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Chapter 1

Motivations, context and working
environment

1.1 General Introduction

The engineering problems encountered today in the eld of materialforming processes
are getting more and more complex, due to the fast evolution of technology foex-
isting processes, the design of new materials and the need to prodet more and more
sophisticated devices. This leads engineers, guided by economic agdality products
constraints, to try to achieve a better understanding of those proesses, and therefore
gain a better control of those processes. To this end, two main di erat approaches can
be adopted to reach the required level of understanding:

The rst is to use experimental devices to monitor the process: § measuring
relevant physical quantities ( temperature, heat ux , velocity of the air,...) at
several locations of the considered facility. This approach is widelyised in many
situations, and its e ciency is not to be demonstrated anymore, but, on the one
hand, a particular experimental set up remains largely facility-dependant, and,
on the other hand, when applied to "real" devices, that is to say the ons used
for the industrial processes, the cost can easily become substantjatiue to the
experimenters, energy for the device and raw material.

The second consists in the numerical modelling and simulation of thesystem of
interest: the rst step is the modelling step, when physics 5 used to describe
the physical phenomena ( ow, heat transfer, electromagnetism, matgal defor-
mations, ...) formally, most of the time by means of partial di erential e quations
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(PDE), referred to as models in the following. When di erent physical phenom-
ena are at stake, a coupling strategy has to be conceived to ensure the&shange
between models. Since in most cases corresponding to real situat@nanalytical

solutions of those PDE are not available, alternative means are needed to tdin

a quantitative description of system output. Hence, the second stegonsists in
working on the model to convert it into a form where a computer can be $ed to get
an approximation of the system output; this step, related to the eld of applied
mathematics, is often referred to as numerical analysis. The third ®p, closely
related to the second one, consists in the implementation of the deghed method,
using softwares ( MATLAB c, SciLab c) or programming languages (C++, FOR-

TRAN) to concretely obtain the desired output. The result of this pro cess will
be referred to as a "code" in the following. Once this work has been dam one
needs to ensure that the simulated result is realistic, or, in othe words, one has
to ensure the global model properly mimics the considered system.

If the engineers used methods, both experimental or numerical, tat are well established
and mastered, the diversity of industrial problems poses new problas everyday, and
the duty to propose answers to those new problems belongs to researche Even if
experimental and numerical approaches correspond to two very di erat ( sometimes
distinct) communities, the two approaches present complementaryfeatures, and a per-
formant framework for analysis of real industrial systems should, from tte author's point
of view, combine the two approaches. For example, a numerical simulath tool should
be at rst tested on "academic" examples ( i.e examples not correspondig to physical
situations) in order to assess the robustness and performances of theesigned tools.
Once the obtained results are considered satisfactory, the tool can wergo the trial of
a real industrial investigation. Then, the results can be compared toexperimental data,
provided by an appropriate monitoring of the facility. An analysis of the deviation be-
tween experimental and numerical datas will help to improve the cae. This PhD comes
within a such approach, applied to the study of heat transfer in indudrial furnaces and
guenching problems. Since the PhD is part in the Thost consortium,all the involved
compagnies will be brie y presented. Then, the working environmat will be described,
with a particular focus on the computational tools used for the numerial simulations.
Finally, a short description of the physics of industrial furnaces wil be given, in order
to highlight the critical points that will be adressed in this PhD and to recall the past
and ongoing research on this topic



Chapter 1 3

1.2 General Context

1.2.1 Industrial Context

The consortium Thost, created in 2006, composed of the following industél partners:

AUBERT & DUVAL Created in 1907, Aubert & Duval is part of the Eramet group.
The group employs about 4700 collaborators and declares a turnover of 991 million euros
in 2015. They are specialized in hot material forming processes for steahd aluminium
alloys for various applications within the high standards requiremens: aeronautics,
automotive and medical among others.

SAFRAN AIRCRAFT ENGINE Formerly the national society for study and de-
sign of aircraft engines (SNECMA) founded in 1945, it is now part of the Safran grop.
They produce engines for the aerospace and aeronautics (both civilian anailitary) in-
dustry. They employ about 11:600 people over 12 di erent sites in France. The declared
turnover in 2015 is 7.6 billions euros in 2015.

AREVA  Created in 2001, AREVA is a French group in the eld of Energy, the core
business being the nuclear energy, with various tasks as uranium esdction, operation
of nuclear plants and management of nuclear wastes. Composed of about:820 collab-
orators, the declared turnover was 83 billions euros in 2014.
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FAURECIA Created in 1997, Faurecia produces various automotive equipements,
and is the world leader of equipments for automotive interior and seating. Employing
99:000 collaborators all around the world, the declared turnover is about 183 billions
euros in 2014.

LISI AEROSPACE Part of the LISI group, founded in 1899, Lisi Aeropsace is spe-
cialized in the fabrication of clamping devices and components for the aenautics in-
dustry. Employing about 11:000 collaborators, the declared turnover in 2015 is of :458
millions euros.

SCIENCE COMPUTERS CONSULTANTS Created in 2001, Science Comput-
ers Consultants is not an industrial partner, but the society that produces the software
to be used by the industrial partners from the C++ code developed n the CEMEF, as
well as other products as XIMEX c, LUDOVIC c¢ and SOLID c. Itis a SME of 5
collaborators with a declared turnover of 401880 euros in 2015.

1.2.2 Academic Context
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This PhD was conducted in the CEMEF ( Center for Material Forming). Fou nded
in 1976, it is part of Mines Paristech, a French Engineering school cread in 1783.
Originally specialized in the modelling of material forming proceses for polymers and
metallurgy, it has recently acquired an expertise in the eld of computational uid
dynamics and heat transfer, with PhD's on Finite Element method for uid ow and
heat transfer [1], numerical simulation of boiling [2], Fluid Structure Interaction [ 3],
space time adaptation ] and NURBS for complex geometries 5.

1.3 Working environment

1.3.1 Computational environment

All the numerical methods that will be described in this PhD will have to be imple-
mented. This will be done in the CIMLIB library [ 6]: it is a collaborative C++ library,
developed since 15 years. It is connected with external librariegs PETSC [7] to handle
the linear algebra ( vector and matrix manipulation, linear system resoution) and MPI
[8] (Message passing interface) to handle the parrallel processing. I worth mention-
ning that we have at our disposal advanced tools for parrallel meshing andemeshing
[9] that will be at the heart of this work.

1.3.2 General assumptions

We detail here all the common features of the results that will be presnted in this thesis,
that will not be repeated again, with the exception of chapter 5 where a ew formulation
will be presented:

All physical properties will be expressed in units of the internaional system, so
the unities will not be repeated in this thesis.

For all nite element simulations, we will make use of P; approximations, on
meshes of tetrahedral elements (triangles in @. Moreover, the objects related
with discrete formulations will be denoted with a subscript h.

All along this work, di erential operators, as gradients and divergences vl be
manipulated : it is understood that that we use the general tensorial @ nition, so
that those operators apply regardless the order of the considered tensoknowing
that the gradient of a n th order tensor gives a tensor of ordemn + 1, and the
divergence of a tensor gives a a tensor of order 1.
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In the same vein than the previous observation, the inner products ad associated
norms in functional space will be used indierently for scalar or vecor valued
functions, the computations being performed componentwise.

1.4 Physics of industrial furnaces

g T

Navier-Stokes Energy Balanc

urTtT
(u;p) T

chemical source term

convection of specie

thermal activation of reactions

Combustion -

relation coupling-Radiative properties

Figure 1.1: lllustration of the fully coupled physics in an industrial furnace

g T

Navier-Stokes | = ~ | Energy Balang
urT

(u;p) T

/

Figure 1.2: lllustration of the coupled physics in an industrial furnace without com-
bustion

A lot of coupled physical phenomena are occuring in a furnace or in a queehing chamber:
Burners or nozzles generate a ow that drives convective heat transig with heat transfer
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of other types ( conduction inside solid parts, radiation between wallsand pieces). Some
other phenomena are involved as well, but will not be touched upon in tis work:

In the case of burner, combustion is occuring. It consists in the miig of di erent
chemical species reacting to form a ame. Modelling this phenomemn requires
to deal with a system of convection-di usion-reaction equations coupéd by sti
source terms related to the chemical reaction. It could serve as a Phibpic within
itself, and increase the complexity of the full problem, since it vould in uence the
thermal balance due to the energy generated by chemical reactions, theaction
being thermo-active itself. It could even in ucence the radiative transfer with
a growing concentration of combustion products in the enclosure. Dudo the
increase of complexity it would induce, combustion will be neglectd in this thesis,
but appears as a promising lead for future work.

Some metallurgic transformation could occur during the cooling or heatng of solid
parts. There is some expertise on this eld in our laboratory [L0], and a coupling
with another software could be considered, but it will not be coveredin this work.

In the case of water quenching, heat transfer is caused by boiling and @tse change.
A PhD on this topic is actually ongoing in the laboratory [ 11].

Since this thesis will be focused on radiative heat transfer, one caddi be tempted to
evaluate the importance of this phenomenon regarding others: since itsian interface
phenomenon, it should be compared with convective heat transfer, sorst, it is important
to have a simple way to determine the order of magnitude of those trarfers. We de ne
T, = 20C = 293K and Ty = 1000C = 1273K to be the operative temperature of a
generic system. Those values are representative of furnaces situatis ( Tingot = Tc and
Tenclosure = Tn) or quenching ( Tingot = Th and Tenclosure = Tc), SO we will omit signs in
further computations.

The order of magnitude of the radiative heat transfer can be evaluated bygaq =
(T T

The order of magnitude of the convective heat transfer can be evaluated bgony =
heonv(Th  Te), heonv being the convection coe cient.

Determining the value of heony for a given application is not a straightforward task. It
mostly depends on the thermophysical properties of the considereduid, and the "char-
acteristics" of the considered situation. If thermophysical propeties are temperature
dependent only, the "characteristics" of the situations include various di erent parame-
ters: type of convection ( natural or forced), geometry of the enclosure ath the object,
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nature of the device that generates the ow, etc. Most of the time, it is determined by

applying inverse analysis, but can be obtained by using correlations é&tween adimen-

sional numbers relating to the Nusselt numberNu = e L that relates the total heat

transfer to the conductive heat transfer ( other adimensional numbers appearing here
will be de ned in the chapter 2 ).

for forced convection, one has correlations of type

Nu = f (Re; Pr) (1.2)

for natural convection, one has correlations of type

Nu = g(Ra;Pr) (1.2)

In order to set the ideas, we will consider the very simple case of agte of characteristic
dimensionL = 1m. The thermophysical properties of the air ( considered at atmospheric
pressure) will be computed at the temperature Ty, = @ = 510C = 783K. If we
approximate X (T = 510C) ' X (T = 500C), some realistic values are = 0:441,

=3:6310 5 ¢, =1098, =0:0578, =1:2510 3. We also takeg = kgkz = 10. The
radiative ux will be the same value for natural and forced convection.

Gag = 1:48510° W:m 2 (1.3)

Natural Convection Those values leads taRa = 1:246.10° and Pr = 0:689, so that
the natural convection can be considered turbulent. Following the ines in [12], we use
the following relation:

pP_— ; s
Nu = 0:825+ _ oomar (1.4)
(1+(%32)w)r

We therefore obtain Nu = 130:945 andheony = 7:568. It follows that

Gkonv = 7:417:10° W:m 2 (1.5)

One can see for those cases, the convective transfer does not exceedd@he radiative
transfer.
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Forced convection Here, one needs to determine a Reynolds number. It might be
very dependent on the situations, but when the surrounding uid is air, a typical value
is Re = 10°. Here, the Nusselt number is determined by 3] :

Nu = 0:036Re%8p r043(_ )4 (1.6)
C

With = (T=Ty)and = (T = T¢). We get hereNu = 390:7 and heony = 22:5,
from which we deduce

Oeony = 2:21:10* W:m 2 (1.7)

Here again, the order of magnitude of the convection is about 15% of the radiative ux,
underlining the importance of the phenomenon.

Even if the estimation just presented is not representative of a ral industrial situation,
it shows the crucial importance of radiative transfer in such situations. Hence, it is
mandatory to have at hand performant tools for the modelling of such a pheomenon.
This will be the object of this thesis, of which the outline is detaied below

1.5 Outline of the thesis

First, we will describe the physics of interest here and the formlations used to
obtain numerical solutions. This will be the object of chapter 2.

Then, the framework to deal with complex problems involving di erent compo-
nents will be explained in chapter 3.

Next, we will see the main contribution of this thesis which concerrs radiative
transfer. To this end, the chapter 4 will give a short overview of the physics of
radiation, most common models for our range of applications, and the approach
we developed for modelling surface radiation.

Formerly, we will depict the method developed for volume radiation. Since the
model we chose is quite recent ( the unifying publication is datedn 1999, even if
there exists some previous work), so we will take the time to detaithe model, its
derivation and its main properties.

In the chapter 6, we will present real problems rising from our indusrials partners
to illustrate how all the presented concepts work in unison.



Chapter 1 10

Finally, chapter 7 will be devoted to some concluding remarks, thirgs that could
be improved and ideas for future work.

Resune frarcais

Les probematiques rencontees dans le domaine de l'ingenieriedeviennent, du fait de
lemergence des nouveaux proecdes et technologies, de plus enlys complexes. Dans
cette perspective, il est de plus en plus fequent de recoura la moctlisation nunerique
an datteindre une meilleure compehension et, par suite, une meilleure maitrise de
ces pro@ds. C'est dans ce contexte que s'inscrit ce travailplus peciement pour la
moctlisation des transferts thermiques dans le cadre de la misenforme des maeriaux.
Ce chapitre constitue un introduction ¢ererale de la probemat ique; on y pecise les
acteurs academiques et industriels impliques dans le projet,on y cetaille le cadre de
travail qui sera utilie, tant du point de vue treorique que cel ui de lI'impementation.
On expose ensuite les dierents prenonmenes mis en jeu dans urfour industriel, a n de
cemontrer que le rayonnement thermique y joue une réle pepondrant, ce qui egitime
ce travail de trese. En n on y pesente le plan de ce manuscrit.



Chapter 2

Stabilized Finite Element Method
for ow and heat transfer

As it was stated previously, even if thermal radiation is the dominant physical phe-
nomenon in industrial furnaces, the approach retained for modelling adiation will be
detailed in further chapters. The objective of this chapter is to detail the physical models
of phenomena occuring in furnaces. We will see that most of those phemena can be
cast under the form of a convection-di usion-reaction equation, at the exception of the
ow that will be modelled by the Navier Stokes equations. The outline of the chapter
will be as follows: we will rst give details on the equations, their physical signi ca-
tion and an overview on the di erent possibilities for the boundary conditions. Then,
the stabilized nite element formulations used in this work will b e described, and some
illustrative benchmarks will be given to demonstrate the potential of the methods. In
what follows, we will denote by 2 RY the computational domain, and @ its boundary,
assumed to be regular. The time interval of interest is [0T ]

2.1 Physical models

2.1.1 The Navier-Stokes equations

The Navier-Stokes (NS) equations can be considered as the "standard" medi for the
uid dynamics. The paternity for this group of equations is to be credited to Claude
Navier (1785-1836), a French engineer and physicist of "Ecole Nationale Supetiee des
Ponts et Chaussees" specialized in mechanics and Georges Stokes (1819-190Bysicist
and mathematician of Cambridge university. The point of view di ers fr om the classical
Lagrangian mechanics point of view, where a closed system is consideremt the study,

11
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t t+dt

Eulerian > > — —

V(x,t) V(x+dx,t) V(x,t+dt) V(x+dx,t+dt)

Vo) Vp(t+dt)

Lagrangian Q

Figure 2.1: lllustration of Eulerian and Lagrangian points of view

and is "followed" over time. If this point of view ts for the descrip tion of motion of

rigid and deformable solids, it is not well adapted for description of uids, for the reason
that it is not easy to "follow" a particle of uid along its motion. For this p roblem an
Eulerian approach is more adapted: it consists in considering local qudities passing
through a xed certain elementary volume ( referred to as "particle of uid" hereafter)

and consider the uid passing through it over time. This volume should be big enough
to perform statistical averages, so that the local quantities of inteest will be average of
microscopic quantities. Here, the quantities of interest will be:

A velocity vector u(x;t), being an average of velocities of all discrete particles (
atoms or molecules ) contained in the "particle of uid". u(x;t) is a vector of R,
and x stands for the position. For boundary conditions, it is sometimes usefuto
work with the components separately, asu (x;t) = (Ui (X; 1))y 1.qk-

A scalar pressure eld p(x;t), representing the average e ect of discrete particles
on the elementary volume boundary, all contributing to a global surfacicforce.

Even though modern physics provides di erent ways to derive tre NS equations, begining
from the Boltzmann equation to the use of the continuum mechanics frameork, we will

derive it here in a way close to the original one given by Navier and Stokg by evaluating

the momentum balance over the particle of uid. However, for the kinematics description

of the "particle of uid", one needs to take into account not only the time v ariations,

but also spatial variations due to what is entering and leaving the volume of interest.
The appropriate description is given by

Du

o - %t+(u ru (2.1)

This variation of momentum is balanced by all the forces applied on the volme; we can
denote:
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the gravity forces, coming from the gravitation eld of the earth, given by Fgray =

g. A modied form of this term can be considered to take into account natu-
ral convection, but this will be detailed when the fully coupled problem will be
presented

the viscosity forces, caused by the friction due to velocity gradiats within the
ow. This is given by Fyisc = r ( r (u)). We restrain ourselves to the case of
Newtonian uids, so that will remain constant in the whole uid, even though
temperature-dependancy could be considered.

The pressure forces: as stated before, the pressure representie taverage e ect of
particles acting on the border of the volume of interest. It is given by Fpress =

r (p)-

The momentum balance can now be written, and is given by:

Du
Dt = Fgrav * Fuisc + Fpress (2.2)
which can be re-arranged in
@ _
Eﬁ+01r)u = r@E+r (r@u)+ g (2.3)

It is now necessary to model the fact that we consider incompressié uids. A uid
is said to be incompressible when its volume remains constant undehe action of an
external pressure. In practice, there exists no fully incomprssible uids, but it was
stated that, in cases where the characteristic velocity is low comared to the velocity of
the sound in the considered medium, the ow can be treated as an incompessible ow.
This formally can be written under the form

r u=o0 (2.4)

We are now able to write the NS equations, describing the incompreside ow of a
Newtonian uid.

Find (u;p) such 8(x;t) 2 [0;T] (2.5)

G+(uryu = rE+r (r@u)y+ g

rru=0 (2.6)
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These equations have received, and are still receiving, interegbrm researchers, math-
ematicians as well as engineers, and one of the millenium problems islagd to the
existence and regularity of solutions in 3. We now turn to the the di erent types of

boundary conditions.

2.1.2 Initial and boundary conditions for the Navier-Stokes equations
2.1.2.1 Initial Conditions

In the incompressible version presented above, since there ionransient term for the
pressure, no initial condition is needed. For the velocity, one neds to specifyuy(x), so
we have

u(x;0)= up(x) 8x 2 (2.7

Note that, for the well posedness of the problemug(x) should be consistent with the
incompressibilty constraint, that is to say, we should haver ug(x) =0.

2.1.2.2 Boundary Conditions

As it is usually done, we make the di erence between Dirichlet and Nemann boundary
conditions, since the superposition of di erent types of boundary comlitions at the same
location would lead to an ill posed problem. Formally, we denote by@ p and @ n the
location of Dirichlet (Neumann respectively) boundary conditions. They should verify:

@ol @n=@ 2.8)

@p\ @n =7 (2.9)

For the Dirichlet type, the imposed values will be related to the "role" of the boundary
or to the way friction is taken into account:

u = up with up 6 0 corresponds to the inlet ( a burner for a furnace, a nozzle
for quenching problems). up can be constant or dependant on a local coordinate
to obtain a parabolic pro le.

u =0 is used for classical solid boundaries, known as a no slip bounday cadition.
It is also possible to only set to zero the component normal to the boundry.
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The Neumann boundary conditions are sometimes referred to as traction badary
conditions, since in the continuum mechanics framework, the stres tensor is related
to the velocity gradient by the constitutive relation. De ning bou ndary conditions at
the outlet of the domain is not straightforward, and remains an open question so a
zero Neumann boundary condition will be used for the velocity. One carsee [L4] for
boundary condition related problem of NS equations.

The pressure boundary conditions are of primary importance in the case here@ y = ?.
In this case, the pressure is de ned up to an arbitrary constant, and mposing a speci ed
pressure on a part of the boundary helps to determine this constant.

There exists many ways of with dealing boundary conditions: the penay method [15)],
Lagrange multipliers [16], but the Nitsche method has received a growing interest over
the past years: it is a way to impose the boundary conditions weakly by emaining
consistent with the original PDE, at the contrary of penalty method: it also provides a
way to impose conditions on boundaries not tting the mesh and yields b a symmetric
positive de nite matrices [17, 1§].

2.1.3 The Convection-Di usion-Reaction equation

If the particular structure of the Navier-Stokes requires a specil analysis and treatment,
most of the physical phenomena that will be encountered in our context at the exception
of radiation) can be cast in the general form of a convection-di usion-reacion (CDR)
equation that will be detailed in this subsection. An abstract form will be given, and
the physical meaning and particular boundary conditions will be enumeated in the next
section.

The abstract form reads:

nd v(x;t) such 8(x;t) 2 [0;T] (2.10)
g‘t’+ F) 1 (r )+ v =T (2.11)

the di erent terms in this equation will be referred to as following:

the term r (v) is the convection term. is the convection eld, or advection
velocity.

theterm r  ( r (v)) is the diusion term.  stands for the di usion coe cient.
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the term v is the reaction term, being the reaction coe cient.

f represents the source term, or forcing term.

All the particular cases of this abstract form share the need of prescrilmg an initial
condition of the form
v(x;0) = vg(x) 8x 2 (2.12)

The di erent physical situations and associated boundary conditions ae detailed below,
but what was said about @ p and @ \ holds for the CDR equation as well.

2.1.4 Di erent physical exemples of Convection-Di usion-Reaction eq ua-
tions

2.1.4.1 The energy equation

This equation, issued from the rst principle of thermodynamics ( energy balance) gov-
erns the variations of temperature. It is sometimes presented withthe NS equations,
for schemes where all equations are solved together, referred to as "strg" coupling.

In all this work, a weak coupling will be used, that is to say, all equaions are solved
consecutively, and the quantities involved in the coupling termsare treated explicitly,

as known quantities from the previous time stepping.

@T
Cp @t+u rT r (rT)=f (2.13)
u represents here the velocity eld coming from the NS equation. For his reason, the
assumption of a divergence-free velocity eld is often made in the aalysis of the CDR
equation. f might be temperature-dependent, as it will be the case for theP; radiation
model that will be described below, but it will always be treated in an explicit manner.

For the energy equation, the following boundary condtions will be consiered:

T = Tp will be used for illustrative benchmarks mostly, or at nozzles for quaching
problems. However this type of boundary condition is rarely represetative of real
situations.

r (T) n = gy will be encountered more often, a zero value corresponding to an
adiabatic wall, a constant prescribed value representing the intesiction between a
volumic boundary and the outer environment. Modelling radiation by computing

a ux involving border temperatures and geometric quantities is alsoa possibility,
and will be the object of chapter 4.
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2.1.4.2 Kk " Turbulence model

It is known that, for turbulent ows (roughly speaking, with high vel ocities or low viscos-
ity, but this will be detailed further) often encountered in ind ustrial furnaces, a chaotic
behaviour of the ows is observed, resulting from large structuresand small structures.
The large scale is responsible of the transport of the major part of the coresved quan-
tities and the small scale is composed of whirlpools of changing characistics being
zero on average. It is in theory possible to model those e ects by a dect resolution
of the transient NS equations, but the computation power to perform sud simulations
is in practice out of range, since the grid size required is related t(Re%( with Re to
be de ned later on). To circumvent this issue, modelling turbulence allows to properly
model the large scale by taking into account the small structures e €ts. Many options
are possible for modelling of turbulence, and the one retained heresito solve supple-
mentary equations, the resulting quantities being used to inclale turbulence e ects in
physical parameters, like viscosity and thermal conductivity. Thek " model was chosen
here: the idea is to introduce two equations governing the turblent kinetic energy k
and its dissipation rate ". The more general model, derived from the NS equationslp]
presents unknown constants, for which values are situation-deperaht, and are available
in literature [ 20]. There also exists a well established one equation model, the Spbeait-
Allmaras model [21], but on the one hand, it is more dedicated to external ows and on
the other hand, the way to properly derive a turbulent conductivity has not been clearly

investigated yet, so the following version of thek model will be used here :

(Gerur () 1 (+ o ()+ " =P 219
"o "

(g} ur (k)) r( + 9r )+ Cy i CZRPt (2.15)

with C; =1:92,C,=1:44andC3 =0:09. Py = & (r (u)+r (u)T is the turbulent
production. The results are used to compute turbulent and e ective viscosity as well as

conductivity ;. ¢ and eff ;: eff

k
ett = +C3——; et = + ot (2.16)

where the constantP ry = 0:85 corresponds to a turbulent Prandtl number ( to be de ned
later on). The boundary conditions are related to the ones used for NS equains. At
an inlet, for a prescribed velocity up, one has
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K = Cockup K3 (2.17)
k2
"= Cs- (2.18)

where ¢, is an empirical constant (set to Q02 here) andL is a characteristic length of
the model.

At the out ow boundary, zero Neumann boundary condition are usually applied.

The boundary conditions on solid walls require a more sophisticated tratment. A law
wall on a layer of thickness is considered, with a tangential stress ,, opposite to the
local velocity, given by

r _
Eln(E— =0 (2.19)
t

=~
c
>~

N

<

q__
where E is related to the roughness of the wall and =0:41. Dening u = -, the
following values are imposed as Dirichlet boundary conditions fok and ":

k= p— (2.20)

" (2.21)

An interesting property of those turbulent models is to be noted: the results obtained
with turbulence modelling should correspond to the ones obtained ¥ direct resolution
of NS equations averaged over space and time. This property is useful wheck that the
turbulence model is implemented correctly.

2.1.4.3 P; Radiation model

As we will see in further chapters, the major issue when dealing with numerical modelling
of radiation is the angular dependency. Moreover to be something very nusual in the
"engineering physics", it introduces a supplementary dimensionto discretize, and for
each point. An interesting lead is to consider models where angular geendency is
eliminated. This can be done in several ways: expansion using spheal harmonics P2,
23], asymptotic expansion with respect to opacities 24, 25|, or averaging over directions
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[26]. The simplest model that can be obtained within this approach is given by the
following equation

8
1
2 s 1@ G=4T1

3 @& _ 3w
Coen 22 W)

(2.22)
)@T, Guw)

The boundary condition used here is of Robin type, which is a combinatn of Dirichlet
and Neumann boundary conditions. This model has well known limitationswhich will
be detailed in a further chapter, but it will be useful to perform comparisons with the
new method that will be presented in the same chapter.

2.1.5 Fully coupled aerothermal problem

As it can be seen in equation 2.13), a ow of velocity has an e ect on the temperature
through the term u r T; that kind of exchange is referred to asconvective heat transfer.
It is easy to understand the e ect when the ow is generated indepedently of the
heat transfer (burner, nozzle, turbines,...): this type of trander is referred to asforced
convection. However, some ows are generated by a temperature gradierftatmosphere
wind formation, earth mantle convection, curls of smoke above hot liquid), referred to
as natural convection. The physical cause of this phenomenon is the surroundingiid
receiving heat becomes less dense and it rises. A proper modegimould be to consider
compressible ows, by modifying equation @.4) as done in R7], but it leads to a more
complex model, whereas most of the ows of interest here can be treateas weakly
compressible ows. A good compromise is the Boussinesq approximain, consisting in
ignoring the density variations except in the gravity term g. The Boussinesq term
reads Fgray = (T(x;t) To)g, where Tp is a reference temperature. Under this
approximation, the fully coupled aerothermal problem can be formulatedas follows:

g Find (u;p;T) such 8(x;t) 2 [0;T] (2.23)
3r u=o0

5 G+(uryu+r( r (r@)= (T Tog (2.24)
Cep Grur T o (rT)=f

When the situation requires it, e ective viscosity and conductivity, computed by (2.16)
will replace and . At this point, it is interesting to introduce some adimensional
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numbers characterizing the di erent "regimes" for this coupled problem. In the fol-
lowing, L is characteristic distance of the considered phenomenon, and stands for a
characteristic velocity

The Reynolds Number Re = YL This number represents the ratio between

inertial forces (u r )u and viscous forces ( r (u)). A low value corresponds
to a dominant transfer of momentum by di usion (laminar regime), whereas a high
value corresponds to a dominant transfer of momentum by convection ( tubulent
regime).

i 2 3 . .. -
The Rayleigh number Ra = —29 Tt~ js characteristic of the dominant mode of
heat transfer within a ow: the low values corresponding to conducton, and high
values corresponding to natural convection.

The Prandtl number Pr = 2 compares the di usion of momentum and the ther-
mal di usion: the higher the value of the Prandtl number, the more the velocity
pro le will have an e ect on the temperature distribution.

The Grashof humberGr = ﬁ, that characterizes the natural convection in
a uid. It can be understood as the ratio of gravity forces on viscous foces and

can be related to the Rayleigh and Prandtl number by Gr = %.

©»LU s the ratio of convective and conductive heat

The Peclet number Pe =
transfer. When applied to a CDR equation with an high value of P e, the classical
formulations will produce numerical solutions of poor accuracy, and jusfy the

stabilization methods that will be exposed in latter parts.

Now all the continous models ( at the exception of radiation) that will be used in this
thesis have been presented, the formulations used for the numeal approximations will
be detailed.

2.2 Formulations for numerical approximations

The Finite Element Methods, since their emergence in the 1950's, dve gained more
attention from researchers and engineers with the evolution of compute( see B8] for a
short historical review). The main features are the conversion of theriitial PDE into

a variational problem integrated over the computational domain, and using apiecewise
approximation on a triangulation  that stands for an approximation of the original
domain . It permits to work only at the local level ( the level of an elem ent of the
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triangulation), the assembling procedure being standard and indepedent of the con-
sidered PDE. Moreover, functional analysis o ers a setting to predct the quality of
the computed approximation (existence, regularity, error estimates). Traditionally used
in the eld of structural mechanics, its utilisation in other elds of physics draws the
attention of many researchers ( seeZ9 for applications to a large class of problems).
However, the classical FEM fails to produce accurate solutions when agtied to the type
of problems described in the precedent part, justifying the degn of Stabilized FEM
that will be the topic of the next part.

2.2.1 Classical Finite Element Formulation for the Navier-Stokes equa-
tions

Let us start by de ning the functional setting and the Hilbertian str uctures necessary
for a weak formulation

Z
L?()=  w;such wd <1 (2.25)

z
HX)= w2L?) ;such kr (Wkyd <1 (2.26)

The de nition of H! is given for scalar valued functions, but the de nition straightfor-

wardly extends for vector valued functions componentwise. The suligipt O for those
functional spaces means that the elements of the respective spacesazero-valued on
@ p. On those spaces the following form de nes an inner product and an ass@ated
Hilbertian norm

z
(u;w) = uvd (2.27)

The functional space forp will be P = L?(), with a possible zero mean condition, since
the pressure is de ned up to a additional constant. Foru, one needs to introduce the
boundary conditions in the de nition of the space, the associated testfunctions being
de ned for homogeneous boundary conditions

n (0]
U= u2HY) %uje, = up (2.28)
n 0}
U= u2H) %uje, =0 (2.29)
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U and Ug are referred to as the trial and test spaces, respectively. The wedormulation
of (2.5) is obtained by mutiplying by test functions, integrating over th e domain and
performing integration by parts on certain terms. The weak formulation reads

Find (u;p)2U P such 8(w;g2 U, P (2.30)

Gew (U rumw)H(r (u)ir (w)+(r (piw)=( g;w)

o Coig=0 (2.31)

At this stage, even though the pressure was de ned as a primary variablethis mixed

formulation can be viewed as an augmented formulation, the pressure bejna Lagrange
multiplier associated to the incompressibility constraint. The Galerkin approximation

consists in constructing a approximation  of into a partition Ky of non overlapping
elementsK covering the whole domain. Only triangular elements ( thetrahedral n 3d)

will be used here. This partition is then used to construct approxmation spaces from
(2.26) and (2.25), spanned by basis polynomial functions ( shape functions (h.x )k 2k ,,)

on each element of the patrtition, the global approximated elds (uUn; pn) being continuous
over the whole domain

n 0}
Up= un2(C°%)) %up, 2 (PYK)%8K 2Ky (2.32)

n (0]
Ph="pn2(C°%0)) %phj 2 PHK);8K 2Ky (2.33)

Expressing Un; pn) on the basis of shape functions and evaluting\(; q) for all the shape

functions in (2.30) lead to a linear system, the uknown being the values of the elds at
points of the triangulation.

2.2.2 Stabilization using the Variational Multiscale Method
2.2.2.1 The need of stabilization

The presented formulation is known to fail for two reasons:
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the theory of mixed nite elements (see R9] for a detailed analysis) state that the
approximation spaces should verify an inf-sup condition ( also known a8abuska-
Brezzi condition), formulated as follows:

9 such inf sup (r Unih) > 0 (2.34)

Un2Un o g, 2Py qukph kuhkUh;o

where is independent of the mesh sizéh. It imposes a compatibility between
velocity and pressure approximation spaces (rougly speaking, the vetity space
has to be "bigger" than the pressure space ). An option would be to use a dierent
order of interpolation for velocity and pressure P1 Pg or P, P1), but a pressure
constant is sometimes not accurate enough for drag and lift computations, and
using aP, approximation ( or higher) is prohibitive in terms of computation time
when applied to A coupled problems. So equal order interpolation pair will be
used in this work.

For turbulent ows, the non-linear convective term (u r )u is the predominant
one and might generate spurious oscillations, leading to a poorly accuratepprox-
imation.

2.2.2.2 Scale Splitting

Most of the stabilization methods rely on enrichment of functional spa@s used in the
variational formulation. An option is to add extra di usion in the upwind d irection,
but this will be detailed with the variational formulation for CDR equat ions. For mixed
variational formulation, a powerful framework to design a stabilized Finite Element
method is the Variational Multiscale method (VMS): proposed by Hughes BO, 31], the
idea is to model the e ect of the smallest scale structures of the ows, but to numerically
resolve only the large scales, so that the small scales are taken into acetwithout an
explicit resolution. Formally, it consists in splitting both unkn owns and test functions
into a large ( resolved) part and a small ( unresolved) part. This decompsition is
then introduced in (2.30) leading to a large scale problem, with supplementary small
scale terms that will provide the desired stabilization, and a ne scale problem, with
right hand sides being some residuals of the large scale. This problers solved in an
approximate manner, and the ne scale is reintroduced in the large sale problem. The
splitting for the unknowns and test functions is performed as follavs:



(r

(r

Chapter 2

24
M

U= Uy lg) u=upte (2.35)
M

V =V, ‘9) v=vpte (236)

M
P=P, B (2.37)
) p=phtpandq=th+q (2.38)

Introducing these decompositions in .30), one gets the large scale and ne scale prob-
lems:

@Uh@"'te);vh

+( (up+e) r (up+e)vp)+(r (ph+ P;vh)+( r (unh+e)r (vh)=( g;Vn)
(Uh+ @);ch) =0

(2.39)

@unp+e).
@t

e +( (up+e) r)up+eye)+(r (ph+rpre)+( r (uph+e)r (e)=( ge
(uh+e),@=0

(2.40)
2.2.2.3 Approximation for the ne scale problem

The next step is to solve @.40) to reintroduce (e;p) into (2.39. The rst step is to

move all the large scale terms at the right hand side of the ne scale prol@m, leading
us to de ne large scale residuals:

Run= 0 “at+ (un 1)un*r ()

ro(r (up)) (2.41)

To solve the ne scale problem, some assumptions have to be made, theuglity of the
stabilization depending on these assumptions, leading to di erentfeatures of the ne
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scale problem. See3Z] for a detailed description of VMS methods for incompressible
ows:

The subscales will not be tracked in time, but will remain time dependent, driven
by the large scale residuals. For examples with dynamic subscales,esB3, 34] and

[39]

The non-linear convective term only retains the large scale velocity((un + &)

r (up+e)' (up r )(un+ @). The ne scale problem is therefore linear. For
non-linear subscales, see3p].

The subscales are assumed to vanish on inter-element boundariesaténg to lo-
cal contributions of each element to the global stabilization term. An extension
to non-zero inter-element subscales consists in treating the fscales values with
appropriate transmission conditions, see 36|

Now, the ne scale problem can be expressed, in an abstract form, as folls:

Bu(e;p) = Ry (2.43)
Bp(@) = Rp (2.44)

The principle is now to express the ne scale only in terms of large sale residuals.
It consists in nding a "good" approximation of inverses of operators B, and By in a
spectral sense. This is done by using a Fourrier analysiS7], so that one nally gets:

e= , g(Run) (2.45)
B= p e(Rpn) (2.46)

where ¢ and , stands for projection operator onto the spaced8 and PB. Taking the
projection operators equal to the identity on the considered space isisually referred to
as "Algebric Subgrid Scale", and will be done in this work. It is also possike to take as
orthogonal projection onto nite element spaces, known as "Orthogonal Subsales" [37].
The values of the stabilization parameters , and , are obtained through the Fourrier

analysis of the ne scale problem, leading to the following values, coputed at element
level
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1
W= 9 — (2.47)
(%)24_((:2““%)2
S
Ku ki 2h
p= (7V+(EL¥§EEJZ (2.48)

where h is the characteristic mesh sizekukg: 2 is the L? norm of the velocity on the
element. c; and ¢, are algorithmic constants. An interpretation about those constants,
available in [37], will be detailed for the CDR equation. It gives conditions on the values
of those constants, so that we will take herec; =4 and ¢, = 2.

The particular VMS approach that we presented have demonstrated its e ciency in
many situations: for NS problems only B8, 39|, but also for coupled problems rising
from industrial applications [40{42] . However, we want to emphazise the fact the
VMS framework o ers exibility to design other stabilized formulation s: Codina and
coworkers have proposed other formulations based on a di erent treatmat of the ne
scale problem for incompressible ows 34, 37], ows with Corriolis forces [43], and
aerothermal coupled ows [33, 44]. An interesting interpretation about the dissipative
structure of the VMS was also presented45]. We can also quote the work of Jiang and
coworkers @6] providing error estimates, the work of Gravemeier f7, 48] using a three-
scale VMS method, and publications with special treatment for turbulence f9,[50] and
compressible ows p1]. Similar techniques have also been successfully used for Stake
[52, 53] and Darcy [54, 55] [56] ows. In a forthcoming chapter, we will see that the
VMS framework can be used for physical models very di erent of uid dynamics.

2.2.3 Standard Galerkin Finite Element Method for the CDR equation

Since the CDR equation only involves one scalar equation, the classicalifiite Element
theory applies here. Even though we demonstrated that this type of egation can be
encountered in various situations, the formulation and the stabilization is independent
of the physics. If we de ne the following space:

V= v2HY) vig, =W (2.49)

homogeneousvy and discrete V}, spaces are naturally de ned in the same manner than
in the previous section.

Multipliying by a test function w and integrating over the domain, one gets
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Find v2V such 8w2V (2.50)

(ew)+ Bv;w) = (f;w) 250
Blviw)=( r (v)w)+( r (v);r W)+( v;w)

However, it can be shown that the formulation presented above fails forhigh Peclet
numbers. The following part is then dedicated to stabilization techniques.

2.2.4 Stabilization Techniques for the CDR equation

All the stabilization techniques relies, form a theoritical point of view, on modi cation
of the test function. That kind of Finite Element methods, where trial and test spaces
are not the same, is referred to as Petrov-Galerkin methods, at theantrary of Bubnov-
Galerkin method, when trial and test spaces are the same.

2.2.4.1 Streamline Upwind Petrov Galerkin (SUPG)

Historically, some numerical pollution were observed for High Peclet nmbers. The
instability is therefore related to the convective phenomenon. The pioneering work of
Hughes b7] was based on the following idea: a one dimensional analysis with help ohite

di erences show that the upwind schemes give more accurate solutions when the Peclet
number rises (this can be related to the condition number of the globamatrix), that can

be interpreted as the arti cial di usion coming from the numerical ap proximation of the
derivatives. A similar term can be obtained in a nite element context by a modi cation

of test function in the following manner:

e="+ r() (2.52)

2.2.4.2 Shock Capturing Petrov Galerkin (SCPG)

However, in some situations, the streamline direction is not the upvnd direction (where
arti cial di usion is needed to stabilize the solution). For those situations, Galeo and
coworkers p8] extended the SUPG method in the direction of the gradient of the vebcity.
The test functions are modi ed accordingly
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Figure 2.2: lllustration of 1 d shape function modi cation

'e=" + 8SUPG r()+* sceeWw r (') (2.53)
< r¢). : .
w= Kk (k () Tre)eo (2.54)
"o ifr ()=0

The additional velocity w is nothing but an orthogonal projection of the advection eld
onto the gradient of the shape functions.

2.2.4.3 Derivation of the stabilization parameters: a link between SUP G
and VMS

The SUPG and SCPG both rely on adding arti cial diusion in a certain dir ection.
However, adding "too much" extra di usion can modify substantially the solution, ren-
dering it physically irrelevant. Two parameters sypc and scpg were introduced in
the previous section, in order to tune the stabilization to only add the required amount
of di usion. An appropriate choice of those parameters is therefore critcal in the design
of a stabilized Finite Element Method. The values for those parametes were obtained
following the lines in [57{59], are:
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1
surPG = i (2.55)
(=x2)2+ (Cp)%+ 2
_ h kK Kk:c
SCPG = o Ko (k kK;Z) (2.56)
8 1
< Oy,
, ifr (")60 _
where (x)=2x(1 x)andk kg, == = kr (" )kz . ¢, and ¢, being
"0 ifr()=0

algorithmic coe cient similar to the ones evoked for NS equations.

A fully detailed derivation is available in the references quoted alove. However, the VMS
framework presented in the context of NS equation o ers a systematic andrigorous
way for deriving the SUPG parameter ( The SCPG term consists just ina dierent

computation of the upwind velocity), and such a derivation provides insight about the
values of the algorithmic constants.

The rst step consists in a scale splitting for both trial and test fu nctions

M
V =V ‘@) V=vyt e (2.57)
M
V0= Vo:h 90) W= w,t+w (2.58)

Introducing (2.57) in (2.50) gives one coarse scale problem and one ne scale problem

<@Vh@>+tE):Wh)+ B(vh + @);wh) = (fiwp) (2.59)
(@Vgte);w) + B((vh + ©);8) = (f; ) (2.60)

The methodology is similar as before: the ne scale problem has to be appkimated to
be reintroduced in the coarse scale problem. To this end, we de na residual for the
CDR equation, and using similar notations

@
RO =1 gl rmrr (r ) v (2.61)
under the same assumptions which detailed for the ne scale problem dfS equations,

(2.60 can be re-arranged into
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( r(epw) (r (r(ee)+( ew) =( ¢(R(v)):w) (2.62)
) ( r(@ r (r(e+ e G(R(w);w)=0 8w2¥ (2.63)

The last equality says nothing other than the left term of the inner product is zero. To
obtain an approximation of the ne scale w = ¢ (R(vh)), we follow the pioneering
work of [37] by introducing a Fourrier transform over an element K with respect to the
space dimension.

z k
B(k)=  v(x)exp( iXT)dK (2.64)
K

applying this transform to (2.62), one gets

kKK g

— = $(R(W)) (2.65)

(

Using the Plancherel equality and the mean value theorem, the followig expression for
can be obtained

1
- (Kkkg; 2k kg; 2 cos(( k)) kkki: 22 (2.66)
K; 2 T;z )2+( h§;2)2+ 2

by setting ¢; = kkkg;2cos((  k)) and c; = kkky.,, it is straightforward that g o,
therefore ¢c; = 2 and ¢, = 4 are appropriate values. Some modi ed parameters can
be considered, to include unsteady e ects or to ensure a correct gmptotic behaviour
regarding the Peclet number, so that the stabilization vanishes wha not needed, but we
refer the reader to [l] and references therein. The choice of a characteristic mesh sire
not straighforward either, and will be detailed in the next chapter.

Now that all the ingredients for the numerical approximation of the physical models
presented above was detailed, the next section is devoted to seamumerical examples
to assess the robustness and accuracy of the presented formulations.asgs of natural
convection will be presented, in 2l as well as in 3.
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2.3 Numerical experiments

2.3.1 Natural convection in an empty cavity

The considered case models a square cavity of lenght = 1:0m, with left and right
walls maintained at xed temperatures Ty and T, respectively. Compressibility e ects
are modelled using the Boussinesq approximation. The physical paraaters are chosen
here to obtain the desired Rayleigh and Prandtl numbers, as depicta in the appendix
A. The horizontal walls are considered adiabatic. The initial condition for temperature

isTo = @ Regarding the ow computation, classical boundary conditions are used.
We plot the adimensionnal temperature , dened by = TTh Tch- We propose here

to explain the variations of temperature and velocity patterns with varying Rayleigh
numbers from 1F to 108.

Figure 2.3: 2d Empty cav- . ) :
ity: iso temperature for Ra = Figure 2.4. ~ 2d Emply cav

LS . — 102
1P ity: streamlines for Ra = 10

Figure 2.5: 2d Empty cav-

ity: iso temperature for Ra =
10°

Figure 2.6: 2d Empty cav-
ity: streamlines for Ra = 102

For Ra = 102 and Ra = 103, the temperature patterns correspond to almost only the
di usion, with a single recirculation zone at the center of the cavity. For Ra ranging
from 10* to 107, the iso-lines becoming closer to southwest and northeast boundarigs
showing the formation of thermal boundary layers, as we can see on the cugs. The
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Figure 2.7. ~ 2d Empty cav- Figure 2.8: 2d Empty cav-
ity iso temperature for Ra = ity: streamlines for Ra = 10*

104

Figure 2.9: 2d Empty cav- i _
ity: iso temperature for Ra = Figure 2.10:  2d Empty cav:
10P ity: streamlines for Ra = 10

Figure 2.11: 2d Empty cav-

ity: iso temperature for Ra =
100

Figure 2.12: 2d Empty cav-
ity: streamlines for Ra = 10°

recirculation becomes more curved adika increases, creating secondary recirculation
zones at the vicinity of the main one ( 2 for Ra = 10°, 3 for Ra = 10° and 5 for

Ra = 107). The results for Ra = 108 shows streamlines becoming chaotic, the ow
becoming turbulent for those values. The use of a turbulence modetould be necessary

for higher values ofRa.

However, even though each value oRa produces a curve of a certain shape, di erent set
of parameters can lead to such a value. Hence, these curves are not a suent tool for
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Figure 2.13: 2d Empty cav-

ity: iso temperature for Ra = Figure 2.14: ~ 2d Empty cav-

ity: streamlines for Ra = 107

10
Figure 2.15: 2d Empty cav- Figure 2.16: 2d Empty cav-
ity: Iso tempelrggture for Ra = ity: streamlines for Ra = 108
1
0:8 il
0:6| . Ra = 102 o
e Ra = 103 £
04l i —Ra=10% :
—Ra=10° >
- - 6
ozl Ra = 10
—Ra =107
‘ ‘ ‘ ‘ Ra =108
O 02 o024 06 08 1 0 02 04 06 08 1
x(m) x(m)
Figure 2.17: 2d Empty cavity: Figure 2.18: 2d Empty cavity: uy
alongy = 0:5 for the considered range alongy = 0:5 for the considered range
of Ra of Ra

the validation of our code. The comparison will then be performed on a loal version of
the Nusselt number presented in the chapter 1, de ned as follows:

Z
— L laT
NUconv = ﬁ . @}O,V)dy (2.67)
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The obtained values are compared with some of the ones available in literate in the

table below:

Pp
Ppp Ra 108|100 |16 | 10P
reference’ P p

De Vahl [60] 1.118| 2.243| 4519 | 8.8

Kalita and al. [61] | 1.118| 2.243| 4.521 | 8.831
Dixit and al. [62] | 1.118| 2.286 | 4.5463| 8.652
present work 1.13 | 2.445| 4.661 | 8.446

Table 2.1: 2d Empty cavity: comparisons with benchmark solutions

One can see that the maximum discrepancy between the obtained regsland the ref-
erences does not exceed 5%. It is straightforward to extend this cas@to a three
dimensional version by an extrusion in thez dimension. All quantities are symetric
around the point X = (0:5; 0:5; 0:5). The temperature remains invariant by translations
in the z direction, since adiabatic walls have no in uence on the temperatue patterns,
and the velocity pro le is symetric around the z = 0:5 plane, as it is displayed on the
streamlines, plotted along the linel; = (1; 1; 1) and the center point xc.

Figure 2.19: 3d Empty cav- Figure 2.20: 3d Empty cav-

ity: streamlines along I for ity: streamlines around X
Ra = 10° for Ra =103

Figure 2.21:  3d Empty cav- Figure 2.22: 3d Empty cav-

ity: streamlines along I for ity: streamlines around x.
Ra =10° for Ra = 10*

For symmetry reasons exposed earlier, the pro les of temperature andelocity are sim-
ilar to the ones obtained in the two dimensionnal case, but we will peform a similar
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Figure 2.24: 3d Empty cav-

Figure 2.23:  3d Empty cav- ity: streamlines around X
ity: streamlines along I for for Ra = 10°
Ra =10°

Figure 2.25:  3d Empty cav-
ity: streamlines along I for LS
Ra = 106 1ty:

Figure 2.26: 3d Empty cav-
streamlines around X

for Ra = 106
Figure 2.27:  3d Empty cav- Figure 2.28: 3d Empty cav-
ity: iso temperature surfaces ity: iso temperature surfaces
for Ra=10° for Ra = 10*
Figure 2.29: 3d Empty cav- Figure 2.30: 3d Empty cav-
ity: iso temperature surfaces ity: iso temperature surfaces
for Ra =10° for Ra =10

validation than in 2d by comparing values of Nusselt numbers to the ones available in
literature, even though there are less references available for thgd case. These results
are summarized in the following table
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"Ppp Ra 1 | 100 |16 |10
reference’ P p

Wakashima and al. B3] | - 2.0634| 4.3713)| 8.77
Tric and al. [64] 1.07| 2.054 | 4.337 | 8.64
present work 1.09| 2.188 | 4.76 8.22

Table 2.2: 3d Empty cavity: comparisons with benchmark solutions

2.3.2 Natural convection in a cavity containing a plate

The second problem, proposed ing5], is another natural convection example with a
heated plate at Ty, inside a cavity of lenghtL = 1:0m with horizontal walls maintained at
Tc. Two con gurations, with a plate at horizontal and vertical positions, are c onsidered.
No mention about the plate thickness is available in the reference,swe set a thickness of
0:02m, corresponding approximately to one characteristic mesh size. As ithe previous
case, homogeneous Neumann boundary conditions are applied on horizontal wall§he
following pictures represent the iso-temperature lines on thedft, and velocity patterns
on the right. The results, in terms of iso temperature and streamlires, are in good
agreement with [65] for Ra = 108, but like in the previous case, we display the evolution
of the results with increasing Rayleigh. The patterns for lowRa will not be displayed,
since they are representative of diusion only. Three dimensionnalversions of these
cases will be presented, but, to the best of author's knowledge, seilts about such cases
are not available in literature, so the validation step will not be adressed.

2.3.2.1 Horizontal plate

A similar behaviour of the aforementionned can be observed than in the gvious case
with boundary layers forming on the upper part of the vertical walls. The patterns in
the lower part of the cavity are almost homogeneous cold temperature and @ velocity,
the compressibility e ects making the hot uid rise in the upper part of the cavity. The
plate impacts the ows, small recirculation zone forming close to thehorizontal limits
of the plate and regrouping in a bigger one as the convection e ect increase

The obtained results were compared with the ones with the referere; in terms of adi-
mensional temperature on the top horizontal wall

A small di erence is observed, which can be explained by the fact tht a high order
nite di erence method was used in the reference. In fact, in orcer to eliminate bias,
it would be more coherent to make comparison between BF results obtairteusing our



Chapter 2

37

Figure 2.31: 2d Horizon-
tal plate: iso temperature for
Ra = 104

Figure 2.33:  2d Horizon-
tal plate: iso temperature for
Ra =10°

Figure 2.35: 2d Horizon-
tal plate: iso temperature for
Ra = 10°

Figure 2.32: 2d Horizontal
plate: velocity for Ra = 104

Figure 2.34: 2d Horizontal
plate: velocity for Ra = 10°

Figure 2.36: 2d Horizontal
plate: velocity for Ra = 10°

code with the same numerical formulation, and the consistency of the rthod which we

will expose in the next chapter.

A three dimensional version of this case was considered, as an extrusiaf the two-
dimensional case in thez direction to consider a unit cube. The plate thickness in thez
direction was set to Q5 in order to have symmetric results in the z direction likewise in

the x direction. This symmetry can be observed on the normalized temperatre patterns

and on streamlines.
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0:8 |- .
0:6 |- 8 .
]
04 — 3
Ra = 103 S
0:2 5 Ra =104
—Ra=10°
| | | | 7Ra = 106 l | | | |
oO 02 04 0.6 0.8 1 0 0.2 o4 0.6 08 1
x(m) x(m)
Figure 2.37: 2d Horizontal plate: Figure 2.38: 2d Horizontal plate: u,
alongy = 0:65 for the considered range alongy = 0:65 for the considered range
of Ra of Ra
0:6 |- :
0:4 | -
0.2} :
reference
present
0 l | | | |
0 02 04 0.6 08 1
x(m)
Figure 2.39: 2d Horizontal plate: alongy =1:0

Figure 2.40: 3d Horizontal

plate: temperature pattern

in symetry planes for Ra =
1063

Figure 2.41: 3d Horizontal

plate: temperature pattern

in symetry planes for Ra =
10¢

It would be possible to only simulate a quarter of the e ective domain with appropriate
boundary conditions, and deduce the whole results by symmetry, as itan be seen on
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Figure 2.42: 3d Horizontal

plate: temperature pattern

in symetry planes for Ra =
10°

Figure 2.44: 3d Horizontal
plate: streamlines in symetry
planes forRa = 103

Figure 2.46: 3d Horizontal
plate: streamlines in symetry
planes forRa = 10°

the 3d isotemperature surfaces.

Figure 2.48: 3d Horizontal
plate: iso temperature sur-
faces forRa = 103

Figure 2.43: 3d Horizontal

plate: temperature pattern

in symetry planes for Ra =
10°

Figure 2.45: 3d Horizontal
plate: streamlines in symetry
planes forRa = 104

Figure 2.47: 3d Horizontal
plate: streamlines in symetry
planes forRa = 10°

Figure 2.49: 3d Horizontal
plate: iso temperature sur-
faces forRa = 10*
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Figure 2.50: 3d Horizontal Figure 2.51:  3d Horizontal
plate: iso temperature sur- plate: iso temperature sur-
faces forRa = 10° faces forRa = 10°

2.3.2.2 \Vertical plate

For this case, it is interesting to remark that for Ra = 10° and Ra = 108, close to the
center of the plate, the situation is similar to what happens in the enpty cavity. One
can note that, at this location, the iso temperature lines display the same shape as in the
empty cavity. However, the velocity is di erent due to the absence of a solid boundary
at the upper limit of the plate. We can observe two symmetric small recirculation zones
between the plate and solid boundaries, in the direction of the iso-tmperature lines for
Ra = 104, the shape becoming more complex when convection increases.

Figure 2.52: 2d \Vertical
plate: iso temperature for
Ra = 10*

Figure 2.53: 2d Vertical
plate: velocity for Ra = 104

Figure 2.54: 2d Vertical Figure 2.55: 2d Vertical

plate: is%at(inlgtgrature for plate: velocity for Ra = 10°
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Figure 2.56: 2d Vertical

plate: iso temperature for Figure 2.57: 2d Vertical

plate: velocity for Ra = 10°

Ra = 10°
1 1
0:8 | 8
0:6 |- 8 "
S
0:4 | 8 ~
Ra =10% S
— 4
0:2 Ra =10
—Ra=10°
0 | | | | 7Ra = 106 1 | | | |
0 02 04 06 0.8 1 0 0.2 04 0.6 08 1
x(m) x(m)
Figure 2.58: 2d Vertical plate: Figure 2.59: 2d Vertical plate: u,
alongy = 0:8 for the considered range alongy = 0:8 for the considered range
of Ra of Ra

As in the previous case, we compared the obtained results in terms of neperature
along the top horizontal wall. For the same reasons exposed earlier, a smali drence
is observed but the discrepancy remains small.

The 3d version of this problem was adressed, the extension being in the sanfigshion as
in the two other cases. One can observe the symmetry of the temperata with respect to
the plane of equationz = 0:5, and symmetry of the velocity streamlines with respect to
X ¢, the above pictures presenting temperature patterns and streanihes in planez = 0:3,
z=0:5andz =0:7, respectively.

The iso temperature surfaces display, as for the horizontal case, sonstifacts can be
seen at the location of thermal boundary layers. It would be possible tdhvave more proper
iso surfaces by using a ner mesh, but on the one hand, the mesh usdtre is made up
of about 1 million elements, so using a ner mesh could seem like an ageration, and
on the other hand, we will see in the next chapter that the monolithic methods we will
make use require ne meshes.
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08 S
0:6 1
0:4 1
0:2
reference
present
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x(m)

Figure 2.60: 2d Vertical plate: alongy =1:0

Figure 2.61: 3d Vertical

plate: temperature patterns Flgure 2.62: 3d Vertical

for Ra = 103 plate: streamlines for Ra =
10°
Figure 2.63: 3d Vertical Figure 2.64: 3d Vertical
plate: temperature patterns plate: streamlines for Ra =
for Ra =104 104
Conclusions

This chapter has demonstrated the potential of the stabilized nite element formulations
for the physical models of interest presented above. The resultshown are satisfactory in
the range ofRa, and were validated in terms of local quantites ( temperature) as wellas
on global quantities ( Nusselt numbers). 21 and 3d problems can be treated indi erently,
even though ner meshes have to be considered ford3simulations. The question of the
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Figure 2.65: 3d Vertical
plate: temperature patterns
for Ra=10°

Figure 2.67: 3d Vertical
plate: temperature patterns
for Ra = 10°

Figure 2.69: 3d Vertical
plate: iso temperature for
Ra =103

Figure 2.71: 3d Vertical
plate: iso temperature for
Ra =10°

Figure 2.66: 3d Vertical
plate: streamlines for Ra =
10°

Figure 2.68: 3d Vertical
plate: streamlines for Ra =
10°

Figure 2.70: 3d Vertical
plate: iso temperature for
Ra =104

Figure 2.72: 3d Vertical
plate: iso temperature for
Ra =10°

convergence with respect to the mesh size was not adressed in thisapter, but will be

in the next, along with the type of meshes that will be introduced in the next chapter.
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Resune frarcais

Ce chapitre cecrit les mockles physiques et les nmethodes @ esolution nunerique utilisees
tout au long de ce travail. On cktaille pour la mecanique des uides incompressibles,
lesequations de Navier-Stokes, les dierents types de conditons aux limites et initiales
envisagees. Le reste de la physique mockli®e ici, a I'exeption du rayonnement, peut
étre cecrit au moyen d'une equation de convection-di usion-e action cererale, ou les
sfeci cies relatives a chaque mockle ( equation de lener gie, moctle de turbulence,
mocele de rayonnement P;) sont introduites et detailees une par une. Le probeme
d'aerothermie coupke est ensuite pesene. La seconde parte de ce chapitre est con-
sacee aux formulations auxebements nis utilies: on ceriv e les formulations faiblesa
partir des probemes continus, on y rappelle les notions recessa@s aux approximations
ebkments nis classiques ainsi que leurs limitations pour les pobemes consicees. On
pecise ensuite les methodes de stabilisation utiliees, las sur I'approche variationnelle
multiechelle, en terme de laguelle on peut interpeter les nethodes plus classiques, telles
gue la methode SUPG. Ces nethodes sont illustees sur des eemples illustratifs issus
de la literature en 2 d et 3d, ou I'on observe une bonne corelation entre les esultats
obtenus et ceux pesenes dans les etrences.
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The Monolithic approach:
levelset methods, anisotropic
mesh adaptation and mixing laws

The previous chapter was dedicated to the physical models of intest in this work,

and the mathematical formulations to obtain numerical solutions of the aforementioned
models. However, problems rising from industrial applications ofta present di erent

components: in a furnace, not only the surrounding uid is of intered, but also the

solid boundaries that limit the enclosure, and, the most important, the ingots inside the
enclosure. Let us recall that the goal of this work is the direct numerial simulation

of heat transfer in material forming processes. Therefore, even tha@h an accurate
description of the ow and heat transfer inside the uid is important to achieve a better
control of the facility, the critical point is the temperature insid e the ingots, since the
temperature time story inside the solid parts have a strong in uence on the mechanical
properties of the nal products, at the macroscale ( yield limit, fati gue strenght) as well
at the microscale ( microstucture, cluster, surface roughness). Té classical approach,
usually referred to as the "Body- tted" approach, is what we used in the previous
chapter: the solid and the uid computations are performed on separated neshes, the
uid domain containing a "hole" at the location of the solid part, and an appropr iate

coupling is required to ensure the communication at the interface letween models. Even
though this approach is used in many commercial softwares, it has some wethown

drawbacks:

When complex geometries for the ingots are considered, the construcih of an
appropriate mesh can be very time consuming. Moreover, di erent sofivares are

45
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based on di erent numerical methods, therefore the mesh requinments are di er-
ent for each software, rendering more di cult the task of designing a mesh for a
speci ¢ application.

A change in the position of the ingots means rede ning the whole mesh. Tis
becomes more problematic when solids move during the process, asi# often
the case, since at each change of mesh, all the boundary conditions have be
rede ned, which is a tedious task for complex geometries.

The Body tted approach often models the convection at the interface uid-solid
with boundary conditions of type r (T) n = henv(T  Tw), heonv being the
convection coe cient. As explained in chapter 1, this convection coecient can be
obtained by di erent ways: correlations between adimensional humbes through
the Vaschy-Buckingham or inverse problems, but such coe cients ae very depen-
dent on the con guration inside the facility ( position of ingots and burner/nozzles,
inlets velocities, physical properties of the uid).

For all the reasons mentionned, as we want to design "general” numerical wls, in the
sense that it should be adapted to a broad range of situations, a classical bg- tted
approach does not seem well adapted. To circumvent these issues, \weopose to use
an immersed volume method (IVM), consisting in treating both solidsand uids on a
single mesh and with a single set of equations being solved for the whall®wmain, that is
to say, in a monolithic way. The eld of immersed methods have attracted the attention
of many researchers in the past few years, with applications to di erat types of ows,
such as Stokes ows§6], incompressible viscous ows 7, 68, uid-structure interaction
with rigid [ 69],[70],[71] and exible bodies [72]. Heat transfer in a monolithic context
was only adressed very recently, with applications to biology T3] and phase change74].
The immersed volume method that is going to be described was alreadyuscessfully
applied to di erent situations [ 38, 40, 42], but the main characteristics will be recalled
in this chapter, and supplementary validation test will be performed.

The three main features of an immersed method are:

The representation of interfaces.
The construction of a mesh to properly capture the interface phenomea.
The assessment of e ective physical properties for di erent domairs.

Each of the three aforementionned points will be the object of a subséion in this
chapter
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3.1 Representing interfaces using a levelset framework

The rst issue is how to represent the interfaces between uidand di erent solids. To
this end, an interesting approach constists in using levelset fuctions (see ¥5] for a good
review). It is used in many domains as computer vision, optimization ¥6] and image
processing. The principle is to de ne a signed distance function (x), positive inside the
considered object and negative outside. Formally, it reads, represating the uid-solid
interface:

_ dix; ) if X2 sl
00 = dix;) if X 2Z g S

where d(x; ) is given by

dix; )= mig kx yka (3.2)
y

For simple geometries, as with circles of polygons, can be determined analytically
from geometric parameters. For more complex geometries, the consideredbject is rst
modelled using CAD tools, (CATIA c¢ for instance) and a surface mesh of the object is
generated. This surface mesh is then "merged" into a background mesland we make
use of the algorithm depicted in [/7] to compute the levelset on the main mesh. Here
we see displayed the levelset functions a circle and a square tered on (0.5; 0:5), the
computational domain being [G 1] [O; 1].

Figure 3.1: levelset Func- Figure _3.2: levelset Func-
tion of a circle tion of a square

It is also possible to make the levelset function "move"” in the comptational domain.
This is achieved by introducing a supplementary equation rulingthe evolution of the
levelset function as follows:
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Cg);u r()=0 (3.3)
U being a transport velocity ( a rigid body velocity in the case of moung objects, a
convective velocity in the case of multiphase ows ). Many researchrs have worked
on those reinitialization techniques for interface tracking [78{80], with applications for
Stokes ows [81] . levelset functions can be used in a di erent context as well, ke
contact- mechanics 82] and metal microstructure modelling [10]. Some applications
to Fluid-Structure interaction [ 83] can be noted as well. This approach, consisting in
modelling the solid using levelset functions is interesting, imice it provides a convenient
representation of the solid , and this representation has the potentiato model solids of
very complex geometries$]. However, since most of the critical phenomena occur at the
interface uid-solid ( boundary layers, convective transfer, forces applied on the solid,..),
it is desirable to dispose of an appropriatediscrete representation of the interface, since
the interface will, in the end, be represented on a mesh. Di erat options are possible
to track the interface: by using another mesh or by moving on the backgound principal
mesh as done4], in order to track the interface, follow "e ective" nodes and edges of
the mesh being representative of the interface following the lies in B5. However, this
is di cult to achieve, particularly when complex geometric forms are of interest. We
will follow another approach that consists in the construction of a mesh "adpted” to
the representation of the considered levelset function, in a selesto be de ned later on.
The purpose of the next section is to introduce the tools necessario the construction
of such meshes

3.2 Error estimators, metric elds and anisotropic mesh
adaptation

3.2.1 Error estimation
3.2.1.1 Motivations

Formally, a mesh is de ned as a collection of polygons, composed of vertiseedges and
faces, that de nes a polyhedral object. As stated in the previous chapgr, it is a natural

way to construct an approximation 1 of the computational domain . If di erent forms

of polygons ( also referred to as simplices, cells in a nite volume cdaext, elements in

a Finite Element context) can be considered ( triangles, quandranglge, hexahedras),
the question of buidling a mesh suitable for the desired applicationis common to all
kinds of meshes. It is common to introduce more elements in the lation of "sharp"
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phenomena ( close to boundary for instance), but this requires ara priori knowledge
of the considered system. Therefore, it is desirable to have at handeneral tools to
achieve such an understanding of the underlying model, sometimess rst calculation is
necessary to have ara posteriori knowledge of the solution and adapt the computation
afterwards. To introduce the concepts necessary to such an analysiket us consider an
abstract problem under the following form:

L(u) = f (3.4)

wherelL () stands for a di erential operator representing the considered PDE( including
the boundary conditions, forcing terms and model parameters),f is a forcing term
and u is the solution that we are looking for. Under certain assumptions (regudrity,
coercivity) on L and f, functional analysis theory can provide information (existence,
unicity, regularity regarding datas) regarding the exact solution of this problem, that
will be denoted uey in the following. Using the techniques described in the previous
chapter, one can transform the problem into a weaker one, in order to be db to obtain
an approximate solution uy, so that the discrete abstract problem reads:

B(un;v) = I(v) 8v 2V, (3.5)

Knowing this, one can de ne the approximation error e 1, as follows:

€h = Uex Up (3.6)

e, will be evaluated with an appropriate norm, depending on the considerd problem.
Two main approaches to study the behaviour of this error can be quoted:

A priori error estimation: this approach consists in using the functional analy-
sis theory to assess the order of convergence of the considered methdased on
mathematical assumptions ( properties of the PDE, regularity of the datas type

of boundary conditions, properties of the numerical formulation). Sucherror es-
timations are often presented in the formken,k  ChP, where C is a constant
independent of the mesh,h is the characteristic mesh size, and the exponanp

is related to the order of interpolation of the chosen approximation. Howeer,

that kind of result is valid only asymptotically (i.e. when h! 0), hence such an
approach is impossible to use in pratice.
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A posteriori error estimation: this approach is di erent in the sense that it makes
use of the approximated solution to compute the approximation errore,. This can
be done by di erent ways, depending on the considered physics.

The following subsection is dedicated to a short overview of error g#imations techniques.

3.2.1.2 Approximation error

Since the Finite Element method was originally applied to structural mechanics, the
foundations of error estimation are related to such problems. One can quetat least
three di erent approaches:

Following the pioneering work in [86], an option is to make use of Finite Element
residuals: using the Galerkin orthogonality, one can show that the errore, is the
solution of a variational problem similar to the original one, with a Finite Element
residual as a right hand side. It is interesting to remark how such esidual-based
methods echoe with the VMS stabilization evoked in the previous chafer.

Another option is to exploit the lack of regularity of the Finite Element solution
[87{89. The computation of the approximation error therefore consists in the
construction of a smoothed approximation. Such methods are really siple and
easy to implement, but they su er from a lack of good properties, eva though
improved versions can be considered.

A third option consists in de ning a measure of the error with resped to the
constitutive relationship [90], but with a step for the construction of a more regular
solution with techniques such as ux equilibration. It o ers a inte resting framework
but not suited for CFD, since the non linearity comes from the convecive term
and not from the constitutive relation.

One can see91], [92] or [93] for reviews on error estimation foradaptive Finite Element
formulations, but such topics are still attracting interest of many research teams, ex-
tending error estimation approaches to new problems: for linear elastity, we can quote
[94] in the context of model reduction, [95] for mixed augmented method with Lagrange
multipliers and [96] for VMS formulation in elasticity. Some examples in di erent con-
texts are available as well, adressing the question ajoal oriented estimation, when one
wants to estimate not the global error of the problem, but on a quantity of interest: [97]
for Poisson equation, P§] for linear transport and di usion, [ 99 for di usion-reaction
systems and L10( for Maxwell equations. A great e ort was also devoted to such studies
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for Navier-Stokes equations, with special focus on turbulencelP1] [102 [103, and some
study for VMS based stabilization methods [L04]. However, in our context, on the one
hand we are considering multiphysic problems, so it is desirablea use an error esti-
mation valid for all models, and on the other hand, we are looking for an estirator to

adapt the mesh only. Therefore, the next subsection introduces tb framework to study
the interpolation error that will be used in this work.

3.2.1.3 Interpolation error

We start by recalling the Cea lemma that states, for linear problems:

9C 2 R; 8v2 V;; kuex upk Ckuex Vk (8.7)

where C is again a constant independent of the mesh. One can see that, for a suitkb
choice ofv, it is possible to obtain a quantity that is an upper bound for the approxima-
tion error. We introduce the Clement interpolation operator, where V is the functional
space whereuey lies

hoV!I W (38)

Roughly speaking, p can be understood as a projection operator onto the Finite element
mesh. Settingv = (Uex), the quantity kuex  h(Uex)k, referred to as theinterpolation
error appears to be a good choice to control the approximation error. Moreoverthe
interpolation error only measures the error made when a function is repesented on a
mesh, and therefore seems a natural tool to use for mesh adaptation. The geral idea of
the mesh adaptation is to compute such an interpolation error once a rst @lculation has
been done, and to construct a new mesh by equidistributing the eor. However, as it was
shown in the previous chapter with the SUPG and SCPG methods, somelgenomenoma
present a natural anisotropy ( in the direction of the upwinding velocity). Following the
same idea, an interesting lead is to consider a mesh composed of eletsepresenting
similar characteristics, i.e. with a prefered direction aligned wth the one of the gradient
of the eld to be represented. The purpose of the next sections isd introduce the
theoritical framework necessary for the construction of such meshessing the notion of
metrics.
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3.2.2 Change of geometry: metric elds

It is classical to say that a geometry is de ned once a scalar product andts associated
norm are at hand. The usual Euclidian space considers what we refer to avi¢ "canon-
ical" scalar product. However, it is possible to de ne many other scadr products just
with the help of a symmetric de nite postive matrix M 2 RY ¢, such that the associated
scalar products and norms are as follows:

(XY =prM y (3.9
kxky, = xTM x (3.10)

If we consider an element of the mesh, the de nition of a single charaetristic mesh size
for the element ( even more for the whole mesh) is not well suited for asotropy. Hence,
if we want to de ne characteristic mesh sizes in each directionlfy; hy; h;), a natural way

to de ne a metric M ¢ for the element is the following:

2 3
iy 0 0
M =§ 0 (hyl)z 0 Z (3.11)
0 0 L

By doing so, each tetrahedron ( triangle in i) is equilateral with respect to its natural
metric. For the case of an isotropic element of sizé, the metric is an homothety of ratio
Wlf- Therefore, the problem of the construction of a mesh adapted to the neresentation
of a given function is replaced by the following problem: for a given aor estimate, how
to build local metrics for each element, so that they will be adaptedto represent a given
function. We notify that the use of such elements make the de nition of a characteristic
length for an element even more di cult. Even if di erent options are possible, for the
length appearing in the de nition of the stabilization parameters in chapter 2, we follow
the lines in [4Q].

Even though other alternatives are possible ( seelp5 and references therein), we will
present two di erent approaches that are used in our library

3.2.2.1 Metric construction by length distribution tensor

In this case, the metric map is constructed directly at the nodes ofthe mesh. The
construction of the metric relies on the notion of length distribution tensor and permits
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Figure 3.3: lllustration of anisotropic elements
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to de ne an edge basederror estimator. We will recall here the main steps of the

construction, but for more information, the reader can refer to [LO§ or [4]: let us start

by introducing some useful notations:

Table 3.1: Notations for the mesh.

Notations De nitions

d dimension of space
K set of elements
N set of nodes
K 2K mesh element
X', i2N vector of coordinates for theith node

X =X edge vector made of nodes and j sharing at least one element

hj = jX7j

(i)=fj 2N ;9K 2K:; X1 2 Kg

Q)

edge length

set of nodes connected to node ("patch")
cardinal of the set (i)

The Length Distribution Tensor is de ned by

i__d
T

X

j2(h

X

X

(3.12)

This tensor will appear in the construction of an interpolation error that measures

the accuracy of the process of building a continuous gradient from value at nodes of
the mesh. This reconstructed gradientG' is de ned using the following minimization

problem
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0 1

. X ) )
G' = arg n?;in @ jG:x Ul j?A (3.13)
2 (i)

where Ul is the nodal value of a eld approximated in the interpolation space. The
solution of this problem is given by:

G'=(x") ! (3.14)

We can now turn to the de nition of the interpolation error estimator €/, which is given
by:

g = G X (3.15)

This estimator is then used to to compute a stretching factors! , based on a principle
of equidistributed error e for all lengths, with a xed number of nodes N, which leads
to the following de nition of the stretching factor

OP ;1:
1 n'- ¢
e 2 _ @ i A 1=2,
!
with ni =det & g 1xi xi
J(l)sz(i) ij JX“] jX”]
Then, the new metric can nally be de ned:
a1
fi = J(d')‘ ki 7. (3.17)
where Xi is computed by substituting X with &I = s; X . However, even though

this approach is interesting in the sense that it exploits an analogy wih an orientation
tensor, the construction of the metric relies on geometric charactestics only. Another
approach is possible, based on a di erent philosophy, and will be detadd in the next
part.
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3.2.2.2 Metric construction using an hessian based error estimator

Here again, the reader can refer to J07], but we recall here the components of the
approach. This philosophy is di erent than the previous one in the serse that we make
use of higher order derivatives. If we come back t03.7), one can show

X
Kuex Unkp Ckuex Vkp C( kH(uex)(x)kﬁ;p)% (3.18)

K 2K

where H (Uex)(X) = Do(Uex)(X)(X Xk )(X  Xk), D2(uex)(x) stands for the hessian

matrix of uex and xx being the barycenter of elementK . The computation of the error

estimator is based on a recovered HessiaR g (Uex)(X), obtained through techniques

depicted in [88, 89. Using this the following error estimates can be obtained, with
0:

0

C

kUQX uh kp CkUQX Vkp W

KH R (Uex)(X)kp (3.19)
The local metric is de ned acording to the recovered Hessian, rela&d to its eigenvectors
(€)1 i d ( HrR(uex)(X) is a real symmetric matrix due to the Schwartz theorem) and
the mesh sizes in each corresponding direction$()1 i 4, as follows:

M = —e g (3.20)

However, even thoughH (up)(x) appears as a good candidate for the recovered hessian,
it cannot be used directly as a metric, since it is not guaranteed to bepositive-de nite.
If we denote by ( j)1 i ¢ its eigenvalues, we can de ne

H=R RT (3.21)

with R being a rotation matrix formed of (ej); i 4 as column vectors ( the order being
re-arranged to form an orthonormal basis), and = diag(j ij1 i ¢). That allows us to
de ne an error estimator "k on each elementK and an upper bound
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z
"k = K(H(uh)(XK)(X Xk )(x Xk )P (3.22)
!

Tl

Tl

Z
) "k i(Xk )h? (3.23)
Kij=1

In the following, the two metrics will be referred to as "Edge-based metric and "Hessian-

based" metric, respectively. A proper comparison of the two metris could be performed
by using "exotic" analytical functions, but will not be performed in t his thesis, since
the two approaches lead to similar results, even though the "Hessian-basl" approach is
simpler to implement. Now that we exposed two approaches to compute d@gsotropic error

estimators, it is necessary to construct a mesh with respect to thse error estimators, in
a way described in the next section.

3.2.3 Mesh adaptation algorithms

The construction of a mesh is, in general, not an easy task. It is easy in # case of
structured mesh, but becomes more tricky for unstructured mesks, and could serve as
a PhD topic on itself. Even though the principle is always to equidstribute the error on
each element, some geometric considerations are of interest:

As described in L08 109 relying on a discrete point of view, a mesh is a set of node
and a topology. Within this view, an optimal mesh is constructed using citerions such

as minimal volume for simplices, by performing "cut and paste” operatiors for node

generation and deletion.

The mesh adaptation procedure is illustrated below on the case of a ate, where the
mesh is adapted on the levelset of the circle. One can see that the ntesbtained through
this procedure is gradually re ned at the interface, enabling a shap description of the
interface on the one hand and ensuring an accurate description of inteate quantities
(Temperature, velocity), mandatory for industrial applications on th e other hand. The
four pictures illustrate that the static mesh adaptation is an iterativ e process. One could
argue that such a mesh adaptation is costly in terms of computational ressowes, but
such a mesh adaptation process is "o ine", because it is done before any callation.
The procedure has also been tested ond3examples, displayed in the following. The
results show the perfomances of the procedure, on simple geometfizrms as well as on
more complicated geometries coming from our industrial partners.
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Figure 3.5: Mesh adapta-

Figure 3.4.  Mesh adapta- tion procedure: rst remesh-

tion procedure: initial mesh

ing

Figure 3.6: Mesh adap- Figure 3.7: Mesh adap-

tation procedure: third tation procedure: fteenth
remeshing remeshing

Figure 3.8: Zoom on the re ned interface

The whole industrial facility ( an overview is depicted below) wasmodelled as well, with
an explicit description of boundaries and a sand layer, demonstratinghe potential of
the method to properly capture several interfaces. A special treanent is required to
adapt simultaneoulsy on ingots, walls and sand, but this will be detailedin the chapter
regarding industrial applications.
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Figure 3.10: 3d Adapted mesh:
Figure 3.9: 3d Adapted mesh: brick cylinder

Figure 3.11: View of the industrial ingot

Figure 3.13: Cross section along the

Figure 3.12: Cross section along the >
y axis

X axis

Figure 3.14: Whole Facility: overview
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Figure 3.15: Whole Facility: cross section along thexz plane

Figure 3.16: Whole Facility: cross section along thexy plane

Figure 3.17: Whole Facility: cross section along theyz plane

It is also possible to apply those mesh adapation techniques on the comprd elds

such as temperature or velocity. In this case, the mesh adaptation andesolution of the
equation become strongly coupled, in the sense that a solution is competl on a mesh,
which is then adapted to the computed solution. This coupling is attained by iterating at

a xed point algorithm. Such an adaptation is illustrated on pictures bel ow, on problems
considered in the past chapter, namely the 8@ natural convection in an empty cavity,

and the 3d natural convection with an horizontal plate. The benet of such a dynamic

mesh adaptation can be substantial, particularly in terms of computational time.

Now that the tools for the construction of an apropriate mesh are introducel, the next
section is dedicated to the method for dealing with multidomain probdems.
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Figure 3.18: 2d Empty Cavity for
Ra = 10%: Temperature lines

Figure 3.20: 2d Empty Cavity for
Ra = 108: streamlines

Figure 3.19: 2d Empty Cavity for
Ra = 10°: adapted mesh on temper-
ature

Figure 3.21: 2d Empty Cavity for
Ra = 10°8: adapted mesh on velocity

Figure 3.22: 3d Horizontal plate: adapted mesh on temperature
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Figure 3.23: 3d Horizontal plate: adapted mesh on velocity

3.3 Multidomain problems

Let us recall that we want to perform monolithic simulations in the sense that both
solids and uids are represented on a single mesh leading to one singt®mputation.
However, uids and solids are characterized by di erent thermophydcal properties, so
the question is now : how to assess physical properties to each "subrhain"? The
most straightforward option would be to consider conform meshes, with ndes on the
real interface, but on the one hand, the interface is only implicitely de ned, and on the
other hand, such a conform mesh is hard to construct for complex geome#&s. Another
options is to make use of Generalized Finite Elements1[L(J: the idea is to enrich the
Finite Element space with a suitable function, allowing to capture e ects that a classical
Finite Element fails to represent. It has been sucessfully appéd to di erent problems
with heterogeneous materials 111, 117 [113 and crack propagation [L14. However, the
theoritical analysis is restricted to elliptic problems, and it was shown that the classical
version lead to ill conditioned matrixes, even though improved ver®ns can be considered
[115. Here, we are considering another approach based on "mixing laws". We iktrate
it by taking the example of the density : if we denote by ¢ and s the densities of
uid and solid respectively, the "e ective" density  (x) is given by :

(x)= (HC (x)+ @ H(C (X)) (3.24)

where H ( (x)) is a Heaviside function, so that the density has the appropriate valie
in each region. However, this version produces a very sharp transii, and leads to
inaccurate results. To circumvent this issue, we consider a snathed Heavisde function
by introducing an interface thickness , verifying = O(h). The Heaviside function will
be smoothed on the thickness with respect to the following expresion:
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8
3 1t (x)>
HC )= Ioa+ 8y Igin(—Xy if j (x)] (3.25)

0 if (x)<

All thermophyiscal properties will be computed in the same manner, eferred to as
linear mixing law at the exception of thermal conductivity, which has to be mixed using
an harmonic mixing law to ensure conservation of conductive uxes. It also can be
understood by thinking of the way equivalent thermal resistances are obtained from
assemblies in series.

(x)= tHC (x)+ s@ H( (X)) (3.26)
TX)=TrH( (x))+ T H( (x)) (3.27)

x)= tHC (x)+ Q@ H( (x)) (3.28)

x)= tHC (X)+ Q@ H( (x)) (3.29)
Cp(X)= G H( (X)) + sCus(T  H( (x))) (3.30)

1

)= Hey, TACx (3:31)
f s

Even though the temperature is one of the variables of the problem, sucla mixing law
will be useful to prescribe initial values in solid and uid. For th e viscosity, since there
exists no de nition of the viscosity for a solid, we will set a very important value (
typically s = 10°) in order to ensure a zero velocity inside the solid. This methd,
known as the penalty viscosity method, show satisfactory results @ t with classical
body tted results. For the case of moving objects, an augmented formiation can be
considered 116, the constraint being to have a solid body (rigid or elastic) velodty in
the solid obstacle. Regarding the thermal behaviour, a solid boundary Vth a Dirichlet
boundary condition in temperature can easily be modelled in a monolithic context, by
setting an important value of the thermal conductivity. To illustrat e the use of such
mixing laws, we come back to the case of the facility, where we dispy the e ective heat
capacity and viscosity.

It is interesting to note that the computation is driven by those spatially dependent
properties: the velocity eld, due to the high value of the viscosty at solid boundaries,
coupled to appropriate physical properties of each component, properlynimics the con-
vective transfer naturally, with no supplementary e ort. The met hod allows to consider
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Figure 3.24: Industrial Facility: e ective heat capacity

Figure 3.25: Industrial Facility: e ective viscosity

various industrial con gurations, the price to pay being the fact that the construction of
the mesh can be time consuming, but, as stated previoulsy, the conaiction of the mesh
is an "o ine" operation. Once the mesh has been constructed, the overdimethod has a
computational cost similar to more classical methods, but allows to peiorm simulations
that would be di cult to set up using a body tted approach, as the res ults of chapter
6 will show.

Before moving to the numerical experiments regarding the immersd volume method, it
is important to recall that the three features of this monolithic approach are strongly
coupled: there might be several iterations to nd a good couple betwen a well adapted
mesh, properly represented interfaces and well assessed phydiproperties, due mostly
in the choice of : a to small value of interface thickness would consume too many
elements to represent the interface and a too large value would leadotan oversized
interface that would modify the physical output of the system, leading to non-relevant
results. The next section is dedicated to numerical experimerg to demonstrate the
consistency of the monolithic approach.
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3.4 Numerical experiments

When a novel approach such as the IVM described upper is developedhe rst validation
step consists in the comparison of the obtained results with the ones aained using a
classical ( boddy- tted here ) approach. Since the BF results werecompared to results
from literature in the last chapter, they will be considered as a reérence here. We will
see that the convergence of both results is essentially related to ghconstruction of an
appropriate mesh. In fact, it is not an easy task to construct a "monolithic" mesh that
is comparable with a classical one; on the one hand, it is di cult to properly control
the number of elements necessary to represent the interface avéhe total number of
elements, and on the other hand, in the case of unstructured anisotropi meshes, what
stands for the characteristic mesh size? To validate the approach we Wimake use of
the problems presented in the previous part, in 2 as well in 3d.

3.4.1 Natural convection in an empty cavity

For the 2d version, we will enlarge the domain model with slabs of a very highly con
ductive solid body (in order to replace the thermal boundary conditions) of lenght
| = 0:25m, so that the computational domain that was [0;1] [0;1] will nally be
=[ 0:25;125] [0;1]. Adiabatic boundary conditions are imposed on lower and
upper walls, and slip boundary conditions are imposed on all the boundari for the
velocity. We set herePr = 0:71 and Ra = 10° for the 2d and 3d validation. Since an
error analysis similar to the one in 4] will be performed in 2d, we chose the same values
for the temperature which are T, = 960K, T, = 240K and Ty = 600K .

Figure 3.26: 2d Empty cavity: mesh Figure 3.27: 2d Empty cavity: mesh
for the body- tted approach for the immersed volume method

The meshes used for the computations highlight the extension of the doain and the
obtained anisotropic mesh at the interface. Note that the same background n&h size
was used elsewhere. Patterns of the temperature and the velocity ampresented in gures
3.28and 3.29 and compared to results obtained with a classical body- tted approach.
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analysis on the temperature
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Figure 3.35: 2d Empty cavity: error

analysis on the velocity

An 3d extension of this case was proposed, the volumic boundaries being regzented in
the same manner than in the 2d case with no di culties, since the prodem is invariant
with respect to the third cordinate. The adapted meshes are presded below. Note that
if the "edge-based" metric was used for the @ computations, the 3d case was adapted by



Chapter 3 67

means of the "Hessian-based" metric, showing both metrics lead to appximately the
same results. The temperature and velocity pro les are exhibitedas well, demonstrating
the same coincidence between BF and IVM results than in &, but a rigorous analysis of
this coincidence requires to investigate the agreement betweemdal quantities, likewise
in the 2d case.

Figure 3.36: 3d Empty cavity: meshes used for the "BF" (left) and "IVM" (right)
simulations

Figure 3.37: 3d Empty cavity: temperature pro les for "BF" (left) and "IVM" (right)
simulations

First of all, we study the quantities which are the equivalent of the ones studied for
the 2d case, that is to say the lines corresponding to the intersection ofwo planes
I, =fy=0:5\z=0:5g,l1,=fx=0:5\ z=0:5gandl; = fy =0:5\ z=0:59. The
pattern of the third component of the velocity is also presented.
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Figure 3.38: 3d Empty cavity: velocity prole for "BF" (left) and "IVM" (right)
simulations
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Figure 3.45: 3d Empty cavity: u; of u; for the considered line
along I,

3.4.2 Natural convection in a cavity containing a plate

Recall that, the "immersed" versions were considered naturally by mtroducing a levelset
Function for the heated plate. For the duration of study, we keepRa = 10 and Pr =
0:71. An interesting feature of ourimmersed method is that the set up fothe vertical and
horizontal cases are exactly the same, except for the de nition of the leelset function.
The meshes used for the computations are displayed below. Note that #re are very
few elements inside the plate, which makes sense since the qudigs are expected to
remain constant inside. Controlling the number of elements insideand outside is possible
with our implementation of the "edge-based" metric. As in the previous case, we used
body tted meshes with approximately the same background mesh sizé¢han the ones
displayed.

However, the validation would not be complete without a quantitative study, so we chose
to study some relevant quantities along some lines ay = cst. We want to verify the
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Figure 3.49: Mesh for the 2 hori- Figure 3.50: Mesh for the 2 vertical

zontal case

Figure 3.51:

case

2d Horizontal plate:  for IVM and BF

results close to the surface of the plate in order to check if the irdrface behaviour is
properly captured. To this end we chose four lines for each case, lestl in the table

below:
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Figure 3.52:

2d Horizontal plate: velocity for IVM and BF

Figure 3.53: 2d Vertical plate:  for IVM and BF

Figure 3.54:

2d Vertical plate: velocity for IVM and BF
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y | Horizontal | Vertical
y1 | 0.3 0.1
y2 | 0.4875 0.2475
y3 | 0.5125 0.7525
y4 | 0.65 0.9
Table 3.2: 2d plates: y for the chosen lines
1 ]
Y1 BF
ol y1 IMV
0:8 OV BF
— Y2 IMV —~
0:6 - s -
(2]
=
0:4 - . <
=}
0:2 8
% 02 04 06 08 1
x(m)
Figure 3.55: 2d Vertical obstacle: Figure 3.56: 2d Vertical obstacle: u,
along considered lines 1/2 along considered lines 1/2
1 1
0:8 | 8
06| . -
(%]
£
0:4 . =
=}
Y3 BF
0:2 y3 IMV
—VY4 BF
‘ ——y4 IMV ‘
% 02 04 06 08 1
x(m)

Figure 3.57: 2d Vertical obstacle:

along considered lines 2/2

Figure 3.58: 2d Vertical obstacle: u,
along considered lines 2/2

As it can be seen on the patterns, for the horizontal case, the results ineen y, and

y3 are almost symmetric, with a zone where the quantities are constant (U, = 0 and
=1), as it can be expected in the vicinity of the heated plate. It should be pointed out
that during previous computations, it was observed that a gap between BFand IVM

values can be observed if the mesh is not well adapted at the interfaceyven though the

results appear to be the same "to the eye".
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Figure 3.61: 2d Horizontal obstacle: Figure 3.62: 2d Horizontal obstacle:
along considered lines 2/2 u, along considered lines 2/2

The 3d extension for those cases were performed similarly to thed3BF cases. We display
three cutting planes for each mesh, showing that the interface is mperly captured in
all directions

One can see that the obtained results in the planez = 0:5 are, for both cases, the
same results that the ones obtained for the @ cases. The results in the plate plane are
presented as well, showing once again a good agreement for both problems.

Here again, we will verify that we obtain the same results quantitatively. As for the 2d,
we will verify the consistency on quantitites at middle locations between the plate and
the boundaries and close to the interface. To this end, we chose dirent locations in
the cavity. The chosen locations are listed in the table below. We ansidered the two
directions, in order to verify the quantitites at the interfaces in the two directions.
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Figure 3.63: 3d Horizontal plate: IVM mesh

Figure 3.64: 3d Vertical plate: IVM

| | coordinate 1 | coordinate 2
4 | y=0:75 x=0:>5
Is | y=0:75 z=05
le | y=0:9 x=0:5
l7 | y=0:9 z=0:5

Table 3.3: 3d plates: coordinates of the chosen lines
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Figure 3.65: 3d Horizontal plate: in the z =0:5 plane

Figure 3.66:

3d Horizontal plate: velocity in the z =0:5 plane

Figure 3.67: 3d Horizontal plate: in the y = 0:5 plane
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Figure 3.68:

3d Horizontal plate: velocity in the y = 0:5 plane

Figure 3.69: 3d Vertical plate: in the z=0:5 plane

Figure 3.70:

3d Vertical plate: velocity in the z =0:5 plane
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Figure 3.71: 3d Vertical plate: in the y = 0:5 plane
Figure 3.72: 3d Vertical plate: velocity in the y =0:5 plane
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o 0:6 -
E
S 05F 2 05
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O - |
| | | | 03 | | | |
0 02 04 06 0:8 1 0 0:2 04 0:6 08
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Figure 3.73: 3d Horizontal plate: u, Figure 3.74: 3d Horizontal plate:

along l4

along l4
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Regarding the results in temperature, the small discrepancy mightcome from the
stabilization technique: one of the stabilization term implies the thermal di usiv-
ity <5 and since important values were prescribed inside the plate to equre a
constant temperature, the gap for this stabilization parameter across thenterface
could be signi cant. It shows that the "tuning" of stabilization paramete rs is not
yet perfect, and could be improved.

Nevertheless, a curious fact was observed during comparisons betwe®8F and IVM
simulations, particularly on the case of the vertical plate: sometimesthe results looked
"better" with the immersed volume method, even when a similar number of elements
was used. This can be be explained by the fact that, in the case of the imersed
volume method, the elements are more "intelligently” located, whee one can expect
to encounter the thermal boundary layers. This is another argument infavor of the
immersed volume method, when one knows the di culty to construct a mesh before any
computation.

We recall that this study regarding the consistency of the IVM is to be linked with the
ones previously done in41, 117).

Resune frarcais

Ce chapitre pesente les nethodes utiliees pour le traitement de probemes multi-
domaines tels que les fours industriels ou les proedes de trepe. La geonetrie des
dierents composants est repesente par le biais de fonctions kvelset, qui peuvent
étre calcubes de manéere sysematiquea partir d'un moce le CAO de l'objet consicee.
On cecrit ensuite les outils recessaires a la construction dun maillage appropre a
la repesentation des interfaces. On introduit les notions d'erreur d'approximation et
d'interpolation ainsi que celle de netrique, dont on cetaille les deux exemples qui sont
utilises dans ce travail. On pecise ensuite les lois de nelarmge utiliees pour deduire
des proprees physiques e ectivesa partir de celles des derents composants. Ces trois
ekments constituent la nethode dite d"immersion de volume”, qualiee de monolithique
au sens ou tous les composants sont traies sur une méme maillage. Cesthodes sont
ensuite illustees sur les probemes illustratifs traies dans le chapitre 2, et I'on \erie
qgue l'approche pesente est consistante avec I'approche clasue.
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Monolithic Surface Radiation:
The "Immersed-Surface-to-
Immersed-Surface" (1S21S)

method

Now that the retained approach has been presented and illustrated on seval examples,
we turn to the major contribution of this work, the numerical modell ing of the radiation.
In many engineering situations, such as glass treatmentl[1§], nuclear engineering 119,
combustion and ame modelling [120{ 122 and industrial furnaces [123X 125, thermal
radiation is the dominant mode of heat transfer. However, at the contrary of other
physics presented in chapter 2, that can be stated amacroscopic physics, in the sense
that, even if the pheneomena can be related to the action gbarticles (atoms, molecules),
the constitutive equations are, in some sense, averaged. This approaéh not valid for
the radiation, the considered particles being photons, and the point ofview of the
statiscal physics have to be considered, when the particles are nalirectly considered,
but only density of probability of their presence. This leads to an egiation of Boltzmann
type, the Radiative Transfer Equation, for which the numerical tools usually employed
in the "Engineer" physics are not well suited, for many reasons that wil be detailed
in this chapter, but the main one being the complexity of the RTE. Therefore, some
simpli cations have to be made in order to be able to obtain a numericalsolution. The
main one being based on the fact that radiative e ects can be split in twocontributions:

Surface radiation: when the medium separating the surfaces that de e the en-
closure does not a ect the exchanges between surfaces, the medium said to be

83
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transparent . This assumption is valid for vacuum, and for air at low and moder-
ate temperature. Those exchanges constitute the major part of interes and the
method exposed in this chapter aims to take these e ects in account.

Volume radiation: when the medium cannot be considered as transparentpne
has to take in account the interaction with the surrounding medium, by means of
emission, absorption and de ection of photons. Methods to deal with this type of
transfer will be described in this chapter, but the speci ¢ method we developed
will be detailed in a following chapter.

Before turning to the method we designed, we will brie y recall the basics of radiative
transfer and give an overview of the existing methods.

4.1 The Radiative Transfer Equation

4.1.1 Equation and boundary conditions

Let be the computational domain and @ its boundary. The considered time interval
is [0; T]. A direction of the space! can be parametrized by two angles'(, ), so that

we can write the direction vector as

2 3
cos()sin(" )

I = § sin( )sin(*) 2 4.1)

cos( )

R
Let S denote the unit sphere. In what follows, the symbol ¢ means that the integration
is performed over all the directions, i.e., for all! 2 S, which is equivalent to say that
''2[0;2 ]Jand 2[0; 1.

The grey medium assumption is considered, and this yields to equains integrated
all over the frequency range, therefore all the considered quantiis will be frequency
independent. The RTE permits to determine the speci c radiative intensity | (x;t;! ),

which describes the density of photons at a given position, time and ira given direction.

By considering an isotropic scattering to simplify the exposition, the full RTE reads:

z
1@ I — 4 0
——+! rl=—=T + )+ —  1(!9d! 4.2
ot (g 19 (4.2)
Here, 0 is the absorption coe cient, 0 the scattering coe cient, | the Stefan-

Boltzmann constant, ¢ the light speed andT the (given) temperature eld, acting as a
right hand side in this case.
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As boundary condition, di erent choices are possible. The most simplds to prescribel
at in ows to a given function | 0 ie.,

I(x;t;!1)=1° forx 2 @suchthat ! n<0 (4.3)

However, this kind of boundary condition is a bit simplistic, and a more realistic bound-
ary condition would be to consider a re ected part (related to the solution) and an
emitted part (related to the Planck distribution)

n Z n
S L(x;t;! 91 O njdt °+ —T? forx 2 @suchthat ! n<0

I n<O0

I(x;t;!)=

(4.4)

4.1.2 Physical meaning of the di erent terms

Figure 4.1: lllustration of the photon balance on an elementary volume

Equation (4.2) is obtained by a photon balance over an elementary volume, as illustrate
in 4.1. We detail now the contributions of the di erent terms:

the term %%‘ﬁ I r | corresponds to the space-time variations of photons in the
considered volume.

( + )I designs the transmitted part to the outer, coming from two contribu-
tions: what is absorbed by the matter during interaction with photons, related
to the absorption opacity , and what is de ected by the matter (out scattering),
corresponding to the scattering opacity . Those opacities are homogeneous to the
inverse of a length, and can be understood as the inverse of the meareé-path of
the absorption (for ) of the de ection (for ) of a photon.
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the term — T 4 stands for what is emitted inside the volume. The term T4 is
the black-body intensity integrated over the frequency range ( wehave ~T4 =
01 %;Wl%)ld . The di erence from a blackbody to a real body is contained
in , which can be related to the emissive properties thanks to the Kicho law,
even though is used as a volume property, whereas the emissivity is preferred

for surface description.

Finally, RS I (! 9d! O represents the radiative energy de ected from all the di-
rections of the space through the considered volumeir{ scattering). Even though
isotropic scattering was considered, anisotropic e ects could be takeinto account
by means of a phase function (! ! !9 (we have (! ! 19= 4i for isotropic
scaterring), so that this term become ¢ (! ! ! 91(! 9d!°

4.1.3 Numerical di culties

There are at least two main reasons which make this equation di cult to solve :

The presence of the scattering term;- RS I (! 9d! © so that we have to deal with
an integro di erential equation, and things get even worse with anisotropgc phase
functions. However, this is not the most important in the situations we will con-
sider, and, in rst approximation, this term can be neglected.

The major di culty lies intheterm ! r |, and, more generally the fact thatl is
a function of the direction ! . On the one hand, it is not a common thing, so that
conventional discretization methods are di cult to apply to such an e quation, and
on the other hand, it introduces a supplementary dimension to diseetize, followed
by an increase in the computational cost.

We will see in the following sections, that, all discretizations mehods di er in the way

that the angular dependency is treated. An approach is to consider an avaiged version
of the RTE, leading to model such as theP; model evoked in the chapter 2, or theM
model [126], but this will be detailed in the next chapter. We now turn to th e methods
of discretization of the radiative transfer equation, for which a good revsiew can be found
in [127].
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4.2 Numerical formulations for the RTE

4.2.1 Monte Carlo Method

This approach, introduced by [128, is an application of the well-known Monte Carlo
Method to radiative transfer. It is based on sampling a random walks of plotons, intro-
ducing probability laws for the travelling of photons without inter action. This approach
is mentionned in order to demonstrate a complete study, but due to ts computational
cost, it is una ordable in situations coupled with other physics that are considered in
this work, and as such, it will not be detailed here. A good summary of tle principles
can be found in fL.29.

4.2.2 Finite Element Methods

Here, the angular dependency is treated by means of angular shape functisnA variable
separation can be performed to separate the contributions of classical afial shape
functions and angular shape functions. This leads us to consider inngproducts and
decompositions of the solution of the following forms

Z Z

(i;v) s = uvdxd! (4.5)
s

%x N!
Ih(x;!)= ik i(x) k() (4.6)
i=1 k=1

Since, for a given! , the RTE can be viewed as an advection-reaction equation, so
it is natural to consider stabilized formulations, with SUPG stabiliz ation for instance.
We can quote several contributions, 130 for a "sparse tensor product” formulation of
spatial and angular shape functions and with an extensive theoritical analgis, [L3]] in
a domain decomposition context, 132 133 for a formulation coupled with a di usion
approximation that will be detailed later on, [ 134, 135 for stabilized formulations using
the VMS approach and [L3§ for a discontinuous Galerkin formulation.

4.2.3 Sy: Discrete Ordinates Method

A more straightforward idea, initially introduced by Chandrasekhar [137] in the context
of astrophysics, would be to consider discrete directions in a coltation fashion, that
is to say, exhibit couples (i;! i)i2;1.ng, !i being discrete directions andw; being some
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weight to approximate the scattering term. Hence the DOM RTE reads, |; being the
intensity on the ith ordinate:

B2WNE 2@ (s A TR w1 @)
] l C@t = | | r lejelj | VAN .

This leads to a system of "ordinary" partial di erential equations, coup led by the scater-
ring term. However, even though the angular dependency is adressedhis manner, a
spatial discretization has to be performed, and there exits several gmwoaches to do so:
by means of nite volume [13§ in the context of furnaces (see 139 for a complete re-
view about Finite Volume and DOM), [ 14Q with a discontinous galerkin method, [14]]
using a classical nite element method in space,42 143 for matrix implementations.
Recently, studies regarding the high performance computing aspest(Preconditiong,
Krylov acceleration, fast resolution) can be quoted 144{14€§.

4.2.4 Py: Spherical Harmonics

This approach, originally proposed by Jeans 147 in the context of the study of gaseous
stars, consists in eliminating the angular dependency of the radiatie intensity by ex-
panding it in terms of a generalized Fourrier series. Formally, it reads:

X X XX
I = Y5 )t ) (4.8)

1=0 m= | 1=0 m= |
where and ' are according to @.1), and 1" (x) are the unknowns of the problem.

Y,™(;" ) is the spherical mode, given by

ym(;y=  COSEIPT(cos()) im0 .9)
" 7T sinm )P (cos()) if m< 0 '

P/™ (x) being the associated Legendre polynomial, de ned by

XZ)JmTJ dn+jmj(x2 l)n
2"n! dxn+imj

PRy =( 1m (4.10)

This leads to a set of coupled partial di erential equations, the integer N giving the order
of the approximation. It is known that even order approximation gives irrelevant results
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( the obtained intensity can be negative), so that only odd order approxmations are
used, even though it can be improved by a ltering operation R3]. It can be shown P6]
that the spherical harmonics are equivalent to the DOM when a gaussian gadrature
is chosen for ForN = 1, one recovers theP; approximation of chapter 2. However,
the complexity of those equations greatly increases for high ordeN, particularly for
multidimensional problems [22], leading to the use of so called simpli ed approximations
SPy , which has driven the interest of many researchers in the past yeardOne can seeZ5]
for a derivation of time-dependant SPy equations, [L48 which adresses the structure of
matrixes obtained from the discretization of such equations, 149 for rigorous derivation
of boundary conditions, [150 which introduces a corrected approximation to account
di usive e ects, [ 15]] with adaptive nite elements and [152 for an multidimensional
formulation using tensor products. A detailed construction, when the time dependance
is neglected, using a di erent method, is available in 4] or [153, but the main ideas are
to perform an asymptotic development with respect to opacities and tle use of formal
Neumann series, the order of the approximation being related to the idex at which the
truncation of the formal series is operated. We give the rst members ofthis family

below, the unknown' , being related to the radiative energy and = ﬁ:

SP; Approximation

2y (73( i )r "+ = (4 Th (4.11)
SP, Approximation
2 1 ' 4 ' 4 ' — 4
r ﬁr (r g( ro 4T = (4T (4.12)

SP3 Approximation

¢ is here a linear combination of 1 et », solutions of the following equations

2y ( +1 ;o + 1= (4. TH (4.13)
2y 2 v L, o+ .= (4,TYH (4.14)
) r
1 5 1 5
where
S I

1,2 = (4.16)

Nl w
~NEN
gl o
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One can note theSP; approximation is nothing but the P; approximation, obtained by
a di erent approach. We will see in the next chapter that there exists a third way to
derive these equations.

Now that a short overview of the existing method for the numerical resolution has been
given, one can note that, since we are only interested here in surfacadiation e ects,

it is not necessary to consider a full version of 4.2); in fact, for a transparent medium,

we have =0 and =0, so that the right-hand side of the RTE vanishes. Moreover,
the characteristic speed of the radiative phenomenon is very large conaped to other
phenomena, so that the transient term can be dropped as well. It leadssito consider
a simpli ed model, where only the boundary of the domain @ is to be considered,

and involves only geometric quantities. In the next part, we will give a state of the
art explanation about this method, called the radiosity method, net radiative exchange
or surface-to-surface method, and we will detail the extension we mpose within our
monolithic framework.

4.3 The Surface-to-Surface Method: state of the art

4.3.1 The view factor: a geometric function

As stated before, we are working in situations where the medium that gearates the
surfaces does not a ect the energy exchange between them. Hence, theuent quan-
tities here are the surface temperatures, its physical parameter§ area and emissivity "
mostly), and the most important, its geometric characteristics. The geometric charac-
teristics have to be taken into account, not for a surface alone, but foccouples of surfaces,
that is to say, the relative orientation and distance are of importance. To introduce this
notion, let us consider to in nitesimal surfaces dS; and dS;.

Figure 4.2: Geometric characteristics of the two surfaces
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The view factor (sometimes referred to agonfiguration factor , angle factor or shape
factor ) is de ned as the part of energy leaving the surfacedS that directly strikes dS.
It is given by, according to notations of gure 4.2

cos( j)cos( j)dSdS
2

dFgs;1 ds, = (cos( )dS)d | = (4.17)

The view factor between those two surfaces is then obtained by perfaning integration
over surfacesS; and S;.

Z Z
1 cos( j)cos( i
Fsi s =Fj = = M

dSids (4.18)
Si S S

It can be proved that the view factor veri es the following relations:

Reciprocity law:
FiSi = Fji S (4.19)

This relation is useful to save computation time, because it allows he computation of a
view factor from the knowledge of the other.

Summation law
NF
Fij =1 (4.20)
j=1

(4.20) is only a consequence of the energy conservation principle: all thediation leaving
the surfacei is entirely intercepted by other surfaces of the enclosure. Thigelation
will be useful for code verication. The view factors are usually stored in a matrix
F=(Fj)1 ij ~g. Here, we made the assumption ofliffuse view factors, in the sense
that the energy absorbed by the surface is then re-emitted isotropially in all directions.
This assumption is valid for many considered surfaces, but become lesppropriate for
polished surfaces; in this case, one has to compuspecular view factors [154]. For simple
geometric con gurations, the view factor can be determined analytically (catalogue for
well-known con gurations are available in [155]), but the calculation of a view factor for
a particular con guration can serve as a publication on itself [L56{ 158. However, as we
will see in the following, we intend to perform surface calculation sing some faces of
the nite element mesh, so we will have to deal with arbitrary con gurations. Hence, a
general approach is necessary to numerically compute the view factor. 1@ can seel59
for a review of existing methods, but here we detail a few the most@mmon methods:
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c d

Figure 4.3: lllustration of the crossed strings method

Area integration: the most straighforward approach, consists in computing nu-
merically the two surface integrals by using a quadrature rule. Howeer, since the
integrand is non polynomial, high order integration might be required.

Analytic integration: where the considered surfaces are polygons, analid formulas
can be obtained, but it implies using complex functions such as dilogédthm [ 160,
which have to be evaluated numerically. Another analytic expressionhas been
proposed for polygons 161], but at the price of a complicated analysis.

Statistical determination: the view factor can be calculated by statigical sampling,
using the Monte-Carlo method depicted earlier. The computation isexpensive, but
it often serves as a benchmark to assess the accurracy of new methods.

Alternative methods: view factors can be determined by using basi@roperties
and relations (4.19 and (4.20), but is only valid for a limited number of surfaces.
The unit sphere method, making use of geometric projection can be aqied as
well, as an interesting alternative [L62,[163.

We want now to detail two particular approaches that will be used in this work: for
2d calculations, an interesting approach, developed by Hottel and Saro Im 164 is the
crossed string method. Using this, the view factor can be written,using notations
according to g (4.3

ac+ db (ad+ bg

Fi = 2ab

(4.21)

Even though this formula is really simple and easy to implement, on tle one hand, it does
not involve any orientation of the surface, and, on the other hand, remainsimited to
2d geometries. For 3l cases, eq4.18 can be transformed into a double line integration
[165 using the Stokes theorem, leading to the following relation, usig notations of g
(4.2).
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1)(3)(322

vy

I «)gkd dgdg (4.22)
k=1 1=1 % 9

This method has gained popularity over the past years 166,[167], since it reduces to
two simple integrals. However, since the integrand involves a logaritm function, the
integral might be singular for surfaces sharing one edge. An analytical treahent of
this singularity has been proposed in 168. An interesting implementation, available in
[169, is used here, and some details about the implementation are given in ggndix B.

4.3.2 Visibility and obstructions

As mentionned above, the expressions4(21) and (4.22) do not involve the relative orien-
tation of surfaces. However, for some situations, depending on the relag orientation,
there might be no radiative exchange between certain surfaces, becsel the two sur-
faces do not "see" each other or because the view can be obstructed by airtth surface.
Therefore, some view factors will not be calculated, because it wouldehd to a wrong
contribution to the thermal balance on the one hand, and it permits to saze compu-
tational time on the other hand. More details about this questions can be foumd in
[170,[1771 for visibility and [ 159, [171]] for obstructions.

o

no shadowing partial shadowing

; n
_t

I

B
total shadowing

Figure 4.4: Di erent possibility for surfaces relative orientations

4.3.2.1 Visibility

It is actually easy to determine if two surfaces can see each other: onjest needs to
compute surface normals;,n; and a distance between faces centroiddj . The visibility
test will be related to the sign of psl = dj n; and psJ = dj n;.
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Figure 4.5: Notations for visibility test

For implementation considerations, we will de ne a boolean NOVISIB, which is false
when faces can "see" each other. Formally we have

NOV ISIB 1 = (psl == 0) AND ( psJ == 0)) (4.23)
NOVISIB 2 = (psl > 0) AND (psJ > 0) (4.24)
NOV ISIB 3= (psA psB < 0) (4.25)

NOV ISIB 4 = (psl == 0) AND ( psJ > 0) (4.26)

NOVISIB = NOVISIB 1 ORNOVISIB 2 ORNOVISIB 3 OR NOVISIB 4
(4.27)

4.3.2.2 Obstruction

Figure 4.6: Two surfaces obstructed by a third

Obstruction calculation are di erent of visibility in the sense th at obstruction between
surfacesS; and S involves a third surface Sy. The approach retained for obstruction
calculation is the following: given the points of surfacesS; and Sj, one can compute face
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Figure 4.7: Notations for obstruction test

"centroids" ( with a barycenter for example) C; = (x‘o;p)(l p g and Cj = (xjo;p)(l )
and the distance between those centroidsl = (di,%)(l p d)- For surface Sy, given a
centroid Cy = (x('g;p)(l p d) and the normal ny = ( n'F‘,)(l p d),» one equation of the plane
de ned by S is, with X =(Xp)1 p ) being the current point:

(X Ck) nk=0 (4.28)
x k x k k
Ny Xp Np Xop=0 (Px) (4.29)
p=1 p=1

with this equation, one easily gets the distance between the currdrpoint and the plane
K, with the help of an orthogonal projection.

P
d k d k k
-1 Ny X -1 Ny Xp.
p=1 pq pd p=1 "'p "0p (4.30)

We now want to check if the intersection point betweenP, and dj; belongs to the triangle
Sk. To this end, we use a parametric representation foid;; .

dg = Xio;p t t(XjO;p XiO;p) t20:1] (4.31)

making = 0 and replacing the coordinates using 4.31), one can get the parameter
corresponding to the intersection pointt,

P .
d k i d k k
t) = p=;knp Xo;p p=1 Mp Xop (4.32)
: K (! Xi ) :
p=1"'p 0;p 0;p

substituting (4.32) in (4.31) gives the coordinates of the intersection pointX | = (Xip)1 p d)-
The nal step is to check if the intersection point belongs to S¢. This is achieved by
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de ning a parametric representation of Sy similar to (4.31), nd the parameter tx corre-
sponding to X, and check if 0 tx 1. A brutal approach for obstruction calculation
would be to perform a loop over all surfaces for all pairs of surfacesS(;S;) to check
if, in the set of surfaces, there exists a surface that obstructs th view betweenS; and
Sj. However, this method was observed to be prohibitive in terms of comutational
time, even when used on relatively "light" meshes. To circumventthis issue, we will
perform obstruction calculation at the level of the obstacle in the encbsure, since most
obstructions encountered are between objects inside the enclosuand border faces. To
this end, we extract the faces corresponding to the object interfag, and we identify
the minimum and maximum coordinates in each directionX min = (Xmin;i )a i ) and
X max = (X maxi )(1 i d)- Those minimum and maximum coordinates are then used to
build an "encompassing" box de ning lines in 2d and planes in 3 that will be used for
the obstruction calculations.

4.3.3 Total exchange area, real surfaces and coupling with thermal
balance

The notion of view factor as it was discussed in the begining of this chamr holds
for black surfaces, that absorb all the incoming radiation. However, for ral surface
(characterized by an emissivity", 0 " 1, there exists a fraction of the incoming
radiation ( correspondingto =1 ") thatis re ected, and thus emited through other
surfaces. On the other hand, the computation of the radiative ux requires the solution
of a non sparse linear system ( the considered matrix being related t&), which can
be computationaly demanding. Hence, an interesting approach, based on thiglea of
[172 or [173, consists in introducing another view factor, the total view factor ( or
total exchange area) that takes into account both the mutlire ections and the non-gray
surfaces. We recall here the basic features by setting up the equans for the surface
radiation problem.

If we denote by H; the incoming ux density on the surface zonei and W; the outgoing

ux density, one has the following equations:

NF
HiA; = Fij Wj 8i 2 kl;NFk (4.33)
j=1

Wi =" (T'+( ")Hi 8i 2k1;NE (4.34)
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Qri = Ai(W; Hj) 8i 2k1;Ng (4.35)
Using a matrix notation, it gives, using the following notations:

= )1 ij Ne

W = (Wi)1 i N
H=(H)1i ne

E=(" T i ne

Qr =(Qi1 i NF

2= (diag("i))1 i Ne
_=(diag((  ")N1 i ne

A =(diag(Ai))1 i N

AH = FW (4.36)
W ="E+ H (4.37)
Qr= AW H) (4.38)

One can see that, to get the appropriate radiative ux to prescribe as a undary
condition, it is necessary to solve a non spars&dlg  NF system with temperature as
input, which is not very convenient, since all the solvers for lin@r systems we have
at hand are designed for sparse matrixes rising from nite element formalations. To
circumvent this issue, we follow the lines described in]72), by using some total exchange
area, that can be readily used to compute the needed radiative uxQ,. The matrix of
total exchange areast is de ned by:

Qr="AE F_E (4.39)

E can be explicitly determined by a general elimination procedure.Substituting ( 4.37)
in (4.36) leads to
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(A F)H="FE=) H=R “FE (4.40)
I—=F B

one nally gets

F=AR"F (4.41)
and the associated radiative boundary ux on the facei is given by

X
Qi = Ai AjFy (T TH (4.42)
j=1

A "naive" approach to compute the total exchange factors would need to invet the
matrix R. However it can be shown 173 that the total exchange factors can be obtained
from the view factors and surfaces characteristics"(c; k) using the following algorithm

Given (F; A" );
for i=1.N do

for j=1..N do
for k=1..N do

"2 Fi
Fkk = 1.0 :

kak
Fik = 1:0"k kaFkk ;
Fi = 1:ok'::1|:k|< )
Fij = Fi + g6t

end
end

Algorithm 1:  Plating algorithm

The S2S method, or its extension to radiation in participative media, the zonal method,
has been successfully applied in di erent contexts: furnacesl[f4, 175, urban canyons
[176], combustion and re modelling [177, 178, human modelling [L65, electronic cooling
[158[179 and solar re ectors [18(0 among others.
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44 The IS2IS method

4.4.1 Motivations and features

Our goal is to design a computational framework based on the same principless the S2S
method, but adapted to the immersed volume method. Here, the main dculty relies
in the representation of the interfaces, since the interfaces beteen uids and solids are
implicitly de ned by the zero iso-value of the levelset. Hence, oe needs to reconstruct an
approximation of the interface before performing a surface-to-surfag calculation. This
interface approximation will be reconstructed in terms of nite element mesh: in fact,
the set of faces, that can be viewed as a submanifold of the one de ned byé elements,
gives a natural approximation of the interface, particularly in the framework depicted
in the previous chapter, with a mesh appropriately re ned around the interface. The
next subsection is devoted to the description of the procedure i for the selection of
suitable faces for the radiation calculation. We will see that a such appoximation of
the interface will permit to naturally handle complex geometries, in the sense that, as
demonstrated in the previous chapter, our method is able to automaticdly generate a
mesh for a given levelset, regardless of its geometric complexity.

4.4.2 Interface reconstruction

Our starting point is to come back to the nite element triangulation . We recall
some useful notations for the interface reconstruction procedure:

Notations De nitions
d dimension of space
D topological dimension
K set of elements
N set of nodes
K 2K mesh element
N (K)=(Ni(K))iz 10k nodes of a mesh elemeniK
F(K)=(Fi(K))iax1pk “faces" of a mesh element<
N(FEK))=(Ni(F(K))ix1p 1« nodes of a "face"F (K) of a mesh elementK
X i2N vector of coordinates for theith node

Table 4.1: Notations for the mesh.

Numerical treatment of interfaces has received a growing interestn the recent years,
together with the research conducted about immersed methods, and mergenerally, the
research conducted on levelset methods: we can quote work for numeal modelling
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of multiphase ows [81, 85, 181, 182. However, in all previously quoted references,
the interface remains implicitly de ned only as the zero isovalueof a levelset fonction.

But some physical situations require a more explicit description ofthe interface, for

volume fraction modelling [183 or interfacial ows [ 80]. The approach proposed in §0]

is interesting in the sense that auxiliary levelset isovalues arentroduced to improve

interface representation on certains elements. In the method pieented in this chapter,

those "auxiliary interfaces” will appear naturally.

Formally, the uid-solid interface is de ned as the zero isovalue ofthe levelset, in agree-
ment with the notations of the previous chapter, we have

i=fx2 ; (xX)=0g (4.43)
its discrete equivalent can be de ned by

i = FK 2K;9X'; XI 2N (K); (X') (X)) <=0g (4.44)

i is a line in 2d, and a surface in 3. The rst step of the interface reconstruction
procedure is to detect the elements crossed by;. To this end, we follow the lines
described in B3], of which we recall the main features: considering all the possibleases
in 2d and 3d, as illustrated below, elements of di erent types can be classi @ by the
number of nodes where (x) > 0, (x)<Oor (x)=0.

ﬁ -

case 1 point case 2 : segment ( edge)

case d : iangle (edge)

case 3 : segment (point) case 4 : segment arbitrar

Figure 4.8: 2d Situations Figure 4.9:  3d Situations
By performing this test in a loop for all the elements, one can checkfian element is
crossed by the levelset zero isovalue or not. The procedure isubitrated below on several
geometric forms already presented in chapter 3. The crossed elemenége marked in

red.

Once this procedure is performed, one gets a set of connected elentse that we call
E( i), which de nes a volume. Therefore, the next step consists in, oughly speaking,
eliminating what is "inside" the volume de ned by E( ;). More formally, if we de ne
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Figure 4.11: Test on a square brick:
elements crossed (zoom on the corner)

Figure 4.10: Test on a square brick:
mesh

Figure 4.13: Test on a rectangular

Figure 4.12: Test on a rectangular |
circle: elements crossed

circle: mesh
F=fx2 5 (x)>0g (4.45)
i =fx2 ; (x)<0g (4.46)
and if V( i) stands for the counterpart of [ [ , in E( i), we want to only retain
the element of E( ;) belonging to ;" or ;, or, in other words, eliminate elements of

V( i). At the discrete level, since we want to reconstruct an approxination of ;, it
seems interesting to de ne [, and ., (discrete equivalent of [ and ;) in terms of

element "faces".

o= fF (K);K 2 n:8X 2N (F(K)); (X)< Og (4.47)

i = TF(K)K 2 458X 2N (F(K)); (X) > 0g (4.48)
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Elements of [, and ;. will be referred to as "Face Sup" and "Faces Inf" in the

following. It is also useful to de ne E( ;) as a collection of faces of connected elements
previously identi ed, which reads

[
E( in)=f F(K)g (4.49)
K2 in

Having such a vision of E( i), eliminating the interior faces becomes quite simple,
knowing that since the interior faces are shared by two elements,hiey appear twice in
the setE( ;). Hence, retaining only the none repeated element dE ( i, ), one gets the
set ., [ in.thatcan be easily sorted in ;, and 7} by evaluating at the face nodes.
To check the e ciency of the approach described here, we chose to & the procedure
on a very simple mesh where the considered object ( a square here) aligned on the

mesh.

Figure 4.14:  2d Example:Mesh Figure 4.15: 2d Example: levelset of
the square

Figure 4.17: 2d Example: levelset

Figure 4.16: 2d Example: Element zero isovalue

crossed by The levelset zero isovalue

A similar mesh was used for 8 veri cations; it was constructed as an extrusion of a
mesh similar to the previous one in thexy plane ( see4.18 left), with one "layer of
elements in thez direction.

Regarding the border faces, since they are considered apart due to thepeci c treatment
for boundary conditions, they are readily available without any supplenmentary work.
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Figure 4.18: 3d Example: Mesh

Figure 4.19: 3d Example: levelset Zero isovalue and Flag eld
4.4.3 Computational aspects

At this point, in order to estimate the computational ressources to bededicated to the
further view factor computation, it would be interesting to know wh at part of the total
mesh is of interest for the calculations. Hence, we conducted a studgn several meshes
to at least get a tendancy on this behaviour.

Table 4.2: Notations for faces numbers.

Notations De nitions

N eits number of elements of the mesh
Np number of border faces
Nis number of "Faces Sup"
Nii number of "Faces Inf"

Ng = D Neits total number of faces
dsi = jNis  Njj. dierence between "Faces Sup" and "Faces Inf"

Two kind of meshes were used for this study: unadapted meshes, ctasally constucted
using GMSH, and adapted meshes as explained in the previous chapter. &\used here
the metric described in [LOG because the implementation we dispose of, permits to
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control the maximum stretching factor, referred to as smax in [106. Unadapted meshes
were the two already quoted above and another for @ obtained by re ning the one
shown. Several adapted meshes are considered: four considering tb@me geometry
for the unadapted mesh, for di erent value of the maximum stretching factor, and the
circle presented above. In 8, we used the meshes presented in the previous chapter
to illustrate the mesh adaptation, displayed again here for sake of clarit. The results
are available on the following tables. One can see that, for all meshes csidered, the
number of faces involved in the surface computation does not exceed 5% tife total
number of faces. It is interesting to note that the number of involved faces decreases as
Smax iNcreases. It can be explained in the following way: the higher thestretching factor
is, the taller the elements are in the direction parrallel to the interface and therefore less
elements are needed to cover the whole interface. The conclusion$ this study can be
summarized as the following: the proposed approach naturally de nes twapproximated
interfaces |+h and ., quantitatively di erent on a arbitrary mesh, but along the mesh
adaptation procedure, those two interfaces tend to get closer to each ber, leading to an
accurate description of the interface. The numerical results willcon rm this tendancy,
by showing that this interface aproximation is able to reproduce results obtained by a
classical BF approach, where the interface is part the domain boundary.

Figure 4.21: 3d Adapted mesh:
Figure 4.20: 3d Adapted mesh: brick cylinder

Case Np  Nis Nii NE  dsi Neits
adapted squares = 8 65 4.564 4.725 4.790 161 152.748
adapted squares = 20 51 3.798 3.965 4.016 167 162.356
adapted squares = 30 68 1.483 1.480 1.551 3 197.202
adapted squares = 50 74 1.025 996 1.099 29 194.718
adapted circles=8 1.550 1.802 1.805 3.335 3 489.150

Table 4.3: 2d Meshes
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Case Np  Nis Nii Nr dsi Neits
adapted brick s=8 4.730 3.330 26.964 31.424 23.364 300.753
adapted cylinders=8 2.652 4.343 33.827 36.479 29.484 369.193

Table 4.4: 3d Meshes
4.4.4 "Immersed" features of the IS2IS method

As stated before, the method we are describing can be understood as dimmersed"
version of the S2S method. Hence, some of the features have to be adapted, for imple-
mentation purposes mostly:

It is sometimes common to perform a partionning of the face set dependg on certain
characteristics, as seen in]77 for black and non-black surfaces, or it could be done for
temperature-prescribed and ux-prescribed boundary faces. Herethe natural partion-
ning is between border faces and intern faces. Hence, since we knthvat Ng = Np+ N;
we introduce the following notations to ease the discussion:

" #
F= ' P (4.50)
Fi, Fob

For a classical surface-to-surface calculation, onlyFyy, exists, and will govern the ra-
diative exchange between boundaries of the domainFj, drives the radiative exchange
between boundaries and the immersed object, ané;; represents radiative exchanges of
the object onto itself a, phenomenon known as "self-radiation".

If the computation of a boundary ux Qp; is classical in theS2S method, the novelty is
we have to prescribe a similar quantity at the uid-solid interfac e, ie on internal faces.
Those e ects will be taken into account by means of a source tern§;; localized on the
interface.

For visibility and obstruction calculations, it is mandatory to have a c onsistent orienta-
tion for all faces, that is to say, the normals should be pointing outward. If it is naturally
the case for the border faces, due to their specic treatment for boudary conditions,
additional work has to be done for the interior faces. This is achieved bya rst com-
putation of the normal, and a checking test to be consistent with the gadient of the
levelset function of the object.

For the plating algorithm described earlier, since all the blocks orF are computed sep-
arately, one have to concatenate all the blocks in one single list, pesfm the plating
operation, and de-concatenate, since we implemented in a way whiclompute the dif-
ferent contributions separately.
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4.4.5 Parallel processing aspects

It is worth mentionning that the surface computation is not well tted for the parral-
lel processing framework implemented in our library: in fact, for dassical resolutions
(Navier-Stokes, Convection-di usion-reaction equations), the comptational domain is
partitionned into subdomains, so that each processor only compute on onsubdomain,
and one has to deal with communication between processors in order tomeer the origi-
nal problem. Unfortunately, this approach does not work for a view factor conputation,
since view factor have to be computed from one surface to all others. Sbat a special
treatment is needed to perform a view factor computation on multiple processors. A
possible strategy consists in, once the surfaces liable to participatto the surface radi-
ation calculation have been identi ed, to duplicate these informations to all processors,
and to balance the load of the view factor computation between all processer It is
also important to make sure that all processors are well synchronized wting all the
computation.

4.5 Numerical experiments

Before we try to assess the consistency of the new method, it is nessary to make
sure our implementation is valid for a classical " surface-to-surface'calculation, that

is to say when only the boundary faces are considered. The simulationse are going
to use are the ones presented in the previous chapter, enhanced bgking into account
radiative e ects. As done in the previous chapter, the IS2IS method will be tested
on the "immersed version” on each case, to assess the consistency of tmethod. To

validate the radiative code, the obtained results were compared to th ones available in
the references in terms of Nusselt number as de ned in the chapte?, and its radiative

equivalent, de ned as follows:

L Z1

NUrag = ﬂ . o (0;y)dy (4.51)

4.5.1 Natural convection in a square empty cavity

Here, radiation is taken into account, by prescribing a net radiative ux, computed
as depicted in previous sections, imposed as a Neumann boundary conditi on the
horizontal walls. The obtained results, in terms of iso temperature an streamlines,
are in good agreement with 184 and [185. We plot the adimensional temperature
, along the liney = 0:5. One can note that, at the contrary of volumic radiation,
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surface radiation preserves the centro-symmetry of the problem. Th results shows
the e ect of radiation on the overall temperature distribution: the ob tained radiative

ux on horizontal walls is symetric ( negative on the upper wall, positive on the lower
wall). Those radiative uxes modify the thermal boundary layer by "mo ving away" the

extremal values of the temperature inside the cavity, at the di erence with the case
" = 0, where the maximal values of the vertical pro le are located on the horizontal

walls, as it can be seen on the temperature plot.

Figure 4.22: 2d Empty Figure 4.23: 2d Empty
cavity: iso temperature and cavity: iso temperature and
streamlines: " =0 streamlines: " =1

1
0:8}1 3
06 3
04+ a
02 with Radiation
Without Radiation

| 1 1
O0 0:2 0:4 0.6 0.8 1

x(m)

Figure 4.24: 2d Empty cavity: alongy =0:5

For the immersed version of this case, additional work is necessary teekect the "radia-

tive" faces, since not all the border faces will be involved in the radhtion computation

( only the ones corresponding to the horizontal walls in the BF case). Inorder to sort

those faces among others, we make use of a "Flag" eld naturally generated in glcode,
valued at one on the considered boundary, and zero elsewhere, so that #ng faces
is done by evaluating the value of the Flag on the faces nodes. The meshesed are
the ones displayed in the previous chapter. Quantitative comparison, performed in the
same manner as before, show an excellent agreement.
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Figure 4.25: 2d Empty cav-
ity: temperature prole BF
T

Figure 4.27: 2d Empty cav-
ity: velocity prole BF " =1

0:8
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0:4
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y(m)

Figure 4.29:
alongy =0:5

2d Empty cavity:

Vi(m:s 1)

0:4
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Figure 4.26:

Figure 4.28:

ity: velocity pro le IMV

2d Empty cav-
ity: temperature pro le IMV
P

2d Empty cav-

1

BF
IMV

Figure 4.30:
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2d Empty cavity:
alongy =0:5
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0:8
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Figure 4.31: 2d Empty cavity: Figure 4.32: 2d Empty cavity: u,
alongx =0:5 alongx =0:5

We used the developed method on the @version of the case that was already presented
in the previous chapter. The iso temperature and streamlines are copared with the
case without radiation for Ra = 10%. One can see that the radiative uxes applied on
the top and bottom boundaries gives a "bathtub” like shape to the iso temperature lines,
that are also more curved near the corner of the cavity. One can see a goafjreement
with the results presented in [L85. As a consequence, the shape of the streamlines is
modi ed, with bigger recirculations zone close to the corners of the avity.

Figure 4.33: 3d Empty cavity: iso Temperature: " =1 (left) and " =0 (right)

Figure 4.34: 3d Empty cavity: iso Temperature: " =1 (left) and " = 0 (right)
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Figure 4.35: 3d Empty cavity: streamlines along x: " =1 (left) and " =0 (right)

Figure 4.36: 3d Empty cavity: streamlines along z: " =1 (left) and " = 0 (right)

The obtained results, in terms of radiative and convective Nusselt ninbers, are displayed
below and compared with the results available in 185. One can see that the discrepancy
does not exceed 5%.

AR

XXX NU [ —  [— [— — —
referenéexxxxxx NUconv | NUrag | NU = NuUcony + NUrag
Colomer [185 8.102 | 3.568 | 11.670
present work 8.122 | 3.712 | 11.834

Table 4.5: 3d Empty cavity: comparisons with benchmark solution

Similarly to the 2d case, the immersed version of the case was simulated, and results
were compared to the ones obtained by a classical body tted approach, irterms of
velocity and normalized temperature. Here again, a good agreement is obsed.
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T T
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Figure 4.37: 3d Empty cavity: Figure 4.38: 3d Empty cavity: ugs
along I, along I,

4.5.2 Natural Convection in a cavity containing a plate

Here again, radiative ux are prescribed on horizontal walls as in the prevous case.
One could think that in this case, the plate inside the cavity may cause obstruction
and visibility issues between border faces, but it was observed it taking into acount
the visibility and obstruction in the viewfactor computation does not have a signi cant
in uence. To represent the results, we make use of the symmetraround the line x = 0:5.
The following pictures represent the iso-temperature lines ontie left, and the streamlines
on the right. The results, in terms of iso temperature and streamlires, correspond
well with [65]. As in the previous case, radiative uxes on horizontal walls generates
temperature gradients that move away the iso temperature curves ad modify the shape
of the recirculation cells. As it can be seen on the curves, the suppinentary amount
of energy provided by radiative uxes slightly increases the valuef temperature inside
the cavity, leading to a slight increase of velocity values by mean®f the Boussinesq
term. The in uence of the obstacle can also be observed, more pronounden the case
of the horizontal plate.

AR
7AN A w1
X X X x X x Nu
reference X X x
Saravanan and al. 5] | 5.8533 | 6.9885| 12.8418
present work 5.8109 | 7.0928| 12.9037

NUconv | NUrag | NU = NUcony + NUrag

Table 4.6: 2d Horizontal plate: comparisons with benchmark solution

One can see that, on both cases, the discrepancy between the obtaineesults and the
benchmark do not exceed 8%.
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Figure 4.39:  2d Horizontal Figure 4.40: 2d Horizontal
plate: iso temperature and plate: iso temperature and
streamlines: " =0 streamlines: " =1

X% X —
X Nu Ty N INTTERENITS INTTY
X X NUconv | NUrag NuU = Nucony + NUraqg

reference X X X X x
Saravanan and al. 5] | 6.6731 | 10.1914| 16.8645
present work 6.7955 | 10.1144| 16.9099

Table 4.7: 2d Vertical plate: comparisons with benchmark solution

0:3+ : 0:4 - .
0:2 .
02| . -
9
£ O a
=
01 R 021
with Radiation 04 with Radiation =
0 Without Radiation Without Radiation
0 02 04 0:6 08 1 0 0:2 04 0:6 08 1
x(m) x(m)
Figure 4.41: 2d Horizontal plate: Figure 4.42: 2d Horizontal plate: Vy
alongy =0:15 alongy =0:15

As observed in the previous case, théS 2IS method show results that seem to corre-
spond well with the classical ones, in terms of temperature as well iterms of velocity.
For the quantitative analysis, we will display plot along lines at y = cst, which is natural
considering the symmetry of the problem. It also interesting to got quantities along
lines close to the solid obstacle, since it could be expected to emanter the steepest
gradients at this location. The philosophy of the immersed volume metiod used here
demontrates its e ciency, since most elements of the mesh are aroundhe interface in
order to properly represent the sharp gradients. For the vertical cas we chose the lines
y =0:225,y =0:5,y = 0:775. For the body tted case, all values go to zero inside the
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Figure 4.43: 2d Vertical Figure 4.44: 2d Vertical
plate: iso temperature and plate: iso temperature and
streamlines: " =0 streamlines: " =1

0:25 0:6
o2l i 0:4 .
. 02F a
0:15 . -
01f . S
= 0:2 -
510 2 : — 1 04l - — y
with Radiation : with Radiation
0 Without Radiation 06 Without Radiation
0 02 04 0.6 08 1 0 02 04 0.6 08 1
x(m) x(m)
Figure 4.45: 2d Vertical plate: Figure 4.46: 2d Vertical plate: u,
alongy =0:15 alongy =0:15

Figure 4.47: 2d Horizontal obstacle: iso temperature" =1

object because those points are not de ned in the domain, but it is straghforward to
see that a simple extension by continuity would lead the curves to t perfectly. For the
horizontal case, we chose four lines atg = 0:15,y =0:475,y = 0:525,y = 0:9.
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Figure 4.48: 2d Horizontal obstacle: streamlines" =1

Figure 4.49: 2d Horizontal obstacle: iso temperature” =1

Figure 4.50: 2d Horizontal obstacle: streamlines" =1

Likewise the previous chapters, we used our method on thed3versions of these two
cases. We notify that, since these cases are not presented in thedrature, there is no
way to compare the results with a reference. First we compare withthe case without
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Figure 4.51: 2d Vertical obstacle:
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Figure 4.53: 2d Horizontal obstacle:
along considered lower lines
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Figure 4.55: 2d Horizontal obstacle:

along considered upper lines
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Figure 4.52: 2d Vertical obstacle: u,
along considered lines
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Figure 4.54: 2d Horizontal obtacle:
u, along considered lower lines
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Figure 4.56: 2d Horizontal obstacle:
u, along considered upper lines

radiation, and one can note the symmetry of the problem regarding the planex = 0:5.

Regarding the ow, the problem is also symmetric around the planez = 0:5.

For both cases, one can see that, similarly to the @ cases, due to the radiative uxes

on the horizontal boundaries, some convection is observed in the bottom parof the
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Figure 4.57: 3d Horizontal obstacle: iso-temperature :" =1 (left) and " = 0 (right)

Figure 4.58: 3d Horizontal obstacle: streamlines:" =1 (left) and " = 0 (right)

cavity, with curved iso temperature lines appearing below the pate. This can be seen
on the streamlines as well, with a signi cant modi cation of their shap es. As for the 21
case, one can see that the impact of the plate on the ow is more pronouncedithe
horizontal case that in the vertical one, with a central iso line perturbed by the plate.
One can also see the modi cation of thermal boundary layers for the horiantal case,
with tighten lines compared to the no radiation case.

Conclusions

In this chapter, a method to model surface radiation in a monolithic mntext was devel-
oped. The key point is the de nition of an interface approximation relying on the nite

element mesh and the levelset isovalue zero, then used to perforensurface-to-surface
computation with the classical features of theS2S approach. The approximation of the
interface in terms of faces of the nite element mesh is an important gature, in the sense
that the method provides radiative uxes and source terms that naturally ts on the

mesh, avoiding the problem of transport from a mesh to another one, and ta coupling
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Figure 4.59: 3d Vertical obstacle: iso-temperature :" =1 (left) and " =0 (right)

Figure 4.60: 3d Vertical obstacle: streamlines:” =1 (left) and " =0 (right)

can be done without any supplementary e ort. The method was proven tobe consistent
with the classical approach, that is to say, for an appropriately re ned mesh, thelS 2IS

approach give the same results that the classicab2S approach, for 20 problems as well
for 3d problems. The problems of computational time and ressources are signiant

only in 3d, but it was observed that the number of intern faces involved in the sirface
radiation computation remains reasonnable, as expected from the resultsf the study
conducted earlier in this chapter.

Resune frarcais

Dans ce chapitre, on pesente une nethode pour moctliser le rgonnement surfacique
dans le contexte de la nethode d'immersion de volume decrite au bapitre peedent,
l'approche 1S 2IS pour "Immerse-surface-to-Immerse-surface”. La dicule majeur e
eside dans le fait que la description des interfaces y est imptiite, uniguement & nie
par l'iso valeur zro de fonctions levelset. On decrit le principe utilie pour reconstruire
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un interface en termes de faces du maillage eements nis: on cekcte les eements
traverses par la fonction levelset, donnant un bande deements dont les faces inerieures
sontelimirees. On pro@de ensuitea un calcul surfacique dassique reposant sur la notion
de facteur de forme, dont lesekments principaux sont rappeks dans ce chapitre. La
nethode est ensuite illustee sur les exemples pesengs dans les chapitre peedent, ou
I'on analyse I'in uence du rayonnement surfacique sur la convectn naturelle. En n, on
\eri e que l'approche ceveloppee ici est consistante par rapporta une approche classique,
avec un cemarche similairea celle du chapitre peedent.
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Monolithic Volume Radiation:
Stabilized Finite Element Method
for the Minimum Entropy closure
M4 radiation model

The last chapter was dedicated to the modelling of surface radiation eects, responsible
for most radiative e ects for the considered problems. Still, when emperature become
very high, when dissociation and ionization of moleclules can occur, orof furnaces, in
the presence of combustion products C0,, H>O or soot) can beradiatively active , that
is to say, the absorption and scattering by the medium cannot be neglgéed anymore.
Taking into account those volumic e ects implies a resolution of the RTE but, as ex-
plained in the previous chapter, the numerical methods to tackle his equation are not
common in the engineering community and can be very computationally deranding.
On the other hand, one can remark that, within this framework, since the purpose is the
coupling of the radiation with the thermal balance, the quantity to be inserted in the
energy equation (as a source term) has to be direction independent. Herefore, instead
of considering the "full" radiative transfer equation, a promising lead is to consider ap-
proximate forms of the RTE (see [L86 or [26] for good reviews on this topic), where the
angular dependency has been eliminated, as done with the Spherical Haomics or the
DOM depicted in the previous chapter, but, in both cases, if one wans a good numerical
approximation, it means dealing with an important number of equations (related to the
order of the Legendre polynomial or the number of discrete ordinates), wich increases
substantially the computational cost and the complexity of the problem to be solved.

It would be desirable to deal with a xed number of equations, of a "classcal” type if

119
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possible (ie only dependant on space and time). Those requirements are ful lled ¥ the
so-called moment models, where the RTE is averaged over the unit &gre, resulting in a
coupled system of PDE, but with supplementary equations needed talose the system,
the "essence" of the obtained model being the closure relation. Two &in closures will
be considered, one leading to thd®>; model brie y presented in chapter 2, and a more
sophisticated one, namely theM ; model.

Moreover, in many situations, the radiative disequilibrium is caused by spatially het-
erogeneous radiative properties. To treat such situations, the IVM appars as a natural
tool, and so the developed method will be tested on multidomain prol#ms.

The outline of this chapter will be as follows: rst, we will introd uce the concepts nec-
essary for moment models, we will derive the two aforementioned maas and a few
others, secondly we will provide an overview of the existing metbds for such models,
and nally, we will describe the formulation we propose for the M; model.

5.1 Introduction to moment models

For the sake of clarity, we recall here the full RTE, the notations remaning the same

Z
e O RIGCT (5.1)

At this stage, we would like to add that this equation presents di erent predominant
regimes, depending on the values of the opacities and

when and values are low, the photons travel free in the medium without
signi cant interactions with the medium. The interactions are ther efore mainly
long distance: this is thetransport limit .

when and values are high, the photons strongly interact with the medium,
rendering the interaction close to isotropy ( even close to the Plank distribution):
this is the diffusion limit

If those two limits are naturally obtained with the full RTE, this is not guaranteed for
the approximate models that will be considered in this work, and therespect of this
asymptotic behaviour is a desirable property for an approximate model

The rst step is the de nition of the moments of the radiative intens ity, the radiative
energyE,, radiative ux F,, and radiative pressure tensorP; ( a less common quantity
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than the rst two, but interpretations and comments about it can be found in [187] or
in [188)), are de ned as the zeroth (sometimes called the incident radiationG, an can be
expressed including the factor%), rst and second order angular moments of the speci c
radiative intensity, respectively, i.e.,

Z

E, = Id! (5.2)
ZS

Fr= 1ldl (5.3)
ZS

Pr= (! 1)ld! (5.4)
S

being the dyadic product. It is also possible to de ne an order moment as follows

Z

M"(1) = S! "l (5.5)

with ! "= I—{Z—'} (5.6)

We notify that, thanks to the Cauchy-Schwarz inequality, (5.2) and (5.3) implies the
two following so-called realizability conditions:

Er Osincel O (5.7)
and

kFik, E, sincek! k, 1 (5.8)

It can be demonstrated that all the couples E;; F.) that ful Il those realizability con-
ditions, the set of admissible states, de ned by

C=f(E;;F/)2 R RYsuchE, OandkF,k, Eg (5.9)

is a closed convex cone. At this level, it is useful to de ne the rduced ux f = %
and f = kf ko. The realizability conditions implies that 0  f 1. We will see that,
depending on the chosen closure, those requirements are not necadly fullled. A

general family of moment models is obtained by integrating 6.1) and (5.1) multiplied
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by ! over all S leads to

1@E _ 4

¢ @t +r Fr+ E(= r T (5.10)
1@, _

- @t+ r- Ph+( + )Fr=0 (5.11)

One can note that the present system is not closed: we have 10 unknown(E,, 3
components forF,, 6 components forP;) for only four equations. We could be tempted
to introduce angular moment of higher order, but because of the term! r I, the
equation for the n th order moment will involve the moment of order n + 1. Hence, we
need to introduce more equations to close the system. Two closuregill be presented
and compared in the following. An analogy of this system, involving the three quantities
(Er; Fr; Pr) can be done with the one encountered in the Navier Stokes equations,hich
involves (; u;_). Actually, the way which the NS equations are obtained from the
Boltzmann equation [189, 190 is very similar to the approach presented here, ( u;_)
being the moments of the distribution function of particles. Knowing this, the closure,
which expresses the higher order moment in terms of lower order momes, can be seen
as a constitutive relation.

5.2 Dierent closures

Three di erent models will be presented in this section, but a di erence can be made
between the rst two, where a closed system is obtained by means of miplifying as-
sumptions, and the third, where the closure relationship is obtaind through a rigorous
analysis. It is necessary to mention that, the source term to be insged in the thermal

balance is given by

Stad= I o = (4 rT4 Er) (5.12)

5.2.1 Rosseland approximation

The idea here is to express the radiative e ects as a non-linear dusion term. We assume
a stationary phenomenon, an optically thick medium ( high values of and ). In such
situations, the radiative energy is a Planckian of the temperature and,one gets

4,

. 16 T3
3( + )

o)

= rad (T)

qr = (TH = r (T) (5.13)
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This model is really easy to include in the thermal balance, just byadding a non-linear
conductivity aq(T) which is available in many commercial softwares. Nonetheless,
the model is adapted for optically thick media only, therefore is not well suited for
transparent media.

5.2.2 P; model

This model remains interesting in the sense that it can be obtainedising the spherical
harmonics (the lowest order possible), and theSPy approximation ( asymptotic devel-
opment with respect to opacities). We present here a way to derig it from the general
moment equations, and it will provide a comparison tool to see the impovements thanks
to the M ; model that will be presented later. The closure is obtained startirg from (5.11)
assuming an isotropic radiative pressureP; = %Erl and a stationary radiative ux so

that one gets

1

Fr = ﬁl’ E,

(5.14)
Introducing (5.14) into (5.10 leads to the following linear di usion-reaction time de-
pendant type equation ( the radiative energy is usually denoted as5 in this context)

1@G 1 4
—— —r G + G =4 ,T 5.15
cat " 3+ ' (5.15)
As we will see after, equation 6.15 will correspond to the diusion limit of the M1
model.

Those two models have some well identi ed drawbacks: anisotropic ects cannot be

rendered by such approximations ( due to the isotropic radiative pressure). Moreover,
the realizabilty conditions (5.7) and (5.8) can be violated: in (5.14), one can see that
the F, is colinear tor E,, leading to a possible violation of £.8). This can be partially

cured using the notion of " ux limiter" as described in [ 191], by modifying (5.14) up to

a multiplicative factor, but no satisfactory compromise has been foundfor the transport

limit yet. This justi es the use of a more sophisticated model, described in the next
subsection.
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5.2.3 Minimum entropy closure: the M, model

A section will be dedicated to a new formulation for this model, so wedetail its deriva-
tion and its mathematical properties. Here the closure relationship isobtained using a
maximum entropy principle. This idea has been successfully apmd in other contexts,
as kinetic theory [192,[193,[194 or Fokker-Planck equation [195. Other work can be
noted as well; [L9§ for the same approach in an abstract form, 197] for a detailed 1d
analysis and [L9§ for the same results obtained with a di erent methodology. The idea
can be described as follows: we are looking for the speci ¢ intenséts that minimize a
radiative entropy, under a realizability constraint, that is to say, the two rst moments
of the speci c intensity are the ones that appear in 6.2) and (5.3). This procedure can
be performed for a moment model of arbitrary high order, namelyM, models, but on
the one hand, an analytic closure is only known foiM 1 model, and on the other hand, a
n order model involve ann +1 order tensor, so such models are not convenient to imple-
ment within classic data structures, and only one dimensional appliations are available
in the literature for n > 1. we can quote 199 with the introduction of perturbed closure,
[20Q using adaptive closure, R0]] for a special focus on the optimization problem, 202
for an exemple with a three moment model and 203 for application to slab geometries.
Other non published work [204[205 can be evoked for the sake of a complete analysis.
We detail only for n = 1, where the problem can be written as a convex optimization
problem, with help from the following Lagrangian:

zZ,Z zZ,Z
Il=arg min J({ )=10)+ ( | did E/)+ ( I rd Fy) (5.16)
| I OZ sZ 0 S
1 2
()= (nlog(n) (n+1)log(n+1)) 2 dd (5.17)
0 S c

2
wheren = =1 .

The saddle point of this Lagrangian is obtained for the following form [L2€ of the
radiative intensity

_2h® 1

T @ e+ 1) 1

(5.18)

The Lagrange multipliers and are then determined using realizabilty constraints.
An integration over all frequencies gives
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2 kAT 1
= 5.19
15¢%h3 2 Paaz * (549
1 f2

We now want to emphasize the fact that the model to be obtained through his procedure
can produce anisotropic e ects : the goal is now to express a constitite relation,
under the form P, = D(f )E, , where D(f) is called the Eddington Tensor. Following
Levermore's approach 191], we introduce normalized intensity and ux, de ned by :

| = E,'; F, = Ef (5.20)

where' is the normalized radiative intensity, and f is the reduced ux as previously
de ned. Using those quantities, the de nition of the moments (5.2) can the be recast

as:

z
1= d (5.21)
S
z
f= 14l (5.22)
S
z
D= ( !)d (5.23)
S

Since' is a non-negative density de ned on the unit sphere, andf and D are its rst
and second order angular moment, respectively, they must satisfy theonstraints:

tr(D) =1 (5.24)

D f f O (5.25)
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(5.29) tells us that the sum of the eigenvalues of the tensob are equal to one and 5.25
is to be understood in the sense thatD f f is a positive symetric tensor fe all
its eigenvalues are non-negative). Now, let us consider the case whehet intensity is
symetric about a prefered direction, denotedn: it implies, thanks to equations (5.21)
and (5.22), that '; f and D should remain invariant under rotations that x n. It follows
that :

f=fn (5.26)

Dn= n (5.27)

Due to well-known arguments about real symmetric matrices, the plae orthogonal to
n must be an eigenspace ob with an eigenvalue -, dierent of . Using (5.24), we
obtain:

7 = (5.28)

1
D= 5 (' n n)+ n n (5.29)
1 3 1
D= 5 | + > n n (5.30)
Finally, thanks to the relations ' = C'?r andf = f n, we can come back to the radiative
pressure tensor:
0 1
1 3 1f f
P, = % | + 5 f2 § E, (531)
| &3 |20
@ ®)
| {z }

=D(f)

The expression for s still to be de ned. We determine it using the relation:
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z

(f)= ( n)Zd (5.32)
S

The result of the calculation depends on the form of the radiative entropy, but the
most common is the Maxwell Boltzmann entropy, used in the Lagrangian de nedby
(5.16. More details about the calculations and other alternatives are availablein
[206,[207],[19]] linked to the ux limited di usion models described earlier, [20§ with
the point of view of the thermodynamic, [209 for a derivation using entropy, and [210
for a geometric determination. Finally, for the Maxwell-Boltzmann entropy, one gets

3+4f?2

) 5+2 4 3f?

(5.33)

We note that all the non-linearity of the Mj; model is in (5.3) and (5.33. Some
comments about the physical insight of the two contributions of the Eddington tensor can
be given: term (1) can be viewed as an isotropic part of the radiative presge, whereas
term (2) is an anisotropic contribution in the direction of the normalized radiative ux

f . Those two terms are balanced by the Eddington factor (f), which is controlled by
f , that can be viewed as a measure of the anisotropy of the radiation eld. Morever,
this closure ensures the positivity of the energy and limitation of the radiative ux. The
M1 system renders the appropriate limits with respect tof : one can see that forf =0,
corresponding to the di usion limit ( isotropy), one gets

1
©= 3 (5.34)
DUKD:%M (5.35)

and for the transport limit ( anisotropy in one direction), corresponding to f = 1, reads

1)=1 (5.36)
foof
f2

D(f ;1) = (5.37)

We would like to point out that it is not straightforward to derive boundar y conditions
for the M1 model from the ones used for the full Radiative Transfer Equation: in 6.1),
the speci c intensity is prescribed for the incoming ux only, w hereas in the moment
model, the full moment values must be assigned, even if the notion of "artial" moment



Chapter 5 128

brings an answer to this question. Nevertheless, in most of the case211],[217, the
following boundary conditions are used

Eij@ =4 Ty (5.38)

Where Ty, is the temperature of the considered wall. We also consider that no radtive
ux is transmitted through the wall of the enclosure, which writes

Fr;j@ =0 (539)

Some studies about derivation of boundary conditions for general moment maels (going
beyond the context of radiative transfer) are available in R13,[214] or [215.

This model has been widely used in Radiation Hydrodynamics, since b ers a natural
coupling with the other physics [216],[217],[218 219,[220,[221], and the more advanced
research codes for radiation hydrodynamics are based on these approachedlERACLES
[222, HADES [223 or KORAL [ 224. Some applications dedicated to low Mach ows
are also available 211, 225.

5.2.4 Extensions of the M4 model
5.2.4.1 Method of partial moments

It is known that the Mj; model can produce non-physical solutions, notably in the d

case of two opposed beams, where a non-physical shock is observed coregato the

solution of the full RTE [226. The reasons not to use higher order minimum entropy
closure were depicted above, but an alternative is to de ne "partial" moments, not de-
ned on the entire unit sphere S but on a non overlapping subset forming a partition

of S ( denoted hereA, with a current element A 2 A), for which we de ne a reduced
ux fa and an Eddington factor a, but the closure (5.33 cannot be determined an-
alytically anymore for general partial moments models. The rst trace of this idea is
given by [227] but without the notion of moment. Dubroca and coworkers impulsed
this lead [228 with a half-moment approximation in 1d, generalized by Ripoll P29 for

multidimensional problems. A rigorous analysis for any partition and multidimensional

problems is credited to Frank 205 226. One can also note an application to non-gray
radiation [230, the subject of the next part.
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5.2.4.2 Non-gray radiative transfer

In situations like astrophysics and ame modelling, the gray medium asumption is
sometimes not su cient. If full descriptions of the spectrum are available by means
of databases, this is in practise out of range for situations of interest. Andter option
is to divide the spectrum in intervals on which radiative properties can be considered
constant. One can speak of frequency groups or bands, the bands being timer than
groups. See23]] for multigroup model and [232 for a 3d multiband model, or [233 for
a hybrid (coupled M1 and full RTE ) model.

5.3 State of the art: existing schemes for the M, model

Most of the numerical schemes for theM; model are of Harten-Lax-van Leer (HLL)
type [234], a nite volume method taking advantage of the hyperbolic eigenstrudure of
the system, which can be viewed as a non-linear conservation law, and anterpretation
using Riemann problems 235,[236[237],[238 between cells. The work of Berthon and
coworkers, that designed a series of \asymptotic preserving" scherse212, 239247,
is to be noted, since most of the schemes in literature are of this typ. The work of
Buet is also notable p48 249 and [250, with an extension to radiation hydrodynamics,
with the possibility of taking into account relativistic e ects. T wo other approaches
can also be quoted, namely, one based on a discontinuous Galerkin approactedited
to [251], and another one based on a modi ed system of moments proposed i237. In
both cases, applications remain restricted to one-dimensional situans. We want to
propose a multidimensional nite element method for the M ; system: it will be a mixed
formulation due to the coupled nature of the system, a stabilized fornulation since we
want to avoid the use of inf-sup compatible pairs, so we restrain ourdees to equal order
interpolation spaces. The non-linearity of the equations will require a speci c treatment
as well.

5.4 Mixed Finite Element formulation for the M ; radiation
model

5.4.1 Weak formulation

We now turn to the weak formulation for the M1 model, de ned by equations (.10,
(5.1, (5.3)) and (5.33. Let Q be the space whereE; belongs for each timet and W
the space whereF, belongs, i.e.,E;(;t) 2 Q, F.(;t) 2 W for all t > 0. The spaces
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for the test functions will be denoted by Qo and Wy, so that functions in these spaces
will be zero where functions in the corresponding trial spaces wlilbe prescribed with
Dirichlet boundary conditions. To avoid technical details, appropriate regularity in both
space and time will be assumed.

The weak formulation of the problem is obtained by multiplying (5.10 by q2 Qg and
(5.17) by w 2 Wj, integrating over the computational domain and using integration by
parts on the term involving P;. This leads to the following problem:

Find (F;E;) 2 W Q such that for all (w;q) 2 Wg Qo

1 . .
- @ért;w +h + )F.;wi h Prwi=0 (5.40)
1 . . .
- C(@@l*:;;q +hE;qi+h Fragi=h [ Thag (5.41)
. . . R .
Here and in the following, Hf;gi = fg for any functions f and g, vector or scalar

valued.

5.4.1.1 Time discretization and treatment of the non-linear term

Let us consider a uniform partition of the time interval [0;T], so that 0 = t® <t <

<tN =T, with t :=t" " constant, n=0;:::;N 1. The time discretization
will be performed using standard nite di erence schemes. Usingfor example backward
di erences, for a generic time dependent functiong(t), the time derivative at t" can be
approximated by an appropriate incremental quotient ng with g" depending ong” X,
k =0;1;:::, and g" being an approximation to g(t"). In particular, in the numerical
examples we will use the simplest backward Euler scheme, in whicg" = g" g" ! and
all terms in the equation are evaluated att". Since there is no possibility of confusion,
the superscript with the time step level will be omitted.

As previously mentioned, all the non-linearity of the M ; model is contained inP,. Hence,
this term has to be treated in an appropriate manner, by performing nonlinear iterations
within each time step. Introducing a superscript counteri for these iterations, we can
consider the following expansion of the radiative pressure tensor:

et P+ Je(EFY BN+ (R OF) (5.42)

where J- and Ji- ( a third order tensor) are the Jacobian matrices ofP; with respect to
E: and F,, respectively. The calculation of those matrices is detailed in theappendix
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C. Introducing (5.42) into (5.40 and (5.41), one gets

1 FE/* . o o
- f[ cw o +h o+ )F*wi h ﬁFr'*l;r wi h JLEML:r wi
= hPr wi h JEFr wi h JEE[ T wi (5.43)
1 i+1 - . - . .
- { ;g +hE!"Lg+h Fl'hgi=m [ T%q (5.44)

More implementation details can be found in the appendix C. During nunerical experi-
ments, no signi cant di erence was observed by using the classicaNewton method and
a linearization performed over a time step. However, further inveatigation about these
guestions have to be conducted, and will be the subject of future ark.

5.4.1.2 Galerkin nite element approximation

Let us consider a nite element partition T, = fK g of the computational domain of
diameter h. From this we may construct nite element spacesW, W, Wpo Wy,
Qn QandQno Qo in the usual way.

The Galerkin nite element approximation to problem ( 5.43-(5.44) reads: for each
iteration i + 1 of each time step, nd Fii* 2 Wy, E;; 2 Qp such that

*

1 FJt - o L i el -
- f[’h wp o+ h( o+ )Fr';gl;whl h ﬁFr';;:l;r whi h J'EE;;‘;]l;r Whi

. = I‘Pi,;l" Whi h EF,—i;h;r Whi h ‘]iEEi;h;r Wi (5.45)
c ok thESbgi+h Fuligi=m T4 (5.46)

for all w, 2 Wh.o and ¢, 2 Qn:o. It is understood that the Jacobians and the pressure
radiation tensor are computed with the nite element unknowns.

This is the classical Galerkin nite element method for the M, radiation model. To

the best of the author's knowledge, there is no other nite elementmethod available
in literature for this model. Sitill, it was observed that the soluti on of the proposed
formulation (5.45-(5.46) su ers from numerical oscillations when it is used in the way
we presented it above. Before turning to the stabilized approach, & propose coming
back on the VMS approach.
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5.4.2 The VMS as an abstract tool

The Variational MultiScale method presented and applied to NS and CDR poblems was
rst introduced in the context of uid dynamics, with the natural i nterpretation of ne
and coarse scales as small structures and large structures. But, afterlalf one analyzes
the problem from an abstract point of view, the VMS method can be seen as aofmal
decomposition of functional spaces into a direct sum, implying a spiting of unkowns
and test functions to be inserted in the weak formulation. Hence, if oe has at hand
the tools for a nite element method ( the weak formulation and the functional setting),
the VMS framework can be used to stabilize the formulation of any problem.This has
been achieved for a large class of problems: strain localization in solid echanics 253,
inelasticity [254], di usion in random media [259, Boussinesq equations 456, crack
propagation [257], non-linear solid mechanics 258, Lagrangian Hydrodynamics R59 or
plasma ows [26(. But the problem that inspired the most is the problem of waves,
since the mixed form of the wave equation permits to handle situatios that are out of
reach with the full form of the wave equation [261], even though the VMS was applied
before to the Helmotz equation R62. The rst work on this problem is in [ 263, followed
by [264 269. Knowing this, the VMS appears as a natural tool to stabilize the preented
formulation.

5.4.3 Stabilization for the proposed formulation

For ease the notation in the analysis to come, the following notations are itnoduced:

Fr = Pl E Fin  JEEL, (5.47)
fe=4 T? (5.48)

5.4.3.1 Scale splitting within the VMS framework

Once the equations to be solved are written in variational form, a VMS deomposition is
applied and the radiative ux and energy are split into a coarse-scale/ ne-scale decom-
position, and likewise for the associated test functions. Thus, thecorresponding spaces
can be written asW = W;, W%and Q= Q, Q¢ and the functions belonging to them
as

Fr=Fe+F. Er=Epm+E

w=wp+wh =g+

with the obvious identi cation of unknowns and test functions.
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At each iteration we have to solve a linear problem. Since there is ngossibility of
confusion, superscripts are omitted in the following. Introducing the previous decom-
positions into the weak formulation leads to a coarse-scale and a ne scaleroblem for
each unknown, which reads:

Radiative ux equation

1 (Fen + F . ,

h Je(Een + EQ;r whi = WFrir whi (5.49)
1 Frn+ F
- w;wo +h + )(Frn+ FB;Wq h Je (Frn + Fr%;r wi

h Je(Ern + E9;r wh = hFe;r wi (5.50)

Radiative energy equation

1 (Emn +ED
C t +th

+h (Fon + Fichi + h (Ep + ED)soni = Hg;ap

(5.51)

} (Erh + E?).qo

R t +h (Fon+F:qd + h (Epp + EQ;f = Hg; o

(5.52)

5.4.3.2 Approximation for the Fine-scale problem

To approximate the ne scale problem, we will work under the assumptons presented
in chapter 2. Nonetheless, some uncommon di culties arise here due téhe presence of
tensors in the ne scale problem that require a speci ¢ treatment

Let us introduce the following notation:

1 F.
Rei= (+ )Fm " (5.53)
Rr2= Ff + Je Frn + JEErn (5.54)
1E.
A= Jg F2+ JgE? (5.56)
With our working assumptions, the ne scale problem (5.50-(5.52) then reads:
o+ )FEwS h A;r wl = lREe ;w0 + IReo;r wi (5.57)

o Fldl + hE %ot = Re; (5.58)
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as stated before, the ne scale problem does not really need to be solvén a accurate
way, it just has to be approximated in order to capture the e ect of the ne scales on
the large scales.

Since the ne scales vanish on inter-element boundaries, we can i

Pa:r wi=hr A:wd
Re2;r wi = hr  Rea;wi

We can now de ne
ReE=Rgr1 ' Rgp

The term r A requires to make more assumptions. Since only the steady state
is of interest, spatial variations of the Jacobian matrices in the left-rand side can
be neglected without compromising the accuracy of the scheme. Hencey denoting

xd
r A=Jer EQ+  JBr R (5.59)
p=1

Using this, the ne-scale problem can be written as

xd

hC+ )F2+ Jer EP+ JBr Foiwd = RRe;wi (5.60)
p=1

b F2+ E %l = Reg; (5.61)

for all test functions w°and ¢°. This problem can be cast in the following abstract form

PAL(U)) = PYR) (5.62)
with
T " #
F
= r ; R = RF
EC RE

L is the di erential operator appearing in the left-hand-side of (5.60-(5.61) and P%is
the projection onto the space of subscales. In essence, the two coramchoices for this
operator are to take either the projection orthogonal to the nite element space (OSS
method) or the identity when applied to nite element residuals (ASGS method); see
[37]. As mentioned before, the ASGS formulation will be used in this work.
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The idea is now to approximate the operatorL by an operator easy to invert. A straight-
forward solution is to take L * T, whereT is a diagonal matrix. Thus, we take
" #
- F la O
0 E

The values are obtained thanks to the Fourrier analysis presented inttapter 2. Applying
this transform to (5.62) gives:

( + B0 Jg %EP Jﬁ%ﬁgpz = (5.63)
p=1
K por Ep= e (5.64)

where we have assumed again that subscales vanish on the element bouridar

At this stage, we would like to point out that the governing equations of the M1 model
are similar to a system of damped waves in mixed form, as addressed i2q4(0. This
leads us to make an analogy with the approach proposed ir2p3 or [269 for undamped
waves, and choose the stabilization parameters as

1
C1( (JE )+ - i=1 (JF )) + ( + )2

1
where () stands for the spectral radius of a matrix and c; and ¢, are algorithmic
constants de ned earlier. We nally get

FP= FRg; E= ERg (5.67)

Then, one just needs to introduce 6.67) in (5.49 and (5.51) after integrating by parts
the terms involving the subscales, leading to new terms in the pgvious formulation that
provide the desired extra control. We now turn to numerical expgiments.

5.5 Numerical results

This section is devoted to the testing of the formulation on four bencimark problems
available in literature, in order to assess the implementation of thenew mixed stabilized
nite element method. The rst example considers one single domainwhereas the three
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other problems deal with multidomains to illustrate the use of the immersed volume
method for such situations.

5.5.1 Transparent media in a square enclosure

For our rst example, we consider radiative transfer in a static non-participating media
contained in the unit square. This test case is close to the ones prested in [27]] and
[272 or [211], with the dierence that we set here =0 m 1. We want to make a
comparison with the P; model, so we also perform the computation with =10 4m 1.
We work with non-dimensional quantities, so that we havec = 1. We use Dirichlet
boundary conditions with a bottom wall at a xed E., = 7:13 1® W and the other
walls are at E,, = 5800 W, and a zero value is xed for the normal component ofF,.
The initial radiative energy is Eo = 5800 W. For both simulations, the time step is
t =0:05, and we use a mesh of approximately 11 200 elements.

Figure 5.1: Radiative Energy for P; Figure 5.2: Radiative Energy for Py
model (left) and M1 model (right): t = model (left) and M1 model (right): t =
5t 25t
Figure 5.3: Radiative Energy for Py Figure 5.4: Radiative Energy for Py
model (left) and M model (right): t = model (left) and M; model (right):

400t steady state

The results show the ability of the M1 model to reproduce the transient behavior of the
phenomenon represented. It is observed that for the®; model, the equilibrium state
is reached after only one time step, and using a smaller time step deenot make any
di erence. This example demonstrates that the obtained solution is fee of oscillations,
justifying the coupled formulation and the stabilization developed here.

An important question is the accuracy of the formulation; to the best of our knowledge,
there exists no analytical solution for the radiative transfer equationin two dimensions
(for one-dimension, seed73, but a two dimensional extension is not straightforward).
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We then propose to perform an error analysis by performing calculations orseveral
meshes of diferent sizes. We will use a solutiokef computed on an unstructured
mesh of 105584 elements as our reference. The chosen norm is

Z
") =(  (Un  Upes)?d) 2 (5.68)

We considered four meshesM ;)i=1::4. Their characteristics (number of elements, mesh
size) are given in the table below. As it can be expected from the nit element theory,

a linear convergence is observed.

Mesh | Number of elementsN | meshe sizeh
M ; 250 0.09006

M 5 522 0,057556

M 3 1036 0.040449

M 4 4302 0.019711

Table 5.1: Meshes used for the error analysis

185 T T T
results
slope 0:8
;_\\ 187 |
E.J:_
5
2 1751 .
| | |
171 1.2 14 1.6 1.8

log(h)

Figure 5.5 L2 error with respect to the mesh size

5.5.2 Participating media with discontinuous coe cients: xed tem-
perature

This case is taken from R74, where solutions of di erent approximate models for ra-
diation presented in this chapter and chapter 4 are compared to solutios obtained by
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a direct resolution of Eqg. (5.1), so it oers a reference to compare our results. We
considered a xed temperature, constant in two di erent subsdomains, with a spatially
dependent absorption coe cient . The computational domainisD =[0;1] [0;10], and
we de ne Do =[0:45;0:55] [4:5;5:5], D1 = DnDg. We set =1 and the temperature
and absorption coe cients are taken as

1000 K if x 2Dy

T(x)= 5.69
) 1800 K if x2D; ( )

3m1?! if x2Dy
(x) = _ (5.70)

1m?! if x2D;
This temperature leads to a \manufactured" source term for Eq. (5.10), varying in space,
but constant in time. The immersed volume method allows us to repesent the spatial

dependence of the absorption coe cient in a natural way.

The mesh used for the computations and the representation of the leveét function of
the object are displayed in Fig.5.6; this mesh is composed of 218072 elements. We use
homogeneous Neuman boundary conditions foE, and a zero Dirichlet condition for the
normal component of F,.

Figure 5.6: Adapted mesh and levelset of the center zone

Steady state results are presented in Fig5.7, where we display the patterns of the
radiative energy for both the P, and M; models. In Figs.5.8 and 5.9 we plot the values
along x = 0:5 in order to compare with the reference solution.

The patterns show that both the P; and M; models overestimate the value of the ra-
diative energy insideDg, but whereas theP; model shows a qualitatively wrong pro le,
the correct pro le is obtained with the M; model. Again, this numerical test demon-
strates that the obtained solution is stable and free of oscillations, jusfying the coupled
formulation and the stabilization developed here.
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Figure 5.7: Patterns of the radiative energy obtained for P, (left) and M, (right)
models

10°

il

Py
My
—ref

. | | | I
0'50 2 4 6 8 10

y(m)

Figure 5.9: Radiative Energy along

Figure 5.8: Radiative Energy along X = 0:5: reference from 274

x = 0:5: present results

5.5.3 Radiation of an absorbing rod in a scattering media: the Mor-
dant Test

The next example to be presented was introduced in475 276 and is also presented in
[272. The considered domain is a unit square. The test represents a pely absorbing
region (a square rod of side ®) surrounded by a scattering region. Only steady state
results are presented. The properties of the di erent zones are sumarized in Table 5.2,
Again, the central zone and the heterogeneous properties are represedtby means of
the immersed volume method. The adapted mesh (composed of 102488 elernsrand
the levelset function used to adapt the mesh are presented in Fig.10. In [272, results
were compared with the results obtained by the discrete ordinates mthod, and it was
shown that results from the M; model can dier for those obtained by the classical
discrete ordinates method due to complex geometrical e ects. The bundary conditions
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are zero Neumann on the left and bottom boundaries, and a specular re eabn on the
top and right boundaries. For the M1, for a boundary , with F, = (Fy,;Frt) being
respectively the normal and tangential components of the ux, those condions read:

Er; = Erw
Fin; = Fmw
Frt = Frew

where X refers to quantities imposed on the considered boundary, an&,, are those
obtained from the calculations (hence, those boundary conditions are upated at each
time step). It is not straightforward to derive this kind of boundary ¢ onditions, since in
the P1 model the ux is related to the gradient of E,, and therefore imposingE, and
r E; on the same boundary would lead to an ill-posed problem. However, we trigthe
two alternatives, which give similar results; these results are pesented below.

AV
A XX %y, Zone

: Center zone| Outer zone
Properties = X X X x

100 0.05
0 0,95
Srad 0 1

Table 5.2: Thermodynamical properties of the considered case

Figure 5.10: Adapted mesh and levelset of the center zone

The M1 results obtained are correspondant with those obtained in the referece men-
tioned above. Since a ux limited diusion was used in that reference, the pattern
obtained di ers a bit, but the same tendency is observed.

5.5.4 Radiative transfer behind an obstacle: the shadow test

The purpose of this test, inspired in the benchmark presented 277 and [217], is to
show the ability of the M 1 model to capture the anisotropy of the radiative eld, contrary
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Figure 5.11: Patterns obtained for Figure 5.12: Patterns obtained for P,
M1 model model

Figure 5.13: Iso-lines obtained for Figure 5.14: Iso-lines obtained forP;
M1 model model

to the P1 model. All cited references compute results on half of the computatinal
domain for symmetry reasons, but we have chosen to compute the whole dam. The
geometry represents a cylindrical domain of 0 m in length and G:12 m in radius.
An ellipsoidal obstacle, of semi-major and semi-minor axes (@; 0:06), respectively, is
located in the domain. We have chosen values of absorption coe cient vth a large
di erence between the obstacle and the surrounding media to prodce a shadow e ect
( obstacle = 50000 m 1, egia =0 m ). Contours of the obstacle are smoothed inZ77,

but this is replaced here by the anisotropic mesh adaptation to capturethe interface of
the obstacle properly. A radiative energy ofEi, = 6:5 1 W is imposed at the left
boundary of the domain, and zero Neumann conditions are imposed elsewher®n the
whole boundary, a zero Dirichlet condition is imposed for the normal corponent of
F:. The initial condition is E,(x;0) = E..o = 5:04 1¢ W. The distributed absorption

coe cient and the mesh used for the computations are presented in Fj. 5.15 We only
look for steady state results. A mesh of 268012 elements is used.

The results in Fig 5.16show that whereas theP; model cannot reproduce disequilibrium
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Figure 5.15: Distributed absorption and adapted mesh

Figure 5.16: Radiative Energy for the P; model (bottom) and for the M ; model (top)

for the radiative energy, the M1 model gives clearly a better approximation of the energy
distribution. However, the shadow e ect is not sharp as as presentedn [277]. This can
be explained by the principle of the stabilization method: the mostimportant term
is a \di usion-like" one. On the other hand, the M; model aims to make a balance
between a transport part and a di usive part. Therefore, the extra di usion added
for the stabilization perturbs this balance. In fact, even if this balance is ensured at
the continuous level (equation (.31)), it is not guaranteed that it still holds for the
discretized formulations.
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Concluding remarks

In this chapter, a new stabilized nite element formulation for the M1 radiation model
has been developed and tested on some illustrative examples. The abijlto represent
multi-domain problems was also demonstrated. It is a rst attempt, using a nite

element framework, to deal with such a coupled non-linear system tht solves both
radiative energy and ux. Nevertheless, the formulation can be improwed:

Additional work should be done to ensure that the formulation preservesthe ad-

missible states: in a nite element context, this can be done by irluding the

realizabilty constraints in the functional setting. However, since the set of realiz-

able states is a convex set, it is not straightforward to exhibit such aspace. An
option would be to use the theorem of projection in an Hilbert space onto acon-

vex [278,[279 iteratively, by nding the unique projection, consider its ort hogonal

complement and repeat the same operation. Another option would be to consit

an augmented formulation, following the lines in [L16], the constraint being related

to the realizable states. This means to deal with variational inequatiors, as seen
in the in the context of contact mechanics R8(Q.

Regarding the mixed nite element theory, all of the variational theory [29] as-
sumes a symmetric formulation, which does not hold here. Therefordat would be
interesting to investigate the classical properties of the nite dement formulation
( order of convergence, regularity with respect to datas, existence ofontinuous
weak solutions).

An asymptotic analysis like the one presented in 246, 247 or more recently in
[281]] is di cult to transpose in a nite element context, on the one hand b ecause
the proposed formulation is fully implicit, so there is no CFL condition to work on,

and on the other hand, there is no numerical reconstruction ux step orRiemann
problem equivalent in a classical nite element context. An option would be to

investigate the consequences of the realizabilty constraints on theagobians Jg

and Jg, since they appear to be the equivalent of the numerical uxes in a nite

element context.

Therefore, providing an asymptotic analysis on the proposed formulationrepresents a
substantial work, and could serve as a mathematics PhD topic in itselfbut the goal of
this work was to propose a stabilized formulation for such systems of comesvation laws,
and it was demonstrated that our formulation is able to reproduce referace solutions
on benchmarks problems.
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Resune frarcais

Dans ce chapitre, on s'ineresse a la mocelisation du rayonnemet volumique. Pour
ce faire, I'approche retenue consiste a utiliser des moclesaux moments, obtenus en
moyennant lequation du transfert radiatif sur I'espace des diredions. On s'ineresse
plus particulerement au mocele dit Mj, ou la relation de fermeture est obtenue au
travers d'un principe de maximum d'entropie. On decrit let at de I'art sur les dierents
moctles au moments, ainsi que les formulations existantes. Dans la@sure ou la plupart
des sclemas pour ce mocele sont de type volumes nis HLL, on propose urofmulation
aux eements nis pour ce syseme. Cette formulation, de type m ixte, stabilisee par
I'approche variationnelle multiechelle, est cetailee au cours de ce chapitre. Elle est
ensuite mise a lepreuve et valicke sur des probemes illustratifs disponibles dans la
literature.
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Industrial Applications

This chapter is devoted to the numerical simulations of industrial applications rising
from situations encountered by our industrial partners. The goal of this chapter is to
demonstrate the ability of methods presented in the previous chaptrs to deal with "real”

examples with a geometry and physical parameters representative of threality. This

study will show some speci ¢ problems that rise when dealing withsuch problems only,
for the meshing as well for the solvers. When possible, the resuligill be compared with
experimental results. The next section is related to the publiation [42]:

6.1 Quenching of an hat shaped disk in various con gura-
tions

These problems are proposed by the industry to optimize the procesof cooling for
a particular shape. It consists in testing three dierent contexts and environments
with ascending di culty. We study rst the free cooling of a solid in the air, then a
forced convection using 12 jets inside an open cavity with supportig grid, and nally
a natural convection inside a con ned chamber with up to four di erent materials in
contact. These problems highlight well the exibility of the immer sed methods, the
necessity of applying anisotropic mesh adaptation and nally the inevitability of using
full Eulerian stabilized solvers to handle abrupt changes in the tenperature and in the
material discontinuities across the interface. The geometry and the bnension of this
disk are given in Figure 6.1. The material properties of the disk as well as the used
physical parameter for the surrounding air are depicted in Table6.1. Moreover, as
shown in the consistency studies, setting the relative kinemact viscosity to a very high
value in the solid region satis es the zero velocity and hence the nalip condition on
the interface is also satis ed.
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6.1.0.2 Forced convection using air blast cooler

In this case, we place the disk on a grid inside an open chamber. It contas 12 jets with
in ow condition of vi, =25m:s 1 and T;; = 20C, blowing directly to the surface of the
disk. The duration of the process is 13nin. Indeed, the dominant mode in this case is

the convection and therefore, accurate resolution of Navier-Stokes isequired. The case

is very challenging in both the geometry representation (the very ne supporting grid,

the heated disk, as well as the injectors), but also in the physical penomena occurring

close to the surface of the disk (turbulent gas-solid interactions).

Figure 6.10 gives a clear idea on the experimental setup and the position of the dis
inside a 225 2:25 3m?3 chamber while Figure 6.11 highlights the positions of the
sensors.

We apply the anisotropic mesh adaptation taking into account at the same time the
levelset of the ne supporting grid, the immersed disk as well as tle injectors. The total








































































































































































