N. Abdo, M. Xia, and C. C. Brown, Population-Based in Vitro Hazard and Concentration???Response Assessment of Chemicals: The 1000 Genomes High-Throughput Screening Study, Environmental Health Perspectives, vol.123, issue.5, pp.458-466, 2015.
DOI : 10.1289/ehp.1408775

R. Gonçalo, D. Abecasis, A. Altshuler, and . Auton, A map of human genome variation from population-scale sequencing, Nature, vol.467, issue.7319, pp.1061-73, 2010.

D. Adkins, . Clark, and . Åberg, Genome-wide pharmacogenomic study of citalopram-induced side effects in STAR*D. Translational psychiatry, p.129, 2012.

A. Ivan, S. Adzhubei, L. Schmidt, and . Peshkin, A method and server for predicting damaging missense mutations, Nature methods, vol.7, issue.4, pp.248-257, 2010.

C. Angermueller, T. Pärnamaa, L. Parts, and O. Stegle, Deep learning for computational biology, Molecular Systems Biology, vol.12, issue.7, p.878, 2016.
DOI : 10.15252/msb.20156651

S. Atwell, S. Yu, . Huang, J. Bjarni, and . Vilhjálmsson, Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines, Nature, issue.7298, pp.465627-631, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00468440

C. Azencott, D. Grimm, M. Sugiyama, Y. Kawahara, and K. M. Borgwardt, Efficient network-guided multi- 122 BIBLIOGRAPHY locus association mapping with graph cuts, Bioinformatics, issue.13, pp.29-171, 2013.
DOI : 10.1093/bioinformatics/btt238

URL : https://academic.oup.com/bioinformatics/article-pdf/29/13/i171/18536066/btt238.pdf

B. Bakker and T. Heskes, Task Clustering and Gating for Bayesian Multitask Learning, Journal of Machine Learning Research, vol.4, issue.1, pp.83-99, 2003.

V. Bellon, V. Stoven, and C. Azencott, MULTITASK FEATURE SELECTION WITH TASK DESCRIPTORS, Biocomputing 2016, pp.261-272, 2016.
DOI : 10.1142/9789814749411_0025

URL : https://hal.archives-ouvertes.fr/hal-01246697

A. Ben-hur and W. S. Noble, Kernel methods for predicting protein-protein interactions, Bioinformatics, vol.21, issue.Suppl 1, 2005.
DOI : 10.1093/bioinformatics/bti1016

URL : https://academic.oup.com/bioinformatics/article-pdf/21/suppl_1/i38/524723/bti1016.pdf

E. Bernard, Kernel bilinear regression for toxicogenetics, RECOMB Conference on Regulatory and Systems Genomics, 2013.
DOI : 10.1002/minf.201700053

URL : http://onlinelibrary.wiley.com/doi/10.1002/minf.201700053/pdf

S. Bickel, J. Bogojeska, T. Lengauer, and T. Scheffer, Multi-task learning for HIV therapy screening, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.56-63, 2008.
DOI : 10.1145/1390156.1390164

URL : http://icml2008.cs.helsinki.fi/papers/520.pdf

V. Edwin, . Bonilla, V. Felix, C. Agakov, and . Williams, Kernel multi-task learning using task-specific features, The 11th International Conference on Artificial Intelligence and Statistics, pp.43-50, 2007.

V. Edwin, . Bonilla, M. Kian, C. Chai, and . Williams, Multi-task Gaussian process prediction, Advances in Neural Information Processing Systems, pp.153-160, 2007.

L. Breiman, Random forests, Machine learning, pp.5-32, 2001.

L. Breiman, Better Subset Regression Using the Nonnegative Garrote, Technometrics, vol.37, issue.4, pp.373-384, 1995.
DOI : 10.1080/01621459.1980.10477428

L. Breiman, J. Friedman, J. Charles, . Stone, A. Richard et al., Classification and regression trees, 1984.

A. Cami, A. Arnold, S. Manzi, and B. Reis, Predicting Adverse Drug Events Using Pharmacological Network Models, Science Translational Medicine, vol.7, issue.11, 2011.
DOI : 10.1016/S1359-6446(02)02288-2

C. Campbell, Kernel methods: a survey of current techniques, Neurocomputing, vol.48, issue.1-4, pp.63-84, 2002.
DOI : 10.1016/S0925-2312(01)00643-9

R. Caspi, R. Billington, and L. Ferrer, The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases, Nucleic Acids Research, vol.60, issue.D1, pp.471-480, 2015.
DOI : 10.1093/bioinformatics/btt291

V. José, M. J. Castell, and . Gómez-lechón, In vitro methods in pharmaceutical research Academic press, 1996.

S. Checkley, L. Maccallum, and J. Yates, Bridging the gap between in vitro and in vivo: Dose and schedule predictions for the ATR inhibitor AZD6738, Scientific Reports, vol.28, issue.1, 2015.
DOI : 10.1093/bioinformatics/bts288

L. Chen, T. Huang, and J. Zhang, Predicting Drugs Side Effects Based on Chemical-Chemical Interactions and Protein-Chemical Interactions, BioMed Research International, vol.8, issue.4, p.485034, 2013.
DOI : 10.1586/epr.11.20

URL : http://doi.org/10.1155/2013/485034

L. Chen, T. Huang, and J. Zhang, Predicting Drugs Side Effects Based on Chemical-Chemical Interactions and Protein-Chemical Interactions, BioMed Research International, vol.8, issue.4, 2013.
DOI : 10.1586/epr.11.20

URL : http://doi.org/10.1155/2013/485034

L. Chen, C. Li, S. Miller, and F. Schenkel, Multi-population genomic prediction using a multi-task Bayesian learning model, BMC Genetics, vol.15, issue.1, p.53, 2014.
DOI : 10.1186/1471-2105-11-529

URL : https://bmcgenet.biomedcentral.com/track/pdf/10.1186/1471-2156-15-53?site=bmcgenet.biomedcentral.com

F. Cheng and Z. Zhao, Machine learning-based prediction of drug???drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties, Journal of the American Medical Informatics Association, vol.42, issue.(Suppl 9), pp.278-286, 2014.
DOI : 10.1093/nar/gkt1031

S. Francis, M. Collins, A. Morgan, and . Patrinos, The Human Genome Project: lessons from large-scale biology, Science, issue.5617, pp.300286-90, 2003.

R. Collobert and J. Weston, A unified architecture for natural language processing, Proceedings of the 25th international conference on Machine learning, ICML '08
DOI : 10.1145/1390156.1390177

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, vol.1, issue.3, pp.273-297, 1995.
DOI : 10.1007/BF00994018

J. Cui, E. A. Stahl, and S. Saevarsdottir, Genome-Wide Association Study and Gene Expression Analysis Identifies CD84 as a Predictor of Response to Etanercept Therapy in Rheumatoid Arthritis, PLoS Genetics, vol.17, issue.3, p.1003394, 2013.
DOI : 10.1371/journal.pgen.1003394.s009

J. Cui, E. A. Stahl, and S. Saevarsdottir, Genome-Wide Association Study and Gene Expression Analysis Identifies CD84 as a Predictor of Response to Etanercept Therapy in Rheumatoid Arthritis, PLoS Genetics, vol.17, issue.3, p.1003394, 2013.
DOI : 10.1371/journal.pgen.1003394.s009

A. Joseph, . Dimasi, G. Henry, R. W. Grabowski, and . Hansen, Innovation in the pharmaceutical industry: New estimates of R&D costs, Journal of Health Economics, vol.47, pp.20-33, 2016.

J. Annette, A. Dobson, and . Barnett, An introduction to generalized linear models, 2008.

A. Irini, P. Doytchinova, . Guan, R. Darren, and . Flower, Identifying human MHC supertypes using bioinformatic methods, The Journal of Immunology, vol.172, issue.7, pp.4314-4323, 2004.

F. Eduati, M. Lara, T. Mangravite, and . Wang, Prediction of human population responses to toxic compounds by a collaborative competition, Nature Biotechnology, vol.123, issue.9, pp.933-973, 2015.
DOI : 10.1021/ci100050t

URL : https://hal.archives-ouvertes.fr/hal-01246684

B. Efron, T. Hastie, I. Johnston, and R. Tibshirani, Least Angle Regression. The Annals of Statistics, pp.407-499, 2004.

E. William, . Evans, L. Howard, and . Mcleod, Pharmacogenomics?drug disposition , drug targets, and side effects, The New England journal of medicine, vol.348, issue.6, pp.538-587, 2003.

T. Evgeniou, A. Charles, M. Micchelli, and . Pontil, Learning multiple tasks with kernel methods, Journal of Machine Learning Research, pp.615-637, 2005.

T. Evgeniou and M. Pontil, Regularized multi--task learning, Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '04, pp.109-117, 2004.
DOI : 10.1145/1014052.1014067

J. Fan, J. Lv, and L. Qi, Sparse High-Dimensional Models in Economics, Annual Review of Economics, vol.3, issue.1, pp.291-317, 2011.
DOI : 10.1146/annurev-economics-061109-080451

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196636

D. R. Flower, On the Properties of Bit String-Based Measures of Chemical Similarity, Journal of Chemical Information and Computer Sciences, vol.38, issue.3, pp.379-386, 1998.
DOI : 10.1021/ci970437z

H. Furuya, P. Fernandez-salguero, and W. Gregory, Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy, Pharmacogenetics, vol.5, issue.6, pp.389-392, 1995.
DOI : 10.1097/00008571-199512000-00008

J. Ghosn and Y. Bengio, Multi-Task Learning for Stock Selection, Advances in Neural Information Processing Systems 9

A. Gottlieb, G. Y. Stein, Y. Oron, E. Ruppin, and R. Sharan, INDI: a computational framework for inferring drug interactions and their associated recommendations, Molecular Systems Biology, vol.298, issue.592, p.592, 2012.
DOI : 10.1517/17425250902926099

URL : http://msb.embopress.org/content/msb/8/1/592.full.pdf

G. Dominik, C. A. Grimm, F. Azencott, and . Aicheler, The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity, Human Mutation, vol.36, issue.5, pp.513-523, 2015.

D. Heckerman, C. Kadie, and J. Listgarten, Leveraging Information Across HLA Alleles/Supertypes Improves Epitope Prediction, Journal of Computational Biology, vol.14, issue.6, pp.736-746, 2007.
DOI : 10.1089/cmb.2007.R013

URL : http://www.cs.toronto.edu/~jenn/papers/LeveragingInfoEpitopePredictionJCB2007.pdf

E. Arthur, . Hoerl, W. Robert, and . Kennard, Ridge Regression: Biased estimation for nonorthogonal problems, Technometrics, vol.12, issue.1, pp.55-67, 1970.

J. Huang, C. Niu, and C. D. Green, Systematic prediction of pharmacodynamic drug-drug interactions through proteinprotein-interaction network, PLoS Computational Biology, vol.9, issue.3, p.2013

. Liang-chin, X. Huang, J. Y. Wu, and . Chen, Predicting adverse side effects of drugs, BMC Genomics, vol.12, p.11, 2011.

V. Srinivasan, R. Iyer, P. Harpaz, A. Lependu, N. H. Bauer-mehren et al., Mining clinical text for signals of adverse drug-drug interactions, Journal of the American Medical Informatics Association, vol.21, issue.2, pp.353-362, 2014.

L. Jacob, B. Hoffmann, V. Stoven, and J. Vert, Virtual screening of GPCRs: An in silico chemogenomics approach, BMC Bioinformatics, vol.9, issue.1, p.363, 2008.
DOI : 10.1186/1471-2105-9-363

URL : https://hal.archives-ouvertes.fr/hal-00220396

L. Jacob and J. Vert, Efficient peptide???MHC-I binding prediction for alleles with few known binders, Bioinformatics, vol.22, issue.Web Server issue, pp.358-366, 2008.
DOI : 10.1093/bioinformatics/btl141

URL : https://hal.archives-ouvertes.fr/hal-00433574

L. Jacob and J. Vert, Protein-ligand interaction prediction: an improved chemogenomics approach, Bioinformatics, vol.18, issue.Database issue, pp.2149-56, 2008.
DOI : 10.1093/bioinformatics/18.suppl_1.S276

URL : https://hal.archives-ouvertes.fr/hal-00433572

A. Jalali, S. Sanghavi, C. Ruan, K. Pradeep, and . Ravikumar, A dirty model for multi-task learning, Advances in Neural Information Processing Systems, pp.964-972, 2010.

W. Evan-johnson, C. Li, and A. Rabinovic, Adjusting batch effects in microarray expression data using empirical Bayes methods, Biostatistics, vol.30, issue.4, pp.118-145, 2007.
DOI : 10.1093/nar/30.4.e15

M. Iain, D. Johnstone, and . Michael-titterington, Statistical challenges of high-dimensional data, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.367, pp.4237-4253, 1906.

M. Daniël, . Jonker, A. Sandra, . Visser, H. Piet et al., Towards a mechanism-based analysis of pharmacodynamic drug?drug interactions in vivo, Pharmacology & therapeutics, vol.106, issue.1, pp.1-18, 2005.

R. Judson, A. Richard, and D. J. Dix, The Toxicity Data Landscape for Environmental Chemicals, Environmental Health Perspectives, vol.117, issue.5, pp.685-695, 2009.
DOI : 10.1289/ehp.0800168

M. Kanehisa, Y. Sato, M. Kawashima, M. Furumichi, and M. Tanabe, KEGG as a reference resource for gene and protein annotation, Nucleic Acids Research, vol.44, issue.D1, pp.457-462, 2016.
DOI : 10.1021/ci200367w

A. Katsnelson, Momentum grows to make 'personalized' medicine more 'precise', Nature Medicine, vol.1, issue.3, pp.249-249, 2013.
DOI : 10.1186/2001-1326-1-7

M. Kuhn, M. A. Banchaabouchi, and M. Campillos, Systematic identification of proteins that elicit drug side effects, Molecular Systems Biology, vol.6, issue.1, p.663, 2013.
DOI : 10.1016/j.jbi.2010.04.006

P. Kumar, S. Henikoff, and P. C. Ng, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nature Protocols, vol.4, issue.7, pp.1073-81, 2009.
DOI : 10.1101/gr.772403

V. Law, C. Knox, and Y. Djoumbou, DrugBank 4.0: shedding new light on drug metabolism, Nucleic Acids Research, vol.40, issue.D1, pp.1091-1097, 2014.
DOI : 10.1177/0091270003043005001

J. Lazarou, H. Bruce, . Pomeranz, N. Paul, and . Corey, Incidence of Adverse Drug Reactions in Hospitalized Patients, JAMA, vol.279, issue.15, pp.2791200-1205, 1998.
DOI : 10.1001/jama.279.15.1200

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.9, issue.7553, pp.436-444, 2015.
DOI : 10.1007/s10994-013-5335-x

C. Aurelie, G. Lozano, and . Swirszcz, Multi-level lasso for sparse multi-task regression, Proceedings of the 29th International Conference on Machine Learning, pp.361-368, 2012.

J. David and . Mackay, Information theory, inference and learning algorithms, 2003.

P. Mahé, L. Ralaivola, V. Stoven, and J. Vert, The Pharmacophore Kernel for Virtual Screening with Support Vector Machines, Journal of Chemical Information and Modeling, vol.46, issue.5, pp.2003-2017, 2014.
DOI : 10.1021/ci060138m

A. Gil, D. M. Mcvean, and . Altshuler, An integrated map of genetic variation from 1,092 human genomes, Nature, issue.7422, pp.49156-65, 2012.

N. Meinshausen and P. Bühlmann, High-dimensional graphs and variable selection with the Lasso, The Annals of Statistics, vol.34, issue.3, pp.1436-1462, 2006.
DOI : 10.1214/009053606000000281

N. Meinshausen and P. Bühlmann, Stability selection, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.7, issue.4, pp.417-473, 2010.
DOI : 10.1186/1471-2105-9-307

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2010.00740.x/pdf

A. Miguel, L. F. Azevedo, M. Araújo, and A. C. Pereira, Frequency of adverse drug reactions in hospitalized patients: a systematic review and meta-analysis, Pharmacoepidemiology and Drug Safety, vol.24, issue.5, pp.1139-1154, 2012.
DOI : 10.7705/biomedica.v26i1.1392

S. Min, B. Lee, and S. Yoon, Deep learning in bioinformatics, Briefings in Bioinformatics, vol.13, issue.3, 2016.
DOI : 10.1109/ICRA.2015.7139550

URL : http://arxiv.org/pdf/1603.06430

S. Mizutani, E. Pauwels, V. Stoven, S. Goto, and Y. Yamanishi, Relating drug-protein interaction network with drug side effects, Bioinformatics, vol.26, issue.12, pp.522-528, 2012.
DOI : 10.1093/bioinformatics/btq176

URL : https://academic.oup.com/bioinformatics/article-pdf/28/18/i522/679865/bts383.pdf

K. Murugesan and J. Carbonell, Multi-task multiple kernel relationship learning. arXiv preprint, 2016.
DOI : 10.1137/1.9781611974973.77

URL : http://epubs.siam.org/doi/pdf/10.1137/1.9781611974973.77

M. Nelson, . Bacanu, and . Mosteller, Genome-wide approaches to identify pharmacogenetic contributions to adverse drug reactions. The pharmacogenomics journal, pp.23-33, 2009.
DOI : 10.1038/tpj.2008.4

URL : http://www.nature.com/tpj/journal/v9/n1/pdf/tpj20084a.pdf

Y. Nesterov, Introductory Lectures on Convex Optimization, 2004.
DOI : 10.1007/978-1-4419-8853-9

G. Obozinski, B. Taskar, and M. Jordan, Multi-task feature selection, Statistics Department, 2006.

H. Ogata, S. Goto, and K. Sato, KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Research, vol.26, issue.1, pp.29-34, 1999.
DOI : 10.1093/nar/26.1.38

J. Igho, . Onakpoya, J. Carl, . Heneghan, K. Jeffrey et al., Postmarketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature, BMC Medicine, pp.1-11, 2016.

Q. Sinno-jialin-pan and . Yang, A survey on transfer learning, IEEE Transactions on Knowledge and Data Engineering, vol.22, issue.10, pp.1345-1359, 2010.

D. Pappas, J. Kremer, . Reed, J. Greenberg, and . Curtis, Design characteristics of the CORRONA CERTAIN study: a comparative effectiveness study of biologic agents for rheumatoid arthritis patients, BMC Musculoskeletal Disorders, vol.11, issue.1, p.113, 2014.
DOI : 10.1056/NEJMp0901355

E. Pauwels, V. Stoven, and Y. Yamanishi, Predicting drug side-effect profiles: a chemical fragment-based approach, BMC Bioinformatics, vol.12, issue.1, p.169, 2011.
DOI : 10.1093/biostatistics/kxp008

URL : https://hal.archives-ouvertes.fr/inserm-00663945

A. Pentina, H. Christoph, and . Lampert, Active task selection for multi-task learning. arXiv preprint, 2016.

A. Perera, A. Buil, M. C. , and D. Bernardo, Clustering of individuals given SNPs similarity based on normalized mutual information: F7 SNPs in the GAIT sample, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.123-126, 2007.
DOI : 10.1109/IEMBS.2007.4352238

A. Pérez, Supervised classification in continuous domains with Bayesian networks, 2010.

B. Peters and H. Bui, Sune Frankild, et al. A community resource benchmarking predictions of peptide binding to MHC-I molecules

M. Prevoo, M. Van-'t-hof, and . Hh-kuper, Modified disease activity scores that include twenty-eight-joint counts development and validation in a prospective longitudinal study of patients with rheumatoid arthritis, Arthritis & Rheumatism, vol.20, issue.1, pp.44-48, 1995.
DOI : 10.1002/art.1780281203

K. Puniyani, S. Kim, and E. P. Xing, Multi-population GWA mapping via multi-task regularized regression, Bioinformatics, vol.23, issue.2, pp.208-216, 2010.
DOI : 10.1002/gepi.210

Y. Qi, M. Oja, J. Weston, and W. S. Noble, A Unified Multitask Architecture for Predicting Local Protein Properties, PLoS ONE, vol.35, issue.3, p.2012
DOI : 10.1371/journal.pone.0032235.s001

URL : http://doi.org/10.1371/journal.pone.0032235

L. Ralaivola, J. Sanjay, H. Swamidass, P. Saigo, and . Baldi, Graph kernels for chemical informatics, Neural networks : the official journal of the International Neural Network Society, pp.1093-110, 2005.
DOI : 10.1016/j.neunet.2005.07.009

C. Edward-rasmussen and C. K. Williams, Gaussian processes for machine learning, 2006.

D. Ravi, C. Wong, and F. Deligianni, Deep Learning for Health Informatics, IEEE Journal of Biomedical and Health Informatics, vol.21, issue.1, 2016.
DOI : 10.1109/JBHI.2016.2636665

V. Mary, . Relling, E. William, and . Evans, Pharmacogenomics in the clinic, Nature, vol.526, issue.7573, pp.343-50, 2015.

V. Guilherme, X. Rocha, B. Wang, and . Yu, Asymptotic distribution and sparsistency for l1-penalized parametric m-estimators with applications to linear SVM and logistic regression. arXiv preprint arXiv:0908, 1940.

D. Rogers, D. Robert, M. Brown, and . Hahn, Using Extended-Connectivity Fingerprints with Laplacian-Modified Bayesian Analysis in High-Throughput Screening Follow-Up, Journal of Biomolecular Screening, vol.48, issue.7, pp.682-688, 2005.
DOI : 10.1021/jm049254b

D. Rogers and M. Hahn, Extended-Connectivity Fingerprints, Journal of Chemical Information and Modeling, vol.50, issue.5, pp.742-54, 2010.
DOI : 10.1021/ci100050t

J. Scheiber, L. Jeremy, S. Jenkins, K. Chetan, and . Sukuru, Mapping Adverse Drug Reactions in Chemical Space, Journal of Medicinal Chemistry, vol.52, issue.9, pp.3103-3107, 2009.
DOI : 10.1021/jm801546k

S. Schneeweiss, J. Hasford, and M. Göttler, Admissions caused by adverse drug events to internal medicine and emergency departments in hospitals: a longitudinal population-based study, European Journal of Clinical Pharmacology, vol.58, issue.4, pp.285-291, 2002.
DOI : 10.1007/s00228-002-0467-0

B. Schölkopf, K. Tsuda, and J. Vert, Kernel methods in computational biology, 2004.

J. M. Schwarz, C. Rödelsperger, M. Schuelke, and D. Seelow, MutationTaster evaluates disease-causing potential of sequence alterations, Nature Methods, vol.35, issue.8, pp.575-581, 2010.
DOI : 10.1038/nmeth0810-575

V. Segura, J. Bjarni, A. Vilhjálmsson, and . Platt, An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations, Nature Genetics, vol.90, issue.7, pp.825-830, 2012.
DOI : 10.1080/01621459.1995.10476572

URL : https://hal.archives-ouvertes.fr/hal-01267792

G. Severino and M. D. Zompo, Adverse drug reactions: role of pharmacogenomics, Pharmacological Research, vol.49, issue.4, pp.363-373, 2004.
DOI : 10.1016/j.phrs.2003.05.003

I. Shaked, A. Matthew, N. Oberhardt, R. Atias, E. Sharan et al., Metabolic Network Prediction of Drug Side Effects, Cell Systems, vol.2, issue.3, pp.209-213, 2016.
DOI : 10.1016/j.cels.2016.03.001

K. Solveig, F. Sieberts, J. Zhu, and . García-garcía, Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis, Nature communications, vol.7, p.12460, 2016.

N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, A Sparse-Group Lasso, Journal of Computational and Graphical Statistics, vol.67, issue.2, pp.231-245, 2013.
DOI : 10.1111/j.1467-9868.2005.00503.x

A. Smola and B. Schölkopf, A tutorial on support vector regression, Statistics and Computing, vol.14, issue.3, pp.199-222, 2004.
DOI : 10.1023/B:STCO.0000035301.49549.88

B. B. Spear, M. Heath-chiozzi, and J. Huff, Clinical application of pharmacogenetics, Trends in Molecular Medicine, vol.7, issue.5, pp.201-204, 2001.
DOI : 10.1016/S1471-4914(01)01986-4

P. Paul and . Tak, A personalized medicine approach to biologic treatment of rheumatoid arthritis: A preliminary treatment algorithm, Rheumatology, vol.51, issue.4, pp.600-609, 2012.

F. Takeuchi, R. Mcginnis, and S. Bourgeois, A Genome-Wide Association Study Confirms VKORC1, CYP2C9, and CYP4F2 as Principal Genetic Determinants of Warfarin Dose, PLoS Genetics, vol.271, issue.3, p.1000433, 2009.
DOI : 10.1371/journal.pgen.1000433.s007

F. Caroline, . Thorn, E. Teri, R. B. Klein, and . Altman, Pharmgkb: the pharmacogenomics knowledge base, Pharmacogenomics: Methods and Protocols, pp.311-320, 2013.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), pp.267-288, 1996.
DOI : 10.1111/j.1467-9868.2011.00771.x

R. R. Tice, C. P. Austin, R. J. Kavlock, and J. R. Bucher, Improving the Human Hazard Characterization of Chemicals: A Tox21 Update, Environmental Health Perspectives, vol.121, issue.7, pp.756-765, 2013.
DOI : 10.1289/ehp.1205784

A. Van-gestel, . Prevoo, and . Ma-van-'t-hof, Development and validation of the european league against rheumatism response criteria for rheumatoid arthritis: Comparison with the preliminary american college of rheumatology and the world health organization/international league against rheumatism criteria, Arthritis & Rheumatism, vol.38, issue.1, pp.34-40, 1996.
DOI : 10.1002/art.1780390105

K. Wagner, F. Damm, and G. Göhring, Single Nucleotide Polymorphism in Cytogenetically Normal Acute Myeloid Leukemia: SNP rs11554137 Is an Adverse Prognostic Factor, Journal of Clinical Oncology, vol.28, issue.14, pp.2356-2364, 2010.
DOI : 10.1200/JCO.2009.27.6899

S. Wang, B. Nan, S. Rosset, and J. Zhu, Random lasso, The Annals of Applied Statistics, vol.5, issue.1, pp.468-485, 2011.
DOI : 10.1214/10-AOAS377

URL : http://doi.org/10.1214/10-aoas377

X. Wang, J. Bi, S. Yu, and J. Sun, On multiplicative multitask feature learning, Advances in Neural Information Processing Systems, pp.2411-2419, 2014.

R. Weinshilboum, Inheritance and Drug Response, New England Journal of Medicine, vol.348, issue.6, pp.529-537, 2003.
DOI : 10.1056/NEJMra020021

C. Widmer, N. C. Toussaint, Y. Altun, and G. Rätsch, Inferring latent task structure for Multitask Learning by Multiple Kernel Learning, BMC Bioinformatics, vol.11, issue.Suppl 8, p.5, 2010.
DOI : 10.1186/1471-2105-11-S8-S5

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-11-S8-S5?site=bmcbioinformatics.biomedcentral.com

C. Larry, . Wienkers, G. Timothy, and . Heath, Predicting in vivo drug interactions from in vitro drug discovery data, Nature reviews. Drug discovery, vol.4, issue.10, pp.825-833, 2005.

A. Russell, D. W. Wilke, D. M. Lin, and . Roden, Identifying genetic risk factors for serious adverse drug reactions : current progress and challenges, Nature reviews. Drug discovery, vol.6, issue.november, pp.904-916, 2007.

C. Williams, Prediction with Gaussian processes: From linear regression to linear prediction and beyond. Learning in graphical models, 1998.
DOI : 10.1007/978-94-011-5014-9_23

URL : http://www.ncrg.aston.ac.uk/Papers/postscript/NCRG_97_012.ps.Z

M. Xia, R. Huang, and K. L. Witt, Compound Cytotoxicity Profiling Using Quantitative High-Throughput Screening, Environmental Health Perspectives, vol.116, issue.3, p.284, 2008.
DOI : 10.1289/ehp.10727

URL : http://europepmc.org/articles/pmc2265061?pdf=render

Y. Jack, G. Yang, H. Li, M. Q. Meng, Y. Yang et al., Improving prediction accuracy of tumor classification by reusing genes discarded during gene selection, BMC genomics, vol.9, issue.1, p.1, 2008.

M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.58, issue.1, pp.49-67, 2006.
DOI : 10.1198/016214502753479356

URL : http://www2.isye.gatech.edu/~myuan/papers/glasso.final.pdf

F. Zhang and J. R. Lupski, Non-coding genetic variants in human disease: Figure 1., Human Molecular Genetics, vol.97, issue.R1, pp.102-110, 2015.
DOI : 10.1038/ng.3304

L. Zhang, Y. D. Zhang, P. Zhao, and S. Huang, Predicting Drug???Drug Interactions: An FDA Perspective, The AAPS Journal, vol.11, issue.2, pp.300-306, 2009.
DOI : 10.1208/s12248-009-9106-3

URL : http://europepmc.org/articles/pmc2691466?pdf=render

H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.5, issue.2, pp.301-320, 2005.
DOI : 10.1073/pnas.201162998

H. Zou, The Adaptive Lasso and Its Oracle Properties, Journal of the American Statistical Association, vol.101, issue.476, pp.1418-1429, 2006.
DOI : 10.1198/016214506000000735

URL : http://cbio.ensmp.fr/~jvert/svn/bibli/local/Zou2006adaptive.pdf