1:D k nodes of a mesh elementK

F (K ) = ( F i (K )) i 2k 1:D k "faces" of a mesh elementK

N (F (K )) = ( N i (F (K ))) i 2k 1:D � 1k nodes of a "face"F (K ) of a mesh elementK

X i , i 2 N vector of coordinates for thei th node

Table 4.1: Notations for the mesh.

Numerical treatment of interfaces has received a growing interest in the recent years,

together with the research conducted about immersed methods, and more generally, the

research conducted on levelset methods: we can quote work for numerical modelling
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of multiphase 
ows [81, 85, 181, 182]. However, in all previously quoted references,

the interface remains implicitly de�ned only as the zero isovalueof a levelset fonction.

But some physical situations require a more explicit description ofthe interface, for

volume fraction modelling [183] or interfacial 
ows [ 80]. The approach proposed in [80]

is interesting in the sense that auxiliary levelset isovalues areintroduced to improve

interface representation on certains elements. In the method presented in this chapter,

those "auxiliary interfaces" will appear naturally.

Formally, the 
uid-solid interface is de�ned as the zero isovalue of the levelset, in agree-

ment with the notations of the previous chapter, we have

� i = f x 2 
 ; � (x) = 0 g (4.43)

its discrete equivalent can be de�ned by

� i;h = f K 2 K ; 9 X i ; X j 2 N (K ); � (X i ) � � (X j ) < = 0g (4.44)

� i is a line in 2d, and a surface in 3d. The �rst step of the interface reconstruction

procedure is to detect the elements crossed by �i . To this end, we follow the lines

described in [83], of which we recall the main features: considering all the possiblecases

in 2d and 3d, as illustrated below, elements of di�erent types can be classi�ed by the

number of nodes where� (x) > 0, � (x) < 0 or � (x) = 0.

case 3 : segment (point) case 4 : segment arbitrary

case 2 : segment ( edge)case 1 : point
� = 0

� < 0

� > 0

�
�

�
�

Figure 4.8: 2d Situations

case a : point case b : edge case c : triangle (face)

case d : triangle (edge) case e : triangle (point) case f : triangle case g : quadrilater

�

�
�

�

�

�

� < 0

� = 0

�

� > 0

Figure 4.9: 3d Situations

By performing this test in a loop for all the elements, one can check if an element is

crossed by the levelset zero isovalue or not. The procedure is illustrated below on several

geometric forms already presented in chapter 3. The crossed elementsare marked in

red.

Once this procedure is performed, one gets a set of connected elements, that we call

E (� i ), which de�nes a volume. Therefore, the next step consists in, roughly speaking,

eliminating what is "inside" the volume de�ned by E(� i ). More formally, if we de�ne
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Figure 4.10: Test on a square brick:
mesh

Figure 4.11: Test on a square brick:
elements crossed (zoom on the corner)

Figure 4.12: Test on a rectangular
circle: mesh

Figure 4.13: Test on a rectangular
circle: elements crossed

� +
i = f x 2 
 ; � (x) > 0g (4.45)

� �
i = f x 2 
 ; � (x) < 0g (4.46)

and if V (� i ) stands for the counterpart of � +
i [ � �

i in E(� i ), we want to only retain

the element of E(� i ) belonging to � +
i or � �

i , or, in other words, eliminate elements of

V (� i ). At the discrete level, since we want to reconstruct an approximation of � i , it

seems interesting to de�ne �+i;h and � �
i;h (discrete equivalent of � +

i and � �
i ) in terms of

element "faces".

� +
i;h = fF (K ); K 2 � i;h ; 8X 2 N (F (K )) ; � (X ) < 0g (4.47)

� �
i;h = fF (K ); K 2 � i;h ; 8X 2 N (F (K )) ; � (X ) > 0g (4.48)
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Elements of � +
i;h and � �

i;h will be referred to as "Face Sup" and "Faces Inf" in the

following. It is also useful to de�ne E(� i ) as a collection of faces of connected elements

previously identi�ed, which reads

E(� i;h ) = f
[

K 2 � i;h

F (K )g (4.49)

Having such a vision of E(� i;h ), eliminating the interior faces becomes quite simple,

knowing that since the interior faces are shared by two elements, they appear twice in

the set E(� i;h ). Hence, retaining only the none repeated element ofE(� i;h ), one gets the

set � �
i;h [ � +

i;h , that can be easily sorted in � �
i;h and � +

i;h by evaluating � at the face nodes.

To check the e�ciency of the approach described here, we chose to test the procedure

on a very simple mesh where the considered object ( a square here) is aligned on the

mesh.

Figure 4.14: 2d Example:Mesh Figure 4.15: 2d Example: levelset of
the square

Figure 4.16: 2d Example: Element
crossed by The levelset zero isovalue

Figure 4.17: 2d Example: levelset
zero isovalue

A similar mesh was used for 3d veri�cations; it was constructed as an extrusion of a

mesh similar to the previous one in thexy plane ( see4.18, left), with one "layer of

elements in thez direction.

Regarding the border faces, since they are considered apart due to thespeci�c treatment

for boundary conditions, they are readily available without any supplementary work.
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Figure 4.18: 3d Example: Mesh

Figure 4.19: 3d Example: levelset Zero isovalue and Flag �eld

4.4.3 Computational aspects

At this point, in order to estimate the computational ressources to bededicated to the

further view factor computation, it would be interesting to know wh at part of the total

mesh is of interest for the calculations. Hence, we conducted a studyon several meshes

to at least get a tendancy on this behaviour.

Table 4.2: Notations for faces numbers.

Notations De�nitions
Nelts number of elements of the mesh

Nb number of border faces

N is number of "Faces Sup"

N ii number of "Faces Inf"

NF = D � Nelts total number of faces

dsi = jN is � N ii j. di�erence between "Faces Sup" and "Faces Inf"

Two kind of meshes were used for this study: unadapted meshes, classically constucted

using GMSH, and adapted meshes as explained in the previous chapter. We used here

the metric described in [106] because the implementation we dispose of, permits to
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control the maximum stretching factor, referred to as smax in [106]. Unadapted meshes

were the two already quoted above and another for 2d, obtained by re�ning the one

shown. Several adapted meshes are considered: four considering thesame geometry

for the unadapted mesh, for di�erent value of the maximum stretching factor, and the

circle presented above. In 3d, we used the meshes presented in the previous chapter

to illustrate the mesh adaptation, displayed again here for sake of clarity. The results

are available on the following tables. One can see that, for all meshes considered, the

number of faces involved in the surface computation does not exceed 5% ofthe total

number of faces. It is interesting to note that the number of involved faces decreases as

smax increases. It can be explained in the following way: the higher thestretching factor

is, the taller the elements are in the direction parrallel to the interface and therefore less

elements are needed to cover the whole interface. The conclusionsof this study can be

summarized as the following: the proposed approach naturally de�nes twoapproximated

interfaces � +
i;h and � �

i;h , quantitatively di�erent on a arbitrary mesh, but along the mesh

adaptation procedure, those two interfaces tend to get closer to each other, leading to an

accurate description of the interface. The numerical results willcon�rm this tendancy,

by showing that this interface aproximation is able to reproduce results obtained by a

classical BF approach, where the interface is part the domain boundary.

Figure 4.20: 3d Adapted mesh: brick
Figure 4.21: 3d Adapted mesh:

cylinder

Case Nb N is N ii NF dsi Nelts

adapted squares = 8 65 4.564 4.725 4.790 161 152.748

adapted squares = 20 51 3.798 3.965 4.016 167 162.356

adapted squares = 30 68 1.483 1.480 1.551 3 197.202

adapted squares = 50 74 1.025 996 1.099 29 194.718

adapted circle s = 8 1.550 1.802 1.805 3.335 3 489.150

Table 4.3: 2d Meshes
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Case Nb N is N ii NF dsi Nelts

adapted brick s = 8 4.730 3.330 26.964 31.424 23.364 300.753

adapted cylinder s = 8 2.652 4.343 33.827 36.479 29.484 369.193

Table 4.4: 3d Meshes

4.4.4 "Immersed" features of the IS 2IS method

As stated before, the method we are describing can be understood as an"immersed"

version of the S2S method. Hence, some of the features have to be adapted, for imple-

mentation purposes mostly:

It is sometimes common to perform a partionning of the face set depending on certain

characteristics, as seen in [172] for black and non-black surfaces, or it could be done for

temperature-prescribed and 
ux-prescribed boundary faces. Here, the natural partion-

ning is between border faces and intern faces. Hence, since we knowthat NF = Nb + N i

we introduce the following notations to ease the discussion:

F =

"
Fii Fib

FT
ib Fbb

#

(4.50)

For a classical surface-to-surface calculation, onlyFbb exists, and will govern the ra-

diative exchange between boundaries of the domain.Fib drives the radiative exchange

between boundaries and the immersed object, andFii represents radiative exchanges of

the object onto itself a, phenomenon known as "self-radiation".

If the computation of a boundary 
ux Q r;i is classical in theS2S method, the novelty is

we have to prescribe a similar quantity at the 
uid-solid interfac e, ie on internal faces.

Those e�ects will be taken into account by means of a source termSr;i localized on the

interface.

For visibility and obstruction calculations, it is mandatory to have a c onsistent orienta-

tion for all faces, that is to say, the normals should be pointing outward. If it is naturally

the case for the border faces, due to their speci�c treatment for boundary conditions,

additional work has to be done for the interior faces. This is achieved bya �rst com-

putation of the normal, and a checking test to be consistent with the gradient of the

levelset function of the object.

For the plating algorithm described earlier, since all the blocks orF are computed sep-

arately, one have to concatenate all the blocks in one single list, perform the plating

operation, and de-concatenate, since we implemented in a way which compute the dif-

ferent contributions separately.
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4.4.5 Parallel processing aspects

It is worth mentionning that the surface computation is not well �tted for the parral-

lel processing framework implemented in our library: in fact, for classical resolutions

(Navier-Stokes, Convection-di�usion-reaction equations), the computational domain is

partitionned into subdomains, so that each processor only compute on onesubdomain,

and one has to deal with communication between processors in order to render the origi-

nal problem. Unfortunately, this approach does not work for a view factor computation,

since view factor have to be computed from one surface to all others. Sothat a special

treatment is needed to perform a view factor computation on multiple processors. A

possible strategy consists in, once the surfaces liable to participate to the surface radi-

ation calculation have been identi�ed, to duplicate these informations to all processors,

and to balance the load of the view factor computation between all processors. It is

also important to make sure that all processors are well synchronized during all the

computation.

4.5 Numerical experiments

Before we try to assess the consistency of the new method, it is necessary to make

sure our implementation is valid for a classical " surface-to-surface"calculation, that

is to say when only the boundary faces are considered. The simulationswe are going

to use are the ones presented in the previous chapter, enhanced by taking into account

radiative e�ects. As done in the previous chapter, the IS 2IS method will be tested

on the "immersed version" on each case, to assess the consistency of themethod. To

validate the radiative code, the obtained results were compared to the ones available in

the references in terms of Nusselt number as de�ned in the chapter2, and its radiative

equivalent, de�ned as follows:

Nu rad =
L

� (Th � Tc)

Z 1

0
qr (0; y)dy (4.51)

4.5.1 Natural convection in a square empty cavity

Here, radiation is taken into account, by prescribing a net radiative 
ux, computed

as depicted in previous sections, imposed as a Neumann boundary condition on the

horizontal walls. The obtained results, in terms of iso temperature and streamlines,

are in good agreement with [184] and [185]. We plot the adimensional temperature

� , along the line y = 0 :5. One can note that, at the contrary of volumic radiation,
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surface radiation preserves the centro-symmetry of the problem. The results shows

the e�ect of radiation on the overall temperature distribution: the ob tained radiative


ux on horizontal walls is symetric ( negative on the upper wall, positive on the lower

wall). Those radiative 
uxes modify the thermal boundary layer by "mo ving away" the

extremal values of the temperature inside the cavity, at the di�erence with the case

" = 0, where the maximal values of the vertical pro�le are located on the horizontal

walls, as it can be seen on the temperature plot.

Figure 4.22: 2d Empty
cavity: iso temperature and

streamlines: " = 0

Figure 4.23: 2d Empty
cavity: iso temperature and

streamlines: " = 1
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Figure 4.24: 2d Empty cavity: � along y = 0 :5

For the immersed version of this case, additional work is necessary to select the "radia-

tive" faces, since not all the border faces will be involved in the radiation computation

( only the ones corresponding to the horizontal walls in the BF case). Inorder to sort

those faces among others, we make use of a "Flag" �eld naturally generated in our code,

valued at one on the considered boundary, and zero elsewhere, so that sorting faces

is done by evaluating the value of the Flag on the faces nodes. The meshes used are

the ones displayed in the previous chapter. Quantitative comparisons, performed in the

same manner as before, show an excellent agreement.
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Figure 4.25: 2d Empty cav-
ity: temperature pro�le BF

" = 1

Figure 4.26: 2d Empty cav-
ity: temperature pro�le IMV

" = 1

Figure 4.27: 2d Empty cav-
ity: velocity pro�le BF " = 1

Figure 4.28: 2d Empty cav-
ity: velocity pro�le IMV " =

1
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Figure 4.29: 2d Empty cavity: �
along y = 0 :5
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Figure 4.30: 2d Empty cavity: u1

along y = 0 :5
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Figure 4.31: 2d Empty cavity: �
along x = 0 :5
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Figure 4.32: 2d Empty cavity: u2

along x = 0 :5

We used the developed method on the 3d version of the case that was already presented

in the previous chapter. The iso temperature and streamlines are compared with the

case without radiation for Ra = 106. One can see that the radiative 
uxes applied on

the top and bottom boundaries gives a "bathtub" like shape to the iso temperature lines,

that are also more curved near the corner of the cavity. One can see a goodagreement

with the results presented in [185]. As a consequence, the shape of the streamlines is

modi�ed, with bigger recirculations zone close to the corners of the cavity.

Figure 4.33: 3d Empty cavity: iso Temperature: " = 1 (left) and " = 0 (right)

Figure 4.34: 3d Empty cavity: iso Temperature: " = 1 (left) and " = 0 (right)
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Figure 4.35: 3d Empty cavity: streamlines along x: " = 1 (left) and " = 0 (right)

Figure 4.36: 3d Empty cavity: streamlines along z: " = 1 (left) and " = 0 (right)

The obtained results, in terms of radiative and convective Nusselt numbers, are displayed

below and compared with the results available in [185]. One can see that the discrepancy

does not exceed 3:5%.

X X X X X X X X X X Xreference
Nu

Nuconv Nu rad Nu = Nuconv + Nu rad

Colomer [185] 8.102 3.568 11.670
present work 8.122 3.712 11.834

Table 4.5: 3d Empty cavity: comparisons with benchmark solution

Similarly to the 2d case, the immersed version of the case was simulated, and results

were compared to the ones obtained by a classical body �tted approach, interms of

velocity and normalized temperature. Here again, a good agreement is observed.
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Figure 4.37: 3d Empty cavity: �
along l1
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Figure 4.38: 3d Empty cavity: u3

along l1

4.5.2 Natural Convection in a cavity containing a plate

Here again, radiative 
ux are prescribed on horizontal walls as in the previous case.

One could think that in this case, the plate inside the cavity may cause obstruction

and visibility issues between border faces, but it was observed that taking into acount

the visibility and obstruction in the viewfactor computation does not have a signi�cant

in
uence. To represent the results, we make use of the symmetryaround the line x = 0 :5.

The following pictures represent the iso-temperature lines on the left, and the streamlines

on the right. The results, in terms of iso temperature and streamlines, correspond

well with [ 65]. As in the previous case, radiative 
uxes on horizontal walls generates

temperature gradients that move away the iso temperature curves and modify the shape

of the recirculation cells. As it can be seen on the curves, the supplementary amount

of energy provided by radiative 
uxes slightly increases the valuesof temperature inside

the cavity, leading to a slight increase of velocity values by meansof the Boussinesq

term. The in
uence of the obstacle can also be observed, more pronounced in the case

of the horizontal plate.

X X X X X X X X X X Xreference
Nu

Nuconv Nu rad Nu = Nuconv + Nu rad

Saravanan and al. [65] 5.8533 6.9885 12.8418
present work 5.8109 7.0928 12.9037

Table 4.6: 2d Horizontal plate: comparisons with benchmark solution

One can see that, on both cases, the discrepancy between the obtained results and the

benchmark do not exceed 1:8%.
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Figure 4.39: 2d Horizontal
plate: iso temperature and

streamlines: " = 0

Figure 4.40: 2d Horizontal
plate: iso temperature and

streamlines: " = 1

X X X X X X X X X X Xreference
Nu

Nuconv Nu rad Nu = Nuconv + Nu rad

Saravanan and al. [65] 6.6731 10.1914 16.8645
present work 6.7955 10.1144 16.9099

Table 4.7: 2d Vertical plate: comparisons with benchmark solution
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Figure 4.41: 2d Horizontal plate: �
along y = 0 :15
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Figure 4.42: 2d Horizontal plate: Vy

along y = 0 :15

As observed in the previous case, theIS 2IS method show results that seem to corre-

spond well with the classical ones, in terms of temperature as well interms of velocity.

For the quantitative analysis, we will display plot along lines at y = cst, which is natural

considering the symmetry of the problem. It also interesting to plot quantities along

lines close to the solid obstacle, since it could be expected to encounter the steepest

gradients at this location. The philosophy of the immersed volume method used here

demontrates its e�ciency, since most elements of the mesh are aroundthe interface in

order to properly represent the sharp gradients. For the vertical case we chose the lines

y = 0 :225, y = 0 :5, y = 0 :775. For the body �tted case, all values go to zero inside the
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Figure 4.43: 2d Vertical
plate: iso temperature and

streamlines: " = 0

Figure 4.44: 2d Vertical
plate: iso temperature and

streamlines: " = 1
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Figure 4.45: 2d Vertical plate: �
along y = 0 :15
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Figure 4.46: 2d Vertical plate: u2

along y = 0 :15

Figure 4.47: 2d Horizontal obstacle: iso temperature" = 1

object because those points are not de�ned in the domain, but it is straighforward to

see that a simple extension by continuity would lead the curves to �t perfectly. For the

horizontal case, we chose four lines atey = 0 :15, y = 0 :475, y = 0 :525, y = 0 :9.
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Figure 4.48: 2d Horizontal obstacle: streamlines" = 1

Figure 4.49: 2d Horizontal obstacle: iso temperature" = 1

Figure 4.50: 2d Horizontal obstacle: streamlines" = 1

Likewise the previous chapters, we used our method on the 3d versions of these two

cases. We notify that, since these cases are not presented in the literature, there is no

way to compare the results with a reference. First we compare withthe case without
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Figure 4.51: 2d Vertical obstacle: �
along considered lines
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Figure 4.52: 2d Vertical obstacle: u2

along considered lines
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Figure 4.53: 2d Horizontal obstacle:
� along considered lower lines
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Figure 4.54: 2d Horizontal obtacle:
u2 along considered lower lines
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Figure 4.55: 2d Horizontal obstacle:
� along considered upper lines
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Figure 4.56: 2d Horizontal obstacle:
u2 along considered upper lines

radiation, and one can note the symmetry of the problem regarding the planex = 0 :5.

Regarding the 
ow, the problem is also symmetric around the planez = 0 :5.

For both cases, one can see that, similarly to the 2d cases, due to the radiative 
uxes

on the horizontal boundaries, some convection is observed in the bottom part of the
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Figure 4.57: 3d Horizontal obstacle: iso-temperature : " = 1 (left) and " = 0 (right)

Figure 4.58: 3d Horizontal obstacle: streamlines:" = 1 (left) and " = 0 (right)

cavity, with curved iso temperature lines appearing below the plate. This can be seen

on the streamlines as well, with a signi�cant modi�cation of their shap es. As for the 2d

case, one can see that the impact of the plate on the 
ow is more pronounced in the

horizontal case that in the vertical one, with a central iso line perturbed by the plate.

One can also see the modi�cation of thermal boundary layers for the horizontal case,

with tighten lines compared to the no radiation case.

Conclusions

In this chapter, a method to model surface radiation in a monolithic context was devel-

oped. The key point is the de�nition of an interface approximation rely ing on the �nite

element mesh and the levelset isovalue zero, then used to performa surface-to-surface

computation with the classical features of theS2S approach. The approximation of the

interface in terms of faces of the �nite element mesh is an important feature, in the sense

that the method provides radiative 
uxes and source terms that naturally �ts on the

mesh, avoiding the problem of transport from a mesh to another one, and the coupling
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Figure 4.59: 3d Vertical obstacle: iso-temperature : " = 1 (left) and " = 0 (right)

Figure 4.60: 3d Vertical obstacle: streamlines: " = 1 (left) and " = 0 (right)

can be done without any supplementary e�ort. The method was proven tobe consistent

with the classical approach, that is to say, for an appropriately re�ned mesh, theIS 2IS

approach give the same results that the classicalS2S approach, for 2d problems as well

for 3d problems. The problems of computational time and ressources are signi�cant

only in 3d, but it was observed that the number of intern faces involved in the surface

radiation computation remains reasonnable, as expected from the resultsof the study

conducted earlier in this chapter.

R�esum�e fran�cais

Dans ce chapitre, on pr�esente une m�ethode pour mod�eliser le rayonnement surfacique

dans le contexte de la m�ethode d'immersion de volume d�ecrite au chapitre pr�ec�edent,

l'approche IS 2IS pour "Immerse-surface-to-Immerse-surface". La di�cult�e majeur e

r�eside dans le fait que la description des interfaces y est implicite, uniquement d�e�nie

par l'iso valeur z�ero de fonctions levelset. On d�ecrit le principe utilis�e pour reconstruire
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un interface en termes de faces du maillage �el�ements �nis: on d�etecte les �el�ements

travers�es par la fonction levelset, donnant un bande d'�el�ements dont les faces int�erieures

sont �elimin�ees. On proc�ede ensuite �a un calcul surfacique classique reposant sur la notion

de facteur de forme, dont les �el�ements principaux sont rappel�es dans ce chapitre. La

m�ethode est ensuite illustr�ee sur les exemples pr�esent�es dans les chapitre pr�ec�edent, ou

l'on analyse l'in
uence du rayonnement surfacique sur la convection naturelle. En�n, on

v�eri�e que l'approche d�evelopp�ee ici est consistante par rapport �a une approche classique,

avec un d�emarche similaire �a celle du chapitre pr�ec�edent.
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Monolithic Volume Radiation:

Stabilized Finite Element Method

for the Minimum Entropy closure

M1 radiation model

The last chapter was dedicated to the modelling of surface radiation e�ects, responsible

for most radiative e�ects for the considered problems. Still, when temperature become

very high, when dissociation and ionization of moleclules can occur, or for furnaces, in

the presence of combustion products (C02, H2O or soot) can beradiatively active , that

is to say, the absorption and scattering by the medium cannot be neglected anymore.

Taking into account those volumic e�ects implies a resolution of the RTE but, as ex-

plained in the previous chapter, the numerical methods to tackle this equation are not

common in the engineering community and can be very computationally demanding.

On the other hand, one can remark that, within this framework, since the purpose is the

coupling of the radiation with the thermal balance, the quantity to be i nserted in the

energy equation (as a source term) has to be direction independent. Therefore, instead

of considering the "full" radiative transfer equation, a promising lead is to consider ap-

proximate forms of the RTE (see [186] or [26] for good reviews on this topic), where the

angular dependency has been eliminated, as done with the Spherical Harmonics or the

DOM depicted in the previous chapter, but, in both cases, if one wants a good numerical

approximation, it means dealing with an important number of equations (related to the

order of the Legendre polynomial or the number of discrete ordinates), which increases

substantially the computational cost and the complexity of the problem to be solved.

It would be desirable to deal with a �xed number of equations, of a "classical" type if

119
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possible (ie only dependant on space and time). Those requirements are ful�lled by the

so-called moment models, where the RTE is averaged over the unit sphere, resulting in a

coupled system of PDE, but with supplementary equations needed toclose the system,

the "essence" of the obtained model being the closure relation. Two main closures will

be considered, one leading to theP1 model brie
y presented in chapter 2, and a more

sophisticated one, namely theM 1 model.

Moreover, in many situations, the radiative disequilibrium is caused by spatially het-

erogeneous radiative properties. To treat such situations, the IVM appears as a natural

tool, and so the developed method will be tested on multidomain problems.

The outline of this chapter will be as follows: �rst, we will introd uce the concepts nec-

essary for moment models, we will derive the two aforementioned models and a few

others, secondly we will provide an overview of the existing methods for such models,

and �nally, we will describe the formulation we propose for the M 1 model.

5.1 Introduction to moment models

For the sake of clarity, we recall here the full RTE, the notations remaining the same

1
c

@I
@t

+ ! � r I =
� r

�
�T 4 � (� + � )I +

�
4�

Z

S
I (! 0)d! 0 (5.1)

At this stage, we would like to add that this equation presents di�erent predominant

regimes, depending on the values of the opacities� and � :

� when � and � values are low, the photons travel free in the medium without

signi�cant interactions with the medium. The interactions are ther efore mainly

long distance: this is thetransport limit .

� when � and � values are high, the photons strongly interact with the medium,

rendering the interaction close to isotropy ( even close to the Planck distribution):

this is the dif fusion limit .

If those two limits are naturally obtained with the full RTE, this is not guaranteed for

the approximate models that will be considered in this work, and the respect of this

asymptotic behaviour is a desirable property for an approximate model.

The �rst step is the de�nition of the moments of the radiative intens ity, the radiative

energyEr , radiative 
ux F r , and radiative pressure tensorPr ( a less common quantity
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than the �rst two, but interpretations and comments about it can be found in [187] or

in [188]), are de�ned as the zeroth (sometimes called the incident radiationG, an can be

expressed including the factor1
c ), �rst and second order angular moments of the speci�c

radiative intensity, respectively, i.e.,

Er =
Z

S
Id! (5.2)

F r =
Z

S
! Id! (5.3)

Pr =
Z

S
(! 
 ! )Id! (5.4)


 being the dyadic product. It is also possible to de�ne an order moment as follows

M n (I ) =
Z

S
! n Id! (5.5)

with ! n = ! 
 ::: 
 !| {z }
n


(5.6)

We notify that, thanks to the Cauchy-Schwarz inequality, ( 5.2) and (5.3) implies the

two following so-called realizability conditions:

Er � 0 sinceI � 0 (5.7)

and

kF r k2 � Er sincek! k2 � 1 (5.8)

It can be demonstrated that all the couples (Er ; F r ) that ful�ll those realizability con-

ditions, the set of admissible states, de�ned by

C = f (Er ; F r ) 2 R � Rd suchEr � 0 and kF r k2 � Er g (5.9)

is a closed convex cone. At this level, it is useful to de�ne the reduced 
ux f = F r
E r

and f = kf k2. The realizability conditions implies that 0 � f � 1. We will see that,

depending on the chosen closure, those requirements are not necessarily ful�lled. A

general family of moment models is obtained by integrating (5.1) and (5.1) multiplied
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by ! over all S leads to

1
c

@Er
@t

+ r � F r + �E r = 4 �� r T4 (5.10)

1
c

@F r

@t
+ r � Pr + ( � + � )F r = 0 (5.11)

One can note that the present system is not closed: we have 10 unknowns (Er , 3

components forF r , 6 components forPr ) for only four equations. We could be tempted

to introduce angular moment of higher order, but because of the term! � r I , the

equation for the n th order moment will involve the moment of order n + 1. Hence, we

need to introduce more equations to close the system. Two closureswill be presented

and compared in the following. An analogy of this system, involving the three quantities

(Er ; F r ; Pr ) can be done with the one encountered in the Navier Stokes equations, which

involves (�; u ; � ). Actually, the way which the NS equations are obtained from the

Boltzmann equation [189, 190] is very similar to the approach presented here, (�; u ; � )

being the moments of the distribution function of particles. Knowing this, the closure,

which expresses the higher order moment in terms of lower order moments, can be seen

as a constitutive relation.

5.2 Di�erent closures

Three di�erent models will be presented in this section, but a di�erence can be made

between the �rst two, where a closed system is obtained by means of simplifying as-

sumptions, and the third, where the closure relationship is obtained through a rigorous

analysis. It is necessary to mention that, the source term to be inserted in the thermal

balance is given by

Srad = � r � qr = � (4� r T4 � Er ) (5.12)

5.2.1 Rosseland approximation

The idea here is to express the radiative e�ects as a non-linear di�usion term. We assume

a stationary phenomenon, an optically thick medium ( high values of� and � ). In such

situations, the radiative energy is a Planckian of the temperature and,one gets

qr = �
4� r

3(� + � )
r (T4) = �

16� r T3

3(� + � )
| {z }
= � rad (T )

r (T) (5.13)
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This model is really easy to include in the thermal balance, just byadding a non-linear

conductivity � rad (T) which is available in many commercial softwares. Nonetheless,

the model is adapted for optically thick media only, therefore is not well suited for

transparent media.

5.2.2 P1 model

This model remains interesting in the sense that it can be obtainedusing the spherical

harmonics (the lowest order possible), and theSPN approximation ( asymptotic devel-

opment with respect to opacities). We present here a way to derive it from the general

moment equations, and it will provide a comparison tool to see the improvements thanks

to the M 1 model that will be presented later. The closure is obtained starting from (5.11)

assuming an isotropic radiative pressurePr = 1
3Er I and a stationary radiative 
ux so

that one gets

F r = �
1

3(� + � )
r Er (5.14)

Introducing ( 5.14) into ( 5.10) leads to the following linear di�usion-reaction time de-

pendant type equation ( the radiative energy is usually denoted asG in this context)

:

1
c

@G
@t

� r �
� 1

3(� + � )
r G

�
+ �G = 4 � r �T 4 (5.15)

As we will see after, equation (5.15) will correspond to the di�usion limit of the M 1

model.

Those two models have some well identi�ed drawbacks: anisotropic e�ects cannot be

rendered by such approximations ( due to the isotropic radiative pressure). Moreover,

the realizabilty conditions (5.7) and (5.8) can be violated: in (5.14), one can see that

the F r is colinear to r Er , leading to a possible violation of (5.8). This can be partially

cured using the notion of "
ux limiter" as described in [ 191], by modifying (5.14) up to

a multiplicative factor, but no satisfactory compromise has been foundfor the transport

limit yet. This justi�es the use of a more sophisticated model, described in the next

subsection.
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5.2.3 Minimum entropy closure: the M 1 model

A section will be dedicated to a new formulation for this model, so wedetail its deriva-

tion and its mathematical properties. Here the closure relationship isobtained using a

maximum entropy principle. This idea has been successfully applied in other contexts,

as kinetic theory [192],[193],[194] or Fokker-Planck equation [195]. Other work can be

noted as well; [196] for the same approach in an abstract form, [197] for a detailed 1d

analysis and [198] for the same results obtained with a di�erent methodology. The idea

can be described as follows: we are looking for the speci�c intensities that minimize a

radiative entropy, under a realizability constraint, that is to say, the two �rst moments

of the speci�c intensity are the ones that appear in (5.2) and (5.3). This procedure can

be performed for a moment model of arbitrary high order, namelyM n models, but on

the one hand, an analytic closure is only known forM 1 model, and on the other hand, a

n order model involve ann +1 order tensor, so such models are not convenient to imple-

ment within classic data structures, and only one dimensional applications are available

in the literature for n > 1: we can quote [199] with the introduction of perturbed closure,

[200] using adaptive closure, [201] for a special focus on the optimization problem, [202]

for an exemple with a three moment model and [203] for application to slab geometries.

Other non published work [204][205] can be evoked for the sake of a complete analysis.

We detail only for n = 1, where the problem can be written as a convex optimization

problem, with help from the following Lagrangian:

I = arg
�

min
I �

� ;�; �
J (I �

� ) = I (I �
� ) + � (

Z 1

0

Z

S
I �

� d!d� � E r ) + � � (
Z 1

0

Z

S
I �

� ! d! � F r )
�

(5.16)

I (I �
� ) =

Z 1

0

Z

S
(n log(n) � (n + 1) log( n + 1))

2k� 2

c3
d�d! (5.17)

where n = c2

2h� 3 I � .

The saddle point of this Lagrangian is obtained for the following form [126] of the

radiative intensity

I �
� =

2h� 3

c2

1

exp( h�
kT (� + � � ! )) � 1

(5.18)

The Lagrange multipliers � and � are then determined using realizabilty constraints.

An integration over all frequencies gives
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I � =
2� 4k4T4

15c2h3

1
�

1 � 2�
p

4� 3f 2

f 2

� 4 (5.19)

We now want to emphasize the fact that the model to be obtained through this procedure

can produce anisotropic e�ects : the goal is now to express a constitutive relation,

under the form Pr = D(f )Er , where D(f ) is called the Eddington Tensor. Following

Levermore's approach [191], we introduce normalized intensity and 
ux, de�ned by :

I = Er ' ; F r = Er f (5.20)

where ' is the normalized radiative intensity, and f is the reduced 
ux as previously

de�ned. Using those quantities, the de�nition of the moments (5.2) can the be recast

as:

1 =
Z

S
'd! (5.21)

f =
Z

S
! 'd! (5.22)

D =
Z

S
(! 
 ! )'d! (5.23)

Since ' is a non-negative density de�ned on the unit sphere, andf and D are its �rst

and second order angular moment, respectively, they must satisfy theconstraints:

tr (D) = 1 (5.24)

D � f 
 f � 0 (5.25)
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(5.24) tells us that the sum of the eigenvalues of the tensorD are equal to one and (5.25)

is to be understood in the sense thatD � f 
 f is a positive symetric tensor (ie all

its eigenvalues are non-negative). Now, let us consider the case when the intensity is

symetric about a prefered direction, denotedn : it implies, thanks to equations (5.21)

and (5.22), that '; f and D should remain invariant under rotations that �x n . It follows

that :

f = f n (5.26)

D n = � n (5.27)

Due to well-known arguments about real symmetric matrices, the plane orthogonal to

n must be an eigenspace ofD with an eigenvalue � ? di�erent of � . Using (5.24), we

obtain:

� ? =
1 � �

2
(5.28)

Thus, D may be written in the form:

D =
1 � �

2
(I � n 
 n ) + � n 
 n (5.29)

D =
1 � �

2
I +

3� � 1
2

n 
 n (5.30)

Finally, thanks to the relations ' = I
cEr

and f = f n , we can come back to the radiative

pressure tensor:

Pr =

0

B
B
B
@

1 � �
2

I
| {z }

(1)

+
3� � 1

2
f 
 f

f 2
| {z }

(2)

1

C
C
C
A

| {z }
= D(f )

Er (5.31)

The expression for� is still to be de�ned. We determine it using the relation:
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� (f ) =
Z

S
(! � n )2'd! (5.32)

The result of the calculation depends on the form of the radiative entropy, but the

most common is the Maxwell Boltzmann entropy, used in the Lagrangian de�nedby

(5.16). More details about the calculations and other alternatives are availablein

[206],[207],[191] linked to the 
ux limited di�usion models described earlier, [208] with

the point of view of the thermodynamic, [209] for a derivation using entropy, and [210]

for a geometric determination. Finally, for the Maxwell-Boltzmann ent ropy, one gets

� (f ) =
3 + 4f 2

5 + 2
p

4 � 3f 2
(5.33)

We note that all the non-linearity of the M 1 model is in (5.31) and (5.33). Some

comments about the physical insight of the two contributions of the Eddington tensor can

be given: term (1) can be viewed as an isotropic part of the radiative pressure, whereas

term (2) is an anisotropic contribution in the direction of the normalized radiative 
ux

f . Those two terms are balanced by the Eddington factor� (f ), which is controlled by

f , that can be viewed as a measure of the anisotropy of the radiation �eld. Moreover,

this closure ensures the positivity of the energy and limitation of the radiative 
ux. The

M 1 system renders the appropriate limits with respect tof : one can see that forf = 0,

corresponding to the di�usion limit ( isotropy), one gets

� (0) =
1
3

(5.34)

D(f ; 0) =
1
3

Id (5.35)

and for the transport limit ( anisotropy in one direction), correspondin g to f = 1, reads

� (1) = 1 (5.36)

D(f ; 1) =
f 
 f

f 2 (5.37)

We would like to point out that it is not straightforward to derive boundar y conditions

for the M 1 model from the ones used for the full Radiative Transfer Equation: in (5.1),

the speci�c intensity is prescribed for the incoming 
ux only, w hereas in the moment

model, the full moment values must be assigned, even if the notion of "partial" moment



Chapter 5 128

brings an answer to this question. Nevertheless, in most of the cases [211],[212], the

following boundary conditions are used

Er j@
 = 4 �� r T4
w (5.38)

Where Tw is the temperature of the considered wall. We also consider that no radiative


ux is transmitted through the wall of the enclosure, which writes

F r; j@
 = 0 (5.39)

Some studies about derivation of boundary conditions for general moment models (going

beyond the context of radiative transfer) are available in [213],[214] or [215].

This model has been widely used in Radiation Hydrodynamics, since it o�ers a natural

coupling with the other physics [216],[217],[218, 219],[220],[221], and the more advanced

research codes for radiation hydrodynamics are based on these approaches: HERACLES

[222], HADES [223] or KORAL [ 224]. Some applications dedicated to low Mach 
ows

are also available [211, 225].

5.2.4 Extensions of the M 1 model

5.2.4.1 Method of partial moments

It is known that the M 1 model can produce non-physical solutions, notably in the 1d

case of two opposed beams, where a non-physical shock is observed compared to the

solution of the full RTE [ 226]. The reasons not to use higher order minimum entropy

closure were depicted above, but an alternative is to de�ne "partial" moments, not de-

�ned on the entire unit sphere S but on a non overlapping subset forming a partition

of S ( denoted hereA , with a current element A 2 A ), for which we de�ne a reduced


ux f A and an Eddington factor � A , but the closure (5.33) cannot be determined an-

alytically anymore for general partial moments models. The �rst trace of this idea is

given by [227] but without the notion of moment. Dubroca and coworkers impulsed

this lead [228] with a half-moment approximation in 1 d, generalized by Ripoll [229] for

multidimensional problems. A rigorous analysis for any partition and multidimensional

problems is credited to Frank [205, 226]. One can also note an application to non-gray

radiation [230], the subject of the next part.
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5.2.4.2 Non-gray radiative transfer

In situations like astrophysics and 
ame modelling, the gray medium assumption is

sometimes not su�cient. If full descriptions of the spectrum are available by means

of databases, this is in practise out of range for situations of interest. Another option

is to divide the spectrum in intervals on which radiative properti es can be considered

constant. One can speak of frequency groups or bands, the bands being thinner than

groups. See [231] for multigroup model and [232] for a 3d multiband model, or [233] for

a hybrid (coupled M 1 and full RTE ) model.

5.3 State of the art: existing schemes for the M1 model

Most of the numerical schemes for theM 1 model are of Harten-Lax-van Leer (HLL)

type [234], a �nite volume method taking advantage of the hyperbolic eigenstructure of

the system, which can be viewed as a non-linear conservation law, and aninterpretation

using Riemann problems [235],[236][237],[238] between cells. The work of Berthon and

coworkers, that designed a series of \asymptotic preserving" schemes [212, 239{ 247],

is to be noted, since most of the schemes in literature are of this type. The work of

Buet is also notable [248, 249] and [250], with an extension to radiation hydrodynamics,

with the possibility of taking into account relativistic e�ects. T wo other approaches

can also be quoted, namely, one based on a discontinuous Galerkin approach credited

to [251], and another one based on a modi�ed system of moments proposed in [252]. In

both cases, applications remain restricted to one-dimensional situations. We want to

propose a multidimensional �nite element method for the M 1 system: it will be a mixed

formulation due to the coupled nature of the system, a stabilized formulation since we

want to avoid the use of inf-sup compatible pairs, so we restrain ourselves to equal order

interpolation spaces. The non-linearity of the equations will require a speci�c treatment

as well.

5.4 Mixed Finite Element formulation for the M1 radiation

model

5.4.1 Weak formulation

We now turn to the weak formulation for the M 1 model, de�ned by equations (5.10),

(5.11), (5.31) and (5.33). Let Q be the space whereEr belongs for each timet and W

the space whereF r belongs, i.e.,Er (�; t) 2 Q, F r (�; t) 2 W for all t > 0. The spaces
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for the test functions will be denoted by Q0 and W0, so that functions in these spaces

will be zero where functions in the corresponding trial spaces will be prescribed with

Dirichlet boundary conditions. To avoid technical details, appropriate regularity in both

space and time will be assumed.

The weak formulation of the problem is obtained by multiplying ( 5.10) by q 2 Q0 and

(5.11) by w 2 W0, integrating over the computational domain and using integration by

parts on the term involving Pr . This leads to the following problem:

Find ( F r ; Er ) 2 W � Q such that for all (w ; q) 2 W0 � Q0

1
c

�
@F r

@t
; w

�
+ h(� + � )F r ; w i � h Pr ; r w i = 0 (5.40)

1
c

�
@Er
@t

; q
�

+ h�E r ; qi + hr � F r ; qi = h4��� r T4; qi (5.41)

Here and in the following, hf; g i =
R


 fg for any functions f and g, vector or scalar

valued.

5.4.1.1 Time discretization and treatment of the non-linear term

Let us consider a uniform partition of the time interval [0 ; T], so that 0 = t0 < t 1 <

� � � < t N = T, with �t := tn+1 � tn constant, n = 0 ; : : : ; N � 1. The time discretization

will be performed using standard �nite di�erence schemes. Usingfor example backward

di�erences, for a generic time dependent functiong(t), the time derivative at tn can be

approximated by an appropriate incremental quotient �g n

�t , with �g n depending ongn� k ,

k = 0 ; 1; : : : , and gn being an approximation to g(tn ). In particular, in the numerical

examples we will use the simplest backward Euler scheme, in which �g n = gn � gn� 1 and

all terms in the equation are evaluated at tn . Since there is no possibility of confusion,

the superscript with the time step level will be omitted.

As previously mentioned, all the non-linearity of the M 1 model is contained inPr . Hence,

this term has to be treated in an appropriate manner, by performing non-linear iterations

within each time step. Introducing a superscript counter i for these iterations, we can

consider the following expansion of the radiative pressure tensor:

Pi +1
r � Pi

r + Ji
E (E i +1

r � Er i ) + Ji
F (F i +1

r � F i
r ) (5.42)

where Ji
E and Ji

F ( a third order tensor) are the Jacobian matrices ofPr with respect to

Er and F r , respectively. The calculation of those matrices is detailed in theappendix
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C. Introducing ( 5.42) into ( 5.40) and (5.41), one gets

1
c

�
� F i +1

r

�t
; w

�
+ h(� + � )F i +1

r ; w i � h Ji
F F i +1

r ; r w i � h Ji
E E i +1

r ; r w i

= hPi
r ; r w i � h Ji

F F i
r ; r w i � h Ji

E E i
r ; r w i (5.43)

1
c

�
�E i +1

r

�t
; q

�
+ h�E i +1

r ; qi + hr � F i +1
r ; qi = h4��� r T4; qi (5.44)

More implementation details can be found in the appendix C. During numerical experi-

ments, no signi�cant di�erence was observed by using the classicalNewton method and

a linearization performed over a time step. However, further investigation about these

questions have to be conducted, and will be the subject of future work.

5.4.1.2 Galerkin �nite element approximation

Let us consider a �nite element partition Th = f K g of the computational domain of

diameter h. From this we may construct �nite element spacesWh � W , Wh;0 � W0,

Qh � Q and Qh;0 � Q0 in the usual way.

The Galerkin �nite element approximation to problem ( 5.43)-(5.44) reads: for each

iteration i + 1 of each time step, �nd F i +1
r;h 2 Wh , E i +1

r;h 2 Qh such that

1
c

*
� F i +1

r;h

�t
; wh

+

+ h(� + � )F i +1
r;h ; wh i � h Ji

F F i +1
r;h ; r w h i � h Ji

E E i +1
r;h ; r w h i

= hPi
r ; r w h i � h Ji

F F i
r;h ; r w h i � h Ji

E E i
r;h ; r w h i (5.45)

1
c

*
�E i +1

r;h

�t
; qh

+

+ h�E i +1
r;h ; qh i + hr � F i +1

r;h ; qh i = h4��� r T4; qh i (5.46)

for all wh 2 Wh;0 and qh 2 Qh;0. It is understood that the Jacobians and the pressure

radiation tensor are computed with the �nite element unknowns.

This is the classical Galerkin �nite element method for the M 1 radiation model. To

the best of the author's knowledge, there is no other �nite elementmethod available

in literature for this model. Still, it was observed that the soluti on of the proposed

formulation ( 5.45)-(5.46) su�ers from numerical oscillations when it is used in the way

we presented it above. Before turning to the stabilized approach, we propose coming

back on the VMS approach.
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5.4.2 The VMS as an abstract tool

The Variational MultiScale method presented and applied to NS and CDR problems was

�rst introduced in the context of 
uid dynamics, with the natural i nterpretation of �ne

and coarse scales as small structures and large structures. But, after all, if one analyzes

the problem from an abstract point of view, the VMS method can be seen as a formal

decomposition of functional spaces into a direct sum, implying a splitting of unkowns

and test functions to be inserted in the weak formulation. Hence, if one has at hand

the tools for a �nite element method ( the weak formulation and the functional setting),

the VMS framework can be used to stabilize the formulation of any problem.This has

been achieved for a large class of problems: strain localization in solid mechanics [253],

inelasticity [ 254], di�usion in random media [ 255], Boussinesq equations [256], crack

propagation [257], non-linear solid mechanics [258], Lagrangian Hydrodynamics [259] or

plasma 
ows [260]. But the problem that inspired the most is the problem of waves,

since the mixed form of the wave equation permits to handle situations that are out of

reach with the full form of the wave equation [261], even though the VMS was applied

before to the Helmotz equation [262]. The �rst work on this problem is in [ 263], followed

by [264{ 269]. Knowing this, the VMS appears as a natural tool to stabilize the presented

formulation.

5.4.3 Stabilization for the proposed formulation

For ease the notation in the analysis to come, the following notations are introduced:

Ff = Pi
r � Ji

F F i
r;h � Ji

E E i
r;h (5.47)

f E = 4 ��� r T4 (5.48)

5.4.3.1 Scale splitting within the VMS framework

Once the equations to be solved are written in variational form, a VMS decomposition is

applied and the radiative 
ux and energy are split into a coarse-scale/�ne-scale decom-

position, and likewise for the associated test functions. Thus, thecorresponding spaces

can be written asW = Wh � W 0 and Q = Qh � Q0, and the functions belonging to them

as

F r = F r;h + F 0
r ; Er = Er;h + E 0

r

w = wh + w 0; q = qh + q0

with the obvious identi�cation of unknowns and test functions.
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At each iteration we have to solve a linear problem. Since there is nopossibility of

confusion, superscripts are omitted in the following. Introducing the previous decom-

positions into the weak formulation leads to a coarse-scale and a �ne scaleproblem for

each unknown, which reads:

� Radiative 
ux equation

1
c

�
� (F r;h + F 0

r )
�t

; wh

�
+ h(� + � )(F r;h + F 0

r ); wh i � h JF (F r;h + F 0
r ); r w h i

� h JE (Er;h + E 0
r ); r w h i = hFf ; r w h i (5.49)

1
c

�
� (F r;h + F 0

r )
�t

; w 0
�

+ h(� + � )(F r;h + F 0
r ); w 0i � h JF (F r;h + F 0

r ); r w 0i

� h JE (Er;h + E 0
r ); r w 0i = hFf ; r w 0i (5.50)

� Radiative energy equation

1
c

�
� (Er;h + E 0

r )
�t

; qh

�
+ hr � (F r;h + F 0

r ); qh i + h� (Er;h + E 0
r ); qh i = hf E ; qh i

(5.51)

1
c

�
� (Er;h + E 0

r )
�t

; q0
�

+ hr � (F r;h + F 0
r ); q0i + h� (Er;h + E 0

r ); q0i = hf E ; q0i

(5.52)

5.4.3.2 Approximation for the Fine-scale problem

To approximate the �ne scale problem, we will work under the assumptions presented

in chapter 2. Nonetheless, some uncommon di�culties arise here due tothe presence of

tensors in the �ne scale problem that require a speci�c treatment

Let us introduce the following notation:

R F; 1 = � (� + � ) F r;h �
1
c

� F r;h

�t
(5.53)

RF;2 = Ff + JF F r;h + JE Er;h (5.54)

RE = f E �
1
c

�E r;h

�t
� r � F r;h � �E r;h (5.55)

A = JF F 0
r + JE E 0

r (5.56)

With our working assumptions, the �ne scale problem (5.50)-(5.52) then reads:

h(� + � )F 0
r ; w 0i � h A; r w 0i = hR F; 1 ; w 0i + hRF;2; r w 0i (5.57)

hr � F 0
r ; q0i + h�E 0

r ; q0i = hRE ; q0i (5.58)
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as stated before, the �ne scale problem does not really need to be solved in a accurate

way, it just has to be approximated in order to capture the e�ect of th e �ne scales on

the large scales.

Since the �ne scales vanish on inter-element boundaries, we can write

hA; r w 0i = �h r � A; w 0i

hRF;2; r w 0i = �h r � RF;2; w 0i

We can now de�ne

R F = R F; 1 � r � RF;2

The term r � A requires to make more assumptions. Since only the steady state

is of interest, spatial variations of the Jacobian matrices in the left-hand side can

be neglected without compromising the accuracy of the scheme. Hence,by denoting

JF = ( Jp
F )p2f 1;:::;dg, we can write

r � A = JE r E 0
r +

dX

p=1

Jp
F r F 0

r;p (5.59)

Using this, the �ne-scale problem can be written as

h(� + � )F 0
r + JE r E 0

r +
dX

p=1

Jp
F r F 0

r;p ; w 0i = hR F ; w 0i (5.60)

hr � F 0
r + �E 0

r ; q0i = hRE ; q0i (5.61)

for all test functions w 0 and q0. This problem can be cast in the following abstract form

P0(L (U )) = P0(R ) (5.62)

with

U =

"
F 0

r

E 0
r

#

; R =

"
R F

RE

#

L is the di�erential operator appearing in the left-hand-side of (5.60)-(5.61) and P0 is

the projection onto the space of subscales. In essence, the two common choices for this

operator are to take either the projection orthogonal to the �nite element space (OSS

method) or the identity when applied to �nite element residuals (ASGS method); see

[37]. As mentioned before, the ASGS formulation will be used in this work.
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The idea is now to approximate the operatorL by an operator easy to invert. A straight-

forward solution is to take L � 1 � T, where T is a diagonal matrix. Thus, we take

T =

"
� F Id 0

0 � E

#

The values are obtained thanks to the Fourrier analysis presented in chapter 2. Applying

this transform to ( 5.62) gives:

(� + � )cF 0
r � JE

i k
h

cE 0
r �

dX

p=1

Jp
F

i k
h

dF 0
r;p = dR F (5.63)

�
i k
h

� cF 0
r + � cE 0

r = dRE (5.64)

where we have assumed again that subscales vanish on the element boundaries.

At this stage, we would like to point out that the governing equations of the M 1 model

are similar to a system of damped waves in mixed form, as addressed in [270]. This

leads us to make an analogy with the approach proposed in [263] or [269] for undamped

waves, and choose the stabilization parameters as

� F =
1

r �
c1 (� (JE )+

P d
i =1 � (Ji

F ))
h

� 2
+ ( � + � )2

(5.65)

� E =
1

p
( c2

h )2 + � 2
(5.66)

where � (�) stands for the spectral radius of a matrix and c1 and c2 are algorithmic

constants de�ned earlier. We �nally get

F 0
r = � F R F ; E 0

r = � E RE (5.67)

Then, one just needs to introduce (5.67) in ( 5.49) and (5.51) after integrating by parts

the terms involving the subscales, leading to new terms in the previous formulation that

provide the desired extra control. We now turn to numerical experiments.

5.5 Numerical results

This section is devoted to the testing of the formulation on four benchmark problems

available in literature, in order to assess the implementation of thenew mixed stabilized

�nite element method. The �rst example considers one single domain, whereas the three
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other problems deal with multidomains to illustrate the use of the immersed volume

method for such situations.

5.5.1 Transparent media in a square enclosure

For our �rst example, we consider radiative transfer in a static non-participating media

contained in the unit square. This test case is close to the ones presented in [271] and

[272] or [211], with the di�erence that we set here � = 0 m� 1. We want to make a

comparison with the P1 model, so we also perform the computation with� = 10 � 4 m� 1.

We work with non-dimensional quantities, so that we have c = 1. We use Dirichlet

boundary conditions with a bottom wall at a �xed Er;in = 7 :13 105 W and the other

walls are at Er;b = 5800 W, and a zero value is �xed for the normal component ofF r .

The initial radiative energy is Er; 0 = 5800 W. For both simulations, the time step is

�t = 0 :05, and we use a mesh of approximately 11 200 elements.

Figure 5.1: Radiative Energy for P1

model (left) and M 1 model (right): t =
5�t

Figure 5.2: Radiative Energy for P1

model (left) and M 1 model (right): t =
25�t

Figure 5.3: Radiative Energy for P1

model (left) and M 1 model (right): t =
400�t

Figure 5.4: Radiative Energy for P1

model (left) and M 1 model (right):
steady state

The results show the ability of the M 1 model to reproduce the transient behavior of the

phenomenon represented. It is observed that for theP1 model, the equilibrium state

is reached after only one time step, and using a smaller time step does not make any

di�erence. This example demonstrates that the obtained solution is free of oscillations,

justifying the coupled formulation and the stabilization developed here.

An important question is the accuracy of the formulation; to the best of our knowledge,

there exists no analytical solution for the radiative transfer equation in two dimensions

(for one-dimension, see [273], but a two dimensional extension is not straightforward).
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We then propose to perform an error analysis by performing calculations onseveral

meshes of diferent sizes. We will use a solutionEr;ref computed on an unstructured

mesh of 105 584 elements as our reference. The chosen norm is

"(uh) = (
Z



(uh � uref )2d
)

1
2 (5.68)

We considered four meshes (M i ) i =1 ::4. Their characteristics (number of elements, mesh

size) are given in the table below. As it can be expected from the �nite element theory,

a linear convergence is observed.

Mesh Number of elementsN meshe sizeh
M 1 250 0.09006
M 2 522 0,057556
M 3 1036 0.040449
M 4 4302 0.019711

Table 5.1: Meshes used for the error analysis
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Figure 5.5: L 2 error with respect to the mesh size

5.5.2 Participating media with discontinuous coe�cients: �xed tem-

perature

This case is taken from [274], where solutions of di�erent approximate models for ra-

diation presented in this chapter and chapter 4 are compared to solutions obtained by
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a direct resolution of Eq. (5.1), so it o�ers a reference to compare our results. We

considered a �xed temperature, constant in two di�erent subsdomains, with a spatially

dependent absorption coe�cient � . The computational domain is D = [0 ; 1]� [0; 10], and

we de�ne D0 = [0 :45; 0:55] � [4:5; 5:5], D1 = D n D0. We set � = 1 and the temperature

and absorption coe�cients are taken as

T(x ) =

(
1000 K if x 2 D 0

1800 K if x 2 D 1
(5.69)

� (x ) =

(
3 m� 1 if x 2 D 0

1 m� 1 if x 2 D 1
(5.70)

This temperature leads to a \manufactured" source term for Eq. (5.10), varying in space,

but constant in time. The immersed volume method allows us to represent the spatial

dependence of the absorption coe�cient in a natural way.

The mesh used for the computations and the representation of the levelset function of

the object are displayed in Fig.5.6; this mesh is composed of 218 072 elements. We use

homogeneous Neuman boundary conditions forEr and a zero Dirichlet condition for the

normal component ofF r .

Figure 5.6: Adapted mesh and levelset of the center zone

Steady state results are presented in Fig.5.7, where we display the patterns of the

radiative energy for both the P1 and M 1 models. In Figs.5.8 and 5.9 we plot the values

along x = 0 :5 in order to compare with the reference solution.

The patterns show that both the P1 and M 1 models overestimate the value of the ra-

diative energy insideD0, but whereas theP1 model shows a qualitatively wrong pro�le,

the correct pro�le is obtained with the M 1 model. Again, this numerical test demon-

strates that the obtained solution is stable and free of oscillations, justifying the coupled

formulation and the stabilization developed here.
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Figure 5.7: Patterns of the radiative energy obtained for P1 (left) and M 1 (right)
models
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Figure 5.8: Radiative Energy along
x = 0 :5: present results

Figure 5.9: Radiative Energy along
x = 0 :5: reference from [274]

5.5.3 Radiation of an absorbing rod in a scattering media: the Mor-

dant Test

The next example to be presented was introduced in [275, 276] and is also presented in

[272]. The considered domain is a unit square. The test represents a purely absorbing

region (a square rod of side 0:6) surrounded by a scattering region. Only steady state

results are presented. The properties of the di�erent zones are summarized in Table 5.2.

Again, the central zone and the heterogeneous properties are represented by means of

the immersed volume method. The adapted mesh (composed of 102 488 elements) and

the levelset function used to adapt the mesh are presented in Fig.5.10. In [272], results

were compared with the results obtained by the discrete ordinates method, and it was

shown that results from the M 1 model can di�er for those obtained by the classical

discrete ordinates method due to complex geometrical e�ects. The boundary conditions
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are zero Neumann on the left and bottom boundaries, and a specular re
ection on the

top and right boundaries. For the M 1, for a boundary �, with F r = ( Frn ; Frt ) being

respectively the normal and tangential components of the 
ux, those conditions read:

Er; � = Er;w

Frn; � = � Frn;w

Frt; � = Frt;w

where X � refers to quantities imposed on the considered boundary, andX w are those

obtained from the calculations (hence, those boundary conditions are updated at each

time step). It is not straightforward to derive this kind of boundary c onditions, since in

the P1 model the 
ux is related to the gradient of Er , and therefore imposingEr and

r Er on the same boundary would lead to an ill-posed problem. However, we tried the

two alternatives, which give similar results; these results are presented below.

X X X X X X X X X X XProperties
Zone

Center zone Outer zone

� 100 0.05
� 0 0,95
Srad 0 1

Table 5.2: Thermodynamical properties of the considered case

Figure 5.10: Adapted mesh and levelset of the center zone

The M 1 results obtained are correspondant with those obtained in the reference men-

tioned above. Since a 
ux limited di�usion was used in that reference, the pattern

obtained di�ers a bit, but the same tendency is observed.

5.5.4 Radiative transfer behind an obstacle: the shadow test

The purpose of this test, inspired in the benchmark presented in[277] and [217], is to

show the ability of the M 1 model to capture the anisotropy of the radiative �eld, contrary
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Figure 5.11: Patterns obtained for
M 1 model

Figure 5.12: Patterns obtained for P1

model

Figure 5.13: Iso-lines obtained for
M 1 model

Figure 5.14: Iso-lines obtained forP1

model

to the P1 model. All cited references compute results on half of the computational

domain for symmetry reasons, but we have chosen to compute the whole domain. The

geometry represents a cylindrical domain of 1:0 m in length and 0:12 m in radius.

An ellipsoidal obstacle, of semi-major and semi-minor axes (0:1; 0:06), respectively, is

located in the domain. We have chosen values of absorption coe�cient with a large

di�erence between the obstacle and the surrounding media to produce a shadow e�ect

(� obstacle = 50000 m� 1, � media = 0 m � 1). Contours of the obstacle are smoothed in [277],

but this is replaced here by the anisotropic mesh adaptation to capturethe interface of

the obstacle properly. A radiative energy ofEr;in = 6 :5 106 W is imposed at the left

boundary of the domain, and zero Neumann conditions are imposed elsewhere. On the

whole boundary, a zero Dirichlet condition is imposed for the normal component of

F r . The initial condition is Er (x ; 0) = Er; 0 = 5 :04 102 W. The distributed absorption

coe�cient and the mesh used for the computations are presented in Fig. 5.15. We only

look for steady state results. A mesh of 268 012 elements is used.

The results in Fig 5.16show that whereas theP1 model cannot reproduce disequilibrium
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Figure 5.15: Distributed absorption and adapted mesh

Figure 5.16: Radiative Energy for the P1 model (bottom) and for the M 1 model (top)

for the radiative energy, the M 1 model gives clearly a better approximation of the energy

distribution. However, the shadow e�ect is not sharp as as presentedin [277]. This can

be explained by the principle of the stabilization method: the most important term

is a \di�usion-like" one. On the other hand, the M 1 model aims to make a balance

between a transport part and a di�usive part. Therefore, the extra di�usion added

for the stabilization perturbs this balance. In fact, even if this balance is ensured at

the continuous level (equation (5.31)), it is not guaranteed that it still holds for the

discretized formulations.
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Concluding remarks

In this chapter, a new stabilized �nite element formulation for the M 1 radiation model

has been developed and tested on some illustrative examples. The ability to represent

multi-domain problems was also demonstrated. It is a �rst attempt, using a �nite

element framework, to deal with such a coupled non-linear system that solves both

radiative energy and 
ux. Nevertheless, the formulation can be improved:

� Additional work should be done to ensure that the formulation preservesthe ad-

missible states: in a �nite element context, this can be done by including the

realizabilty constraints in the functional setting. However, since the set of realiz-

able states is a convex set, it is not straightforward to exhibit such aspace. An

option would be to use the theorem of projection in an Hilbert space onto acon-

vex [278],[279] iteratively, by �nding the unique projection, consider its ort hogonal

complement and repeat the same operation. Another option would be to consider

an augmented formulation, following the lines in [116], the constraint being related

to the realizable states. This means to deal with variational inequations, as seen

in the in the context of contact mechanics [280].

� Regarding the mixed �nite element theory, all of the variational theory [29] as-

sumes a symmetric formulation, which does not hold here. Therefore, it would be

interesting to investigate the classical properties of the �nite element formulation

( order of convergence, regularity with respect to datas, existence ofcontinuous

weak solutions).

� An asymptotic analysis like the one presented in [246, 247] or more recently in

[281] is di�cult to transpose in a �nite element context, on the one hand b ecause

the proposed formulation is fully implicit, so there is no CFL condition to work on,

and on the other hand, there is no numerical reconstruction 
ux step orRiemann

problem equivalent in a classical �nite element context. An option would be to

investigate the consequences of the realizabilty constraints on the jacobians JE

and JF , since they appear to be the equivalent of the numerical 
uxes in a �nite

element context.

Therefore, providing an asymptotic analysis on the proposed formulationrepresents a

substantial work, and could serve as a mathematics PhD topic in itself,but the goal of

this work was to propose a stabilized formulation for such systems of conservation laws,

and it was demonstrated that our formulation is able to reproduce reference solutions

on benchmarks problems.
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R�esum�e fran�cais

Dans ce chapitre, on s'int�eresse �a la mod�elisation du rayonnement volumique. Pour

ce faire, l'approche retenue consiste �a utiliser des mod�elesaux moments, obtenus en

moyennant l'�equation du transfert radiatif sur l'espace des directions. On s'int�eresse

plus particuli�erement au mod�ele dit M 1, ou la relation de fermeture est obtenue au

travers d'un principe de maximum d'entropie. On d�ecrit l'�et at de l'art sur les di��erents

mod�eles au moments, ainsi que les formulations existantes. Dans la mesure ou la plupart

des sch�emas pour ce mod�ele sont de type volumes �nis HLL, on propose un formulation

aux �el�ements �nis pour ce syst�eme. Cette formulation, de type m ixte, stabilis�ee par

l'approche variationnelle multi-�echelle, est d�etaill�ee au cou rs de ce chapitre. Elle est

ensuite mise �a l'�epreuve et valid�ee sur des probl�emes illustratifs disponibles dans la

litt�erature.
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Industrial Applications

This chapter is devoted to the numerical simulations of industrial applications rising

from situations encountered by our industrial partners. The goal of this chapter is to

demonstrate the ability of methods presented in the previous chapters to deal with "real"

examples with a geometry and physical parameters representative of the reality. This

study will show some speci�c problems that rise when dealing withsuch problems only,

for the meshing as well for the solvers. When possible, the resultswill be compared with

experimental results. The next section is related to the publication [42]:

6.1 Quenching of an hat shaped disk in various con�gura-

tions

These problems are proposed by the industry to optimize the process of cooling for

a particular shape. It consists in testing three di�erent contexts and environments

with ascending di�culty. We study �rst the free cooling of a solid in the air, then a

forced convection using 12 jets inside an open cavity with supporting grid, and �nally

a natural convection inside a con�ned chamber with up to four di�erent materials in

contact. These problems highlight well the 
exibility of the immer sed methods, the

necessity of applying anisotropic mesh adaptation and �nally the inevitability of using

full Eulerian stabilized solvers to handle abrupt changes in the temperature and in the

material discontinuities across the interface. The geometry and the dimension of this

disk are given in Figure 6.1. The material properties of the disk as well as the used

physical parameter for the surrounding air are depicted in Table6.1. Moreover, as

shown in the consistency studies, setting the relative kinematic viscosity to a very high

value in the solid region satis�es the zero velocity and hence the no-slip condition on

the interface is also satis�ed.
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Figure 6.6: Comparisons of the tem-
perature evolution in sensor 7
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Figure 6.7: Comparisons of the cool-
ing speed in sensor 7
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Figure 6.8: Comparisons of the tem-
perature evolution in sensor 14
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Figure 6.9: Comparisons of the cool-
ing speed in sensor 14

6.1.0.2 Forced convection using air blast cooler

In this case, we place the disk on a grid inside an open chamber. It contains 12 jets with

in
ow condition of v in = 25m:s� 1 and Tin = 20C, blowing directly to the surface of the

disk. The duration of the process is 15min . Indeed, the dominant mode in this case is

the convection and therefore, accurate resolution of Navier-Stokes is required. The case

is very challenging in both the geometry representation (the very �ne supporting grid,

the heated disk, as well as the injectors), but also in the physical phenomena occurring

close to the surface of the disk (turbulent gas-solid interactions).

Figure 6.10 gives a clear idea on the experimental setup and the position of the disk

inside a 2:25 � 2:25 � 3m3 chamber while Figure 6.11 highlights the positions of the

sensors.

We apply the anisotropic mesh adaptation taking into account at the same time the

levelset of the �ne supporting grid, the immersed disk as well as the injectors. The total
















































































































