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Abstract

This dissertation deals with a number of algorithmic problems motivated
by automated temporal planning and formal veri�cation of reactive and �nite
state systems. Particularly, we shall focus on game theoretical methods in
order to obtain improved complexity bounds and faster algorithms.

In the �rst paper we introduce Hyper Temporal Networks (HyTNs), a strict gen-
eralization of Simple Temporal Networks (STNs), to overcome the limitation of
considering only conjunctions of constraints but maintaining a practical ef�-
ciency in the consistency check of the instances. STNs provide a powerful and
general tool for representing conjunctions of maximum delay constraints over
ordered pairs of temporal variables. HyTNs are meant as a light generalization
of STNs offering an interesting compromise. On one side, there exist practical
pseudo-polynomial time algorithms for checking consistency and computing
feasible schedules for HyTNs; the computational equivalence between check-
ing consistency in HyTNs and determining winning regions in Mean Payoff
Games (MPGs) is also pointed out. On the other side, HyTNs offer a more
powerful model accommodating natural constraints that cannot be expressed
by STNs like “Trigger off exactlyd min before (after) the occurrence of the �rst (last)
event in a set.”

Then, we turn our attention to the Conditional Simple Temporal Network
(CSTN) model, a constraint-based graph-formalism for conditional temporal
planning. Three notions of consistency arise for CSTNs: weak, strong, and
dynamic. Dynamic consistency is the most interesting notion, but it is also the
most challenging and it was conjectured to be hard to assess. CSTNs are an
extension of Simple Temporal Networks (STNs) [44]. In the second paperwe
introduce and study the Conditional Hyper Temporal Network (CHyTN)model, a
natural extension and generalization of both the CSTN and the HyTN model,
obtained by blending them together. We show that deciding whether a CSTN
is dynamically-consistent is coNP-hard; and that deciding whether a CHyTN is
dynamically-consistent is PSPACE-hard, when the input instances are allowed
to include both multi-head and multi-tail hyperarcs. Then, we offer the �rst
deterministic (pseudo) singly-exponential time algorithm for the problem of
checking the dynamic consistency of such CHyTNs, also producing a dynamic
execution strategy whenever the input CHyTN is dynamically-consistent. The
presentation of such connection is mediated by the HyTN model. In order to
analyze the time complexity of the algorithm, we introduce a re�ned notion of
dynamic consistency, named e-dynamic consistency, and present a sharp lower
bounding analysis on the critical value of the reaction time #̂where a CHyTN



transits from being, to not being, dynamically-consistent.
The #-DC notion turns out to be interesting per se, and the proposed #-DC-

Checking algorithm rests on the assumption that reaction-time satis�es #> 0;
leaving unsolved the question of what happens when #= 0. In the third paper,
we introduce and study p -DC, a sound notion of DC with an instantaneous
reaction-time(i.e., one in which the planner can react to any observation at the
same instant of time in which the observation is made). Firstly, we demon-
strate by a counter-example that p -DC is not equivalent to 0-DC, and that
0-DC is actually inadequate for modeling DC with an instantaneous reaction-
time. This shows that our previous results do not apply directly, as they were
formulated, to the case of #= 0. Then, our previous tools are extended in order
to handle p -DC, and the notion of ps-treeis introduced, also pointing out a re-
lationship between p -DC and HyTN-Consistency. Thirdly, a simple reduction
from p -DC to DC is identi�ed. This allows us to design and to analyze the
�rst sound-and-complete p -DC-Checking procedure, whose time complexity
remains (pseudo) singly-exponential in the number of propositional letters.

Next, an arena is a �nite directed graph whose vertices are divided into
two classes, i.e.,V = V� [ V# ; this forms the basic playground for a plethora of
2-player in�nite pebble games. In the fourth paper, we introduce and study a re-
�ned notion of reachability for arenas, named trap-reachability, where Player �
attempts to reach vertices without leaving a prescribed subset U � V, while
Player # works against. It is shown that every arena decomposes into strongly-
trap-connected components (STCCs). Our main result is a linear time algorithm
for computing this unique decomposition. This theory has direct applications
in solving Update Games (UGs) faster. Dinneen and Khoussainov showed in
1999 that deciding who's the winner in a given UG costs O(mn) time, where
n is the number of vertices and m is that of the arcs. We solve that problem
in Q(m + n) linear time. Finally, the polynomial-time complexity for deciding
Explicit McNaughton-M üller Games is also improved, from cubic to quadratic.

Then, in the �fth paper we offer a Q(jV j2jEj W) pseudo-polynomial time
and Q(jV j) space deterministic algorithm for solving the Value Problem and
Optimal Strategy Synthesis in Mean Payoff Games. This improves by a factor
log(jV j W) the best previously known pseudo-polynomial time upper bound
of Brim, et al. In the sixth paperwe further strengthen the links between Mean
Payoff Games (MPGs) and Energy Games (EGs). We offer a fasterO(jV j2jEjW)
pseudo-polynomial time and Q(jV j + jEj) space deterministic algorithm for
solving the Value Problem and Optimal Strategy Synthesis in MPGs. This
improves signi�catly over our previous Q(jV j2jEj W) time algorithm, also in
practice. Moreover, we study structural aspects concerning Optimal Positional
Strategies (OPSs) in MPGs. We observe aunique complete decompositionof the
space of all OPSs,opt GSM

0 , in terms of so-called extremal-SEPMs in reweighted
Energy Games; this points out what we called the “Energy-Lattice X �

G of
opt GSM

0 ”. Lastly, it is offered a pseudo-polynomial total-timerecursive proce-
dure for enumerating(w/o repetitions) all the elements of X �

G and opt GSM
0 .
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1 Introduction and Context
This dissertation provides further evidence that game theoretic arguments help
to study algorithmic problems in the area of automated temporal planning and
formal veri�cation of �nite state non-terminating systems.

Automated temporal planning[44, 59, 88] is a branch of Arti�cial Intelligence
(AI) that concerns the realization of temporal strategies or temporal action se-
quences, typically for execution by intelligent agents, autonomous robots and
unmanned vehicles. Unlike classical control and classi�cation problems, the
solutions are complex and must be discovered and optimized in multidimen-
sional space. Planning is also related to decision theory. In known environ-
ments with available models, planning can be done of�ine; solutions can be
found and evaluated prior to execution. In dynamically unknown environ-
ments, the strategy often needs to be revised online; solutions usually resort
to iterative trial and error processes commonly seen in AI.

On the other hand, non-terminatingcomputing systems involving multiple,
distributed, and interacting agents[106, 119] abound today and can be found
in environments as varied as household appliances, medical equipment, in-
dustrial control systems, �ight control systems in airplanes, etc. In these con-
texts, failures caused by design faults may be very costly and they should
be avoided as much as possible. Behaviour of such systems is typically very
complex which makes their design and validation a challenge. Formal methods
try to address this challenge by developing formal models of such systems,
and methods to specify and reason about their properties. A formal method
is of particular interest if it offers not only a rigorous and unambiguous way
to describe systems and their intended behaviour, but also provides ef�cient
algorithms allowing to automate (parts of) the design and validation tasks.

We began our research by studying algorithmic problems in automated
temporal planning, particularly, our original motivation was the study of cer-
tain conditionaltemporal planning problems. At some point, we have identi�ed
interesting connections between the algorithmics of these problems and that of
some fundamental tasks related to a speci�c family of in�nite 2-player pebble
games that are played on �nite graphs, i.e., the Mean Payoff Games (MPGs).
These games, in addition to being of an independent interest, are intimately
related to the semantics of a well-known model of calculus for formal veri�ca-
tion, e.g., the modal m-calculus. In summary, it turned out that a game theoretic
formulation helps to abstract away from syntactic and semantic peculiarities of
modelling formalisms and makes the conditinal temporal constraints problems
in question more easily amendable to algorithmic and complexity analysis.

This led us, on one side, to adopt a game theoretic viewpoint for studying
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those conditional temporal planning problems, ultimately obtaining faster al-
gorithms and improved complexity bounds; and then, on the other side, these
�rst encouraging results have led us to deepen the study of algorithmic and
complexity issues in in�nite games on �nite graphs per se. In the end, we
obtained faster algorithms and improved complexity bounds for some of these
games, i.e., Update Games, Explicit McNaughton-M üller Games, and �nally,
for Mean Payoff Games. Our contributions have thus an algorithmic nature, fo-
cused on improving state-of-the-art computational complexity upper bounds.

1.1 Contributions and Organization
This dissertation comprises an introductory chapter and then two major parts.
Chapter 1 provides context and background notions on the covered subjects,
plus an outline of the main contributions (see below).

Part I presents our contributions in automated temporal planning, it con-
tains a revised version of the following articles:

� Carlo Comin, Roberto Posenato, Romeo Rizzi. A Tractable General-
ization of Simple Temporal Networks and its relation to Mean Payoff
Games. Accepted in 21st International Symposium on Temporal Representa-
tion and Reasoning (TIME 2014). University of Verona, Verona, Italy. Septem-
ber 2014.[32]

� Carlo Comin, Roberto Posenato, Romeo Rizzi. Hyper Temporal Net-
works. Accepted in Constraints, an International Journal, Springer-US, pp
1-39. March 2016.[33]

� Carlo Comin, Romeo Rizzi. Dynamic Consistency of Conditional Sim-
ple Temporal Networks via Mean Payoff Games: a Singly-Exponential
Time DC-Checking. Accepted in 22nd International Symposium on Tempo-
ral Representation and Reasoning (TIME 2015), University of Kassel, Kassel,
Germany. September 2015.[34]

� Carlo Comin, Romeo Rizzi. Checking Dynamic Consistency of Con-
ditional Hyper Temporal Networks via Mean Payoff Games (Hardness
and pseudo-Singly-Exponential Time Algorithm). Accepted in Informa-
tion and Computation, Elsevier. (It will appear during 2017)[40]

� Massimo Cairo, Carlo Comin, Romeo Rizzi. Instantaneous Reaction-
Time in Dynamic-Consistency Checking of Conditional Simple Temporal
Networks. Accepted in 23rd International Symposium on Temporal Represen-
tation and Reasoning (TIME 2016), Technical Univeristy of Denmark (DTU),
Copenhagen, Denmark, October 2016.[17]

Part II presents our contributions concerning algorithmic and complexity
issues in in�nite 2-player pebble games on graphs, it contains a revised version
of the following articles:
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� Carlo Comin, Romeo Rizzi. Linear Time Algorithm for Update Games
via Strongly-Trap-Connected Components (A 2-Player In�nite Pebble Game
Generalization of Strongly-Connected Components). Submitted. [39]

� Carlo Comin, Romeo Rizzi. Energy Structure and Improved Complexity
Upper Bound for Optimal Positional Strategies in Mean Payoff Games.
Accepted in 3rd International Workshop on Strategic Reasoning (SR 2015),
University of Oxford, Oxford, U.K., September 2015.[35]

� Carlo Comin, Romeo Rizzi. Improved Pseudo-Polynomial Bound for the
Value Problem and Optimal Strategy Synthesis in Mean Payoff Games.
Accepted in Algorithmica, Springer-US, pp 1-27, February 2016.[38]

� Carlo Comin, Romeo Rizzi. Faster O(jV j2jEjW)-Time Energy Algorithm
for Optimal Strategy Synthesis in Mean Payoff Games. Submitted. [37]

During the doctoral course, the author of this dissertation also co-authored
the following articles; which however do not belong to this dissertation, being
motivated by topics in computational biology.

� Carlo Comin, Anthony Labarre, Romeo Rizzi, St éphane Vialette. Sorting
with Forbidden Intermediates. Accepted in 3rd International Conference
on Algorithms for Computational Biology (AlCoB 2016), Trujillo, Spain. June
2016 [31]. An extended version of this paper has been submitted to the
IEEE/ACM Transactions on Computational Biology and Bioinformatics.

� Carlo Comin, Romeo Rizzi. An Improved Upper Bound on Maximal
Clique Listing via Rectangular Fast Matrix Multiplication. Accepted in
Algorithmica, Springer-US. (It will appear during 2017)[36]

For completeness, we mention another published contribution related to
the theory of automata; but the result contained in the article below has not
been obtained during the doctoral course, it belongs to author's MSc thesis.

� Carlo Comin. Algebraic Characterization of the Class of Languages Rec-
ognized by Measure Only Quantum Automata. Accepted in Fundamenta
Informaticae, Annales Societatis Mathematicae Polonae, IOS Press, 335–353,
vol 134, 2014.[29]

In summary, algorithmic game theory (especially, in�nite two-player pebble-
games played on �nite graphs) is the red thread that makes it possible to look
at the various contributions of this dissertation in a suf�ciently coherent way.
In the following sections we provide some further information to better outline
the context in which our results can be placed.
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1.2 Constraint Satisfaction Problems
The notion of constraint is central to a number of human activities and dis-
parate processes. Aconstraint limits (or restricts) the �eld of possibilities in
a certain universe. For example, a school timetable that coordinates students,
teachers, lessons, rooms and time slots, must satisfy many constraints, i.e., not
all combinations are possible since the involved constraints may be numerous
and various. Besides school timetabling, constraint satisfaction problems arise
in many enterprise and industrial tasks, ranging from scheduling to con�gu-
ration, circuit design and molecular biology [78]. Also in Arti�cial Intelligence
(AI) and Operations Research (OR),constraint satisfactionis the process of �nd-
ing a solution to a set of constraints imposing conditions that the variables
must satisfy. A solution is therefore a set of values for the variables that sat-
is�es all the constraints – that is, a point in the feasible region. Formally, we
shall consider the following model:

De�nition 1.1 ([101]). A constraint satisfaction problem (CSP) is a triplet,

F , (X,D,C),

where:

� X , f X1,X2, . . . ,Xng is a set ofvariables;

� D , f D1,D2, . . . ,Dng is a set of nonempty domains;

� C , f C1,C2, . . . ,Cmg is a set ofconstraints.

Each variable Xi will take on its value in the nonempty domain Di , i.e., Di is the
domain of possibles values of Xi . Each constraint Cj involves some subset of the
variables and speci�es the allowable combination of values for that subset, i.e., Cj is in
turn a pair (Tj ,Rj ) where Tj � X is a subset of k variables and Rj is a k-ary relation
on the corresponding subset of domains. Astate Y of the CSPF is de�ned by an
assignment of values to some or all of the variables, i.e.,

Y , f X i = vi ,X j = vj , . . .g, for some vi 2 D i ,vj 2 D j , . . .

An assignment that doesn't violate any constraint isconsistent (or feasible), where
a constraint(Tj ,Rj ) is satis�ed if the values assigned to the variables Tj satisfy the
relation Rj . A complete assignment is one in which every variable is mentioned, and
a solution to a CSP is a complete assignment that satis�es all the constraints.

Notable examples of problems that can be modeled as a CSP include the
eight queens puzzle.

Example 1.1. This is the problem of placing eight chess queens on an8 � 8 chessboard
so that no two queens threaten each other, where a solution requires that no two queens
share the same row, column, or diagonal. The problem can be recast as one in which
exactly one queen is assigned to each of the chessboard's columns, and the solver needs
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to �nd out only which row each of these queens is going to be placed in. Thus we
have8 variablesX , f Q1,Q2, . . . ,Q8g, each of which can assume the value within the
domain Di , f 1, . . . ,8g. Given that a feasible solution is a con�guration in which no
two queens can attack each other, we have the following constraints: horizontally, no
two queens should be in the same row, so:

Qi 6= Qj whenever i6= j;

along any diagonal, they should not be the same number of columns apart as they are
rows apart, so:

jQi � Qj j 6= j i � j j whenever i6= j.

Thus there are56 constraints. Of course the puzzle can be generalized, with n queens
on a chessboard of n� n squares (the reader is referred to e.g. [3] for a survey of known
results and research open problems concerning the n-queens puzzle).

The identi�cation of CSPs as a general class is due to Ugo Montanari [88],
who also pointed out the notion of constraint networkand propagation by path
consistency. Recall that a n-ary relation over the variables X1,X2, . . . ,Xn is any
subset of the corresponding domains D , D1 � D2 � . . . � Dn. Let us denote by
Ri j any binary relation between X i and X j , where we allow Ri j 6= Rji generally.
Given i 2 [n], the identity relation Iii exists, de�ned only between a variable X i

and itself, as follows: Iii , f (d,d) j d 2 D ig. Also, it is worth mentioning the
unit relation Uii , D i � D i . The formal de�nition of constraint network(i.e., a
network of binary constraints) goes as follows.

De�nition 1.2 ([88]). A constraint network N , (D, f Ri ,jgi ,j ) is made of a family
of sets,

D , f D1,D2, . . . ,Dng,

plus a relation Ri j from every set Di to every set Dj , for i, j 2 f 1,2, . . . ,ng.
Furthermore, Rii � Iii for every i.

A constraint network can be thought of as representing a n-ary relation
r , where the n-tuple a 2 r iff its projections on all the two-dimensional sub-
spaces ofD satisfy the binary constraints of N . A useful way of visualizing
a network is by a directed graph in which vertices v1,v2, . . . ,vn correspond to
sets D1,D2, . . . ,Dn, and an arc (vi ,vj ) is present iff Ri j 6= Ui j (when i 6= j) or
Rii 6= Iii [88]. For instance,

Example 1.2. The following n-ary (n= 3) relationr is represented by the network in
Fig. 1.1; let Di = f xi1,xi2,xi3g for i = 1,2,3, then let:

r , f (x11,x21,x31),(x11,x21,x32),(x12,x23,x31)g.

As observed in [88], the class of n-ary relations representable by constraint
networks is much narrower than the class of all n-ary relations. The reader
is referred to [88] in order to get more details and fundamental properties
concerning constraint networks.
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v1

v3

v2

Figure 1.1: The constraint network r of Example 1.2.

1.2.1 Temporal Constraint Networks
In [44], network-based methods of constraint satisfaction are extended to in-
clude continuous variables, thus providing a framework for processing tem-
poral constraints.

De�nition 1.3 ( [44]). A temporal constraint network (TN) G is a constraint
network involving a set of variablesX , f X1,X2, . . . ,Xng having continuous (real-
valued) domainsD , f D1,D2, . . . ,Dng; each variable represents a time point. Fur-
thermore, a setC of unary and binary constraints is involved. Each (unary or binary)
constraint Cj 2 C is represented by a set of real intervals:

Cj , f I1, I2, . . . ,Ikg =
�

[a1,b1], [a2,b2], . . . ,[ak,bk]
	

.

Closed, open and semi-open intervals are generally allowed. The intended interpreta-
tion going as follows.

� A unary constraint Tii restricts the domain of variable Xi to the given set of
intervals; namely, it represents the disjunction:

k_

q= 1

�
aq � X i � bq

�
.

� A binary constraint Ti j constrains the permissible values for the distance Xj �
X i ; namely, it represents the disjunction:

k_

q= 1

�
aq � X j � X i � bq

�
.

Constraints are given in acanonical form where all intervals are pairwise disjoint.

A TN can be represented by a directed constraint graph, in much the same
way as we did above for constraint networks, where vertices represent vari-
ables and an arc (X i ,X j ) indicates that a proper constraint Ti j is speci�ed; but
for TN, in addition, the arc is labeled by the interval set. An example is shown
in Fig. 1.2.

10



X1

X3

X2

[a
1 ,b

1 ], [a2 ,b2 ]

[c1 ,d
1 ], [c2 ,d

2 ]

[e1,
f 1],

[e2,
f 2],

[e3,
f 3]

[g1,h1]

Figure 1.2: A Temporal Constraint Network.

Usually, a special time point Z (or X0) is employed to represent the begin-
ning of the world, i.e., for simplicity Z is always scheduled at time tZ = 0. All
other times are relative to Z; thus we may treat each unary constraint Tii as a
binary constraint T0i (having the same interval representation).

1.2.2 Simple Temporal Networks
De�nition 1.4. A simple temporal problem (STP) (or simple temporal network
(STN)) is a TN in which all constraints specify a single interval; namely, for each
constraint Cj , there is an interval Ij such that Cj = f I jg.

In STNs, each arc(X i ,X j ) is labeled by an interval [ai j ,bi j ], representing the
constraint:

ai j � X j � X i � bi j .

Alternatively, the same constraint can be expressed as a pair of inequalities:

X j � X i � bi j and X i � X j � � ai j

Notice that solving a STP/STN amounts to solving a set of linear inequalities
on the X i , where each inequality involves exactly two variables; thus a shortest-
path algorithm on graphs, such as Bellman-Ford [4,42,55], can be applied.

Particularly, we shall consider graphs that are directed and weighted on
the arcs. Thus,

De�nition 1.5. If G = ( V, A) is a graph, then every arc a2 A is a triple (ta,ha,wa)
where ta 2 V is the tail of a, ha 2 V is the head of a, and wa 2 R is the weight of a.

Moreover, since we use graphs to represent distance constraints, they do not need
to have either loops (unary constraints are meaningless) or parallel arcs (two parallel
constraints represent two different distance constraints between the same pair of node:
only the most restrictive is meaningful). We also use the notations h(a) for ha, t(a)
for ta, and w(a) or w(ta,ha) for wa, when it helps.

The order and size of a graph G= ( V, A) are denoted by

n , jV j and m, jA j,
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respectively. The size is a good measure for the encoding length of G.

De�nition 1.6. A cycle of G is a set of arcs C� A cyclically sequenced as a0,a1, . . . ,à � 1
so that,

h(ai ) = t(aj ) () j = ( i + 1) mod ` ;

it is called anegative cycle if w(C) � 0, where w(C) stands forå e2C we.

De�nition 1.7. A graph is called conservative when it contains no negative cycle.
A potential is a function p: V 7! R. The reduced weight of an arc a= ( u,v,wa)

with respect to a potential p is de�ned as

wp
a , wa � pv + pu.

A potential p of G= ( V, A) is called feasible if wpa � 0 for every a2 A. Notice that,
for any cycle C, wp(C) = w(C). Therefore, the existence of a feasible potential implies
that the graph is conservative as w(C) = wp(C) � 0 for every cycle C.

So, the Bellman-Ford algorithm [4,42,55] can be used to produce in O(nm)
time:

� either a proof that G is conservative in the form of a feasible potential;

� or a proof that G is not conservative in the form of a negative cycle C
in G.

When the graph is conservative, the smallest weight of a walk between two
nodes is well de�ned, and, �xed a root node r in G, the potentials returned by
the Bellman-Ford algorithm are, for each node v, the smallest weight of a walk
from r to v. Moreover, if all the arc weights are integral, then these potentials
are integral as well. Therefore, the Bellman-Ford algorithm provides a proof
to the following theorem.

Theorem 1.1 ([4, 42, 55]). A graph admits a feasible potential if and only if it is
conservative. Moreover, when all arc weights are integral, the feasible potential is an
integral function.

Thus an STN can be viewed as a weighted graph whose nodes are time-
points that must be placed on the real line and whose arcs express mutual
constraints on the allocations of their end points.

De�nition 1.8. An STN G = ( V, A) is called consistent if it admits afeasible
scheduling, i.e., a scheduling s: V 7! R such that

s(v) � s(u) + w(u,v), 8 arc (u,v) of G.

Then we have the following characterization result for STN's consistency
in terms of conservative graphs.

Corollary 1.1 ([4,42,44]). An STN G is consistent if and only if G is conservative.
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Proof. A feasible scheduling is just a feasible potential. Therefore, this corol-
lary is just a restatement of Theorem 1.1. 2

The reader is referred to [44] for further details and fundamental properties
concerning the theory of TNs and STNs.

1.3 Algorithmic Game Theory
As argued in [120], the birth of Algorithmic Game Theory (AGT)is often equated
with the following three seminal papers, cited in [56] for laying the foundation
of growth in AGT:

� Koutsoupias, Papadimitriou, Worst-case Equilibria. STACS 1999: 404-413[74],
introduced the notion of “price of anarchy”, a measure of the extent to
which competition approximates cooperation, quantifying how much
utility is lost due to sel�sh behaviors on the Internet, which operates
without a system designer or monitor striving to achieve the social opti-
mum.

� Roughgarden, Tardos: How Bad is Sel�sh Routing? FOCS 2000: 93-102[100],
studied the power and depth of the “price of anarchy” as it applies to
routing traf�c in large-scale communications networks to optimize the
performance of a congested network.

� Nisan, Ronen: Algorithmic Mechanism Design. STOC 1999: 129-140[91],
studied classical mechanism design from algorithmic and complexity-
theoretic perspectives.

However the study of algorithmic questions in combinatorial games goes back
a long time ago. Perphaps the �rst combinatorial game described in a math-
ematical form (in Europe) dates back to the beginning of the XVII century, to
the time when Bachet de Méziriacproposed in his “Problémes Plaisants”the fol-
lowing game: two players alternately choose numbers between 1 and 10; the
player, on whose move the sum attains exactly 100, is the winner. This kind
of game, whose natural generalization nowadays is known as Nim, was also
studied by Bouton (1901-2) [11]and it has an extensive literature [6]. In Nim,
under the normal play convention, the game is between two players and it is
played with n heaps (i.e., a pile of n counters) of any number of objects. The
two players alternate by taking (removing), at each turn, any number of objects
from any single one of the heaps at their choice. The winning condition is to
be the last to take an object. So, Nim can be played as anormal play game, i.e.,
one in which the player who makes the last move wins. Also, Nim is impartial
since the allowable moves depend only on the position and not on which of
the two players is currently moving, and the payoffs are symmetric; otherwise
stated, the only difference between Player 0 and Player 1 is that Player 0 goes
�rst. “Normal play Nim” is fundamental to the Sprague–Grundy Theorem[63],

13



which asserts that every impartial game under the normal play convention is
equivalent to a nimber(i.e., the value of a Nim heap of a certain size) [41].

The nimbersare the ordinal numbers,

0, 1, 2, . . . ,n, . . . ,w, w + 1, w + 2, . . . ,w � 2, w � 2+ 1, w � 2+ 2, . . . ,w2, . . . ,w3, . . . ,ww , . . . ,www
, . . .

endowed with a new nimber additionand nimber multiplication, which are dis-
tinct from ordinal addition and ordinal multiplication; see [41] for more de-
tails. Some other connections between positional games and the in�nite soon
emerged in the literature.

1.3.1 Topological Banach-Mazur Games
The in�nite positional games of perfect information were discovered and ini-
tially studied in Poland around the '30s. In 1935 Stefan Banachstarted a note-
book, called the Scottish Book, where the mathematicians residing in or visiting
Lw ów proposed various mathematical problems, or conjectures, and also in-
dicated their partial or complete solutions. In the same year Stanis�aw Mazur
proposed an in�nite combinatorial game. The game is described in Problem
43 of the Scottish Book; its solution, given by Banach, is dated August 4, 1935.
Hence, the game became known as theBanach-Mazur Game. Mazur discovered
the game in 1928; however, later on,Ulam [114] gives the year 1935 for its com-
plete solution, referring to a conversation in the Scottisch Caf é, where “Mazur
proposed the �rst examples of in�nite mathematical games”). Later on Ulam
prepared an English translation of the Scottish Book, see [115].

De�nition 1.9 (Banach-Mazur Games onR). In a Banach-Mazur Game, played
on the real line, the winning condition is given by a setWin � R of real numbers; in
the �rst move, Player 0 selects an interval d0 on the real line, then Player 1 chooses an
interval d1 ( d0, then Player 0 chooses a further re�nement d2 ( d1 and so on. Thus
a play forms an in�nite (proper) chain sequence:

d0 ) d1 ) d2 ) � � � .

Player 0 wins iff the intersection of all intervals di contains a point ofWin; namely,

Player 0 wins ()
\

n2N

dn \ Win 6= Æ.

A similar game can be played on a generic topological spaceX. Let V be a family of
subsets ofX such that: each V2 V contains a nonempty open subset ofX; and each
nonempty open subset ofX contains an element V2 V. In the Banach-Mazur game
de�ned on(X,V ) with winning condition W � X, the two players take turns to choose
sets V0 ) V1 ) V2 ) � � � in V , where Player 0 wins iff

T
n2N Vn \ Win 6= Æ.

De�nition 1.10 (Determinacy). A game is said to bedetermined if one or the other
of the players has a winning strategy, i.e., a selection of moves granting him the victory,
no matter how the opponent plays.
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Concerning the determinacy of these games, the original proof of Banach
never appeared. The �rst published proof is that of Oxtoby Theorem[94], which
characterizes determinacy of topological Banach-Mazur gamesin terms of topo-
logical properties of the winning condition. The term “topological game”was
introduced by Berge [5].

Observe that Banach-Mazur's in�nite game can also be played on graphs:

De�nition 1.11 (Banach-Mazur Games on Graphs). It is given (G,vs), where G=
(V, A) is a directed graph and vs 2 V is a distinguished initial vertex, it is assumed
that G has no sink vertices. A winning conditionWin is any subset of in�nitely long
paths in G, each starting at v, i.e., anyWin � Paths(G,vs). The game(G,vs,Win)
starts at vertex vs with a move of Player 0 and the players strictly alternate. In a
move, after a sequence of moves p0, p1, . . . ,pm� 1 forming a �nite path, p0p1 � � � pm� 1,
that has already been played, the corresponding Player( i mod 2) prolongs the path
by choosing another �nite path pi whose initial vertex is the end vertex of pm� 1. Thus,
a play results into an in�nite path:

p , p0p1 � � � pm � � � 2 Paths(G,v),

the winning condition being that:

Player 0 wins () p \ Win 6= Æ;

otherwise, Player 1 wins.

This reformulation shows that Banach-Mazur games are an interesting
starting point for the exploration of properties of in�nite games on graphs.
Many in�nite games on graphs and their determinacy properties �nd a natu-
ral place in a hierarchy known as the Borel Hierarchy, whereas the fundamen-
tal theorem concerning determinacy in in�nite games is the Borel Determinacy
Theorem; the latter can be formulated in terms of Gale-Stewart Gameswhich are
recalled in the next subsection.

1.3.2 Gale-Stewart Games
In 1953 David Galeand Frank Stewartintroduced the following positional in�-
nite game of perfect informationin [57]. This allowed them to observe fruitful
connections between set theory and in�nite games, particularly, this led to
important applications of the notion of determinacy in the foundations of set
theory [83,90].

De�nition 1.12 (Gale-Stewart Games). LetS be analphabet, i.e., a �nite nonempty
set of symbols. A Gale-Stewart game onS is a pairG, (S,Win), whereWin � Sw

is called thewinning condition . The two players alternate turns, and each player is
aware of all moves before making the next one. On each turn, Player i (for i= 0,1)
chooses a single element ofS (i.e., aposition ) to play. But the same element may be
chosen more than once without restriction. The play continues ad in�nitum, so that a

15



singleplay of the game determines an in�nite sequence:

p , (a0,a1, . . . ,an, . . .) 2 Sw .

At this point, Player 0 wins ifp 2 Win; otherwise, the winner is Player 1.

De�nition 1.13 (Open Gale-Stewart Games). Given a word p2 S� , the following
subset[p] � Sw is named acone:

[p] , f p 2 Sw j p is a pre�x ofp g.

We say that,

U � Sw is open () everyp 2 U has a pre�x p such that[p] � U.

If O is the family of all open subsets ofSw , then(Sw ,O) is called theCantor topology
on Sw . A Gale-Stewart gameG, (S,Win) is calledopen (closed) wheneverWin is
so in the Cantor topology onSw .

The main result of Gale and Stewart [57] is dated 1953, going as follows.

Theorem 1.2 (Gale-Stewart Determinacy Theorem [57]). Every open or closed
Gale-Stewart game is determined.

In the next twenty years this result was extended to slightly higher levels
of the Borel hierarchy. At some point this led to the question of whether or
not the Gale-Stewart game is determined whenever the payoff set is Borel, as
recalled next.

1.3.3 Borel Determinacy Theorem
The question of whether Borel Gale-Stewart games are determined was an-
swered by Donald A. Martin [81] in 1975. Let us �rstly recall some basic notions
from topology.

De�nition 1.14. Let G be a topological space. ABorel set is any set inG that
can be formed from open sets through the operations of countable union, countable
intersection, and relative complement (set difference).

Notice that the collection of all Borel sets of G forms a s-algebra; indeed,
the Borel sets are the smallests-algebra of subsets of Sw containing all open
sets in O.

At this point, Borel sets are classi�ed in the “Borel Hierarchy” according
to how many times the operations of complement and countable union are
required to produce them from open sets.

De�nition 1.15. In the Borel Hierarchy there are three classes for every countable
ordinal a > 0:

S0
a,P 0

a, andD0
a.

� A set S is inS0
1 iff S is open in(Sw ,O).
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� A set S is inP 0
a iff the complement of S is inS0

a.

� A set S is inS0
a for a > 1 iff there exists a sequence of sets A1, A2, . . . such that

each Ai is in P 0
ai

for someai < a and A= [ i � 1A i .

� A set is inD0
a iff it is both in S0

a andP 0
a.

De�nition 1.16. WhenWin is Borel, the Gale-Stewart game(S,Win) is calledBorel.

The Borel Determinacy Theoremstates that any Borel Gale-Stewart game is
determined, meaning that one of the two players will have a winning strategy
for the game.

Theorem 1.3 (Borel Determinacy Theorem [81, 82]). Every Borel Gale-Stewart
game is determined.

As already mentioned, this was proved by Martin [81] in 1975. The origi-
nal proof was quite complicated, the same author published a shorter purely
inductive proof in 1982 [82].

The Borel Determinacy Theorem provides a framework for the determinacy
question of a number of distinct but interrelated in�nite game models.

Furthermore, the problem of verifying correctness and temporal aspects
of non-terminating computing systems involving multiple, distributed, and
interacting agents [106] soon led to the study of interesting model-checking
questions [22]. Some of these problems turned out to be equivalent to the de-
terminacy question for certain in�nite games lying at a low level (3rd level) of
the Borel Hierarchy, e.g., the parity games[61,122]. Some of these developments
are mentioned in the next subsections.

1.4 Modal m-calculus, w-Regular and Mean-Payoff Games
1.4.1 Syntax and Semantics of the Modal m-calculus
The modal m-calculus is an extension of propositional modal logic, particularly,
it is a logic that combines simple modal operators with �xed point operators
to provide a form of recursion. The m-calculus originates with Dana Scott[105]
and Jaco de Bakker[43], later on was further developed by Dexter Kozen[75]. It
can be viewed as a logic describing properties of transition systems, i.e., poten-
tially in�nite graphs with labeled arcs ( transitions) and vertices (states). Tran-
sitions are labeled with actions drawn from, A , f a,b,c, . . .g, and states are
labeled with sets of propositions, drawn from P , f p1, p2, . . .g.

Thus a transition systemcan be viewed as a tuple:

M ,
�

S, f Raga2A , f Pigi2N

�
,

where S is a set of states, Ra � S � S is a binary relation de�ning transi-
tions for every action a 2 A , and there's a set Pi � S for each proposition
pi 2 P . A pair (s,s0) 2 Ra is called a-transition, an a-path is a sequence of pairs
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(s0,s1),(s1,s2), . . . all lying in Ra. Actually, there is a great interest in ef�cient
solutions of the model-checking and the satis�ability problems of the modal
m-calculus, see [13] for a survey. The syntax of modal m-calculus is formally
recalled next.

De�nition 1.17 (Syntax of the modal m-calculus [13,75,105]). LetVar be a count-
able set of variables (whose meaning will be sets of states). Aformula a of the modal
m-calculus is de�ned by the following grammar Lm:

Lm , X
�
� p

�
� : p

�
� a ^ b

�
� hai a

�
� [a]a

�
� mX.a

�
� nX.a;

where X2 Var , p 2 P , a 2 A , and a,b range over formulas of Lm. The formulas
mX.a and nX.a are named�xpoint formulas; and the symbolsmand n are theleast
and greatest �xpoint operators, respectively. Disambiguating parentheses are added
when necessary, where[a] and hai bind more tightly than boolean operators,mand n
bind loosely.

Example 1.3. The formula (sentence)nY.
�
mX.(( p ^ hai Y) _ hai X)

�
can be written

as:
nY.mX.(p ^ hai Y) _ hai X.

One may adopt a series of syntactic tricks to simplify the notation: let us
write sX.a for mX.a or nX.a; also, to underline the dependency of the value
of a formula a on a variable X, sX.a(X) stands for sX.a; in any formula like
sX.a(X), we say that X is a boundvariable; a variable X is freein a formula
a(X) if it is not bound; a sentenceis a formula with no free variables occuring
in it; �nally, by a[b/ X ] we denote the result of substituting b for every free
occurrence of X in a. Note one can always make sure that no variable has
at the same time a free and a bound occurrence in a formula, as clearly sX.a
is equivalent to sY.a[Y/ X ]; so, w.l.o.g., bound and free variables are always
different. Also, we can require that every variable is bound at most once in a
formula. A formula is well-namedwhen both of the latter two conditions hold.
Moreover, we can even ensure that in every formula mX.a(X) the variable X
appears only once in a(X), as sX.sY.a(X,Y) is equivalent to sX.sX.a(X,X).

Let us proceed by recalling the notion of unfolding of a formula, which will
be useful in the reminder of this section: �x s 2 f m,ng, any �xpoint formula
sX.a(X) is equivalent to its unfolding, namely, a(sX.a(X)) ; indeed, this equiv-
alence follows directly from the de�nition of the �xpoint operators mand n.
Note that there is no negation operation in the syntax, just negations of propo-
sitions; however, the operation of the negation of a sentence will turn out to be
de�nable.

A meaning of a formula in a transition system is a set of states satisfying the
formula, the meaning of a variable will be also a set of states of the transition
system.

De�nition 1.18 (Denotational Semantics of the modal m-calculus [13, 75, 105]).
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Given a transition system,

M ,
�

S, f Raga2A , f Pigi2N

�
,

and a valuation,
V : Var ! 2S,

the meaningJaKM
V of a formulaa of Lm is de�ned by induction on its structure:

� The meaning of any variable X2 Var is JXKM
V , V(X);

� The meaning of a propositional constant pi 2 P and its negation: pi 2 P is
de�ned (respectively) by:

JpiK
M
V , Pi andJ: piK

M
V , Sn Pi .

� Conjunction is interpreted as set intersection:

Ja ^ bKM
V , JaKM

V \ JbKM
V .

� Disjunction is interpreted as set union:

Ja _ bKM
V , JaKM

V [ JbKM
V .

� The meaning ofhai a is:

JaKM
V ,

�
s2 S j 9s02S

�
Ra(s,s0) ^ s02 JaKM

V
�	

;

� The meaning of[a]a is:

JaKM
V ,

�
s2 S j 8s02S

�
Ra(s,s0) ) s02 JaKM

V
�	

;

� Themand n constructs are interpreted as �xpoints of operators on sets of for-
mulas. A formulaa(X) with free variable X can be seen as an operator on sets
of states, mapping a set S0 to the semantics ofa when X is interpreted as S0,
namely,

S07! JaKM
V[S0/ X ].

By de�nition this operator is monotonic, thus it has well de�ned least and great-
est �xpoints by Knaster-Tarski's �xed point theorem [111].

Then, the meaning ofmandn is de�ned (respectively) by:

JmX.aKM
V ,

\ n
S0� S j JaKM

V[S0/ X ] � S0
o

,

JnX.aKM
V ,

[ n
S0� S j S0� JaKM

V[S0/ X ]

o
.
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Example 1.4. The formulanY.mX.(p ^ hai Y) _ hai X means:

“p holds in�nitely often on some a-path”.

Concerning the negation operator, as mentioned, it can be expressed within
Lm in a meaningful way, by induction on the structure of the negated for-
mula [13]:

De�nition 1.19 (Negation operator for the modal m-calculus [13]).

: (: p) , p : (: X) , X

: (a _ b) , : a ^ : b : (a ^ b) , : a _ : b

:h ai a , [a]: a : [a]a , hai: a

: mX.a(X) , nX.: a(: X) : nX.a(X) , mX.: a(: X)

When applying this translation to a formula without free variables (i.e., to
a sentence), the �nal result has all variables occurring un-negated, because of
the two negations introduced when negating �xpoint expressions.

Thus, the following holds.

Theorem 1.4 ([13]). For every sentencea of Lm, every transition systemM over the
set of states S, and every valuationV:

J: aKM
V = Sn JaKM

V .

We should mention that in 1986 Niwiński [92] introduced a hierarchy of
�xpoint terms based on the number of alternations between least and greatest
�xpoint operators. Also, Emersonand Lei [54] de�ned a similar notion of alter-
nation depthof a formula. While most useful properties can be expressed with
few �xpoints, it is the nesting of the two types of �xpoints that is the source
of both expressive power and algorithmic dif�culties; indeed, the modal m-
calculus can encode most of the other logics used in veri�cation and still the
algorithmics is not harder than the others [13].

Let a be a well-named formula, thus for every bound variable Y we have a
unique subformula sY.bY in a; let's say that Y is a m-variable or a n-variable
depending on the binder s. Then, alternation depth can be de�ned as follows.

De�nition 1.20 (Alternation Depth for modal m-calculus [13, 54, 92]). Thede-
pendency order on bound variables ofa is the smallest partial order such that
X � a Y if X occurs free insY.bY. Thealternation depth of a m-variable X in a
formulaa is the maximal length of a chain X1 � a � � � � a Xn, X = X1, where variables
X1,X3, . . . ,X2i+ 1, . . . arem-variables and variables X2,X4, . . . ,X2i , . . . aren-variables,
for i � 1; and alternation depth ofn-variables is de�ned by interchanging the role ofn
and m. Thealternation depth of a formulaa, denotedadepth (a), is the maximum
of alternation depths of variables bound ina, or zero if there are no �xpoints.
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Proposition 1.1 ([13,54,92]). Fix somes 2 f m,ng. A formulasX.b(X) has the same
alternation depth as its unfoldingb(sX.b(X)) .

The alternation depth will allow us to illustrate the game semantics of the
modal m-calculus in terms of parity game conditions. These are introduced in
the remainder of this section.

Let us mention the complexity of the satis�ability problem for the modal m-
calculus. Suppose that we want to decide if two given formulas of the modal
m-calculus are equivalent, i.e., whether the two formulas are satis�ed in the
same set of models. Formula equivalence is nothing else than the satis�ability
problem: deciding if there exists a model and a state where the formula is true.
The following complexity result holds.

Theorem 1.5 ([51,109]). The satis�ability problem for the modalm-calculus isExpTime-
complete.

Instead, the model-checking problem of the modal m-calculus turns out to
lie within NP \ co-NP, being it equivalent to determining the winner in parity
games; which in turn belong to the family of w-regular games. In the following
we shall recall these games and some of their basic properties.

1.4.2 w-Regular Games
An w-regular game (G,Win) is made of an arena G plus a winning condi-
tion Win. An arenais a tuple G= ( V,E,hV0,V1i ) where GG , (V,E) is a �-
nite directed graph and (V0,V1) is a partition of V into the set V0 of vertices
owned by Player 0 (a.k.a. Player � ), and the set V1 of vertices owned by
Player 1 (a.k.a. Player # ). A weighted arenais a tuple G= ( V,E,w,hV0,V1i )
where: (V,E,hV0,V1i ) is an arena, and GG , (V,E,w) is a �nite weighted di-
rected graph. W.l.o.g. it can be assumed that GG has no sink, i.e., Nout (v) =
post (v) 6= Æfor every v 2 V. Still, we remark that GG is not required to be a
bipartite graph on colour classes V0 and V1. Fig. 1.3 depicts a simple example
of an arena G.

A B

CD

� 1

� 2

+ 1

+ 2 � 1

� 1

+ 1

+ 2

� 9

Figure 1.3: An arena G.

In this context a game on G is played for in�nitely many rounds by two
players moving a pebble along the arcs of GG. At the beginning of the game
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we �nd the pebble on some vertex vs 2 V, which is called the starting positionof
the game. At each turn, assuming the pebble is currently on a vertex v 2 Vi (for
i = 0,1), Player i chooses an arc(v,v0) 2 E and then the next turn starts with
the pebble on v0. Let V+ and Vw be the set of all �nite and in�nite sequences
on alphabet V, respectively. Given p 2 Vw , let Inf (p ) be the set of all and only
those vertices v 2 V that appear in�nitely often in p ; namely,

Inf (p ) ,
�

v 2 V j 8 j2N 9k2N such that k > j and vk = v
	

.

Generally, a winning condition is any Win � Vw . The pair (G,Win,vs) is called
a game, where it is given initial starting position vs 2 V. A play is any in�nite
path p in G:

p , v0v1 � � � vn � � � 2 Vw .

The alphabetX(p ) of a play p is the set of all vertices v 2 V appearing in
p at least once. Player 0 is declared thewinner of the play p iff p 2 Win.
Generally, it is interesting to considering those winning conditions that re�ect
the acceptance conditions in w-automata [61]. We will not describe here the
theory of w-automata, for which we refer the reader to the excellent reference
text [61], but we just recall the main – so called, w-regular– winning conditions
which can be de�ned for in�nite games on graphs:

� Müller condition: given a family of subsets F � 2V , then:

WinF , f p 2 Vw j Inf (p ) 2 Fg ;

� Rabin condition: given a family F , f (E0,F0),(E1,F1), . . . ,(Em� 1,Fm� 1)g,
where Ei ,Fi � V for every i, then:

WinF , f p 2 Vw j 9k Inf (p ) \ Ek = Æ^ Inf (p ) \ Fk 6= Æg;

� Street condition:given a family F , f (E0,F0),(E1,F1), . . . ,(Em� 1,Fm� 1)g,
where Ei ,Fi � V for every i, then:

WinF , f p 2 Vw j 8k Inf (p ) \ Ek 6= Æ_ Inf (p ) \ Fk = Æg;

� Rabin chain condition:given a family F , f (E0,F0),(E1,F1), . . . ,(Em� 1,Fm� 1)g,
where Ei ,Fi � V for every i, and E0 ( F0 ( E1 ( F1 ( � � � ( Em� 1 ( Fm� 1,
then: it goes like the Rabin condition;

� Parity conditions: given a coloring function c : V ! N on the vertices,
then:

min-parity condition: Winc , f p 2 Vw j min (Inf (p )) is eveng;

max-parity condition: Winc , f p 2 Vw j max(Inf (p )) is eveng;
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� Büchi condition:given F � V, then:

WinF , f p 2 Vw j Inf (p ) \ F 6= Æg;

As argued in [61], the winning conditions can be transformed into one
another, the transformations being exponential in the size of the transformed
arenas. Under this prospect, the main result says that it is enough to consider
the parity games(see Chapter 2, Subsection 2.4.2, Theorem 2.7 in [61]).

Concerning automata theory, let us just mention that the Müller condi-
tion plays a special role also in the theory of w-automata, which are (roughly
speaking) �nite-state automata taking w-words as input (see [61] for more de-
tails). The usual de�nitions of deterministic and nondeterministic automata
are adapted to the case ofw-input-words by introducing new acceptance – so-
called, w-regular acceptance– conditions. For this purpose one introduces an
acceptance componentin the speci�cation of the automaton, which may arise in
different formats. The acceptance component can be given as a set of states,
as a family of sets of states, or as a function from the set of states to a �-
nite set of natural numbers. Indeed, for every w-regular winning condition
as de�ned above there is a corresponding w-regular acceptance conditionwhich
leads to speci�c families of acceptance components. Then one may consider
Büchi, M üller, Rabin, Street and Parity w-automata. A remarkable result of
McNaughtonand Müller asserts:

Theorem 1.6 (Determinization of nondeterministic B üchi w-automata [61,84]).
Every nondeterministic Büchi automaton with n states can be transformed into an
equivalent (i.e., one accepting the samew-language) deterministic Müller automaton
with 2O(n log n) states.

Let us proceed by discussing the determinacy properties of w-regular games.
To this end, we recall next the notions of forgetfuland memorylessstrategy.

De�nition 1.21. For any i2 f 0,1g, a strategy of Player i is any function,

si : V � � Vi ! V,

such that for every �nite path p0v in GG, where p0 2 V � and v2 Vi , it holds that
(v,si (p0,v)) 2 E. A play v0v1 . . .vn . . . is consistent with a strategys 2 Si if v j+ 1 =
s(v0v1 . . .vj ) whenever vj 2 Vi . A strategysi 2 Si is said to be�nite memory (or
forgetful ) if there exists a �nite set M, an element mI 2 M, and two functions,

d : V � M ! M and g : V � M ! V,

such that the following holds. When p= v0v1 � � � vl � 1 is a pre�x of a play which
is consistent withsi and the sequence m0,m1, . . . ,ml is determined by m0 , mI and
mi+ 1 , d(vi ,mi ), then it holds that:

si (v0v1 � � � vl � 1,vl ) = g(vl ,ml ).
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A strategy si of Player i ispositional (or memoryless) if it doesn't need any
memory at all; namely, if it is forgetful for some singleton M, one such thatjM j = 1.
The set of all the positional (memoryless) strategies of Player i is denoted bySM

i .

De�nition 1.22. Given a starting position vs 2 V, theoutcome of strategiess0 2 S0

ands1 2 S1, denotedoutcome G(vs,s0,s1), is the unique play that starts at vs and is
consistent with both strategiess0 2 S0 ands1 2 S1.

De�nition 1.23. Given a memoryless strategysi 2 SM
i of Player i inG, then GG

si
=

(V,Esi ,w) is the graph obtained from GG by removing all arcs(v,v0) 2 E such that
v 2 Vi and v06= si (v); we say that GGsi

is obtained from GG by projection w.r.t. si .

A B

CD

� 2+ 2 � 1

� 1

+ 1

+ 2

� 9

Figure 1.4: An arena obtained by projection.

There are several questions to ask when one is confronted with a w-regular
game as introduced above.

� One may ask whether the game is determined, i.e., whether or not one
of the players can move so that, regardless of how the other moves, the
outcome play will always be winning for him. In that case, one can
consider winning strategies and winning regionsW0 and W1; where W i

is the subset of vertices v 2 V such that the Player i wins the game that
starts at vs = v;

� One may ask whether it is possible to effectively (and maybe ef�ciently)
compute which of the two players wins the game by starting from a given
position vs 2 V;

� It is not only interesting to know who wins a game, but also how a
winning strategy looks like, i.e., one may ask to automatically synthesize
a winning strategy for the winning player.

It can be proved that, in every w-regular game, both players win forget-
ful. This is called “forgetful (or �nite memory) determinacy”of w-regular games
(for a full proof see Chapter 2, Subsection 2.4.2, Corollary 2.15 in [61]). It is
also worth mentioning that in every Rabin game, Player 0 has a memoryless
winning strategy on his winning region. Symmetrically, in every Streett game,
Player 1 has a memoryless strategy on his winning region (this is Theorem 2.16
in Chapter 2, Subsection 2.4.2, in [61]).

But, in parity games, bothplayers have a memoryless winning strategy on
their winning regions (see Chapter 6 in [61]). The following theorem holds.
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Theorem 1.7 (Determinacy of Parity Games [50, 122]). Parity Games, as well
as all of the otherw-regular games, lie at the third level of the Borel Hierarchy, i.e.,
D0

3 = S0
3 \ P 0

3. Hence, they are all determined by the Borel Determinacy Theorem.

Particularly, Parity Games are memoryless determined.

Proofs of memoryless determinacy of parity games can be found e.g., in [50,
122]. The determinacy and the memorylessness of parity games is exploited in
various areas. The word and emptiness problem for alternating tree automata
as well as model-checking in modal m-calculus can be reduced to deciding the
winner of a parity game. In fact, model checking m-calculus is equivalent via
linear time reduction to determining parity games (for a proof see [50, 53, 61,
118]). Also, parity games offers an elegant tool to simplify Rabin's proof of the
decidability of the monadic second-order theory of the binary in�nite tree (see
e.g., [16,50,99]). In summary, the following result holds.

Theorem 1.8 ([50, 53, 61, 118]). The model-checking problem of modalm-calculus is
linear-time equivalent to the problem of deciding if Player0 has a winning strategy
from a given starting position in a given parity game; the game constructed from a
transition system of size m and a formula of size n has size O(mn). Conversely, from
a given parity game one can construct an equivalent transition system and a formula;
the transition system is of the same size as the parity game.

1.4.3 From model-checking of Lm to parity games

Let us provide a sketch of the construction from model-checking of modal
m-calculus to determination of winning regions in parity games. Given a sen-
tence a of the modal m-calculus, and a state s 2 S of a given transition sys-
tem M =

�
S, f Raga2A , f Pigi2N

�
, the model-checking problem asks to decide

whether a holds in s, i.e., M ,s j= a. We aim at constructing a parity game
G(M ,a) in which Player 0 admits a winning strategy from a starting position
corresponding to s iff M ,s j= a. Actually, G(M ,a) is needed also for formulas
a with free variables, so valuations V are also taken into account. So we are
going to de�ne a parity game GV(M ,a), where GV(M ,a) = G(M ,a) when
a is a sentence. To outline this construction, given a formula a, let us con-
sider the closurecl (a) of a, i.e., the smallest set containing a and closed under
subformulas and unfolding.

The game is de�ned as follows:

GV(M ,a) ,
�

VGV (M ,a) , AGV (M ,a) , pGV (M ,a) ,hV0GV (M ,a) ,V1GV (M ,a) i
�

,

where the vertex set is:

VGV (M ,a) ,
n

(s,b) j s is a state of M and b 2 cl (a)
o

,
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moreover, concerning V0GV (M ,a) and V1GV (M ,a) :

�
(s, p) j s2 Sn Pg [

�
(s, : p) j s2 S \ Pg � V0GV (M ,a)

�
(s, p) j s2 S \ Pg [

�
(s, : p) j s2 Sn Pg � V1GV (M ,a)

where the intended interpretation is that (s, p) 2 S � P will be declared win-
ning for Player 0 (i.e., it will be a sink for Player 1) iff M ,s j= p, i.e., s 2 P;
otherwise, it will be winning for Player 1 and thus a sink vertex for Player 0.
Symmetrically for (s, : p). Similarly, concerning variables, one prescribes that:

�
(s,X) j s2 Sn V(X)g � V0GV (M ,a) ,

�
(s,X) j s2 S \ V (X)g � V1GV (M ,a) ;

so that (s,X) 2 S � Var will be declared winning for Player 0 (i.e., a sink for
Player 1) iff M ,s j= X, i.e., s2 V (X); otherwise, it will be winning for Player 1
and thus a sink vertex for Player 0.

Also, for every s2 S and formulas a,b:

(s,a _ b) 2 V0GV (M ,a) ,

(s,a ^ b) 2 V1GV (M ,a) .

Finally, for every s2 S, for every a2 A and formula b:

(s,hai b) 2 V0GV (M ,a) ,

(s, [a]b) 2 V1GV (M ,a) .

Concerning positions such as (s,sX.b(X)) , since they will have exactly one
outgoing arc in AGV (M ,a) (see below), they can be controlled by anyone of the
two players. The arc set AGV (M ,a) is de�ned by induction on the structure of a:

� every position (s, p),(s, : p) for s2 S and p 2 P is a sink, i.e., Nout (s, p) =
Nout (s, : p) = Æfor every s2 S and p 2 P ;

� similarly, every position (s,X) for s2 S and X 2 Var is a sink;

� from positions (s,a ^ b),(s,a _ b) there's one arc to (s,a) and one to (s,b);

� from positions (s,hai b),(s, [a]b) there's one to (t,b) whenever (s,t) 2 Ra;

� �x s 2 f m,ng, from position (s,sX.b(X)) there's one to (s,b(sX.b(X))) .

The priorities, pGV (M ,a) : VGV (M ,a) ! N , are assigned as follows. Here the
interesting formulas are the �xpoint formulas sX.b(X), the m formulas will
have odd priority and the n formulas will have it even. All of the others
formulas will have zero priority. The priorities of the �xpoint formulas can be
assigned by relying on the alternation depth.
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For any s2 S and any subformula b of a:

pGV (M ,a) (s,b) ,

8
><

>:

2 � badepth (X)
2 c if b is of the form nX.g(X);

2 � badepth (X)
2 c + 1 if b is of the form mX.g(X);

0 otherwise.

Notice that the alternation depth of X is considered, not that of b, as this allows
one to assert a monotonicity property that is crucial for proving correctness of
the construction (see [13] for the proof). To determine the winner of the game,
the max-parity condition is adopted where the highest priority wins.

This concludes the description of GV(M ,a). When a is a sentence, it is �ne
to denote GV(M ,a) = G(M ,a). At this point, the following holds.

Theorem 1.9 ([13,50]). For every sentencea of the modalm-calculus, for every tran-
sition systemM =

�
S, f Raga2A , f Pigi2N

�
, and for every state s2 S:

M ,s j= a () Player 0 has a winning strategy starting from(s,a) in G(M ,a).

The problem of deciding the winner of a parity game belongs to the com-
plexity classes NP \ co-NP. Marcin Jurdz�́nski[70] proved a tighter UP \ co-UP
complexity bound and developed more ef�cient algorithms.

De�nition 1.24. UP is the complexity class of decision problems solvable in poly-
nomial time on aunambiguous non-deterministic Turing Machine; namely, one in
which there is at most one accepting path for each input. Moreover, co-UP is the
complexity class of decision problems whose complement lies inUP.

In summary, the following result holds.

Theorem 1.10 (Complexity of model-checking [52, 54, 70]). The model-checking
problem of the modalm-calculus lies inNP \ co-NP; particularly, it lies inUP \ co-UP.

1.4.4 Mean-payoff games
In turn, the problem of determining parity games turns out to be reducible
in polynomial-time to that of determining another family of in�nite games on
graphs, which is now recalled.

De�nition 1.25 (Mean Payoff Games). A Mean Payoff Game (MPG) [14, 49,
123] is a game played on some arenaGfor in�nitely many rounds by two opponents,
Player 0 gains a payoff de�ned as the long-run average weight of the play, whereas
Player1 loses that value. Formally, the Player0's payoff of a play v0v1 . . .vn . . . in G
is de�ned as follows:

MP0(v0v1 . . .vn . . .) , liminf
n! ¥

1
n

n� 1

å
i= 0

w(vi ,vi+ 1).

The valuesecured by a strategys0 2 S0 in a vertex v2 V is de�ned as:

val s0(v) , inf
s12S1

MP0
�
outcome G(v,s0,s1)

�
,
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Notice that payoffs and secured values can be de�ned symmetrically for the Player1
(i.e., by interchanging the symbol0 with 1 andinf with sup).

Ehrenfeuchtand Mycielski[49] proved that each vertex v 2 V admits a unique
value, denoted val G(v), which each player can secure by means of amemory-
less(or positional) strategy. Moreover, uniform positional optimal strategies do
exist for both players, in the sense that for each player there exist at least one
positional strategy which can be used to secure all the optimal values, inde-
pendently with respect to the starting position vs. Thus, for every MPG G:

9s02SM
0

8v2V

�
val s0(v) � val G(v)

�
,

and,
9s12SM

1
8v2V

�
val s1(v) � val G(v)

�
.

Indeed, the (optimal) valueof a vertex v 2 V in the MPG Gis given [49,123] by:

val G(v) = sup
s02S0

val s0(v) = inf
s12S1

val s1(v).

De�nition 1.26 (Optimal and Winning Strategies in MPGs) . A strategys0 2 S0

is optimal iff val s0(v) = val G(v) for all v 2 V. A strategy s0 2 S0 is said to
bewinning for Player0 iff val s0(v) � 0, and s1 2 S1 is winning for Player1 iff
val s1(v) < 0. Correspondingly, a vertex v2 V is a winning starting position for
Player0 iff val G(v) � 0; otherwise it is winning for Player1.

1.4.5 From parity games to mean-payoff games
We are now in the position to recall the reduction from parity games to MPGs.

Theorem 1.11 (Reduction from Parity Games to Mean Payoff Games [70]). The
problem of deciding the winner in a Parity Game reduces in polynomial-time to the
problem of deciding the winner in a Mean-Payoff Game.

Basically, in such reduction, given a parity game G= ( V, A, p,hV0,V1i ) with
coloring/priority function p : V ! N , one constructs an MPG with the same
graph as Gand where all arcs are weighted with the following weight function
(see [70]):

w(a) , (�j V j)p(u) , for every arc a= ( u,v) 2 A.

We shall study the problem of computing optimal values and optimal po-
sitional strategies in MPGs in Chapters 6 and 7, where it is offered an im-
proved pseudo-polynomial upper bound on the computational complexity of
that problems. Moreover, MPGs turn out to be the fundamental model un-
derpinning the results offered from Chapters 2 to 4 concerning automated
temporal planning and dynamic consistency checking of conditional temporal
networks.
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2 Hyper Temporal Networks

Chapter Abstract

Simple Temporal Networks (STNs) provide a powerful and general tool for
representing conjunctions of maximum delay constraints over ordered pairs of
temporal variables. In this chapter we introduce Hyper Temporal Networks
(HyTNs), a strict generalization of STNs, to overcome the limitation of consid-
ering only conjunctions of constraints but maintaining a practical ef�ciency in
the consistency check of the instances. In a Hyper Temporal Network a single
temporal hyperarc constraint may be de�ned as a set of two or more maximum
delay constraints which is satis�ed when at least one of these delay constraints
is satis�ed. HyTNs are meant as a light generalization of STNs offering an
interesting compromise. On one side, there exist practical pseudo-polynomial
time algorithms for checking consistency and computing feasible schedules
for HyTNs. On the other side, HyTNs offer a more powerful model accommo-
dating natural constraints that cannot be expressed by STNs like “Trigger off
exactlyd min before (after) the occurrence of the �rst (last) event in a set.”, which are
used to represent synchronization events in some process aware information
systems/work�ow models proposed in the literature.

This chapter is a revised version of [33].
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A,w A
(v1)

A,wA (v2)
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(a) Multi-Head Hyperarc
A = ( tA ,HA ,wA ).
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(b) Multi-Tail Hyperarc
A = ( TA ,hA ,wA ).

A graphical representation of the two kinds of hyperarcs.
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2.1 Introduction
In many areas of Arti�cial Intelligence (AI), including planning, scheduling
and work�ow management systems, the representation and management of
quantitative temporal aspects is of crucial importance [7,25,26,48,95,107]. Ex-
amples of possible quantitative temporal aspects are: constraints on the earliest
start time and latest end time of activities, constraints over the minimum and
maximum temporal distance between activities, etc.

In many cases these constraints can be represented as an instance of a
Simple Temporal Network (STN)[44], a directed weighted graph where each
node represents a time-point variable (timepoint), usually corresponding to the
beginning or the end of an activity, and each arc speci�es a binary constraint
on the scheduling times to be assigned to its endpoints. In [44], each arc
is labeled with a closed interval of real values: for example, the labeled arc

u
[x,y]
�! v encodes the binary constraint x � v � u � y over its endpoints u and v.

A more uniform and elementary representation of an STN is provided by its
distance graph1 [44], a graph having the same set of nodes as the original one,

but where each arc u
[x,y]
�! v is replaced by two arcs, each labeled with a single

real value: arc u
y

�! v to express the constraint v � u � y, and arc v
� x�! u to

express the constraint u � v � � x, i.e., x � v � u.

An STN is said to be consistentif it is possible to assign a real value to
each timepoint so that all temporal constraints are satis�ed. The consistency
property can be veri�ed by searching for negative cycles in the distance graph
and it is well known that the consistency check and the determination of the
earliest/latest value for each timepoint can be done in polynomial time [44].

However, STNs do not allow the expression of constraints like “trigger off
an event exactlyd min after the occurrence of the last of its predecessors”, which
are a quite natural constraints to represent synchronization events in a pro-
cess aware information system plan/work�ow schema [65]. This is because in
STNs, and in some of their natural extensions, (1) it is not possible to represent
a single constraint involving more than two timepoints and (2) all constraints
have to be satis�ed in order to have the network consistent. On the contrary,
the above constraint about a synchronization event can be represented as a
set of distance constraints, each involving a different pair of timepoints, that
is considered satis�ed when at least one of set components is satis�ed. In
order to represent and analyze disjunctive constraints like the above one, it is
then necessary to consider models like Disjunctive Temporal Problem(DTP) [108]
where a constraint is a set of disjunctive difference constraints over the time-
points. The drawback of such model is that the consistency check problem is
NP-complete [108].

1Distance graph is also called constraint graphby other authors [42]. Moreover, Bellman [4]
was the �rst to describe the relation between shortest paths and difference constraints in a
constraint graph.
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2.1.1 Contribution
In this chapter we propose to generalize STN to Hyper Temporal Network(HyTN),
which allows also the expression of constraints like the above one regarding
synchronization events, but where the consistency check is amenable of effec-
tive solution algorithms.

Also, we show an interesting link between the consistency check of HyTNs
and resolution in Mean Payoff Games (MPG), a family of perfect information
in�nite pebble games played on �nite graphs by two opponents [49], for which
some pseudo-polynomial time algorithms for determining winning strategies
are known [14,123].

A preliminary version of this chapter appeared in the proceedings of TIME
symposium [32]. Here, as in [33], we extend the presentation as follows: (1)
the de�nition of HyTN has been extended in order to allow the presence of
two kinds of hyperarcs; (2) the motivating example section has been revised
to show how the new kind of hyperarc can be used; (3) some further issues
and pertinent properties about HyTN have been introduced and proved; (4)
several proofs have been expanded and clari�ed; (5) the experimental analysis
of the consistency check algorithm has been improved considering more recent
algorithms [14] for �nding winning strategies for MPGs. This has improved
the performances signi�cantly.

2.1.2 Organization
The rest of the chapter is organized as follows. In Section 2.2 we present a mo-
tivating example from the domain of the work�ow-based process management
to bring out HyTNs. Section 6.2 introduces some de�nitions and well-known
results for STNs and introduces some de�nitions about hypergraphs. The gen-
eralization of STNs into HyTNs and the de�nition of consistency problem for
HyTNs are presented in Section 2.4. In Section 2.5 we recall the main facts and
results about Mean Payoff Games which are useful for the following sections.
Section 2.6 presents the investigation into the link between the HyTN con-
sistency problem and Mean Payoff Games deriving pseudo-polynomial time
algorithms for checking the consistency of HyTNs and computing feasible
schedules whenever they exist. Some empirical evaluations of the proposed
algorithms are reported in Section 2.7. In Section 2.8, some related works are
presented and discussed with respect to our approach. Section 2.9 summarizes
the main facts brought to light in this chapter and presents a possible future
development of the work we are currently carrying on.

2.2 Motivating Examples
In the introduction we have brie�y recalled a kind of constraint that cannot be
expressed within STNs. In this section, we describe in more detail two exam-
ples of temporal constraints that cannot be fully described in an STN in order
to introduce and motivate the new expressive capability of our model. As a
further motivation, at the end of the section we also spotlight how this new
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capability has been recently exploited to check the consistency of Conditional
Simple Temporal Networks (CSTNs) [113] in a more ef�cient way.

Let us consider an example in the domain of the work�ow-based pro-
cess management, a domain concerned with the coordination and control
of business processes using information technology. A work�ow is a rep-
resentation of a business process as the coordinated execution of activities
by human or automatic executors (agents). A Work�ow management system
(WfMS) is a software system that supports the automatic execution of work-
�ows [65]. In a WfMS, the management of temporal aspects is a critical com-
ponent and in the literature there are many proposals on how to extend a
work�ow in order to represent and manage temporal constraints of a busi-
ness process [7, 20, 25–28, 47, 48, 60]. In particular, in [7, 20, 28, 47, 48] authors
show how to represent and manage some kinds of temporal constraints us-
ing speci�c algorithms, while in [25–27,60] authors show how it is possible to
represent and manage a wider class of temporal constraints exploiting models
like Time Petri Nets [86] or STNs/STNUs [89].

In this chapter we consider an excerpt of the conceptual temporal model
proposed by Combi et al. [27], where the speci�cation of a temporal work�ow
is given by a work�ow schema, a directed graph (also called work�ow graph)
where nodes correspond to activities and arcs represent control �ows that de-
�ne activity dependencies on the order of execution. Both nodes and arcs may
be associated to temporal ranges to specify temporal constraints. There are two
different types of activity: tasks and connectors. Tasks represent elementary
work units that will be executed by external agents. Each task is graphically
represented by a box containing a name and a temporal range that speci�es
the allowed temporal span for its execution. Connectors represent internal ac-
tivities executed by the WfMS to achieve a correct and coordinated execution
of tasks. They are graphically represented by diamonds and, as with tasks,
each of them has a temporal range that gives the temporal span allowed to
the WfMS for executing it. Every arc has a temporal property that gives the
allowed times that can be spent by the WfMS for possibly delaying the consid-
eration of the next activity after the end of the previous one. There are different
kinds of connector that allow one to modify a control �ow. Split connectors
are nodes with one incoming arc and two or more outgoing arcs: after the ex-
ecution of the predecessor, (possibly) several successors have to be considered
for the execution. The set of nodes that can start their execution is given by the
kind of split connector. A split connector can be: Parallel, Alternative or Con-
ditional. Joinconnectors are nodes with two or more incoming arcs and one
outgoing arc only. The types of activities considered in [27] are a subset of the
possible activities speci�ed by the Work�ow Management Coalition [65,116].

Fig. 2.1 shows a simple work�ow schema where the Parallel connector 1

splits the �ow into three parallel �ows of execution (one for the sequence of
tasks T1 and T2, one for task T3, and one for task T4 and T5) that have to be
joined (synchronized) by the AND join connector 2 before continuing the
execution; all temporal ranges are in minutes.
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[1,2]

[2,6]

[5,10]

Figure 2.1: A simple work�ow schema excerpt with three parallel �ows of
execution.

Let us consider the connector 2; according to the recommendations from
the Work�ow Management Coalition (WfMC) [65] and the temporal speci�-
cation from [27], the execution of this connector requires to wait all incoming
�ows and, after the last incoming �ow, to wait a time according to the con-
nector temporal range before following the outgoing arc. In other words, the
incoming �ows can arrive at different instants but only when the last one ar-
rives, the connector has to be activated in order to continue with the execution.

Combi et al. [27] proposed a method to translate work�ow schemata to
STNs/STNUs [89] in order to analyze and validate all temporal aspects in
a rigorous way. As already noted in [24] and [25], such translation cannot
speci�cally represent the behavior of an AND join connector, because the kind
of constraints in an STN/STNU is limited. Therefore, in [25], the authors pro-
posed an adjustment of the translation of an AND join connector introducing
for each incoming arc of the connector a buffernode connected with some de-
termined new arcs and assuming a reasonable but �xed execution algorithm
for the STN. In more detail, let us consider Fig. 2.2 that depicts the representa-
tion of work�ow of Fig. 2.1 by means of an STN following partially the method
described in [25] (without loss of generality, here we convert task constraints
as STN arcs instead of STNU contingent ones because we are interested only
in the AND join conversion). Each activity of the work�ow is represented
by two STN nodes, one to represent the begin timepoint, Bi , one for the end
one, Ei , and temporal ranges in the work�ow are represented by STN arc la-
bels. Regarding the translation of the AND join node 2, nodes representing
the task endings on parallel �ows, ET2, ET3, and ET5, are connected to buffer
nodes b1, b2, and b3 that allow the parallel �ows to complete their execution
following only their temporal constraints. Then, b1, b2, and b3 are connected to
node B

2
(which represents the begin instant of the AND join connector) by

temporal constraints [0,t1], [0,t2] and [0,t3], where the values t1, t2, and t3 are
determined during the work�ow-to-STN conversion as explained in [25].

Now, let us consider a possible execution scenario. If b1, b2, and b3 occur all
together at instant 20, then, following the proposed temporal semantics [27],
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Figure 2.2: An STN representing temporal aspects of the work�ow depicted
in Fig. 2.1. The dotted region emphasizes, within the work�ow excerpt, the
connections to an AND join connector.

the only possible instant value for B
2

must be 20 while the updated STN
allows any value in the range [20,20+ min f t1, t2, t3g]. In [25], the authors
showed that the right value is always the lower bound of such extended range
and, therefore, it is suf�cient to adopt an early execution strategy in order to
choose the right value for timepoint B

2
.

In other words, the proposed translation has two drawbacks: (1) it requires
some preliminary computations for determining t1, t2, and t3 values, and (2)
the resulting STN admits some solutions that are not admissible by the seman-
tics of the AND join connector.

To speci�cally represent the behavior of an AND join connector with re-
spect to its predecessor time points without auxiliary conditions or analysis,
it is necessary to introduce a new kind of constraint based on hyperarcs, as
shown in Fig. 2.3. In the �gure the multi-tail hyperarc A consists of three
dashed arcs—called components—and replaces the arcs from bi ( i = 1,2,3) to
B

2
of Fig. 2.2. We say that a multi-tail hyperarc is satis�ed if at least one of

its components is satis�ed. In Fig. 2.3 dashed arcs de�ne the hyperarc A that
is satis�ed if B

2
is 0 distant from at least one time point among b1,b2, and

b3. Since B
2

is constrained to occur at the same instant or after each time
point b1,b2, and b3 by the arcs between B

2
and bi , i = 1,2,3, the result is that

to satisfy A it is necessary that B
2

occurs at the same instant of the last time
point among b1,b2, and b3, as required originally. In more general, a multi-tail
hyperarc is de�ned as a set of distance constraints (components) between some
time points and a common end point.

The use of hyperarcs allows also the representation of temporal aspect of
other advanced connectors as, for example, the Structured Discriminator [116].
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Figure 2.3: An augmented STN, that we call HyTN, where dashed arcs repre-
sent components of hyperarcs, a new kind of constraint. This HyTN improves
the representation of the STN of Fig. 2.2. To emphasize the changes, here we
have summed all arcs outside the dotted region.

The Structured Discriminator connector provides a means of merging two or
more distinct �ows in a work�ow instance into a single subsequent. In par-
ticular, it triggers the subsequent �ow as soon as the the �rst incoming �ow
arrives. The arrival of other incoming �ows thereafter have no effect on the
subsequent �ow. As such, the Structured Discriminator provides a mechanism
for progressing the execution of a process once the �rst of a series of concurrent
tasks has completed and according to the connector temporal range. Fig. 2.4a
depicts an excerpt of a work�ow schema containing a structured discriminator
connector, D , that joins three parallel �ows.

At the best of our knowledge, currently there are no proposals for the repre-
sentation of temporal constraints of a discriminator connector in any temporal
work�ow model or process-aware information system [77]. Even exploiting
the methodology proposed in [25], it is easy to verify that it is not possible to
represent such connector as an STN because in a consistent STN all constraints
have to be satis�ed while here it is necessary to allow the possibility that only
one constraint of a set has to be satis�ed in order to speci�cally represent a dis-
criminator connector. A possible way for speci�cally managing a discriminator
connector consists in following the approach suggested by [25] for representing
activities and considering a variant of the multi-tail hyperarc, called multi-head
hyperarc, for representing its temporal constraint, as depicted in Fig. 2.4b. In
the �gure there is a multi-head hyperarc A that connects the node represent-
ing the beginning instant of the discriminator activity to all nodes representing
the end instant of the activities that precede the considered discriminator and
are directly connected to it. In general a multi-head hyperarc is de�ned as
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Figure 2.4: A structured discriminator connector and a possible representation
of its temporal aspects.

a set of distance constraints (components) between one time point and some
end points. We say that a multi-head hyperarc is satis�ed if at least one of its
components is satis�ed. In Fig. 2.4b, dashed arcs de�ne the hyperarc A that is
satis�ed if B

D
is at least 2 distant from ET1 or 1 distant from ET2 or 5 distant

from ET3. It is suf�cient that one of such previous nodes is executed and that
the delay represented in the corresponding connecting arc is passed to execute
B

D
, as required by the structured discriminator connector semantics.

HyTNs are not only suitable for better representing temporal constraints
originating from temporal work�ow, but also for better representing more
general temporal constraint networks like Conditional Simple Temporal Net-
work [113].

A Conditional Simple Temporal Network (CSTN) is an enriched graph
for representing and reasoning about temporal constraints in domains where
some constraints may apply only in certain condition settings (scenarios). Each
conditionin a CSTN is represented by a propositional letter whose truth value
is observedin real time as the outcome of the execution of an observation time-
point. An execution strategy for a CSTN has to determine an execution time for
each time-point guaranteeing that all temporal constrains that are signi�cant
in the resulting scenario are satis�ed. An execution strategy can be dynamic
in that its execution decisions can react to the information obtained from such
observations. The Conditional Simple Temporal Problem (CSTP) consists in
determining whether a given CSTN admits a dynamic execution strategy for
any possible combination of propositional outcomes happens to be observed
over time. If such a strategy exists, the CSTN is said to be dynamically consis-
tent (DC).
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Tsamardinos et al. [113] solved the CSTP by �rst encoding it as a meta-
level Disjunctive Temporal Problem (DTP), then feeding it to an off-the-shelf
DTP solver. Although of theoretical interest, this approach is not practical
because the CSTP-to-DTP encoding has exponential size, and the DTP solver
itself runs in exponential time. To our knowledge, this approach has never
been empirically evaluated [69].

In [34, 40] and in Chapter 3, we propose a novel representation of CSTNs
in terms of HyTNs allowing the determination of the �rst singly exponential-
time algorithm for checking the dynamic consistency of Conditional Simple
Temporal Networks. More precisely, a CSTN instance is represented as a suit-
able HyTN where each possible scenario is represented and connected to other
scenarios in an appropriate way and, then, such HyTN instance is solved in
pseudo-polynomial time by the algorithms analyzed in the present chapter.

In summary, HyTNs allow the representation of temporal constraints that
are more general of those represented in STNs [44], because they allow dis-
junctions involving more than two time points, but less general than those
represented in DTPs [108] because all disjunctions related to a multi-head(tail)
hyperarcs have to contain a common variable. Such kind of STN general-
ization not only allows the compact representation of some common tempo-
ral constraints in the domains like the work�ow-based process management
but also allows the determination of new interesting algorithm for checking
dynamic-consistency in richer models like CSTN.

2.3 Background and Notation
The reader is referred to Subsection 1.2.2, Chapter 1, where we introduce some
de�nitions, notations and well-know results about graphs and conservative
graphs; moreover, where we recalled the relation between the consistency
property of STNs and the conservative property of weighted graphs.

In this chapter, we also deal with directed weighted hypergraphs.

De�nition 2.1 (Hypergraph) . A hypergraph H is a pair(V,A ), where V is the set
of nodes, andA is the set ofhyperarcs. Each hyperarc A2 A is either amulti-head
or amulti-tail hyperarc.

A multi-head hyperarc A= ( tA ,HA ,wA ) has a distinguished node tA , called the
tail of A, and a nonempty set HA � V n f tAg containing theheadsof A; to each head
v 2 HA is associated aweight wA (v) 2 R. Fig. 2.5a depicts a possible representation
of a multi-head hyperarc: the tail is connected to each head by a dashed arc labeled by
the name of the hyperarc and the weight associated to the considered head.

A multi-tail hyperarc A = ( TA ,hA ,wA ) has a distinguished node hA , called the
head of A, and a nonempty set TA � V n f hAg containing thetails of A; to each tail
v 2 TA is associated aweight wA (v) 2 R. Fig. 2.5b depicts a possible representation
of a multi-tail hyperarc: the head is connected to each tail by a dotted arc labeled by
the name of the hyperarc and the weight associated to the considered tail.

The cardinality of a hyperarc A 2 A is given by jA j , jHA [ f tAgj if A is
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Figure 2.5: A graphical representation of the two kinds of hyperarcs.

multi-head, and jA j , jTA [ f hAgj if A is multi-tail; if jA j = 2, then A = ( u,v,w)
is a standard arc. The order and sizeof a hypergraph (V,A ) are denoted by
n , jV j and m , å A2A jA j, respectively.

2.4 HyTN and Consistency Property
We introduce now Hyper Temporal Networks(HyTNs), a strict generalization
of STNs to partially overcome the limitation of allowing only conjunctions of
constraints. Compared to STN distance graphs, which they naturally extend,
HyTNs allow a greater �exibility in the de�nition of temporal constraints.

A HyTN is a directed weighted hypergraph H = ( V,A ) where a node rep-
resents a time point variable (timepoint), and a multi-head/multi-tail hyperarc
represents a set of temporal distance constraints between the tail/head and the
heads/tails, respectively.

For example, the multi-tail hyperarc A = ( TA ,B
2
,wA ) in Fig. 2.3, where

TA = f b1,b2,b3g and wA (bi ) = 0 for i = 1,2,3, stands for the set of distance
constraints f B

2
� bi � 0 j i = 1,2,3g.

In general, we say that a hyperarc is satis�edwhen at least one of its distance
constraints is satis�ed. Then, we say that a HyTN is consistentwhen it is
possible to assign a value to each time-point variable so that all of its hyperarcs
are satis�ed.

More formally, in the HyTN framework the consistency problem is de�ned
as the following decision problem.

De�nition 2.2 (General -HyTN-Consistency ). Given a HyTN H = ( V,A ), de-
cide whether there exists a scheduling s: V ! R such that, for every hyperarc A2 A ,
the following holds:
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� if A = ( t,h,w) is a standard arc, then

s(h) � s(t) � w;

� if A = ( tA ,HA ,wA ) is a multi-head hyperarc, then

s(tA ) � min
v2 HA

f s(v) � wA (v)g;

� if A = ( TA ,hA ,wA ) is a multi-tail hyperarc, then

s(hA ) � max
v2 TA

f s(v) + wA (v)g.

Any such scheduling s : V ! R is called feasible. A HyTN that admits at
least one feasible scheduling is calledconsistent.

Comparing the consistency of HyTNs with the consistency of STNs, the
most important aspect of novelty is that, while in a distance graph of a STN
each arc represents a distance constraint and all such constraints have to be
satis�ed by a feasible schedule, in a HyTN each hyperarc represents a set of
one or more distance constraints and a feasible scheduling has to satisfy at
least one such distance constraints for each hyperarc.

Let us show some interesting properties about the consistency problem for
HyTNs.

The �rst interesting property is that any integral-weighted HyTN admits
an integral feasible schedule when it is consistent, as proved in the following
lemma.

Lemma 2.1. Let H = ( V,A ) be an integral-weighted and consistent HyTN. Then
H admits an integral feasible scheduling:

s : V ! f� T, � T + 1, . . . ,T � 1,Tg,

where T= å A2A ,v2V jwA (v)j.

Proof. Since H is consistent, then there exists a feasible schedulings̃ : V ! R.
The idea in this proof is to project the HyTN H over a conservative graph GH ,
by selecting for each hyperarc A 2 A one standard arc that is feasible accord-
ing to s̃ (more details below); and then, in that setting, to exploit the integrality
properties of potentials as stated in Theorem 1.1. Note that GH is asked to re-
solve the non-determinism contained in the disjunctive nature of the hyperarcs
(i.e., which choices within the hyperarcs of H , i.e., which standard arcs, should
be selected to construct GH ?); in order to sort out such non-determinism, the
projection is built considering the given feasible scheduling s̃ as follows.

For each hyperarc A 2 A , a weighted directed arc eA is de�ned as follows:

� if A = ( u,v,w) is a standard arc, then eA , (u,v,w). Note that s̃(v) �
s̃(u) + w follows by the feasibility of s̃;
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� if A = ( tA ,HA ,wA ) is a multi-head hyperarc, then

eA , (tA ,vA ,wA (v)) where vA = arg min
v2 HA

f s̃(v) � wA (v)g.

Here, s̃(vA ) � s̃(tA ) + wA (v) follows by the feasibility of s̃;

� if A = ( TA ,hA ,wA ) is a multi-tail hyperarc, then

eA , (vA ,hA ,wA (v)) where vA = argmax
v2 TA

f s̃(v) + wA (v)g.

Here, s̃(hA ) � s̃(vA ) + wA (v) follows by the feasibility of s̃.

Now, a weighted directed graph GH = ( V,E) with E , f eA j A 2 Ag is de-
�ned. G is integral-weighted and conservative graph since it admits s̃ as a
potential function. Therefore, G admits an integral potential function s : V !
f� T, � T + 1, . . . ,T � 1,Tg. Indeed, such a function s is obtained by applying
the Bellman-Ford algorithm on G. To conclude, we observe that s is also an
integral feasible scheduling for H . 2

The following theorem states that G eneral -HyTN-Consistency is NP-complete.

Theorem 2.1. General -HyTN-Consistency is an NP-complete problem even if
input instancesH = ( V,A ) are restricted to satisfy wA (�) 2 f� 1,0,1g andjHA j, jTA j �
2 for every A2 A .

Proof. If H = ( V,A ) is integral-weighted and consistent, then it admits an in-
tegral feasible scheduling s : V ! f� T, . . . ,Tg by Lemma 2.1. Moreover, any
such feasible scheduling can be veri�ed in polynomial time w.r.t. the size of
the input; hence, General -HyTN-Consistency is in NP.

To show that the problem is NP-hard, we describe a reduction from 3-SAT.
Let us consider a boolean 3-CNF formula with n � 1 variables and m � 1

clauses:

j (x1, . . . ,xn) =
m̂

i= 1

(ai _ bi _ g i )

where Ci = ( ai _ bi _ g i ) is the i-th clause of j and each ai ,bi ,g i 2 f xj ,x j j 1 �
j � ng is either a positive or a negative literal.

We associate to j a HyTN H j = ( V,A ), where each boolean variable xi

occurring in j is represented by two nodes, xi and xi . V also contains node
z that represents the reference initial node for the HyTN H j , i.e., the �rst
node that has to be executed. For each pairxi and xi , H j contains a pair of
hyperarc constraints as depicted in Fig. 2.6a: one with multi-head f xi ,xig and
tail in z and the other multi-tail f xi ,xig and head in z. If H j is consistent,
the pair of hyperarcs associated to x, : x assures that H j admits a feasible
scheduling s such that s(xi ) and s(xi ) are coherently set with values in f 0,1g
(see Lemma 2.1). In this way, s is forced to encode a truth assignment on
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(b) Gadget for a 3-SAT clause Cj = ( aj _
b j _ g j ) where each aj ,b j ,g j is a positive
or negative literal.

Figure 2.6: Gadgets used in the reduction from 3-SAT to General -HyTN-
Consistency .

the xi 's. The HyTN H j contains also a node Cj for each clause Cj of j ; each
node Cj is connected by a multi-tail hyperarc with head in Cj and tails over the
literals occurring in Cj and by two standard and opposite arcs with node z as
displayed in Fig. 3.6b. Such setting of arcs assures that ifH j admits a feasible
scheduling s, then s assigns value 1 at least to one of the node representing the
literals connected with the hyperarc.

More formally, H j = ( V,A ) is de�ned as follows:

� V = f zg [ f xi j 1 � i � ng [ f xi j 1 � i � ng [ fC j j 1 � j � mg;

� A =
S n

i= 1Var i [
S m

j= 1Claj , where:

– Var i =
n

(z,xi ,1),(xi ,z,0),(z,xi ,1),(xi ,z,0),

(f xi ,xig,z, [w(xi ),w(xi )] = [ � 1,� 1]),

(z, f xi ,xig, [w(xi ),w(xi )] = [ 0,0])
o

.

This de�nes the variable gadget for xi as depicted in Fig. 2.6a;

– Claj =
n

(z,Cj ,1),(Cj ,z, � 1),

(f aj ,b j ,g jg,Cj , [w(aj ),w(b j ),w(g j )] = [ 0,0,0])
o

.

This de�nes the clause gadget for clause Cj = ( ai _ bi _ g i ) as de-
picted in Fig. 3.6b.

Notice that jV j = 1 + 2n + m = O(m + n) and mA = 8n + 5m = O(m + n);
therefore, the transformation is linearly bounded in time and space.

We next show that j is satis�able if and only if H j is consistent.
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Any truth assignment n : f x1, . . . ,xng ! f true ,false g satisfying j can be
translated into a feasible scheduling s : V ! Z of H j as follows. For node z,
let s(z) = 0, and let s(Cj ) = 1 for each j = 1, . . . ,m; then, for each i = 1, . . . ,n,
let s(xi ) = 1 and s(xi ) = 0 if the truth value of xi , n(xi ), is true , otherwise let
s(xi ) = 0 and s(xi ) = 1. It is easy to verify that, using this scheduling s, all
the constraints comprising each single gadget are satis�ed and, therefore, the
network is consistent.

Vice versa, assume thatH j is consistent. Then, it admits an integral feasible
scheduling s by Lemma 2.1. After the translation s(v) = s(v) � s(z), we can
assume that s(z) = 0. Hence,s(Cj ) = 1 for each j = 1, . . . ,m, as enforced by the
two standard arcs incident at Cj in the clause gadget, and f s(xi ),s(xi )g = f 0,1g
for each i = 1, . . . ,n, as enforced by the constraints comprising the variable
gadgets. Therefore, the feasible scheduling s can be translated into a truth
assignment n : f x1, . . . ,xng ! f true ,false g de�ned by n(xi ) = true if s(xi ) =
1 (and s(xi ) = 0); n(xi ) = false if s(xi ) = 0 (and s(xi ) = 1) for every i = 1, . . . ,n.

To conclude, we observe that any hyperarc A 2 A of H j has weights
wA (�) 2 f� 1,0,1g and size jA j � 3. Since any hyperarc with three heads
(tails) can be replaced by two hyperarcs each having at most two heads (tails),
the consistency problem remains NP-Complete even if wA (�) 2 f� 1,0,1g and
jA j � 2 for every A 2 A . 2

Theorem 2.1 motivates the study of consistency problems on hypergraphs
having either only multi-head or only multi-tail hyperarcs. In the former case,
the consistency problem is called Head-HyTN-Consistency , while in the lat-
ter it is called Tail -HyTN-Consistency . In the following theorem we observe
that the two problems are inter-reducible, i.e., we can solve consistency for any
one of the two models in f (m,n,W) time whenever we have a f (m,n,W) time
procedure for solving consistency for the other one.

Theorem 2.2. Head-HyTN-Consistency andTail -HyTN-Consistency are inter-
reducible by means oflog-space, linear-time, local-replacement reductions.

Proof. We show the reduction from multi-tail to multi-head hypergraphs; the
other direction is symmetric. Informally, what we will do is to reverse all the
arcs (so that what was multi-tail becomes multi-head), and, contextually, we
invert the time-axis (to account for the inversion of the direction of all arcs).

Let H = ( V,A ) be a multi-tail hypergraph, we associate to H a multi-head
hypergraph H 0= ( V,A 0) by reversing all multi-tail hyperarcs. Formally, we
de�ne

A 0= f (v,S,w) j (S,v,w) 2 Ag .

For example, a standard arc (t,h,w) 2 A is transformed into a reversed stan-
dard arc (h,t,w) in A 0 while a hyperarc with two weighted tails t1 and t2

becomes a hyperarc having t1 and t2 as its two weighted heads.
Now, H is consistent if and only if H 0 is consistent. To prove it, we note

that each scheduling s for H can be associated, with a �ip of the time direction,
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to the scheduling s0, � s. Then, it holds that s is feasible for H if and only if s0

is feasible for H 0. Indeed, s satis�es the constraint represented by an hyperarc
A = ( TA ,hA ,wA ) 2 A , namely

s(hA ) � max
v2 TA

f s(v) + wA (v)g,

or, equivalently
� s(hA ) � min

v2 TA

f� s(v) � wA (v)g,

if and only if s0 (that is, � s) satis�es the constraint represented by the reversed
hyperarc A0= ( hA ,TA ,wA ), namely

s0(hA ) � min
v2 TA

f s0(v) � wA0(v)g.

2

In the remainder of this work we shall adopt the multi-head hypergraph as
our reference model. Hence, when considering hypergraphs and HyTNs, we
will be implicitly referring to multi-head hyperarcs. Notably, we consider the
following specialized notion of consistency for HyTNs.

De�nition 2.3 (Head-HyTN-Consistency ). Given a (multi-head) HyTN, denoted
by H = ( V,A ), decide whether there exists a scheduling s: V ! R such that:

s(tA ) � min
v2 HA

f s(v) � wA (v)g 8A 2 A . (2.1)

Remark 2.1. Notice that this notion of consistency for HyTNs is a strict general-
ization of STN one. In general, the feasible schedules of an STN are the solutions of
a linear system and, therefore, they form a convex polytope. Since an STN may be
viewed as a HyTN, the space of feasible schedules of an STN can always be described
as the space of feasible schedules of a HyTN. The converse is not true because feasible
schedules for a HyTN do not form a convex polytope. Let us consider, for example,
a HyTN of just three nodes x1, x2, x3 and one single hyperarc with headsf x1,x2g
and tail x3 expressing the constraint x3 � min f x1,x2g; (0,2,2) and (� 2,0,2) are
both admissible schedules, but(1,1,0) = 1

2(0,2,2) � 1
2(� 2,0,2) is not an admissible

schedule. In conclusion, the STN model is a special case of the Linear Programming
paradigm, whereas the HyTN model is not.

In the rest of this section, we extend the characterization of STN consistency
recalled in Section 6.2 to HyTNs.

De�nition 2.4 (Reduced Slack Valuewp
A (v)). With reference to a potential p: V !

R, we de�ne, for every arc A2 A and every v2 HA , the reduced slack value wp
A (v)

as wA (v) + p(tA ) � p(v) and the reduced slack wp
A as

wp
A , maxf wp

A (v) j v 2 HAg.
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A potential p is said to befeasible if and only if wp
A � 0 for every A2 A .

Again, as it was the case for STNs, a mapping f : V ! R is a feasible po-
tential if and only if it is a feasible schedule. In order to better characterize
feasible schedules, we introduce a notion of negative cycle.

De�nition 2.5 (Negative Cycle). Given a multi-head HyTNH = ( V,A ), a cycle is
a pair (S,C) with S � V and C � A such that:

1. S=
S

A2C(HA [ f tAg) and S6= Æ;

2. 8v 2 S there exists an unique A2 C such that tA = v.

Moreover, we let a(v) denote the unique arc A2 C with t A = v as required in previous
item 2. Every in�nite path in a cycle(S,C) contains, at least, one �nite cyclic sequence
vi ,vi+ 1, . . . ,vi+ p, where vi+ p = vi is the only repeated node in the sequence. A cycle
(S,C) is negative if for any �nite cyclic sequence v1,v2, . . . ,vp, it holds that

p� 1

å
t= 1

wa(vt ) (vt+ 1) < 0.

An example of a cycle (S,C) is shown in Fig. 2.7.
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Figure 2.7: A Cycle (S,C), where S= f v0, . . . ,v6g and C= f A0, . . . ,A6g.

There are two results about negative cycles as stated in the following lem-
mas.

Lemma 2.2. A HyTN with a negative cycle admits no feasible schedule.

Proof. By contraposition. Let H be a consistent HyTN and let p be a feasible
potential for H . Also, let (S,C) be any cycle of H ; we will show that (S,C) is
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not negative. For every A 2 C, let hA be the head of A with maximum reduced
slack value:

hA , arg max
v2 HA

f wp
A (v)g.

Let us consider the in�nite path in (S,C) built choosing, at each node vt ,
ha(vt ) as the following node. As already seen, such a path contains at least one
�nite cyclic sequence vh,vh+ 1, . . . ,vk with vk = vh. The sum of weights of the
�nite cyclic sequence is given by:

k� 1

å
t= h

wa(vt ) (vt+ 1) =
k� 1

å
t= h

wp
a(vt )

(vt+ 1)

for every potential p; since p is feasible, all terms of the last sum are non-
negative. It follows that (S,C) is not negative. 2

At �rst sight, it may appear that checking whether (S,C) is a negative cycle
might take exponential time since one should check a possibly exponential
number of cyclic sequences. The next lemma shows instead that it is possible
to check the presence of negative cycle in polynomial time.

Lemma 2.3. Let (S,C) be a cycle in a HyTN. Then checking whether(S,C) is a
negative cycle can be done in polynomial time.

Proof. Consider the weighted graph G = ( S, [ t2SA t ) where each hyperarc a(t),
for every t 2 S, is transformed into a set of standard arcs as follows:

a(t) ; A t , f (t,v, � wa(t) (v)) j v 2 Ha(t) )g, 8 t 2 S.

Notice that G is thus an STN. Checking whether (S,C) is a negative cycle
amounts to check whether all cycles in G have strictly positive weight. To
do this, �rstly, a potential function p for G is determined by Bellman-Ford
algorithm. If the algorithm returns a negative cycle instead of p , then there is
no negative cycle in (S,C) and the check ends.

Otherwise, since w(C) = wp (C) � 0 for every cycle C of G, it is necessary
to verify that no cycle in G has wp (C) = 0. This check can be done by verifying
the acyclicity of the subgraph of G comprising only arcs a of G with wp (a) = 0.
The check that a graph is acyclic can be done in linear time by a depth �rst
visit [42]. 2

A hypergraph H is called conservativewhen it contains no negative cycle.
In the next sections we will provide a pseudo-polynomial time algorithm that
always returns either a feasible scheduling or a negative cycle, thus extending
the validity of the classical good-characterization of STN consistency to general
HyTN consistency. Here, we anticipate the statement of the main result in
order to complete this general introduction of HyTNs.
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Theorem 2.3. A HyTN H is consistent if and only if it is conservative. Moreover,
when all weights are integral, thenH admits an integral scheduling if and only if it is
conservative.

Proof. If H is consistent, then it is conservative by Lemma 2.2. If H is not
consistent, then there is a negative cycle as shown in Theorem 2.7-(3). The
existence of an integral scheduling when all weights are integral is guaranteed
by Lemma 2.1. 2

2.5 Mean Payoff Games
In this section, we propose an introduction to Mean Payoff Games (MPGs)
tailored to the needs of the present work. MPGs represent a well-studied
model for representing some kinds of two-player dynamics and we will show
in Section 6 that there is a substantial equivalence between the MPG and the
HyTN model, which will allow us to exploit some important algorithmic and
structural results.

An MPG is a weighted directed graph G = ( V0 [� V1,E) whose node set V
is partitioned into two disjoint sets V0 and V1, where, for p = 0,1, the nodes
in Vp are those under control of Player p. Even with these graphs we have no
loops and no parallel arcs. It is also assumed that every node has at least one
outgoing arc. Notice that, in general, (V0,V1) does not need to be a bipartiton
of G, i.e., E may contain arcs with both endpoints in V0, or with both endpoints
in V1. An example is shown in Fig. 2.8, where nodes in V0 are white and those
in V1 are �lled in black.

A B

CD

� 1

� 2

+ 1

+ 2 � 1

� 1

+ 1

+ 2

� 9

Figure 2.8: An MPG G.

Each play starts with a pebble placed at some node v0 2 V0 [� V1 and consists
in a sequence of moves. Movet begins with the pebble placed in node vt � 1 and
is played by the Player p such that vt � 1 2 Vp: the player chooses any arce2 E
with tail te = vt � 1 and moves the pebble along e; at the end of the move the
pebble is in node vt = he. The game ends as soon asvt = vt0 for some t > t0, i.e.,
when the pebble comes back to an already visited node vt0. At this point, the
pebble has traversed a cyclic sequence of arcset0+ 1, . . . ,et and Player 0 “pays”
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to Player 1 the average weight of the visited cycle:

1
t � t0

t

å
i= t0+ 1

w(ei ).

If this amount is negative, then Player 0 wins the game, otherwise the winner
is Player 1.

A strategy for Player p is a mapping that, given all the previous visited
nodes and the current node, returns which node has to be visited in the next
move; a strategy is said to be positional(or memoryless) if it depends only on
the current position vt and does not take into account all the previous history.
If s2 V0 [ V1 and Player p has a strategy leading him to win any possible play
starting at v0 = s, then we say that s is a winning start positionfor Player p. We
denote by Wp the set of winning start positions for Player p. A winning strategy
for Player p leads Player p to win every play started from any node in Wp.
Since these �nite games are zero-sum, i.e., what won by a player is what lost
by the other one, then they admit a game valuen: for each start position s 2 V
of the game, there exists a ns 2 R such that Player 0 has a strategy ensuring
payoff at most ns, while Player 1 has a strategy ensuring payoff at least ns.

It is worthwhile to consider an in�nite variant of the model, in which the
game does not stop, and continues for an in�nite number of steps. In this
model, Player 1 wants to maximize the limit inferior of the average weight:

liminf
n! ¥

1
n

n

å
t= 1

w(vt � 1,vt )

Symmetrically, Player 0 wants to minimize the limit superior of the same aver-
age weight:

limsup
n! ¥

1
n

n

å
t= 1

w(vt � 1,vt )

In their Determinacy Theorem, Ehrenfeucht and Mycielski [49] proved that
any in�nite game admits a value n¥ , and that this value equals the one of
the �nite counterpart game on every start position, i.e., n¥

s = ns for every s 2
V0 [ V1. Moreover, they proved the existence of positional strategies which
are optimal for both variants of the model: when Player p limits himself to an
optimal strategy p p, i.e., when, for every v 2 Vp, he disregards all arcs with tail
in v except the one with head in p p(v), then he will secure himself the optimal
payoff n in every play, �nite or in�nite, however the adversary plays. The
graph Gp p obtained from G by dropping all arcs with tail in Vp not prescribed
by p p is called the projectionof the game G on p p, and is a solitaire game
whose value can be easily computed by means of a simple variant of Bellman-
Ford algorithm. Therefore, the Ehrenfeucht and Mycielski's results are already
suf�cient for determining a simple exponential time algorithm computing the
node values and the two optimal positional strategies in an MPG: the algorithm
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consists in evaluating each possible strategy for one of the two players as a
solitaire game for determining the optimal one. In the literature there are
many local search algorithms that explore this space in a more ef�cient way [9,
15, 103, 104] and some of them have been proven to be practically ef�cient
in many settings by experiments [15, 103]. Moreover, the global optimization
problem of computing the best strategies for one player, according to a given
metric, has been shown to have the property that every local optimum is also
a global one for many complete metrics [9].

As another line of research, Zwick and Paterson [123] proposed pseudo-
polynomial time algorithms for computing values of games, as well as po-
sitional optimal strategies. In particular, they considered the following four
algorithmic problems:

1. MPG-Decision(n,s): given a real number n and a start position s, decide
whether ns � n;

2. MPG-Threshold(T): given a real number T, determine for which nodes
s2 V it holds that ns � T;

3. MPG-Value: compute the optimal values ns for all s2 V.

4. MPG-Synthesis : assuming ns � 0 (ns < 0) for every s 2 V, synthesizea
positional winning strategy for Player 1 (Player 0);

and they proved the following theorem:

Theorem 2.4 ([123]). Let G= ( V,E) be a mean payoff game. Assume all weights are
integers and let W= maxe2 E jw(e)j. Then the following hold:

1. MPG-Threshold(T) can be solved in timeO(jV j2jEj W) when T2 Z , whereas
it can be solved in timeO(jV j3jEj W) when T2 R;

2. MPG-Value can be solved in timeO(jV j3jEj W);

3. MPG-Synthesis can be solved in timeO(jV j4jEj log(jEj/ jV j) W).

Then, they observed that MPG-Decision is the basic decision problem for
MPGs in the sense that several natural questions for MPGs, like evaluating
the value ns for every node s or constructing the optimal positional strategies,
may all be Turing-reduced to it. They also pointed out that the existential re-
sults of Ehrenfeucht and Mycielski [49] already implies that MPG � Decision2
NP \ coNP and asked whether there might exist a strongly polynomial time
decision procedure. Proving the existence of such algorithm is an open prob-
lem [14]. Finally, they showed how to reduce mean payoff games to other
important families of games on graphs, like discounted payoff games and sim-
ple stochastic games.

The complexity status of MPG-Decision has been since updated by proving
that it lays in UP \ coUPby Jurdzi ński in [70].
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In recent years, some other interesting results have been proven. Notably,
in 2007 Lifshits, Pavlov [79] proposed a potential theoryfor MPGs and in 2011
Brim et al. [14] obtained faster algorithms exploiting results obtained in the
the �elds of Energy Gamesand energy progress measures, which are intimately
related to the potentials studied in [79].

Their algorithmic results are summarized in the following theorem.

Theorem 2.5 ([14]). For MPGs in which all weights are integers and for T2 Z , the
Value Iteration Algorithm [14] solves MPG-Threshold(T) and MPG-Synthesis in
time O(jV j j Ej W), where W= maxe2 E jw(e)j.

We remark that both the algorithm of Paterson and Zwick [123] and the
Value Iteration Algorithm [14] prescribe well de�ned procedures even if the
weights on the arcs are real values. What is lost in running these algorithms
on real weights is only the pseudo-polynomial upper bound on their running
time.

For our purposes, the family of pseudo-polynomial algorithms for MPGs is
the best option. Indeed, in most of temporal work�ow graphs all weights are
expressed by integers of relatively small magnitude with respect to the intrin-
sic temporal granularity of the considered work�ow. For example, in a work-
�ow containing temporal distance constraints of days, the commonly adopted
temporal granularity is the “minute” (m) and, therefore, all weights can be
assumed to be less than 104 as order of magnitude. In such circumstances,
Brim's algorithm offers the guarantee to terminate within short computation
times. For these reasons we opted for integrating the procedures of Zwick
and Paterson, as well as the faster procedures of Brim et al. [14], in order to
ef�ciently solve instances of H ead-HyTN-Consistency and compute feasible
schedules.

Furthermore, as will be discovered in the experimental section, if these al-
gorithms are suitably adapted—so as to allow them to terminate earlier as soon
as certain evidences of inconsistency have been collected—then their observed
behavior outperforms by orders of magnitude what predicted by their theoret-
ical pseudo-polynomial bounds even on input instances containing very large
integer values.

Based on these �ndings, we think that these pseudo-polynomial algorithms
are to be considered (and probably adopted) even for solving HyTN instances
where weights are �oating point values whose magnitudes may differ in a
signi�cant way. In case the running time results to be unacceptable for a real
application, one could then consider the possibility to round the weights to
integer values. This rounding would clearly require special care: a very accu-
rate approximation might lead to very high computation times while a gross
approximation might not represent the original instance in a correct way.

50



2.6 The Reductions
This section presents the direct connection and the computational equivalence
between MPG-Threshold and H ead-HyTN-Consistency . The equivalence is
formally proven by offering one reduction in each direction.

The reduction of H ead-HyTN-Consistency to MPG-Threshold allows to
apply, in the context of HyTNs, any of the algorithms known for MPGs, in-
cluded the exponential and subexponential ones.

Vice versa, in consideration of the fact that the MPG � Decision
?
2 p ques-

tion is an open problem [9, 14, 70, 103, 123], the reduction of MPG-Decision to
Head-HyTN-Consistency con�rms that H ead-HyTN-Consistency offers an
algorithmically more ambitious and mathematically steeper generalization of
STN-Consistency (see also Remark 2.1). Moreover, the reduction gives a fur-
ther evidence that, within STNs, a new algorithmic approach is necessary in
order to manage temporal aspects of event like the synchronization one pre-
sented in the Introduction.

Let us start considering the �rst reduction.

Theorem 2.6. There exists alog-space2, linear-time, local-replacement3 reduction
from Head-HyTN-Consistency to MPG-Threshold.

Since this reduction plays a main role in the algorithmic solutions proposed
in this chapter, we �rstly describe how it works and, secondly, we prove its
correctness by means of two lemmas, Lemma 2.4 and Lemma 2.5.

The reduction goes as follows.
Let H = ( V,A ) be a HyTN. We assume that every v 2 V is the tail of some

arc A 2 A . This assumption is not a restriction since, if H contains a sink node
v, i.e., a node v with no arc A 2 A having tail in it, then H is consistent if
and only if so is H v, the HyTN obtained from H by removing node v and
every hyperarc having v as an head. Indeed, any feasible schedulings : V 7! R
for H , once projected onto V n f vg, gives a feasible scheduling for H v since
every constraint involving v has been dropped and no constraint has been
added; conversely, any feasible scheduling s for H v can be easily extended to a
feasible scheduling s for H by exploiting the property of v being a sink node:
it is suf�cient to set s(v) , min f s(tA ) � wA (v) j A 2 A ,v 2 HAg.

Now, let us consider a mean payoff game GH = ( V0 [� V1,E) where: (1)
V0 = V, V1 = A , nodes in V0 are colored by blackwhile nodes in V1 are colored
by white, and (2) for each A 2 A , the following weighted arcs are added to E:

� an arc of weight 0 from the black node ta to the white node A, i.e., arc
(tA , A,0);

� for each head node h 2 HA , an arc of weight wA (h) from the white node
A to the black node h, i.e., arc (A,h,wA (h)) .

2A strong and basic-form of reduction introduced by Papadimitriou in [96].
3A restricted kind of Karp reduction introduced in [58].
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Figure 2.9: The conversion of a hyperarc into a white node and its incident
arcs.

Algorithm 1: makeACorrespondingGame (H )
// a HyTN H = ( V,A )

1 V0  V;
2 V1  A ;
3 E  Æ;
4 foreach A 2 A do
5 E  E [ (tA , A,0);
6 foreach h 2 HA do
7 E  E [ (A,h,wA (h)) ;

Output : The MPG GH = ( V0 [� V1,E)

Algorithm 1: The algorithm implementing the reduction from a HyTN to the
corresponding MPG.

In short, GH = ( V0 [� V1,A ), with V0 = V, V1 = A , E = f (tA , A,0) j A 2 Ag [
f (A,h,wA (h)) j A 2 A ,h 2 HAg. Fig. 2.9 depicts how a hyperarc is transformed
into a MPG subnetwork while Algo. 1 reports a pseudocode for the whole
construction process, i.e., Algorithm 1.

GH has jV j + jAj nodes and O(m) arcs and can be constructed in linear
time. Moreover, GH is a bipartite graph with bipartition (V0,V1) and it has been
obtained from H by a simple local replacement rule: replace every hyperarc
A 2 A by a claw subgraph as depicted in Fig. 2.9. For each single object, it is
necessary only to manage a constant number of indexes, each of them having
a polynomial size; thus the reduction is log-space. Fig. 2.10 depicts an MPG
obtained applying the reduction to the motivating example HyTN depicted
in Fig. 2.3; we remark that the MPG depicted in Fig. 2.10 has been obtained
by considering the (equivalent) multi-head HyTN transformation of the multi-
tail HyTN shown in Fig. 2.3, indeed, Theorem 2.2 allows us to consider both
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Figure 2.10: The MPG equivalent to the HyTN depicted in Fig. 2.3, obtained
by considering the (equivalent) multi-head HyTN transformation of the multi-
tail HyTN shown in Fig. 2.3. A winning positional strategy p 1 for Player 1 is
highlighted by thick arcs. The dashed arcs are those not prescribed by strategy
p 1, i.e., they are removed when projecting the MPG on p 1.

the multi-head or the (equivalent) multi-tail HyTN without concerns w.r.t. the
consistency checking problem.

Now, let us introduce the formal proof of Theorem 2.6 by the following two
lemmas.

Lemma 2.4. If H is consistent then every node of GH is a winning start position for
Player1.

Proof. Since H is consistent, there exists a feasible schedulings : V ! R such
that, for each hyperarc A 2 A , the reduced slack weight is non-negative ws

A � 0.
Consider the following positional strategy p 1 for Player 1: for each A 2 V1,

p 1(A) = arg min
h2 HA

f s(h) � wA (h)g.

We claim that p 1 ensures Player 1 the win, wherever node the game starts
from and however Player 0 moves. In order to show this, we prove that the
projection graph Gp 1 is conservative by exhibiting a feasible potential p. Let
p : V0 [ V1 ! R be de�ned as follows:

p(v) ,

(
s(v) if v 2 V0,

s(t(v)) if v 2 V1.
(2.2)
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Now, let a= ( u,v,w) be any arc of Gp 1:
Case 1: if v 2 V1, then v is a hyperarc of H with t(v) = u and w = 0; therefore,
p(v) = s(t(v)) = s(u) = p(u) since u 2 V0. Then wp(u,v) = w � p(v) + p(u) =
0 � 0 follows;
Case 2: if v 2 V0, then u 2 V1 and w = wu(v). Moreover, v = p 1(u), which
implies that v = argmin h2 Hu f s(h) � wu(h)g. Therefore, recalling that ws

u � 0,
i.e., s(t(u)) � min h2 Hu f s(h) � wu(h)g:

p(u) = s(t(u)) � min
h2 Hu

f s(h) � wu(h)g = s(v) � wu(v) = p(v) � w.

Hence, wp(u,v) = w � p(v) + p(u) � 0.
In conclusion, Gp 1 is conservative. Therefore, the positional strategy p 1 certi-
�es that any node of GH is a winning start position for Player 1. 2

Lemma 2.5. If every node of GH is a winning start position for Player1 thenH is a
consistent HyTN.

Proof. If every node is a winning start position for Player 1, then there exists a
positional strategy p 1 which is everywhere winning for Player 1. Notice that
Gp 1 must be conservative since Player 0 can clearly win any play starting from
a node located on a negative cycle. Let p : V0 [ V1 ! R be a feasible potential
for Gp 1. We claim that the restriction of p onto V0 is a feasible scheduling
for H . Indeed, for any hyperarc A of H , (tA , A,0) is an arc of Gp 1, whence
p(A) � p(tA ). Moreover, (A,p 1(A),wA (p 1(A))) is also an arc of Gp 1, whence
p(p 1(A)) � p(A) + wA (p 1(A)) . Sincep 1(A) 2 HA , then the following holds:

p(tA ) � p(A) � p(p 1(A)) � wA (p 1(A))

� min
h2 HA

f s(h) � wA (h)g.

Hence, the restriction of p onto V0 is a feasible scheduling for H . Thus, H is
consistent. 2

In Fig. 2.11 the values under the nodes represent a feasible potential for the
projection of the MPG depicted in Fig. 2.10. By Lemma 2.5, the restriction of
such a feasible potential on the black nodes is also a feasible scheduling for
the corresponding HyTN depicted in Fig. 2.3. Now, we have all the necessary
results to prove the following theorem.

Theorem 2.7. Let H = ( V,A ) be an integral-weighted HyTN, m= å A2A jA j, and
W = maxA2A f maxh2 A jwA (h)jg the maximal weight value present inH . The fol-
lowing propositions hold:

1. There exists an O(( jV j + jAj )mW) pseudo-polynomial time algorithm deciding
Head-HyTN-Consistency for H ;
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Figure 2.11: The integer labels under the nodes are a feasible potential for
the projection on p 1 of the MPG depicted in Fig. 2.10. The restriction of this
potential on the black nodes (those in V0) is a feasible scheduling for the HyTN
depicted in Fig. 2.3 as explained in the proof of Lemma 2.5.

2. There exists an O(( jV j + jAj )mW) pseudo-polynomial time algorithm such
that, given on input any consistent HyTNH , it returns as output a feasible
scheduling s: VH ! Z of H ;

3. There exists an O(( jV j + jAj )mW) pseudo-polynomial time algorithm such
that, given on input any not-consistent HyTNH , it returns as output a negative
cycle(S,C) of H .

Proof. 1. The decision algorithm is sketched in Algo. 2. It takes in input a
HyTN H = ( V,A ) and, in line 1, constructs the corresponding MPG GH
as described in Theorem 2.6. This �rst step takes O(m) time and yields a
graph with jV j + jAj nodes and O(m) arcs. Then, in line 2, the instance of
MPG-Threshold with T = 0 on graph GH is solved in O(( jV j + jAj )mW)
time by the Value Iteration Algorithm (see Theorem 2.5). The output
consists in a partition of GH nodes into two sets: W1 = f v 2 V [ A j nv �
0g and W0 = f v 2 V [ A j nv < 0g. If W0 is empty, then H is consistent by
Lemma 2.5, otherwise it is not consistent by Lemma 2.4.
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Algorithm 2: isConsistent (H )
// a HyTN H = ( V,A ) of unknown consistency state

1 GH  makeACorrespondingGame (H ); // See Algorithm 1
2 (W0,W1)  solveMPG-Threshold (GH ,0); // Brim's algorithm, see Theorem 2.5
3 if (W0 = Æ) then Output : YES;
4 else Output : NO;

Algorithm 2: Pseudocode of the algorithm for deciding H ead-HyTN-
Consistency .

Algorithm 3: computeAFeasibleSchedule (H )
// a consistent HyTN H = ( V,A )

1 G  makeACorrespondingGame (H ); // See Algorithm 1
2 p 1  MPG-Synthesis (G); // Compute a positional winning strategy for Player 1;

see Theorem 2.5
3 Gp 1  compute the subgraph of G induced by p 1;

// Recall Gp 1 = ( V0 [� V1,E), where V0 = V and V1 = A .
4 s  a new node; // s62V0 [ V1
5 Add s to V1 and add an arc (s,v,0) for each v 2 V0;
6 p  Bellman-Ford (Gp 1,s); // compute a potential function p

Output : the restriction of p onto V

Algorithm 3: Pseudocode of the algorithm for computing a feasible schedule.

2. In caseW0 is empty, a feasible scheduling is obtained as shown in Al-
gorithm 3. First, in line 2, the algorithm computes a positional winning
strategy p 1 for Player 1. This takes O(( jV j + jAj )mW) time by Theo-
rem 2.5. Next, in line 3, it builds the graph Gp 1 which is conservative
since p 1 is a positional winning strategy for Player 1. Then, in lines 4-
5, it adds a new node s to V1 and a new arc ev = ( s,v,0) for each node
v 2 V0 in Gp 1. Let G0

p 1
= ( V0 [� (V1 [ f sg),E0) the graph thus obtained.

Observe that every node of G0
p 1

is reachable from s. Indeed, every node
A 2 V1 = A can be reached by traversing two arcs: from s to tA along
the arc etA = ( s,tA ,0), which belongs to G0

p 1
as tA 2 V0, then from tA to

A along the arc (tA , A,0), which belongs to Gp 1 (and hence to G0
p 1

) since
tA 2 V0.
Since the added node s is a source, then G0

p 1
is conservative too. There-

fore, in G0
p 1

, the set of distances from node s, computed calling the
Bellman-Ford algorithm in line 6, forms a feasible potential p : V0 [ V1 [
f sg ! Z and the restriction of p onto V0 = V is a feasible scheduling for
H .

3. In caseW0 is not empty, a negative cycle is determined by Algorithm 4.
Let G[W0] be the subgraph of G induced by W0, i.e., the graph obtained
from G by removing all nodes not in W0 and all the arcs incident into
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Algorithm 4: computeANegativeCycle (H ,W0)
// a HyTN H = ( V,A ) = ( V0 [� V1,A ) which is not consistent
// the non-empty set W0 = f v 2 V j nv < 0g

1 G  makeACorrespondingGame (H ); // See Algorithm 1
2 G[W0]  compute the subraph of G induced by W0;
3 p 0  MPG-Synthesis (G[W0]); // Compute a positional winning strategy for

Player 0; see Theorem 2.5
4 W0  W0 \ V0;
5 C  f p 0(v)gv2W0

;

Output : (W0,C)

Algorithm 4: Pseudocode of the algorithm for computing a negative cycle.

them. Notice that every node v 2 W0 is a winning start position for
Player 0 in game G[W0] becausev is a winning start position for Player 0
in game G, and no winning strategy for Player 0 in G can prescribe a
move from a node in W0 to a node in W1; therefore, that same winning
strategy remains valid on G[W0]. This implies that, for every u 2 W0,
there exists at least one arc(u,v) with v 2 W0. In particular, since (V0,V1)
is a bipartition of G, then W0 , W0 \ V0 6= Æ. In line 3, a positional win-
ning strategy p 0 for Player 0 on G[W0] is determined. By Theorem 2.5,
this computation takes time O(( jV j + jAj )mW). Consider the set of hy-
perarcs C= f p 0(v)gv2W0

; the pair (W0,C) returned by the algorithm is
a negative cycle. Indeed, for any v 2 W0, p 0(v) 2 V1 is a hyperarc of
H . Thus the head set Hp 0(v) � V0. Also, Hp 0(v) � W0, since v is a win-
ning start position for Player 0 and p 0 is a winning strategy for Player 0.
Combining, Hp 0(v) � W0 determining that (W0,C) is a negative cycle.

2

Remark 2.2. In Theorem 2.7 Item 2), a set of feasible potentials may be obtained
without executing the Bellman-Ford algorithm. Actually, if the partition(W0,W1) is
computed by the Value Iteration Algorithm [14], then a feasible scheduling forH can
be directly derived from theprogress measure computed within the algorithm. In
more detail, let G= ( V0 [� V1,E) be an MPG weighted by w: E ! Z . An energy
progress measure is a function f : V0 [ V1 ! N [ f + ¥ g such that: if v2 V0,
then for every(v,v0,w) 2 E it holds f(v) � f (v0) � w; otherwise, v2 V1 and there
exists (v,v0,w) 2 E such that f(v) � f (v0) � w. An energy progress measure f:
V0 [ V1 ! N [ f + ¥ g such that0 � f (v) < + ¥ for every v2 V0 [ V1 is provided
by the resolution algorithm of Theorem 2.5 in time O(( jV j + jAj )mW).

The progress measure f is already a feasible scheduling forH : in fact, for every
hyperarc A2 A , it holds (tA , A,0) 2 E and (A,v,wA (v)) 2 E, for every v2 HA ;
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Algorithm 5: computeAFeasibleSchedule-Remark2.2 (H )
// a consistent HyTN H = ( V,A ) = ( V0 [� V1,A )
// ref. Remark 2.2 and Theorem 2.5 [14]

1 G  makeACorrespondingGame (H ); // ref. Algorithm 1
2 f  Value-Iteration (G); // compute an energy progress measure for G as in

Theorem 2.5
Output : f

Algorithm 5: Pseudocode of the algorithm of Remark 2.2 for computing a
feasible schedule.

combining these two last facts, it follows that:

f (tA ) � f (A) � min
v2 HA

f f (v) � wA (v)g,

i.e., f is a scheduling satisfying all constrains A2 A . This allow us to employ the
algorithm depicted in Algo. 5 instead of the one depicted in Algo. 3 in the case that
W1 = V.

The computational equivalence between MPG-Decision problem and H ead-
HyTN-Consistency can be now determined by showing that also MPG-Decision
can be reduced to Head-HyTN-Consistency .

Theorem 2.8. There exists alog-space, linear-time, local-replacement reduction from
MPG-Decision toHead-HyTN-Consistency .

Proof. Let G = ( V0 [� V1,E) be an MPG. For each nodeu 2 V0 [ V1, let NG(u)
denote the outgoing neighborhood of u in G, i.e., NG(u) , f v 2 V0 [ V1 j (u,v) 2
Eg.

A corresponding HyTN H = ( V,A ), where V = V0 [� V1, is constructed from
G as follows. For every u 2 V1, a hyperarc Au 2 A is added to H , where:

Au , (u,NG(u),wAu ),

with weight wAu (v) , w(u,v) for every v 2 NG(u). Moreover, for every u 2 V0

and every v 2 NG(u), a hyperarc Auv 2 A is added to H , where:

Auv , (u,v,w(u,v)) .

This construction requires a log-space and linear-time computation.
Now, we �rstly prove that if H is consistent then every node of G is a

winning start position for Player 1.
Indeed, let s : V ! R be a feasible scheduling for H . Thus, ws

A � 0 for every
hyperarc A 2 A . Notice that, by construction, for each u 2 V1 there exists a
unique hyperarc Au 2 A with tail tAu = u; moreover, it holds that HAu , NG(u).
Hence, for each u 2 V1, we can de�ne a positional strategy p 1 for Player 1 as
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follows:
p 1(u) , arg min

h2 HAu

f s(h) � wAu (h)g.

Now, consider the potential function p : V ! R de�ned as: p(u) , s(u) for
every u 2 V. We argue that p is a feasible potential for Gp 1.

In fact, let a= ( u,v,w) 2 E be any arc of G:

Case 1: Assume thatu 2 V0. Then, by construction, a = Auv. Hence, from p , s
and the feasibility of s, we have:

p(u) = s(u) � min h2 HAuv
f s(h) � wAuv (h)g

= s(v) � wAuv (v)
= p(v) � w

Hence, wp(u,v) = w � p(v) + p(u) � 0;

Case 2: Assume thatu 2 V1. Then, by construction, A = ( u,NG(u),wA ), where
wA (z) = w(u,z) for every z 2 NG(u); moreover, notice that v = p 1(u) 2
NG(u) = HA . Hence, from p , s, the feasibility of s, and the de�nition of
p 1, we have:

p(u) = s(u) � min h2 Hu f s(h) � wAu (h)g
= s(p 1(u)) � wAu (p 1(u))
= s(v) � wAu (v)
= p(v) � w

Hence, wp(u,v) = w � p(v) � p(u) � 0.

Thus, Gp 1 is conservative. This implies that every node of G is a winning start
for Player 1.

Secondly, we prove that if every node of G is a winning start position for
Player 1, then H is consistent.

Let p 1 be a positional winning strategy for Player 1. It follows that Gp 1

is conservative and, therefore, it admits a feasible potential p : V ! R. Now,
consider the scheduling function s : V ! R for H de�ned as: s(u) , p(u) for
every u 2 V. We argue that s is a feasible scheduling of H .

In fact, let A = ( tA ,HA ,wA ) 2 A be any hyperarc of H :

Case 1: assumetA 2 V0. Then, by construction, A = ( u,v,w) for some v 2 NG(u),w 2
R and u = tA . Hence, from s , p and the feasibility of p, we have:

s(tA ) = p(u) � p(v) � w
= s(v) � wA (v)
= min h2 HA

f s(h) � wA (h)g

Hence, s satis�es A, i.e., ws
A � 0 ;
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Case 2: assumetA 2 V1. Then, by construction, A = ( u,NG(u),wA ) for u = tA

and wA (v) = w(u,v) 2 R for every v 2 NG(u); moreover, if v , p 1(u),
then v 2 NG(u) = HA . Hence, from s , p and the feasibility of p, we
have:

s(tA ) = p(u) � p(v) � w
= s(v) � wA (v)
� min h2 HA

f s(h) � wA (h)g

Hence, s satis�es A, i.e., ws
A � 0.

This proves that s satis�es every hyperarc A 2 A . Then s is a feasible schedul-
ing of H , which is thus consistent. 2

2.7 Computational Experiments
This section describes our empirical evaluation of the proposed consistency
checking algorithms to evaluate the performances and the general applicabil-
ity of the proposed HyTN model. Both Algorithm 3 and Algorithm 4 consist of
one single call to Algorithm 2, plus some extra computation of lower asymp-
totic complexity. Since the cost of these further computations was con�rmed
to be practically negligible in some preliminary experiments, we report on the
results of our experimental investigations only for Algorithm 2.

All algorithms and procedures employed in this empirical evaluation have
been implemented in C/C++ and executed on a Linux machine having the
following characteristics:

� 2 CPU AMD Opteron 4334;

� 64GB RAM;

� Ubuntu server 14.04.1 Operating System.

The source code and all HyTNs used in the experiments are freely avail-
able [30].

The main goal of this empirical evaluation was to determine the average
computation time of Algorithm 2, with respect to randomly-generated HyTNs
following different criteria, in order to give an idea of the practical behavior
of the algorithm. According to Theorem 2.7, the worst-case time complexity
of Algorithm 2 is O((n + m0)mW), where n = jV j, m0 = jAj , m = å A2A jA j,
and W = maxA2A f maxh2 A jwA (h)jg. Hence, we implemented different exper-
iments with respect to the parameters n,m0,m, and W. Here we propose a
summary of the obtained results presenting a brief report about four tests,
Test 1, Test 2, Test 3 and Test 4.

In Test 1 the average computation time was determined for different HyTN
orders n to emphasize the practical computation time dependency on n. In
Test 2 the average computation time was determined for different HyTN max-
imal edge-weights W to understand how much the practical computation time
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is dependent on W. In Test 3 we investigated how some execution times af-
fect the value of the standard deviation, with the goal to determine how many
instances require a signi�cant greater computation time with respect to the
average time of a data set. Finally, in Test 4 the average computation time was
determined with respect to different values of the number of possible strate-
gies of Player 1 Õ A2A jHA j in order to give an idea about the possible practical
relation between execution time and number of possible strategies.

The generation of random HyTN instances was carried out exploiting two
generators. The �rst generator was the random work�ow schema generator
provided by ATAPIS toolset [76]: it produces random work�ow graphs ac-
cording to different input parameters that allow to control the minimal and
maximal number of activities, probability for having parallel branches, the
minimal and maximal probability of inter-task temporal constraints, etc. on
the generated graphs. We veri�ed that this tool allows the determination of
graphs that are not only a closer approximation to real-world examples, but
also more dif�cult to check than those generated at random without particular
criteria.

We generated benchmarks as follows:

1. First, temporal work�ow graphs were generated by �xing the probability
for parallel branches to 10% and maximal value for each activity duration
or delay between activities to a value W, where W was chosen accord-
ingly to the test type;

2. Then, each work�ow graph was translated into an equivalent HyTN H
by the simple transformation algorithm exempli�ed in Section 2.2.

It is worth noting that different random work�ow graphs all having the same
number of activities may translate into HyTNs having different orders n be-
cause the original work�ow graphs may have different number of connector
nodes. Considering the transformation algorithm exempli�ed in Section 2.2, it
is easy to verify that a work�ow with N activities can translate into a CSTN
having between 2N + 2 nodes (when the work�ow is a simple sequence) and
5N + 2 nodes (when the work�ow is a sequence of groups of two parallel
activities).

ATAPIS toolset has been designed to generate graphs with strongly con-
nected components (Andreas Lanz, personal communication, October 6, 2015).
In particular, it has been optimized for small graphs with up to 50 activi-
ties. This design choice was motivated by the widely accepted seven process
modeling guidelines [85] which suggests to always “decompose a (work�ow)
model with more than 50 elements (activities)”. Therefore, we used the tool
for generating random work�ow graphs with 100 activities at maximum and,
consequently, obtaining HyTNs having 502 nodes at most.

In Table 2.1 we report the orders of the smallest and the largest HyTN
determined from each set of random generated work�ow graphs having N
activities for N 2 f 10,20, . . . ,100g.
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Table 2.1: Orders of the smallest and biggest HyTN determined for each set of
random generated work�ows having N activities.

N Order of smallest HyTN Order of biggest HyTN
10 26 50
20 48 94
30 78 138
40 104 196
50 136 236
60 164 268
70 196 306
80 222 350
90 262 394

100 292 410

Table 2.2: Comparison between different kinds of queue implementation in the
Value-Iteration procedure. All values are in seconds.

FIFO Queue LIFO Queue LIFO Queue
+ Stopping-Criterion

Max-Priority Queue

m 90.55 11.77 6.98 184.69
s 487.69 64.10 34.61 653.26

In order to study the scalability of the algorithm with respect to the number
of nodes, we had to rely on a second generator of random HyTN graphs. Our
choice has been to use therandomgame procedure of pgsolver suite [98],
that can produce parity games instances for any given number of nodes. In
particular, we exploited randomgame in the following way:

1. First, randomgame was used to generate random directed graphs with
out-degree �xed to 3;

2. Then, the resulting graphs were translated into MPGs by weighting each
arc with an integer randomly chosen in the interval [� W,W], where W
was chosen accordingly to the test type;

3. Finally, each MPG G was translated into a HyTN H G by the reduction al-
gorithm of Theorem 2.8. During the translation from MPG to HyTN, only
10% of the hyperarcs were maintained having multiple heads, while 90%
of hyperarcs were transformed into standard arcs. This 10%-rule stems
from the fact that we are considering work�ow based applications where
the percentage of (multi-headed) hyperarcs is less than 10% compared to
standard arcs in general.

With such settings, the resulting HyTNs are characterized by m,m02 Q(n).
Before presenting the summary of results, it is worthwhile to present some

implementation choices about Algorithm 2 that we had to adopt. The core of
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the algorithm consists of calls to the procedure makeACorrespondingGame( H ) ,
that transforms the given HyTN H into a MPG GH , and to the procedure
solveMPG-Threshold( GH ,0) (Value Iteration algorithm), that determines
for which game nodes s it holds that vs � 0. ThemakeACorrespondingGame()
implementation didn't require signi�cant choices thanks to the simple struc-
ture of the algorithm.

On the contrary, in the implementation of solveMPG-Threshold() we
introduced some further ideas in order to speed-up the algorithm and avoid
unnecessary computations. Particularly, it is not necessary for the procedure
solveMPG-Threshold() to continue to determine other potential value vs0

as soon as it determines a valuevs < 0: at this point we can already conclude
that the network is not consistent and, with a lower computational cost, we can
yield a generalized negative circuit assessing this fact (Lemmas 2.4 and 2.5).

Moreover, we veri�ed that there is an important data structure in the orig-
inal Value Iteration algorithm, a queue, that is not further speci�ed by the au-
thors and that different implementations of it affect the performance of the al-
gorithm. Therefore, we decided to verify whether solveMPG-Threshold()
performance could be appreciably improved adding a suitable stopping cri-
terion and a proper queue implementation. Table 2.2 reports the obtained
results, mean execution time m and its standard deviations s, determined
running the following different versions of solveMPG-Threshold() on the
same data set of 103 not consistent HyTNs 4 having jV j = 106 and W = 103:

1. FIFO Queue: the original queue is implemented as a FIFO queue;

2. LIFO Queue: the original queue is implemented as a a LIFO queue
(stack);

3. LIFO Queue+Stopping Criterion: the queue is implemented as stack
and the computation is halted either when all potential values are stable
or when any of them is negative;

4. Max-Priority Queue: the original queue is implemented as a Fibonacci's
heap.

The results show that, in general, solveMPG-Threshold() performance
becomes better if the original queue is implemented as a stack and, in partic-
ular, a further improvement can be obtained if the stopping criterion is also
considered. Nevertheless, such improvements can only partially reduce the
statistics variability of the running time, as it is shown in the following exper-
imental results.

As mentioned above, the goal of Test 1 was to determine the average com-
putation time of Algorithm 2 implementation for different values of n to study
the practical computation time dependency on such parameter.

4We considered not consistent HyTNs because they practically required more time to be
solved.
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n m(sec) s
< 4 � 102 0.13 0.42

1 � 105 0.55 5.41
2 � 105 0.99 4.71
3 � 105 1.67 13.55
4 � 105 1.95 12.59
5 � 105 2.58 16.10
6 � 105 2.58 9.43
7 � 105 3.48 22.43
8 � 105 4.58 17.85
9 � 105 4.72 36.19

10 � 105 4.83 30.62

(a) Test 1 results.
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(b) Interpolation of average execution times
of Test 1.
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(c) Comparison between theoretical computation times and experimental
ones.

Figure 2.12: Results of Test 1: average execution times (m) and relative standard
deviations (s) over a range of different HyTN orders n. Times are in seconds.
Each data set comprised of 1600 HyTN instances of unknown consistency state.

The instances in Test 1 come from therandomgame generator, except those
for the �rst row of the table in Fig. 2.12a which have been built by the ATAPIS
work�ow random generator. In particular, for each n 2 f 1 � 105,2 � 105, . . . ,10�
105g, 1600 HyTN instances with maximum weight W := 1000 and unknown
consistency state were generated by randomgame, whereas 1600 HyTNs of
unknown consistency state and order n around 400 were generated by AT-
APIS. The results of the test are summarized in Fig. 2.12, where each execution
mean time is depicted as a point with a vertical bar representing its con�dence
interval determined according to its standard deviation.

The depicted function interpolating the mean values shows that the prac-
tical performance of the algorithms is de�nitely better than the theoretical
worst-case bound of O((n + m0)mW); in our case this last is O(n2) since in
the generated data setsW is constant and m,m02 Q(n). Fig. 2.12c depicts the
interpolating function of experimental execution times and, in red, the func-
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N m(sec) s
10 6.42� 10� 5 1.22� 10� 5

20 1.05� 10� 4 4.85� 10� 5

30 1.50� 10� 4 5.7� 10� 5

40 2.43� 10� 4 1.04� 10� 4

50 3.20� 10� 4 1.78� 10� 4

60 3.77� 10� 4 1.38� 10� 4

70 4.77� 10� 4 1.28� 10� 4

80 5.73� 10� 4 1.80� 10� 4

90 6.82� 10� 4 2.79� 10� 4

100 8.89� 10� 4 4.10� 10� 4

(a) Average execution times for consis-
tent HyTNs obtained from work�ow
graphs with N activities.
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(b) Interpolation of average execution
times of Table 2.13a.

N m(sec) s
10 4.45� 10� 4 1.38� 10� 3

20 1.50� 10� 3 5.10� 10� 3

30 4.04� 10� 3 1.48� 10� 2

40 1.10� 10� 2 3.62� 10� 2

50 1.64� 10� 2 8.42� 10� 2

60 4.36� 10� 2 1.20� 10� 1

70 8.08� 10� 2 2.71� 10� 1

80 1.31� 10� 1 4.20� 10� 1

90 1.59� 10� 1 5.22� 10� 1

100 2.59� 10� 1 8.46� 10� 1

(c) Average execution times for not con-
sistent HyTNs obtained from random
work�ow graphs with N activities.
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(d) Interpolation of average execution
times of Table 2.13c.

Figure 2.13: Average execution times obtained in Test 1 calculated considering
samples of either all consistent or all not consistent HyTNs obtained from
work�ow graphs.

tion n2/10 10 as a reasonable surrogate for the worst-case execution time. The
comparison shows that the algorithm performs very well in real case execu-
tions.

However, since the standard deviation observed in the experiment is not
negligible, we further investigated the behavior of the algorithm and we dis-
covered that there is a correlation between the execution time of the algorithm
and the consistency state of the input HyTN. Therefore, mand s were recal-
culated considering two kind of HyTN sets: one having all consistent HyTNs,
and the other having all not consistent HyTNs.

Fig. 2.13 depicts average execution times obtained in Test 1 calculated con-
sidering samples of either all consistent or all not consistent HyTNs obtained
from work�ow graphs. Fig. 2.14 offers the same view but for HyTNs obtained
from MPG graphs. In general, the mean execution times for consistent HyTNs
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n m(sec) s
1 � 105 0.16 0.04
2 � 105 0.35 0.07
3 � 105 0.56 0.01
4 � 105 0.75 0.02
5 � 105 0.96 0.02
6 � 105 1.18 0.03
7 � 105 1.38 0.03
8 � 105 1.59 0.04
9 � 105 1.86 0.06

10 � 105 2.07 0.08

(a) Average execution times for consis-
tent HyTNs obtained from MPGs.

2 � 105 4 � 105 6 � 105 8 � 105 1 � 106

0.5

1

1.5

2

n

Ti
m

e
[s

]

(b) Interpolation of average execution
times of Table 2.14a.

n m(sec) s
1 � 105 0.95 7.63
2 � 105 1.64 6.60
3 � 105 2.79 19.11
4 � 105 3.15 17.73
5 � 105 4.21 22.67
6 � 105 3.98 13.19
7 � 105 5.60 31.58
8 � 105 7.58 24.89
9 � 105 7.58 51.03

10 � 105 7.60 43.14

(c) Average execution times for not
consistent HyTNs obtained from
MPGs.
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(d) Interpolation of average execution
times of Table 2.14c.

Figure 2.14: Average execution times obtained in Test 1 calculated for samples
of either all consistent or all not consistent HyTNs obtained from MPG graphs.

are smaller than the corresponding ones for not consistent HyTNs; further-
more, they also exhibit a negligible standard deviation. However, for samples
of consistent HyTNs obtained from work�ows, the standard deviation is not
negligible even for samples with size N = 20. Part of the reasons for this behav-
ior is given by the structure of the data sets: in each data set HyTNs can differ
a lot with respect to their order and, therefore, they may require very different
execution times. For example, the data set relating to work�ow graphs with
20 activities contains HyTNs with order in range [48,94]. Since the number
of activities is usually considered as main parameter in work�ow community,
we wanted to maintain such structure of data set and experiment results to
emphasize the dependency of execution time with respect to such number.

On the other side, for consistent HyTNs determined from MPGs, the ob-
served standard deviation s is always less that the 10% of the average execu-
tion time m with 99% level of con�dence, while for not consistent HyTNs it
has not been possible to determine any con�dence level because the observed
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Figure 2.15: Average execution times in Test 1 calculated considering samples
of either all consistent or all not consistent HyTNs.

standard deviation s resulted to be always high due to some hard instances.
Even though procedure solveMPG-Threshold() could require up to

Q(W) updates according to the theoretical worst-case bound, our experiments
suggest that, in practice, some kind of dependency of the running time on W is
appreciable only for a few MPG games, all associated to not consistent HyTN
instances.

The goal of Test 2 was to determine the average computation time of Al-
gorithm 2 for different values of W, in order to understand how much the
practical computation time is dependent on W. Therefore, we considered
three possible edge weight ranges, [102,103], [105,106], and [108,109], and for
each of them two data sets have been built using the randomgame genera-
tor, one comprising only consistent HyTNs, and the other only not consistent
ones. Each data set comprised of 800 HyTNs instances havingjV j = 105 nodes,
m,m02 Q(n) and edge weights in the corresponding weight range. Fig. 2.15
depicts the results on these six data sets. Applying the worst-case analysis for
these data sets, it results that the time complexity should be O(W) since n,
m and m0 are constants. On the contrary, the determined interpolation func-
tions representing the experimental execution times do not show any clear
dependence on W. This result suggests that, in practice, uniform random
weighted instances are decided very quickly with respect to the magnitude
of their weights and that the algorithm does not seem to exhibit the worst-
case pseudo-polynomial behavior predicted in the asymptotic analysis. More-
over, the average execution times for each data set comprising only consistent
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(a) Execution times of 103 not consistent
HyTNs instances with n = 106 and W = 103.
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(b) Instance classi�cation with respect
to solveMPG-Threshold() execution
time.

Figure 2.16: solveMPG-Threshold() execution times obtained in Test 3 de-
termined considering samples of all not consistent HyTN instances.

HyTNs are less than those for the corresponding data of only not consistent
HyTNs. Only for consistent HyTNs data sets the standard deviation was be-
low 7% than the average execution time with a con�dence of 99%.

In order to better understand how some execution times affect the value
of the standard deviation, we conducted a third experiment, Test 3, with the
goal to visualize the distribution of the instances with computation times sig-
ni�cantly above the average. Procedure solveMPG-Threshold() has been
executed on 103 randomly generated not consistent HyTNs, each having order
n = 106 and W � 103. The determined running times are depicted in Fig. 2.16a:
most of the instances are decided very quickly, i.e., in a time between 0 and 10
seconds, while a smaller portion of the HyTNs required a time between 10 and
500 seconds. In more details, in repeated tests we veri�ed that, approximately,
1% of the HyTN instances required a time between 50 and 100 seconds to be
decided, 0.4% required a time between 100 and 500 seconds, and, �nally, only
0.1% required more than 500 seconds. These results are shown in Fig. 2.16b.

Such behavior has been con�rmed in other tests with different graph orders
and maximum edge weight values. In several experiments we conducted, we
observed that the maximum execution time of the algorithm keeps growing as
we enlarge the size of the dataset. This explains why the standard deviation
can't be reduced. If we could characterize such hard instances in general,
we would be making a major progress in understanding the computational
complexity of MPGs. We didn't �nd any pattern or property that characterizes
the found hard instance. Here we can only show a simple family of HyTNs
instances in which the execution time grows linearly with W. The family is
given by just one single HyTN graph where only W changes, as depicted in
Fig. 2.17a. The corresponding MPG is shown in Fig. 2.17b and provides a clear
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Figure 2.17: A HyTN which requires Q(W) computation time by Algorithm 2.

example where Brim's Value Iteration algorithm [14] performs poorly. It is
worth noting that in the context of MPGs this example can be reduced down
to 6 nodes.

Finally, in order to show how much the running time is dependent on the
number of different positional strategies of one player, in Test 4 the average
computation time has been calculated with respect to different values of the
product of the heads of hyperarcs (i.e., Õ A2A jHA j) in a HyTN. In particular,
for each P 2 f 1015,1030, . . . ,1065g, 2500 HyTNs instances (V,A ) each having
jV j = 50 nodes,Õ A2A jHA j � P , and W = 103 have been generated by means of
randomgame generator. The results of the evaluation are depicted in Fig. 2.18,
where P values are drawn in logarithmic scale. Analyzing the diagram in the
�gure it is possible to say that, experimentally, the average execution time in-
creases only logarithmically with respect to the number of different positional
strategies of one player. This results is quite interesting because, considering
the HyTN in Fig. 2.17a, it is evident that the time for checking a HyTN is more
dependent on the edge weight magnitude than on the number of different
positional strategies of one player.
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P m(sec) s
1.13� 1015 3.02� 10� 4 1.36� 10� 3

1.27� 1030 7.78� 10� 4 3.34� 10� 3

8.08� 1038 3.45� 10� 3 2.15� 10� 2

1.43� 1045 8.13� 10� 3 3.70� 10� 2

1.00� 1050 1.63� 10� 2 6.15� 10� 2

9.10� 1053 2.65� 10� 2 1.02� 10� 1

2.02� 1057 3.46� 10� 2 1.05� 10� 1

1.61� 1060 4.82� 10� 2 1.62� 10� 1

5.80� 1062 7.44� 10� 2 2.63� 10� 1

1.13� 1065 9.01� 10� 2 3.21� 10� 1

(a) Average execution times obtained for differ-
ent values of the product of the heads of hyper-
arcs P .
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(b) Interpolation of average execution times in Ta-
ble 2.18a.

Figure 2.18: Average Execution Times obtained in Test 4.

2.8 Related Works
In the literature there are some extension proposals of the STN model to aug-
ment the capability to represent temporal constraints.

In the STN seminal paper [44], Dechter et al. �rstly proposed to consider
the Temporal Constraint Satisfaction Problem (TCSP). A binary constraint in
a TCSP is represented using a set of intervals rather than a single interval
as in an STN. In particular, a binary constraint Ci j = f [a1,b1], [a2,b2], . . . ,[al ,bl ]g
between time points xi and xj represents the disjunction a1 � xj � xi � b1 _ a2 �
xj � xi � b2 _ al � xj � xi � bl . The problem of verifying consistency of a TCSP
is NP-complete as the same authors showed in the paper; hence, they �nally
propose to consider STNs as a tractable simpli�ed model.

A similar kind of generalization considering disjunction of temporal dis-
tance constraints was proposed by Stergiou and Koubarakis [108] de�ning
the Disjunctive Temporal Problem (DTP). A DTP consists of a set of variables
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X = f x1,x2, . . . ,xng having continuous domains and representing time points
and a set of disjunctive difference constraints between the time points in the
form: a1 � xi1 � xj1 � b1 _ a2 � xi2 � xj2 � b2 _ . . . _ ak � xik � xjk � bk; where
xi1,xj1, . . . ,xik,xjk are time points from X and a1,b1, . . . ,ak,bk are real numbers. A
DTP is consistent if there exists an instantiation of variables X to real numbers
satisfying all the constraints. Since DTPs are a generalization of TCSPs, also
for DTPs the consistency check problem is NP-complete. In [108] the authors
presented some of the theoretical results characterizing the possible backtrack-
ing algorithms that solve the consistency problem in terms of search nodes
visited and consistency checks performed.

In 2005, Kumar proposed to consider a restricted class of DTP in order to
maintain some of the expressive power of DTPs but, at the same time, allowing
an ef�cient consistency check. In particular, in [102], RDTPs (restricted DTPs)
is de�ned as a disjunctive temporal problem where a constraint is one of the
following types: (Type 1) ( l � xi � xj � u), (Type 2) ( l1 � xi � u1) _ ( l2 � xi �
u2) . . .( l j � xi � uj ), (Type3) ( l1 � xi � u1) _ ( l2 � xj � u2), where xi and xj repre-
sent a timepoint variable, and l i ,ui real values. An RDTP instance can be solved
in strongly polynomial-time deterministic algorithm transforming it into a bi-
nary Constraint Satis�ability Problem (CSP) over meta variables representing
constraints of Type 2 or Type 3 and, then, showing that such binary constraints
are alsoconnected row-convex (CRC)constraints, and, then, exploiting the prop-
erties of CRC constraints. An instantiation of a consistency check algorithm
for RDTPs that further exploits the structure of CRC constraints has a running
time complexity of O(( jTP2j + jTP3j)3d2

max + ( jTP2j + jTP3j)2(NM + d2
max)) ,

where TP2 is the set of Type 2 constraints, TP3 is the set of Type 3 ones,dmax is
the maximum number of disjuncts in any constraint, and N/ M is the number
of the nodes/arcs of the instance, respectively. In the same paper, Kumar pre-
sented also a simpler and faster, but randomized, algorithm for the same class
RDTP.

An attempt to model some aspects of STNs similar to those addressed by
HyTNs was lead in [2], where fun-in and fun-out subgraphs much resembling
our multi-tail and multi-head hyperarcs were considered. However, since the
problem 1-in-3-SAT is NP-complete even when all the literals comprising the
clauses are positive, it readily follows that their models lead to NP-complete
problems even when fun-out subgraphs (or fun-in subgraphs) are banned. As
such, the opportunity for tractability spotlighted in this chapter is missed in
those models.

Another approach to extend STN is represented by the proposal of Khatib
et al. [71,72]. They introduced the characterization of hardand softconstraints.
STNs are able to model just hard temporal constraints, i.e., they can represent
instances where all constraints have to be satis�ed, and that the solutions of
a constraint are all equally satisfying. However, such assumption can be too
much restrictive in some real-life scenarios. For example, it may be that some
solutions are preferred with respect to others and, hence, the main problem
is to �nd a way to satisfy them optimally, according to the preferences spec-
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i�ed. To address these kind of problems, in [72] the authors introduced a
framework in which each temporal constraint is associated with a preference
function specifying the preference for each distance or duration; a soft sim-
ple temporal constraint is a 4-tuple h(X,Y), I , A, f i consisting of (1) an ordered
pair of variables (X,Y) over the integers, called the scope of the constraint; (2)
an interval I = [ a,b], where a and b are integers such that a � b; (3) a set of
preferences A; (4) a preference function f , where f : [a,b] 7! A is a mapping of
the elements belonging to interval I into preference values, taken from set A.
An assignment vx and vy to the variables X and Y is said to satisfy the con-
straint h(X,Y), I , A, f i if and only if a � vy � vx. In such a case, the preference
associated to the assignment by the constraint is f (vy � vx). Using soft simple
temporal constraint, a new model of temporal constraint network has been in-
troduce: the Simple Temporal Problem with Preferences (STPP). In general, each
solution of a STPP has a global preference value, obtained by combining in a
suitable way the preference levels at which the solution satis�es the constraints.
The optimal solutions of an STPP are those solutions which are not dominated
by any other solution in terms of global preference. It was shown in [72] that,
in general, STPPs belongs to the class ofNP-hard problems. When the prefer-
ence functions are semi-convex and some other side conditions are observed,
then the problem to �nd an optimal solutions of an STPP is tractable [71].

Finally, another kind of possible extension is represented by the use of
6= operator instead of � in the binary constrains of STNs. Koubarakis [73]
showed that if in a STN temporal constraints are used together with dise-
quations in the form x � y 6= r, where r is a real constant, then the problem
of deciding consistency is still tractable. This extension does not allow the
speci�cation of alternative constraints but it is interesting because it allows to
exclude some solutions maintaining the consistency problem tractable.

2.9 Conclusion
In the literature, there are different frameworks and approaches aimed to ex-
tend the
STN model allowing the representation of disjunctive temporal constraints [44,
108], but at cost of an exponential-time consistency check procedure. The only
extension with a polynomial time consistency check procedure we are aware
of is the one of Kumar [102] mentioned in Section 2.8.

In this chapter, we proposed a novel extension, called Hyper Temporal
Network (HyTN), where it is possible to represent a new kind of disjunc-
tive constraint, hyper constraint, and to check the consistency of a network in
pseudo-polynomial time. A hyper constraint is a suitable set of
STN distance constraints and it is satis�ed if at least one distance constraint is
satis�ed. There could be two kinds of hyperarc: multi-head and multi-tail. In
a multi-head hyperarc, its distance constraints are between a common source
timepoint and different destination timepoints. In a multi-tail hyperarc, its
distance constraints are between different source timepoints and a common
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destination timepoint.
A HyTN is said consistent if it is possible to determine an assignment for

all its timepoints such that all hyperarcs are satis�ed. The computational com-
plexity of the consistency problem of a HyTN is NP-complete when instances
contain both kinds of hyperarc.

On instances containing either only multi-tail hyperarcs, or only multi-
head hyperarcs, the consistency problem can be solved by reducing it, in a very
ef�cient way, to the search of a winning strategy in an equivalent Mean Payoff
Game (MPG), and exploiting the known winning-strategy search algorithms
for MPGs.

Moreover, we presented an empirical analysis of the ef�ciency of the re-
sulting consistency check algorithm. The empirical analysis shows that the
proposed algorithm can be effectively used in real cases and con�rms the gen-
eral robustess of our approach.

As future work we are investigating the frontier of practical ef�cient consis-
tency checking for possible generalizations of the HyTN model as, for example,
those including contingent constraints [117] or conditional ones [113].
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3 Checking Dynamic Consistency
of Conditional Hyper Tempo-
ral Networks via Mean Payoff
Games

Chapter Abstract

Conditional Simple Temporal Network (CSTN) is a constraint-based graph-
formalism for conditional temporal planning. It offers a more �exible formal-
ism than the equivalent CSTP model of Tsamardinos, et al. [113], from which
it was derived mainly as a sound formalization. Three notions of consistency
arise for CSTNs: weak, strong, and dynamic. Dynamic consistency is the
most interesting notion, but it is also the most challenging and it was conjec-
tured to be hard to assess. Tsamardinos,et al. [113] gave a doubly-exponential
time algorithm for checking dynamic consistency in CSTNs and to produce an
exponentially sized dynamic execution strategy whenever the input CSTN is
dynamically-consistent. CSTNs may be viewed as an extension of Simple Tem-
poral Networks (STNs) [44], directed weighted graphs where nodes represent
events to be scheduled in time and arcs represent temporal distance constraints
between pairs of events. Recently, STNs have been generalized intoHyper Tem-
poral Networks(HyTNs), by considering weighted directed hypergraphs where
each hyperarc models a disjunctivetemporal constraint named hyperconstraint;
being directed, the hyperarcs can be either multi-heador multi-tail . The compu-
tational equivalence between checking consistency in HyTNs and determin-
ing winning regions in Mean Payoff Games (MPGs) was also pointed out;
MPGs are a family of 2-player in�nite pebble games played on �nite graphs,
which is well known for having applications in model-checking and formal
veri�cation. In this work we introduce the Conditional Hyper Temporal Network
(CHyTN) model, a natural extension and generalization of both the CSTN and
the HyTN model which is obtained by blending them together. We show that
deciding whether a given CSTN or CHyTN is dynamically-consistent is coNP-
hard; and that deciding whether a given CHyTN is dynamically-consistent is
PSPACE-hard, provided that the input instances are allowed to include both
multi-head and multi-tail hyperarcs. In light of this, we continue our study
by focusing on CHyTNs that allow only multi-head hyperarcs, and we of-

74



fer the �rst deterministic (pseudo) singly-exponential time algorithm for the
problem of checking the dynamic consistency of such CHyTNs, also produc-
ing a dynamic execution strategy whenever the input CHyTN is dynamically-
consistent. Since CSTNs are a special case of CHyTNs, as a byproduct this
provides the �rst sound-and-complete (pseudo) singly-exponential time algo-
rithm for checking dynamic consistency in CSTNs. The proposed algorithm
is based on a novel connection between CHyTNs and MPGs; due to the ex-
istence of ef�cient pseudo-polynomial time algorithms for MPGs, it is quite
promising to be competitive in practice. The presentation of such connection
is mediated by the HyTN model. In order to analyze the time complexity of
the algorithm, we introduce a re�ned notion of dynamic consistency, named
e-dynamic consistency, and present a sharp lower bounding analysis on the
critical value of the reaction time #̂where a CHyTN transits from being, to not
being, dynamically-consistent. The proof technique introduced in this analy-
sis of #̂ is applicable more generally when dealing with linear difference con-
straints which include strict inequalities.
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This chapter is a revised version of [34,40].
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3.1 Introduction and Motivation
In many areas of Arti�cial Intelligence (AI), including temporal planning and
scheduling, the representation and management of quantitative temporal as-
pects is of crucial importance (see e.g., [7,25,26,48,95,107]). Examples of possi-
ble quantitative temporal aspects include constraints on the earliest start time
and latest end time of activities and constraints over the minimum and maxi-
mum temporal distance between activities. In many cases these constraints can
be represented by Simple Temporal Networks(STNs) [44], i.e., directed weighted
graphs where nodes represent events to be scheduled in time and arcs repre-
sent temporal distance constraints between pairs of events. In Chapter 2, STNs
have been generalized into Hyper Temporal Networks(HyTNs) [32, 33], a strict
generalization of STNs introduced to overcome the limitation of considering
only conjunctions of constraints, but maintaining a practical ef�ciency in the
consistency checking of the instances. In a HyTN a single temporal hyperarc
constraint is de�ned as a set of two or more maximum delay constraints which
is satis�ed when at least one of these delay constraints is satis�ed. HyTNs
are meant as a light generalization of STNs offering an interesting compro-
mise. On one side, there exist practical pseudo-polynomial time algorithms
for checking the consistency of HyTNs and computing feasible schedules for
them. On the other side, HyTNs offer a more powerful model accommo-
dating natural disjunctive constraints that cannot be expressed by STNs. In
particular, HyTNs are weighted directed hypergraphs where each hyperarc
models a disjunctive temporal constraint called hyperconstraint. The computa-
tional equivalence between checking consistency in HyTNs and determining
winning regions in Mean Payoff Games(MPGs) [14, 49, 123] was also pointed
out in [32, 33], where the approach was shown to be robust thanks to experi-
mental evaluations (also see [15]). MPGs are a family of 2-player in�nite pebble
games played on �nite graphs which is well known for having theoretical inter-
est in computational complexity, being one of the few natural problems lying
in NP \ coNP, as well as various applications in model checking and formal
veri�cation [61].

However, in the representation of quantitative temporal aspects of systems,
conditionaltemporal constraints pose a serious challenge for conditional tem-
poral planning, where a planning agent has to determine whether a candidate
plan will satisfy the speci�ed conditional temporal constraints. This can be
dif�cult, because the temporal assignments that satisfy the constraints asso-
ciated with one conditional branch may fail to satisfy the constraints along a
different branch (see, e.g., [113]). The present work unveils that HyTNs and
MPGs are a natural underlying combinatorial model for checking the consis-
tency of certain conditional temporal problems that are known in the literature
and that are useful in some practical applications of temporal planning, espe-
cially, for managing the temporal aspects of Work�ow Management Systems
(WfMSs) [7,26] and for modeling Healthcare's Clinical Pathways [25]. Thus we
focus on Conditional Simple Temporal Networks (CSTNs)[67, 113], a constraint-
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based model for conditional temporal planning. The CSTN formalism extends
STNs in that: (1) some of the nodes are observation events, to each of them
is associated a boolean variable whose value is disclosed only at execution
time; (2) labels(i.e. conjunctions over the literals) are attached to all nodes and
constraints, to indicate the situations in which each of them is required. The
planning agent (or Planner) must schedule all the required nodes, meanwhile
respecting all the required temporal constraints among them. This extended
framework allows for the off-line construction of conditional plans that are
guaranteed to satisfy complex networks of temporal constraints. Importantly,
this can be achieved even while allowing for the decisions about the precise
timing of actions to be postponed until execution time, in a least-commitment
manner, thereby adding �exibility and making it possible to adapt the plan
dynamically, in response to the observations that are made during execution.
See [113] for further details and examples.

Three notions of consistency arise for CSTNs: weak, strong, and dynamic.
Dynamic consistency (DC) is the most interesting one; it requires the existence
of conditional plans where decisions about the precise timing of actions are
postponed until execution time, but it nonetheless guarantees that all the rel-
evant constraints will be ultimately satis�ed. Still, it is the most challenging
and it was conjectured to be hard to assess by [113]. Indeed, to the best of
our knowledge, the tightest currently known upper bound on the time com-
plexity of deciding whether a given CSTN is dynamically-consistent is doubly-
exponential time [113]. It �rst builds an equivalent Disjunctive Temporal Prob-
lem (DTP) of size exponential in the input CSTN, and then applies to it an
exponential-time DTP solver to check its consistency. However, this approach
turns out to be quite limited in practice: experimental studies have already
shown that the resolution procedures, as well as the currently known heuris-
tics, for solving general DTPs become quite burdensome with 30 to 35 DTP
variables (see e.g., [87, 93, 112]), thus dampening the practical applicability of
the approach.

3.1.1 Contribution
In this work we introduce and study the Conditional Hyper Temporal Network
(CHyTN) model, a natural extension and generalization of both the CSTN and
the HyTN model which is obtained by blending them together. One motiva-
tion for studying it is to transpose bene�ts and opportunities for application,
that have arisen from the introduction of HyTNs (see Chapter 2 and [32, 33]),
to the context of conditionaltemporal planning. In so doing, the main and per-
haps most important contribution is that to offer the �rst sound-and-complete
deterministic (pseudo) singly-exponential time algorithm for checking the dy-
namic consistency of CSTNs. After having formally introduced the CHyTN
model, we start by showing that deciding whether a given CSTN or CHyTN
is dynamically-consistent is coNP-hard. Then, we offer a proof that deciding
whether a given CHyTN is dynamically-consistent is PSPACE-hard, provided
that the input CHyTN instances are allowed to include both multi-head and
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multi-tail hyperarcs. In light of this, we focus on CHyTNs that allow only
multi-head hyperarcs. Concerning multi-head CHyTNs, perhaps most impor-
tantly, we unveil a connection between the problem of checking their dynamic
consistency and that of determining winning regions in MPGs (of a singly-
exponential size in the number of propositional variables of the input CHyTN),
thus providing the �rst sound-and-complete (pseudo) singly-exponential time
algorithm for this same task of deciding the dynamic consistency and yielding
a dynamic execution strategy for multi-head CHyTNs. The resulting worst-
case time complexity of the DC-Checking procedure is actually

O
�
23jPj jV jjAj mA + 24jPj jV j2jAjj Pj + 24jPj jV j2mA + 25jPj jV j3jPj

�
W,

where jPj is the number of propositional variables, jV j is the number of event
nodes, jAj is the number of hyperarcs, mA is the size (i.e., roughly, the encod-
ing length of A ), and W is the maximum absolute integer value of the weights
of the input CHyTN. The algorithm is still based on representing a given
CHyTN instance on an exponentially sized network, as �rst suggested in [113].
The difference, however, is that we propose to map CSTNs and CHyTNs on
(exponentially sized) HyTNs/MPGs rather than on DTPs. This makes an im-
portant difference, because the consistency check for HyTNs can be reduced
to determining winning regions in MPGs, as shown in [32, 33], which admits
practical and effective pseudo-polynomial time algorithms (in some cases the
algorithms for determining winning regions in MPGs exhibit even a strongly
polynomial time behaviour, see e.g., [15, 19, 33, 121]). To summarize, we ob-
tain an improved upper bound on the theoretical time complexity of the DC-
checking of CSTNs (i.e., from 2-EXP to pseudo-E \ NE \ coNE) together with
a faster DC-checking procedure, which can be used on CHyTNs with a larger
number of propositional variables and event nodes than before. At the heart of
the algorithm a suitable reduction to MPGs is mediated by the HyTN model,
i.e., the algorithm decides whether a CHyTNs is dynamically-consistent by
solving a carefully constructed MPG. In order to analyze the algorithm, we in-
troduce a novel and re�ned notion of dynamic consistency, named e-dynamic
consistency (where e 2 R+ ), and present a sharp lower bounding analysis on
the critical value of the reaction time#̂where a CHyTNs transits from being, to
not being, dynamically-consistent. We believe that this contributes to clarifying
(w.r.t. some previous literature, e.g., [67, 113]) the role played by the reaction
time #̂ in checking the dynamic consistency of CSTNs. Moreover, the proof
technique introduced in this analysis of #̂ is applicable more generally when
dealing with linear difference constraints which include strict inequalities; thus
it may be useful in the analysis of other models of temporal constraints.

A preliminary version of this chapter appeared in the proceedings of the
TIME symposium [34]. Here, the presentation is extended as follows: (1) the
de�nition of CSTN has been extended and generalized to that of CHyTN in or-
der to allow the presence of hyperarcs as labeled temporal constraints already
in the input instances; (2) some further facts and pertinent properties about
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CSTNs and CHyTNs have been established; (3) for instance, the following
hardness result: deciding whether a given CHyTN is dynamically-consistent
is PSPACE-hard (the reduction goes from 3-CNF-TQBF), provided that the in-
put instances are allowed to include both multi-head and multi-tail hyperarcs;
(4) the proposed (pseudo) singly-exponential time algorithm is presented here
in its full generality, i.e., w.r.t. the CHyTN model; (5) several proofs have been
polished, expanded and clari�ed (e.g., those concerning the reaction time anal-
ysis of ê).

3.1.2 Organization
The rest of the chapter is organized as follows. Section 4.2 recalls the basic
formalism, terminology and known results on STNs and HyTNs. Particu-
larly, Subsection 3.2.1 deals with STNs; Subsection 3.2.2 deals with HyTNs,
its computational equivalence with MPGs and the related algorithmic results.
Section 3.3 surveys CSTNs and, then, it introduces CHyTNs, also presenting
some basic properties of the model. Section 4.3 tackles on the algorithmics of
dynamic consistency: �rstly, we provide a coNP-hardness lower bound, then
we offer a PSPACE-hardness lower bound. Next, it is described the connection
with HyTNs/MPGs and it is devised a (pseudo) singly-exponential time DC-
checking algorithm. Section 3.5 offers a sharp lower bounding analysis on the
critical value of the reaction time#̂ where the CSTN transits from being, to not
being, dynamically-consistent. In Section 4.4, related works are discussed. The
chapter concludes in Section 2.9.

3.2 Background and Notation
This section recalls some background notions concerning STNs and HyTNs,
necessary to follow the rest of the treatise. but the reader is referred back to
Chapter 2 for some of those concepts.

3.2.1 Simple Temporal Networks
The reader is referred to Subsection 1.2.2, Chapter 1, for the basic notions and
notation concerning STNs.

In this chapter, we also deal with directed weighted hypergraphs; see Def-
inition 2.1 in Chapter 2. Also, recall that the cardinality of a hyperarc A 2 A
is given by jA j , jHA [ f tAgj if A is multi-head, and jA j , jTA [ f hAgj if A
is multi-tail; if jA j = 2, then A = ( u,v,w) is a standard arc. The orderand size
of a general hypergraph (V,A ) are denoted by n , jV j and mA , å A2A jA j,
respectively.

3.2.2 Hyper Temporal Networks
This subsection surveys the Hyper Temporal Network(HyTN) model, which is a
strict generalization of STNs, introduced to partially overcome the limitation
of allowing only conjunctions of constraints. HyTNs have been introduced
in [32,33], the reader is referred there for an in-depth treatment of the subject.
Compared to STN distance graphs, which they naturally extend, HyTNs allow
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for a greater �exibility in the de�nition of the temporal constraints.
A general HyTN is a directed weighted general hypergraph H = ( V,A )

where a node represents a time-point variable (or event node), and where
a multi-head/multi-tail hyperarc stands for a set of temporal distance con-
straints between the tail/heads and the head/tails (respectively). Also, we
shall consider two special cases of the general HyTN model, one in which
all hyperarcs are only multi-head, and one where they're only multi-tail. In
general, we say that a hyperarc is satis�edwhen at least one of its distance con-
straints is satis�ed. Then, we say that a HyTN is consistentwhen it is possible
to assign a value to each time-point variable so that all of its hyperarcs are
satis�ed.

More formally, in the HyTN framework the consistency problem is de�ned
as the General -HyTN-Consistency decision problem, see De�nition 2.2 in
Chapter 2. Comparing the consistency of HyTNs with the consistency of STNs,
the most important aspect of novelty is that, while in a distance graph of a
STN each arc represents a distance constraint and all such constraints have to
be satis�ed by any feasible schedule, in a HyTN each hyperarc represents a
disjunction of one or more distance constraints and a feasible schedule has to
satisfy at least one of such distance constraints for each hyperarc.

The reader is referred back to Chapter 2 for recalling interesting proper-
ties about the consistency problem for HyTNs, e.g., integrality (Lemma 2.1),
NP-hardness (Theorem 2.1), the existence of negative cycle certi�cates (De�ni-
tion 2.5 and Theorem 2.3), pseudo-polynomial time algorithms (Theorem 2.7),
etc

In the rest of this work we shall adopt the multi-head hypergraph and the
Head-HyTN-Consistency (De�nition 2.3) consistency problem as our refer-
ence model; but we will consider general hypergraphs again in the forthcom-
ing sections, when proving PSPACE-hardness. Let's say that, when consider-
ing hypergraphs and HyTNs, we will be implicitly referring to the multi-head
variant unless it is explicitly speci�ed otherwise.

In the forthcoming section we shall turn our attention to conditional tem-
poral planning, where we generalize Conditional Simple Temporal Networks
(CSTNs) by introducing Conditional Hyper Temporal Networks (CHyTNs).

3.3 Conditional Simple / Hyper Temporal Networks
In order to provide a formal support to the present work, this section recalls the
basic formalism, terminology and known results on CSTPs and CSTNs. Since
the forthcoming de�nitions concerning CSTNs are mostly inherited from the
literature, the reader is referred to [113] and [67] for an intuitive semantic dis-
cussion and for some clarifying examples of the very same CSTN model. [113]
introduced the Conditional Simple Temporal Problem (CSTP)as an extension of
standard temporal constraint-satisfaction models used in non-conditional tem-
poral planning. CSTPs augment STNs by including observationevents, each one
having a boolean variable(or proposition) associated with it. When an observa-
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tion event is executed, the truth-value of its associated proposition becomes
known. In addition, each event node and each constraint has a label that re-
stricts the scenarios in which it plays a role. Although not included in the
formal de�nition, [113] discussed some supplementary assumptions that any
well-de�ned CSTP must satisfy. Subsequently, those conditions have been fur-
ther analyzed and formalized by [67], leading to the de�nition of Conditional
Simple Temporal Network(CSTN), which is now recalled.

Let P be a set of boolean variables, alabelis any (possibly empty) conjunc-
tion of variables, or negations of variables, drawn from P. The empty labelis
denoted by l . The label universe P� is the set of all (possibly empty) labels
whose (positive or negative) literals are drawn from P. Two labels, `1 and `2,
are called consistent, denoted1 by Con(`1,`2), when `1 ^ `2 is satis�able. A label
`1 subsumesa label `2, denoted1 by Sub(`1,`2), when the implication `1 ) `2

holds. Let us recall the formal de�nition of the CSTN model from [67,113].

De�nition 3.1 (CSTNs). A Conditional Simple Temporal Network (CSTN) is a
tuple hV, A,L,O,OV,Pi where:

� V is a �nite set of events; P = f p1, . . . ,pqg (some q2 N ) is a �nite set of
boolean variables (or propositions );

� A is a set oflabeled temporal constraints (LTCs) each having the formhv �
u � w(u,v),` i , where u,v 2 V, w(u,v) 2 R, and` 2 P� ;

� L : V ! P� is a map that assigns a label to each event node in V;OV � V is a
�nite set of observation events; O : P ! O V is a bijection mapping a unique
observation eventO(p) = Op to each p2 P;

� The followingwell de�nedness assumptions must hold:

(WD1) for any labeled constrainthv � u � w,` i 2 A the label` is satis�able
and subsumes both L(u) and L(v); i.e., whenever a constraint v� u � w is
required to be satis�ed, both of its endpoints u and v must be scheduled (sooner
or later) by the Planner;

(WD2) for each p2 P and each u2 V such that either p or: p appears in L(u),
we require:Sub(L(u), L(Op)) , andhOp � u � � e,L(u)i 2 A for some (small)
reale > 0; i.e., whenever a label L(u) of an event node u contains a proposition
p, and u gets eventually scheduled, the observation eventOp must have been
scheduled strictly before u by the Planner.

(WD3) for each labeled constrainthv � u � w,` i and p2 P, for which either
p or : p appears iǹ , it holds thatSub(` , L(Op)) ; i.e., assuming a required
constraint contains proposition p, the observation eventOp must be scheduled
(sooner or later) by the Planner.

We are now in the position to introduce the Conditional Hyper Temporal Net-
work (CHyTN), a natural extension and generalization of both the CSTN and

1The notation Con(�, �) and Sub(�, �) is inherited from [67,113].
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the HyTN model obtained by blending them together. Even though the orig-
inal STN and CSTN models allow for real weights, hereafter we shall restrict
ourselves to the integers in order to rely on Theorem 2.7. All of our CSTNs
and CHyTNs will be integer weighted from now on.

De�nition 3.2 (CHyTNs) . A generalConditional Hyper Temporal Network
(CHyTN) is a tuple hV,A , L,O,OV,Pi , where V,P,L,O and OV are de�ned as
in CSTNs (see De�nition 3.1), and whereA is a set oflabeled temporal hyper
constraints (LTHCs), each having one of the following forms:

� A = ( t,h,w,` ), where(t,h,w) is a standard arc and̀ 2 P� ; in this case, A is
called astandard LTHC.

� A = ( tA ,HA ,wA , LHA ), where(tA ,HA ,wA ) is amulti-head hyperarc and LHA :
HA ! P� is a map sending each head h2 HA to a label̀ h in P� ; in this case,
A is called amulti-head LTHC.

� A = ( TA ,hA ,wA , LTA ), where A= ( TA ,hA ,wA ) is a multi-tail hyperarc and
LTA : TA ! P� is a map sending each tail t2 TA to a label̀ t in P� ; in this case,
A is called amulti-tail LTHC.

� The followingwell de�nedness assumptions must hold:

(WD1' ) for any labeled constraint A:

– if A = ( t,h,w,` ) is a standard LTHC, the label` is satis�able and sub-
sumes both L(t) and L(h);

– if A = ( tA ,HA ,wA , LHA ) is a multi-head LTHC, for each h2 HA the label
LHA (h) is satis�able and subsumes both L(tA ) and L(h);

– if A = ( TA ,hA ,wA , LTA ) is a multi-tail LTHC, for each t2 TA the label
LTA (t) is satis�able and subsumes both L(hA ) and L(t);

(WD2) for each p2 P and each u2 V such that either p or: p appears in L(u),
we require:Sub(L(u), L(Op)) , andhOp � u � � e,L(u)i 2 A for some (small)
reale > 0; this is the same WD2 as de�ned for CSTNs.

(WD3' ) for each labeled constraint A2 A and boolean variable p2 P:

– if A = ( t,h,w,` ) is a standard LTHC and p or: p appears iǹ , then
Sub(` , L(Op)) ;

– if A = ( tA ,HA ,wA , LHA ) is a multi-head LTHC and either p or: p appears
in LHA (h) for some h2 HA , thenSub(LHA (h), L(Op)) ;

– if A = ( TA ,hA ,wA , LTA ) is a multi-tail LTHC and either p or: p appears
in LTA (t) for some t2 TA , thenSub(LTA (t), L(Op)) ;

Of course every CSTN is a CHyTN (i.e., one having only standard LTHCs).

We shall adopt the notation x
[a,b],`
�! y, where x,y 2 V, a,b2 N ,a< b and ` 2 P� , to
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compactly represent the pair hy � x � b,` i ,hx � y � � a,` i 2 A; also, whenever
` = l , we shall omit ` from the graphics, see e.g., Fig. 3.1a and Fig. 3.1b here
below.

Example 3.1. Fig. 3.1a depicts an example CSTNG0 = hV, A,L,O,OV,Pi having
three event nodes A, B and C as well as two observation eventsOp andOq. Formally,
V = f A,B,C,Op,Oqg, P = f p,qg, OV = fO p,Oqg, L(v) = l for every v2 V n
fO qg and L(Oq) = p, O(p) = Op,O(q) = Oq. Next, the set of LTCs is: A=
fhC � A � 10,l i ,hA � C � � 10,l i ,hB � A � 3,p ^ : qi ,hA � B � 0,l i ,hOp �
A � 5,l i ,hA � O p � 0,l i ,hOq � A � 9,pi ,hA � O q � 0,pi ,hC � B � 2,qi ,hC �
Op � 10,l i .

Fig. 3.1b depicts an example of a multi-head CHyTNG1 = hV,A , L,O,OV,Pi .
Notice that V,L,O,OV and P are the same as in the CSTNG0, whereasA is de�ned as
follows:A = A [ f a , (B, f C,Oqg,hwa(C),wa(Oq)i = h2,� 1i , hLa(C), La(Oq)i =
hl , pi )g, where A is the set of LTCs of the CSTNG0 and the additional constrainta
is a multi-head LTHC with tail ta = B and heads Ha = f C,Oqg.

Sometimes we will show the scheduling time of a node with a label in
boldface on the sidelines of the node itself, as for A in Fig. 3.1.
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(a) A CSTN example G0.
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(b) A CHyTN example G1

Figure 3.1: An example CSTN (a), and an example CHyTN (b).

In the following de�nitions we will implicitly refer to some CHyTN which
is denoted by G= hV,A , L,O,OV,Pi .
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De�nition 3.3 (Scenario [67, 113]). A scenario over a subset U� P of boolean
variables is a truth assignment s: U ! f 0,1g, i.e., s is a function that assigns a truth
value to each proposition p2 U. When U ( P and s: U ! f 0,1g, then s is said to be
a partial scenario; otherwise, when U= P, then s is said to be a(complete) scenario.
The set comprising all of the complete scenarios over P is denoted bySP. If s 2 SP is a
scenario and̀ 2 P� is a label, then s(` ) 2 f 0,1g denotes the truth value of` induced
by s in the natural way.

Notice that any scenario s 2 SP can be described by means of the label
`s , l1 ^ � � � ^ l jPj such that, for every 1 � i � j Pj, the literal l i 2 f pi , : pig satis�es
s( l i ) = 1.

Example 3.2. Consider the set of boolean variables P= f p,qg. The scenario s:
P ! f 0,1g de�ned as s(p) = 1 and s(q) = 0 can be compactly described by the label
`s = p ^ : q.

De�nition 3.4 (Schedule [67, 113]). A schedule for a subset of events U� V is a
map f : U ! R that assigns a real number to each event node in U. The set of all
schedules over U is denoted byF U .

De�nition 3.5 (Scenario Restriction). Let s2 SP be a scenario. Therestriction of
V and A w.r.t. s are de�ned as:

V+
s ,

n
v 2 V j s(L(v)) = >

o
;

A +
s ,

n
(u,v,w) j 9(` 2 P� ) s.t. (u,v,w,` ) 2 A and s(` ) = >

o
[

[
n

(t,H0
A ,w0

A ) j 9(HA � H0
A ; LHA : HA ! P� ;wA : HA ! Z ) s.t. (t,HA ,wA , LHA ) 2 A ,

w0
A = wA jH0

A
,8(h 2 HA ) s(LHA (h)) = > () h 2 H0

A

o
[

[
n

(T0
A ,h,w0

A ) j 9(TA � T0
A ; LTA : TA ! P� ;wA : TA ! Z ) s.t. (TA ,h,wA , LTA ) 2 A ,

w0
A = wA jT0

A
,8(t 2 TA ) s(LTA (t)) = > () t 2 T0

A

o
.

The restriction ofGw.r.t. s is de�ned asG+
s , hV+

s ,A +
s i .

Finally, it is worthwhile to introduce the notation V+s1,s2
, V+

s1
\ V+

s2
.

Note that if Gis a CHyTN, then G+
s is a HyTN; and if Gis a CSTN, then G+

s
is an STN.

Example 3.3. Fig. 3.2 depicts the restriction STNG0
+
s of the CSTNG0, and the

restriction HyTN G1
+
s of the CHyTN G1 (see Example 3.1 and Fig. 3.1), w.r.t. the

scenario s(p) = s(q) = ? .

De�nition 3.6 (Execution-Strategy [67, 113]). An Execution-Strategy (ES)for G
is a mappings : SP ! F V+

s
such that, for any scenario s2 SP, the domain of the

schedules(s) is V+
s . The set of ESs ofGis denoted bySG. Theexecution time of an

event v2 V+
s in the schedules(s) 2 F V+

s
is denoted by[s(s)]v.

84



A0 B C

Op

[10,10]

0

[0,5] 10
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Figure 3.2: The restriction G0
+
s (a), and the restriction G1

+
s (b), w.r.t. the scenario

s(p) = s(q) = ?

De�nition 3.7 (History [67,113]). Let s 2 SG be any ES, let s2 SP be any scenario
and let t 2 R. Thehistory Hst (t ,s,s) of t in the scenario s under strategys is
de�ned as:Hst(t ,s,s) ,

��
p,s(p)

�
2 P � f 0,1g j Op 2 V+

s , [s(s)]Op < t
	

.

The scenario history can be compactly expressed by the conjunction of the
literals corresponding to the observations comprising it; thus, we may treat a
scenario history as though it were a label.

De�nition 3.8 (Viable Execution Strategy [67, 113]). We say thats 2 SG is a
viable execution strategy whenever, for each scenario s2 SP, the schedules(s) 2 F V

is feasible for the restriction HyTN (or STN)G+
s .

De�nition 3.9 (Dynamic-Consistency [67,113]). An ES s 2 SG is calleddynamic
if, for any s1,s2 2 SP and any v2 V+

s1,s2
, the following implication holds ont ,

[s(s1)]v:
Con(Hst(t ,s1,s),s2) ) [s(s2)]v = t .

We say thatG is dynamically-consistent (DC) if it admits s 2 SG which is both
viable and dynamic. The problem of checking whether a given CSTN is DC is named
DC-Checking.

De�nition 3.10 (DC-Checking [67,113]). The problem of checking whether a given
CHyTN (which allowsboth multi-head and multi-tail LTHCs) is dynamically-consistent
is namedGeneral-CHyTN-DC .

That of checking whether a given CHyTN, allowingonly multi-head or only
multi-tail LTHCs, is dynamically-consistent is namedCHyTN-DC . Checking whether
a given CSTN is dynamically-consistent is namedDC.
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Example 3.4. Consider the CHyTNG1 of Fig. 3.1b, and let the scenarios s1,s2,s3,s4

be de�ned as: s1(p) = > , s1(q) = > ; s2(p) = > , s2(q) = ? ; s3(p) = ? , s3(q) = > ;
s4(p) = ? , s4(q) = ? . The following de�nes an execution strategys 2 SG: [s(si )]A =
0 for every i2 f 1,2,3,4g; [s(si )]B = 8 for every i2 f 1,3,4g and [s(s2)]B = 3;
[s(si )]C = 10 for every i2 f 1,2,3,4g; [s(si )]Op = 1 for every i2 f 1,2,3,4g. The
reader can check thats is viable and dynamic. Indeed,s admits the tree-like represen-
tation depicted in Fig 3.3.

[s(s)]A = 0

[s(s)]Op = 1

[s(s)]B = 8

[s(s)]C = 10

[s(s)]Oq = 2

[s(s)]B = 3

[s(s)]C = 10

[s(s)]B = 8

[s(s)]C = 10

s(q) = > s(q) = ?

s(p) = > s(p) = ?

Figure 3.3: A tree-like representation of a dynamic execution strategy s for
the CHyTN G1 of Fig. 3.1b, where s denotes scenarios and[s(s)]X is the corre-
sponding schedule.

Next, we recall a crucial notion for studying the dynamic consistency of
CHyTNs: the difference setD(s1;s2).

De�nition 3.11 (Difference-Set [67, 113]). Let s1,s2 2 SP be any two scenarios.
The set of observation events inOV+

s1
at which s1 and s2 differ is denoted byD(s1;s2).

Formally,
D(s1;s2) ,

�
Op 2 O V+

s1
j s1(p) 6= s2(p)

	
.

The various de�nitions of history and dynamic consistency that are used
by different authors [34,69,113] are equivalent. Notice that commutativity may
not hold (i.e., generally it may be the case that D(s1;s2) 6= D(s2;s1)).

Example 3.5. Consider the CSTNG0 of Fig. 3.1a and the scenarios s1,s2 de�ned as
follows: s1 , p ^ q; s2 , : p ^ : q.

Then,D(s1;s2) = fO p,Oqg andD(s2;s1) = fO pg.

The next lemma will be useful later on in Section 4.3, basically it is due
to [113]; here below we propose a full proof for the sake of completeness.

Lemma 3.1. Let s1,s2 2 SP and v2 V+
s1,s2

. Let s 2 SG be an execution strategy.
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Then,s is dynamic if and only if the following implication holds for every s1,s2 2
SP and for every u2 V+

s1,s2
:

� ^

v2D(s1;s2)

[s(s1)]u � [s(s1)]v

�
) [s(s1)]u = [ s(s2)]u (L3.1)

Proof. Notice that, by de�nition of Con(�, �) and Hst(�, �, �), Con(Hst(t ,s1,s),s2)
(for t , [s(s1)]u) holds if and only if there is no observation event v 2 D(s1;s2)
which is scheduled by s(s1) strictly before t . Therefore,

Con(Hst(t ,s1,s),s2) ()
^

v2D(s1;s2)

t � [s(s1)]v.

At this point, substituting the Con(Hst(t ,s1,s),s2) expression with the equiva-
lent formula

V
v2D(s1;s2) [s(s1)]u � [s(s1)]v inside the de�nition of dynamic exe-

cution strategy (see De�nition 3.9), the thesis follows. 2

3.4 Algorithmics of Dynamic Consistency
Firstly, let us offer the following coNP-hardness result for DC; notice that, since
any CSTN is also a CHyTN, the same hardness result holds for CHyTNs.

Theorem 3.1. DC is coNP-hard even if the input instancesG= hV, A,L,O,OV,Pi
are restricted to satisfy wA (�) 2 f� 1,0g and ` 2 f p, : p j p 2 Pg [ f l g for every
(u,v,w,` ) 2 A.

Proof. We reduce 3-SAT to the complement of DC. Let j be a boolean formula
in 3CNF. Let X be the set of variables and let C= f C0, . . . ,Cm� 1g be the set of
clauses comprising j =

V m� 1
j= 0 Cj .

(1) Let N j be the CSTN hV j , A j , L j ,O j ,OV j ,Pj i , where: V j , X [ C ,
and all the nodes are given an empty label, i.e., L j (v) = l for every v 2 V j ;
each variable in X becomes an observation event and each clause inC a non-
observation, i.e., Pj , OV j , X, so, O j is the identity map; moreover, all
observation events will be forced to be executed simultaneously before any of
the non-observation events, thus for every u,v 2 O V j we have hu � v � 0,l i 2
A j , and for every x 2 X and C 2 C we have hx � C � � 1,l i 2 A j ; �nally,
there is a negative loop among all the C 2 C which plays an important role in
the rest of the proof, particularly, for each j = 0, . . . ,m � 1 and for each literal
` 2 Cj , we have hCj � C( j+ 1)mod m � � 1,` i 2 A j . Notice that jV j j = n + m and
jA j j = n2 + nm + 3m.

(2) We show that, if j is satis�able, there must be an unavoidable neg-
ative circuit among all the Cj 2 C. Assume that j is satis�able. Let n be a
satisfying truth-assignment of j . In order to prove that N j is not dynamically-
consistent, observe that the restriction of N j w.r.t. the scenario n is an in-
consistent STN. Indeed, if for every j = 0, . . . ,m � 1 we pick a standard arc
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hCj � C( j+ 1)mod m � � 1,` j i with ` j being a literal in Cj such that n(` j ) = > , then
we obtain a negative circuit.

(3) We show that, if j is unsatis�able, there can't be a negative circuit
among the Cj 2 C because for each scenario, there will be at least onej such
that all three labels, aj , b j and g j will be false. Assume that j is unsatis�able.
In order to prove that N j is dynamically-consistent, we exhibit a viable and
dynamic execution strategy s for N j . Firstly, schedule every x 2 X at s(x) , 0.
Therefore, by time 1, the strategy has full knowledge of the observed scenario
n. Since j is unsatis�able, there exists an index jn such that n(Cjn) = ? . At this
point, set s(C( jn+ k)mod m) , k for each k = 1, . . . ,m. The reader can verify that s
is viable and dynamic for N j . 2

0C

0

Ox1

x1?

Oxn

xn?

ci
ci+ 1c1 cm

[0,0] [0,0]

� 1 � 1 � 1 � 1

� 1,ai

� 1,bi

� 1,g i

� 1,gm

� 1,bm

� 1,am

Figure 3.4: The CSTNN j where j (x1, . . . ,xn) =
V m

i= 1 ci for ci = ( ai _ bi _ g i ).

An illustration of the CSTN N j , which was constructed in the proof of The-
orem 3.1, is shown in Fig. 3.4; to ease the representation we have introduced
an additional non-observation event 0 C in Fig. 3.4, which is executed at time
t = 0, together with all of the observation events in X.

Next, we show that when the input CHyTN instances are allowed to have
bothmulti-heads andmulti-tail LTHCs then the DC-Checking problem becomes
PSPACE-hard.

Theorem 3.2. General-CHyTN-DC isPSPACE-hard, even if the input instancesG=
hV,A , L,O,OV,Pi are restricted to satisfy the following two constraints:

– wa(�) 2 [� n � 1,n + 1] \ Z and `a 2 f p, : p j p 2 Pg [ f l g for every weight
wa and label̀ a appearing in anystandard LTHC a2 A ;

– wA (�) 2 f� 1,0,1g, ` A = l and jA j � 2 for every weight wA and label` A

appearing in anymulti-tail/head LTHC A 2 A .
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Proof. To show that General-CHyTN-DC is PSPACE-hard, we describe a re-
duction from the problem 3-CNF-TQBF (True Quanti�ed Boolean Formula in
3-CNF).

Let us consider a 3-CNF quanti�ed boolean formula with n � 1 variables
and m � 1 clauses:

j (x1, . . . ,xn) = Q1x1 . . .Qnxn

m̂

i= 1

(ai _ bi _ g i ),

where for every j 2 [n] the symbol Qj is either 9 or 8, and where Ci = ( ai _ bi _
g i ) is the i-th clause of j and each ai ,bi ,g i 2 f xj , : xj j 1 � j � ng is a positive
or negative literal. We also say that Q1x1 . . .Qnxn is the pre�x of j .

z0 txj

[j, j + 1]

(a) Gadget for a 3-CNF-TQBF
existentially quanti�ed vari-
able 9xj .

z
0

pxj

xj?

txj

[j � 1,j � 1]
[j + 1,j + 1],xj

[j, j], : xj

(b) Gadget for a 3-CNF-TQBF universally quanti�ed
variable 8xj .

Figure 3.5: Gadgets for quanti�ed variables used in the reduction from 3-CNF-
TQBF to General-CHyTN-DC.

Construction. We associate to j a CHyTN Gj = hV,A , L,O,OV,Pi . In so
doing, our �rst goal is to simulate the interaction between two players: Player-
9 (corresponding to the Planner in CHyTNs) and Player- 8 (corresponding to
the Nature in CHyTNs), which corresponds directly to the chain of alternating
quanti�ers in the pre�x of j . Naturally, the Planner is going to control those
variables that are quanti�ed existentially in j , whereas the Nature is going to
control (by means of some observation events in OV) those variables that are
quanti�ed universally in j . Brie�y, P contains one boolean variable for each
universally quanti�ed variable of j , and V contains the following: two special
events z and z0 to be executed at time 0 and n + 1, respectively; an observation
event pxj for each universally quanti�ed variable 8xj ; a non-observation event
txj for each quanti�ed variable xj ; two non-observation events lxj and lx j for
each quanti�ed variable xj , these will play (respectively) the role of positive
and negative literals of j (i.e., the a, b and g in each clause Ci ); �nally, a
non-observation event Ci for each clause.
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Let us describe the low-level details of Gj . Let us de�ne:

P , f xj j “ 8xj” appears in the pre�x of j g.

Also, V contains a node z (i.e., the zeronode to be executed at time t = 0).

Next, for each existential quanti�cation 9xj in the pre�x of j , V contains a
node named txj and A contains the following two standard LTHCs: (z,txj , j +
1,l ) and (txj ,z, � j, l ); the underlying intuition being that, during execution,
it will be the responsibility of the Planner to schedule txj either at time j (and
this means that the Planner chooses to setxj to false in j ) or at time j + 1
(and this means that he chooses to setxj to true in j ). See Fig. 3.5a for an
illustration of the 9xj gadget.

Moreover, for each universal quanti�cation 8xj in the pre�x of j (i.e., for
each xj 2 P), V contains two nodes named pxj and txj . Particularly, pxj is an

observation event (i.e., pxj 2 O V) such that O(xj ) = pxj ; hence, OV , f pxj j
xj 2 Pg. Also, for each 8xj in j 's pre�x (i.e., for each xj 2 P), A contains the
following six standard LTHCs: (z, pxj , j � 1,l ), (pxj ,z, � j + 1,l ), (z,txj , j + 1,xj ),
(txj ,z, � j � 1,xj ), (z,txj , j, : xj ) and (txj ,z, � j, : xj ); the underlying intuition be-
ing that the Nature must choose whether to schedule txj at time j (setting xj

to false in j by controlling the observation event pxj ) or at time j + 1 (set-
ting xj to true in j again, by controlling the observation event pxj ). Fig. 3.5b
illustrates the gadget for universally quanti�ed variables 8xj .

In both cases (existentially and universally quanti�ed variables), the weights
of the involved standard temporal constraints depend on j in such a way that
their scheduling times and their corresponding propositional choices must oc-
cur one after the other in time. More precisely, for every j 2 [n], txj is going
to be scheduled either at time j (if xj is true in j ) or at time j + 1 (when
instead xj is false in j ). In addition to this, when xj is quanti�ed universally
in j (i.e., when xj 2 P), the observation event that determines its propositional
value (i.e., pxj ) is always scheduled at time j � 1 (and this leaves enough space
for the reaction time; actually, an entire unit of time between time j � 1 and
time j).

This concludes the description of our gadgets for simulating the chain of
alternating quanti�ers in the pre�x of j .

At this point, we have an additional node in V, named z0, which is al-
ways scheduled at time n + 1; for this, A contains the following two stan-
dard LTHCs: (z,z0,n + 1,l ) and (z0,z, � n � 1,l ). Next, we shall describe two
additional gadgets (that make use of z0) for simulating the 3-CNF formula
V m

i= 1(ai _ bi _ g i ), one for the literals, and one for the clauses. We have a
gadget for the positive (i.e., xj) and the negative (i.e., : xj) literals. It goes as
follows: for each j 2 [n], V contains two nodes named lxj (i.e., positive literal)
and lx j (i.e., negative literal). Moreover, A contains the following four standard
LTHCs, (z0, lxj ,1,l ),( lxj ,z

0,0,l ) and (z0, lx j ,1,l ),( lx j ,z
0,0,l ), plus the following
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multi-headLTHC,

Ah( lxj , lx j ) ,
�

z0, f lxj , lx j g,hw( lxj ),w( lx j )i = h0,0i ,hL( lxj ), L( lx j )i = hl , l i
�

,

and the following multi-tail LTHC,

A t ( lxj , lx j ) ,
�

f lxj , lx j g,z0,hw( lxj ),w( lx j )i = h� 1,� 1i ,hL( lxj ), L( lx j )i = hl , l i
�

.

The idea here is that the standard LTHCs are going to force the scheduling
times of both lxj and lx j to fall within the real interval [n + 1,n + 2] (i.e., not
before z0 and at most 1 time unit after z0). Meanwhile, the multi-head con-
straint Ah( lxj , lx j ) forces that at least one between lxj and lx j happen not later
than time n + 1 (i.e., not later than the scheduling time of z0); similarly, the
multi-tail constraint A t ( lxj , lx j ) is going to force that at least one between lxj

and lx j happen not before time n + 2 (i.e., not before the scheduling time of z0

plus 1). Therefore, exactly one between lxj and lx j will be forced to happen at
time n + 1, and the other one at time n + 2.

Up to this point, the key idea is that, for every j 2 [n], we can force the
scheduling time of each node lxj and lx j to be uniquely determined, according
to a suitable translation of the scheduling time of txj . Particularly, we want to
schedule at time n + 1 (i.e., at the same scheduling time of z0) the one node
between lxj and lx j whose corresponding literal was chosen to be false in
j (that is lxj if txj was scheduled at time j, and lx j if txj was scheduled at
time j + 1); similarly, we want to schedule at time n + 2 (i.e., at the same
scheduling time of z0 plus 1 time unit) the one node between lxj and lx j whose
corresponding literal was chosen to be true (that is lxj if txj was scheduled at
time j + 1, and lx j if txj was scheduled at time j). In order to achieve this, for
each j 2 [n], A contains the following two standard LTHCs: (txj , lxj ,n + 1 � j, l )
and ( lxj , txj , � n � 1 + j, l ) (in Fig. 3.6a they are depicted with a unique arc

txj

[k,k],l
�! lxj where k = n + 1 � j); in this way, lxj is forced to happen at the same

time of txj plus n+ 1 � j units of time. Therefore, if txj was scheduled at time
j (i.e., xj is false in j ), then node lxj is scheduled at time j + n + 1 � j =
n + 1; otherwise, if txj was scheduled at time j + 1 (i.e., xj is true in j ),
then node lxj is scheduled at time j + 1 + n + 1 � j = n + 2. At this point, the
scheduling time of the node lx j is determined uniquely thanks to the hyperarcs
Ah( lxj , lx j ), A t ( lxj , lx j ) and the standard constraints (z0, lx j ,1,l ), ( lx j ,z

0,0,l ): if
the node lxj is scheduled at time n + 1 (i.e., if xj is false in j ), then lx j must
be scheduled at time n + 1+ 1 = n + 2 (i.e., if x j is true in j ) so that to satisfy
A t ( lxj , lx j ) and (z0, lx j ,1,l ); otherwise, if lxj is scheduled at time n + 2 (i.e., if xj

is true in j ), then lx j must be scheduled at time n + 1 + 0 = n + 1 (i.e., if x j is
false in j ) so that to satisfy Ah( lxj , lx j ) and ( lx j ,z

0,0,l ). Notice that the literals
ai ,bi ,g i of j are thus instances of the nodeslxi or lxi described in Fig. 3.6a.

Finally, we describe the gadget for the clauses: for eachi 2 [m], the CHyTN
Gj contains a node Ci for each clauseCi = ( ai _ bi _ g i ) of j ; also, each nodeCi
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z0

lx jlxj

z

0

txj

1

0

0
� 1

1

0

0
� 1

[n + 1,n + 1]

. . .

. . .

[n + 1 � j,n + 1 � j]

(a) Gadget for 3-CNF-TQBF positive xj and negative : xj
literal.

Ci

n + 2

biai g i

z0

n + 1

+ 1

� 1

0

0

0

(b) Gadget for 3-CNF-TQBF clause Ci =
(ai _ bi _ g i ) where each ai ,bi ,g i is a pos-
itive or negative literal.

Figure 3.6: Gadgets used for variables and clauses in the reduction from 3-
CNF-TQBF to General-CHyTN-DC.

is connected by:
– a multi-tail hyperarc with head in Ci and tails over the literals ai ,bi ,g i

occurring in Ci and having weight 0 and label l , i.e., by a multi-tail LTHC:

Ac(ai ,bi ,g i ) ,
�

f ai ,bi ,g ig,Ci ,hw(ai ),w(bi ),

w(g) i i = h0,0,0i ,hL(ai ), L(bi ), L(g) i i = hl , l , l i
�

,

for some literals ai ,bi ,g i 2 f lxj , lx j j 1 � j � ng.
– two standard and opposite LTHCs, (z0,Ci ,1,l ) and (Ci ,z0, � 1,l ), with

node z0.
See Fig. 3.6b for an illustration of the clauses' gadget; the dashed arrows

form the multi-head LTHCs and the dotted arrows form the multi-tail LTHCs.
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Every node of Gj has an empty label, i.e., L(v) = l for every v 2 V. The
rationale of the clauses' gadget is that, for each i, at least one of the ai ,bi ,g i

must occur at the same time instant of Ci (i.e., at least one must occur at time
n + 2, because one of the literals must be true)

This concludes our description of Gj .
More formally and succinctly, the CHyTN Gj = hV,A , L,O,OV,Pi is de-

�ned as follows:

� P , f xj j “ 8xj” appears in the pre�x of j g;

� – V , f z,z0g [ f txj j 1 � j � ng [ f pxj j xj 2 Pg [
[ f lxj j 1 � j � ng [ f lx j j 1 � j � ng [ fC i j 1 � i � mg;

– OV , f pxj j xj 2 Pg and O(xj ) = pxj for every xj 2 P;

– L(v) = l for every v 2 V;

� A ,
[

j :“ 9xj ” 2 j

9-Qnt j [
[

j :“ 8xj ” 2 j

8-Qnt j [

[
n[

j= 1

Var j [
m[

i= 1

Clai [
�

(z,z0,n + 1,l ),(z0,z, � n � 1,l )
	

,

where:

– 9-Qnt j ,
n

(z,txj , j + 1,l ),(txj ,z, � j, l )
o

;

This de�nes the existential quanti�er gadget as depicted in Fig. 3.5a;

– 8-Qnt j ,
n

(z, pxj , j � 1,l ),(pxj ,z, � j + 1,l ),

(z,txj , j + 1,xj ),(txj ,z, � j � 1,xj ),(z,txj , j, : xj ),(txj ,z, � j, : xj )
o

;

This de�nes the universal quanti�er gadget as depicted in Fig. 3.5b;

– Var j =
n

(z0, lxj ,1,l ),( lxj ,z
0,0,l ),(z0, lx j ,1,l ),( lx j ,z

0,0,l ),

A t
j ,

�
f lxj , lx j g,z0,hwA t

j
( lxj ),wA t

j
( lx j )i = h� 1,� 1i ,

hLA t
j
( lxj ), LA t

j
( lx j )i = hl , l i

�
,

Ah
j ,

�
z0, f lxj , lx j g,hwAh

j
( lxj ),wAh

j
( lx j )i = h0,0i ,

hLAh
j
( lxj ), LAh

j
( lx j )i = hl , l i

�
,

(txj , lxj ,n + 1 � j, l ),( lxj , txj , � n � 1 + j, l )
o

.

This de�nes the variable gadget for xj as depicted in Fig. 3.6a;

– Clai =
n

(z0,Cj ,1),(Cj ,z0, � 1),

Ac
i ,

�
f aj ,b j ,g jg,Cj ,hwAc

i
(aj ),wAc

i
(b j ),wAc

i
(g j )i = h0,0,0i ,

hLAc
i
(aj ), LAc

i
(b j ), LAc

i
(g j )i = hl , l , l i

�o
.

This de�nes the clause gadget for clause Cj = ( ai _ bi _ g i ) as de-
picted in Fig. 3.6b.
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Notice that jV j � 1 + 4n + m = O(m + n) and mA � 16n + 5m = O(m + n);
the transformation is thus linear.

Correctness.Let us show that j is true if and only if Gj is dynamically-
consistent.

() ) Assume j is true , so Player-9 has a strategy to satisfy
V m

i= 1(ai _ bi _
g i ) no matter how Player- 8 decides to assign the universally quanti�ed vari-
ables of j . Suppose that Player-9 and Player-8 alternate their choices by as-
signing a truth value to the variables of j ; we can construct a dynamic and
viable execution strategy s 2 SGj for Gj by re�ecting these choices, as follows.
The nodes z and z0 are scheduled at time 0 and n + 1 (respectively) under all
possible scenarios. For eachj = 1, . . . ,n, the node txj is scheduled at time j if xj

is set to true in j , either by Player-9 or Player-8, otherwise at time j + 1; and,
when xj is quanti�ed universally in j , the node pxj is scheduled at time j � 1
under all possible scenarios; also, the nodelxj is scheduled at time n + 2 if xj is
set to true in j , either by Player-9 or Player-8, otherwise at time n + 1; sym-
metrically, lx j is scheduled at time n + 1 if xj is true in j , otherwise at time
n + 2. Finally, for each i = 1, . . . ,m, the node Ci is scheduled at time n + 2 under
all possible scenarios. It is easy to check that all LTHCs of Gj are satis�ed by s
under all possible scenarios, sos is viable for Gj ; moreover, since s re�ects the
alternating choices of Player-9 and Player-8, then s is also dynamic. Therefore,
Gj is dynamically-consistent.

(( ) Vice versa, assume thatGj is dynamically-consistent. Let s 2 SGj be
a viable and dynamic execution strategy for Gj . Firstly, we argue that s is
integer valued, i.e., that [s(s)]v 2 Z for every v 2 V and s2 SGj . Indeed, since
s is viable, it is easy to check that the scheduling time of z, z0, Ci (for every
i = 1, . . . ,m) and pxj (for every universally quanti�ed variable xj in j ) is forced
to be 0,n + 1, n + 2 and j � 1 (respectively); also, for each universally quanti�ed
variable xj in j , the scheduling time of pxj is forced to be j � 1, and that of txj

is forced to be either j or j + 1 according to whether xj is true or false in
the current scenario. Still, for each existentially quanti�ed variable xj in j , the
two standard LTHCs (z,txj , j + 1,l ) and (txj ,z, � j, l ) allow txj to be scheduled
anywhere within [j, j + 1], i.e., even at non-integer values. However, on one
side, the scheduling time of lxj is forced to be that of txj plus n + 1 � j, on
the other side, lxj must be scheduled either at time n + 1 or n + 2 because of
the multi-head Ah( lxj , lx j ) and multi-tail A t ( lxj , lx j ) LTHCs (respectively). Thus,
for s to be viable, txj must be scheduled either at time j or j + 1. Therefore,
s is integer valued. Now, suppose to execute s step-by-step over the integer
line; we can construct a strategy for Player-9 by re�ecting the integer choices
that the Planner makes to schedule the nodes of Gj , as follows. For each
existentially quanti�ed variable xj in j , Player-9 sets xj to true if the Planner
schedules txj at time j + 1 (i.e., if lxj is scheduled at time n + 2, and lx j at time
n + 1), and to false otherwise (i.e., if txj is at time j, lxj at time n + 1 and lx j

at time n + 2). Then, sinces is viable, for each clause Ci of j , at least one of
the literals ai ,bi ,g i must be true , thanks to the multi-tail LTHC Ac(ai ,bi ,g i );
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and since s is also dynamic, then Player-9 wins, so j is true .
To conclude, notice that any LTHC A 2 A of Gj has weights wA (�) 2

f� 1,0,1g and size jA j � 3. Since any hyperarc with three heads (tails) can be
replaced by two hyperarcs each having at most two heads (tails), then General-
CHyTN-DC remains PSPACE-hard even if wA (�) 2 f� 1,0,1g and jA j � 2 for
every multi-tail/head LTHC A 2 A . Also notice that wa(�) 2 [� n � 1,n + 1] \ Z
and `a 2 f p, : p j p 2 Pg [ f l g holds for every weight wa and label `a appearing
in any standardLTHC a2 A . This concludes the proof. 2

Theorem 3.2 motivates the study of consistency problems on CHyTNs hav-
ing either only multi-head or only multi-tail hyperarcs. Since we are interested
in dynamic consistency, where time moves only forward of course, and the ex-
ecution strategy depends only on past observations, from now on we shall
consider only multi-head CHyTNs.

3.4.1 e-Dynamic Consistency
In CHyTNs, decisions about the precise timing of actions are postponed until
execution time, when information gathered from the execution of the observa-
tion events can be taken into account. However, the Planner is allowed to factor
in an observation, and modify its strategy in response to it, only strictly after
the observation has been made (whence the strict inequality in De�nition 3.7).
Notice that this de�nition does not take into account the actual reaction time,
which, in most applications, is non-negligible. In order to deliver algorithms
that can also deal with the reaction timee of the Planner we now introduce
e-dynamic consistency, a re�ned notion of dynamic consistency. The intu-
ition underlying De�nition 4.1 is that to model a speci�c kind of disjunctive
constraint: given a small real number e > 0, for any two scenarios s1,s2 2 SP

and any event u 2 V+
s1,s2

, the scheduling time of u under s1 must be greater or
equal to either that of u under s2 or that of v under s2 plus e for at least one
v 2 D(s1;s2). Let us remind the fact that, from now on, our CHyTNs admit
only multi-head hyperarcs. The de�nition of e-dynamic consistency follows
below.

De�nition 3.12 (e-dynamic consistency). Given any CHyTNhV,A , L,O,OV,Pi
and any real numbere 2 (0,¥ ), an execution strategys 2 SG is e-dynamic if it
satis�es all the He-constraints, namely, for any two scenarios s1,s2 2 SP and any event
u 2 V+

s1,s2
, the execution strategys satis�es the following constraint He(s1;s2;u):

[s(s1)]u � min
� �

[s(s2)]u
	

[
�

[s(s1)]v + e j v 2 D(s1;s2)
	 �

We say that a CHyTNGis e-dynamically-consistent if it admits s 2 SG which is
both viable ande-dynamic.

The problem of checking whether a given CHyTN ise-dynamically-consistent is
namedCHyTN- e-DC.
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It follows directly from De�nition 4.1 that, whenever s 2 SG satis�es some
He(s1;s2;u), then s satis�es He0(s1;s2;u) for every e02 (0,e] as well. This proves
the following lemma.

Lemma 3.2. Let Gbe a CHyTN. IfGis e-dynamically-consistent for some reale > 0,
thenGis e0-dynamically-consistent for everye02 (0,e].

Given any dynamically-consistent CHyTN, we may ask for the maximum
reaction time e of the Planner beyond which the network is no longer dynamically-
consistent.

De�nition 3.13 (Reaction time ê). Let Gbe a CHyTN. Let̂e , ê(G) be the least up-
per bound of the set of all real numberse > 0 such thatGis e-dynamically-consistent,
i.e.,

ê , ê(G) , supf e > 0 j Gis e-dynamically-consistentg.

Let us consider the (af�nely) extended real numbers R , R [ f� ¥ ,¥ g,
where every subset S of R has an in�mum and a supremum. Particularly,
recall that sup Æ= � ¥ and, if S is unbounded above, then sup S= ¥ .

If Gis dynamically-consistent, then ê(G) exists and ê(G) 6= � ¥ (i.e., the set
on which we have taken the supremum in De�nition 3.13 is non-empty), as it
is now proved in Lemma 3.3.

Lemma 3.3. Let s be a dynamic execution strategy for the CHyTNG. Then, there
exists a suf�ciently small real numbere 2 (0,¥ ) such thats is e-dynamic.

Proof. Let s1,s2 2 SP be two scenarios and let us consider any event u 2 V+
s1,s2

.
Since s is dynamic, then by Lemma 3.1 the following implication necessarily
holds: � ^

v2D(s1;s2)

[s(s1)]u � [s(s1)]v

�
) [s(s1)]u � [s(s2)]u (*)

Notice that, w.r.t. Lemma 3.1, we have relaxed the equality [s(s1)]u = [ s(s2)]u

in the implicand of (L3.1) by introducing the inequality [s(s1)]u � [s(s2)]u. At
this point, we convert ( � ) from implicative to disjunctive form, �rst by applying
the rule of material implication 2, and then De Morgan's law 3, resulting in the
following equivalent expression:

�
[s(s1)]u � [s(s2)]u

�
_

� _

v2D(s1;s2)

[s(s1)]u > [s(s1)]v

�
(**)

Then, we argue that there exists a real number e 2 (0,¥ ) such that the follow-
ing disjunction holds as well:

�
[s(s1)]u � [s(s2)]u

�
_

� _

v2D(s1;s2)

[s(s1)]u � [s(s1)]v + e
�

.

2The rule of material implication: j= p ) q () : p _ q.
3De Morgan's law: j= : (p ^ q) () : p _ : q.
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In fact, since the disjunction ( �� ) necessarily holds, then one can pick the fol-
lowing real number e > 0:

e , min
hs1,s2,ui2 SP� SP� V+

s1,s2

e(s1;s2;u),

where the values e(s1;s2;u) 2 (0,¥ ) are de�ned as follows, for every hs1,s2,ui 2
SP � SP � V+

s1,s2
:

e(s1;s2;u) ,

8
>><

>>:

1, if [s(s1)]u � [s(s2)]u;

min
n

[s(s1)]u� [s(s1)]v j

v 2 D(s1;s2), [s(s1)]u > [s(s1)]v

o
, otherwise.

This implies that s satis�es every He-constraint of G, thus s is e-dynamic. 2

Next, we prove a converse formulation of Lemma 3.3.

Lemma 3.4. Let s be ane-dynamic execution strategy for a CHyTNG, for some real
numbere 2 (0,¥ ).

Then,s is dynamic.

Proof. For the sake of contradiction, let us suppose that s is not dynamic.
Let F be the set of all the triplets hu,s1,s2i 2 V+

s1,s2
� SP � SP, for which the

implication (L3.1) given in Lemma 3.1 does not hold. Notice, F 6= Æ; indeed,
since s is not dynamic, by Lemma 3.1 there exists at least one hu,s1,s2i for
which (L3.1) doesn't hold. So, it holds that hu,s1,s2i 2 F if and only if the
following two properties hold:

1. [s(s1)]u � [s(s1)]v, for every v 2 D(s1;s2);

2. [s(s1)]u 6= [ s(s2)]u.

Let hû, ŝ1i be an event whose scheduling time [s( ŝ1)] û is minimum and for
which (1) and (2) hold, namely, let:

hû, ŝ1i , argmin
n

[s(s1)]u j 9s2 hu,s1,s2i 2 F
o

.

Since hû, ŝ1i is minimum in [s( ŝ1)] û, then [s( ŝ1)] û � [s(s2)] û for every s2 2 SP

such that hû, ŝ1,s2i 2 F; moreover, since hû, ŝ1,s2i 2 F, then [s( ŝ1)] û 6= [ s(s2)] û

holds by (2), so that [s( ŝ1)] û < [s(s2)] û. At this point, recall that s is e-dynamic
by hypothesis, hence [s( ŝ1)] û < [s(s2)] û implies that there exists v 2 D( ŝ1;s2)
such that:

[s( ŝ1)] û � [s( ŝ1)]v + e > [s( ŝ1)]v,

but this inequality contradicts item (1) above. Indeed, F = Æ and s is thus
dynamic. 2
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In Section 3.5, the following theorem is proved.

Theorem 3.3. For any dynamically-consistent CHyTNG, where V is the set of events
andSP is the set of scenarios, it holds thatê(G) � j SPj � 1jV j � 1.

Y1

Y1?

X10

X1?

Z1
1,X1Y1

[2,2], : X1 [2,2], : Y1

(a) The CSTN G1
2
.

[s1(s)]X1 = 0

[s1(s)]Y1 = 2

[s1(s)]Z1 = 4

s(Y1) = > or s(Y1) = ?

[s1(s)]Y1 = 1
2

[s1(s)]Z1 = 5
2[s1(s)]Z1 = 1

s(Y1) = > s(Y1) = ?

s(X1) = > s(X1) = ?

(b) A viable and e-dynamic execution strategy for G1
2
.

Figure 3.7: A dynamically-consistent CSTN whose viable and dynamic execu-
tion strategies are fractional.

Notice that one really needs to consider rational values for ê, as it is shown
in the following example.

Example 3.6. Consider the CSTNG1
2

shown in Fig. 3.7a. The Planner needs to
schedule and to observe X1 at time0 under all possible scenarios. But it is not viable
to schedule Y1 or Z1 at time 0, because X1 and Y1 may turn out to be? ; so Y1 and
Z1 both need to be scheduled strictly after0. Next, assume that X1 turns out to be
> at time 0. Then, it is not viable to schedule Y1 at time 1, because Z1 needs to be
scheduled within time1 if Y1 is > and strictly after otherwise, and the Planner can't
react instantaneously to the observation made at Y1. Thus, if X1 is > at time0, then
Y1 needs to be scheduled at time t2 (0,1), e.g., t= 1

2. The corresponding execution
strategy is shown in Fig. 3.7b.

Also notice that, in De�nition 3.9, dynamic consistency was de�ned by
strict-inequality and equality constraints. However, by Theorem 4.1, dynamic
consistency can also be de�ned in terms of He-constraints only (i.e., no strict-
inequalities are required).
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Theorem 3.4. Let G be a CHyTN. Lete , jSPj � 1jV j � 1. Then,G is dynamically-
consistent if and only ifGis e-dynamically-consistent.

By Theorem 4.1, any algorithm for checking e-dynamic consistency can be
used to check dynamic consistency.

3.4.2 A (pseudo) Singly-Exponential Time Algorithm for DC and
CHyTN-DC

In this section, we present a (pseudo) singly-exponential time algorithm for
solving DC and CHyTN-DC, also producing a dynamic execution strategy
whenever the input CHyTN is dynamically-consistent.

The main result of this chapter is summarized in the following theorem,
which is proven in the next Section 3.5.

Theorem 3.5. The following two algorithmic results hold for CHyTNs.

1. There exists an

O
�
jSPj2jAj mA + jSPj3jV jjAjj Pj + jSPj3jV jmA + jSPj4jV j2jPj

�
WD

time deterministic algorithm for deciding CHyTN-e-DC on input hG,ei , for any
CHyTN G= hV,A , L,O,OV,Pi and any rational numbere = N/ D where
N,D 2 N + . Particularly, given anye-dynamically-consistent CHyTNG, the
algorithm returns as output a viable ande-dynamic execution strategys 2 SG.

2. There exists an

O
�
jSPj3jV jjAj mA + jSPj4jV j2jAjj Pj + jSPj4jV j2mA + jSPj5jV j3jPj

�
W

time deterministic algorithm for checking CHyTN-DC on any inputG. Particu-
larly, given any dynamically-consistent CHyTNG, it returns as output a viable
and dynamic execution strategys 2 SG.

Here, W, maxa2 A jwaj.

Since every CSTN is also a CHyTN, Theorem 4.2 holds for CSTNs as well.
We now present the reduction from CHyTN-DC to H ead-HyTN-Consistency .

Again, since any CSTN is a CHyTN, the same argument reduces DC to H ead-
HyTN-Consistency . Firstly, we argue that any CHyTN can be viewed as a
succinct representation which can be expanded into an exponentially sized
HyTN.

The Expansionof CSTNs is introduced below.

De�nition 3.14 (Expansion hVEx
G ,L Ex

G i ). Let G= hV,A , L,O,OV,Pi be a CHyTN.
Consider the family of distinct and disjoint HyTNshVs,A si , one for each scenario
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s2 SP, which is de�ned as follows (where vs , (v,s) for every v2 V and s2 SP):

Vs , f vs j v 2 V+
s g,

A s ,
n �

ts, f h(1)
s , . . . ,h(k)

s g
| {z }
heads labeled with s

,hw(h(1)
s ), . . . ,w(h(k)

s )i
| {z }

corresponding weights

� �
�
�

�
t|{z}

tail

, f h(1) , . . . ,h(k)g
| {z }

heads

,hw(h(1) ), . . . ,w(h(k) )i
| {z }

corresponding weights

�
2 A +

s

o
.

(Of course, in the above notation, k= 1 whenGis a CSTN, whereas k2 N + whenG
is a CHyTN.)

Next, we de�ne theexpansion hVEx
G ,L Ex

G i of Gas follows:

hVEx
G ,L Ex

G i ,
� [

s2SP

Vs,
[

s2SP

A s

�
.

Notice that Vs1 \ Vs2 = Æwhenever s1 6= s2 and that hVEx
G ,L Ex

G i is an STN/HyTN
with at most jVEx

G j � j SPj � j V j nodes and size at most jL Ex
G j � j SPj � jAj .

We now show that the expansion of a CHyTN can be enriched with some
(extra) multi-head hyperarcs in order to model e-dynamic consistency, by
means of a particular HyTN which is denoted by H e(G).

De�nition 3.15 (HyTN H e(G)). Let G= hV,A , L,O,OV,Pi be a CHyTN. Given
any real numbere 2 (0,¥ ), the HyTN H e(G) is de�ned as follows:

� For every two scenarios s1,s2 2 SP and for every event node u2 V+
s1,s2

, de�ne
a hyperarca , ae(s1;s2;u) as follows (with the intention to model He(s1;s2;u)
from Def. 4.1):

ae(s1;s2;u) ,
�
ta,Ha,wa

�
, 8s1,s2 2 SP and u2 V+

s1,s2
.

where:

– ta , us1 is the tail of the (multi-head) hyperarcae(s1;s2;u);

– Ha , f us2g [ D(s1;s2) is the set of the heads ofae(s1;s2;u);

– wa(us2) , 0, and wa(v) , � e for each v2 D(s1;s2).

� Consider the expansionhVEx
G ,L Ex

G i of G. Then,H e(G) is de�ned asH e(G) ,�
VEx

G ,A He

�
, where,

A He , L Ex
G [

[

s1,s22SP
u2V+

s1,s2

ae(s1;s2;u).

Notice that each ae(s1;s2;u) has size jae(s1;s2;u)j = 1 + D(s1;s2) � 1 + jPj.
Here below, Algorithm 9 provides a pseudocode for constructing H e(G).
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Algorithm 6: construct H (G,e)

Input : a CHyTN G, hV,A , L,O,OV,Pi , a rational number e > 0
1 foreach (s2 SP) do
2 Vs  f vs j v 2 V+

s g; // see Def. 4.7
3 As  f as j a2 A+

s g; // see Def. 4.7

4 VEx
G  [ s2SPVs;

5 L Ex
G  [ s2SP As;

6 foreach (s1,s2 2 SP and u 2 V+
s1,s2

) do
7 ta  us1;
8 Ha  f us2g [ D(s1;s2);
9 wa(us2)  0;

10 foreach v 2 D(s1;s2) do
11 wa(vs1)  � e;

12 ae(s1;s2;u)  
�
ta,Ha,wa

�
;

13 A H e  L Ex
G [

[

s1,s22SP
u2V+

s1,s2

ae(s1;s2;u);

14 H e(G)  
�
VEx

G ,A He

�
;

15 return He(G);

Algorithm 6: Constructing H e(G).

Example 3.7. An excerpt of the HyTNH e(G0) corresponding to the CSTNG0 of
Fig. 3.1a is depicted in Fig. 3.8; here, two scenarios s1 , p ^ q and s4 , : p ^ : q
are considered, on top we haveG0

+
s1

, whereasG0
+
s4

is below, �nally, the corresponding
hyperconstraints He(s1;s4;u) and He(s4;s1;u) are depicted as dashed hyperarcs.

The following establishes the connection between dynamic consistency of
CHyTNs and consistency of HyTNs.

Theorem 3.6. Given any CHyTNG= hV,A , L,O,OV,Pi , there exists a suf�ciently
small real numbere2 (0,¥ ) such that the CHyTNGis dynamically-consistent if and
only if the HyTN H e(G) is consistent.

Moreover, the HyTNH e(G) has at most so many nodes:

jVH ej � j SPj � j V j,

so many hyperarcs:
jA H ej = O(jSPj � jAj + jSPj2jV j),

and it has size:
mA H e

= O(jSPj � mA + jSPj2jV j j Pj).

Proof. For any real number e 2 (0,¥ ), let H e(G) = hVEx
G ,A Hei be the HyTN of

De�nition 4.8.
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Figure 3.8: An excerpt of the HyTN H e(G0) corresponding to the CSTN G0 of
Fig. 3.1a, in which two scenarios, s1 and s4, are considered.

(1) By De�nitions 4.7 and 4.8,

jVH ej = jVEx
G j � j SPj � j V j;

also,

jA H ej = jL Ex
G j +

�
�

[

s1,s22SP;u2V+
s1,s2

ae(s1;s2;u)
�
� = O(jSPjjAj + jSPj2jV j),

and since ae(s1;s2;u) has at most P heads, thenmA H e
= O(jSPjmA + jSPj2jV j j Pj).

(2) We claim that, for any e > 0, H e(G) is consistent iff Gis e-dynamically-
consistent.

() ) Given any feasible schedule f : VEx
G ! R for the HyTN H e(G), let

sf (s) 2 SG be the execution strategy de�ned as follows:

[sf (s)]v , f (vs), for every vs 2 VE
G, where v 2 V and s2 SP.

Notice that each hyperarc ae(s1;s2;u) is satis�ed by f if and only if the cor-
responding He-constraint He(s1;s2;u) is satis�ed by sf ; moreover, recall that
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L Ex
G � A He, and that L Ex

G contains all the original standard/hyper difference
constraints of G(i.e., those induced by A , by means of Def. 4.7). At this point,
since f is feasible for the HyTN H e(G), then sf must be viable and e-dynamic
for G(because it satis�es all the required constraints).

Therefore, Gis e-dynamically-consistent.
(( ) Given any viable and e-dynamic execution strategy s 2 SG, for some

real number e 2 (0,¥ ), let f s : VEx
G ! R be the schedule of the HyTN H e(G)

de�ned as follows:

f s (vs) , [s(s)]v for every vs 2 VEx
G , where v 2 V and s2 SP.

Also in this case, we have that L Ex
G � A He, and a moment's re�ection reveals

that each hyperarc ae(s1;s2;u) is satis�ed by f s if and only if He(s1;s2;u) is
satis�ed by s. At this point, since s is viable and e-dynamic for the CHyTN G,
then f s must be feasible for H e(G). Therefore, H e(G) is consistent.

This proves that, for any e 2 (0,¥ ), H e(G) is consistent if and only if G is
e-dynamically-consistent.

(3) At this point, by composition with (1), Lemma 3.3 implies that there
exists a suf�ciently small real number e 2 (0,¥ ) such that G is dynamically-
consistent if and only if H e(G) is consistent. 2

At this point, we are in the position to show the pseudocode for checking
CHyTN- e-DC, it is given in Algorithm 7:

Algorithm 7: check CHyTN-e-DC(G,e)

Input : a CHyTN G, hV,A , L,O,OV,Pi , a rational number e , N/ D, for
N,D 2 N +

1 H e(G)  construct H (G,e); // ref. Algorithm 9
2 foreach (A = htA ,HA ,wA i 2 A H e(G) and h 2 HA ) do
3 wA (h)  wA (h) � D; // scale all weights of H e(G), from Q to Z

4 f  check HE A D-H YTN-CO N S I S T E N C Y(H e(G)) ; // ref. Thm 2.7
5 if (f is a feasible schedule ofH e(G)) then
6 foreach (event node v2 VH e(G) ) do
7 f (v)  f (v)/ D; // re-scale back to size the scheduling time, from Z to Q,

w.r.t. e

8 return hYES,f i ;

9 else return NO;

Algorithm 7: Checking CHyTN- e-DC on input (G,e).

whereas, the pseudocode for checking CHyTN-DC is provided in Algo-
rithm 8, here below:

Notice that the latter (Algorithm 8) invokes the former (Algorithm 7); more
details follow.
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Algorithm 8: check DC/CHyTN-DC(G)

Input : a CHyTN G, hV,A , L,O,OV,Pi
1 ê  j SPj � 1jV j � 1; // ref. Thm. 4.1
2 return check CHyTN-e-DC(G,ê);

Algorithm 8: Checking CHyTN-DC on input G.

Description of Algorithm 8 Firstly, Algorithm 8 computes a suf�ciently small
rational number e 2 (0,¥ ) \ Q, by relying on Theorem 4.1, i.e., it is set ê ,
jSPj � 1jV j � 1 (line 1). Secondly, Algorithm 7 is invoked on input (G,ê). At this
point, Algorithm 7 �rstly constructs H ê(G) (line 1 of Algorithm 7) by invoking
Algorithm 9, and then it scales everyhyperarc's weight, appearing in H ê(G),
from Q to Z (at lines 2-3). This is done by multiplying each weight by a factor
D (line 3), where D 2 N + is the denominator of ê (i.e., D = jSPj � j V j). Thirdly,
H ê(G) is solved with the H ead-HyTN-Consistency -Checking algorithm un-
derlying Theorem 2.7 (at line 4), i.e., within the underlying algorithmic engine,
an instance of the Head-HyTN-Consistency problem is solved by reducing it
to the problem of determining winning regions in a carefully constructed MPG
(see [32, 33] for the details of such a reduction). At this point, if the H ead-
HyTN-Consistency algorithm outputs YES, together with a feasible schedule
f of H ê(G), then the time values of f are scaled back to size w.r.t. ê, and then
hYES,f i is returned as output (lines 5-8); otherwise, the output is simply NO
(at line 9). Still, notice that, thanks to Item 3 of Theorem 2.7, we could also
return a negative certi�cate, because negative instances are well characterized
in terms of generalized negative cycles (see De�nition 2.5).

Remark 3.1. The same algorithm, with essentially the same upper bound on its run-
ning time and space, works also in case we allow for arbitrary boolean formulae as
labels, rather than just conjunctions.

Remark 3.2. We remark that the HyTN/MPG algorithm that is at the heart of our
approach requires integer weights (i.e., it requires that w(u,v) 2 Z for every(u,v) 2
A); somehow, we could not play it differently (see [32,33] for a discussion). Moreover,
the algorithm always computes an integer solution to HyTNs/MPGs and, therefore, it
always computesrational feasible schedules for the CHyTNs given as input. As such,
it seems to us that this “requirement“ actually turns out to be a plus in practice. It is
actually the integer assumption that allows us to analyze the algorithm quantitatively,
also presenting a sharp lower bounding analysis on the critical value of the reaction
time ê, where the CHyTN transits from being, to not being, dynamically-consistent.
We believe that these issues deserve much attention, and going into them required a
“discrete” approach to the notion of numbers.

The correctness and the time complexity of Algorithms 7 and 8 is analyzed
in Section 3.5.

104



3.5 Bounding Analysis on the Reaction Time ê
In this section we present an asymptotically sharp lower bound for ê(G), that is
the critical value of reaction time where the CHyTN transits from being, to not
being, dynamically-consistent. The proof technique introduced in this analysis
is applicable more generally, when dealing with linear difference constraints
which include strict inequalities. This bound implies that Algorithm 8 is a
(pseudo) singly-exponential time algorithm for solving CHyTN-DC.

To begin, we are going to provide a proof of Theorem 3.3; for this, let us
�rstly introduce some further notation.

Let G, hV,A , L,O,OV,Pi be a dynamically-consistent CHyTN. By The-
orem 4.3, there exists e > 0 such that the HyTN H e(G) is consistent. Then,
let f : VEx

G ! R be a feasible schedule for H e(G). For any hyperarc A =
htA ,HA ,wA i 2 A H e, de�ne a standard arc aA as follows:

aA , htA , ĥ,wA ( ĥ)i , where ĥ , arg min
h2 HA

�
f (h) � wA (h)

�
.

Then, notice that the network Tf
e (G) , hVEx

G ,
S

A2A H e
aA i is always an STN.

Moreover, a moment's re�ection reveals that, by de�nition of ĥ as above, then
f is a feasible schedule for the STN Tf

e (G).
At this point, assuming v 2 VEx

G , let us consider the fractional part rv of f v,
i.e.,

rv , f v � b f vc.

Then, let R , f rvgv2VEx
G

be the set of all the fractional parts induced by VEx
G .

Sort R by the common ordering on R and assume that S , f r1, . . . ,rkg is the
resulting ordered set (without repetitions), i.e., jSj = k, S = R, r1 < . . . < rk.
Now, let pos (v) 2 [k] be the (unique) index position such that:

rpos (v) = rv.

Then, we de�ne a new fractional part r0
v as follows:

r0
v ,

pos (v) � 1
jSPj � j V j

, (NFP)

and a new schedule function as follows:

f 0
v , bf vc + r0

v. (NSF)

Then the following holds.

Remark 3.3. Notice that (NFP) doesn't alter the ordering relation among the frac-
tional parts, i.e.,

r0
u < r0

v () ru < rv, for any u,v 2 VEx
G .

Moreover, since
�
pos (v) � 1

�
< jSPj � j V j, observe that (NSF) doesn't change the
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value of any integer part, i.e.,

bf 0
uc = bf uc, for any u2 VEx

G .

We are now in the position to prove Theorem 3.3.

Proof of Theorem 3.3.Let G, hV,A , L,O,OV,Pi be dynamically-consistent. By
Theorem 4.3 there exists e0 > 0 such that H e0(G) is consistent and it admits
some feasibleschedule f : VEx

G ! R. As mentioned, f is feasible for the STN
Tf

e0(G). Now, let ê , jSPj � 1jV j � 1. Moreover, let Tf
ê (G) be the STN obtained

from Tf
e0(G) simply by replacing, in the weights of the arcs, each weight � e0

with � ê. We argue that f 0 (as de�ned in (NSF) w.r.t. f ,V,SP), is a feasible
schedule for the STN Tf

ê (G). Indeed, every constraint of Tf
ê (G) has form f v �

f u � w, for some w 2 Z or w = � ê.

� Consider the case w 2 Z . Notice that f v � f u � w holds because f is
feasible for the STN Tf

e0(G). Then, it is not dif�cult to see that f 0
v � f 0

u � w
holds as well, because of Remark 3.3.

� Consider the casew = � ê. Notice that f v � f u � � e0 holds becausef is
feasible for the STN Tf

e0(G).

Then, notice that the following implication always holds,

f v � f u � � e0=) f v 6= f u.

Hence, again by Remark 3.3, we can conclude thatf 0
v 6= f 0

u. At this point,
we observe that the temporal distance between f 0

u and f 0
v is, therefore, at

least ê by de�nition of (NSF) and (NFP), i.e.,

f 0
u � f 0

v � j SPj � 1jV j � 1 = ê.

That is to say, f 0
v � f 0

u � � ê.

This proves that f 0 is a feasible schedule also for the STNTf
ê (G). Since Tf

ê (G)
is thus consistent, then, a moment's re�ection reveals that H ê(G) is consistent
as well thanks to the same schedule f 0.

Therefore, by Theorem 4.3, the CHyTN Gis ê-dynamically-consistent, pro-
vided that ê , jSPj � 1jV j � 1. 2

The correctness proof and the time complexity of Algorithm 8 is given next.

Proof of Theorem 4.2.To begin, notice that some of the temporal constraints in-
troduced during the reduction step depend on a suf�ciently small parameter
ê 2 (0,¥ ) \ Q, whose magnitude turns out to depend on the size of the input
CHyTN. It is proved below that the time complexity of the algorithm depends
multiplicatively on D, where ê = N/ D for some N,D 2 N + . By Theorem 3.3,
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ê(G) � j SPj � 1jV j � 1; so line 1 of Algorithm 8 is correct. Therefore, as a corollary
of Theorem 4.3, we obtain that Algorithm 8 correctly decides DC.

Concerning its time complexity, the most time-expensive step of the algo-
rithm is clearly line 4 of Algorithm 7, which relies on Theorem 2.7 in order to
solve an instance of Head-HyTN-Consistency on input H e(G). From Theo-
rem 4.3 we have an upper bound on the size of H e(G), while Theorem 2.7 gives
us a pseudo-polynomial upper bound for the computation time. Also, recall
that we scale weights by a factor D at lines 2-3 of Algorithm 7, where ê= N/ D
for some N,D 2 N + . Thus, by composition, Algorithm 8 decides CHyTN-DC

in a time TAlgo3
G which is bounded as follows, where W , maxa2 A jwaj and

D 2 N + :

TAlgo3
G = O

� �
jVH e(G) j + jA H e(G) j

�
mA H e(G)

�
WD.

Whence, taking into account the upper bound on the size of H e(G) give by
Theorem 4.3, the following holds:

TAlgo3
G = O

� �
jSPjjV j + jSPjjAj + jSPj2jV j

�
(jSPjmA + jSPj2jV j j Pj)

�
WD

= O
�

� � � � � �
jSPj2jV jmA + � � � � � ��

jSPj3jV j2jPj + jSPj2jAj mA + jSPj3jAjj V jj Pj

+ jSPj3jV jmA + jSPj4jV j2jPj
�

WD

= O
�

jSPj2jAj mA + jSPj3jAjj V jj Pj + jSPj3jV jmA + jSPj4jV j2jPj
�

WD.

By Theorem 3.3, it is suf�cient to check e-dynamic consistency for ê =
jSPj � 1jV j � 1. Therefore, the following worst-case time bound holds on Algo-
rithm 8:

TAlgo3
G = O

�
jSPj3jV jjAj mA + jSPj4jAjj V j2jPj + jSPj4jV j2mA + jSPj5jV j3jPj

�
W.

Since jSPj � 2jPj , the (pseudo) singly-exponential time bound follows. 2

At this point, a natural question is whether the lower bound given by The-
orem 3.3 can be improved up to ê(G) = W(jV j � 1). In turn, this would improve
the time complexity of Algorithm 8 by a factor jSPj. However, the follow-
ing theorem shows that this is not the case, by exhibiting a CSTN for which
ê(G) = 2� W(jPj) . This proves that the lower bound given by Theorem 3.3 is
(almost) asymptotically sharp.

Theorem 3.7. For each n2 N + there exists a CSTNGn such that:

ê(Gn) < 2� n+ 1 = 2�j Pn j/3 + 1,

where Pn is the set of boolean variables ofGn.
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Proof. For each n 2 N + , we de�ne a CSTN Gn , hVn, An, Ln,On,OVn,Pni as
follows. See Fig. 3.9 for a clarifying illustration.

� Vn , f X i ,Yi ,Zi j 1 � i � ng;

� An , B [
S n

i= 1 Ci [
S n� 1

i= 1 D i

where:

– B , fhX1 � v � 0,l i j v 2 Vng [ fh Z1 � X1 � 1,X1 ^ Y1ig ;

– Ci , fhYi � X i � 2,: X i i ,hX i � Yi � � 2,: X i i ,hZi � Yi � 2,: Yi i ,hYi �
Zi � � 2,: Yi ig ;

– D i , fhX i+ 1 � X i � 5,Zi i ,hX i � X i+ 1 � � 5,Zi i ,hX i+ 1 � Yi i � 5,: Zi i ,hYi �
X i+ 1 � � 5,: Zi i ,hZi+ 1 � Yi � 5,Zi ^ X i+ 1 ^ Yi+ 1i ,hYi � Zi+ 1 � � 5,Zi ^
X i+ 1 ^ Yi+ 1i ,hZi+ 1 � Zi � 5,: Zi ^ X i+ 1 ^ Yi+ 1i ,hZi � Zi+ 1 � � 5,: Zi ^
X i+ 1 ^ Yi+ 1ig ;

� Ln(v) , l for every v 2 Vn; OVn , Vn; On(v) , v for every v 2 O Vn;
Pn , Vn.

We exhibit an execution strategy sn : SPn ! F Vn , which we will show is
dynamic and viable for Gn.

Let f dign
i= 1 and f Dign

i= 1 be two real valued sequences such that:

(1) D1 , 1;(2) 0 < di < Di ;(3) Di , min (di � 1,Di � 1 � di � 1).

Then, the following also holds for every 1 � i � n:

(4) 0 < Di � 2� i+ 1,

where the equality holds if and only if di = Di /2.
Hereafter, provided that s2 SP and ` 2 P� , we will denote 1s(` ) , 1 if s(` ) =

> and 1s(` ) , 0 if s(` ) = ? .
We are in the position to de�ne sn(s) for any s2 SP:

� [sn(s)]X1 , 0;

� [sn(s)]Y1 , d11s(X1) + 21s(: X1) ;

� [sn(s)]Z1 , 1s(X1^ Y1) + ( 2 + [ sn(s)]Y1)1s(: X1_: Y1) ;

� [sn(s)]X i , 5 + [ sn(s)]X i � 11s(Zi � 1) +
+ [ sn(s)]Yi � 11s(: Zi � 1) , for any 2 � i � n;

� [sn(s)]Yi , [sn(s)]X i + di1s(X i ) + 21s(: X i ) , for any 2 � i � n;

� [sn(s)]Zi ,
�
5 + [ sn(s)]Yi � 11s(Zi � 1) +

+ [ sn(s)]Zi � 11s(: Zi � 1)
�
1s(X i ^ Yi ) +

+ ( 2 + [ sn(s)]Yi )1s(: X i _: Yi ) , for any 2 � i � n;
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Y1

Y1?

X10

X1?

Z1

Z1?

Y2

Y2?

X2

X2?

Z2

Z2?

Yn

Yn?

Xn

Xn?

Zn

Zn?

1,X1Y1

[2,2], : X1 [2,2], : Y1

[5,5],Z1 [5,5], : Z1X2Y2

[5,5], : Z1 [5,5],Z1X2Y2

[2,2], : X2 [2,2], : Y2

[5,5], : Z2 [5,5],Z2X3Y3

[5,5],Z2 [5,5], : Z2X3Y3

[2,2], : Xn [2,2], : Yn

[5,5],Zn� 1 [5,5], : Zn� 1XnYn

[5,5], : Zn� 1 [5,5],Zn� 1XnYn

Figure 3.9: A CSTN Gn such that ê(Gn) = 2� W(jPn j) .

109



Let us prove, by induction on n � 1, that sn is viable and dynamic for Gn.

� Base case. Let n = 1. Notice that G1 almost coincides with the CSTN G1
2

described in Example 3.6; so, it is really needed that 0 < d1 < 1. Then,
by construction, s1 leads to the schedule depicted in Figure 3.10. This
shows that s1 is viable and dynamic for G1.

[s1(s)]X1 = 0

[s1(s)]Y1 = 2

[s1(s)]Z1 = 4

s(Y1) = > or s(Y1) = ?

[s1(s)]Y1 = d1

[s1(s)]Z1 = d1 + 2[s1(s)]Z1 = 1

s(Y1) = > s(Y1) = ?

s(X1) = > s(X1) = ?

Figure 3.10: A viable and dynamic execution strategy for the base casen = 1.

� Inductive step. Let us assume that sn� 1 is viable and dynamic for Gn� 1.
Then, by construction, [sn(s)]v = [ sn� 1(s)]v for every s2 SP and v 2 Vn� 1.
Hence, by induction hypothesis, sn is viable and dynamic on Vn� 1. More-
over, by construction, sn leads to the schedule depicted in Figure 3.11 and
Figure 3.12. This shows that sn is viable and dynamic even on Vn n Vn� 1.
Thus, sn is viable and dynamic for Gn, i.e., Gn is dynamically-consistent.

[sn(s)]Zn� 1 = [ sn� 1(s)]Zn� 1

[sn(s)]Xn = [ sn� 1(s)]Xn� 1 + 5

[sn(s)]Yn = [ sn(s)]Xn + 2

[sn(s)]Zn = [ sn(s)]Yn + 2

s(Yn) = > or s(Yn) = ?

[sn(s)]Yn = [ sn(s)]Xn + dn

[s1(s)]Zn = [ sn(s)]Yn + 2[s1(s)]Zn = [ sn� 1(s)]Yn� 1 + 5

s(Yn) = > s(Yn) = ?

s(X1) = > s(Xn) = ?

s(Zn� 1) = >

Figure 3.11: A viable and dynamic execution strategy for the inductive step
n � 1 ; n when s(Zn� 1) = > .

We claim that ê(Gn) < 2� n+ 1 = 2�j Pn j/3 + 1 for every n � 1. Consider the
following scenario ŝ for 1 � i � n:

ŝ(X i ) , ŝ(Yi ) , > ; ŝ(Zi ) ,
�

> , if di � Di /2
? , if di > Di /2
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[sn� 1(s)]Zn� 1 = [ sn(s)]Zn� 1

[sn(s)]Xn = [ sn� 1(s)]Yn� 1 + 5

[sn(s)]Yn = [ sn(s)]Xn + 2

[sn(s)]Zn = [ sn(s)]Yn + 2

s(Yn) = > or s(Yn) = ?

[sn(s)]Yn = [ sn(s)]Xn + dn

[sn(s)]Zn = [ sn(s)]Yn + 2[sn(s)]Zn = [ sn� 1(s)]Zn� 1 + 5

s(Yn) = > s(Yn) = ?

s(Xn) = > s(Xn) = ?

s(Zn� 1) = ?

(a) An execution strategy for the inductive step n � 1 ; n when s(Zn� 1) = ?

Yn� 1

Yn� 1?

Xn� 1

Xn� 1?

Zn� 1

Zn� 1?

Yn

Yn?

Xn

Xn?

Zn

Zn?

1,Xn� 1Yn� 1

[2,2], : Xn� 1 [2,2], : Yn� 1

[5,5],Zn� 1 [5,5], : Zn� 1XnYn

[5,5], : Zn� 1 [5,5],Zn� 1XnYn

[2,2], : Xn [2,2], : Yn

(b) An excerpt of Gn relevant to the inductive step n � 1 ; n.

Figure 3.12: The inductive step n � 1 ; n when s(Zn� 1) = ? .

We shall assume that s is an execution strategy for Gn and study necessary
conditions to ensure that s is viable and dynamic, provided that the obser-
vations follow the scenario ŝ. First, s must schedule X1 at time [s( ŝ)]X1 = 0.
Then, sinceŝ(X1) = > , we must have 0 < [s( ŝ)]Y1 < 1, because of the constraint
(Z1 � X1 � 1,X1 ^ Y1). Stated otherwise, it is necessary that:

0 < [s( ŝ)]Y1 � [s( ŝ)]X1 < D1.

After that, since ŝ(Y1) = > , then s must schedule Z1 at time [s( ŝ)]Z1 = 1 = D1.
A moment's re�ection reveals that almost identical necessary conditions now
recur for X2,Y2,Z2, with the crucial variation that it will be necessary to require:
0 < [s( ŝ)]Y2 < D2. Indeed, by proceeding inductively, it will be necessary that
for every 1 � i � n and every n 2 N + :

0 < [s( ŝ)]Yi � [s( ŝ)]X i < Di .
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As already observed in (4), 0 < Dn � 2� n+ 1. Thus, any viable and dynamic
execution strategy s for Gn must satisfy:

0 < [s( ŝ)]Yn � [s( ŝ)]Xn <
1

2n� 1 =
1

2jPn j/3 � 1
.

Therefore, once the Planner has observed the outcomeŝ(Xn) = > from the
observation event Xn, then he must react by scheduling Yn within time 2 � n+ 1 =
2�j Pn j/3 + 1 in the future w.r.t. [s( ŝ)]Xn .

Therefore, ê(Gn) < 2� n+ 1 = 2�j Pn j/3 + 1 holds for every n � 1. 2

3.6 Related Works
This section discusses of some alternative approaches offered by the current
literature. Recall that the article of [113] has already been discussed in the
introduction.

The work of [21] provided the �rst sound-and-complete algorithm for check-
ing the dynamic controllability of CSTNs with Uncertainty (CSTNU), and thus
it can be employed for checking the dynamic consistency of CSTNs as a spe-
cial case. The algorithm reduces the DC-Checking of CSTNUs to the problem
of solving Timed Game Automata (TGA). Nevertheless, no worst-case upper
bound on the time complexity of the procedure was provided in [21]. Still,
one may observe that solving TGAs is a problem of much higher complex-
ity than solving MPGs. Compare the following known facts: solving 1-player
TGAs is PSPACE-complete and solving 2-player TGAs is EXP-complete; on the
contrary, the problem of determining MPGs lies in NP \ coNP and it is cur-
rently an open problem to prove whether it is in P. Indeed, the algorithm
offered in [21] has not been proven to be singly-exponentially time bounded,
to the best of our knowledge it is still open whether singly-exponential time
TGA-based algorithms for DC do exist.

Next, a sound algorithm for checking the dynamic controllability of CST-
NUs was given by Combi, Hunsberger, Posenato in [23]. However, it was not
shown to be complete. To the best of our knowledge, it is currently open
whether or not it can be extended in order to prove completeness w.r.t. the
CSTNU model.

Regarding the particular CSTN model, [69] presented, at the same confer-
ence in which the preliminary version of this work appeared, a sound-and-
complete DC-checking algorithm for CSTNs. It is based on the propagation
of temporal constraints labeled by propositions. However, to the best of our
knowledge, the worst-case complexity of the algorithm is currently unsettled.
Also notice that the algorithm in [69] works on CSTNs only, regardless of
the CHyTN model. Indeed, we believe that our approach (based on tractable
games plus reaction-time ê) and the approach of [69] (based on the propaga-
tion of labeled temporal constraints) can bene�t from each other; for instance,
recently [68] presented an alternative, equivalent semantics for e-dynamic con-
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sistency, as well as a sound-and-complete e-DC-checking algorithm based on
the propagation of labeled constraints.

Finally, in [17], it is introduced and studied p -DC, a sound notion of dy-
namic consistency with an instantaneous reaction time, i.e., one in which the
Planner is allowed to react to any observation at the same instant of time in
which the observation is made. It turns out that p -DC is not equivalent to
e-DC with e = 0, and that the latter is actually inadequate for modeling an
instantaneous reaction-time. Still, a simple reduction from p -DC-Checking
to DC-Checking is identi�ed; combined with Theorem 4.2, this provides a
p -DC-Checking procedure whose time complexity remains (pseudo) singly-
exponential in the number of propositional variables.
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4 Instantaneous Reaction-Time in
Dynamic Consistency Check-
ing of Conditional Simple Tem-
poral Networks

Chapter Abstract

In order to address the DC-Checking problem, in Chapter 3 we introduced
#-DC (a re�ned, more realistic, notion of DC), and provided an algorithmic so-
lution to it. Given that DC implies #-DC for some suf�ciently small #> 0, and
that for every #> 0 it holds that #-DC implies DC, we offered a sharp lower
bounding analysis on the critical value of the reaction-time#̂ under which the
two notions coincide. This delivered the �rst (pseudo) singly-exponential time
algorithm for the DC-Checking of CSTNs. However, the #-DC notion is inter-
esting per se, and the #-DC-Checking algorithm in Chapter 3 [34] rests on the
assumption that the reaction-time satis�es #> 0; leaving unsolved the question
of what happens when #= 0. In this chapter, we introduce and study p -DC, a
sound notion of DC with an instantaneousreaction-time (i.e., one in which the
planner can react to any observation at the same instant of time in which the
observation is made). Firstly, we demonstrate by a counter-example that p -DC
is not equivalent to 0-DC, and that 0-DC is actually inadequate for modeling
DC with an instantaneous reaction-time. This shows that the main results ob-
tained in Chapter 3 do not apply directly, as they were formulated, to the case
of #= 0. Motivated by this observation, as a second contribution, our previous
tools are extended in order to handle p -DC, and the notion of ps-treeis intro-
duced, also pointing out a relationship between p -DC and HyTN-Consistency.
Thirdly, a simple reductionfrom p -DC to DC is identi�ed. This allows us to de-
sign and to analyze the �rst sound-and-complete p -DC-Checking procedure.
Remarkably, the time complexity of the proposed algorithm remains (pseudo)
singly-exponential in the number of propositional letters.
This chapter is a revised version of [17].
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4.1 Introduction and Motivation
In Chapter 2, it was unveiled that HyTNs and MPGs are a natural underly-
ing combinatorial model for the DC-Checking of CSTNs [34]. Indeed, STNs
have been recently generalized into Hyper Temporal Networks (HyTNs)[32, 33],
by considering weighted directed hypergraphs, where each hyperarc models
a disjunctive temporal constraint called hyper-constraint. Also in Chapter 2,
the computational equivalence between checking the consistency of HyTNs
and determining the winning regions in Mean Payoff Games (MPGs) was also
pointed out [32,33]. The approach was shown to be viable and robust thanks to
some extensive experimental evaluations [33]. MPGs [14, 49, 123] are a family
of two-player in�nite games played on �nite graphs, with direct and impor-
tant applications in model-checking and formal veri�cation [61], and they are
known for having theoretical interest in computational complexity for their
special place among the few (natural) problems lying in NP \ coNP.

All this combined, in Chapter 3 it was provided the �rst (pseudo) singly-
exponential time algorithm for the DC-Checking problem, also producing a
dynamic execution strategy whenever the input CSTN is DC [34]. For this,
it was introduced #-DC (a re�ned, more realistic, notion of DC), and pro-
vided the �rst algorithmic solution to it. Next, given that DC implies #-DC
for some suf�ciently small #> 0, and that for every #> 0 it holds that #-DC im-
plies DC, it was offered a sharp lower bounding analysis on the critical value
of the reaction-time#̂ under which the two notions coincide. This delivered
the �rst (pseudo) singly-exponential time algorithm for the DC-Checking of
CSTN. However, the #-DC notion is interesting per se, and the #-DC-Checking
algorithm in [34] rests on the assumption that the reaction-time satis�es #> 0;
leaving unsolved the question of what happens when #= 0.

4.1.1 Contribution
In this chapter we introduce and study p -DC, a sound notion of DC with
an instantaneousreaction-time (i.e., one in which the planner can react to any
observation at the same instant of time in which the observation is made).
Firstly, we provide a counter-example showing that p -DC is not just the #= 0
special case of#-DC. This implies that the algorithmic results obtained in [34]
do not apply directly to the study of those situation where the planner is
allowed to react instantaneously. Motivated by this observation, as a second
contribution, we extend the previous formulation to capture a sound notion
of DC with an instantaneous reaction-time, i.e., p -DC. Basically, it turns out
that p -DC needs to consider an additional internal ordering among all the
observation nodes that occur at the same time instant. Next, the notion of ps-
treeis introduced to re�ect the ordered structure of p -DC, also pointing out a
relationship between p -DC and HyTN-Consistency. Thirdly, a simple reduction
from p -DC to DC is identi�ed. This allows us to design and to analyze the �rst
sound-and-complete p -DC-Checking procedure. The time complexity of the
proposed algorithm remains (pseudo) singly-exponential in the number jPj of
propositional letters.
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4.2 Background and Notation
Recall that Simple Temporal Networks (STNs) [44] have been detailed in Sub-
section 3.2.1, Chapter 2. TheHyper Temporal Network(HyTN) model has been
introduced in Section 2.4, Chapter 2. Also, we shall refer to the CSTN model [34,
67,113] detailed in De�nition 3.1, Section 3.3, Chapter 3. In all of the following
de�nitions we implicitly refer to some CSTN G= hV, A,L,O,OV,Pi .

4.2.1 #-Dynamic-Consistency
In CSTNs, decisions about the precise timing of actions are postponed un-
til execution time, when informations meanwhile gathered at the observation
nodes can be taken into account. However, the planner is allowed to factor
in an outcome, and differentiate its strategy according to it, only strictly after
the outcome has been observed (whence the strict inequality in De�nition 3.7).
Notice that this de�nition does not take into account the reaction-time, which,
in most applications, is non-negligible. In order to deliver algorithms that can
also deal with the reaction-time#> 0 of the planner, we introduced in Chap-
ter 3 [17,34] a re�ned notion of DC.

De�nition 4.1 (#-Dynamic-Consistency). Given any CSTNhV, A,L,O,OV,Pi
and any real number#2 (0,+ ¥ ), an ESs 2 SG is #-dynamic if it satis�es all of the
H#-constraints, namely, for any two scenarios s1,s2 2 SP and any event u2 V+

s1,s2
, the

ESs satis�es the following constraint, which is denoted by H#(s1;s2;u):

[s(s1)]u � min
�

f [s(s2)]ug [ f [s(s1)]v + #j v 2 D(s1;s2)g
�

We say that a CSTNGis #-dynamically-consistent ( #-DC) if it admits s 2 SG which
is both viable and#-dynamic.

v1

v2us1

us2

s1

s2

A, � #

A, � #

A
,0

Figure 4.1: An H#(s1;s2;u) constraint, modeled as a hyperarc.

As shown in Chapter 3 [17, 34], #-DC can be modeled in terms of H ead-
HyTN-Consistency . Fig. 4.1 depicts an illustration of an H#(s1;s2;u) con-
straint, modeled as an hyperarc.

Also, in [34] we proved that DC coincides with #̂-DC, provided that #̂ ,
jSPj � 1jV j � 1.
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Theorem 4.1. Let #̂, jSPj � 1jV j � 1. Then,Gis DC if and only ifGis #̂-DC. Moreover,
if Gis #-DC for some#> 0, thenGis #0-DC for every#02 (0,#].

Then, the main result offered in [34] is a (pseudo) singly-exponential time
DC-checking procedure (based on HyTNs).

Theorem 4.2. There exists an:

O
�

jSPj3jA j2jV j + jSPj4jA jjV j2jPj + jSPj5jV j3jPj
�

W

time algorithm for checking DC on any input CSTNG= hV, A,L,O,OV,Pi . In
particular, given any dynamically-consistent CSTNG, the algorithm returns a viable
and dynamic ES forG. Here, W, maxa2 A jwaj.

4.3 DC with Instantaneous Reaction-Time
Theorem 4.1 points out the equivalence between #-DC and DC, that arises for
a suf�ciently small #> 0. However, De�nition 4.1 makes sense even if #= 0,
so a natural question is what happens to the above mentioned relationship
between DC and #-DC when #= 0. In this section we �rst show that 0-DC
doesn't imply DC, and, moreover, that 0-DC is in itself too weak to capture an
adequate notion of DC with an instantaneous reaction-time. In light of this we
will introduce a stronger notion, which is named ordered-Dynamic-Consistency
(p -DC); this will turn out to be a suitable notion of DC with an instantaneous
reaction-time.

Example 4.1 (CSTN G2 ). Consider the following CSTN:

G2 = ( V2 , A2 , L2 ,O2 ,OV2 ,P2 );

see Fig. 4.2 for an illustration.
– V2 = f? ,> , A,B,Cg;
– A2 = f (> � ? � 1,l ),(? � > � � 1,l ),(> � A � 0,b^ : c),(> � B � 0,a^

c),(> � C � 0,: a^ : b),(? � A � 0,l ),(A � ? � 0,: b),(A � ? � 0,c),(? �
B � 0,l ),(B � ? � 0,: a),(A � ? � 0,: c),(? � C � 0,l ),(C � ? � 0,a),(C �
? � 0,b)g;

– L2 (A) = L2 (B) = L2 (C) = L2 (? ) = L2 (> ) = l ;
– O2 (a) = A, O2 (b) = B, O2 (c) = C;
– OV2 = f A,B,Cg;
– P2 = f a,b,cg.

Proposition 4.1. The CSTNG2 (Example 4.1, Fig. 4.2) is0-DC.

Proof. Consider the execution strategy s2 : SP2 ! YV2 :
– [s2 (s)]A , s(a^ b^ : c) + s(: a^ b^ : c);
– [s2 (s)]B , s(a^ b^ c) + s(a^ : b^ c);
– [s2 (s)]C , s(: a^ : b^ : c) + s(: a^ : b^ c);
– [s2 (s)]? , 0 and [s2 (s)]> , 1, for every s2 SP.
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>

1

B
b?

A

a?

C

c?

?

0

+ 1

� 1

0,: b 0

0,c

0,b: c

0,: a
0

0,: c

0,ac

0,a

0 0,b

0,: a: b

Figure 4.2: A CSTN G2 which is 0-DC but not DC.

An illustration of s2 is offered in Fig 4.3. Three cubical graphs are de-
picted in which every node is labelled as vs for some (v,s) 2 V2 � SP2 : an
edge connectsv1s1

and v2s2
if and only if: (i) v1 = v2 and (ii) the Hamming

distance between s1 and s2 is unitary; each scenario s 2 SP2 is represented as
s = abg for a,b,g 2 f 0,1g, where s(a) = a, s(b) = b, s(c) = g; moreover, each
node vs = ( v,s) 2 V2 � SP2 is �lled in black if [s2 (s)]v = 0, and in white if
[s2 (s)]v = 1. So all three 3-cubes own both black and white nodes, but each
of them, in its own dimension, decomposes into two identically colored 2-
cubes. Fig. 4.4 offers another visualization of s2 in which every component

A000 A010

A011A001

A100 A110

A111A101

B000 B010

B011B001

B100 B110

B111B101

C000 C010

C011C001

C100 C110

C111C101

Figure 4.3: The ESs2 for the CSTN G2 .

of the depicted graph corresponds to a restriction STN G+
2 s for some s 2 SP2 ,

where si ,sj 2 SP2 are grouped together whenever G+
2 si

= G+
2 sj

. It is easy to see
from Fig. 4.4 that s2 is viable for G2 . In order to check that s2 is 0-dynamic,
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look again at Fig. 4.4, and notice that for every si ,sj 2 S2 , where si 6= sj , there
exists an event node X 2 f A,B,Cg such that [s2 (si )]X = 0 = [ s2 (sj )]X and
si (X) 6= sj (X). With this in mind it is easy to check that all of the H0 con-
straints are thus satis�ed by s2 . Therefore, the CSTN G2 is 0-DC. 2

>

1

C

1

B

0

A

0

?

0

SP2

000;001

>

1

C

0

B

0

A

1

?

0

010;110

>

1

C

0

B

0

A

0

?

0

011;100

>

1

C

0

B

1

A

0

?

0

101;111

0

0
[1]

0

[1]

0
0

0

0

0

[1]

0

0

0

[1]

0

Figure 4.4: The restrictions G+
2 s for s 2 SP2 , where the execution times

[s2 (s)]v 2 f 0,1g are depicted in bold face.

Proposition 4.2. The CSTNG2 is not DC.

Proof. Let s be a viable ES for G2 . Then, s must be the ES s2 depicted in
Fig. 4.4, there is no other choice here. Letŝ2 SP2 . Then, it is easy to check from
Fig. 4.4 that: (i) [s2 ( ŝ)]? = 0, [s2 ( ŝ)]> = 1, and it holds [s2 ( ŝ)]X 2 f 0,1g for ev-
ery X 2 f A,B,Cg; (ii) there exists at least two observation events X 2 f A,B,Cg
such that [s( ŝ)]X = 0; still, (iii) there is no X 2 f A,B,Cg such that [s(s)]X = 0
for every s2 SP2 , i.e., no observation event is executed �rst at all possible sce-
narios. Therefore, the ESs2 is not dynamic. 2

We now introduce a stronger notion of dynamic consistency; it is named
ordered-Dynamic-Consistency (p -DC), and it takes explicitly into account an ad-
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ditional ordering between the observation events scheduled at the same exe-
cution time.

De�nition 4.2 (p -Execution-Strategy). An ordered-Execution-Strategy (p -ES)
for Gis a mapping:

s : s7! ([s(s)] t , [s(s)]p ),

where s2 SP, [s(s)] t 2 F V , and �nally, [s(s)]p : OV+
s 
 f 1, . . . ,jOV+

s jg is bijective.
The set ofp -ES ofGis denoted bySG. For any s2 SP, theexecution time of an event
v 2 V+

s in the schedule[s(s)] t 2 F V+
s

is denoted by[s(s)] t
v 2 R; theposition of an

observationOp 2 O V+
s in s(s) is [s(s)]p

Op
. We require positions to becoherent w.r.t.

execution times, i.e.,

8(Op,Oq 2 O V+
s ) if [s(s)] t

Op
< [s(s)] t

Oq
, then [s(s)]p

Op
< [s(s)]p

Oq
.

In addition, it is worth adopting the notation:

[s(s)]p
v , jOV j + 1, whenever v2 V+

s n OV.

De�nition 4.3 (p -History) . Let s 2 SG, s2 SP, and lett 2 R andy 2 f 1, . . . ,jV jg.
Theordered-history p -Hst(t ,y ,s,s) of t and y in the scenario s, under thep -ES
s, is de�ned as:

p -Hst(t ,y ,s,s) ,
��

p,s(p)
�

2 P � f 0,1g j

Op 2 O V+
s , [s(s)] t

Op
� t , [s(s)]p

Op
< y

	
.

We are �nally in the position to de�ne p -DC.

De�nition 4.4 (p -Dynamic-Consistency). Any s 2 SG is calledp -dynamic when,
for any two scenarios s1,s2 2 SP and any event v2 V+

s1,s2
, if t , [s(s1)] t

v and y ,
[s(s1)]p

v , then:

Con(p -Hst(t ,y ,s1,s),s2) ) [s(s2)] t
v = t , [s(s2)]p

v = y .

We say thatGis p -dynamically-consistent ( p -DC) if it admits s 2 SG which is both
viable andp -dynamic. The problem of checking whether a given CSTN isp -DC is
namedp -DC-Checking.

Remark 4.1. It is easy to see that, due to the strict inequality “[s(s)]p
Op

< y ” in the

de�nition of p -Hst(�) (De�nition 4.3), in a p -dynamicp -ES, there must be exactly
oneOp0 2 O V, for some p02 P, which is executed at �rst (w.r.t. both execution time
and position) under all possible scenarios s2 SP.

Proposition 4.3. The CSTNG2 is not p -DC.

Proof. The proof goes almost in the same way as that of Proposition 4.2. In
particular, no observation event is executed �rst (i.e., at time t = 0 and posi-
tion y = 1) in all possible scenarios. Since there is no �rst-in-time observation
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event, then, the ESs is not p -dynamic. 2

We provide next a CSTN which is p -DC but not DC.

Example 4.2. De�ne Gp = ( Vp , Ap ,Op ,OVp ,Pp ) as follows. Vp = fO p,X,>g ,
Ap = f (> � O p � 1,l ),(Op � > � � 1,l ),(X � O p � 0,p),(> � X � 0,: p)g,
Op (p) = Op, OVp = fO pg, Pp = f pg. Fig. 4.5 depicts the CSTNGp .

Op

p?

X

>
1

� 1

0,p 0,: p

Figure 4.5: The CSTNGp .

Proposition 4.4. The CSTNGp is p -DC, but it is not DC.

Proof. Let s1,s2 2 SPp be two scenarios such that s1(p) = 1 and s2(p) = 0. Con-
sider the p -ESs de�ned as follows: [s(s1)] t

Op
= [ s(s1)] t

X = 0, [s(s1)] t
> = 1; and

[s(s2)] t
Op

= 0, [s(s2)] t
X = [ s(s2)] t

> = 1; �nally, [s(s)]p
Op

= 1, [s(s)]p
X = [ s(s)]p

> = 2,

for all s2 f s1,s2g. Then, s is viable and p -dynamic for Gp . To see thatGp is not
DC, pick any #> 0. Notice that any viable ES must schedule X either at t = 0
or t = 1, depending on the outcome of Op, which in turn happens at t = 0;
however, in any #-dynamic strategy, the planner can't react to the outcome of
Op before time t = #> 0. This implies that Gp is not #-DC. Since #was chosen
arbitrarily ( #> 0), then Gp can't be DC by Theorem 4.1. 2

SoGp is #-DC for #= 0 but for no #> 0. In summary, the following chain of
implications holds on the various DCs:

[#-DC, 8#2 (0,#̂]] , DC
6(
) p -DC

6(
) [#-DC, for #= 0]

where #̂, jSPj � 1 � jV j � 1 as in Theorem 4.1.

4.3.1 The ps-tree: “skeleton” structure for p -dynamic p -ESs
In this subsection we introduce a labelled tree data structure, named the ps-
tree, which turns out to capture the “skeleton” ordered structure of p -dynamic
p -ESs.

De�nition 4.5 (PS-Tree). Let P be any set of boolean variables. A permutation-
scenario tree (ps-tree)p T over P is an outward (non-empty) rooted binary tree such
that:
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� Each node u ofp T is labelled with a letter pu 2 P;

� All the nodes that lie along a path leading from the root to a leaf are labelled with
distinct letters from P.

� Each arc(u,v) of p T is labelled by some b(u,v) 2 f 0,1g;

� The two arcs(u,vl ) and (u,vr ) exiting a same node u have opposite labels, i.e.,
b(u,vl ) 6= b(u,vr ) .

Fig. 4.6 depicts an example of a ps-tree.

a

b
c

c
d

d

c
d

b
d

d

0

0

1
0

1

1 0

1
0

1

Figure 4.6: An example of a ps-tree over P = f a,b,c,dg.

De�nition 4.6 (p s, si , Coherent-PS-Tree). Let p T be a ps-tree over P, let r be the
root and s be any leaf. Let(r,v2, . . . ,s) be the sequence of the nodes encountered along
the path going from r down to s inp T. Then:

� The sequence of labelsp s = ( pr , pv2, . . . ,ps) is a permutation of the subset of
lettersf pr , pv2, . . . ,psg � P.

� Each sequence of bits(b(r,v2) , . . . ,b(vi ,vi+ 1) ), for each i2 f 1,2, . . . ,ks � 1g (where

v1 , r and vks , s), can be seen as a partial scenario si over P; i.e., de�ne
si (vj ) , b(vj ,vj+ 1) , for every j2 f 1, . . . ,ig.

� p T is coherent (c-ps-tree)with Gif, for every leaf s ofp T,

fO pr ,Opv2
, . . . ,Opsg = OV+

s0

holds for every complete scenario s02 SP such thatSub(s0,sks� 1).

It is not dif�cult to see that a p -dynamic p -ES induces one and only one
c-ps-tree p T. So, the existence of a suitable c-ps-tree is a necessary condition
for a p -ES to be p -dynamic. One may ask whether a p -dynamic p -ES can
be reconstructed from its c-ps-tree; the following subsection answers af�rma-
tively.
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4.3.2 Verifying a c-ps-tree.
This subsection builds on the notion of c-ps-tree to work out the details of
the relationship between p -DC and HyTN-Consistency. Once this picture is in
place, it will be easy to reduce to HyTN-Consistency the problem of deciding
whether a given CSTN admits a valid p -dynamic p -ES with a given c-ps-tree.
This easy result already provides a �rst combinatorial algorithm for p -DC,
though of doubly exponential complexity in jPj; a bound to be improved in
later subsections, but that can help sizing the sheer dimensionality and depth
of the problem.

Firstly, the notion of Expansionof CSTNs is recalled [34].

De�nition 4.7 (Expansion hVEx
G ,L Ex

G i ). Consider a CSTNG= ( V, A,L,O,OV,P).
Consider the family of all (distinct) STNs(Vs, As), one for each scenario s2 SP,
de�ned as follows:

Vs , f vs j v 2 V+
s g and As , f (us,vs,w) j (u,v,w) 2 A+

s g.

Theexpansion hVEx
G ,L Ex

G i of the CSTNGis de�ned as follows:

hVEx
G ,L Ex

G i ,
� [

s2SP

Vs,
[

s2SP

As

�
.

Notice, (VEx
G ,L Ex

G ) is an STN with at most jVEx
G j � j SPj � j V j nodes and at

most jL Ex
G j � j SPj � j A j standard arcs.

We now show that the expansion of a CSTN can be enriched with some
standard arcs and some hyperarcs in order to model the p -DC property, by
means of an HyTN denoted H p T

0 (G).

De�nition 4.8 (HyTN H p T
0 (G)). Let G= ( V, A,L,O,OV,P) be a given CSTN. Let

p T be a given c-ps-tree over P.
Then, the HyTNH p T

0 (G) is de�ned as follows:

� For every scenarios s1,s2 2 SP and u 2 V+
s1,s2

n OV, de�ne a hyperarca =
a0(s1;s2;u) as follows (with the intention to model H0(s1;s2;u), see De�ni-
tion 4.1):

a = a0(s1;s2;u) , hta,Ha,wai ,

where:

– ta , us1 is the tail of the hyperarca;

– Ha , f us2g [ D(s1;s2) is the set of the heads;

– wa(us2) , 0; 8(v 2 D(s1;s2)) wa(v) , 0.

Now, consider the expansion of the CSTNGhVEx
G ,L Ex

G i =
� S

s2SP
Vs,

S
s2SP

As
�

(as in De�nition 4.7). Then:

� For each internal node x ofp T, A0
x is a set of (additional) standard arcs de�ned

as follows. Letp x = ( r, . . . ,x0) be the sequence of all and only the nodes along
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the path going from the root r to the parent x0of x in p T (where we can assume
r0= r). Let Px � P be the corresponding literals, px excluded, i.e., Px , f pz 2
P j z appears inp x and pz is the label of z inp Tg n f pxg. Let sx be the partial
scenario de�ned as follows:

sx : Px ! f 0,1g :
�

l , if x = r;
pz 7! b(z,z0) , if x 6= r.

where z0 is the unique child of z inp T lying on p x. Let x0 (x1) be the unique
child of x inp T such that bx,x0 = 0 (bx,x1 = 1). For every complete s0

x 2 SP such
that Sub(s0

x,sx), we de�ne:

B0
s0

x
,

� �

(Opx0

)s0
x
,(Opx )s0

x
,0

�	
, if s0

x(x) = 0;�

(Opx1

)s0
x
,(Opx )s0

x
,0

�	
, if s0

x(x) = 1.

Also, for every complete s0
x,s00

x 2 SP such that Sub(s0
x,sx) and Sub(s00

x ,sx),
where s0x 6= s00

x , we de�ne: C0
s0

x,s00
x

,
�


(Opx )s0
x
,(Opx )s00

x
,0

�	
.

Finally,
A0

x ,
[

s0
x2SP : Sub(s0

x,sx)

B0
s0

x
[

[

s0
x,s00

x 2 SP : s0
x 6= s00

x ,
Sub(s0

x,sx),Sub(s00
x ,sx)

C0
s0

x,s00
x
.

� Then,H p
0 (G) is de�ned asH p

0 (G) , hVEx
G ,A H p

0 (G) i , where,

A H p
0 (G) , L Ex

G [
[

s1,s22SP
u2V+

s1,s2

a#(s1;s2;u) [
[

x : internal
node ofp T

A0
x.

Notice that the following holds: each a#(s1;s2;u) has size:

ja#(s1;s2;u)j = jD(s1;s2)j + 1 � j Pj + 1.

The following theorem establishes the connection between the p -DC of
CSTNs and the consistency of HyTNs.

Theorem 4.3. Given any CSTNG= hV, A,L,O,OV,Pi , it holds that the CSTN
Gis p -DC if and only if there exists a c-ps-treep T such that the HyTNH p T

0 (G) is
consistent.

Moreover,H p T
0 (G) has at most so many nodes:

jVH
p T
0 (G) j � j SPj � j V j,

so many hyperarcs:

jA H
p T
0 (G) j = O(jSPj � j A j + jSPj2jV j),
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and it has size at most:

mA
H

p T
0 (G)

= O(jSPj � j A j + jSPj2jV j � j Pj).

Proof. (1) Firstly, we prove that the CSTN Gis p -DC if and only if there exists
a c-ps-treep T such that the HyTN H p T

0 (G) is consistent.
() ) Let s 2 SG be a given viable and p -dynamic execution strategy for the

CSTN G. Sinces is p -dynamic, then for any two s1,s2 2 SP and any v 2 V+
s1,s2

the
following holds on the execution time t , [s(s1)] t

v and position y , [s(s1)]p
v :

Con(p -Hst(t ,y ,s1,s),s2) ) [s(s2)] t
v = t , [s(s2)]p

v = y .

It is easy to see that this induces one and only one c-ps-tree p T: indeed, due
to Remark 4.1, there must be exactly oneOp0 2 O V, for some p02 P, which is
executed at �rst (w.r.t. to both execution time and position) under all possible
scenarios; then, depending on the boolean result of p0, a second observation
p00can be differentiated, and it can occur at the same or at a subsequent time
instant, but still at a subsequent position; again, by Remark 4.1, there is exactly
one Op002 O V which comes �rst under all possible scenarios that agree on p0;
and so on and so forth, thus forming a tree structure over P, rooted at p0,
which is captured exactly by our notion of c-ps-tree. Then, let f s : VEx

G ! R be
the schedule of H p T

0 (G) de�ned as: f s (vs) , [s(s)] t
v for every vs 2 VEx

G , where
s2 SP and v 2 V+

s . It is not dif�cult to check from the de�nitions, at this point,
that all of the standard arc and hyperarc constraints of H p T

0 (G) are satis�ed
by f s , that is to say that f s must be feasible for H p T

0 (G). Hence, H p T
0 (G) is

consistent.
(( ) Assume that there exists a c-ps-treep T such that the HyTN H p T

0 (G)
is consistent, and let f : VEx

G ! R be a feasible schedule forH p T
0 (G). Then, let

sf ,p T (s) 2 SG be the execution strategy de�ned as follows:

� [sf ,p T (s)] t
v , f (vs), 8 vs 2 VEx

G , s2 SP, v 2 V+
s ;

� Let s02 SP be any complete scenario. Then,s0 induces exactly one path
in p T, in a natural way, i.e., by going from the root r down to some
leaf s. Notice that the sequence of labels (pr , pv2, . . . ,ps) can be seen as
a bijection, i.e., p s : OV+

s0 
 f 1, . . . ,jOV+
s0 jg. Then, for any s0 2 SP and

v 2 O V+
s0 , de�ne [sf ,p T (s0)]p

v , p s(v).

It is not dif�cult to check from the de�nitions, at this point, that since f is
feasible for H p T

0 (G), then sf ,p T must be viable and p -dynamic for the CSTN G.
Hence, the CSTN Gis p -DC.

(2) The size bounds for H p T
0 (G) follow from De�nition 4.8. 2

In Algo. 10, it is offered the pseudocode for constructing the HyTN H p T
0 (G),

as prescribed by De�nition 4.8.
If Gis p -DC, there is an integer weighted p -dynamic p -ES, as below.
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Algorithm 9: construct H (G,p T)

Input : a CSTN G, hV, A,L,O,OV,Pi , a c-ps-treep T coherent with G.
1 foreach (s2 SP) do
2 Vs  f vs j v 2 V+

s g;
3 As  f as j a2 A+

s g;

4 VEx
G  [ s2SPVs;

5 L Ex
G  [ s2SP As;

6 foreach (s1,s2 2 SP, s1 6= s2) do
7 foreach (u 2 V+

s1,s2
n OV) do

8 ta  us1;
9 Ha  f us2g [ (D(s1;s2)) ;

10 wa(us2)  0;
11 foreach v 2 D(s1;s2) do
12 wa(vs1)  0;

13 a0(s1;s2;u)  h ta,Ha,wai ;

14 foreach (x : internal node ofp T) do
15 A0

x  as de�ned in De�nition 4.8;

16 A H
p T
0 (G)  L Ex

G [
[

s1,s22SP
u2V+

s1,s2

a0(s1;s2;u) [
[

x : internal
node of p T

A0
x;

17 H p T
0 (G)  h VEx

G ,A H
p T
0 (G) i ;

18 return H p T
0 (G);

Algorithm 9: Constructing the HyTN H p T
0 (G).

Proposition 4.5. AssumeG= hV, A,L,O,OV,Pi to bep -DC. Then, there is some
p -ES s 2 SG which is viable,p -dynamic, andinteger weighted , namely, for every
s2 SP and every v2 V+

s , the following property holds:

[s(s)] t
v 2

�
0,1,2, . . . ,M G

	
� N ,

whereM G ,
�
jSPjjV j + jSPjj A j + jSPj2jV j

�
W.

Proof. By Theorem 4.3, sinceG is p -DC, there exists some c-ps-treep T such
that the HyTN H p T

0 (G) is consistent; moreover, by Theorem 4.3 again,H p T
0 (G)

has jVH
p T
0 (G) j � j SPj jV j nodes and jA H

p T
0 (G) j � j SPj j A j + jSPj2jV j hyperarcs.

Since H p T
0 (G) is consistent, it follows from Theorem 4.3 [also see Lemma 1

and Theorem 8 in [33]] that H p T
0 (G) admits an integer weighted and feasible

schedule f such that:

f : VH
p T
0 (G) !

�
0,1,2, . . . ,M G

	
,

where M G � ( jVH
p T
0 (G) j + jA H

p T
0 (G) j)W.

Therefore, it holds that M G � ( jSPj jV j + jSPj j A j + jSPj2jV j)W. 2
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Given a CSTN G and some c-ps-tree p T, it is thus easy to check whether
there exists somep -ES for Gwhose ordering relations are exactly the same as
those prescribed by p T. Indeed, it is suf�cient to construct H p T

0 (G) with Al-
gorithm 9, then checking the consistency of H p T

0 (G) with the algorithm men-
tioned in Theorem 2.7. This results into Algorithm 10. The corresponding time
complexity is also that of Theorem 2.7.

Algorithm 10: check p -DC on c-ps-tree (G,p T)

Input : a CSTN G, hV, A,L,O,OV,Pi , a c-ps-treep T coherent with G.
1 H p T

0 (G)  construct H (G,p T); // ref. Algorithm 9

2 f  check HE A D-H YTN-CO N S I S T E N C Y(H p T
0 (G)) ; // ref. Thm 2.7

3 if (f is a feasible schedule ofH p T
0 (G)) then

4 return hYES,f ,p T i ;

5 return NO;

Algorithm 10: Checking p -DC given a c-ps-tree p T, by reduction to H ead-
HyTN-Consistency .

Notice that, in principle, one could generate all of the possible c-ps-trees p T

given P, one by one, meanwhile checking for the consistency state of H p T
0 (G)

with Algorithm 10. However, it is not dif�cult to see that, in general, the
total number fjPj of possible c-ps-trees over P is not singly-exponential in jPj.
Indeed, a moment's re�ection revelas that for every n > 1 it holds that fn =
n � f 2

n� 1, and f1 = 1. So, any algorithm based on the exhaustive exploration of
the whole space comprising all of the possible c-ps-trees over P would not have
a (pseudo) singly-exponential time complexity in jPj. Nevertheless, we have
identi�ed another solution, that allows us to provide a sound-and-complete
(pseudo) singly-exponential time p -DC-Checking procedure: it is a simple and
self-contained reduction from p -DC-Checking to DC-Checking. This allows us
to provide the �rst sound-and-complete (pseudo) singly-exponential time p -
DC-Checking algorithm which employs our previous DC-Checking algorithm
(i.e., that underlying Theorem 4.2) in a direct manner, as a black box, thus
avoiding a more fundamental restructuring of it.

4.3.3 A Singly-Exponential Time p -DC-Checking Algorithm
This section presents a sound-and-complete (pseudo) singly-exponential time
algorithm for solving p -DC, also producing a viable and p -dynamic p -ES
whenever the input CSTN is really p -DC. The main result of this section goes
as follows.

Theorem 4.4. There exists an algorithm for checkingp -DC on any input given CSTN
G= ( V, A,L,O,OV,P) with the following (pseudo) singly-exponential time complex-
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ity:

O
�

jSPj4jA j2jV j3 + jSPj5jA jjV j4jPj + jSPj6jV j5jPj
�

W.

Moreover, whenGis p -DC, the algorithm also returns a viable andp -dynamicp -ES
for G. Here, W, maxa2 A jwaj.

The algorithm mentioned in Theorem 4.4 consits of a simple reduction from
p -DC to (classical) DC in CSTNs.

Basically, the idea is to give a small margin g so that the planner can actu-
ally do before, in the sense of the time value [s(s)]v, what he did “before” in
the ordering p . Given any ES in the relaxed network, the planner would then
turn it into a p -ES for the original network (which has some more stringent
constraints), by rounding-down each time value [s(s)]v to the largest integer
less than or equal to it, i.e.,

�
[s(s)]v

�
. The problem is that one may (possibly)

violate some constraints when there is a “leap” in the rounding (i.e., a differ-
ence of one unit, in the rounded value, w.r.t. what one would have wanted).
Anyhow, we have identi�ed a technique that allows us to get around this sub-
tle case, provided that g is exponentially small.

De�nition 4.9. Relaxed CSTNG0. Let G= hV, A,L,O,OV,Pi be any CSTN with
integer constraints. Letg 2 (0,1) be a real. De�neG0

g , hV, A0
g , L,O,OV,Pi to

be a CSTN that differs fromG only in the numbers appearing in the constraints.
Speci�cally, each constrainthu � v � d,` i 2 A is replaced inG0

g by a slightly relaxed
constraint,hu � v � d0

g ,` i 2 A0
g , where:

d0
g , d+ jV j � g.

The following two lemmata hold for any CSTN G.

Lemma 4.1. Let g be any real in(0,jV j � 1).
If Gis p -DC, thenG0

g is DC.

Proof. Since G is p -DC, by Proposition 4.5, there exists an integer weighted,
viable and p -dynamic, p -ESs for G. Let us �x some real g 2 (0,jV j � 1). De�ne
the ESs0

g 2 SG0
g

as follows, for every s2 SP and v 2 V+
s :

[s0
g (s)]v , [s(s)] t

v + [ s(s)]p
v � g.

Since [s(s)]p
v � j V j, then:

[s(s)]p
v � g < jV j � j V j � 1 = 1,

and so the total ordering of the values [s0
g (s)]v, for a given s 2 SP, coincides

with [s(s)]p . Hence, the fact that s0
g is dynamic follows directly from the p -

dynamicity of s. Moreover, no LTC (u � v � d0
g ,` ) of G0

g is violated in any
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scenario s2 SP since, if D0
g,u,v , [s0

g (s)]u � [s0
g (s)]v then:

D0
g,u,v =

�
[s(s)] t

u + [ s(s)]p
u � g

�
�

�
[s(s)] t

v + [ s(s)]p
v � g

�

� [s(s)] t
u � [s(s)] t

v + jV j � g

� d+ jV j � g = d0.

So,s0
g is viable. Since s0

g is also dynamic, then G0
g is DC. 2

The next lemma shows that the converse direction holds as well, but for
(exponentially) smaller values of g.

Lemma 4.2. Let g be any real in(0,jSPj � 1 � jV j � 2).
If G0

g is DC, thenGis p -DC.

Proof. Let s0
g 2 SG0

g
be some viable and dynamic ES for G0

g .
Firstly, we aim at showing that, w.l.o.g., the following lower bound holds:

[s0
g (s)]v �

�
[s0

g (s)]v
�

� j V j � g, for all s2 SP and v 2 V+
s . (LB)

This will allow us to simplify the rest of the proof. In order to prove it, let
us pick any h 2 [0,1) such that:

[s0
g (s)]v � h � k 2 [0,jV j � g), for no v2 V, s2 SP, k 2 Z .

Observe that such a value h exists. Indeed, there are only jSPj � j V j choices
of pairs (s,v) 2 SP � V and each pair rules out a (circular) semi-open interval
of length jV j � g in [0,1), so the total measure of invalid values for h in the
semi-open real interval [0,1) is at most jSPj � j V j � j V j � g < 1. Soh exists.

See Fig. 4.7 for an intuitive illustration of this fact.

[0 1)g 2g 3g � � � jg

h

( j + 1)g � � � 1 � g

jV j � g

Figure 4.7: An illustration of the proof of Lemma 4.2.

By subtracting h to all time values f [s0
g (s)]vgv2V,s2SP we can assume w.l.o.g.

that h = 0 holds for the rest of this proof; and thus, that (LB) holds. Now, de�ne
[s(s)] t

v ,
�
[s0

g (s)]v
�
, and let [s(s)]p be the ordering induced by s0

g (s). Observe
that s is a well-de�ned p -ES (i.e., that[s(s)]p is coherent w.r.t. [s(s)] t), thanks
to the fact that b�c is a monotone operator. Since the ordering [s(s)]p is the
same as that ofs0

g (s), then s is p -dynamic.
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It remains to prove that s is viable. For this, take any constraint (u � v �
d,` ) 2 A in G, and suppose that:

[s0
g (s)]u � [s0

g (s)]v � d0
g = d+ jV j � g. (A)

If [s0
g (s)]u � [s0

g (s)]v � d, then clearly [s(s)] t
u � [s(s)] t

v � d. So, the interesting
case that we really need to check is when:

0 < [s0
g (s)]u � [s0

g (s)]v � d � j V j � g.

For this, we observe that the following ( � ) holds by (LB):
�
[s0

g (s)]u
�

� [s0
g (s)]u � j V j � g. (� )

Also, it is clear that:
�
[s0

g (s)]v
�

> [s0
g (s)]v � 1. (�� )

Then,

[s(s)] t
u � [s(s)] t

v =
�
[s0

g (s)]u
�

�
�
[s0

g (s)]v
�

(by def. of [s(s)] t
x, x 2 f u,vg)

< ([s0
g (s)]u � j V j � g) � ([s0

g (s)]v � 1) (by (� ) and (�� ))

� ([s0
g (s)]u � [s0

g (s)]v) � j V j � g + 1 (by rewriting)

� d0
g � j V j � g + 1 (by (A))

� d+ 1. (by d0
g = d+ jV j � g)

Now, since we have the strict inequality [s(s)] t
u � [s(s)] t

v < d + 1, and since
[s(s)] t

u � [s(s)] t
v 2 Z , then [s(s)] t

u � [s(s)] t
v � d, as desired. So,s is viable.

Sinces is both viable and p -dynamic, then Gis p -DC. 2

Fig. 4.7 illustrates the proof of Lemma 4.2, in which a family of (circu-
lar) semi-open intervals of length jV j � g are depicted as shaded rectangles.
Lemma 4.2 ensures that at least one chunk on length lg � 1 � j SPj � j V j2 � g
is not covered by the union of those (circular) semi-open intervals, and it is
therefore free to host h; in Fig. 4.7, this is represented by the blue interval, and
h = j � g for some j 2 [0,g � 1). Also notice that g can be �xed as follows:

g ,
1

jSPj � j V j2 + 1
;

then, lg � j SPj � 1 � jV j � 2.
In summary, Lemma 4.1 and Lemma 4.2 imply Theorem 4.5.

Theorem 4.5. Let Gbe a CSTN and letg 2 (0,jSPj � 1 � jV j � 2).
Then,Gis p -DC if and only if G0

g is DC.
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This allows us to design a simple algorithm for solving p -DC-Checking, by
reduction to DC-Checking, which is named Check- p -DC() (Algorithm 11).
Its pseudocode follows below.

Algorithm 11: Check- p -DC(G)

Input : a CSTN G, hV, A,L,O,OV,Pi
1 g  1

jSPj�j V j2+ 1
;

2 A0
g  

�
hu � v � d+ jV j � g,` i j hu � v � d,` i 2 A

	
;

3 G0
g  h V, A0

g , L,O,OV,Pi ;
4 s0

g  check DC(G0
g ); // see Theorem 4.2

5 if s0
g is a viable and dynamic ES forG0

g then
6 h  pick h 2 [0,1) as in the proof of Lemma 4.2;
7 foreach (s,v) 2 SP � V+

s do
8 [s0

g (s)]v  [s0
g (s)]v � h; // shift by h;

9 let s 2 SG be constructed as follows;
10 foreach s2 SP do
11 foreach v 2 V+

s do

12 [s(s)] t
v  

j
[s0

g (s)]v

k
;

13 [s(s)]p  the ordering on P induced by s0
g (s);

14 return hYES,s i ;

15 return NO;

Algorithm 11: Checking p -DC by reduction to DC-Checking.

Description of Algorithm 11 It takes in input a CSTN G. When Gis p -DC, it
aims at returning hYES,s i , where s 2 SG is a viable and p -dynamic p -ES for G.
Otherwise, if G is not p -DC, then Check- p -DC() (Algorithm 11) returns NO.
Of course the algorithm implements the reduction described in De�nition 4.9,
whereas the p -ES is computed as prescribed by Lemma 4.2. At line 1, we
set g  1

jSPj�j V j2+ 1. Then, at lines 2-3, G0
g is constructed as in De�nition 4.9,

i.e., G0
g  h V, A0

g , L,O,OV,Pi , where A0
g  

�
hu � v � d+ jV j � g,` i j hu � v �

d,` i 2 A
	

. At this point, at line 5, the DC-Checking algorithm of Theorem 4.2 is
invoked on input G0

g . Let s0
g be its output. If G0

g is not DC, then Check- p -DC()
(Algorithm 11) returns NOat line 15. When s0

g is a viable and dynamic ES
for G0

g at line 5, then Check- p -DC() (Algorithm 11) proceeds as follows. At
line 6, some h 2 [0,1) is computed as in the proof of Lemma 4.2, i.e., such
that [s0

g (s)]v � h � k 2 [0,jV j � g) holds for no v 2 V,s 2 SP,k 2 Z . Notice that
it is easy to �nd such h in practice. Indeed, one may view the real semi-
open interval [0,1) as if it was partitioned into chunks (i.e., smaller semi-open
intervals) of length g; as observed in the proof of Lemma 4.2, there are only
jSPj � j V j choices of pairs (s,v) 2 SP � V, and each pair rules out a (circular)
semi-open interval of length jV j � g; therefore, there is at least one chunk of
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length lg � j SPj � 1 � jV j � 2, within [0,1), where h can be placed, and we can
easily �nd it just by inspecting (exhaustively) the pairs (s,v) 2 SP � V. In fact,
the algorithm underlying Theorem 4.2 always deliver an earliest-ES (i.e., one
in which the time values are the smallest possible, in the space of all consistent
ESs), so that for each interval of length jV j � g, the only time values that we
really need to check and rule out are jV j multiples of g. Therefore, at line 6, h
exists and it can be easily found in time O(jSPj � j V j2). So, at line 7, for each
s2 SP and v 2 V+

s , the value [s0
g (s)]v is shifted to the left by setting [s0

g (s)]v  
[s0

g (s)]v � h. Then, the following p -ES s 2 SG is constructed at lines 9-13: for
eachs2 SP and v 2 V+

s , the execution-time is set [s(s)] t
v  

�
[s0

g (s)]v
�
, and the

ordering [s(s)]p follows the ordering on P that is induced by s0
g (s). Finally,

hYES,s i is returned to output at line 14.
To conclude, we can prove the main result of this section.

Proof of Theorem 4.4.The correctness of Algorithm 11 follows directly from The-
orems 4.5 and 4.2, plus the fact thath 2 [0,1) can be computed easily, at line 6,
as we have already mentioned above. The (pseudo) singly-exponential time
complexity of Algorithm 11 follows from that of Theorem 4.2 plus the fact that
all the integer weights in Gare scaled-up by a factor 1/ g = jSPj � j V j2 + 1 in G0

g ;
also notice that h 2 [0,1) can be computed in time O(jSPj � j V j2), as we have al-
ready mentioned. Therefore, all in, the time complexity stated in Theorem 4.2
increases by a factor 1/g = jSPj � j V j2 + 1. 2

4.4 Related Works
This section discusses of some related approaches offered in the current litera-
ture. The article of Tsamardinos, et al. [113] introduced DC for CSTNs. Subse-
quently, this notion has been analyzed and further formalized in [67], �nally
leading to a sound notion of DC for CSTNs. However, neither of these two
works takes into account an instantaneous reaction-time. Cimatti, et al. [21]
provided the �rst sound-and-complete procedure for checking the Dynamic-
Controllability of CSTNs with Uncertainty (CSTNUs) and this algorithm can
be employed for checking DC on CSTNs as a special case. Their approach
is based on reducing the problem to solving Timed Game Automata (TGA).
However, solving TGAs is a problem of much higher complexity than solving
MPGs. Indeed, no upper bound is given in [21] on the time complexity of their
solution. Moreover, neither #-DC nor any other notion of DC with an instanta-
neous reaction-time are dealt with in that work. The �rst work to approach a
notion of DC with an instantaneous reaction-time is [69]; its aim was to offer
a sound-and-complete propagation-based DC-checking algorithm for CSTNs.
The subsequent work [68] extended and amended [69] so that to check #-DC,
both for #> 0 and for #= 0. However, to the best of our knowledge, the worst-
case complexity of those algorithms is currently unsettled. Moreover, it is not
clear to us how one variant of the algorithm offered in [68, 69] (i.e., the one
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that aims at checking DC with an instantaneous reaction-time) can adequately
handle cases like the CSTN counter-exampleG2 that we have provided in Ex-
ample 4.1. In summary, we believe that the present work can possibly help
in clarifying DC with an instantaneous reaction-time also when the perspec-
tive had to be that of providing sound-and-complete algorithms based on the
propagation of labelled temporal constraints.

4.5 Conclusion
The notion of #-DC has been introduced and analysed in [34] where an al-
gorithm was also given to check whether a CSTN is #-DC. By the interplay
between #-DC and the standard notion of DC, also disclosed in [34], this de-
livered the �rst (pseudo) singly-exponential time algorithm checking whether
a CSTN is DC (essentially, DC-Checking reduces to #-DC-Checking for a suit-
able value of #). In this chapter, we proposed and formally de�ned p -DC, a
natural and sound notion of DC for CSTNs in which the planner is allowed to
react instantaneously to the observations that are made during the execution.
A neat counter-example shows that p -DC with instantaneous reaction-time is
not just the special case of #-DC with #= 0. Therefore, to conclude, we offer
the �rst sound-and-complete p -DC-Checking algorithm for CSTNs. The time
complexity of the procedure is still (pseudo) singly-exponential in jPj. The
solution is based on a simple reduction from p -DC-Checking to DC-Checking
of CSTNs.
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Part II

In�nite Games on Graphs
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5 Linear Time Algorithm for Up-
date Games via Strongly-Trap-
Connected Components

Chapter Abstract

An arena is a �nite directed graph whose vertices are divided into two classes,
i.e., V = V� [ V# ; this forms the basic playground for a plethora of 2-player
in�nite pebble games. In this chapter, we introduce and study a re�ned notion
of reachability for arenas, named trap-reachability, where Player � attempts to
reach vertices without leaving a prescribed subset U � V, while Player # works
against. It is shown that every arena decomposes into strongly-trap-connected
components (STCCs). Our main result is a linear time algorithm for comput-
ing this unique decomposition. Both the graph structures and the algorithm
generalize the classical decomposition of a directed graph into its strongly-
connected components (SCCs). The algorithm builds on a generalization of the
depth-�rst search (DFS), taking inspiration from Tarjan's SCCs classical algo-
rithm. The structures of palm-trees and jungles described in Tarjan's original
paper need to be revisited and generalized (i.e., tr-palm-trees and tr-jungles)
in order to handle the 2-player in�nite pebble game's setting.

This theory has direct applications in solving Update Games (UGs) faster.
Dinneen and Khoussainov showed in 1999 that deciding who's the winner
in a given UG costs O(mn) time, where n is the number of vertices and m
is that of arcs. We solve that problem in Q(m + n) linear time. The result is
obtained by observing that the UG is a win for Player � if and only if the arena
comprises one single STCC. It is also observed that the tr-palm-tree returned
by the algorithm encodes routing information that an Q(n)-space agent can
consult to win the UG in O(1) time per move. Finally, the polynomial-time
complexity for deciding Explicit McNaughton-M üller Games is also improved,
from cubic to quadratic.
This chapter is a revised version of [39].
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5.1 Introduction

In the construction of reactive systems, like communication protocols or con-
trol systems, a central aim is to put the development of hardware and software
on a mathematical basis which is both �rm and practical. A characteristic
feature of such systems is their perpetual interaction with the environment
as well as their non-terminating behaviour. The theory of in�nite duration
games offers many appealing results under this prospect [61]. For instance,
consider the following communication network problem. Suppose we have
data stored on each node of a network and we want to continuously update
all nodes with consistent data: often one requirement is to share key informa-
tion between all nodes of a network, this can be done by having a data packet
of current information continuously going through all nodes. Unfortunately
not all routing choices are always under our control, some of them may be
controlled by the network environment, which could play against us. This is
essentially an in�nite 2-player pebble game played on an arena, i.e., a �nite di-
rected simple graph in which the vertices are divided into two classes, i.e., V�
and V# , where Player � wants to visit all vertices in�nitely often by moving
the pebble on them, while Player # works against. This is called Update Game
(UG) in [10,45,46]. Dinneen and Khoussainov [45] showed that deciding who's
the winner in a given UG costs O(mn) time, where n is the number of vertices
and m is that of the arcs.

Contribution and Organization. In Section 5.6, as a main result, the same
problem of deciding who's the winner in a given UG is solved in Q(m + n)
linear time; it is also observed that the graph structure returned by the algo-
rithm encodes routing information that an Q(n)-space agent can consult to
win the UG in O(1) time per move. For this, in Section 5.2, we introduce
and study a re�ned notion of reachability for arenas, named trap-reachability,
where Player � attempts to reach vertices without leaving a prescribed subset
U � V, while Player # works against. In Section 5.3, it is shown that every
arena decomposes intostrongly-trap-connected components (STCCs), and a linear
time algorithm for computing this unique decomposition is offered in Sec-
tion 5.5. Both the graph structures and the STCCs algorithm generalize the
classical decomposition of a directed graph into its strongly-connected compo-
nents (SCCs) [110]. The algorithm builds on a generalization of the depth-�rst
search (DFS), taking inspiration from Tarjan's SCCs classical algorithm, the
structures of palm-trees and jungles described in Tarjan's original paper [110]
need to be revisited and generalized (i.e., tr-palm-trees and tr-jungles) in order
to handle the 2-player in�nite pebble game's setting, this is done in Section 5.4.
With this, in Section 5.7, the polynomial-time complexity for deciding Explicit
McNaughton-M üller Games is also improved, from cubic to quadratic.
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5.1.1 Background and Notation

An arenais a tuple A , (V, A,(V� ,V# )) where GA , (V, A) is a �nite directed
simple graph (i.e., there are no loops nor parallel arcs) and (V� ,V# ) is a parti-
tion of V into the set V� of vertices owned by Player � , and the set V# of those
owned by Player # . Still GA is not required to be a bipartite graph on colour
classesV� and V# . The ingoing and outgoing neighbourhoods of u 2 V are
N in

A (u) , f v 2 V j (v,u) 2 Ag and Nout
A (u) , f v 2 V j (u,v) 2 Ag, respectively.

Disjoint-union is denoted by [� , e.g.,V = V� [� V# .
A gameon A is played for in�nitely many rounds by moving a pebble along

the arcs, from one vertex to an adjacent one. Initially the pebble is located
on some vs 2 V, this is the starting position. At each round, if the pebble is
currently on v 2 Vi , for some i 2 f � ,# g, Player i chooses an arc(v,v0) 2 A; and
then the next round starts with the pebble on v0.

A �nite (or in�nite) pathin GA is a sequencev0v1 . . .vn . . .2 V � (or Vw) such
that 8j � 0 (vj ,vj+ 1) 2 A; the lengthof v0v1 . . .vn is n. A play on A is any in�nite
path in GA . A strategyfor Player i, where i 2 f � ,# g, is a map si : V � � Vi ! V
such that for every �nite path p0v in GA , where p02 V � and v 2 Vi , it holds that
(v,si (p0,v)) 2 A. The set of all strategies of Player i in A is denoted by SA

i . A
play v0v1 . . .vn . . . is consistentwith some s 2 SA

i if vj+ 1 = s(v0v1 . . .vj ) whenever
vj 2 Vi . Given two strategies s� 2 SA

� and s# 2 SA
# , and some vs 2 V, the

outcomeplay r A (vs,s� ,s# ) is the (unique) play that starts at vs and is consistent
with both s� and s# . For any v 2 V, we denote by r A (vs,s� ,s# ,v) the (unique)
pre�x of r A (vs,s� ,s# ) which ends at the �rst occurence of v, if any; otherwise,
r A (vs,s� ,s# ,v) , r A (vs,s� ,s# ). For any �nite (or in�nite) path p 2 V � (or
p 2 Vw), the alphabetof p is X(p) , f v 2 V j v appears in pg.

Let T , (VT, AT) be an inward directed tree, rooted at rT 2 VT. We simply
write u 2 T for u 2 VT. For eachu 2 T, there is only one path pu going from u to
rT; the depth d(u) of u is the length of pu. An ancestorof u 2 T is any v 2 X(pu);
it's a proper ancestorif v 6= u, and it's the parentp T(u) of u if (u,v) 2 AT. The
children of u 2 T are all the v 2 T such that p T(v) = u. A descendantof u 2 T
is any v 2 T such that u 2 X(pv); it's a proper descendantif v 6= u. A leaf of T
is any u 2 T having no children, i.e., N in

T (u) = Æ. The lowest common ancestor
(LCA) of a subset of vertices S � T is

gS , argmax
n

d(g) j g 2 T and 8s2S s is a descendant of g in T
o

.

The subtree of T that is rooted at u 2 T is denoted by Tu. Given a LIFO stack
St containing some element v 2 St , we denote by St (v) the set of all elements
u 2 St going from the top of St down 'til the �rst occurence of v, extremes
included.

5.2 Trap-Reachability
Recalling palm-trees and jungles. In a seminal work of Tarjan [110] some
foundamental properties and applications of the depth-�rst search (DFS)were
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analyzed. Particularly, speci�c graph structures underlying the DFS were dis-
cussed in detail, namely palm-treesand jungles. This allowed the author to
provide a linear time procedure, nowadays known as Tarjan's SCCs algorithm,
for computing strongly-connected components (SCCs) in �nite directed simple
graphs.

Following [110], assume G is a �nite directed simple graph that we wish
to explore. Initially all the vertices of G are unexplored. We start from some
vertex of G and choose an outgoing arc to follow. At each step, we select an
unexplored arc (leading from a vertex already reached) and explore (traverse)
that arc. When selecting an arc to explore, we always choose an arc emanating
from the vertex most recentlyreached which still has unexplored arcs. Travers-
ing the selected arc leads to some vertex, either new or already reached; if
already reached, we backtrack and select another unexplored arc. Whenever
we run out of arcs leading from old vertices, we choose some unreached ver-
tex, if any exists, and begin a new exploration from this point. Eventually, the
procedure will traverse all the arcs of G, each exactly once. This is adepth-�rst
search (DFS)of G; one may call it fwd-DFS, because at each step the chosen arc
is outgoing.

Recalling palm-treesfrom [110], consider in more detail what happens when
a DFS is performed on G. The set of arcs leading to an unexplored vertex,
when traversed during the search, forms an outward directed tree T. The
other arcs fall into four categories: (i) some arcs are running from ancestors
to descendants in T, these may well be ignored as they do not affect the SCCs
of G; still, (ii) some other arcs run from descendants to ancestors in T, these
are quite relevant instead, they are called fronds; (iii) other arcs run from one
subtree to another within the same tree T, these are internal cross-links; (iv)
suppose to continue the DFS until all arcs are explored, the process creates
a family of trees which contains all vertices of G, i.e., a spanning forest Fof
G, plus sets of (fronds and) cross-links which may also connect two different
trees in F; these areexternal cross-links. It is easy to see that if the vertices of
G are numbered in the order in which they are reached during the search,
e.g., by idx : V ! f 1, . . . ,jV jg, then any (internal or external) cross-link (u,v)
always has idx [u] > idx [v]. Any tree T of F, comprising fronds and internal
cross-links, it is called palm-tree.

A directed graph consisting of a spanning forest, plus fronds and cross-
links, it is named jungle, i.e., a family of palm-trees plus external cross-links,
which is a natural representation of the graph-reachability structure of the
input graph G.

Rev-DFS, rev-palm-trees and rev-jungles. In this work we need to impose
an oppositedirection w.r.t. that in which the arcs are traversed, so at each step
of the DFS one actually chooses aningoing arc to follow instead of an outgoing
one. In this way, the corresponding search algorithm may be called rev-DFS. A
moment's re�ection reveals that this symmetric twist doesn't affect the basic
properties of the DFS. For instance, if the vertices are numbered in the order
in which they are reached during the rev-DFS, e.g., by idx : V ! f 1, . . . ,jV jg,
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(c) The order of arcs'
exploration.

Figure 5.1: An arena (a), and a rev-palm-tree (b), generated by rev-DFS (c).

now a cross-link (u,v) always has idx [u] < idx [v]. So, a family of rev-palm-
treesis constructed during rev-DFS. Let us call rev-jungle the graph structure
underlying a rev-DFS, that is a family of rev-palm-trees comprising frondsand
cross-links.

Trap-Reachability. A trivial graph-reachabilityproperty holds in any rev-
palm-tree T = ( VT, AT): for any u,v 2 T such that v is an ancestor of u in T,
there exists a simple path from u to v in T, i.e., v is graph-reachable from u
in T. With this in mind, let's explore an arenaA = ( V, A,(V� ,V# )) by a rev-
DFS. Let JA be the resulting rev-jungle, and let TA be any rev-palm-tree of
JA . An example is depicted in Fig. 5.1a and the corresponding rev-palm-tree
TA is in Fig. 5.1b; notice, TA is still an arena. So, let's consider reachabilityon
arenas, which is most relevant to 2-player in�nite pebble games: given A , and
any two u,v 2 V, we say that v is reachablefrom u in A if and only if there
is some s� 2 SA

� (i.e., s� = s� (u,v)) such that for every s# 2 SA
# , it holds v 2

X
�
r A (u,s� ,s# )

�
. Then, the rev-palm-tree TA , constructed as above, doesn't

respect reachability: consider the two vertices F,B 2 V� in the rev-palm-tree
TA shown in Fig. 5.1b; starting from F, Player � admits no strategy which
allows him to reach B, even though B is an ancestor of F in T; indeed, any play
starting from F must �rst reach D, at that point, if Player � plays (D,G) then
Player # can go back to F by playing (G,F), otherwise, if Player � plays (D,C),
then Player # can play (C,H ) thus reaching H, and notice that once on H the
continuation of the play must reach D back again. So, starting from F, Player #
can prevent Player � to reach B. Thus we now aim at generalizing the classical
DFS, palm-trees and jungles, from directed graphs to arenas, in such a way as
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to preserve reachability within the (suitably adapted) palm-trees. Particularly,
a desirable “DFS on arenas” should maintain the following basic property: for
any (suitably adapted) palm-tree T, if u,v 2 T and v is an ancestor of u in T,
there exists s� 2 SA

� which allows Player � to eventually reach v starting from
u, without leaving T at the same time, no matter which s# 2 SA

# is chosen by
Player # .

This is the genesis of trap-reachability.

De�nition 5.1. Given an arenaA on vertex set V, let U� V and u,v 2 U. We say
that v is U-trap-reachable from u whenthere exists s� 2 SA

� (i.e., s� = s� (u,v))
such thatfor every s# 2 SA

# :

[reachability] v 2 X
�
r A (u,s� ,s# )

�
; and,

[entrapment] X
�
r A (u,s� ,s# ,v)

�
� U.

In this case, we denotes� : u U; v, or u U; v whens� is implicit; if U = V, s� : u ; v
and u; v will be enough notation.

Remark:Notice that any u 2 U is always U-trap-reachable from itself, for
every U � V.

5.3 Strongly-Trap-Connectedness
In the rest of this work, A = ( V, A,(V� ,V# )) denotes the generic arena taken
as input.

De�nition 5.2. We say that U� V is strongly-trap-connected when for every
(u,v) 2 U � U there exists somes� 2 SA

� (i.e.,s� = s� (u,v)) such that:

s� : u U; v.

Notice, Æand f vg are strongly-trap-connected for any v 2 V.

De�nition 5.3. A strongly-trap-connected component (STCC) is a maximal strongly-
trap-connectedC � V (i.e., such that ifC � C 0andC0 is strongly-trap-connected, then
C= C0).

Next, we observe the following property concerning strongly-trap-connectedness.

Lemma 5.1. Let V1,V2 � V be strongly-trap-connected.
If V1 \ V2 6= Æ, then V1 [ V2 is strongly-trap-connected.

Proof. Pick some u,v 2 V1 [ V2 and z 2 V1 \ V2, arbitrarily. Since f u,zg � V1,
and since V1 is strongly-trap-connected, there exists some s� (u,z) 2 SA

� such

that s� (u,z) : u
V1; z; similarly, there is s� (z,v) 2 SA

� such that s� (z,v) : z
V2; v.

Then, consider the following s� (u,v) 2 SA
� :

s� (u,v) ,
�

(1) Starting from u, play s� (u,z) until z is �rst reached; then,
(2) once on z, play s� (z,v) until v is �nally reached.
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Clearly, s� (u,v) : u
V1[ V2; v. Sinceu and v were chosen arbitrarily, then V1 [ V2

is strongly-trap-connected. 2

Lemma 5.1 allows us to de�ne and study an equivalence relation, i.e., � stc�
V � V; it will turn out that the STCCs of A are the equivalence classes of� stc.

De�nition 5.4. The binary relation� stc on V is de�ned as follows:

� stc,
�

(u,v) 2 V � V j 9U � V such that U is strongly-trap-connected andf u,vg � U
	

.

Lemma 5.2. It holds that� stc is an equivalence relation on V.
So, letfCigk

i= 1 be the distinct equivalence classes of� stc, for some k2 N . Then,
the following holds.

1. If U � V is strongly-trap-connected and U\ C i 6= Æ, then U � C i ;

2. Ci is strongly-trap-connected for each i2 [k];

3. Let U � V be strongly-trap-connected. Then,Ci ( U for no i 2 [k].

Proof of (� stc is an equivalence relation on V).To begin, (i) � stc is re�exive: for

any u 2 V, let U , f ug; then, u U; u, soU is strongly-trap-connected; this shows
u � stc u. (ii) � stc is symmetric, (actually, by de�nition): for any u,v 2 V, assume
u � stc v; then, there exists someU � V which is strongly-trap-connected and
u,v 2 U; so, the same setU certi�es v � stc u. (iii) � stc is transitive: indeed,
for any a,b,c 2 V, assume a � stc b and b � stc c. Since a � stc b, there exists
V1 which is strongly-trap-connected and such that a,b 2 V1; similarly, there
exists V2 which is strongly-trap-connected and such that b,c 2 V2. Consider
U , V1 [ V2. Sinceb2 V1 \ V2, and V1,V2 are both strongly-trap-connected, then
U is strongly-trap-connected by Lemma 5.1. Moreover, a,c 2 U. So,a � stc c. 2

Proof of (1).Since U \ C i 6= Æ, let z 2 U \ C i . Let v 2 U, arbitrarily. Since U is
strongly-trap-connected and z,v 2 U, then v � stc z. Therefore, v 2 Ci (because
z 2 Ci , which is an equivalence class of � stc). 2

Proof of (2).Let u,v 2 Ci , arbitrarily. Then, u � stc v. So, there exists someU � V

which is strongly-trap-connected and such that u,v 2 U. Thus, u U; v. Notice,

u,v 2 U \ C i 6= Æ. Then, by Item 1 of Lemma 5.2, U � C i . Since u U; v and

U � C i , then u
Ci; v. So,Ci is strongly-trap-connected. 2

Proof of (3).Assume that Ci � U, for some i 2 [k], and some U � V which is
strongly-trap-connected. Then, since U \ C i = Ci 6= Æ, by Item 1 of Lemma 5.2
we have U � C i . So,Ci = U. 2
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Proposition 5.1. Let C � V, and consider the� stc relation on V. It holds thatC is a
STCC ofA if and only if C is an equivalence class of� stc.

Proof. () ) If C is a STCC ofA , then C is strongly-trap-connected. So, u � stc v
for every u,v 2 C. Then, C � C 0 holds for some equivalence classC0 of � stc. By
Item 2 of Lemma 5.2, C0 is strongly-trap-connected. Thus, by maximality, C is
not a proper subset of C0. Therefore, C= C0.

(( ) If C is an equivalence class of � stc, then: C is strongly-trap-connected
by Item 2 of Lemma 5.2; and C is maximal by Item 3 of Lemma 5.2. Therefore,
C is a STCC ofA . 2

5.4 TR-Depth-First-Search
In this section, a DFS algorithm for the exploration on arenas is designed. Its
rationale is that a new node u 2 V is attached to the rT-rooted DFS-treeT under
formation as soon as trap-reachability of rT from u, within T itself, is already
guaranteed (rather than requiring the weaker graph-reachability of rT from u,
like rev-DFS would do on graphs). The algorithm is called Trap-Reachability-
Depth-First-Search (tr-DFS). The pseudo-code of tr-DFS() is given in Algo. 12,
and that of subprocedure tr-DFS-visit() is in Proc. 1.

Given A , tr-DFS (A ) explores A so to construct another arena JA , like
rev-DFS constructs a jungle. The tr-DFS (A ) (Algo. 12) is a generalization of
rev-DFS, in the sense that, if V# = Æ, it works as rev-DFS and JA coincides
with a Tarjan's jungle. So, JA comprises a forest of trees, called tr-palm-trees,
with frondsand cross-links. Initially, four sets of arcs A tree, A frond , Apetiole , Across

are initialized to Æ, then some arcs will be added to them during tr-DFS (A );
when tr-DFS (A ) will halt, A0  A tree [� A frond [� Apetiole [� Across will be the
arc set of JA . Let's say u 2 V joins JA precisely when (u,v) is added to A tree,
for some v 2 V.

An index idx : V ! f 1, . . . ,jV jg numbers the vertices in the order in which
they join JA ; initially, 8u2V idx [u]  + ¥ . Let's say u 2 V is visited if idx [u] <
+ ¥ , and unvisited if idx [u] = + ¥ . Any u 2 V� joins JA as soon as it is visited
by the search (see lines 6-8 oftr-DFS-visit() , Proc. 1); but the V# -rule (i.e.,
that allowing u 2 V# to join JA ) is more involved: any u 2 V# joins JA as soon as
all u02 Nout

A (u) have already did it; and when u 2 V# joins some tr-palm-tree P
of JA , with parent p (i.e., when u 2 V# and (u,p ) 2 A tree for some p 2 V), then
all arcs going out of u are tagged petiole-arcs; and p is the LCA of Nout

A (u) in P .
In fact, besides fronds and cross-links, tr-palm-trees have an additional class
of arcs, the petiole-arcs: these are those arcs thanks to which u 2 V# can join
JA . By considering LCAs the V# -rule allows us to preserve trap-reachability,
as shown in Proposition 5.4. To implement the V# -rule, an additional counter
cnt : V# ! N is employed, and the following invariant is maintained:

8u2V# cnt [u] =
�
� f v 2 Nout

A (u) j idx [v] = + ¥ g
�
� , (Icnt )
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Algorithm 12: tr-Depth-First Search

Procedure tr-DFS (A )
input : An arena A = ( V, A,(V# ,V� )) .
output : A tr-jungle J A .

1 A tree, A frond , Apetiole , Across  Æ;
2 foreach u 2 V do
3 idx [u]  + ¥ ;
4 active [u]  false ;
5 ready St [u]  Æ;
6 if u 2 V# then
7 cnt [u]  j Nout

A (u)j;

8 next idx  1;
9 foreach u 2 V� do

10 if idx [u] = + ¥ then
11 tr-DFS-visit (u,A );

12 foreach u 2 V# do
13 if idx [u] = + ¥ then
14 idx [u]  next idx ;
15 next idx  next idx + 1;

16 A0 A tree [� A frond [� Apetiole [� Across;
17 return J A  (V, A0,(V� ,V# )) ;

Algorithm 12: The Trap-Reachability-Depth-First Search.
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also, for each u 2 V, there's a LIFO stack of vertices named ready St [u].

SubProcedure 1: tr-DFS-visit
Procedure tr-DFS-visit (v,A )

input : One vertex v 2 V of A .
1 active [v]  true ;
2 idx [v]  next idx ;
3 next idx  next idx + 1;

// Check the in-neighbourhood of v
4 foreach u 2 N in

A (v) do
5 if idx [u] = + ¥ then
6 if u 2 V� then
7 add (u,v) to A tree;
8 tr-DFS-visit (u,A );

9 else
10 cnt [u]  cnt [u] � 1;
11 if cnt [u] = 0 and 9(LCA of Nout

A (u) in (V, A tree)) then
12 g  the LCA of Nout

A (u) in (V, A tree);
13 ready St [g].push (u);

14 else if active [u] = true then
15 add (u,v) to A frond ;
16 else add (u,v) to Across;

// Check the ready-stack of v, i.e., ready St [v]
17 while ready St [v] 6= Ædo
18 u  ready St [v].pop () ; // u 2 V#
19 add (u,v) to A tree;
20 for each t 2 Nout

A (u) do add (u,t) to Apetiole ;
21 tr-DFS-visit (u,A );

22 active [v]  false ;

Procedure 1: The TR-DFS Visit Procedure.

Initially, 8u2V ready St [u]  Æ and 8u2V# cnt [u]  j Nout
A (u)j (lines 5-

7); then, cnt [u] is decremented whenever some v 2 Nout
A (u) is visited. When

cnt [u] = 0 (at line 11 of tr-DFS-visit (v,A ), Proc. 1), all v 2 Nout
A (u) have

already joined JA : notice, if any two vertices in Nout
A (u) belong to two distinct

tr-palm-trees in JA , there would be no way to preserve trap-reachability, in case
u already joined JA , because Player# can always choose to move from u to any
of the two shafts, and the LCA g of Nout

A (u) in (V, A tree) is unde�ned; still, if
all vertices in Nout

A (u) belong to the same tr-palm-tree, the LCA g of Nout
A (u) in

(V, A tree) does exist; so, �rstly we seek for the LCA g, and if it exists, push u on
top of ready St [g] (lines 11-13 of tr-DFS-visit() , Proc. 1). So doing,u 2
V# joins JA as soon astr-DFS-visit() backtracks, from the last v 2 Nout

A (u)
that has been visited, up to g (possibly g = v): at that point, ready St [g]
will be checked and emptied (lines 17-21), and u will be found there inside, so
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(u,g) will be added to A tree (line 19); also, for each t 2 Nout
A (u) the arc (u,t)

will be added to Apetiole , and tr-DFS-visit (u,A ) will be invoked.
To classify the remaining arcs into fronds or cross-links, an additional

�ag active : V ! f true ,false g is employed; initially, 8u2V active [u]  
false ; then, active [u] is set to true when u is visited by the subproce-
dure tr-DFS-visit (u,A ) (line 1), �nally, active [u] is set back to false
when tr-DFS-visit (u,A ) ends. During tr-DFS-visit (v,A ), when some
u 2 N in

A (v) such that idx [u] 6= + ¥ is explored, if active [u] = true then (u,v)
is added to A frond , otherwise to Across.

There's still one point which is worth mentioning. During tr-DFS() ,
�rstly, all u 2 V� are considered, see lines 9-11 oftr-DFS() (Algo. 12); so,
for each unvisited u 2 V� , tr-DFS-visit (u,A ) is invoked; after that, for
each u 2 V# which is still unvisited, it is assigned idx [u] incrementally, and
tr-DFS-visit (u,A ) is not invoked anymore. Indeed, w.l.o.g we can assume
that 8v2V jNout

A (v)j � 2 holds, by pre-processing A as follows: for any v 2 V, if
Nout

A (v) = Æ, remove v and all of its ingoing arcs; if Nout
A (v) = f v0g, add (u,v0)

to A for each u 2 N in
A (v), �nally remove v and all of its arcs. So doing, even if

tr-DFS-visit (v,A ) would've been invoked for some v 2 V# , say at line 14
of tr-DFS() , there would've been no u 2 V such that (u,v) 2 A tree: consider
tr-DFS-visit() (Proc. 1), notice (u,v) could not have been added to A tree

neither at line 7 (because all u 2 V� would've been already visited before at
that time) nor at line 19 (since 8v2V# jNout

A (v)j � 2, there would've been no way
for “ 9 LCA of Nout

A (u) in (V, A tree)” at line 11). So, this way of going is �ne.
Let us now analyze the complexity of tr-DFS() (Algo. 12).

Proposition 5.2. GivenA , thetr-DFS (A ) (Algo. 12) halts in timeQ
�
jV j + jA j +

Time[LCA]
�
, and it works with spaceQ

�
jV j + jA j + Space[LCA]

�
, where Time[LCA]

(Space[LCA]) is the aggregate total time (space) taken by all of the LCA computations
at lines 11-12 oftr-DFS-visit () (Proc. 1). Moreover, each v2 V is numbered by
idx exactly once.

Proof. Firstly notice that the init-phase (lines 1-7 of Algo. 12) takes Q(jV j +
jA j) time. Secondly, Algo. 12 basically performs a sequence of invocations
to tr-DFS-visit (v,A ) (Proc. 1), each one is for somev 2 V. Any such
tr-DFS-visit (v,A ) is invoked iff idx [v] = + ¥ , and then idx [v] is set to
some non-zero value at line 2. Thus, the total number of invocations of
tr-DFS-visit() (Proc. 1) is at most jV j; actually, by line 9 of tr-DFS()
(Algo. 12), it is exactly jV j; so, each vertexv 2 V is numbered by idx : V !
f 1, . . . ,jV jg exactly once. Concerning time complexity, each invocation of the
subprocedure tr-DFS-visit (v,A ) explores N in

A (v) as follows: for each u 2
N in

A (v), the LCA of Nout
A (u) is computed at lines 11-12. Also, at the end of

tr-DFS-visit (v,A ), the stack ready St [v] is emptied; still, due to the con-
dition cnt [u] = 0 that is checked at line 11 of tr-DFS-visit() , any u 2 V#

can be pushed on ready St [v] at most once and for at most one v 2 V. There-
fore, the Q

�
jV j + jA j + Time[LCA ]

�
time bound holds. Concerning space com-

plexity, a similar argument shows that the aggregate total space for storing
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f ready St [v]gv2V is only O(jV j). Also, the total size of idx , active and
cnt is Q(jV j), and that of A0 is Q(jA j) (see line 16 of tr-DFS() , Algo. 12).
So, the working space is Q

�
jV j + jA j + Space[LCA ]

�
. 2

Next, we analyze the structure of the arena JA which is constructed by
tr-DFS (A ) (Algo. 12).

Let's start by formally de�ning tr-palm-trees. Some examples are shown in
Fig. 5.2 and Fig. 5.3.

De�nition 5.5. A tr-palm-tree is a pair(P , idx ), where:
(i) P , (V, A,(V� ,V# )) is an arena, where:

V , V� [� V# and A , A tree [� A frond [� Apetiole[� Across;

(ii) idx : V ! f 1 + j, . . . ,jV j + jg, for some �xed j2 N , is a labelling of V;
(iii) the following four main properties hold:

(tr-pt-1) TP , (V, A tree) is an inward directed rooted tree such that:

(a) the root rTP of TP is controlled by Player� , i.e., rTP 2 V� ;

(b) idx [u] > idx [v] if (u,v) 2 A tree;

(tr-pt-2) Each(u,v) 2 A frond connects some u2 V� to one of its proper descendants v2 V
in TP ;

(tr-pt-3) Each(u,v) 2 Apetiole connects some u2 V# to one of the descendants v of its
parentp TP (u) (i.e., possibly top TP (u)); in particular, given any u2 V# , the
following hold:

(a) f v 2 V j (u,v) 2 Apetioleg [� f p TP (u)g = Nout
P (u);

(b) p TP (u) is the LCA off v 2 V j (u,v) 2 Apetioleg in TP ;

(c) idx [u] > idx [v] for every v2 Nout
P (u).

(tr-pt-4) Each arc(u,v) 2 Acrossconnects some u2 V� to some v2 V such that:

(a) v is not a descendant of u inTP ;

(b) either v is a proper ancestor of u inTP or idx [u] < idx [v].

De�nition 5.6. A tr-jungle is any arenaJ , (V, A,(V� ,V# )) comprising a family
of tr-palm-treesfP igk

i= 1, for some k2 N , and satisfying the following properties:
(tr-jn-1) 8i2 [k] P i , (V i , A i ,(V i

� ,V i
# )) , where Vi

� � V� ,V i
# � V# , A i � A;

(tr-jn-2) 8i ,j2 [k] V i \ V j = Æif i 6= j;
(tr-jn-3) If (u,v) 2 A for some u2 V i and v2 V j such that i6= j, then:

u 2 V i
� and i< j;

(tr-jn-4) If v 2 V n
S k

i= 1V i , then v2 V# and Nout
J (v) � V i for no i 2 [k].
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(b) The tr-palm-tree generated by tr-DFS rooted at
A, with indices of vertices and labelled arcs.

1.(B, A)

2.(D,B)

3.(E,D)

4.(C,E)

5.(F,E)

6.(G,D)

7.(A,G)

8.(F,G)

9.(C,B)

10.(H, A)

11.(C,H )

12.(F,H )

(c) The order of arcs'
exploration.

Figure 5.2: An arena (a), and a tr-palm-tree (b), generated by tr-DFS (c).

De�nition 5.7. Given a tr-palm-tree(P , idx ), forP = ( V, A,(V� ,V# )) , A = A tree[�
A frond [� Apetiole[� Across, thesupport ofP is the arenaP� , (V, A � ,(V� ,V# )) , where:
A � ,

�
(u,v) 2 A j u 2 V�

	
[� Apetiole.

Notice that A� = A n
�

(u,v) 2 A tree j u 2 V#
	

holds by (tr-pt-3).
Given any tr-jungleJ with tr-palm-trees's familyfP igk

i= 1, for some k2 N , let
V , V n

S k
i= 1V i (where Vi is the vertex set ofP i ). Thesupport of J is the arenaJ �

which is obtained fromJ by replacingP i with its support P i
� , for every i2 [k], and

by leaving intact all the vertices inV and all the arcs(u,v) of J such that: either, (i)
u 2 V i and v2 V j for some i6= j; or, (ii) u 2 V or v 2 V (possibly both of them).

Proposition 5.3. Let A = ( V, A,(V� ,V# )) be an arena. The following two proposi-
tions hold.

1. Let J be the arena constructed bytr-DFS (A ) (Algo. 12). Then, J is a tr-jungle.

2. Let J be a tr-jungle with support J� . Then,tr-DFS ( J� ) (Algo. 12) constructs J
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(h) The resulting tr-jungle,
which is generated by
multiple tr-DFSs rooted at
A,H,C,D and F.

Figure 5.3: An arena (a), and the construction of a tr-jungle (b-h).

itself, i.e., JJ� = J.

Proof of (1).Recall, tr-DFS (A ) performs a sequence of invocations to the sub-
procedure tr-DFS-visit (�,A ); by Proposition 5.2, each v 2 V is numbered
by idx exactly once. Let k be the number of times that the subprocedure
tr-DFS-visit (ui ,A ) is invoked at line 11 of tr-DFS () (Algo. 12). For each
i = 1,2, . . . ,k, it holds ui 2 V� by line 9, then, let V i � V be the set of vertices that
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are numbered by idx during tr-DFS-visit (ui ,A ), recursive calls included.
Let A i be the set of arcs that are added to any of A tree, A frond , Apetiole , Across

during that same tr-DFS-visit (ui ,A ), and let A i
t , f (a,b) 2 A i j a,b 2 V ig

and A i
c , A i n A i

t . Let P i , (V i , A i
t ,(V� \ V i ,V# \ V i )) , and let idx i be the re-

striction of idx to V i . It is not dif�cult to see that (P i , idx i ) is a tr-palm-tree:
indeed, for each i 2 [k], (P i , idx i ) is constructed by tr-DFS-visit (ui ,A ) and
thus it satis�es (tr-pt-1) to (tr-pt-4), where any u 2 V# joins P i according to: (i)
the checking of the cnt [u] = 0 condition at line 11, (ii) the LCA computation
at lines 11-12, (iii) the emptying of ready St [v] at lines 17-21; also recall that,
for every u 2 V# , cnt [u] was initialized to jNout

A (u)j at line 7 of tr-DFS ()
(Algo. 12), and then cnt [u] is decremented at line 10 of tr-DFS-visit (v,A )
each time some v 2 Nout

A (u) is visited; with this in mind, it is easy to check
that (tr-pt-1) to (tr-pt-4) are satis�ed. Next, we claim that J is a tr-jungle with
tr-palm-tree family fP igi2 [k]. Indeed, (tr-jn-1) and (tr-jn-2) clearly hold. Con-
cerning (tr-jn-3) , let (u,v) 2 A for some u 2 V i and v 2 V j such that i 6= j; then
u 2 V i

� , becauseP i is a tr-palm-tree so that (tr-pt-3) holds for V# ; also, i < j
since otherwise u would've joined P i at lines 6-8 of tr-DFS-visit () . Con-
cerning (tr-jn-4) , let v 2 V n

S k
i= 1V i , then v 2 V# by lines 9-15 of tr-DFS () ;

also, Nout
J (v) � V i holds for no i 2 [k], otherwise v would've joined P i thanks

to lines 9-13 and 17-21 oftr-DFS-visit () . So J is a tr-jungle. 2

Proof of (2).Notice that J� is obtained from J simply by removing from the
tr-palm-trees of J all the arcs (u,v) 2 A tree such that u 2 V# . Consider the or-
dering < idx on V induced by the labelling idx of J, i.e., 8a,b2V a < idx b ()
idx [a] < idx [b]. Construct an adjacency list of J� such that: (i) the main list of
vertices is ordered according to < idx ; (ii) for each u 2 V, also N in

J (u) is ordered
according to < idx . So doing, since J satis�es (tr-jn-1) to (tr-jn-4) and their tr-
palm-trees satisfy (tr-pt-1) to (tr-pt-4), then tr-DFS ( J� ) (Algo. 12) reconstructs
J itself, i.e., that JJ� = J. 2

The next proposition shows that tr-jungles do respect trap-reachability.

Proposition 5.4. Let J be a tr-jungle with family of tr-palm-treesfP igk
i= 1, for some

k 2 N , assume thatP i = ( V i , A i ,(V i
� ,V i

# )) holds for each i2 [k]. There existss� 2
SJ

� (i.e.,s� = s� ( i)) such that, for any two vertices u,v 2 V i , if u is a descendant of

v in TP i , then:s� : u V i

; v.

Proof. By lines 9-11 of tr-DFS () , for every u 2 V� there exists some iu 2 [k]
such that u 2 V iu .

Then, consider the strategy s� 2 SJ
� (i.e., s� = s� ( i)) de�ned as follows:

8u2V� s� (u) ,
�

p TP iu
(u), if u is not the root of TP iu ;

any u02 Nout
J (u), if u is the root of TP iu .
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Let i 2 [k] and u,v 2 V i be �xed, arbitrarily. Recall that, by (tr-pt-1), the vertices
of TP i are numbered by idx so that idx [v] < idx [u] if v is a proper ancestor of
u in TP i . To prove the thesis, we argue by induction on the value of idx [u]. Let
z , min x2V i idx [x]. Assume idx [u] = z. Then, u = rTP i is the root of TP i . Since

u,v 2 V i and u is a descendant of v in TP i , then v = u; so, the thesis trivially
holds. Instead, assumeidx [u] > z. Again, if u = v the claim holds trivially. So,
let u 6= v. Assume the thesis holds for every x 2 V i which is still a descendant
of v in TP i and such that idx [v] � idx [x] < idx [u].

We have two cases to analyze, eitheru 2 V� or u 2 V# .
(i) If u 2 V� , then s� (u) = p TP i (u). By (tr-pt-1), idx [p TP i (u)] < idx [u].

Sincep TP i (u) is the parent of u in TP i and u 6= v, then p TP i (u) is still a descen-

dant of v; thus, by induction hypothesis: s� : p TP i (u) V i

; v. Therefore, since

s� : u V i

; p TP i (u) and s� : p TP i (u) V i

; v, the thesis holds.

(ii) If u 2 V# , �rstly recall that by (tr-pt-3), p TP i (u) is the LCA of L i (u) ,
f u02 V j (u,u0) 2 A i

petioleg; notice that L i (u) = Nout
J �

(u), where J � is the sup-

port of J . Fix u02 Nout
J �

(u), arbitrarily. It holds that u0 is still a descendant of
p TP i (u) in TP i , becausep TP i (u) is the LCA of Nout

J �
(u). Thus, sincep TP i (u) is a

descendant of v in TP i , then u0 is also a descendant ofv in TP i . And, by item

(c) of (tr-pt-3), idx [u0] < idx [u]. Thus, by induction hypothesis, s� : u0 V i

; v.

Since u0 was chosen arbitrarily, then s� : u V i

; v. This concludes the inductive

step of the proof. So, in any case,s� : u V i

; v. 2

Still it remains to be seen how to perform the LCAs computations that
are needed at lines 11-12 oftr-DFS() (Proc. 1). In the next paragraph, we
suggest to adopt a disjoint-set forestdata structure with non-rankedUnion()
and path-compressionFind() .

LCAs by Disjoint-Set Forest. A disjoint-set forest (DSF)data structure, hereby
denoted by D , also called union-�nd data structure or merge-�nd set, is a data
structure that keeps track of a set of elements partitioned into a number of
disjoint (non-overlapping) subsets, each of which is represented by a tree.

It supports the following operations:
D .MakeSet (�), D .Union (�, �) and D .Find (�), such that:
(dsf-1)The representative element of each set is the root of that set's tree;
(dsf-2)MakeSet (v) initializes the parent of a vertex v 2 V to be v itself;
(dsf-3)Union (u,v) combines two trees, T1 rooted at u and T2 rooted at v,

into a new tree T3 still rooted at v, i.e., by adding u as a child of v (non-ranked
union).

(dsf-4) Find (v), starting from v, it traverses the ancestors of v until the
root r of the tree containing v is �nally reached. While doing this, it changes
each ancestor's parent reference to point to r (path-compression); the resulting
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tree is much �atter, speeding up future operations, not only on these traversed
elements but also on those referencing them.

We can now describe how to perform the LCAs computations at lines 11-12
of tr-DFS-visit () (Proc. 1). We refer to the following procedure as to the
“DSF-basedtr-DFS() ” . We have a global DSF data structure named D . The
init-phase is almost the same as Algo. 12, the only additions being that, for
each v 2 V:

(dsf-init-1) D .MakeSet (v) is executed;
(dsf-init-2) If v 2 V# , an array low ready : V ! N [ f + ¥ g is initialized as

low ready [v]  + ¥ . Given A in input, the DSF-based tr-DFS (A ) is going
to keep the following invariant property:

8v2V# low ready [v] = min
�

idx [u] j u 2 Nout
A (v)

	
. (Ilow )

Next, the visit-phase begins as at lines 9-15 of tr-DFS () (Algo. 12): for each
v 2 V� , if v is still unvisited (i.e., if idx [v] = + ¥ ) then tr-DFS-visit (v,A )
is invoked. As soon as all V� vertices have been visited, then, all v 2 V# that
are still unvisited are handled as at lines 12-15 of tr-DFS () (Algo. 12).

Also, the halting-phase is the same as before, see lines 16-17 oftr-DFS ()
(Algo. 12).

Let us now describe the distinctive features of the DSF-based tr-DFS() .
Let v 2 V, then:

(dsf-visit-1)Whenever the DSF-basedtr-DFS-visit (v,A ) makes a recur-
sive call on some input vertex u 2 N in

A (v) [ ready St [v] (see lines 8 and 21 of
Proc. 1), soon after that, it is executedD .Union (u,v).

(dsf-visit-2) Suppose that the DSF-basedtr-DFS-visit (v,A ) is currently
exploring some v 2 V, and that it comes to consider some u 2 N in

A (v) \ V# (at
line 4 and 9). Then, low ready is updated as follows:

low ready [u]  min ( low ready [u], idx [v]);

this aims at satisfying the I low invariant. Next, cnt [u] is decremented (as at
line 10 of Proc. 1).

If the condition cnt [u] = 0 holds (line 11 of Proc. 1), the following is done:
(a) It is assigned:

low v  “the unique x 2 Nout
A (u) such that idx [x] = low ready [u]”;

(b) Then, it is computed g  D .Find ( low v);
(c) Then, if active [g] = true , it is executed ready St [g].push (u); in-

deed, in that case, we can prove (see Proposition 5.5) that the LCA of Nout
A (u)

in (V, A tree) does exist, and it is really g.
The rest of the DSF-basedtr-DFS-visit () is the same as Proc. 1.
This concludes the description of the DSF-based tr-DFS() .
At this point we shall prove that the above mentioned property concerning

g and LCAs holds.
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Proposition 5.5. Suppose thattr-DFS-visit (v,A ) (DSF-based) is invoked, for
some v2 V, and that it comes to consider some u2 N in

A (v) \ V# (at line 4 and 9).
Assume thatidx [u] = + ¥ at line 5 and thatcnt [u] = 0 at line 11. Letg be the
vertex returned byD .find ( low v), wherelow v is the unique x2 V such that
idx [x] = low ready [u]. If active [g] = true holds, then the LCA of Nout

A (u) in
(V, A tree) is g.

Proof. Firstly, during the execution of the DSF-based tr-DFS (A ), the (V, A tree)
still grows as a forest. Indeed, if a new arc (u,v) is added to A tree it holds
that idx [u] = + ¥ (by line 5 of tr-DFS-visit () ) and that idx [v] < + ¥ (by
line 2 of tr-DFS-visit (v,A )); so, no cycle can be formed. Thus, when
tr-DFS-visit (v,A ) is invoked for v 2 V, we can consider the unique max-
imal tree T v in (V, A tree) which contains v (constructed up to that point). Let
pv be the path in T v going from v to the root rT v . By (dsf-visit-1), by de�nition
of low v, and since g = D .find ( low v) and active [g] = true , then g lies
on pv. Thus, g is the LCA of low v and v in T v (possibly g = low v). Next,
we argue that Nout

A (u) � T v
g , where T v

g is the subtree of T v comprising all and
only the descendants of g (i.e., the subtree of T v rooted at g). Indeed, by
(dsf-visit-2), it holds that:

idx [low v] = min
�

idx [x] j x 2 Nout
A (u)

	
.

So, when cnt [u] = 0 holds at line 11 of tr-DFS-visit (v,A ), and since g is
an ancestor of low v, then:

8x2 Nout
A (u) idx [g] � idx [low v] � idx [x] < + ¥ .

Notice that all vertices in T v which are not descendants of g still have a smaller
idx than g (i.e., they were all visited before g), and all those which are proper
descendants of g have a greater idx than g. All these combined, it follows
Nout

A (u) � T v
g . So,g is a common ancestor of Nout

A (u) in T v; but g is also the
LCA of f low v,vg � Nout

A (u), therefore, g is really the LCA of Nout
A (u) in T v. 2

By Proposition 5.5, then, Proposition 5.3 holds even for the DSF-based
tr-DFS() . Concerning complexity, by relying on the result offered in [80],
we now show that the DSF-based tr-DFS() halts in linear time.

De�nition 5.8 ( [80]). Let T = ( V, A) be any rooted tree. Let u1, . . . ,uk be a path in
T listed from a leaf u1 in the direction towards the root of T (i.e., uk is some ancestor
of u1). Thepath compression C = ( u1, . . . ,uk) is an operation that modi�es T as
follows:

(i) It deletes from T all the arcs(ui ,ui+ 1), for i = 1, . . . ,k � 1;

(ii) It makes each of the vertices ui , for i = 1, . . . ,k � 1, a new son of uk;

(iii) It deletes all new sons of uk of degree1 which may occur (particularly, u1 is
deleted).
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The vertex uk is called theroot of C. We also say that Cstarts from u1. Thelength
of C isjCj , k � 1.

Any sequence S= ( C1, . . . ,Cn) of path compressions on a tree T is called astrong
postorder path compression system (SPPCS)if and only if the following four prop-
erties hold:

(i) Each Ci is a path compression on the tree Ti obtained from T after that the path
compressions C1, . . . ,Ci � 1 have been executed (where T1 = T);

(ii) Each leaf of T is a starting point of exactly one path compression of S;

(iii) (1,2, . . . ,n) is a linear ordering of all the n leaves of T induced by a �xed pos-
torder of T;

(iv) Let the root of a compression Ci , for any2 � i � n, be some vertex u of T. Then,
all the compressions Cj such that j< i and j 2 Tu have roots in a descendant of
u in T.

Thelength of S is de�ned asjSj , å n
i= 1 jCi j.

Theorem 5.1 ( [80]). Let S be a SPPCS on a tree T with n leaves. Then,jSj � 5 � n.

Proposition 5.6. Given A , assume that the DSF-basedtr-DFS (A ) is invoked.
Then, it halts inQ

�
jV j + jA j

�
time.

Proof. Recall that during the tr-DFS() , the graph (V, A tree) grows as a forest.
By (dsf-visit-1), that forest coincides with the DSF that is constructed by means
of the D .Union (�, �) operations.

So, in order to rely on Theorem 5.1, let us consider the following directed
rooted tree T� , (VT� , AT� ):

VT� , V [�
�

rT�
	

[�
�

l(u,v) j (u,v) 2 A,u 2 V#
	

;

AT� , A tree [�
�

(rT ,rT� ) j T is a tree in (V, A tree ) and rT is its root
	

[�
�

( l(u,v) ,v) j l(u,v) 2 VT�
	

.

where rT� , l(u,v) 62V for every l(u,v) 2 VT� . Notice that rT� is the root of T� and
f l(u,v) 2 VT� g is a subset of the leaves ofT� ; so, for eachu 2 V# and v 2 Nout

A (u),
there is a new leaf l(u,v) attached to v in T� . Also notice that jVT� j = 1 + jV j +
jf (u,v) 2 A,u 2 V# gj � 1 + jV j + jA j and jAT� j = jVT� j � 1. Now, observe that
eachD .Find () operation, that is possibly made by tr-DFS (A ), it is made only
by tr-DFS-visit (v,A ) (for some v 2 V) as prescribed by items (a) and (b)of
(dsf-visit-2) and only if cnt [u] = 0 holds at line 11, i.e., g  D .Find ( low v),
where low v is the unique x 2 Nout

A (u) such that idx [x] = low ready [u], and
u 2 V# \ N in

A (v) at lines 9-10. Each of theseD .Find() operations acts in a
natural manner on T� : indeed, D .Find ( low v) induces a path compression
Clow v on T� , if we assume that Clow v starts at the leaf l(u,low v) and that it ter-
minates at g (i.e., g is the root of Clow v). Sinceg  D .Find ( low v) is executed
only if cnt [u] = 0 holds at line 11 of the subprocedure tr-DFS-visit (v,A ),
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then each path compression on T� starts from a distinct leaf l(u,low v) . It is
safe to assume that each leaf ofT� is a starting point of exactly one path com-
pression, because for each leafl0 of T� that has not been the starting point of
any path compression, we can impose a void path compression, i.e., one that
starts and terminates at l0. Then, we argue that the family of all path com-
pressions on T� that are induced by the whole execution of tr-DFS (A ) is a
SPPCS: indeed, during the search,T� is (implicitly) visited in a post-ordering;
when some v 2 V is visited, and some u 2 N in

A (v) \ V# is considered at line 4
of tr-DFS-visit (v,A ), then the root g of the path compression Clow v is
the LCA of f v,low vg in T� (as shown in Proposition 5.5). Thus, we argue
that (sppcs-4)holds. Assume some path compression Clow v0 was done before
Clow v and that low v02 T�

g . So, idx [g] < idx [low v0]. Also, by (dsf-visit-2),
Clow v0 was induced during tr-DFS-visit (v0,A ), for some v0 2 V. Thus,
since Clow v0 was done before Clow v, then idx [v0] < idx [v]; and by de�nition
of low v0, then idx [low v0] < idx [v0]. Therefore, idx [g] < idx [v0] < idx [v] <
+ ¥ holds when Clow v0 is performed. This means that v02 T�

g . Since the root
g0 of Clow v0 is the LCA of f v0, low v0g in T� (as shown in Proposition 5.5),
and since f v0, low vg � T�

g , then g0 2 T�
g ; so, (sppcs-4)holds. At this point,

by Theorem 5.1, the total length of all path compressions that are induced by
tr-DFS() on T� is O(jVT� j) = O(jV j + jA j). It is clear that the space required
for storing D is Q(jV j + jA j). So, also by Proposition 5.2, the complexity of the
DSF-basedtr-DFS() is Q(jV j + jA j). 2

5.5 Linear Time Algorithm for STCCs
Lemma 5.3. Let C0, . . . ,Ck� 1 � V be some STCCs ofA , for some k� 2. For each
i 2 f 0, . . . ,k � 1g �x some ui 2 Ci , arbitrarily; and let i0 , ( i + 1) mod k. As-
sume that the followingtr-cycle (i.e., cyclic trap-reachability relation) holds for some
f s� (ui ,ui0)gk� 1

i= 0 � SA
� :

s� (ui ,ui0) : ui
Ci [f ui0g; ui0, for each i= 0, . . . ,k � 1.

Then, Ci = Ci0 for every i2 f 0, . . . ,k � 1g.

Proof. Let C� , [ k� 1
i= 0 Ci . We argue that C� is strongly-trap-connected. Let x,y 2

C� be �xed arbitrarily, where x 2 Cix and y 2 Ciy , for some ix, iy 2 f 0, . . . ,k � 1g.
If ix = iy, the following holds for some s� (x,y) 2 SA

� (because Cix = Ciy is
strongly-trap-connected):

s� (x,y) : x
Cix = Ciy

; y.

Otherwise, ix 6= iy. Then, s� (x,uix ) : x
Cix; uix for some s� (x,uix ) 2 SA

� (because
Cix is strongly-trap-connected). Next, this holds for each i = i ix , i ix + 1, . . . ,k �
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1,0,1, . . . ,iy � 1 and for i0, ( i + 1) mod k:

s� (ui ,ui0) : ui
Ci [f ui0g; ui0.

Finally, s� (uiy ,y) : uiy

Ciy
; y for some s� (uiy ,y) 2 SA

� (becauseCiy is strongly-
trap-connected). Therefore, by composition, there exists s� (x,y) 2 SA

� such

that s� (x,y) : x C�

; y; so C� is strongly-trap-connected. At this point, for every
i 2 f 0, . . . ,k � 1g, since Ci � C� , since C� is strongly-trap-connected, and since
Ci is a STCC of A (so the maximality property mentioned in Def. 5.3 holds),
then, Ci = C� . 2

Proposition 5.7. Let JA be the tr-jungle constructed bytr-DFS (A ) (Algo. 12) (see
Proposition 5.3). LetfP igk

i= 1 be the tr-palm-tree's family of JA , for some k2 N ,
whereP i , (V i , A i ,(V� \ V i ,V# \ V i )) and Ai , A i

tree [� A i
frond [� A i

petiole[� A i
cross;

also, F, (V,
S k

i= 0 A i
tree) is a forest by Defs. 5.5-5.6. LetC � V be any STCC ofA .

Then,C induces a subtree TC in F (i.e., F[C] is an inward directed rooted tree).

Proof. By Proposition 5.2, each v 2 V is numbered by idx exactly once. Let
v� , argmin x2C idx [x] be the �rst vertex v� 2 C that is visited during the in-
vocation of tr-DFS (A ) (Algo. 12). By Proposition 5.3 and Defs. 5.5-5.6, the
set of all vertices that are visited during the whole (i.e., including recursive
calls) execution of the subprocedure tr-DFS-visit (v� ,A ) induces a subtree
Tv� , (VTv� , ATv� ) of F which is rooted at v� ; so, v� 2 C \ Tv� 6= Æ.

Fact-1: C � Tv� . For the sake of contradiction, suppose C nTv� 6= Æ. Then,
since C is strongly-trap-connected, there exists û 2 C nTv� such that one of the
following two holds: either (i) û 2 V� and there exists u02 Nout

A (û) such that
u02 C \ Tv� ; or (ii) û 2 V# and for all u02 Nout

A (û) it holds that u02 C \ Tv� .
Also notice, since v� , argmin x2C idx [x], then idx [v� ] < idx [û]; thus û was
not visited before v� . All these combined, by de�nition of tr-DFS-visit()
(Proc. 2) and since T�

v is a subtree of F, it must be that û is visited and that
it joins F during the execution of tr-DFS-visit (v� ,A ); so, û 2 Tv� . But this
contradicts our assumption û 2 C nTv� . Therefore, C nTv� = Æ; so, C � Tv� .

Fact-2: If u 2 C n fv� g and u0 , p Tv� (u), then u02 C. Indeed, since u 2 C
and C � Tv� , then u is a descendant of v� in Tv� . Since u 6= v� , then u0 is also
a descendant of v� in Tv� . Thus, by Proposition 5.4, there exists somes� 2 SA

�
such that:

s� : u
Tv�
; u0 and s� : u0Tv�

; v� ;

thus, since u,v� 2 C and C is a STCC, thenu02 C holds by Lemma 5.3.
By (fact-1)and (fact-2), C induces a tree TC in F (i.e., TC is a subtree of Tv�

still rooted at v� ). 2

De�nition 5.9. The root v� of the tree TC (as in the proof of Proposition 5.7) is the
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root of the STCCC.

The problem of computing the STCCs of any arena A reduces to that of
�nding the roots of the STCCs; just as the classical problem of �nding the
SCCs of a directed graph reduced to that of �nding the roots of the SCCs. We
have identi�ed a simple test to determine if a vertex is the root of a STCC. It
is based on alowlink indexing, generalizing the lowlink calculation performed
by Tarjan's SCC algorithm [110].

De�nition 5.10. Let JA be the tr-jungle constructed bytr-DFS (A ) (Algo. 12).
Let idx : V ! f 1, . . . ,jV jg be the indexing computed during that execution, and let
fP igk

i= 1 be the tr-palm-tree's family of JA , for some k2 N , whereP i , (V i , A i ,(V� \
V i ,V# \ V i )) and Ai , A i

tree[� A i
frond [� A i

petiole[� A i
cross; also, F, (V,

S k
i= 0 A i

tree) is a
forest by Defs. 5.5-5.6.

Given any v2 V, the tr-lowlink : V ! N is de�ned as follows:

tr-lowlink (v) , min
� �

idx [v]
	

[�

[�
�

idx [u] j u 2 V n f vg and9i2 [k] such that the following two hold:

(tr-ll-1) 9t � 1 9(u,v1,...,vt � 1,(vt = v)) 2 (V i )+ such that:

(a) (u,v1) 2 A frond [� Across;

(b) if t � 2,8j2f 1,...,t � 1g it holds (vj ,vj+ 1) 2 A tree.

(tr-ll-2) 9g2V i such that:

(a) g is a common ancestor of u and v in(V i , A i
tree);

(b) g and u are in the same STCC ofA .
	

�
.

If v 2 V, N in
A ,LCA(v) , f u 2 N in

A (v) j the LCAg of f u,vg in F exists andg 2 Cug.

Let us prove some useful properties of tr-lowlink() and N in
A ,LCA .

Proposition 5.8. Let A , idx ,F and tr-lowlink() be as in Def. 5.10. Given any v2 V:

1. If tr-lowlink(v) = idx [u] for some u2 V n f vg such that(tr-ll-1) and(tr-ll-2)
hold, then u2 V� .

2. tr-lowlink(v) = min
�

idx [v]
	

[�
�

idx [u] j u 2 N in
A ,LCA(v)

	
[�

[�
�

tr-lowlink (u) j u is a child of v in F
	

.

Proof of (1).By Item (a) of (tr-ll-1), it holds (u,v1) 2 A frond [� Across. Recall that
(u,v1) can be added to A frond [� Across only at lines 15-16 of the subprocedure
tr-DFS-visit (v1,A ) (Proc. 1). So,u was visited before v1. Still, u 2 N in

A (v1)
by Item (a) of (tr-ll-1); then, it is not possible that u 2 V# , because anyx 2 V#
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can join F only if cnt [x] = 0 holds at line 11 of tr-DFS-visit() (Proc. 1),
and u was visited before v1 and yet it joined F. Therefore, u 2 V� . 2

Proof of (2).Assume that tr-lowlink (v) = idx [u] for some u 2 V n f vg such that
(tr-ll-1) and (tr-ll-2) hold. Then, 9t � 1 9(u,v1,...,vt � 1,(vt = v)) 2 (V i )+ as in Def. 5.10. If
t = 1, then v1 = v; so, u 2 N in

A ,LCA (v) (it is easy to see that, if (tr-ll-2) holds
for somecommon ancestor of f u,vg in F, then it holds for the LCA). If t > 1,
then v1 is a proper descendant of v in F. At this point, it is easy to check
tr-lowlink (v) = idx [u] = tr-lowlink (v1) = tr-lowlink (c) holds for some child c
of v in F, indeed, this follows from Def. 5.10 and Proposition 5.7. 2

Similarly to Tarjan's lowlink based algorithm [110], the tr-lowlink (v) is thus
the smallest index of any vertex u which is in the same STCC as v and such
that u can reach v by traversing: at most one frond (i.e., A i

frond ) or cross-link
(i.e., A i

cross) arc by item (a)of (tr-ll-1) , then, zero or more tree (i.e., A i
tree) arcs by

item (b)of (tr-ll-1) .
What follows is of a pivotal importance for computing STCCs by relying

on tr-lowlinks.

Proposition 5.9. Let JA be the tr-jungle constructed bytr-DFS (A ) (Algo. 12), and
let idx : V ! f 1, . . . ,jV jg be the indexing constructed during that execution. Finally,
let tr-lowlink : V ! N be as in Def. 5.10.

For any v2 V, it holds that v is the root of some STCC ofA if and only if
tr-lowlink (v) = idx [v].

Proof. Let v 2 V. By Proposition 5.7, the STCCCv induces a subtree TCv in F.
Let v� be the root of TCv .

() ) Assume v = v� . Then, we argue there can beno u 2 V n f vg such that
tr-lowlink (v) = idx [v], i.e., such that idx [u] < idx [v] and both (tr-ll-1) and
(tr-ll-2) (see Def. 5.10) hold on u. For the sake of contradiction, assume the
existence of such anu. Then, since idx [u] < idx [v] and v is the root of TCv , it
would be u 62 Cv. By (tr-ll-1) (Def. 5.10), there exists a pathhu,v1, . . . ,vt � 1,(vt =
v)i in A , for some t � 1, such that (u,v1) 2 A frond [� Across and, if t � 2,
8j2f 1,...,t � 1g it holds that (vj ,vj+ 1) 2 A tree. Also, by (tr-ll-2) (Def. 5.10), there
exists a common ancestor g of u and v in (V, A tree ), and g 2 Cu. All these
combined, by Proposition 5.4 and Lemma 5.3 (applied to the tr-cycle vguv), it
would be Cv = Cu. This is absurd, becauseu 2 Cu and u 62 Cv. Indeed, there is
no such u. Therefore, tr-lowlink (v) = idx [v].

(( ) Assume v 6= v� . SinceCv is strongly-trap-connected and v,v� 2 Cv, then
v� ; v. Let Tv be the subtree of TCv that is rooted at v. Sincev� ; v, there exists
someu 2 V nVTv (possibly, u = v� ) and some v1 2 Tv (possibly, v1 = v) such that:
(i) v� ; u and u ; v1; plus, (ii) (u,v1) 2 A frond [� Across. Sinceu 62Tv and v1 2 Tv,
and since (u,v1) 2 A frond [� Across, then u 2 V� and idx [u] < idx [v]. Moreover,
since v� ; u ; v1 ; v, and �nally (by Proposition 5.4) v ; v� , then u is in the
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same STCC asf v� ,v1,vg (by Lemma 5.3, applied to the tr-cycle v� uv1vv� ); i.e.,
u 2 Cv. Thus, u satis�es both (tr-ll-1) , (tr-ll-2) , so tr-lowlink (v) � idx [u]; and
since idx [u] < idx [v], then tr-lowlink (v) < idx [v]. 2

When tr-lowlink (v) = idx [v] holds, as in Proposition 5.9, we say that v
is a �xpoint of tr-lowlink(); so, given any arena A , the roots of the STCCs ofA
are exactly the �xpoints of tr-lowlink().

Our algorithm for decomposing A into STCCs is described next, it is based
on the DSF-basedtr-DFS() (see Algo. 12); still, it has some additional and
distinctive features:

(1) All vertices that have already been reached during the tr-DFS() , but
whose STCC has not yet been completely identi�ed, are stored on a stack St ;

(2) The stack St is (partially) emptied, and a brand new STCC C is com-
pletely identi�ed, when the tr-lowlink's �xpoint condition tr-lowlink (v) =
idx [v] is met (see Proposition 5.9).

(3) The STCC algorithm does not build any tr-jungle's forest F explicitly
(i.e., there is no real need to keep track of A tree, A frond , Apetiole , Across); still, a
tr-jungle's forest F is de�ned implicitly, by the sequence of vertices that are
visited and backtracked during the search process.

It will be convenient to consider this tr-jumgle during the proof of correct-
ness, so let us refer to the corresponding (implicitly constructed) F as to the
STCC forest(recall that it would have been F , (V, A tree) in Algo. 12).

The STCCs main procedure is called compute-STCCs() , it takes in input
an arena A , and it aims at printing out all the STCCs C1, . . . ,Ck of A (w/o
repetitions). A procedure named STCCs-visit() is also employed. The
pseudo-code is given in Algo. 13 and Proc. 2, respectively.

The initialization phase goes from line 1 to 9 of Algo. 13. The visit-phase
starts by setting next idx  1 and St  Æ(lines 10-18 of Algo. 13). Firstly,
V� is considered: for each unvisited u 2 V� , STCCs-visit (u,A ) is invoked.
Then, all the u 2 V# which are still unvisited are handled as in Algo. 12.

Consider STCCs-visit (v,A ) (Proc. 2), for v 2 V. This is similar to the
DSF-based implementation of tr-DFS-visit() (Proc. 1), the signi�cant changes
going as follows. Initially, v is pushed on top of St and on Stack [v]  true
is set (lines 4-5).

Then, each timeSTCCs-visit (u,A ) is invoked recursively (line 9 and 25),
for some u 2 N in

A (v):

tr-lowlink [v]  min (tr-lowlink [v],tr-lowlink [u])

is updated and D .Union (u,v) is executed.
When exploring N in

A (v) (line 6): If u 2 N in
A (v) \ V# is unvisited (i.e., idx [u] =

+ ¥ ), and if cnt [u] = 0 holds, we seek for the LCA g of Nout
A (u) in F, as in

the DSF-based implementation of tr-DFS-visit() ; but then u is pushed on
ready St [g] if and only if on Stack [g] = true (i.e., there's no active array
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Algorithm 13: Computing STCCs

Procedure compute-STCCs (A )
input : An arena A = ( V, A,(V# ,V� )) .
output : The STCCs ofA .

1 foreach u 2 V do
2 idx [u]  + ¥ ;
3 tr-lowlink [u]  + ¥ ;
4 on Stack [u]  false ;
5 D .make set (u);
6 ready St [u]  Æ;
7 if u 2 V# then
8 low ready [u]  + ¥ ;
9 cnt [u]  j Nout

A (u)j;

10 next idx  1; St  Æ;
11 foreach u 2 V� do
12 if idx [u] = + ¥ then
13 STCCs-visit (u,A );

14 foreach u 2 V# do
15 if idx [u] = + ¥ then
16 idx [u]  next idx ;
17 next idx  next idx + 1;
18 ta lowlink [u]  idx [u];

Algorithm 13: Computing STCCs
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to make this decision anymore). Else, if u 2 N in
A (v) has been already visited

(i.e., if idx [u] 6= + ¥ ), and if on Stack [u] = true , then tr-lowlink [v]  
min (tr-lowlink [v], idx [u]) is updated (lines 20-21).

After that, anyway, ready St [v] is emptied and checked as in the DSF-
basedtr-DFS-visit() (see lines 22-27). Finally, iftr-lowlink [v] = idx [v]
(see Proposition 5.9), a new STCCC is constructed: so, yet another vertex u is
removed from St and added to C, until u = v; soon after that, C is printed out.
This concludes the description of the STCCs algorithm (Algo. 13).

SubProcedure 2: The STCCs-visit() procedure.
Procedure STCCs-visit (v,A )

input : A vertex v 2 V.
1 idx [v]  next idx ;
2 tr-lowlink [v]  next idx ;
3 next idx  next idx + 1;
4 St .push (v);
5 on Stack [v]  true

// Check the in-neighbourhood of v
6 foreach u 2 N in

A (v) do
7 if idx [u] = + ¥ then
8 if u 2 V� then
9 STCCs-visit (u,A );

10 tr-lowlink [v]  min (tr-lowlink [v],tr-lowlink [u]);
11 D .Union (u,v);

12 else
13 low ready [u]  min ( low ready [u], idx [v]);
14 cnt [u]  cnt [u] � 1;
15 if cnt [u] = 0 then
16 low v  the unique x such that idx [x] = low ready [u];
17 g  D .find ( low v);
18 if on Stack [g] = true then
19 ready St [g].push (u);

20 else if on Stack [u] = true then
21 tr-lowlink [v]  min (tr-lowlink [v], idx [u]);

// Check the ready-stack of v, i.e., ready St [v]
22 while ready St [v] 6= Ædo
23 u  ready St [v].pop() ; // u 2 V#

24 if 8(x 2 Nout
A (u)) on Stack [x] = true then

25 SCCs-visit (u,A );
26 tr-lowlink [v]  min (tr-lowlink [v],tr-lowlink [u]);
27 D .union (u,v);

// Check whether a new STCC has to be constructed and printed to output
28 if tr-lowlink [v] = idx [v] then
29 C  Æ;
30 repeat
31 u  St .pop() ;
32 on Stack [u]  false ;
33 add u to C;
34 until u = v
35 output (C);
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5.5.1 Proof of Correctness of Algo. 13

Firstly, we need to prove that Algo. 13 computes tr-lowlink() correctly.

Proposition 5.10. Assumecompute-STCCs (A ) (Algo. 13) is invoked.

When it halts, it holds that8v2V tr-lowlink [v] = tr-lowlink (v).

Proof. Let us say that v is activefrom when STCCs-visit (v,A ) is invoked 'til
it halts; and from when STCCs-visit (v,A ) �nally halts hereafter, we say that
v is deactivated. So, let (v1, . . . ,vi , . . . ,vjV j ) be the order in which the vertices in
V are deactivated during compute-STCCs (A ) (Algo. 13).

For every v 2 V, let's de�ne:

N in
A ,St (v) ,

�
u 2 N in

A (v) j u 2 St at line 22 of STCCs-visit (v,A ) (Proc. 2)
	

.

The proof proceeds by induction on i = 1, . . . ,jV j. Let F be the corresponding
STCC forest.

Base Case: i= 1. Notice that v1 is a leaf of some tr-palm-tree in F. In this
case,tr-lowlink [v1] can be assigned only at line 21 ofSTCCs-visit (v1,A ),
particularly, as follows:

tr-lowlink [v1] = min f idx [v1]g [ f idx [u] j u 2 N in
A ,St (v1)g. (eq. 1)

Since v1 is the �rst vertex in V which is ever deactivated (particularly, v1 is a
leaf in F), then:

N in
A ,St (v1) =

�
u 2 N in

A (v1) j u is a proper ancestor of v1 in F
	

, (eq. 2)

for the same reason, plus Item 1 of Proposition 5.8, it holds that:

tr-lowlink (v1) = min
�

idx [v1]g [� f idx [u] j u 2 N in
A (v1) \ C v1 \ V�

	
. (eq. 3)

Observe, sincev1 is a leaf of F, and by (eq. 2) plus lines 8-11 ofSTCCs-visit (v1,A )
(Proc. 2), it holds that N in

A (v1) \ C v1 \ V� � N in
A ,St (v1); also, by (eq. 2) and

Proposition 5.4, N in
A ,St (v1) � N in

A (v1) \ C v1 \ V� . Then, N in
A (v1) \ C v1 \ V� =

N in
A ,St (v1). Therefore, by (eq. 1) and (eq. 3),tr-lowlink [v1] = tr-lowlink (v1).

Inductive Step: i> 1. In this case, tr-lowlink [vi ] can be assigned either at
line 2 or 10 or 21 or 26 of STCCs-visit (vi ,A ), particularly, as follows:

tr-lowlink [vi ] = min
�

idx [v1]
	

[�
�

idx [u] j u 2 N in
A ,St (v)

	
[�

[�
�

tr-lowlink [u] j u is a child of v in F
	

.

On the other side, let:

N in
A ,LCA (vi ) , f u 2 N in

A (vi ) j the LCA g of f u,vig in F exists and g 2 Cug,

161



then the following holds by Item 2 of Proposition 5.8:

tr-lowlink (vi ) = min
�

idx [vi ]
	

[�
�

idx [u] j u 2 N in
A ,LCA (vi )

	

[�
�

tr-lowlink (u) j u is a child of vi in F
	

.

Notice that, if u is a child of vi in F, then compute-STCCs (A ) deactivates
u before vi . Thus, by induction hypothesis, tr-lowlink [u] = tr-lowlink (u)
holds for every child u of vi in F that is considered either at line 10 or 26 of
STCCs-visit (vi ,A ). To �nish the proof, we need to show that N in

A ,St (vi ) =
N in

A ,LCA (vi ). For this, let's recall the following facts. (i) Any vertex v 2 V can
be added to St only at line 4 of STCCs-visit (v,A ). (ii) Any vertex can be
removed from St only at line 31 of STCCs-visit (v,A ), for some v 2 V, and
only if tr-lowlink [v] = idx [v] at line 28; this (possibly) happens only after
that N in

A (v) has been fully explored at lines 6-21. With this in mind, we can
proceed.

� Firstly, we show N in
A ,St (vi ) � N in

A ,LCA (vi ). Let u 2 N in
A ,St (vi ). Then, u and

vi lie within the same tr-palm-tree in F: this is easily seen by induction
on the number of tr-palm-trees of F. Then u is a proper ancestor of vi

in F, i.e., g = u; thus, g 2 Cu. So, the LCA g of f u,vig in F exists if
u is still active at line 22 of STCCs-visit (vi ,A ). Otherwise, u has al-
ready been deactivated when STCCs-visit (vi ,A ) reaches line 22 (so,
g 6= u); in this case, also every ancestor ofu that is a proper descendant
of g in F has already been deactivated before. So, by induction hypothe-
sis, tr-lowlink [v̂] = tr-lowlink ( v̂) for every ancestor v̂ of u that is also
proper descendant of g in F. On the other hand, since u 2 St at line 22
of STCCs-visit (vi ,A ), all those v̂ (including u) can't be already been
removed from St when STCCs-visit (vi ,A ) reaches line 22. There-
fore, by lines 28-33 of STCCs-visit () , by Proposition 5.9, and since
tr-lowlink [v̂] = tr-lowlink ( v̂) for all of those v̂, then none of those v̂
can be the root of some STCC ofA . Thus, g 2 Cu. So,u 2 N in

A ,LCA (vi ).

� Secondly, we show N in
A ,LCA (vi ) � N in

A ,St (vi ). Let u 2 N in
A ,LCA (vi ), and

let g 2 Cu be the LCA of f u,vig in F. If u is still active at line 22 of
STCCs-visit (vi ,A ), u is a proper ancestor of vi in F (i.e., g = u); so,u 2
N in

A ,St (vi ). Otherwise, u has already been deactivated when STCCs-visit (vi ,A )
reaches line 22 (so,g 6= u); also, in this case, every ancestor ofu that is
also a proper descendant of g in F has already been deactivated before.
So, by induction hypothesis, tr-lowlink [v̂] = tr-lowlink ( v̂) for every
ancestor v̂ of u that is also proper descendant of g in F; but, then, since
g 2 Cu, all those v̂ (including u) can't be already been removed from St
when STCCs-visit (vi ,A ) reaches line 22. Therefore,u 2 N in

A ,St (vi ).

So, N in
A ,St (vi ) = N in

A ,LCA (vi ). 2
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Proposition 5.11. Assume thatcompute-STCCs (A ) (Algo. 13) is invoked, and
that STCCs-visit (v,A ) (Proc. 2) outputsC � V at line 35, for some v2 V. Then,
C= Cv.

Proof. Notice that STCCs-visit (v,A ) outputs C at line 35 if and only if
tr-lowlink [v] = idx [v] holds at line 28; assume such a condition holds.
Recall tr-lowlink [u] = tr-lowlink (u) for every u 2 V, by Proposition 5.10.
We argue that C= Cv. Indeed, C= St (v) by lines 28-33 of STCCs-visit (v,A )
(Proc. 2). Firstly, Cv � St (v): in fact, by Proposition 5.7, Cv induces a subtree
TCv in F (i.e., the STCC forest) which is rooted at v, so all vertices in Cv must
have been inserted into St at this point; and notice no vertex of Cv could have
been removed earlier, as removals happen only at the root v of TCv (by Propo-
sition 5.9 and lines 28-33 of STCCs-visit() ). Secondly, St (v) � C v: indeed,
assume u 62 Cv has been inserted into St after v, then u is a descendant of v
in F, and since Cu induces a subtree TCu in F, then u must have been removed
from St when the root of TCu was visited, i.e., before that STCCs-visit (v,A )
reaches line 28. Therefore,St (v) = Cv; and since C= St (v), then C= Cv. 2

Proposition 5.12. Let C � V be some STCC ofA . Then, compute-STCCs (A )
(Algo. 13) eventually outputsC at line 35.

Proof. By Proposition 5.7, C induces a sub-tree TC in F; then, let v� be its root.
When STCCs-visit (v� ,A ) is invoked, then:

tr-lowlink [v� ] = tr-lowlink (v� ) = idx [v� ]

holds at line 28 by Propositions 5.9 and 5.10.
Then, Cv� is outputted at line 35, by lines 28-33 and Proposition 5.12. 2

In summary, we obtain the following result.

Theorem 5.2. Let A be an arena,compute-STCCs (A ) (Algo. 13) outputs all and
only the STCCs ofA .

5.6 Application to Update Games
An Update Game (UG)[10,45,46] is played on an arenaA for an in�nite number
of rounds, a play is thus an in�nite path p= v0v1v2 . . .2 Vw such that (vi ,vi+ 1) 2
A for every i 2 N . Let Inf (p ) be the set of all and only those vertices v 2 V
that appear in�nitely often in p ; namely,

Inf (p ) ,
�

v 2 V j 8 j2N 9k2N such that k > j and vk = v
	

.

Player � wins the UG A iff there exists s� 2 SA
� such that, for every s# 2 SA

# ,
every vertex is visited in�nitely often in the play consistent with s� and s# ,
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independently w.r.t. the starting position vs 2 V; namely,

8vs2V Inf
�
r A (vs,s� ,s# )

�
= V;

otherwise, Player # wins. When Player � wins an UG A , we say that A is an
Update Network (UN)[10,45,46].

Proposition 5.13. An UG A is UN if and only if V is strongly-trap-connected.

Proof. If A is UN, then V is strongly-trap-connected (it follows directly from
de�nitions). Let i0, ( i + 1) mod jV j for every i 2 f 0, . . . ,jV j � 1g. Conversely,

if V = f vig
jV j� 1
i= 0 is strongly-trap-connected, for every i there exists s� ( i) 2 SM

�
such that s� ( i) : vi ; vi0. Starting from any vi , Player � can visit in�nitely
often all vertices in V simply by playing s� ( i),s� ( i0),s� (( i0)0), . . . in cascade;
therefore, A is UN. 2

So, we obtain the following main result.

Theorem 5.3. Deciding whether a given UGA is UN takesQ(jV j + jA j) time.

Proof. On input A , invoke compute-STCCs (A ) (Algorithm 13), and return
YES if A has only oneSTCC; otherwise, A has at least two STCCs, so return
NO. By Theorem 5.2 and Proposition 5.13, this correctly decides whether A is
UN. By Proposition 5.6, the decision is made in Q(jV j + jA j) time. 2

Also, when the input UG is UN, Algorithm 13 is able to provide a winning
strategy as shown next.

Theorem 5.4. Algorithm 13 can be implemented so that, whencompute-STCCs (A )
halts, and if the UGA is UN, it is returned a tr-palm-tree encoding routing infor-
mation that an O(jV j)-space agent can consult to win the UGA in O(1) time per
move.

Proof. During the execution of compute-STCCs (A ) (Algorithm 13), construct
the STCC forestF = ( VF, AF) explicitly, as follows: VF = V; whenever D .Union (u,v)
is executed at line 11 or line 27 of STCCs-visit (v,A ), add (u,v) to AF (tree-
arcs); also, if on Stack [u] = true holds at line 20 of STCCs-visit (v,A ), add
(u,v) to AF (cross-links). De�ne s� 2 S� as follows: for each u 2 V� , the arcs
(u,v) 2 AF exiting from u are selected one at a time, one after the other; and
when they have all been traversed once, the selection starts again, cyclically.
Since A is UN, then A has only one single STCC by Proposition 5.13, so F
comprises only one single tr-palm-tree TF. We argue that, if A is UN, then s�
allows Player � to win the UG A . Let vs be any starting position. For any
s# 2 S# and I , Inf

�
r A (vs,s� ,s# )

�
, it is not possible that I ( V: there can be

no tree-arc nor cross-link going from some vertex u 2 I \ V� to some vertex in
V n I (otherwise such an arc would have eventually been selected by s� ); and
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there can be nou 2 I \ V# such that Nout
A (u) � V n I . Thus, all vertices in V n I

are descendants inTF of some of those in I ; but, since they are all descendants,
there must be at least one cross-link going from I to in V n I (becauseA has
only one single STCC), which is a contradiction. Therefore, I = V. Notice the
size of TF is jTFj = jVTF j + jATF j = O(jV j), and s� can be implemented with
O(jV j) additional memory (the total number of cross-links in TF is less than
jV j); so, s� can be implemented with O(jV j) space. By handling pointers in a
suitable way, the time spent for each single move of s� is O(1). 2

5.7 Application to Explicit McNaughton-Müller Games
McNaughton-Müller Games (MGs)provide a useful model for the synthesis of
controllers in reactive systems, but their complexity depends on the represen-
tation of the winning conditions [66]. The most straightforward way to rep-
resent a (regular; see [66]) winning condition F � 2V is to provide an explicit
list of subsets of vertices, i.e.,F = fF i � V j 1 � i � `g, for some ` 2 N . A play
r 2 Vw is winning for Player � if and only if Inf (r ) 2 F . So,Explicit MGs (E-
MGs) can be solved in polynomial time, where an effective algorithm is given
in [66]. Concerning time complexity, given an input arena A and explicit win-
ning condition F , there are at most jF j loops in a run of that algorithm, and
the most time consuming operation at each iteration is to decide an UG of size
at most jAj + jF j . By Theorem 5.3, we can decide such an UG inQ(jAj + jF j )
time. So the E-MG algorithm given in [66] is improved by a factor jAj + jF j
(i.e., from cubic to quadratic time). In summary, we obtain the following result.

Theorem 5.5. Deciding the winner in a given E-MG(A ,F ) takes time:

O
�
jF j � (jAj + jF j )

�
.

5.8 Conclusion
This work presented an algorithm for solving Update Games in linear time.
With this, also the polynomial-time complexity of deciding Explicit McNaughton-
Müller Games improves, from cubic to quadratic. The result was obtained
by: (a) introducing a re�ned notion of reachability for arenas, named trap-
reachability; (b) showing that every arena decomposes into strongly-trap-connected
components (STCCs); (c) devising a linear time algorithm for computing this
unique decomposition.

We expect that trap-reachability, and the corresponding linear time STCCs'
decomposition, can play a role for speeding up computations in other prob-
lems concerning in�nite 2-player pebble games.

Future works will likely investigate further on this way.
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6 Improved Pseudo-Polynomial
Upper Bound for the Value Prob-
lem and Optimal Strategy Syn-
thesis in Mean Payoff Games

Chapter Abstract

In this chapter we offer a Q(jV j2jEj W) pseudo-polynomial time and Q(jV j)
space deterministic algorithm for solving the Value Problem and Optimal
Strategy Synthesis in Mean Payoff Games. This improves by a factor log(jV j W)
the best previously known pseudo-polynomial time upper bound due to Brim, et
al. The improvement hinges on a suitable characterization of values, and a de-
scription of optimal positional strategies, in terms of reweighted Energy Games
and Small Energy-Progress Measures.

start

v
?
2 W 0(Gprev ( i ,j) ) \ W 1(Gi ,j )

w� W,1 w� W,2 w� W,3 � � � wprev ( i ,j) wi ,j � � �

� � �

wW� 1,s� 1 wW,1

An illustration of the main MPG algorithm presented in Chapter 6.

This chapter is a revised version of [35,38].
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6.1 Introduction
A Mean Payoff Game(MPG) is a two-player in�nite game G, (V,E,w,hV0,V1i ),
played on a �nite weighted directed graph, denoted GG, (V,E,w), the vertices
of which are partitioned into two classes, V0 and V1, according to the player
to which they belong. It is assumed that GG has no sink vertex and that the
weights of the arcs are integers, i.e., w : E ! f� W,. . . ,0, . . . ,Wg for some W 2
N .

At the beginning of the game a pebble is placed on some vertex vs 2 V,
and then the two players, named Player 0 and Player 1, move the pebble ad
in�nitum along the arcs. Assuming the pebble is currently on Player 0's vertex
v, then he chooses an arc(v,v0) 2 E going out of v and moves the pebble to the
destination vertex v0. Similarly, assuming the pebble is currently on Player 1's
vertex, then it is her turn to choose an outgoing arc. The in�nite sequence
vs,v,v0. . . of all the encountered vertices is a play. In order to play well, Player 0
wants to maximize the limit inferior of the long-run average weight of the tra-
versed arcs, i.e., to maximize liminf n! ¥

1
n å n� 1

i= 0 w(vi ,vi+ 1), whereas Player 1
wants to minimize the limsup n! ¥

1
n å n� 1

i= 0 w(vi ,vi+ 1). Ehrenfeucht and Myciel-
ski [49] proved that each vertex v admits a value, denoted val G(v), which each
player can secure by means of amemoryless(or positional) strategy, i.e., a strat-
egy that depends only on the current vertex position and not on the previous
choices.

Solving an MPG consists in computing the values of all vertices ( Value Prob-
lem) and, for each player, a positional strategy that secures such values to that
player (Optimal Strategy Synthesis). The corresponding decision problem lies in
NP \ coNP [123] and it was later shown by Jurdzi ński [70] to be recognizable
with unambiguouspolynomial time non-deterministic Turing Machines, thus
falling within the UP \ coUPcomplexity class.

The problem of devising ef�cient algorithms for solving MPGs has been
studied extensively in the literature. The �rst milestone was that of Gurvich,
Karzanov and Khachiyan [64], in which they offered an exponentialtime al-
gorithm for solving a slightly wider class of MPGs called Cyclic Games. Af-
terwards, Zwick and Paterson [123] devised the �rst deterministic procedure
for computing values in MPGs, and optimal strategies securing them, within
a pseudo-polynomialtime and polynomial space. In particular, Zwick and Pa-
terson established an O(jV j3jEj W) upper bound for the time complexity of
the Value Problem, as well as O(jV j4jEj W log(jEj/ jV j)) for that of Optimal
Strategy Synthesis [123].

Recently, several research efforts have been spent in studying quantitative
extensions of in�nite games for modeling quantitative aspects of reactive sys-
tems [12, 14, 18]. In this context quantities may represent, for example, the
power usage of an embedded component, or the buffer size of a network-
ing element. These studies have brought to light interesting connections with
MPGs. Remarkably, they have recently led to the design of faster procedures
for solving them. particularly, Brim, et al.[14] devised faster deterministic algo-
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rithms for solving the Value Problem and Optimal Strategy Synthesis in MPGs
in O(jV j2jEj W log(jV j W)) pseudo-polynomial time and polynomial space.

To the best of our knowledge, this is the tightest pseudo-polynomial upper
bound on the time complexity of MPGs which is currently known.

Indeed, a wide spectrum of different approaches have been investigated
in the literature. For instance, Andersson and Vorobyov [1] provided a fast
sub-exponentialtime randomizedalgorithm for solving MPGs, whose time com-

plexity can be bounded as O(jV j2jEj exp(2
q

jV j ln (jEj/
p

jV j) + O(
p

jV j +

ln jEj))) . Furthermore, Lifshits and Pavlov [79] devised an O(2jV j jV j j Ej log W)
singly-exponentialtime deterministic procedure by considering the potential the-
ory of MPGs.

These results are summarized in Table 7.1.

Table 6.1: Complexity of the main Algorithms for solving MPGs.

Algorithm Value Problem
Optimal
Strategy
Synthesis

Note

This work Q(jV j2jEj W) Q(jV j2jEj W) Determ.

[14] O(jV j2jEj W log(jV j W)) O(jV j2jEj W log(jV j W)) Determ.

[123] Q(jV j3jEj W) Q(jV j4jEj W log jEj
jV j ) Determ.

[79] O(2jV j jV j j Ej log W) n/a Determ.

[1] O
�

jV j2jEj e
2

r
jV j ln

�
jEjp
jV j

�
+ O(

p
jV j+ ln jEj) �

same complexity Random.

6.1.1 Contribution
The main contribution of this chapter is to provide a Q(jV j2jEj W) pseudo-
polynomialtime and Q(jV j) space deterministic algorithm for solving the Value
Problem and Optimal Strategy Synthesis in MPGs. As already mentioned in
the introduction, the best previously known procedure has a deterministic time
complexity of O(jV j2jEj W log(jV j W)) , which is due to Brim, et al.[14]. In this
way we improve the best previously known pseudo-polynomial time upper
bound by a factor log (jV j W). This result is summarized in the following
theorem.

Theorem 6.1. There exists a deterministic algorithm for solving the Value Problem
and Optimal Strategy Synthesis of MPGs withinQ(jV j2jEj W) time and Q(jV j)
space, on any input MPGG= ( V,E,w,hV0,V1i ). Here, W= maxe2 E jwej.

In order to prove Theorem 6.1, this work points out a novel and suitable
characterization of values, and a description of optimal positional strategies,
in terms of certain reweighting operations that we will introduce later on in
Section 6.2.
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In particular, we will show that the optimal value val G(v) of any vertex v
is the unique rational number n for which v “transits” from the winning region
of Player 0 to that of Player 1, with respect to reweightings of the form w � n.
This intuition will be clari�ed later on in Section 6.3, where Theorem 6.3 is
formally proved.

Concerning strategies, we will show that an optimal positional strategy
for each vertex v 2 V0 is given by any arc (v,v0) 2 E which is compatible
with certain Small Energy-Progress Measures(SEPMs) of the above mentioned
reweighted arenas. This fact is formally proved in Theorem 6.4 of Section 6.3.

These novel observations are smooth, simple, and their proofs rely on ele-
mentary arguments. We believe that they contribute to clarifying the interest-
ing relationship between values, optimal strategies and reweighting operations
(with respect to some previous literature, see e.g. [14, 79]). Indeed, they will
allow us to prove Theorem 6.1.

6.1.2 Organization
This chapter is organized as follows. In Section 6.2, we introduce some nota-
tion and provide the required background on in�nite two-player games and
related algorithmic results. In Section 6.3, a suitable relation between values,
optimal strategies, and certain reweighting operations is investigated. In Sec-
tion 6.4, a Q(jV j2jEj W) pseudo-polynomial time and Q(jV j) space algorithm,
for solving the Value Problem and Optimal Strategies Synthesis in MPGs, is
designed and analyzed by relying on the results presented in Section 6.3. In
this manner, Section 6.4 actually provides a proof of Theorem 6.1 which is our
main result in this work.

6.2 Background and Notation
We denote by N , Z , Q the set of natural, integer, and rational numbers (re-
spectively). It will be suf�cient to consider integral intervals, e.g., [a,b] , f z 2
Z j a � z � bg and [a,b) , f z 2 Z j a � z < bg for any a,b 2 Z .

Weighted Graphs. Our graphs are directed and weighted on the arcs. Thus,
if G = ( V,E,w) is a graph, then every arc e2 E is a triplet e= ( u,v,we), where
we = w(u,v) 2 Z is the weight of e. The maximum absolute weight is W ,
maxe2 E jwej. Given a vertex u 2 V, the set of its successors ispost (u) = f v 2 V j
(u,v) 2 Eg, whereas the set of its predecessors ispre (u) = f v 2 V j (v,u) 2 Eg.
A path is a sequence of verticesv0v1 . . .vn . . . such that (vi ,vi+ 1) 2 E for every
i. We denote by V � the set of all (possibly empty) �nite paths. A simple path
is a �nite path v0v1 . . .vn having no repetitions, i.e., for any i, j 2 [0,n] it holds
vi 6= vj whenever i 6= j. The length of a simple path r = v0v1 . . .vn equals n
and it is denoted by jr j. A cycleis a path v0v1 . . .vn� 1vn such that v0 . . .vn� 1

is simple and vn = v0. The length of a cycle C = v0v1 . . .vn equals n and it
is denoted by jCj. The average weightof a cycle v0 . . .vn is 1

n å n� 1
i= 0 w(vi ,vi+ 1).

A cycle C = v0v1 . . .vn is reachablefrom v in G if there exists a simple path
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p = vu1 . . .um in G such that p \ C 6= Æ.

Arenas. The reader is referred to Chapter 1, section 1.4, in order to recall
the notion of arena. Here, that of reweighting(or reweighted arena) is formal-
ized, as follows. For any weight function w,w0 : E ! Z , the reweighting of
G= ( V,E,w,hV0,V1i ) w.r.t. w0 is the arena Gw0

= ( V,E,w0,hV0,V1i ). Also, for
w : E ! Z and any n 2 Z , we denote by w + n the weight function w0 de�ned
as w0

e , we + n for every e2 E. Indeed, we shall consider reweighted games
of the form Gw� q, for some q 2 Q. Notice that the corresponding weight func-
tion w0 : E ! Q : e7! we � q is rational, while we required the weights of the
arcs to be always integers. To overcome this issue, it is suf�cient to re-de�ne
Gw� q by scaling all the weights by a factor equal to the denominator of q 2 Q,
namely, to re-de�ne: Gw� q , GD �w� N , where N,D 2 N are such that q = N/ D
and gcd(N,D) = 1. This re-scaling will not change the winning regions of the
corresponding games, and it has the signi�cant advantage of allowing for a
discussion (and an algorithmics) which is strictly based on integer weights.

Mean Payoff Games. A Mean Payoff Game(MPG) [14,49,123] is a game played
on some arenaGfor in�nitely many rounds by two opponents, Player 0 gains
a payoff de�ned as the long-run average weight of the play, whereas Player 1
loses that value. Formally, the Player 0's payoff of a play v0v1 . . .vn . . . in G is
de�ned as follows:

MP0(v0v1 . . .vn . . .) , liminf
n! ¥

1
n

n� 1

å
i= 0

w(vi ,vi+ 1).

The value securedby a strategy s0 2 S0 in a vertex v is de�ned as:

val s0(v) , inf
s12S1

MP0
�
outcome G(v,s0,s1)

�
,

Notice that payoffs and secured values can be de�ned symmetrically for the
Player 1 (i.e., by interchanging the symbol 0 with 1 and inf with sup).

Ehrenfeucht and Mycielski [49] proved that each vertex v 2 V admits a
unique value, denoted val G(v), which each player can secure by means of a
memoryless(or positional) strategy. Moreover, uniform positional optimal strate-
gies do exist for both players, in the sense that for each player there exist at
least one positional strategy which can be used to secure all the optimal val-
ues, independently with respect to the starting position vs. Thus, for every
MPG G, there exists a strategys0 2 SM

0 such that val s0(v) � val G(v) for every
v 2 V, and there exists a strategy s1 2 SM

1 such that val s1(v) � val G(v) for
every v 2 V. Indeed, the (optimal) valueof a vertex v 2 V in the MPG Gis given
by:

val G(v) = sup
s02S0

val s0(v) = inf
s12S1

val s1(v).

Thus, a strategy s0 2 S0 is optimal if val s0(v) = val G(v) for all v 2 V. A
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strategy s0 2 S0 is said to be winning for Player 0 if val s0(v) � 0, and s1 2 S1

is winning for Player 1 if val s1(v) < 0. Correspondingly, a vertex v 2 V is a
winning starting positionfor Player 0 if val G(v) � 0, otherwise it is winning for
Player 1. The set of all winning starting positions of Player i is denoted by W i

for i 2 f 0,1g.

A B
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start � 1

� 2
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+ 2 � 1

� 1
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Figure 6.1: An MPG on G, played from left to right, whose payoff equals � 1+ 1
2 =

0.

A �nite variant of MPGs is well-known in the literature [14,49,123]. Here,
the game stops as soon as a cyclic sequence of vertices is traversed (i.e., as
soon as one of the two players moves the pebble into a previously visited
vertex). It turns out that this �nite variant is equivalent to the in�nite one [49].
Speci�cally, the values of an MPG are in relationship with the average weights
of its cycles, as stated in the next lemma.

Lemma 6.1 (Brim, et al.[14]). Let G= ( V,E,w,hV0,V1i ) be an MPG. For alln 2 Q,
for all positional strategiess0 2 SM

0 of Player0, and for all vertices v2 V, the value
val s0(v) is greater thann if and only if all cycles C reachable from v in the projection
graph GG

s0
have an average weight w(C)/ jCj greater thann.

The proof of Lemma 6.1 follows from the memoryless determinacy of
MPGs. We remark that a proposition which is symmetric to Lemma 6.1 holds
for Player 1 as well: for all n 2 Q, for all positional strategies s1 2 SM

1 of
Player 1, and for all vertices v 2 V, the value val s1(v) is less than n if and only
if all cycles reachable from v in GG

s1
have an average weight less than n.

Also, it is well-known [14, 49] that each value val G(v) is contained within
the following set of rational numbers:

SG =
�

N
D

�
�
�
� D 2 [1,jV j ], N 2 [� DW,DW ]

�
.

Notice that jSGj � j V j2W.
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This chapter tackles on the algorithmics of the following two classical prob-
lems:

� Value Problem.Compute val G(v) for each v 2 V.

� Optimal Strategy Synthesis.Compute an optimal s0 2 SM
0 .

Previously, the asymptotically fastest pseudo-polynomial time algorithm
for solving both problems was a deterministic procedure whose time com-
plexity has been bounded as O(jV j2jEj W log(jV j W)) [14]. This result has
been achieved by devising a binary-search procedure that ultimately reduces
the Value Problem and Optimal Strategy Synthesis to the resolution of yet an-
other family of games known as the Energy Games. Even though we do not
rely on binary-search in the present work, and thus we will introduce some
truly novel ideas that diverge from the previous solutions, still, we will reduce
to solving multiple instances of Energy Games. For this reason, the Energy
Games are recalled in the next paragraph.

Energy Games and Small Energy-Progress Measures. An Energy Game(EG)
is a game that is played on an arena Gfor in�nitely many rounds by two op-
ponents, where the goal of Player 0 is to construct an in�nite play v0v1 . . .vn . . .
such that for some initial credit c2 N the following holds:

c+
j

å
i= 0

w(vi ,vi+ 1) � 0, for all j � 0. (6.1)

Given a credit c 2 N , a play v0v1 . . .vn . . . is winning for Player 0 if it satis�es
(1), otherwise it is winning for Player 1. A vertex v 2 V is a winning starting
position for Player 0 if there exists an initial credit c2 N and a strategy s0 2 S0

such that, for every strategy s1 2 S1, the play outcome G(v,s0,s1) is winning
for Player 0. As in the case of MPGs, the EGs are memoryless determined [14],
i.e., for every v 2 V, either v is winning for Player 0 or v is winning for Player 1,
and (uniform) memoryless strategies are suf�cient to win the game. In fact,
as shown in the next lemma, the decision problems of MPGs and EGs are
intimately related.

Lemma 6.2 (Brim, et al.[14]). Let G= ( V,E,w,hV0,V1i ) be an arena. For all thresh-
old n 2 Q, for all vertices v2 V, Player0 has a strategy in the MPGGthat secures
value at leastn from v if and only if, for some initial credit c2 N , Player0 has a
winning strategy from v in the reweighted EGGw� n.

In this work we are especially interested in the Minimum Credit Problem
(MCP) for EGs: for each winning starting position v, compute the minimum
initial credit c� = c� (v) such that there exists a winning strategy s0 2 SM

0 for
Player 0 starting from v. A fast pseudo-polynomial time deterministic proce-
dure for solving MCPs comes from [14].
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Theorem 6.2 (Brim, et al.[14]). There exists a deterministic algorithm for solving the
MCP within O (jV j j Ej W) pseudo-polynomial time, on any input EG(V,E,w,hV0,V1i ).

The algorithm mentioned in Theorem 6.2 is the Value-Iterationalgorithm an-
alyzed by Brim, et al. in [14]. Its rationale relies on the notion of Small Energy-
Progress Measures(SEPMs). These are bounded, non-negative and integer-
valued functions that impose local conditions to ensure global properties on
the arena, in particular, witnessing that Player 0 has a way to enforce conserva-
tivity (i.e., non-negativity of cycles) in the resulting game's graph. Recovering
standard notation, see e.g. [14], let us denoteCG = f n 2 N j n � j V j Wg [ f>g
and let � be the total order on CG de�ned as x � y if and only if either y = >
or x,y 2 N and x � y.

In order to cast the minus operation to range over CG, let us consider an
operator 	 : CG � Z ! C G de�ned as follows:

a 	 b ,
�

max(0,a � b) , if a6= > and a � b � j V j W;
a 	 b = > , otherwise.

Given an EG Gon vertex set V = V0 [ V1, a function f : V ! C G is a Small Energy-
Progress Measure(SEPM) for G if and only if the following two conditions are
met:

1. if v 2 V0, then f (v) � f (v0) 	 w(v,v0) for some(v,v0) 2 E;

2. if v 2 V1, then f (v) � f (v0) 	 w(v,v0) for all (v,v0) 2 E.

The values of a SEPM, i.e., the elements of the imagef (V ),are called the
energy levelsof f . It is worth to denote by Vf = f v 2 V j f (v) 6= >g the set
of vertices having �nite energy. Given a SEPM f and a vertex v 2 V0, an
arc (v,v0) 2 E is said to be compatible with fwhenever f (v) � f (v0) 	 w(v,v0);
moreover, a positional strategy s f

0 2 SM
0 is said to be compatible with fwhenever

for all v 2 V0, if s f
0 (v) = v0 then (v,v0) 2 E is compatible with f . Notice that,

as mentioned in [14], if f and g are SEPMs, then so is theminimum function
de�ned as: h(v) = min f f (v),g(v)g for every v 2 V. This fact allows one to
consider the leastSEPM, namely, the unique SEPM f � : V ! C G such that, for
any other SEPM g : V ! C G, the following holds: f � (v) � g(v) for every v 2 V.
Also concerning SEPMs, we shall rely on the following lemmata. The �rst one
relates SEPMs to the winning region W0 of Player 0 in EGs.

Lemma 6.3 (Brim, et al. [14]). Let G= ( V,E,w,hV0,V1i ) be an EG.

1. If f is any SEPM of the EGGand v2 Vf , then v is a winning starting position
for Player0 in the EGG. Stated otherwise, Vf � W 0;

2. If f � is the least SEPM of the EGG, and v is a winning starting position for
Player0 in the EGG, then v2 Vf � . Thus, Vf � = W0.

Also notice that the following bound holds on the energy levels of any
SEPM (actually by de�nition of CG).
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Lemma 6.4. Let G= ( V,E,w,hV0,V1i ) be an EG. Let f be any SEPM ofG. Then,
for every v2 V either f(v) = > or 0 � f (v) � j V j W.

Value-Iteration Algorithm. The algorithm devised by Brim, et al. for solving
the MCP in EGs is known as Value-Iteration[14]. Given an EG Gas input, the
Value-Iteration aims to compute the least SEPM f � of G. This simple procedure
basically relies on a lifting operator d. Given v 2 V, the lifting operatord(�,v) :
[V ! C G] ! [V ! C G] is de�ned by d( f ,v) = g, where:

g(u) =

8
<

:

f (u) if u 6= v
min f f (v0) 	 w(v,v0) j v02 post (v)g if u = v 2 V0

maxf f (v0) 	 w(v,v0) j v02 post (v)g if u = v 2 V1

We also need the following de�nition. Given a function f : V ! C G, we say
that f is inconsistentin v whenever one of the following two holds:

1. v 2 V0 and for all v02 post (v) it holds f (v) � f (v0) 	 w(v,v0);

2. v 2 V1 and there exists v02 post (v) such that f (v) � f (v0) 	 w(v,v0).

To start with, the Value-Iteration algorithm initializes f to the constant zero
function, i.e., f (v) = 0 for every v 2 V. Furthermore, the procedure maintains a
list L of vertices in order to witness the inconsistencies of f . Initially, v 2 V0 \ L
if and only if all arcs going out of v are negative, while v 2 V1 \ L if and only
if v is the source of at least one negative arc. Notice that checking the above
conditions takes time O(jEj).

As long as the list L is nonempty, the algorithm picks a vertex v from L and
performs the following:

1. Apply the lifting operator d( f ,v) to f in order to resolve the inconsistency
of f in v;

2. Insert into L all vertices u 2 pre (v) n L witnessing a new inconsistency
due to the increase of f (v).

(The same vertex can't occur twice in L, i.e., there are no duplicate ver-
tices in L.)

The algorithm terminates when L is empty. This concludes the description of
the Value-Iteration algorithm.

As shown in [14], the update of L following an application of the lifting
operator d( f ,v) requires O(jpre (v)j) time. Moreover, a single application of
the lifting operator d(�,v) takesO(jpost(v)j) time at most. This implies that the
algorithm can be implemented so that it will always halt within O(jV j j Ej W)
time (the reader is referred to [14] in order to grasp all the details of the proof
of correctness and complexity).
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Remark. The Value-Iteration procedure lends itself to the following basic
generalization, which turns out to be of a pivotal importance in order to best
suit our technical needs. Let f � be the least SEPM of the EGG. Recall that, as
a �rst step, the Value-Iteration algorithm initializes f to be the constant zero
function. Here, we remark that it is not necessary to do that really. Indeed, it
is suf�cient to initialize f to be any function f0 which bounds f � from below,
that is to say, to initialize f to any f0 : V ! C G such that f0(v) � f � (v) for every
v 2 V. Soon after, L can be initialized in a natural way: just insert v into L if
and only if f0 is inconsistent at v. This initialization still requires O(jEj) time
and it doesn't affect the correctness of the procedure.

So, in the rest of this work we shall assume to have at our disposal a
procedure named Value-Iteration() , which takes as input an EG G=
(V,E,w,hV0,V1i ) and an initial function f0 that bounds from below the least
SEPM f � of the EG G (i.e., such that f0(v) � f � (v) for every v 2 V). Then,
Value-Iteration() outputs the least SEPM f � of the EG Gwithin O(jV j j Ej W)
time, working with Q(jV j) space.

6.3 Values and Optimal Positional Strategies from Reweight-
ings

This section aims to show that values and optimal positional strategies of
MPGs admit a suitable description in terms of reweighted arenas, a crux step
for solving the Value Problem and Optimal Strategy Synthesis in Q(jV j2jEj W)
time.

6.3.1 On Optimal Values

A simple representation of values in terms of Farey sequencesis now observed,
then, a characterization of values in terms of reweighted arenas is provided.

Optimal values and Farey sequences. Recall that each valueval G(v) is con-
tained within the following set of rational numbers:

SG =
�

N
D

�
�
�
� D 2 [1,jV j ], N 2 [� DW,DW ]

�
.

Let us introduce some notation in order to handle SG in a way that is suitable
for our purposes. Firstly, we write every n 2 SG as n = i + F, where i = in = bnc
is the integral and F = Fn = f ng = n � i is the fractional part. Notice that
i 2 [� W,W] and that F is a non-negative rational number having denominator
at most jV j.

As a consequence, it is worthwhile to consider the Farey sequenceF n of
order n = jV j. This is the increasing sequence of all irreducible fractions from
the (rational) interval [0,1] with denominators less than or equal to n. In the
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rest of this chapter, F n denotes the following sorted set:

F n =
�

N
D

�
�
�
� 0 � N � D � n,gcd(N,D) = 1

�
.

Farey sequences have numerous and interesting properties, in particular,
many algorithms for generating the entire sequence F n in time O(n2) are
known in the literature [62], and these rely on Stern-Brocottrees and mediant
properties. Notice that the above mentioned quadratic running time is optimal,
as it is well-known that the sequence F n has s(n) = 3n2

p 2 + O(n ln n) = Q(n2)
terms.

Throughout the article, we shall assume that F0, . . . ,Fs� 1 is an increasing
ordering of F n, so that F n = f Fjgs� 1

j= 0 and Fj < Fj+ 1 for every j.
Also notice that F0 = 0 and Fs� 1 = 1.
For example, F 5 = f 0, 1

5, 1
4, 1

3, 2
5, 1

2, 3
5, 2

3, 3
4, 4

5,1g.
At this point, SG can be represented as follows:

SG = [ � W,W) + F jV j =
�

i + Fj
�
� i 2 [� W,W), j 2 [0,s � 1]

	
.

The above representation of SG will be convenient in a while.

Optimal values and reweightings. Two introductory lemmata are shown be-
low, then, a characterization of optimal values in terms of reweightings is pro-
vided.

Lemma 6.5. Let G= ( V,E,w,hV0,V1i ) be an MPG and let q2 Q be a rational
number having denominator D2 N .

Then,val G(v) = 1
D val Gw+ q

(v) � q holds for every v2 V.

Proof. Let us consider the play outcome Gw+ q
(v,s0,s1) = v0v1 . . .vn . . . By the def-

inition of val G(v), and by that of reweighting Gw+ q (= GD �w+ N ), the following
holds:

val Gw+ q
(v) = sups02S0

inf s12S1 MP0(outcome Gw+ q
(v,s0,s1))

= sups02S0
inf s12S1 liminf n! ¥

1
n å n� 1

i= 0 (D � w(vi ,vi+ 1) + N ) (if q = N/ D)

= D � sups02S0
inf s12S1 MP0(outcome G(v,s0,s1)) + N

= D � val G(v) + N.

Then, val G(v) = 1
D val Gw+ q

(v) � N
D = 1

D val Gw+ q
(v) � q holds for every v 2 V.

2
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Lemma 6.6. Given an MPGG= ( V,E,w,hV0,V1i ), let us consider the reweightings:

Gi ,j = Gw� i � Fj , for any i 2 [� W,W] and j2 [0,s � 1],

where s= jF jV j j and Fj is the j-th term of the Farey sequenceF jV j .
Then, the following propositions hold:

1. For any i2 [� W,W] and j2 [0,s � 1], we have:

v 2 W 0(Gi ,j ) if and only if val G(v) � i + Fj ;

2. For any i2 [� W,W] and j2 [1,s � 1], we have:

v 2 W 1(Gi ,j ) if and only if val G(v) � i + Fj � 1.

Proof.

1. Let us �x arbitrarily some i 2 [� W,W] and j 2 [0,s � 1].

Assume that Fj = N j / D j for some N j ,D j 2 N .

Since
Gi ,j = ( V,E,D j (w � i) � N j ,hV0,V1i ),

then by Lemma 6.5 (applyed to q = � i � Fj) we have:

val G(v) =
1
D j

val Gi ,j (v) + i + Fj .

Recall that v 2 W 0(Gi ,j ) if and only if val Gi ,j (v) � 0.

Hence, we have v 2 W 0(Gi ,j ) if and only if the following inequality holds:

val G(v) =
1
D j

val Gi ,j (v) + i + Fj

� i + Fj .

This proves Item 1.

2. The argument is symmetric to that of Item 1, but with some further ob-
servations. Let us �x arbitrarily some i 2 [� W,W] and j 2 [1,s � 1]. As-
sume that Fj = N j / D j for some N j ,D j 2 N . SinceGi ,j = ( V,E,D j (w � i) �
N j ,hV0,V1i ), then by Lemma 6.5 we have

val G(v) =
1
D j

val Gi ,j (v) + i + Fj .

Recall that v 2 W 1(Gi ,j ) if and only if val Gi ,j (v) < 0.
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Hence, we have v 2 W 1(Gi ,j ) if and only if the following inequality holds:

val G(v) =
1
D j

val Gi ,j (v) + i + Fj

< i + Fj .

Now, recall from Section 6.2 that val G(v) 2 SG, where

SG = f i + Fj j i 2 [� W,W), j 2 [0,s � 1]g.

By hypothesis we have:

j � 1 and 0 � Fj � 1 < Fj ,

thus, at this point, v 2 W1(Gi ,j ) if and only if val G(v) � i + Fj � 1.

This proves Item 2.

2

We are now in the position to provide a simple characterization of values
in terms of reweightings.

Theorem 6.3. Given an MPGG= ( V,E,w,hV0,V1i ), let us consider the reweight-
ings:

Gi ,j = Gw� i � Fj , for any i 2 [� W,W] and j2 [1,s � 1],

where s= jF jV j j and Fj is the j-th term of the Farey sequenceF jV j .
Then, the following holds:

val G(v) = i + Fj � 1 if and only if v2 W 0(Gi ,j � 1) \ W 1(Gi ,j ).

Proof. Let us �x arbitrarily some i 2 [� W,W] and j 2 [1,s � 1].
By Item 1 of Lemma 6.6, we have v 2 W 0(Gi ,j � 1) if and only if val G(v) �

i + Fj � 1. Symmetrically, by Item 2 of Lemma 6.6, we have v 2 W 1(Gi ,j ) if and
only if val G(v) � i + Fj � 1. Whence, by composition, v 2 W 0(Gi ,j � 1) \ W 1(Gi ,j )
if and only if val G(v) = i + Fj � 1. 2

6.3.2 On Optimal Positional Strategies
The present subsections aims to provide a suitable description of optimal po-
sitional strategies in terms of reweighted arenas. An introductory lemma is
shown next.

Lemma 6.7. Let G= ( V,E,w,hV0,V1i ) be an MPG, the following hold:

1. If v 2 V0, let v02 post (v). Thenval G(v0) � val G(v) holds.
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2. If v 2 V1, let v02 post (v). Thenval G(v0) � val G(v) holds.

3. Given any v2 V0, consider the reweighted EGGv = Gw� val G(v) .

Let fv : V ! C Gv be any SEPM of the EGGv such that v2 Vfv (i.e., fv(v) 6= > ).
Let v0

fv
2 V be any vertex such that(v,v0

fv
) 2 E is compatible with fv in Gv.

Then,val G(v0
fv

) = val G(v).

Proof. 1. It is suf�cient to construct a strategy sv
0 2 SM

0 securing to Player 0
a payoff at least val G(v0) from v in the MPG G. Let sv0

0 2 SM
0 be a strategy

securing payoff at least val G(v0) from v0 in G. Then, let sv
0 be de�ned as

follows:

sv
0 (u) =

8
>><

>>:

sv0

0 (u) , if u 2 V0 n f vg;
sv0

0 (v) , if u = v and v is reachable from v0 in GG
sv0

0
;

v0 , if u = v and v is not reachable from v0 in GG
sv0

0
.

We argue that sv
0 secures payoff at leastval G(v0) from v in G. First notice

that, by Lemma 6.1 (applied to v0), all cycles C that are reachable from v0

in Gsatisfy:
w(C)
jCj

� val G(v0).

The fact is that any cycle reachable from v in GG
sv

0
is also reachable from

v0 in GG
sv0

0
(by de�nition of sv

0 ), therefore, the same inequality holds for

all cycles reachable from v. At this point, the thesis follows again by
Lemma 6.1 (applied to v, in the inverse direction). This proves Item 1.

2. The proof of Item 2 is symmetric to that of Item 1.

3. Firstly, notice that val G(v0
fv

) � val G(v) holds by Item 1. To conclude the

proof it is suf�cient to show val G(v0
fv

) � val G(v). Recall that (v,v0
fv

) 2 E
is compatible with fv in Gv by hypothesis, that is:

fv(v) � fv(v0
fv ) 	

�
w(v,v0

fv ) � val G(v)
�
.

This, together with the fact that v 2 Vfv (i.e., fv(v) 6= > ) also holds by
hypothesis, implies that v0

fv
2 Vf (i.e., fv(v0

fv
) 6= > ). Thus, by Item 1 of

Lemma 6.3, v0
fv

is a winning starting position of Player 0 in the EG Gv.

Whence, by Lemma 6.2, it holds that val G(v0
fv

) � val G(v). This proves
Item 3.

2

We are now in position to provide a suf�cient condition, for a positional
strategy to be optimal, which is expressed in terms of reweighted EGs and
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their SEPMs.

Theorem 6.4. Let G= ( V,E,w,hV0,V1i ) be an MPG.For each v2 V, consider the
reweighted EGGv = Gw� val G(v) . Let fv : V ! C Gv be any SEPM ofGv such that v2 Vfv
(i.e., fv(v) 6= > ). Moreover, assume: fv1 = fv2 wheneverval G(v1) = val G(v2).

When v2 V0, let v0
fv

2 V be any vertex out of v such that(v,v0
fv

) 2 E is compatible

with fv in the EGGv, and consider the positional strategys �
0 2 SM

0 de�ned as follows:

s �
0 (v) = v0

fv , for every v2 V0.

Then,s �
0 is an optimal positional strategy for Player0 in the MPG G.

Proof. Let us consider the projection graph GG
s �

0
= ( V,Es �

0
,w). Let v 2 V be any

vertex. In order to prove that s �
0 is optimal, it is suf�cient (by Lemma 6.1) to

show that every cycle C that is reachable from v in GG
s �

0
satis�es w(C)

jCj � val G(v).

� Preliminaries. Let v 2 V and let C be any cycle of length jCj � 1 that is
reachable from v in GG

s �
0
. Then, there exists a path r of length jr j � 1 in

GG
s �

0
and such that: if jr j = 1, then r = r 0r 1 = vv; otherwise, if jr j > 1,

then:
r = r 0 . . .r jr j = vv1v2 . . .vku1u2 . . .ujCju1,

where vv1 . . .vk is a simple path, for some k � 0 and u1 . . .ujCju1 = C.

GG
s �

0

Cv

v1 vk

u1

u2

u3

u4

ujCj

Figure 6.2: A cycle C that is reachable from v through v1 � � � vk in GG
s �

0
.

� Fact 1.It holds val G(r i ) � val G(r i+ 1) for every i 2 [0,jr j).

Proof of Fact 1.If r i 2 V0 then val G(r i ) = val G(r i+ 1) by Item 3 of Lemma 6.7;
otherwise, if r i 2 V1, then val G(r i ) � val G(r i+ 1) by Item 2 of Lemma 6.7.
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This proves Fact 1. In particular, notice that val G(v) � val G(u1) when
jr j > 1. 2

� Fact 2.Assume C = u1 . . .ujCju1, then:

val G(ui ) = val G(u1) for every i 2 [0,jCj ].

Proof of Fact 2.By Fact 1, val G(ui � 1) � val G(ui ) for every i 2 [2,jCj ], as
well as val G(ujCj ) � val G(u1). Then, the following chain of inequalities
holds:

val G(u1) � val G(u2) � . . . � val G(ujCj ) � val G(u1).

Since the �rst and the last value of the chain are actually the same, i.e.,
val G(u1), then, all these inequalities are indeed equalities. This proves
Fact 2. 2

� Fact 3.The following holds for every i 2 [0,jr j):

fr i (r i ), fr i (r i+ 1) 6= > and fr i (r i ) � fr i (r i+ 1) � w(r i , r i+ 1) + val G(r i ).

Proof of Fact 3.Firstly, we argue that any arc (r i , r i+ 1) 2 E is compatible
with fr i in Gr i . Indeed, if r i 2 V0, then (r i , r i+ 1) is compatible with fr i

in Gr i because r i+ 1 = s �
0 (r i ) by hypothesis; otherwise, if r i 2 V1, then

(r i ,x) is compatible with fr i in Gr i for every x2 post (r i ), in particular
for x = r i+ 1, by de�nition of SEPM.

At this point, since (r i , r i+ 1) is compatible with fr i in Gr i , then:

fr i (r i ) � fr i (r i+ 1) 	
�
w(r i , r i+ 1) � val G(r i )

�
.

Now, recall that r i 2 Vfr i
(i.e., fr i (r i ) 6= > ) holds for every r i by hypoth-

esis. Since fr i (r i ) 6= > and the above inequality holds, then we have
fr i (r i+ 1) 6= > . Thus, we can safely write:

fr i (r i ) � fr i (r i+ 1) � w(r i , r i+ 1) + val G(r i ).

This proves Fact 3. 2

� Fact 4.Assume that the cycle C = u1 . . .ujCju1 is such that:

val G(ui ) = val G(u1) � val G(v), for every i 2 [1,jCj ].
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Then, provided that ujCj+ 1 = u1, the following holds for every i 2 [1,jCj ]:

fu1(u1), fui+ 1(ui+ 1) 6= > and

fu1(u1) � fui+ 1(ui+ 1) �
i

å
j= 1

w(uj ,uj+ 1) + i � val G(v).

Proof of Fact 4.Firstly, notice that fu1(u1), fui+ 1(ui+ 1) 6= > holds by hy-
pothesis.

The proof proceeds by induction on i 2 [1,jCj ].

– Base Case.Assume that jCj = 1, so that C = u1u1. Then fu1(u1) �
fu1(u1) � w(u1,u1) + val G(u1) follows by Fact 3. Since val G(u1) �
val G(v) by hypothesis, then the thesis follows.

– Inductive Step.Assume by induction hypothesis that the following
holds:

fu1(u1) � fui (ui ) �
i � 1

å
j= 1

w(uj ,uj+ 1) + ( i � 1) � val G(v).

By Fact 3, we have:

fui (ui ) � fui (ui+ 1) � w(ui ,ui+ 1) + val G(ui ).

Since val G(ui+ 1) = val G(ui ) holds by hypothesis, then we have
fui+ 1 = fui . Recall that val G(ui ) � val G(v) also holds by hypoth-
esis.
Thus, we obtain the following:

fu1(u1) � fui+ 1(ui+ 1) �
i

å
j= 1

w(uj ,uj+ 1) + i � val G(v).

This proves Fact 4.

2

� We are now in position to show that every cycle C that is reachable from
v in GG

s �
0

satis�es w(C)/ jCj � val G(v). By Fact 1 and Fact 2, we have

val G(v) � val G(u1) = val G(ui ) for every i 2 [1,jCj ]. At this point, we
apply Fact 4. Consider the specialization of Fact 4 when i = jCj and also
recall that ujCj+ 1 = u1. Then, we have the following:

fu1(u1) � fu1(u1) �
jCj

å
j= 1

w(uj ,uj+ 1) + jCj � val G(v).
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As a consequence, the following lower bound holds on the average weight
of C:

w(C)
jCj

=
1

jCj

jCj

å
j= 1

w(uj ,uj+ 1) � val G(v),

which concludes the proof.

2

Remark 6.1. Notice that Theorem 6.4 holds, in particular, when fv is the least SEPM
f �
v of the reweighted EGGv. This follows because v2 Vf �

v
always holds for the least

SEPM f�v of the EGGv, as shown next: by Lemma 6.2 and by de�nition ofGv, then v
is a winning starting position for Player 0 in the EGGv (for some initial credit); now,
since f�v is the least SEPM of the EGGv, then v2 Vf �

v
follows by Item 2 of Lemma 6.3.

6.4 A Q(jV j2jEj W) time Algorithm for solving the Value
Problem and Optimal Strategy Synthesis in MPGs

This section offers a deterministic algorithm for solving the Value Problem
and Optimal Strategy Synthesis of MPGs within Q(jV j2jEj W) time and Q(jV j)
space, on any input MPG G= ( V,E,w,hV0,V1i ).

Let us now recall some notation in order to describe the algorithm in a suit-
able way. Given an MPG G= ( V,E,w,hV0,V1i ), consider again the following
reweightings:

Gi ,j = Gw� i � Fj , for any i 2 [� W,W] and j 2 [0,s � 1],

where s= jF jV j j and Fj is the j-th term of F jV j .
Assuming Fj = N j / D j for some N j ,D j 2 N , we focus on the following

weights:

wi ,j = w � i � Fj = w � i �
N j

D j
;

w0
i ,j = D j wi ,j = D j (w � i) � N j .

Recall that Gi ,j is de�ned as Gi ,j , Gw0
i ,j , which is an arena having integer weights.

Also notice that, since F0 < . . . < Fs� 1 is monotone increasing, then the corre-
sponding weight functions wi ,j can be ordered in a natural way, i.e., w� W,1 >
w� W,2 > . . . > wW� 1,s� 1 > . . . > wW,s� 1. In the rest of this section, we denote by
f �
w0

i ,j
: V ! C Gi ,j the least SEPM of the reweighted EGGi ,j . Moreover, the function

f �
i ,j : V ! Q, de�ned as f �

i ,j (v) , 1
D j

f �
w0

i ,j
(v) for every v 2 V, is called the rational

scalingof f �
w0

i ,j
.
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6.4.1 Description of the Algorithm
In this section we shall describe a procedure whose pseudo-code is given below
in Algorithm 16. It takes as input an arena G= ( V,E,w,hV0,V1i ), and it aims
to return a tuple (W0,W1,n,s �

0 ) such that: W0 and W1 are the winning regions
of Player 0 and Player 1 in the MPG G (respectively), n : V ! SG is a map
sending each starting position v 2 V to its optimal value, i.e., n(v) = val G(v),
and �nally, s �

0 : V0 ! V is an optimal positional strategy for Player 0 in the
MPG G.

The intuition underlying Algorithm 16 is that of considering the following
sequence of weights:

w� W,1 > w� W,2 > . . .> w� W,s� 1 > w� W+ 1,1> w� W+ 1,2> . . .> wW� 1,s� 1 > . . .> wW,s� 1

where the key idea is that to rely on Theorem 6.3 at each one of these steps,
testing whether a transition of winning regionshas occurred. Stated otherwise,

start
v

?
2 W 0(Gprev ( i ,j) ) \ W 1(Gi ,j )

w� W,1 w� W,2 w� W,3 � � � wprev ( i ,j) wi ,j � � �

� � �

wW� 1,s� 1 wW,1

Figure 6.3: An illustration of Algorithm 16.

the idea is to check, for each vertex v 2 V, whether v is winning for Player 1
with respect to the current weight wi ,j , meanwhile recalling whether v was win-
ning for Player 0 with respect to the immediately preceding element wprev ( i ,j)
in the weight sequence above.

If such a transition occurs, say for some v̂ 2 W 0(Gprev ( i ,j) ) \ W 1(Gi ,j ), then
one can easily computeval G( v̂) by relying on Theorem 6.3; Also, at that point,
it is easy to compute an optimal positional strategy, provided that v̂ 2 V0, by
relying on Theorem 6.4 and Remark 6.1 in that case.

Each one of these phases, in which one looks at transitions of winning
regions, is named Scan Phase. A graphical intuition of Algorithm 16 is given in
Fig. 7.2.

An in-depth description of the algorithm and of its pseudo-code now fol-
lows.

� Initialization Phase. To start with, the algorithm performs an initializa-
tion phase. At line 1, Algorithm 16 initializes the output variables W0

and W1 to be empty sets. Notice that, within the pseudo-code, the vari-
ables W0 and W1 represent the winning regions of Player 0 and Player 1,
respectively; also, the variable n represents the optimal values of the in-
put MPG G, and s �

0 represents an optimal positional strategy for Player 0
in the input MPG G. Secondly, at line 2, an array variable f : V ! C G
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Algorithm 14: Solving Value Problem and Strategy Synthesis in MPGs.

Procedure solve MPG(G)
input : an MPG G= ( V,E,w,hV0,V1i ).
output : a tuple (W0,W1,n,s �

0 ) such that: W0 and W1 are the winning
regions of Player 0 and Player 1 (respectively) in the MPG G;
n : V ! SG is a map sending each starting position v 2 V to its
corresponding optimal value, i.e., n(v) = val G(v); and s �

0 : V0 ! V
is an optimal positional strategy for Player 0 in the MPG G.

// Init Phase
1 W0  Æ; W1  Æ;
2 f (v)  0, 8 v 2 V;
3 W  maxe2 E jwej; w0 w + W; D  1;
4 s  compute the size jF jV j j of F jV j ; // with the algorithm of [97]

// Scan Phases
5 for i = � W to W do
6 F  0;
7 for j = 1 to s � 1 do
8 prev f  f ;
9 prev w  1

D w0;
10 prev F  F;
11 F  generate the j-th term of F jV j ; // with the algorithm of [97]

12 N  numerator of F;
13 D  denominator of F;
14 w0 D (w � i) � N;

15 f  1
D Value-Iteration (Gw0

,dD prev f e);
16 for v 2 V do
17 if prev f (v) 6= > and f (v) = > then
18 n(v)  i + prev F; // set optimal value n
19 if n(v) � 0 then
20 W0  W 0 [ f vg; // v is winning for Player 0

21 else
22 W1  W 1 [ f vg; // v is winning for Player 1

23 if v 2 V0 then
24 for u 2 post (v) do
25 if prev f (v) � prev f (u) 	 prev w(v,u) then
26 s �

0 (v)  u; break;

27 return (W0,W1,n,s �
0 )

Algorithm 14: The MPG algorithm.
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is initialized to f (v) = 0 for every v 2 V; throughout the computation,
the variable f represents a SEPM. Next, at line 3, the greatest absolute
weight W is assigned asW = maxe2 E jwej, an auxiliary weight function w0

is initialized as w0= w + W, and a “denominator” variable is initialized
as D = 1. Concluding the initialization phase, at line 4 the size (i.e., the
total number of terms) of F jV j is computed and assigned to the variable
s. This size can be computed very ef�ciently with the algorithm devised
by Pawlewicz and P �atraşcu [97].

� Scan Phases.After initialization, the procedure performs multiple Scan
Phases. Each one of these isindexedby a pair of integers ( i , j), where
i 2 [� W,W] (at line 6) and j 2 [1,s � 1] (at line 7). Thus, the index i goes
from � W to W, and for each i, the index j goes from 1 to s � 1.

At each step, we say that the algorithm goes through the ( i , j)-th scan
phase. For each scan phase, we also need to consider thepreviousscan
phase, so that the previous indexprev ( i , j) shall be de�ned as follows:
the predecessor of the �rst index is prev (� W,1) , (� W,0); if j > 1,
then prev ( i , j) , ( i , j � 1); �nally, if j = 1 and i > � W, then prev ( i , j) ,
( i � 1,s � 1).

At the ( i , j)-th scan phase, the algorithm considers the rational number
zi ,j 2 SG de�ned as:

zi ,j , i + F[j],

where F[j] = N j / D j is the j-th term of F jV j . For each j, F[j] can be com-
puted very ef�ciently, on the �y, with the algorithm of Pawlewicz and
P�atraşcu [97]. Notice that, since F[0] < . . . < F[s � 1] is monotonically in-
creasing, then the values zi ,j are scanned in increasing order as well. At
this point, the procedure aims to compute the rational scaling f �

i ,j of the
least SEPM f �

w0
i ,j

, i.e.,

f , f �
i ,j =

1
D j

f �
w0

i ,j
.

This computation is really at the heart of the algorithm and it goes from
line 8 to line 13. To start with, at line 8 and line 9, the previous rational
scaling f �

prev ( i ,j) and the previous weight function wprev ( i ,j) (i.e., those
considered during the previous scan phase) are saved into the auxiliary
variables prev f and prev w.

Remark. Since the values zi ,j are scanned in increasing order of magni-
tude, then prev f = f �

prev ( i ,j) bounds from below f �
i ,j . That is, it holds for

every v 2 V that:

prev f (v) = f �
prev ( i ,j) (v) � f �

i ,j .

The underlying intuition, at this point, is that of computing the energy
levels of f = f �

i ,j �rstly by initializing them to the energy levels of the
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previous scan phase, i.e., toprev f = f �
prev ( i ,j) , and then to update them

monotonically upwards by executing the Value-Iteration algorithm for
EGs.

Further details of this pivotal step now follow. Firstly, since the Value-
Iteration has been designed to work with integer numerical weights only [14],
then the weights wi ,j = w � zi ,j have to be scaled from Q to Z : this is per-
formed in the standard way, from line 10 to line 13, by considering the
numerator N j and the denominator D j of F[j], and then by setting:

w0
i ,j (e) , D j

�
w(e) � i

�
� N j , for every e2 E.

The initial energy levels are also scaled up from Q to Z by considering
the values: dD j prev f (v)e, for every v 2 V (line 13). At this point the

least SEPM ofGw0
i ,j is computed, at line 13, by invoking:

Value-Iteration (Gw0
i ,j ,dD j prev f e),

that is, by executing on input Gw0
i ,j the Value-Iteration with initial energy

levels given by: dD j prev f (v)e for every v 2 V. Soon after that, the
energy levels have to be scaled back from Z to Q, so that, in summary,
at line 13 they becomes:

f = f �
i ,j =

1
D j

Value-Iteration (Gw0
i ,j ,dD j prev f e).

The correctness of lines 12-13 will be proved in Lemma 6.8.

Here, let us provide a sketch of the argument:

1. Since F0 < . . . < Fs� 1 is monotone increasing, then the sequence
f w0

i ,jg( i ,j) is monotone decreasing, i.e., for every i, j and e2 E, w0
prev ( i ,j) (e) >

w0
i ,j (e). Whence, the sequence of rational scalingsf f �

i ,jgi ,j is mono-
tone increasing, i.e., f �

i ,j � f �
prev ( i ,j) holds at the ( i , j)-th step. The

proof is in Lemma 6.8.

2. At the ( i , j)-th iteration of line 8, it holds that prev f = f �
prev ( i ,j) .

This invariant property is also proved as part of Lemma 6.8.

3. Sinceprev f = f �
prev ( i ,j) , then prev f � f �

i ,j .

Thus, one can prove that D j prev f � f �
w0

i ,j
.

4. Sincew0
i ,j (e) 2 Z for every e2 E, then f �

w0
i ,j

(v) 2 Z for every v 2 V, so

that
dD j prev f (v)e � f �

w0
i ,j

(v)

holds for every v 2 V as well.
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5. This implies that it is correct to execute the Value-Iteration, on input

Gw0
i ,j , with initial energy levels given by: dD j prev f (v)e for every

v 2 V.

Back to us, once f = f �
i ,j has been determined, then for each v 2 V the

condition:

v
?
2 W 0(Gprev ( i ,j) ) \ W 1(Gi ,j ),

is checked at line 17: it is not dif�cult to show that, for this, it is suf�cient
to test whether both prev f (v) 6= > and f (v) = > hold on v (it follows
by Lemma 6.8).

If v 2 W 0(Gprev ( i ,j) ) \ W 1(Gi ,j ) holds, then the algorithm relies on Theo-

rem 6.3 in order to assign the optimal value as follows: n(v) , val G(v) =
zprev ( i ,j) (line 18). If n(v) � 0, then v is added to the winning region W0

at line 20. Otherwise, n(v) < 0 and v is added to W1 at line 22.

To conclude, from line 23 to line 27, the algorithm proceeds as follows: if
v 2 V0, then it computes an optimal positional strategy s �

0 (v) for Player 0
in G: this is done by testing for each u 2 post (v) whether (v,u) 2 E is an
arc compatible with prev f in Gprev ( i ,j) ; namely, whether the following
holds for some u 2 post (v):

prev f (v)
?
� prev f (u) 	 prev w(v,u).

If (v,u) 2 E is found to be compatible with prev f at that point, then
s �

0 (v) , u gets assigned and the arc (v,u) becomes part of the optimal
positional strategy returned to output. Indeed, the correctness of such
an assignment relies on Theorem 6.4 and Remark 6.1.

This concludes the description of the scan phases and also that of Algo-
rithm 16.

6.4.2 Proof of Correctness
Now we formally prove the correctness of Algorithm 16. The following lemma
shows some basic invariants that are maintained throughout the computation.

Lemma 6.8. Algorithm 16 keeps the following invariants throughout the computation:

1. For every i2 [� W,W] and every j2 [1,s � 1], it holds that:

f �
prev ( i ,j) (v) � f �

i ,j (v), for every v2 V;

2. At the ( i , j)-th iteration of line 8, it holds that:prev f = f �
prev ( i ,j) ;

3. At the ( i , j)-th iteration of line 8, it holds that:dD jprev f e � f �
w0

i ,j
;
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4. At the ( i , j)-th iteration of line 13, it holds that:

1
D j

Value-Iteration (Gw0
i ,j ,dD jprev f e) = f �

i ,j .

Proof of Item 1.Recall that wi ,j , w � i � Fj . Since F0 < . . . < Fs� 1 is monotone
increasing, then: wi ,j (e) < wprev ( i ,j) (e) holds for every e2 E.

In order to prove the thesis, consider the following function:

g : V ! Q [ f>g : v 7! min
�

f �
prev ( i ,j) (v), f �

i ,j (v)
�
.

We show that Dprev ( i ,j) g is a SEPM ofGw0
prev ( i ,j) . There are four cases, according

to whether v 2 V0 or v 2 V1, and g(v) = f �
prev ( i ,j) (v) or g(v) = f �

i ,j (v).

Case: v2 V0. Then, the following holds for some u2 post (v):
SubCase: g(v) = f �

prev ( i ,j) (v):

Dprev ( i ,j) g(v) = Dprev ( i ,j) f �
prev ( i ,j) (v) [by g(v) = f �

prev ( i ,j) (v)]

= f �
w0

prev ( i ,j)
(v) [by Dprev ( i ,j) f �

prev ( i ,j) = f �
w0

prev ( i ,j)
]

� f �
w0

prev ( i ,j)
(v) 	 w0

prev ( i ,j) (v,u) [ f �
w0

prev ( i ,j)
is SEPM of Gw0

prev ( i ,j) ]

= Dprev ( i ,j) f �
prev ( i ,j) (u) 	 w0

prev ( i ,j) (v,u) [by f �
w0

prev ( i ,j)
= Dprev ( i ,j) f �

prev ( i ,j) ]

� Dprev ( i ,j) g(u) 	 w0
prev ( i ,j) (v,u) [by de�nition of g(u)]

SubCase: g(v) = f �
i ,j (v):

Dprev ( i ,j) g(v) = Dprev ( i ,j) f �
i ,j (v) [by g(v) = f �

i ,j (v)]

=
Dprev ( i ,j)

D i ,j
f �
w0

i ,j
(v) [by f �

i ,j = f �
w0

i ,j
/ D i ,j ]

�
Dprev ( i ,j)

D i ,j
f �
w0

i ,j
(u) 	

Dprev ( i ,j)

D i ,j
w0

i ,j (v,u) [ f �
w0

i ,j
is SEPM of Gw0

i ,j ]

= Dprev ( i ,j) f �
i ,j (u) 	

Dprev ( i ,j)

D i ,j
w0

i ,j (v,u) [by f �
i ,j = f �

w0
i ,j

/ D i ,j ]

= Dprev ( i ,j) f �
i ,j (u) 	 Dprev ( i ,j)wi ,j (v,u) [by wi ,j (v,u) = w0

i ,j (v,u)/ D i ,j ]

� Dprev ( i ,j) f �
i ,j (u) 	 Dprev ( i ,j) wprev ( i ,j) (v,u) [by wi ,j < wprev ( i ,j) ]

= Dprev ( i ,j) f �
i ,j (u) 	 w0

prev ( i ,j) (v,u) [by Dprev ( i ,j)wprev ( i ,j) = w0
prev ( i ,j) ]

� Dprev ( i ,j) g(u) 	 w0
prev ( i ,j) (v,u) [by de�nition of g(u)]

This means that (v,u) is an arc compatible with Dprev ( i ,j) g in Gw0
prev ( i ,j) .

Case: v2 V1. The same argument shows that (v,u) 2 E is compatible with

Dprev ( i ,j) g in Gw0
prev ( i ,j) , but it holds for all u 2 post (v) in this case.

189



This proves that Dprev ( i ,j) g is a SEPM ofGw0
prev ( i ,j) .

Now, since f �
w0

prev ( i ,j)
is the leastSEPM of Gw0

prev ( i ,j) , then:

f �
w0

prev ( i ,j)
(v) � Dprev ( i ,j) g(v), for every v 2 V.

Since f �
w0

prev ( i ,j)
= Dprev ( i ,j) f �

prev ( i ,j) and g = min ( f �
prev ( i ,j) , f �

i ,j ), then:

Dprev ( i ,j) f �
prev ( i ,j) � Dprev ( i ,j) min ( f �

prev ( i ,j) , f �
i ,j ).

Whence f �
prev ( i ,j) = min ( f �

prev ( i ,j) , f �
i ,j ).

This proves that f �
prev ( i ,j) (v) � f �

i ,j (v) holds for every v 2 V. 2

Next, we prove that:
Fact 1.If Item 2 holds at the ( i , j)-th scan phase, then both Item 3 and Item 4

hold at the ( i , j)-th scan phase as well.

Proof of Fact 1.Assume that Item 2 holds. Let us prove Item 3 �rst. Since
f �
prev ( i ,j) � f �

i ,j holds by Item 1, and since prev f = f �
prev ( i ,j) holds by hy-

pothesis, then prev f (v) � f �
i ,j (v) holds for every v 2 V. Since w0

i ,j = D j wi ,j

and f �
w0

i ,j
= D j f �

i ,j , then D j prev f (v) � f �
w0

i ,j
(v) holds for every v 2 V. Since

w0
i ,j (e) 2 Z for every e2 E, then f �

w0
i ,j

(v) 2 Z for every v 2 V, so that

dD j prev f (v)e � f �
w0

i ,j
(v)

holds for every v 2 V as well. This proves Item 3.
We show Item 4 now. Since Item 3 holds, at line 13 it is correct to initial-

ize the starting energy levels of Value-Iteration() to dD j prev f (v)e for

every v 2 V, in order to execute the Value-Iteration on input Gw0
i ,j .

This implies the following:

Value-Iteration (Gw0
i ,j ,dD j prev f e) = f �

w0
i ,j

.

But we also know that 1
D j

f �
w0

i ,j
= f �

i ,j .

This proves that Item 4 holds and concludes the proof of Fact 1. 2

Fact 2.We now prove that Item 2 holds at each iteration of line 8.

Proof of Fact 2.The proof proceeds by induction on ( i , j).
Base Case.Let us consider the �rst iteration of line 8; i.e., the iteration

indexed by i = � W and j = 1. Recall that, at line 2 of Algorithm 16, the
function f is initialized as f (v) = 0 for every v 2 V. Notice that f is really the
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least SEPM f �
� W,0 of G� W,0 = Gw+ W , because every arce2 E has a non-negative

weight in Gw+ W , i.e., we + W � 0 for every e2 E.
Hence, at the �rst iteration of line 8, the following holds:

prev f = 0 = f �
� W,0 = f �

prev (� W,1) .

Inductive Step.Let us assume that Item 2 holds for the prev ( i , j)-th itera-
tion, and let us prove it for the ( i , j)-th one. Hereafter, let us denote ( ip, jp) =
prev ( i , j) for convenience. Since Item 2 holds for the ( ip, jp)-th iteration by
induction hypothesis, then, by Fact 1, the following holds at the ( ip, jp)-th iter-
ation of line 13:

1
D jp

Value-Iteration (G
w0

i p,jp ,dD jp prev f e) = f = f �
ip,jp.

Thus, at the ( i , j)-th iteration of line 8:

prev f = f = f �
ip,jp = f �

prev ( i ,j) .

This concludes the proof of Fact 2. 2

At this point, by Fact 1 and Fact 2, Lemma 6.8 follows.
We are now in the position to show that Algorithm 16 is correct.

Proposition 6.1. Assume that Algorithm 16 is invoked on inputG= ( V,E,w,hV0,V1i )
and, whence, that it returns(W0,W1,n,s0) as output.

Then,W0 andW1 are the winning sets of Player 0 and Player 1 inG(respectively),
n : V ! S is such thatn(v) = val G(v) for every v2 V, ands0 : V0 ! V is an optimal
positional strategy for Player 0 in the MPGG.

Proof. At the ( i , j)-th iteration of line 17, the following holds by Lemma 6.8:

prev f = f �
prev ( i ,j) and f = f �

i ,j .

Our aim now is that to apply Theorem 6.3. For this, �rstly observe that one
can safely write prev f = f �

i ,j � 1. In fact, since F0 = 0 and Fs� 1 = 1, then:

wprev ( i ,1) = wi � 1,s� 1 = w � i = wi ,0, for every i 2 [� W,W].

This implies that wprev ( i ,j) = wi ,j � 1 for every i 2 [� W,W] and j 2 [1,s � 1].
Whence, prev f = f �

prev ( i ,j) = f �
i ,j � 1.

So, at the ( i , j)-th iteration of line 17, the following holds for every v 2 V:

prev f (v) 6= > and f (v) = > iff f �
i ,j � 1(v) 6= > and f �

i ,j (v) = > [by Lemma 6.8]

iff v 2 W 0(Gi ,j � 1) \ W 1(Gi ,j ) [by Item 1-2 of Lemma 6.3]

iff val G(v) = i + Fj � 1 [by Theorem 6.3]
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This implies that, at the ( i , j)-th iteration of line 18, Algorithm 16 correctly
assigns the value n(v) = i + F[j � 1] = i + Fj � 1 to the vertex v.

Since for every vertex v 2 V we have val G(v) 2 SG (recall that SG admits
the following representation SG=

�
i + Fj

�
� i 2 [� W,W), j 2 [0,s � 1]

	
), then, as

soon as Algorithm 16 halts, n(v) = val G(v) correctly holds for every v 2 V.
In turn, at line 20 and at line 22, the winning sets W0 and W1 are correctly
assigned as well.

Now, let us assume that n(v) = i + Fj � 1 holds at the ( i , j)-th iteration of
line 18, for some v 2 V. Then, the following holds on prev w at line 9:

prev w = wprev ( i ,j) = wi ,j � 1 = w � i � Fj � 1 = w � n(v) = w � val G(v).

Thus, at the ( i , j)-th iteration of line 25, for every v 2 V0 and u 2 post (v):

prev f (v) � prev f (u) 	 prev w(v,u) iff f �
prev ( i ,j) (v) � f �

prev ( i ,j) (u) 	
�
w � val G(v)

�

iff (v,u) is compatible with f �
prev ( i ,j) in Gw� val G(v)

Recall that f �
prev ( i ,j) is the least SEPM of Gw� val G(v) , thus by Theorem 6.4 the

following implication holds: if (v,u) is compatible with f �
prev ( i ,j) in Gw� val G(v) ,

then s0(v) = u is an optimal positional strategy for Player 0, at v, in the MPG
G.

This implies that line 26 of Algorithm 16 is correct and concludes the proof.
2

6.4.3 Complexity Analysis
The present section aims to show that Algorithm 16 always halts in Q(jV j2jEj W)
time. This upper bound is established in the next proposition.

Proposition 6.2. Algorithm 16 always halts withinQ(jV j2jEj W) time and it works
with Q(jV j) space, on any input MPGG= ( V,E,w,hV0,V1i ). Here, W= maxe2 E jwej.

Proof. (Time Complexity of the Init Phase)The initialization of W0,W1,n,s0 (at
line 1) and that of f (at line 2) takes time O(jV j). The initialization of W at line 3
takes O(jEj) time. To conclude, the size s = jF jV j j of the Farey sequence (i.e.,

its total number of terms) can be computed in O(n2/3 log1/3 n) time as shown
by Pawlewicz and P �atraşcu in [97]. Whence, the Init phase of Algorithm 16
takes O(jEj) time overall.

(Time Complexity of the Scan Phases)To begin, notice that there are O(jV j2W)
scan phases overall. In fact, at line 6 the index i goes from � W to W, while at
line 7 the index j goes from 0 to s� 1 where s= jF jV j j = Q(jV j2). Observe that,
at each iteration, it takes O(jEj) time to go from line 8 to line 12 and then from
line 14 to line 27. In particular, at line 5, the j-th term Fj of the Farey sequence

F jV j can be computed in O(n2/3 log4/3 n) time as shown by Pawlewicz and
P�atraşcu in [97].
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Now, let us denote by T13
i,j the time taken by the ( i , j)-th iteration of line 13,

that is the time it takes to execute the Value-Iteration algorithm on input Gw0
i ,j

with initial energy levels: dD j f �
prev ( i ,j)e. Then, the ( i , j)-th scan phase always

completes within the following time bound: O(jEj) + T13
i,j .

We now focus on T13
i,j and argue that the (aggregate) total cost å i ,j T

13
i,j of

executing the Value-Iteration algorithm for EGs at line 13 (throughout all scan
phases) is only Q(jV j2jEj W). Stated otherwise, we aim to show that the amor-
tized costof executing the ( i , j)-th scan phase is only O(jEj).

Recall that the Value-Iteration algorithm for EGs consists, as a �rst step,
into an initialization (which takes O(jEj) time) and, then, in the continuous
iteration of the following two operations: (1) the application of the lifting op-
erator d( f ,v) (which takes O(jpost (v)j) time) in order to resolve the incon-
sistency of f in v, where f (v) represents the current energy level and v 2 V
is any vertex at which f is inconsistent; and (2) the updateof the list L (which
takes O(jpre (v)j) time), in order to keep track of all the vertices that witness
an inconsistency. Recall that L contains no duplicates.

At this point, since at the ( i , j)-th iteration of line 13 the Value-Iteration is

executed on input Gw0
i ,j , then a scaling factor on the maximum absolute weight

W must be taken into account. Indeed, it holds that:

W0, max
n

jw0
i ,j (e)j

�
�
� e2 E, i 2 [� W,W], j 2 [0,s � 1]

o
= O(jV j W).

Remark.Actually, since w0
i ,j , D j (w � i) � N j (where N j / D j = Fj 2 F jV j), then

the scaling factor D j changesfrom iteration to iteration. Still, D j � j V j holds for
every j.

At each application of the lifting operator d( f ,v) the energy level f (v) in-
creases by at least one unit with respect to the scaled-up maximum absolute
weight W0. Stated otherwise, at each application of d( f ,v), the energy level
f (v) increases by at least 1/jV j units with respect to the original weight W.

Throughout the whole computation, the rational scalings of the energy
levels never decrease by Lemma 6.8: in fact, at the( i , j)-th scan phase, Algo-
rithm 16 executes the Value-Iteration with initial energy levels: dD j f �

prev ( i ,j)e.
Whence, at line 13, the ( i , j)-th execution of the Value-Iteration starts from
the (carefully scaled-up) energy levels of the prev ( i , j)-th execution; roughly
speaking, no energy gets ever lost during this process. Then, by Lemma 6.4,
each energy level f (v) can be lifted-up at most jV j W0= O(jV j2W) times.

The above observations imply that the (aggregate) total cost of executing
the Value-Iteration at line 13 (throughout all scan phases) can be bounded as
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follows:

å
� W� i � W
1� j � s� 1

T13
i,j =

0

B
@ å

� W� i � W
1� j � s� 1

O(jEj)
| {z }
init cost

1

C
A +

0

B
@å

v2V
O

�
jpost(v) j
| {z }

lifting d

+ jpre (v)j
| {z }

updateL

�
O(jV j W0)
| {z }

Lemma6.4

1

C
A

= Q(jV j2jEj W) + O(jV j2W) å
v2V

O
�
jpost(v) j + jpre (v)j

�

= Q(jV j2jEj W)

Whence, Algorithm 16 always halts within the following time bound:

Time
�

solve MPG
�
G

� �
= å

� W� i � W
1� j � s� 1

�
O(E) + T13

i,j

�
= Q(jV j2jEj W).

This concludes the proof of the time complexity bound.
We now turn our attention to the space complexity.
(Space Complexity)First of all, although the Farey sequence F jV j has jF jV j j =

Q(jV j2) many elements, still, Algorithm 16 works �ne assuming that every
next element of the sequence is generatedon the �y at line 5. This computation
can be computed in O(jV j2/3 log4/3 jV j) sub-lineartime and space as shown by
Pawlewicz and P �atraşcu [97]. Secondly, given i and j, it is not necessary to
actually store all weights w0

i ,j (e) , D j (w(e) � i) � N j for every e2 E, as one
can compute them on the �y provided that N j , D j , w and e are given. Fi-
nally, Algorithm 16 needs to store in memory the two SEPMs f and old f ,
but this requires only Q(jV j) space. Finally, at line 13, the Value-Iteration al-
gorithm employs only Q(jV j) space. In fact the list L, which it maintains in
order to keep track of the inconsistencies, doesn't contain duplicate vertices
and, therefore, its length is at most jLj � j V j. These facts imply altogether that
Algorithm 16 works with O(jV j) space. 2

6.5 Conclusions
In this work we proved an O(jV j2jEj W) pseudo-polynomial time upper bound
for the Value Problem and Optimal Strategy Synthesis in Mean Payoff Games.
The result was achieved by providing a suitable description of values and
positional strategies in terms of reweighted Energy Games and Small Energy-
Progress Measures.

On this way we ask whether further improvements are not too far away.
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7 FasterO(jV j2jEjW)-Time Energy
Algorithm for Optimal Strat-
egy Synthesis in Mean Payoff
Games

Chapter Abstract

In this chapter we further strengthen the links between Mean Payoff Games
(MPGs) and Energy Games (EGs). We offer a fasterO(jV j2jEjW) pseudo-
polynomial time and Q(jV j + jEj) space deterministic algorithm for solving
the Value Problem and Optimal Strategy Synthesis in MPGs. This improves
the estimates on the pseudo-polynomial time complexity to:

O(jEj log jV j) + Q
�

å
v2V

deg G(v) � `G(v)
�

= O(jV j2jEjW),

where `G(v) counts the number of times that an energy-lifting operator d(�,v) is
applied to any v 2 V, along a certain sequence of Value-Iterations on reweighted
EGs; and deg G(v) is the degree of v. This improves signi�cantly over the
pseudo-polynomial time bound shown in Chapter 6 [35,38], i.e., Q

�
jV j2jEjW +

å v2V deg G(v) � `G(v)
�

= Q(jV j2jEj W), as the pseudo-polynomiality is now con-
�ned to depend solely on `G. The actual improvement in performance is also
con�rmed experimentally.

start

Jump

v
?
2 W 0(Gprev r J( i ,j) ) \ W 1(Gi ,j )

wW � ,1 wW � ,2 wW � ,3 � � � wprev r J( i ,j) wi ,j � � �
� � �

wW+ � 1,s� 1 wW+ ,1

Figure 7.1: An illustration of the MPG algorithm offered in Chapter 7.

This chapter is a revised version of [37].
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7.1 Introduction
As already seen in Chapter 6, a Mean Payoff Game(MPG) is a 2-player in�nite
game G, (V,E,w,hV0,V1i ) played on a �nite weighted directed graph. Some
other related models have been studied widely in the literature. For instance,
several research efforts have been spent in studying quantitative extensions of
in�nite games for modeling quantitative aspects of reactive systems, like En-
ergy Games (EGs)[12, 14, 18]. In this context quantities may represent, e.g., the
power usage of an embedded component, or the buffer size of a networking
element. These studies unveiled interesting connections with MPGs, and they
have recently led to the design of faster procedures for solving them. In partic-
ular, [14] devised a faster deterministic algorithm for solving the Value Prob-
lem and Optimal Strategy Synthesis in MPGs within O

�
jV j2jEj W log(jV j W)

�

pseudo-polynomial time and polynomial space. Essentially, a binary search
is directed by the resolution of multiple reweighted EGs. The determination
of EGs comes from repeated applications of energy-lifting operators d(�,v) for
v 2 V. These are all monotone functions de�ned on a complete lattice (the
Energy-Lattice of a reweighted EG), so the correct termination is ensured by
the Knaster–Tarski's �xed point theorem [111].

In Chapter 6, the worst-case time complexity of the Value Problem and
Optimal Strategy Synthesis was given an improved pseudo-polynomial upper
bound [35, 38]. That chapter focused on offering a simple proof of the im-
proved time complexity bound. The algorithm there proposed, Algorithm 16,
had the advantage of being very simple; its existence made it possible to dis-
cover and to analyze some of the underlying fundamental ideas, that ulti-
mately led to the improved upper bound, more directly; it was shown appro-
priate to supersede (at least in the perspective of obtaining sharpened bounds)
the above mentioned binary search by sort of a linear search that succeeds at
amortizing all the energy-liftings throughout the computation. However, its
running time turns out to be also W(jV j2jEjW), the actual time complexity be-
ing Q

�
jV j2jEj W + å v2V deg G(v) � `0

G(v)
�
, where `0

G(v) � (jV j � 1)jV jW denotes
the total number of times that the energy-lifting operator d(�,v) is applied to
any v 2 V by Algorithm 16. After the appearance of those works, a way to
overcome this issue was found.

7.1.1 Contribution

This chapter aims at further strenghtening the relationship between MPGs and EGs.

Our results are summarized as follows.

Faster O(jV j2jEjW)-Time Algorithm for MPGs by Jumping through
Reweighted EGs.

We introduce a novel algorithmic scheme, named Jumping (Algorithm 15),
which tackles on some further regularities of the problem, thus reducing the
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estimate on the pseudo-polynomial time complexity of MPGs to:

O(jEj log jV j) + Q
�

å
v2V

deg G(v) � `1
G(v)

�
,

where `1
G(v) is the total number of applications of d(�,v) to v 2 V that are made

by Algorithm 1; `1
G � ( jV j � 1)jV jW (worst-case; but experimentally, `1

G � `0
G),

and the working space is Q(jV j + jEj). Overall the worst-case complexity is
still O(jV j2jEjW), but the pseudo-polynomiality is now con�ned to depend
solely on the total number `1

G of required energy-liftings; this is not known
to be W(jV j2jEjW) generally, and future theoretical or practical advancements
concerning the Value-Iteration framework for EGs could help reducing this
metric. Under this perspective, the computational equivalence between MPGs
and EGs seems now like a bit more unfolded and subtle. In practice, Algo-
rithm 15 allows us to reduce the magnitude of `G considerably, w.r.t. [35, 38],
and therefore the actual running time; our experiments suggest that `1

G � `0
G

holds for wide families of MPGs (see SubSection 7.3.4).

In summary, the present work offers a fasterpseudo-polynomial time algo-
rithm; theoretically the pseudo-polynomiality now depends only on `1

G, and in
practice the actual performance also improves considerably w.r.t. [35,38]. With
hindsight, Algorithm 16 turned out to be a high-level description and the tip
of a more technical and ef�cient underlying procedure. This is the �rst truly
O(jV j2jEjW) time deterministic algorithm, for solving the Value Problem and
Optimal Strategy Synthesis in MPGs, that can be effectively applied in prac-
tice (optionally, in interleaving with some other known sub-exponential time
algorithms).

Indeed, a wide spectrum of different approaches have been investigated in
the literature. For instance, [1] provided a fast randomizedalgorithm for solving

MPGs in sub-exponentialtime O
�
jV j2jEj exp

�
2

q
jV j ln (jEj/

p
jV j) + O(

p
jV j +

ln jEj)
��

. [79] devised a deterministic O(2jV j jV j j Ej log W) singly-exponential
time procedure by considering a so called potential-theory of MPGs, that is
akin to EGs.

Table 7.1 offers a summary of past and present results.

7.1.2 Organization

In Section 7.2, we introduce some notation and provide the required back-
ground on in�nite 2-player pebble games and related algorithmic results. In
Section 7.3, it is presented anO(jEj log jV j) + Q

�
å v2V deg G(v) � `1

G(v)
�

= O(jV j2jEj W)
pseudo-polynomial time and Q(jV j + jEj) space deterministic algorithm for
solving the Value Problem and Optimal Strategy Synthesis in MPGs; Sub-
Section 7.3.4 offers an experimental comparison between Algorithm 15 and
Algorithm 16 [35,38].
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Table 7.1: Time Complexity of the main Algorithms for solving MPGs.

Algorithm Optimal Strategy Synthesis Value Problem

This work O(jEj log jV j) + Q
�

å v2V deg G(v) � `1
G(v)

�
same complexity

CRStrat15-16 Q
�
jV j2jEj W + å v2V deg G(v) � `0

G(v)
�

same complexity

BC11 O(jV j2jEj W log(jV j W)) same complexity

LP07 n/a O(jV jj Ej2jV j log W)

AV06 O
�

jV j2jEj e
2

r
jV j ln

�
jEjp
jV j

�
+ O(

p
jV j+ ln jEj) �

same complexity

ZP96 Q(jV j4jEj W log jEj
jV j ) Q(jV j3jEj W)

7.2 Background and Notation
We refer the reader to Section 6.2 of Chapter 6 for the background notation
on MPGs. Also recall that the Farey sequenceF n is the increasing sequence of
all irreducible fractions from the (rational) interval [0,1] with denominators
less than or equal to n. In Section 6.4 we will be interested in generating the
Farey sequenceF0, . . . ,Fs� 1, one term after another, iteratively and ef�ciently.
As mentioned in [97], combining several properties satis�ed by the Farey se-
quence, one can get a trivial iterative algorithm, which generates the next term
Fj = N j / D j of F n based on the previous two:

N j  
�

D j � 2 + n

D j � 1

�
� N j � 1 � N j � 1; D j  

�
D j � 2 + n

D j � 1

�
� D j � 1 � D j � 1.

Given Fj � 2,Fj � 1 as input, this computes Fj in O(1) time and space.

7.3 A Faster O(jV j2jEj W)-Time Algorithm for MPGs by
Jumping through Reweighted EGs

This section offers an O(jEj log jV j) + Q
�

å v2V deg G(v) � `1
G(v)

�
= O(jV j2jEj W)

time algorithm for solving the Value Problem and Optimal Strategy Synthesis
in MPGs G= ( V,E,w,hV0,V1i ), where W , maxe2 E jwej; it works with Q(jV j +
jEj) space. Its name is Algorithm 15.

In order to describe it in a suitable way, let us �rstly recall some notation.
Given an MPG G, we shall consider the following reweightings:

Gi ,j
�= Gw� i � Fj , for any i 2 [� W,W] and j 2 [1,s � 1],

where s , jF jV j j, and Fj is the j-th term of F jV j .

Assuming Fj = N j / D j for some (co-prime) N j ,D j 2 N , we work with the
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following weights:

wi ,j , w � i � Fj = w � i � N j / D j ; w0
i ,j , D j wi ,j = D j (w � i) � N j .

Recall Gi ,j , Gw0
i ,j and 8e2 Ew0

i ,j (e) 2 Z . Notice, since F1 < . . . < Fs� 1 is mono-
tone increasing, f wi ,jgi ,j can be ordered (inverse)-lexicographically w.r.t. ( i , j);
i.e., w( i ,j) > w( i0,j0) iff either: i < i0, or i = i0 and j < j0; e.g., wW � ,1 > wW � ,2 >
. . . > wW � ,s� 1 > . . . > wW+ � 1,s� 1 > wW+ ,s� 1. Also, we denote the least-SEPM of
the reweighted EG Gi ,j by f �

w0
i ,j

: V ! C Gi ,j . In addition, f �
i ,j : V ! Q denotes the

rational-scalingof f �
w0

i ,j
, which is de�ned as: 8v2V f �

i ,j (v) , 1
D j

� f �
w0

i ,j
(v). Finally, if f

is any SEPM of the EGGi ,j , then Inc( f , i, j) , f v 2 V j v is inconsistent w.r.t. f in Gi ,jg.

7.3.1 Description of Algorithm 15
Outline. Given an input arena G= ( V,E,w,hV0,V1i ), Algorithm 15 aims at
returning a tuple (W0,W1,n,s �

0 ) where: W0 is the winning set of Player 0 in
the MPG G, and W1 is that of Player 1; n : V ! SG maps each starting position
vs 2 V to val G(vs); �nally, s �

0 : V0 ! V is an optimal positional strategy for
Player 0 in the MPG G.

Let W � , min e2 E we and W+ , maxe2 E we. The �rst aspect underlying Al-
gorithm 15 is that of ordering [W � ,W+ ] � [1,s � 1] lexicographically, by con-
sidering the already mentioned (decreasing) sequence of weights:

r : [W � ,W+ ] � [1,s � 1] ! Z E : ( i , j) 7! wi ,j ,

r : wW � ,1 > wW � ,2 > . . .> wW � ,s� 1 > wW � + 1,1> wW � + 1,2> . . .> wW+ � 1,s� 1 > . . .> wW+ ,s� 1,

then, to rely on Theorem 6.3, at each step ofr , testing whether some transition
of winning regionsoccurs. At the generic ( i , j)-th step of r , we run a Value-
Iteration [14] in order to compute the least-SEPM of Gi ,j , and then we check for
every v 2 V whether v is winning for Player 1 w.r.t. the current weight wi ,j (i.e.,
w.r.t. Gi ,j), meanwhile recalling whether v was winning for Player 0 w.r.t. the
(immediately, inverse-lex) previousweight wprev r ( i ,j) (i.e., w.r.t. Gprev r ( i ,j)). This
step relies on Lemma 6.3, as in factW0(Gprev r ( i ,j) ) = Vf �

prev r ( i ,j)
and W1(Gi ,j ) =

V n Vf �
i ,j

.

If a transition occurs, say for some v̂ 2 W 0(Gprev r ( i ,j) ) \ W 1(Gi ,j ), then val G( v̂)
can be computed easily by relying on Theorem 6.3, i.e., n( v̂)  i + F[j � 1];
also, an optimal positional strategy can be extracted from f �

prev r ( i ,j) thanks to

Theorem 6.4 and Remark 6.1, provided that v̂ 2 V0.
Each phase, in which one does a Value-Iteration and looks at transitions of

winning regions, it is named Scan-Phase. Remarkably, for every i 2 [W � ,W+ ]
and j 2 [1,s � 1], the ( i , j)-th Scan-Phase performs a Value-Iteration [14] on the
reweighted EG Gi ,j by initializing all the energy-levels to those computed by
the previous Scan-Phase (subject to a suitable re-scaling and a rounding-up,
i.e., dD j � f �

prev r ( i ,j)e). As described in [38], the main step of computation that is
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v
?
2 W 0(Gprev r J( i ,j) ) \ W 1(Gi ,j )

wW � ,1 wW � ,2 wW � ,3 � � � wprev r J( i ,j) wi ,j � � �
� � �

wW+ � 1,s� 1 wW+ ,1

Figure 7.2: An illustration of Algorithm 15.

carried on at the ( i , j)-th Scan-Phase goes therefore as follows:

fi ,j  
1
D j

Value-Iteration
�

Gi ,j ,
�
D j � f �

prev r ( i ,j)

� �
,

where D j is the denominator of Fj . Then, one can prove that 8( i , j) fi ,j = f �
i ,j

(see Chapter 6, Lemma 6.8, Item 4). Indeed, by Lemma 6.2 and Lemma 6.3,
W0(Gprev r ( i ,j) ) = Vf �

prev r ( i ,j)
and W1(Gi ,j ) = V n Vf �

i ,j
. And since r is monotone

decreasing, the sequence of energy-levelsy r : ( i , j) 7! f �
i ,j is monotone non-

decreasing (see Chapter 6, Lemma 6.8, Item 1):

y r : f �
W � ,1 � f �

W � ,2 � . . . � f �
W � ,s� 1 � f �

W � + 1,1 � f �
W � + 1,2 � . . . � f �

W+ � 1,s� 1 � . . . � f �
W+ ,s� 1;

Our algorithm will succeed at amortizing the cost of the corresponding se-
quence of Value-Iterations for computing y r . Recall that a similar amortization
takes place already in Algorithm 16. However, Algorithm 16 performs exactly
one Scan-Phase (i.e., one Value-Iteration, plus the testsv 2 ? W0(Gprev r ( i ,j) ) \
W1(Gi ,j )) for each term of r –without making any Jump in r –. Thus, Algo-
rithm 16 performs Q(jV j2W) Scan-Phases overall, each one costingW(jEj)
time (i.e., the cost of initializing the Value-Iteration as in [14]). This brings an
overall W(jV j2jEjW) time complexity, which turns out to be also O(jV j2jEjW);
leading us to an improved pseudo-polynomial time upper bound for solving
MPGs [35,38].

The present work shows that it is instead possible, and actually very con-
venient, to perform many Jumpsin r ; thus introducing “gaps” between the
weights that are considered along the sequence of Scan-Phases. The corre-
sponding sequence of weights is denoted by r J. This is Algorithm 15. In
Fig. 7.2, a graphical intuition of Algorithm 15 and r J is given, in which a Jump
is depicted with an arc going from wW � ,2 to wprev r J( i ,j) , e.g.,wprev r J(prev r J( i ,j)) =
wW � ,2.

Two distinct kinds of Jumps are employed: Energy-Increasing-Jumps (EI-
Jumps)and Unitary-Advance-Jumps (UA-Jumps). Brie�y, EI-Jumps allow us to
satisfy a suitable invariant:

[Inv-EI] Whenever a Scan-Phase is executed (each time that a Value-Iteration
is invoked), an energy-level f (v) strictly increases for at least one v 2 V. There

200



will be no vain Scan-Phase (i.e., such that all the energy-levels stand still); so,d
will be applied (successfully) at least once per Scan-Phase. Therefore,y r J will
be monotone increasing (except at the steps of backtracking introduced next,
but there will be at most jV j of them). 2

Indeed, the UA-Jumps are employed so to scroll through F jV j only when
and whereit is really necessary. Consider the following facts.

– Suppose that Algorithm 15 came at the end of the ( i ,s� 1)-th Scan-Phase,
for some i 2 [W � ,W+ ]; recall that Fs� 1 = 1, so wi ,s� 1 = w0

i ,s� 1 is integral. Then,
Algorithm 16 would scroll through F jV j entirely, by invoking one Scan-Phase
per each term, going from the ( i + 1,1)-th to the ( i + 1,s � 1)-th, meanwhile
testing whether a transition of winning regions occurs; notice, wi+ 1,s� 1 is inte-
gral again. Instead, to UA-Jump means to jump in advance (proactively) from
wi ,s� 1 to wi+ 1,s� 1, by making a Scan-Phase on input Gi+ 1,s� 1, thus skipping
all those from the ( i + 1,1)-th to the ( i + 1,s � 2)-th one. After that, Algo-
rithm 15 needs to backtrackto wi ,s� 1, and to scroll through F jV j , if and only if
W0(Gwi ,s� 1) \ W 1(Gwi+ 1,s� 1) 6= Æ. Otherwise, it is safe to keep the search going
on, from wi+ 1,s� 1 on out, making another UA-Jump to wi+ 2,s� 1. The backtrack-
ing step may happen at most jV j times overall, because some value n(v) is
assigned to somev 2 V at each time. So, Algorithm 15 scrolls entirely through
F jV j at most jV j times; i.e., only whenit is really necessary.

– Remarkably, when scrolling through F jV j , soon after the above mentioned
backtracking step, the corresponding sequence of Value-Iterations really need
to lift-up again (more slowly) only the energy-levels of the sub-arena of Gthat is
induced by S , W0(Gwi ,s� 1) \ W 1(Gwi+ 1,s� 1). All the energy-levels of the vertices
in V n S can be con�rmed and left unchanged during the UA-Jump's back-
tracking step; and they will all stand still, during the forthcoming sequence of
Value-Iterations (at least, until a new EI-Jump will occur), as they were com-
puted just beforethe occurence of the UA-Jump's backtracking step. This is
why Algorithm 15 scrolls through F jV j only whereit is really necessary.

– Also, Algorithm 15 succeeds at interleavingEI-Jumps and UA-Jumps, thus
making only one single pass through r J (plus the backtracking steps).

Altogether these facts are going to reduce the running time considerably.

De�nition 7.1 (`1
G). Given an input MPGG, let `1

G(v) be the total number of times
that the energy-lifting operatord(�,v) is applied to any v2 V by Algorithm 15 (notice
that it will be applied only at line 3 ofJ-VI () , see SubProcedure 6).

Then, the following remark holds on Algorithm 15.

Remark 7.1. Jumping is not heuristic, the theoretical running time of the procedure
improves exactly, from:

Q(jV j2jEjW + å
v2V

deg G(v) � `0
G(v)) (Algorithm 16)

to:
O(jEj log jV j) + Q

�
å
v2V

deg G(v) � `1
G(v)

�
(Algorithm 15),
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where`1
G � ( jV j � 1)jV jW; which is still O(jV j2jEj W) in the worst-case, but it isn't

known to beW(jV j2jEjW) generally. In practice, this reduces the magnitude of`G

signi�cantly, i.e., `1
G � `0

G is observed in our experiments (see SubSection 7.3.4).

To achieve this, we have to overcome some subtle technical issues. Firstly,
we show that it is unnecessary to re-initialize the Value-Iteration at each Scan-
Phase (this would cost W(jEj) each time otherwise), even when making wide
jumps in r . Instead, it will be suf�cient to perform an initialization phase only
at the beginning, paying only O(jEj log jV j) total time and a linear space in
pre-processing. For this, we will provide a suitable readjustment of the Value-
Iteration; it is named J-VI () (SubProcedure 6). Brie�y, the Value-Iteration
of [14] employs an array of counters, cnt : V0 ! N , in order to check in time
O(jN in

G (v)j) which vertices u 2 N in
G (v) \ V0 have become inconsistent (soon af-

ter that the energy-level f (v) was increased by applying d( f ,v) to some v 2 V),
and should therefore be added to the list Linc of inconsistent vertices. One sub-
tle issue here is that, when going from the prev r J( i , j)-th to the ( i , j)-th Scan-
Phase, thecoherencyof cnt can break (i.e., cnt may provide false-positives,
thus classifying a vertex as consistent when it isn't really so). This may happen
when wprev r J( i ,j) > w( i ,j) (which is always the case, except for the UA-Jump's

backtracking steps). This is even ampli�ed by the EI-Jumps, as they may lead
to wide jumps in r . The algorithm in [38] recalculates cnt from scratch, at the
beginning of each Scan-Phase, thus payingW(jEj) time per each. In this work,
we show how to keep cnt coherent throughout the Jumping Scan-Phases, ef-
�ciently. Actually, even in Algorithm 15 the coherency of cnt can possibly
break, but Algorithm 15 succeeds at repairing all the incoherencies that may
happen during the whole computation in Q(jEj) total time – just by paying
O(jEj log jV j) time in pre-processing. This is a very convenient trade-off. At
this point we should begin entering into the details of Algorithm 15.

Jumper. We employ a container data-structure, which is denoted by J. It
comprises a bunch of arrays, maps, plus an integer variable J.i. Concerning
maps, the key universe is V or E; i.e., keys are restricted to a narrow range of
integers ([1,jV j ] or [1,jEj ], depending on the particular case).

We suggest direct addressing: the value binded to a key v 2 V (or (u,v) 2
E) is stored at A[v] (resp., A[(u,v)]); if there is no binding for key v (resp.,
(u,v)), the cell stores a sentinel, i.e.,A[v] = ? . Also, we would need to iterate
ef�ciently through A (i.e., without having to scroll entirely through A). This is
easy to implement by handling pointers in a suitable way; one may also keep
a list LA associated to A, explicitly, storing one element for each (k,v) 6= ? of
A; every time that an item is added to or removed from A, then LA is updated
accordingly, in time O(1) (by handling pointers). The last entry inserted into
A (the key of which isn't already binded at insertion time) goes in front of
LA . We say that L , (A,LA ) is an array-list, and we dispose of the following
operations: insert ((k,val ), L), which binds val to k by inserting (k,val )
into L (if any (k,val 0) is already in L, then val 0 gets overwritten by val );
remove (k,L) deletes an entry (k,val ) from L; pop front (L), removes from
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L the last (k,val ) that was inserted (and whose key was not already binded at
the time of the insertion, i.e., the front) also returning it; for each

�
(k,val ) 2

L
�

iterates through the entries of L ef�ciently (i.e., skipping the sentinels).
Notice, any sequence of insert and pop front on L implements a LIFO
policy.

So, J comprises: an integer variable J.i; an array J. f : V ! Q; an array
J.cnt : V0 ! N ; an array J.cmp : f (u,v) 2 E j u 2 V0g ! f T,Fg; a bunch of
array-lists, L f : V ! N , and Linc, Linc

nxt , L
inc
cpy, L> : V ! f�g ; �nally, a special array-

list Lw indexed by f we j e2 Eg, whose values are in turn (classical, linked) lists
of arcs, denoted La; Lw is �lled in pre-processing as follows: (ŵ,La) 2 Lw iff
La = f e2 E j we = ŵg. The subprocedure init jumper () (SubProcedure 3)
takes care of initializing J.

SubProcedure 3: Init Jumper J
SubProcedure init jumper ( J,G)

input : Jumper J, an MPG G.
1 L f , Linc , Linc

nxt , L
inc
cpy , L> , Lw  Æ;

2 foreach v 2 V do
3 J. f [v]  0;
4 if v 2 V0 then
5 J.cnt [v]  j Nout

G (v)j;

6 foreach (u,v,w) 2 E do
7 if v 2 V0 then
8 J.cmp[(u,v)]  T;

9 if Lw [w] = ? then
10 insert

�
(w,Æ), Lw )

�
;

11 insert
�
(u,v), Lw [w]

�
;

12 Sort Lw in increasing order w.r.t. the keys w;

At the beginning, all array-lists are empty (line 1). For every v 2 V (line 2),
we set J. f [u] = 0 and, if v 2 V0, then J.cnt [v]  j Nout

G (v)j (lines 3-5). Then, each
arc (u,v,w) 2 E is �agged as compatible, i.e., J.cmp[(u,v)]  T (lines 6-8); also,
if Lw doesn't contain an entry already binded to w(u,v), then an empty list of
arcs is inserted into Lw as an entry (w,Æ) (lines 9-10); then, in any case, the arc
(u,v) is added to the unique La which is binded to w = w(u,v) in Lw (line 11).
At the end (line 12), all the elements of Lw are sorted in increasing order
w.r.t. their weight keys, we for e2 E (e.g., (W � , La) goes in front of Lw). This
concludes the initialization of J; it takes O(jEj log jV j) time and Q(jV j + jEj)
space.

Main Procedure: solve MPG() . The main procedure of Algorithm 15 is
organized as follows. Firstly, the algorithm performs an initialization phase;
which includes init jumper ( J,G).

The variables W0,W1,n,s �
0 are initially empty (line 1). Also, W �  min e2 E we,

W+  maxe2 E we (line 2). And F is a reference to the Farey's terms, say
f F[j] j j 2 [0,s � 1]g = F jV j , and s  jF jV j j (line 3). At line 4, J is initialized
by init jumper ( J,G) (SubProcedure 3).

Then the Scan-Phases start.
After setting i  W � � 1, j  1 (line 5), Algorithm 15 enters into a while
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loop (line 6), which lasts until both ei-jump ( i , J) = T at line 7, and Linc = Æ
at line 8, hold; in which case (W0,W1,n,s �

0 ) is returned (line 8) and Algo-
rithm 15 halts. Inside the while loop, ei-jump ( i , J) (SubProcedure 8) is in-
voked (line 7). This checks whether or not to make an EI-Jump; if so, the
ending point of the EI-Jump (the new value of i) is stored into J.i. This will be
the starting point for making a sequence of UA-Jumps, which begins by invok-
ing ua-jumps ( J.i,s,F, J,G) at line 9. When the ua-jumps () halts, it returns
( î ,S), where: î is the new value of i (line 9), for some î � J.i; and S is a set of
vertices such that S= W0(Gwî � 1,s� 1

) \ W 1(Gwî ,s� 1
).

Algorithm 15: Main Procedure
Procedure solve MPG(G)

input : An MPG G= ( V,E,w,hV0,V1i ).
output : (W0,W1,n,s �

0 ).
1 W0,W1,n,s �

0  Æ; /*Init Phase*/
2 W �  min e2 E we; W+  maxe2 E we;
3 F  reference to F jV j ; s  jF jV j j;
4 init jumper ( J,G);
5 i  W � � 1; j  1; /*Jumping Scan-Phases*/
6 while T do
7 if ei-jump ( i , J) then
8 if Linc = Æthen return (W0,W1,n,s �

0 );
9 ( i ,S)  ua-jumps ( J.i,s,F, J,G);

10 j  1;

11 J-VI ( i , j,F, J,G[S]);
12 set vars (W0,W1,n,s �

0 , i, j,F, J,G[S]);
13 scl back f ( j,F, J);
14 j  j + 1;

Next, j  1 is set (line 10), as Algorithm 15 is now completing the back-
tracking from wî ,s� 1 to wî ,1, in order to begin scrolling through F jV j by running
a sequence ofJ-VI () at line 11. Such a sequence ofJ-VI ()s will last until the
occurence of another EI-Jump at line 7, that in turn will lead to another se-
quence of UA-Jumps at line 9, and so on. So, aJ-VI () (SubProcedure 6)
is executed on input ( î , j,F, J,G[S]) at line 11. We remark that, during the
J-VI ( i , j,F, J,G[S]), the energy-levels are scaled up, from Q to N ; actually, from
J. f to dD j � J. f e, where D j is the denominator of Fj . Also, J-VI ( i , j,F, J,G[S])
(SubProcedure 6) is designed so that, when it halts, L> = W0(Gprev r J( i ,j) ) \

W1(Gi ,j ). Then, set vars () is invoked on input (W0,W1,n,s �
0 , i, j,F, J,G[S])

(line 12): this checks whether some value and optimal strategy needs to be as-
signed to n and s �

0 (respectively). Next, all of the energy-levels are scaled back,
from N to Q, and stored back into J. f : this is done by invoking scl back f ( j,F, J)
(line 13). Finally, j  j + 1 (line 14) is assigned (to step through the sequence
F jV j during the while loop at line 7). This concludes solve MPG() , which is
the main procedure of Algorithm 15.

Set Values and Optimal Strategy.Let us provide the details of set vars ()
(SubProcedure 4). It takes(W0,W1,n,s �

0 , i, j,F,G) in input, where i 2 [W � ,W+ ]
and j 2 [1,s � 1]. At line 1, D = D j � 1 is the denominator of Fj � 1. Then, all of
the following operations are repeated while L> 6= Æ(line 2). Firstly, the front
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element u of L> is popped (line 3); recall, it will turn out that u 2 W 0(Gi ,j � 1) \
W1(Gi ,j ), thanks to the specs of J-VI () (SubProcedure 6). For this reason, the
optimal value of u in the MPG G is set to n(u)  i + F[j � 1] (line 4); and,
if n(u) � 0, u is added to the winning region W0; else, to W1 (line 5). The
correctness of lines 4-5 relies on Theorem 6.3. Ifu 2 V0 (line 6), it is searched
an arc (u,v) 2 E that is compatible w.r.t. D j � 1 � J. f in Gi ,j � 1 (line 8), i.e., it is
searched somev 2 Nout

G (u) such that:

(D � J. f [u]) � (D � J. f [v]) 	 get scl w
�
w(u,v), i, j � 1,F

�
(line 8);

By Theorem 6.4, settings �
0 (u)  v (line 9) brings an optimal positional strategy

for Player 0 in the MPG G. Here, get scl w
�
w,i, j � 1,F

�
simply returns D j � 1 �

(w(u,v) � i) � N j � 1, where: N j � 1 is the numerator of Fj � 1, and D j � 1 is its
denominator. Thanks to how J-VI () (SubProcedure 6) is designed, at this
point J. f still stores the energy-levels as they were just beforethe last invocation
of J-VI () made at line 11 of Algorithm 15; instead, the new energy-levels,
those lifted-up during that same J-VI () , are stored into L f . So, at this point,
it will turn out that 8u2V J. f [u] = f �

i ,j � 1(u).

SubProcedure 4: Set Values and Optimal Strategy
Procedure set vars (W0,W1,n,s �

0 , i, j,F, J,G)
input : Winning sets W0,W1, values n, opt. strategy s �

0 , i 2 [W � ,W+ ], j 2 [1,s � 1], ref. F to
F jV j , MPG G

1 D  denominator of F[j � 1];
2 while L> 6= Æ do
3 u  pop front (L> );
4 n(u)  i + F[j � 1];
5 if n(u) � 0 then W0  W 0 [ f vg; else W1  W 1 [ f vg;
6 if u 2 V0 then
7 for v 2 Nout

G (u) do
8 if (D � J. f [u]) � (D � J. f [v]) 	 get scl w

�
w(u,v), i, j � 1,F

�
then

9 s �
0 (u)  v; break;

This actually concludes the description of set vars () (SubProcedure 4).
Indeed, the role of L f is precisely that to allow the J-VI () to lift-up the

energy-levels during the ( i , j)-th Scan-Phase, meanwhile preserving (inside J. f )
those computed at the ( i , j � 1)-th one (because set vars () needs them in
order to rely on Theorem 6.4). As mentioned, when set vars () halts, all the
energy-levels are scaled back, from N to Q, and stored back from L f into J. f
(at line 13 of Algorithm 15, see scl back f () in SubProcedure 5).

We remark at this point that all the arithmetics of Algorithm 15 can be done
in Z .

Now, let us detail the remaining subprocedures, those governing the Jumps
and those concerning the energy-levels and the J-VI () . Since the details of the
former rely signi�cantly on those of the latter two, we proceed by discussing
�rstly how the energy-levels are handled by the J-VI () (see SubProcedure 6
and 5).

J-Value-Iteration. J-VI () is similar to the Value-Iteration of [14]. Still,
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there are some distinctive features. The J-VI () takes in input two indices
i 2 [W � ,W+ ] and j 2 [1,s � 1], a referenceF to F jV j , (a reference to) the Jumper
J, (a reference to) the input arena G. Basically, J-VI ( i , j,F, J,G) aims at comput-
ing the least-SEPM of the reweighted EG Gi ,j . For this, it relies on a (slightly
revisited) energy-lifting operator d : [V ! C G] � V ! [V ! C G]. The array-list
employed to keep track of the inconsistent vertices is Linc. It is assumed, as
a pre-condition, that Linc is already initialized when J-VI () starts. We will
show that this pre-condition holds thanks to how Linc

nxt is managed. Recall,
Algorithm 15 is going to perform a sequence of invocations to J-VI () . Dur-
ing the execution of any such invocation of J-VI () , the role of Linc

nxt is precisely
that of collecting, in advance, the initial list of inconsistent vertices for the next1

J-VI () . Rephrasing, the k-th invocation of J-VI () takes care of initializing Linc

for the k + 1-th invocation of J-VI () , and this is done thanks to Linc
nxt .

Also, the energy-levels are managed in a special way. The inital energy-
levels are stored inside J. f (as a pre-condition). Again, the k-th invocation of
J-VI () takes care of initializing the initial energy-levels for the k + 1-th one:
actually, those computed at the end of the k-th J-VI () will become the initial
energy-levels for the k + 1-th one (subject to a rescaling). In this way, Algo-
rithm 15 will succeed at amortizing the cost of all invocations of J-VI () . As
mentioned, since J. f stores rational-scalings, and Gi ,j is weighted in Z , the
J-VI () needs to scale everything up, from Q to N , when it reads the energy-
levels out from J. f . So, J. f is accessedread-onlyduring the J-VI () : we want
to update the energy-levels by applying d, but still we need a back-up copy
of the initial energy-levels (because they are needed at line 8 of set vars () ,
SubProcedure 4). Therefore, a special subprocedure is employed for access-
ing energy-levels during J-VI () , it is named get scl f () (SubProcedure 5);
moreover, an array-list L f is employed, whose aim is that to store the cur-
rent energy-levels, those lifted-up during the J-VI () . SubProcedure 5 shows
get scl f () , it takes: u 2 V, some j 2 [1,s � 1], a reference F to F jV j , and (a
reference to) J.

get scl f () goes as follows. If L f [u] = ? (line 1), the denominator D of Fj

is taken (line 2), and f  dD � J. f [u]e is computed (line 3); a (new) entry (v, f )
is inserted into L f (line 4). Finally, in any case, L f [v] is returned (line 5).

1i.e., the subsequent invocation (in the above mentioned sequence of J-VI () ) that will be
performed, either at line 12 of solve MPG() (Algorithm 15), or at line 3 of ua-jumps () (Sub-
Procedure 9).
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SubProcedure 5: Energy-Levels
SubProcedure get scl f (v, j,F, J)

input : v 2 V, j 2 [1,s � 1],
F is a ref. to F jV j , J is Jumper.

1 if L f [v] = ? then
2 D  denominator of F[j];
3 f  dD � J. f [v]e;
4 insert

�
(v, f ), L f

�
;

5 return L f [v];

SubProcedure scl back f ( j,F, J)
input : j 2 [0,s � 1], F is a ref. to Farey's terms,

J is Jumper.
1 D  denominator of F[j];
2 while L f 6= Ædo
3 (v, f )  pop front (L f );
4 J. f [v]  f / D;

As mentioned, at line 13 of Algorithm 15, J. f will be overwritten by scaling
back the values that are stored in L f . This is done by scl back f () (SubProce-
dure 5): at line 1, D is the denominator of Fj ; then, L f is emptied, one element
at a time (line 2); for each (v, f ) 2 L f (line 3), the rational f / D is stored back
to J. f [v] (line 4). This concludes scl back f () .

Next, J-VI () takes in input: i 2 [W � ,W+ ], j 2 [1,s � 1], a reference F to
F jV j , (a reference to) the Jumper J, and (a reference to) the input MPG G. At
line 1, J-VI () enters into a while loop which lasts while Linc 6= Æ. The front
vertex v  pop front (Linc) is popped from Linc (line 2). Next, the energy-
lifting operator d is applied to v by invoking apply d(v,i, j,F, J,G) (line 3).

There inside (at line 1 of apply d() ), the energy-level of v is lifted-up as
follows:

fv  
�

min
�

get scl f
�
v0, j,F, J

�
	 get scl w

�
w(v,v0), i, j,F

�
j v02 Nout

G (v)
	

, if v 2 V0;
max

�
get scl f

�
v0, j,F, J

�
	 get scl w

�
w(v,v0), i, j,F

�
j v02 Nout

G (v)
	

, if v 2 V1.

Then, fv is stored inside L f (notice, not in J. f ), where it is binded to the
key v (line 2). The control turns back to J-VI () . The current energy-level of
v is retrieved by fv  get scl f (v, j,F, J) (line 4). If fv 6= > (line 5), then v
is inserted into Linc

nxt (if it isn't already in there) (line 6); moreover, if v 2 V0,
then J.cnt [v] and f J.cmp[(v,v0)] j v02 Nout

G (v)g are recalculated from scratch,
by invoking init cnt cmp(v,i, j,F, J,G) (line 7, see SubProcedure 7). Else, if
fv = > (line 8), then v is stored into L> (line 9); and if Linc

nxt [v] 6= ? in addition,
then v is removed from Linc

nxt (line 10).

At this point it is worth introducing the following notation concerning
energy-levels.

De�nition 7.2. For any step of executioni and for any variable x of Algorithm 15,
the state of x at stepi is denoted by xi . Then, thecurrent energy-levels at stepi are
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de�ned as follows:

8v2V f c:i(v) ,
�

Li
f [v], if L i

f [v] 6= ? ;
�
D j i � J. f i [v]

�
, otherwise.

where Dj i is the denominator of Fj i . If i is implicit, the current energy-levels are
denoted by fc .

SubProcedure 6: J-Value-Iteration
Procedure J-VI ( i , j,F, J,G)

input : i 2 [W � ,W+ ] and j 2 [1,s � 1], F is a ref. to Farey's terms, J is Jumper, Gis an MPG.
1 while Linc 6= Ædo
2 v  pop front (Linc );
3 apply d(v,i, j,F, J,G);
4 fv  get scl f (v, j,F, J);
5 if fv 6= > then
6 if Linc

nxt [v] = ? then insert (v,Linc
nxt );

7 if v 2 V0 then init cnt cmp(v,i, j,F, J,G);

8 else
9 insert (v,L> );

10 if Linc
nxt [v] 6= ? then remove (v,Linc

nxt );

11 foreach u 2 N in
G (v) do

12 fu  get scl f (u, j,F, J);
13 Du,v  fv 	 get scl w(w(u,v), i, j,F);
14 if Linc[u] = ? and fu < Du,v then
15 if u 2 V0 and J.cmp[(u,v)] = T then
16 J.cnt [u]  J.cnt [u] � 1;
17 J.cmp[(u,v)]  F;

18 if u 2 V1 OR J.cnt [u] = 0 then insert (u,Linc );

19 swap(Linc , Linc
nxt );

SubProcedure apply d(v,i, j,F, J,G)
input : v 2 V, i 2 [W � ,W+ ], j 2 [1,s � 1], F is a ref. to Farey, J is Jumper, Gis an MPG.

1 fv  
�

min
�

get scl f
�
v0, j,F, J

�
	 get scl w

�
w(v,v0), i, j,F

�
j v02 Nout

G (v)
	

, if v 2 V0;
max

�
get scl f

�
v0, j,F, J

�
	 get scl w

�
w(v,v0), i, j,F

�
j v02 Nout

G (v)
	

, if v 2 V1.
2 insert

�
(v, fv), L f

�
;

Remark 7.2. Recall, the role of Linc
nxt and that of theswap() (line 19) is precisely that

of initializing, in advance, the list of inconsistent vertices Linc for thenext J-VI () ;
because theJ-VI () assumes a correct initialization of Linc as a pre-condition.

We argue in Proposition 7.2 and Lemma 7.1 that, whenJ-VI () halts –say at step
h– it is necessary to initialize J.Linc for thenext J-VI () by including (at least) all the
v 2 V such that:0 < f c:h(v) 6= > .

Notice, if Linc
nxt = Æ holds just before the swap() at line 19, then Linc =

Æholds soon after; therefore, in that case yet another EI-Jumpwill occur (at
line 7 of Algorithm 15) and eventually some other vertices will be inserted
into Linc (see the details of SubProcedure 8). We shall provide the details of
init cnt inc (v,i, j,F, J) (line 7) hereafter. But let us �rst discuss the role
played by J.cnt and J.cmp during J-VI() .
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SubProcedure 7: Counters and Cmp Flags
SubProcedure init cnt cmp(u,i, j,F, J,G)

input : u 2 V0, i 2 [W � ,W+ ], j 2 [1,s � 1], F is a ref. to Farey, J is Jumper, Gis an MPG.
1 cu  0;
2 foreach v 2 Nout

G (u) do
3 fu  get scl f (u, j,F, J);
4 fv  get scl f (v, j,F, J);
5 if fu � fv 	 get scl w

�
w(u,v), i, j,F

�
then

6 cu  cu + 1;
7 J.cmp[(u,v)]  T;

8 else J.cmp[(u,v)]  F;

9 J.cnt [u]  cu;

From line 11 to line 18, J-VI () explores N in
G (v) in order to �nd all the

u 2 N in
G (v) that may have become inconsistent soon after the energy-lifting d

that was applied to v (before, at line 3). For each u 2 N in
G (v) (line 11), the

energy-level fu  get scl f (u, j,F, J) is considered (line 12), also,Du,v  fv 	
w0

i ,j (u,v) is computed (line 13), where fv  get scl f (v, j,F, J); if fu < Du,v

(i.e., in case (u,v) is now incompatible w.r.t. f c in Gi ,j) and Linc[u] = ? holds
(line 14), then:

– If u 2 V0 and(u,v) was not already incompatible before(i.e., if J.cmp[(u,v)] =
T at line 15, then: J.cnt [u] is decremented (line 16), and J.cmp[(u,v)]  F is
assigned (line 17). (This is the role of the J.cnt and J.cmp �ags).

– After that, if u 2 V1 or J.cnt [u] = 0, then u is inserted into Linc (line 18).
When the while loop (at line 1) ends, the (references to) Linc and Linc

nxt are
swapped(line 19) (one is assigned to reference the other and vice-versa, inO(1)
time by interchanging pointers).

The details of init cnt cmp(u,i, j,F, J,G) (line 7), where u 2 V0, are given
in SubProcedure 7. At line 1, cu  0 is initialized. For each v 2 Nout

G (u)
(line 2), it is checked whether (u,v) is compatible with respect to the cur-
rent energy-levels; i.e., whether or not fu � fv 	 w0

i ,j (u,v), holds for fu  
get scl f (u, j,F, J) = f c(u) and fv  get scl f (v, j,F, J) = f c(v) (lines 3-
5); if (u,v) is found to be compatible, then cu is incremented (line 6) and
J.cmp[(u,v)]  T is assigned (line 7); otherwise, (cu stands still and) it is set
J.cmp[(u,v)]  F (line 8). At the very end, it is �nally set J.cnt [u]  cu (line 9).

Concerning J.cmp and J.cnt , it is now worth de�ning a formal notion of
coherency.

De�nition 7.3. Let i be any step of execution of Algorithm 15. Let i2 [W � ,W+ ],
j 2 [0,s � 1], u 2 V0 and v2 Nout

G (u). We say that J.cmpi [(u,v)] is coherent w.r.t.
f c:i in Gi ,j when it holds:

J.cmpi [(u,v)] = T iff f c:i(u) � f c:i(v) 	 w0
i ,j (u,v).

Also, we say that J.cnt i [u] is coherent w.r.t. f c:i in Gi ,j when:

J.cnt i [u] =
�
� � (u,v) 2 E j f c:i(u) � f c:i(v) 	 w0

i ,j (u,v)
	 �

� .
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We say that J.cmpi is coherent when8(u 2 V0 n Linci) 8 (v 2 Nout
G (u)) J.cmpi [(u,v)]

is coherent;
and we say that J.cnt i is coherent when8(u 2 V0 n Linci) J.cnt i [u] is coherent.
Finally, when something is not coherent, it isincoherent. Remark: the stepi can

be implicit.

Remark 7.3. In the Value-Iteration [14], the consistency checking of(u,v) 2 E (line 14)
is explicit: an inequality like “ f(u) � f (v) 	 w(u,v)” is tested; thus, neither thecmp
�ags nor an explicit notion of coherency are needed. So, why we introducedcmp �ags
and coherency? Observe, at line 14 ofJ-VI () , it doesn't make much sense to check
“ f (u) � f (v) 	 w(u,v)” in our setting. Consider the following facts: (1) of course
the values of w0i ,j depend on the index( i , j) of the current Scan-Phase; (2) therefore,
going from one Scan-Phase to the next one (possibly, by Jumping), some counters may
become incoherent, because wi0,j0 < wi ,j if ( i0, j0) > ( i , j); but in the Value-Iteration [14]
the only possible source of incoherency was the application ofd(�,v); in Algorithm 15,
going from one Scan-Phase to the next, we have an additional source of incoherency.
(3) still, J-VI () can't afford to re-initializecnt : V ! N each time that it is needed,
as this would costW(jEj). So, if (u,v) 2 E is found incompatible (at line 14 of
J-VI () ) after the application ofd(�,v) (line 3), how do we know whether or not(u,v)
was already incompatiblebefore the (last) application ofd(�,v)? We suggest to adopt
thecmp �ags, one bit per arc is enough.

To show correctness and complexity, we �rstly assume that whenever J-VI ( i , j,F, J,G)
is invoked the following three pre-conditions are satis�ed:

(PC-1) Lf = Æand 8v2V f c (v) � f �
w0

i ,j
(v);

(PC-2) Linc = Inc( f c, i, j);

(PC-3) J.cnt and J.cmp are coherentw.r.t. f c in Gi ,j .

After having described the internals of the EI-Jumps, we'll show how to
ensure (a slightly weaker, but still suf�cient formulation of) (PC-1), (PC-2),
(PC-3).

Assuming the pre-conditions, similar arguments as in [ [14], Theorem 4]
show that J-VI () computes the least-SEPM of the EGGi ,j in time O(jV j2jEjW)
and linear space.

Proposition 7.1. Assume thatJ-VI () is invoked on input( i , j,F, J,G), and that (PC-
1), (PC-2), (PC-3) hold at invocation time. Then,J-VI () halts within the following
time bound:

Q
�

å
v2V

deg G(v) � `1
Gi ,j

(v)
�

= O
�
jV j2jEjW

�
,

where0 � `1
Gi ,j

(v) � (jV j � 1)jV jW is the number of times that the energy-lifting

operatord is applied to any v2 V, at line 3 ofJ-VI () on input ( i , j,F, J,G). The
working space isQ(jV j + jEj).

WhenJ-VI () halts, fc coincides with theleast-SEPM of the reweighted EGGi ,j .
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Proof. The argument is very similar to that of [ [14], Theorem 4], but there are
some subtle differences between the J-VI () and the Value-Iteration of Brim,
et al.:

(1) J-VI () employs J. f and L f to manage the energy-levels; however, one
can safely argue by always referring to the current energy-levels f c .

(2) J-VI () has no initialization phase; however, notice that the pre-conditions
(PC-1), (PC-2), (PC-3) ensure a correct initialization of it.

(3) J-VI () employs J.cmp in order to test the consistency state of the arcs
(see line 15 and 17 ofJ-VI () ); but it is easy to see that, assuming (PC-3), this
is a correct way to go.

Let us provide a sketch of the proof of correctness. As already observed
in [ [14], Lemma 7], the energy-lifting operator d is v -monotone(i.e., d( f ,v) v
d(g,v) for all f v g). Next, the following invariant is maintained by J-VI ()
(Subprocedure 6) at line 1.

Inv-JVI. 8( iteration i of line 1 of J-VI ( i , j,F, J,G)) 8(u 2 V n J.Linc i) 8(v 2
Nout

G (u)) :
(i) d( f c:i ,u) = f c:i ;
(ii ) if u 2 V0 n J.Linc i

, then J.cnt i [u] and J.cmpi [(u,v)] are both coherent w.r.t.
f c:i in Gi ,j .

It is not dif�cult to prove that Inv-JVI holds. The argument is almost the
same as in [ [14], Lemma 8]; the only noticeable variations are: (a) the J-VI ()
employs J.cmp in order to �ag the compatibility status of the arcs; (b) the
reference energy-level is f c ; (c) at the �rst iteration of line 1 of J-VI () , the
Inv-JVI holds thanks to (PC-2) and (PC-3).

Termination is enforced by three facts: (i) every application of the energy-
lifting operator (line 3) strictly increases the energy-level of one vertex v; (ii)
the co-domain of SEPMs is �nite.

Correctness follows by applying the Knaster-Tarski's �xed point theorem [111].
Indeed, at halting time, since d is v -monotone, and since (PC-1) and Inv-JVI
hold, then we can apply Knaster-Tarski's �xed point theorem [111] to conclude
that, when J-VI () halts at step h (say), then f c:h is the unique least �xpoint of
(simultaneously) all operators d(�,v) for all v 2 V, i.e., f c:h is the least-SEPM of
the EG Gi ,j .

So, when J-VI () halts, it holds that 8v2V f c:h(v) = f �
w0

i ,j
(v).

Concerning the time and space complexity, d(�,v) can be computed in
time O(jNout

G (v)j) (line 3) (seeapply d() in SubProcedure 6); the updating of
J.cnt and J.cmp, which is performed by init cnt cmp() (line 7), also takes
O(jNout

G (v)j) time. Soon after that d(�,v) has been applied to v 2 V (line 3),
the whole N in

G (v) is explored for repairing incoherencies and for �nding new
inconsistent vertices (which is done from line 11 to line 18): this process takes
O(jN in

G (v)j) time. Therefore, if d(�,v) is applied `1
Gi ,j

(v) times to (any) v 2 V

during the J-VI ( i , j,F, J,G), the total time is Q
�

å v2V deg G(v) � `1
Gi ,j

(v)
�
. The

codomain of any SEPM of Gi ,j is at most (jV j � 1)W0, for W0= D jW � j V jW,
where the additional factor D j � j V j comes from the scaled weights of Gi ,j ; thus,
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8v2V 0 � `1
Gi ,j

(v) � (jV j � 1)D jW � ( jV j � 1)jV jW. As already mentioned in Sec-

tion 6.3, the Farey's term F[j] can be computed at the beginning of J-VI () in
O(1) time and space, from F[j � 1] and F[j � 2]. Since å v2V deg G(v) = 2jEj,
the running time is also O(jV j2jEjW). We check that J-VI () works with
Q(jV j + jEj) space: Linc, Linc

nxt , L f , and L> contain no duplicates, so they take
Q(jV j) space; the size ofJ. f and J.cnt is jV j, that of J.cmp plus Lw is Q(jEj). 2

Indeed, the J-VI () keeps track of two additional array-lists, Linc
nxt and L? .

The role of Linc
nxt is to ensure (a slightly weaker formulation of) (PC-2): during

the execution of Algorithm 15, the prev r J( i , j)-th invocation of J-VI () handles
Linc

nxt so to ensure that (a slightly weaker, but still suf�cient form of) (PC-2) holds
for the ( i , j)-th invocation. However, the way in which this happens also relies
on the internals of the EI-Jumps. Also, the EI-Jumps take care of repairing
J.cnt and J.cmp so to ensure (a weaker) (PC-3). The weaker formulation of
(PC-2), (PC-3) is discussed in SubSection 7.3.2. From this perspective, the
functioning of J-VI () and that of the EI-Jumps is quite braided. In order
to detail these aspects, we need to observe the following fact.

Proposition 7.2. Let i 2 [W � ,W+ ] and j2 [1,s � 1]. Assume thatJ-VI ( i , j,F, J,G)
is invoked at some stepi, suppose that J.Linc

nxt
i = Æ, and that (PC-1), (PC-2), (PC-3)

hold at stepi. Then, the following two facts hold:

1. At each step̂i � i of J-VI () that is donebefore theswap() at line 19, it holds

that: J.Lincî � Inc( f c:î , i, j).

2. WhenJ-VI() halts,after theswap() at line 19, say at step h, then:

J.Linch
= f v 2 V j 0 < f c:h(v) 6= >g .

Proof of (1)When J-VI() is invoked, Item 1 holds by (PC-2). Then, J-VI ()
can insert any u 2 V into Linc only at line 18, when exploring N in

G (v) (from
line 11 to line 18), for some v 2 V. At line 18, u 2 V is inserted into Linc iff
fu < Du,v (line 14) and either u 2 V1 or J.cnt [u] = 0; i.e., iff u is inconsistent
w.r.t. f c in Gi ,j (indeed, J.cnt is coherent by (PC-3) and the fact that lines 15-17
of J-VI () preserve coherency). As f c(u) stands still while u is inside Linc, and
f c(v) for any v 2 Nout

G (u) can only increase during the J-VI () , then Item 1
holds. 2

Proof of (2)Let us focus on the state of Linc
nxt . Initially, Linc

nxt = Æby hypothesis.
During the J-VI() , Linc

nxt is modi�ed only at line 6 or 10: some v 2 V is inserted
into Linc

nxt , say at step î, (line 6) iff fv 6= > (where fv is the energy-level of v at
the time of the insertion î). We argue that fv > 0 holds at î (line 6): since v was
extracted from Linc (line 2), and since all vertices in Linc are inconsistent w.r.t.
f c:î in Gi ,j by Item 1, then d(�,v) had really increased f c(v) (at line 3); thus, it
really holds fv > 0 at î. After the insertion, in case f c(v) becomes> at some
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subsequent execution of line 3, v is removed from Linc
nxt (and inserted into L> ),

see lines 8-10. Finally, at line 19 ofJ-VI() , Linc
nxt and Linc are swapped (line 19).

Therefore, at that point, Item 2 holds. 2

When J-VI () halts, it is necessary to initialize Linc for the next J-VI () by
including all the v 2 V such that 0 < f c(v) 6= > , because they are all inconsis-
tent; this is shown by Lemma 7.1.

Lemma 7.1. Let i 2 [W � ,W+ ] and j 2 [1,s � 1], where s, jF jV j j. Assume that
J-VI () is invoked on input( i , j,F, J,G), and that all the pre-conditions (PC-1), (PC-
2), (PC-3) are satis�ed. Assume thatJ-VI ( i , j,F, J,G) halts at step h. Let i0 2
[W � ,W+ ] and j02 [1,s � 1] be any two indices such that( i0, j0) > ( i , j). If v 2 V
satis�es0 < f c:h(v) 6= > , then v2 Inc( f c:h, i0, j0).

Proof. Let v̂ 2 V be any vertex such that 0 < f c:h( v̂) 6= > . By Proposition 7.1,
8v2V f c:h(v) = f �

w0
i ,j

(v) . Being them monotonic, all operators f d(�,v)gv2V have

least �xed point by Knaster-Tarski's theorem [111]. Since f �
w0

i ,j
( v̂) is the least-

SEPM of Gi ,j , then it is the unique least �xed point of simultaneously all oper-
ators f d(�,v)gv2V ; therefore, the following holds:

f c:h( v̂) = f �
w0

i ,j
( v̂) =

(
min f f �

w0
i ,j

(v0) 	 w0
i ,j ( v̂,v0) j v02 Nout

G ( v̂)g, if v̂ 2 V0

maxf f �
w0

i ,j
(v0) 	 w0

i ,j ( v̂,v0) j v02 Nout
G ( v̂)g, if v̂ 2 V1

Since 0< f c:h( v̂) 6= > , it is safe to discard the 	 operator in the equality above.
Moreover, since ( i0, j0) > ( i , j), then w0

i ,j > w0
i0,j0. Therefore, the following in-

equality holds:

f c:h( v̂) =

(
min f f c:h(v0) � w0

i ,j ( v̂,v0) j v02 Nout
G ( v̂)g, if v̂ 2 V0

maxf f c:h(v0) � w0
i ,j ( v̂,v0) j v02 Nout

G ( v̂)g, if v̂ 2 V1

<

(
min f f c:h(v0) � w0

i0,j0( v̂,v0) j v02 Nout
G ( v̂)g, if v̂ 2 V0

maxf f c:h(v0) � w0
i0,j0( v̂,v0) j v02 Nout

G ( v̂)g, if v̂ 2 V1

So, restoring the 	 operator, we have:

f c:h( v̂) �

(
f c:h(v0) 	 w0

i0,j0( v̂,v0) for all v02 Nout
G ( v̂), if v̂ 2 V0

f c:h(v0) 	 w0
i0,j0( v̂,v0) for some v02 Nout

G ( v̂), if v̂ 2 V1

Therefore, v 2 Inc( f c:h, i0, j0). 2

Although, when the prev r J( i , j)-th J-VI () halts, it is correct –and necessary–
to initialize Linc for the ( i , j)-th J-VI () by including all those v 2 V such that
0< f c(v) 6= > (because they are all inconsistent w.r.t. to f c in Gi ,j by Lemma 7.1),
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still, we observe that this is not suf�cient. Indeed, consider the following two
facts (I-1) and (I-2):

(I-1) It may be that, when the prev r J( i , j)-th J-VI () halts, it holds for all
v 2 V that either f c(v) = 0 or f c(v) = > . In that case, Linc would be empty (if
nothing more than what prescribed by Proposition 7.2 is done). We need to
prevent this from happening, so to avoid vain Scan-Phases.

(I-2) When going, say, from the ( i � 1,j)-th to the ( i ,1)-th Scan-Phase, there
might be some (u,v) 2 E such that: f c(u) = 0 = f c(v) and w(u,v) = i ; those
(u,v) may become incompatible w.r.t. f c in Gi ,1 (because i � 1 had been in-
creased to i), possibly breaking the compatibility (and thus the coherency) of
(u,v). These incompatible arcs are not taken into account by Proposition 7.2,
nor by Lemma 7.1. Thus a special care is needed in order to handle them.

Energy-Increasing-Jumps.To resolve the issues raised in I-1 and I-2, the EI-
Jumpswill come into play. The pseudocode of the EI-Jumps is provided in Sub-
Procedure 8. Theei-jump ( i , J) really makes a jump only when Linc = Æholds
invocation. Basically, if Linc = Æ(line 1) we aim at avoiding vain Scan-Phases,
i.e., (I-1); still, we need to take care of some additional (possibly) incompati-
ble arcs, i.e., (I-2). Recall,Linc is initialized by the J-VI () itself according to
Proposition 7.2. Therefore, at line 1, Linc = Æiff either J. f (v) = 0 or J. f (v) = >
for every v 2 V.

SubProcedure 8: EI-Jump
Procedure ei-jump ( i , J)

input : Jumper J.
output : T if an EI-Jump occurs; else,F.

1 if Linc = Æ then
2 Linc  Linc

cpy ; Linc
cpy  Æ;

3 J.i  i + 1;
4 if Lw 6= Æthen
5 (w,La)  read front (Lw );
6 if w = J.i then
7 pop front (Lw );
8 repair (La, J);

9 while Linc = Æand Lw 6= Æ do
10 (w,La)  pop front (Lw );
11 J.i  w;
12 repair (La, J);

13 return T;

14 else return F;

SubProcedure repair (La, J)
input : A list of arcs La, reference to Jumper J.

1 foreach (u,v) 2 La do
2 if J. f [u] = 0 and J. f [v] = 0 and Linc[u] = ? then
3 if u 2 V0 then
4 J.cnt [u]  J.cnt [u] � 1;
5 J.cmp

�
(u,v)

�
 F;

6 if J.cnt [u] = 0 then
7 insert (u,Linc );

8 if u 2 V1 then insert (u,Linc );
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To begin with, if Linc = Æ(line 1), copy Linc  Linc
cpy, then, erase Linc

cpy  Æ
(line 2): this is related to the steps of backtracking that are performed by the
UA-Jumps, we will give more details on this later on. Next, we increment i
to J.i  i + 1 (line 3). Then, if Lw 6= Æat line 4, we read (read-only) the front
entry (ŵ,Lâ) of Lw (line 5); only if ŵ = J.i (line 6), we pop (ŵ,Lâ) out of Lw

(line 7), and we invoke repair (Lâ, J) (line 8) to repair the coherency state of
all those arcs (i.e., all and only those in Lâ) that we mentioned in (I-2). We
will detail repair () shortly, now let us proceed with ei-jump () . At line 9,
while Linc = Æand Lw 6= Æ: the front (w̄,Lā) is popped from Lw (line 10) and
J.i  w̄ is assigned (line 11). The ending-point of the EI-Jump will now reach
w̄ (at least). A moment's re�ection reveals that, jumping up to w̄, some arcs
(u,v) 2 E such that f c(u) = 0 = f c(v) (which were compatible w.r.t. the ( i , j)-
th Scan-Phase, justbeforethe jump) may become incompatible for the (w̄,1)-th
Scan-Phase (which is now candidate to happen), becausew̄ > i . What are these
new incompatible arcs? SinceLw was sorted in increasing order, they're all and
only those of weight w(u,v) = w̄ = J.i; i.e., those in the Lā that is binded to w̄ in
Lw . To repair coherency, repair (Lā, J) (line 12) is invoked. This repeats until
Linc 6= Æor Lw = Æ. Then, ei-jump () returns T (at line 13).

If Linc 6= Æat line 1, then F is returned (line 14); so, in that case,no EI-Jump
will occur.

Let us detail the repair (La, J). On input (La, J), for each arc (u,v) 2 La

(line 1), if J. f [u] = 0 = J. f [v] and Linc[u] = ? (line 2), the following happens.
If u 2 V1, then u is promptly inserted (in front of) Linc (line 8); else, if u 2 V0,
J.cnt [u] is decremented by one unit (line 4); also, it is �agged J.cmp[(u,v)]  F
(line 5). After that, if J.cnt [u] = 0 (line 6), then u is inserted in front of Linc

(line 7). The following proposition holds for the ei-jump () (SubProcedure 8).

Proposition 7.3. Theei-jump () (SubProcedure 8) halts in �nite time. Thetotal
time spent for all invocations ofei-jump () (that are made, at line 7, during the
main while loop of Algorithm 15) isQ(t `7 + jEj), where t̀7 is the total number
of iterations of line 7 that are made by Algorithm 15. Theei-jump () works with
Q(jV j + jEj) space.

Proof. The for-each loop in repair () is bounded: each arc(u,v) of La is vis-
ited exactly once, spending O(1) time per each. Thewhile loop in ei-jump ()
(lines 9-12) is also bounded: it consumes the elements(w,La) of Lw , spending
O(jLaj) time per cycle. There are no other loops in ei-jump () , so it halts
in �nite time. Now, consider the following three facts: (i) ei-jump () is in-
voked by solve MPG() (Algorithm 15) once per each iteration of the main
while loop at line 7. Assume there are t `7 such iterations overall. (ii) either
ei-jump () returns immediately or it visits k arcs (u,v) 2 E in time Q(k), for
some 1� k � j Ej; (iii) each arc (u,v) 2 E is visited by ei-jump () at most once
during the whole execution of Algorithm 15, because the elements of Lw are
consumed and there are no duplicates in there. Altogether, (i), (ii) and (iii)
imply the Q(t `7 + jEj) total running time. Moreover, ei-jump () works with
Q(jV j + jEj) space. IndeedLinc contains no duplicated vertices, so: jLinc j � j V j,
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jLw j = jEj, the size of J. f and that of J.cnt is jV j, and the size of J.cmp is jEj. 2

The description of Algorithm 15 ends by detailing the UA-Jumps.
Unitary-Advance-Jumps.Recall, UA-Jumps are adopted so to scroll through

F jV j only when(and where) it is really necessary; that is only jV j times at most,
because each time at least one vertex will take a value. The pseudocode is
shown in Fig. 9.

SubProcedure 9: UA-Jumps
SubProcedure ua-jumps ( i ,s,F, J,G)

input : i 2 [W � ,W+ ], s= jF jV j j, F is a ref. to F jV j , Jump J, input MPG G.
1 repeat
2 J-VI ( i ,s � 1,F, J,G); /* UA-Jump */
3 if L> = Æthen
4 i  i + 1;
5 rejoin ua-jump ( i ,s,F, J);

6 until L> 6= Æ
7 S  backtrack ua-jump ( i ,s,F, J,G);
8 return ( i ,S);

SubProcedure rejoin ua-jump ( i ,s,F, J)
input : i 2 [W � ,W+ ], F is a ref. to F jV j , Jump J.

1 scl back f (s � 1,F, J);
2 if Lw 6= Æthen
3 (w,La)  read front (Lw );
4 if w = i then
5 pop front (Lw );
6 repair (La, J); // see SubProc. 8

SubProcedure backtrack ua-jump ( i ,s,F, J,G)
input : i 2 [W � ,W+ ], s= jF jV j j, Jump J, MPG G.

1 Linc
cpy  Linc ; Linc  Æ;

2 L f [u]  
�

? , if u 2 L> ;
L f [u] , if u 2 V n L> .

3 scl back f (s � 1,F, J);
4 S  L> ;
5 while L> 6= Ædo
6 u  pop front (L> )
7 if u 2 V0 then
8 init cnt cmp(u,i,1,F, J,G[S]);
9 if J.cnt [u] = 0 then

10 insert (u,Linc );

11 if u 2 V1 then
12 foreach v 2 Nout

G[S](u) do
13 fu  get scl f (u,1,F, J);
14 fv  get scl f (v,1,F, J);
15 w0  get scl w(w(u,v), i,1,F);
16 if fu � fv 	 w0 then
17 insert (u,Linc ); break;

18 return S ;

The UA-Jumps begin soon after that ei-jump() returns T at line 8 of
Algorithm 15. The starting point of the UA-Jumps (i.e., the initial value of
i) is provided by ei-jump() (line 7 of Algorithm 15): it is stored into J.i
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and passed in input to ua-jumps ( J.i,s,F, J,G) (at line 9 of Algorithm 15).
Starting from i = J.i, basically the ua-jumps () repeats a sequence of invo-
cations to J-VI () , on input ( i ,s � 1),( i + 1,s � 1),( i + 2,s � 1), � � � ,( î ,s � 1);
until L> , W0(Ĝi � 1,s� 1) \ W 1(Ĝi ,s� 1) 6= Æholds for some î � i . When L> 6= Æ,
the ua-jumps () backtracksthe Scan-Phases from the( î ,s � 1)-th to the ( î ,1)-th
one, by invoking backtrack ua-jump ( i ,s,F, J,G), and then it halts; soon after,
Algorithm 15 will begin scrolling through F jV j by invoking another sequence
of J-VI () (this time at line 11 of Algorithm 15) on input ( î ,1),( î ,2),( î ,3), . . .
(which is controlled by the while loop at line 6 of Algorithm 15). More de-
tails concerning the UA-Jumps now follow.

So, ua-jumps () (SubProcedure 9) performs a sequence of UA-Jumps (ac-
tually, at least one). The invocation to J-VI ( î ,s � 1,F, J,G) repeats for î � i
(lines 1-2), until L> 6= Æ (line 6). There, L> contains all and only those v 2
V whose energy-level became f (v) = > during the last performed J-VI ()
(line 2); so, at line 3, it is L> = W0(Ĝi � 1,s� 1) \ W 1(Ĝi ,s� 1). At this point,
if L> = Æ (line 3), the procedure prepares itself to make another UA-Jump:
î  î + 1 is set (line 4), and then rejoin ua-jump ( î ,s,F, J) is invoked (line 5).
Else, if L> 6= Æ(line 6), it is invoked backtrack ua-jump ( î ,s,F, J,G) (line 7),
and then ( i ,S) is returned (line 8), where S , L> = W0(Ĝi � 1,s� 1) \ W 1(Ĝi ,s� 1)
was assigned at line 4 of backtrack ua-jump () .

The rejoin ua-jump ( i ,s,F, J) �rstly copies the energy-levels stored in L f
back to J. f , by invoking scl back f (s � 1,F, J) (line 1). Secondly, at lines 4-6,
by operating in the same way as ei-jump () does (see lines 4-8 ofei-jump () ,
SubProcedure 8), it repairs the coherency state of J.cnt and J.cmp w.r.t. all
those arcs(u,v) 2 E such that w(u,v) = i and J. f [u] = 0 = J. f [v].

Let us detail the backtrack ua-jump () . Basically, it aims at preparing a
correct state so to allow Algorithm 15 to step through F jV j . Stepping through
F jV j essentially means to execute a sequence ofJ-VI () at line 11 of Algo-
rithm 15, until Linc = Æ. A moment's re�ection reveals that this sequence
of J-VI () can run just on the sub-arena of G that is induced by S , L> =
W0(Gi � 1,s� 1) \ W 1(Gi ,s� 1) (see line 4 of backtrack ua-jump () ); there is no
real need to lift-up again (actually, slowly than before) all the energy-levels of
the component induced by V n L> : those energy-levels can all be con�rmed
now that the UA-Jumps are �nishing, and they can all stand still while Algo-
rithm 15 is stepping through F jV j at line 11, until another EI-Jump occurs.

For this reason, backtrack ua-jump ( î ,s,F, J,G) works as follows.
Firstly, we copy Linc

cpy  Linc, then we erase Linc  Æ(line 1). This is sort
of a back-up copy, notice that Linc

cpy will be restored back to Linc at line 2 of
ei-jump () (SubProcedure 8): when Algorithm 15 will �nish to step through
F jV j , it will hold Linc = Æat line 1 of ei-jump () (SubProcedure 8), so at that
point the state of Linc will need to be restored by including (at least) all those
vertices that are now assigned to Linc

cpy at line 1 of backtrack ua-jump () .
Next, all the energy-levels of V n L> are con�rmed and saved back to J. f ; this
is done: (i) by setting,
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L f [u]  
�

? , if u 2 L> ;
L f [u] , if u 2 V n L> .

(line 2)

and (ii) by invoking scl back f (s � 1,F, J) (line 3). The energy-levels of
all v 2 L> are thus restored as they were at the end of the ( î � 1,s � 1)-th
invocation of J-VI () at line 2 of ua-jumps () . Next, it is assigned S  L> at
line 4. Then, backtrack ua-jump () takes care of preparing a correct state of
Linc, J.cnt , J.cmp for letting Algorithm 15 stepping through F jV j .

While L> 6= Æ(line 5), we pop the front element of L> , i.e.,u  pop front (L> )
(line 6):

– If u 2 V0 (line 7), then we compute J.cnt [u] and we also compute for every
v 2 Nout

G[S](u) a coherent J.cmp[(u,v)] w.r.t. f c in G[S]î ,1, by init cnt cmp(u, î,1,F, J,G[S])

(line 8); �nally, if J.cnt [u] = 0 (line 9), we insert u into Linc (line 10).
– Else, if u 2 V1 (line 11), we explore Nout

G[S](u) looking for some incompatible

arc (lines 12-17). For eachv 2 Nout
G[S](u) (line 12), if fu � fv 	 w0

î ,1
(u,v) (i.e., if

(u,v) is incompatible w.r.t. f c in Ĝi ,1), where fu  get scl f (u,1,F, J) and
fv  get scl f (v,1,F, J), then, we insert u into Linc at line 17 (also breaking
the for-each cycle).

This concludes the description of the UA-Jumps. Algorithm 15 is com-
pleted.

7.3.2 Correctness of Algorithm 15
This subsection presents the proof of correctness for Algorithm 15. It is orga-
nized as follows. Firstly, we show that J-VI () (SubProcedure 6) works �ne
even when assuming a relaxed form of the pre-conditions (PC-2) and (PC-
3). Secondly, we identify an additional set of pre-conditions under which the
ei-jump () (SubProcedure 8) is correct. Thirdly, we prove that under these
pre-conditions ua-jumps () (SubProcedure 9) is also correct. Finally, we show
that these pre-conditions are all satis�ed during the execution of Algorithm 15,
and that the latter is thus correct.

Correctness of J-VI () (SubProcedure 6)

To prove the correctness of J-VI () , the (PC-1), (PC-2), (PC-3) have been as-
sumed in Lemma 7.1. It would be �ne if they were met whenever Algorithm 16
invokes J-VI() . Unfortunately, (PC-2) and (PC-3) may not hold. Still, we shall
observe that a weaker formulation of them, denoted by (w-PC-2) and (w-PC-3),
really hold; and these will turn out to be enough for proving correctness.

De�nition 7.4. Let i 2 [W � ,W+ ] and j 2 [1,s � 1]. Fix some step of executioni of
Algorithm 15.

The pre-conditions (w-PC-2) and (w-PC-3) are de�ned at stepi as follows.

(w-PC-2) Linci � Inc( f c:i , i, j).

(w-PC-3) 8(u 2 V n Linc i) 8(v 2 Nout
G (u)) :

If u 2 V0, the following three properties hold on J.cnt i and J.cmpi :
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1. If J.cmpi [(u,v)] = F, then(u,v) is incompatible w.r.t. fc in Gi ,j ;

2. If J.cmpi [(u,v)] = T and (u,v) is incompatible w.r.t. fc in Gi ,j , then
v 2 Linci

.

3. J.cnt i [u] =
�
� � v 2 Nout

G (u) j J.cmpi [(u,v)] = T
	 �

� and J.cnt i [u] > 0.

If u 2 V1, and(u,v) 2 E is incompatible w.r.t. fc in Gi ,j , then v2 Linci
.

If (w-PC-3) holds on J.cnt i and J.cmpi , they are saidweak-coherent w.r.t. f c

in Gi ,j .

We will also need the following Lemma 7.2, it asserts that y r : ( i , j) ! f �
i ,j

is monotone non-decreasing; the proof already appears in [ [38], Lemma 8,
Item 1].

Lemma 7.2. Let i, i02 [W � ,W+ ] and j, j02 [1,s � 1] be any two indices such that
( i , j) < ( i0, j0).

Then,8v2V f �
i ,j (v) � f �

i0,j0(v).

Proposition 7.4 shows that (PC-1), (w-PC-2), (w-PC-3) suf�ces for the cor-
rectness ofJ-VI () .

Proposition 7.4. TheJ-VI () (SubProcedure 6) is correct (i.e., Propositions 7.1 and
7.2 still hold) even if (PC-1), (w-PC-2), (w-PC-3) are assumed instead of (PC-1), (PC-
2), (PC-3).

In particular, suppose thatJ-VI () is invoked on input( i , j,F, J,G), say at step
i, and that all of the pre-conditions (PC-1), (w-PC-2), (w-PC-3) hold ati. When
J-VI ( i , j,F, J,G) halts, say at step h, then all of the following four propositions hold:

1. fc:h is the least-SEPM of the EGGi ,j ;

2. J.cnt h, J.cmph are both coherent w.r.t. fc:h in Gi ,j ;

3. Linch = f v 2 V j 0 < f c:h(v) 6= >g ;

4. Lh
> = Vf c:i \ V n Vf c:h.

Proof. Basically, we want to prove that Propositions 7.1 and 7.2 still hold.
Suppose Linc i = Æ. Let u 2 V0. By (w-PC-3) and Linc i = Æ, for every v 2

Nout
G (u), J.cmpi [(u,v)] is coherent w.r.t. f i in Gi ,j ; thus, J.cnt i [u] is also coherent

w.r.t. f c:i in Gi ,j . Therefore, (PC-3) holds. Now, let u 2 V1. By (w-PC-3) and
Linc i = Æ, for every v 2 Nout

G (u) it holds that (u,v) is compatible w.r.t. f c:i in Gi ,j ;
thus, u is consistent w.r.t. f c:i in Gi ,j . In addition, by (w-PC-3) again, J.cnt i [u] >
0 holds for every u 2 V0. Therefore, every u 2 V is consistent w.r.t. f c:i in Gi ,j ;
so, (PC-2) holds. Since (PC-1,2,3) hold, then Propositions 7.1 and 7.2 hold.

Now, suppose Linc i 6= Æ. Since J.cnt i and J.cmpi may be incoherent – at
time i –, there might be some û 2 V n Linc i

which is already inconsistent w.r.t.
f c:i in Gi ,j (i.e., even if u 62Linc i

).
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Still, we claim that, during J-VI () 's execution (say at some stepsi0, i00, i.e.,
eventually), for every u 2 V0 and v 2 Nout

G (u), both J.cmpi0[(u,v)] and J.cnt i00
[u]

will becomecoherent (at i0, i00respectively); and we also claim that any u 2 V1

which was inconsistent at i will be (eventually, say at step i000) inserted into
Linc. Indeed, at that point (say, at î = maxf i0, i00, i000g), all (and only those) û 2 V
that were already inconsistent at invocation time i, or that became inconsistent
during J-VI () 's execution (until step î), they will be really inserted into Linc.

To prove it, let û 2 V n Linc i
and v̂ 2 Nout

G (û) be any two (�xed) vertices such
that either:

û 2 V0 and J.cmpi [(û, v̂)] = F: Then, by (w-PC-3), (û, v̂) is incompatible w.r.t. f c:i

in Gi ,j .

û 2 V0 and J.cmpi [(û, v̂)] = T but (û, v̂) is incompatible w.r.t. f c:i in Gi ,j :

Then, by (w-PC-3), v̂ 2 Linc i
. Since J-VI () aims precisely at emptying

Linc, v̂ is popped from Linc i0
(line 2 of SubProcedure 6) – say at some step

i0 of J-VI () 's execution. Soon after that, N in
G ( v̂) is explored (lines 11-18

of SubProcedure 6); soû is visited, then (û, v̂) is found incompatible (i.e.,

fû < Dû,v̂ at line 14, after i0). Since û 2 V0 n Linc i0
, and J.cmpi0[(û, v̂)] = T,

then at some step i00> i0 the counter J.cnt i00
is decremented by one unit

and therefore J.cmpi00
[(u,v)]  F is assigned (at lines 16-17). This proves

that J.cmp[(û, v̂)] becomes coherent eventually (i.e., at i00). Now, given
û, the same argument holds for any other v 2 Nout

G (û); therefore, when
J.cmp[(û,v)] will �nally become coherent for every v 2 Nout

G (û), then
J.cnt [û] will be coherent as well by (w-PC-3). Thus, by (w-PC-3), co-
herency of both J.cnt and J.cmp holds eventually, say at î. At that point,
all u 2 V0 that were inconsistent at i, or that have become inconsistent
during the execution (up to î), they necessarily have had to be inserted
into Linc (at line 18 of J-VI () , SubProcedure 6), because their (coherent)
counter J.cnt [u] must reach 0 (at î), which allows J-VI () to recognize
u as inconsistent at lines 14-18. Notice that the coherency of J.cnt and
J.cmp is kept satis�ed from î onwards: when some v 2 V is popped out of
Linc (line 2), then J.cnt and J.cmp are recalculated from scratch (line 7),
and it is easy to check that init cnt cmp() (SubProcedure 7) is correct;
then J.cnt , J.cmp may be modi�ed subsequently, at lines 16-17 (SubPro-
cedure 6), but it's easy to check that lines 14-17 preserve coherency; so,
coherency will be preserved until J-VI () halts.

û 2 V1 and (û, v̂) is incompatible w.r.t. f c:i in Gi ,j :

Then, by (w-PC-3), v̂ 2 Linc i
. As before, since the J-VI () aims precisely

at emptying Linc, v̂ is popped from Linc (line 2 of SubProcedure 6); at
some step of J-VI () 's execution. Soon after that, N in

G ( v̂) is explored
(lines 11-18 of SubProcedure 6). As soon asû is visited, (û, v̂) is found
incompatible (i.e., fû < Dû,v̂ at line 14). Since û 2 V1 n Linc, then û is
promptly inserted into Linc (line 18). In this way, all those u 2 V1 that
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were inconsistent at the time of J-VI () 's invocation, or that become in-
consistent during the execution, they necessarily have had to be inserted
into Linc (line 18 of SubProcedure 6).

This analysis is already suf�cient for asserting that Proposition 7.1 holds, even
assuming only (PC-1), (w-PC-3): indeed, the Inv-JVI invariant mentioned
in its proof will hold, eventually, and then the Knaster-Tarski's �xed point
theorem applies. This also proves Items (1) and (2).

Moreover, by (w-PC-2) and by arguments above, at each step ī of J-VI () ,
if v 2 Linc ī

then v is really inconsistent w.r.t. f c:ī in Gi ,j , i.e., Linc ī � Inc( f c:ī , i, j).
Thus, every time that some v is popped from Linc at line 2, then d( f c,v) re-
ally increases f c(v) at line 3; therefore, f c(v) > 0 holds whenever v is inserted
into Linc

nxt at line 6 of J-VI () (SubProcedure 6); this implies that Proposition 7.2
holds, assuming (PC-1), (w-PC-2), (w-PC-3), and proves Item (3). To conclude,
we show Item (4). Notice, L> is modi�ed only at line 9 of J-VI () (SubPro-
cedure 6); in particular, some v 2 V is inserted into L> at line 9, say at step
î, if and only if f c:î(v) = > . Since the energy-levels can only increase during
the execution of J-VI () , then Lh

> � V n Vf c:h = f u 2 V j f c:h(u) = >g . Since at

each step ī of J-VI () it holds Linc ī � Inc( f c:ī , i, j), then whenever some v 2 V
is inserted into L> at line 9, it must be that f c:i(v) < > where i is the in-
vocation time (otherwise, v would not have been inconsistent at step ī); thus,
Lh

> � Vf c:i = f v 2 V j f c:i(v) < >g . Therefore, Lh
> � Vf c:i \ V nVf c:h. Vice versa, let

v 2 Vf c:i \ V nVf c:h; the only way in which J-VI () can increase the energy-level
of v from step i to step h is by applying d( f c,v) at line 3; as soon asf c(v) = >
(and this will happen, eventually, since v 2 Vf c:i \ V n Vf c:h), then v is inserted

into L> at line 9. Thus, Vf c:i \ V n Vf c:h � Lh
> . Therefore, Lh

> = Vf c:i \ V n Vf c:h;
and this proves Item (4). 2

Correctness of EI-Jump (SubProcedure 8)

To begin, it is worth asserting some preliminary properties of ei-jump () (Sub-
Procedure 8).

Lemma 7.3. Assumeei-jump ( i , J) (SubProcedure 8) is invoked by Algorithm 15 at
line 7, say at stepi, and for some i2 [W � � 1,W+ ] (i.e., for i= i i). Assume Linci = Æ
and Li

w 6= Æ; and say thatei-jump ( i , J) halts at step h. Then, the following two
properties hold.

1. The front element(w̄,La) of Li
w satis�esw̄ = min f we j e2 E,we > ig;

2. It holds that J.ih � w̄ > i.

Proof. At the �rst invocation of ei-jump ( i , J) (SubProcedure 8), made at line 7
of Algorithm 15, it holds i = W � � 1 (by line 5 of Algorithm 15). Since Linc i = Æ,
then ei-jump () �rst assigns J.i  i + 1 = W � at line 3. SinceLw was sorted in
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increasing order at line 12 of init jumper () (SubProcedure 3), the front entry
of Lw has key w = W � , and all of the subsequent entries of Lw are binded to
greater keys. Actually, ei-jump () consumes the front entry (W � , La) of Lw at
line 7; and W � is assigned to J.i (line 3). These observations imply both Item 1
and Item 2. Now, consider any invocation of ei-jump ( i , J) (SubProcedure 8)
which is not the �rst, but any subsequent one. Let us check that the front
element (w̄,La) of Li

w satis�es w̄ = min f we j e2 E,we > i ig. Consider each line
of Algorithm 15 at which the value i i could have ever been assigned to i; this
may happen only as follows:

– At line 3 of ei-jump () (SubProcedure 8), i.e.,J.i  i + 1 (= i i). But then
the front element (ŵ,La) of Lw is also checked at lines 5-6 (becauseLw 6= Æ):
and ŵ is popped from Lw at line 7, in caseŵ = J.i (= i i) holds at line 6.

– The same happens at lines 2-5 ofrejoin ua-jump () (SubProcedure 9);
just notice that in that case i was incremented just before at line 4 of ua-jumps ()
(SubProcedure 9).

– At lines 9-10 of ei-jump () (SubProcedure 8), whenever the front element
(ŵ,La) of Lw is popped, then J.i  ŵ is assigned.

Therefore, in any case, the following holds:
When the variable i got any of its possible values, say î (including i i), the

front entry (ŵ,La) of Lw had always been checked, and then popped from Lw

if ŵ = î .
Recall, Lw was sorted in increasing order at line 12 of init jumper ()

(SubProcedure 3).
Therefore, when ei-jump ( i i , J) is invoked at step i, all of the entries (w,La)

of Lw such that w � i i must already have been popped from Lw before step i.
Therefore, w̄ = min f we j e2 E,we > i ig, if w̄ is the key (weight) of the front

entry of Li
w .

Next, since Linc i = Æand Li
w 6= Æby hypothesis, and by line 9 of ei-jump () ,

at least one further element (w,La) of Lw must be popped from Li
w , either at

line 7 or line 10 of ei-jump () , soon after i. Consider the last element, say w0,
which is popped after i and before h. Then, J.ih  w0 is assigned either at line 3
or line 11 of ei-jump () . Notice, w0� w̄ > i i . Thus, J.ih � w̄ > i i . 2

The following proposition essentially asserts that ei-jump () (SubProce-
dure 8) is correct. To begin, notice that, when ei-jump ( i , J) is invoked at
line 7 of Algorithm 15, then i 2 [W � � 1,W+ ]. Also recall that any invocation
of ei-jump ( i , J) halts in �nite time by Proposition 7.3.

Proposition 7.5. Consider any invocation ofei-jump ( i , J) (SubProcedure 8) that is
made at line 7 of Algorithm 15, say at stepi, and for some i2 [W � � 1,W+ ]. Further
assume that Linci = Æand thatei-jump () halts at step h.

Suppose the following pre-conditions are all satis�ed at invocation timei, for s=
jF jV j j:

(eij-PC-1) fc:i is the least-SEPM ofGi ,s� 1; thus, Inc( f c:i , i,s � 1) = Æ. Also, Li
f = Æ.
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(eij-PC-2) f v 2 V j 0 < f c:i(v) 6= >g = Æ;

(eij-PC-3) Linc
cpy

i � Inc( f c:i , i0, j0) for every( i0, j0) > ( i ,s � 1);

(eij-PC-4) J.cnt i and J.cmpi are both coherent w.r.t. fc:i in Gi ,s� 1.

Finally, let i0 2 [W � ,W+ ], j0 2 [1,s � 1] be any indices such that( i ,s � 1) <
( i0, j0) � ( J.ih,1). Then, the following holds.

1. Suppose that Liw 6= Æ. Let (ŵ,Lâ) be any entry of Liw such thatŵ = J.i i
0
= i0

holds either at line 6 or line 11 ofei-jump ( i , J), for some stepi0> i. When the
repair (Lâ, J) halts soon after, either at line 8 or 12 (respectively), say at some
stepi00> i0, both J.cnt i00

and J.cmpi00
are coherent w.r.t. fc:i00

(= f c:i) in Gi0,j0.

2. If ( i0, j0) < ( J.ih,1), then Inc( f c:i , i0, j0) = Æ;

3. It holds that either Linch 6= Æor both Linch = Æand Lh
w = Æ.

Anyway, Linch = Inc( f c:h, ih,1).

Notice that f c stands still during ei-jump () (SubProcedure 8), i.e., f c:i =
f c:i0 = f c:i00

= f c:h, for steps i, i0, i00,h de�ned as in Proposition 7.5. In the proofs
below, we can simply refer to f c.

Proof of Item (1).Let u 2 V0 and v 2 Nout
G (u), let i0, j0 be �xed indices such that

( i ,s � 1) < ( i0, j0) � ( J.ih,1). By (eij-PC-2), either f c(u) = > or f c(u) = 0, either
f c(v) = > or f c(v) = 0.

� If f c(u) = > , then (u,v) 2 E is compatible w.r.t. f c in Gi ,s� 1. So,J.cmpi [(u,v)] =
T holds by (eij-PC-4). Since f c(u) = > , ei-jump () can't modify J.cmp[(u,v)];
see line 2 of repair () (SubProcedure 8). So,J.cmpi00

[(u,v)] = T is still
coherent w.r.t. f c in Gi0,j0.

� If f c(u) = 0 and f c(v) = > , then (u,v) 2 E is incompatible w.r.t. f c in
Gi ,s� 1. So, J.cmpi [(u,v)] = F holds by (eij-PC-4); and it will hold for the
whole execution of ei-jump () , becauseei-jump () never changesJ.cmp
from F to T. Thus, J.cmpi00

[(u,v)] = F is still coherent w.r.t. f c in Gi0,j0.

� Assume f c(u) = 0 and f c(v) = 0.

Again, J.cmpi [(u,v)] is coherent w.r.t. f c in Gi ,s� 1 by (eij-PC-4). We have
two cases:

– If J.cmpi [(u,v)] = F, then (u,v) is incompatible w.r.t. f c in Gi ,s� 1, i.e.,
f c(u) < f c(v) � (w(u,v) � i � Fs� 1). Since f c(u) = f c(v) = 0 and
Fs� 1 = 1, then:

0 = f c(u) < f c(v) � w(u,v) + i + Fs� 1 = � w(u,v) + i + 1.
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