R. E. Marsi, T. T. Skelton, B. F. Soong, J. T. Spencer, and . Yao, Structural control: past, present and future, Journal of Engineering Mechanics, vol.123, issue.9, pp.897-971, 1997.

M. J. Crocker, Handbook of Noise and Vibration Control, 2007.

D. , D. Vescovo, and I. Giorgio, Dynamic problems for metamaterials: Review of existing models and ideas for further research, International Journal of Engineering Science, vol.80, pp.153-172, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00947477

R. E. Roberson, Synthesis of a nonlinear dynamic vibration absorber, Portions of a dissertation submitted to the Department of Applied Mechanics, Washington University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, pp.205-220, 1952.

R. Bouc, The Power Spectral Density Of Response For A Strongly Non-linear Random Oscillator, Journal of Sound and Vibration, vol.175, issue.3, pp.317-331, 1999.
DOI : 10.1006/jsvi.1994.1331

C. Soize, Stochastic linearization method with random parameters for SDOF nonlinear dynamical systems: prediction and identification procedures, Probabilistic Engineering Mechanics, vol.10, issue.3, pp.143-152, 1995.
DOI : 10.1016/0266-8920(95)00011-M

URL : https://hal.archives-ouvertes.fr/hal-00770288

S. Bellizzi and R. Bouc, Analysis of multi-degree of freedom strongly non-linear mechanical systems with random input, Probabilistic Engineering Mechanics, vol.14, issue.3, pp.245-256, 1999.
DOI : 10.1016/S0266-8920(98)00010-1

P. Spanos, I. Kougioumtzoglou, and C. Soize, On the determination of the power spectrum of randomly excited oscillators via stochastic averaging: An alternative perspective, Probabilistic Engineering Mechanics, vol.26, issue.1, pp.10-15, 2011.
DOI : 10.1016/j.probengmech.2010.06.001

URL : https://hal.archives-ouvertes.fr/hal-00699350

A. Lazarus, O. Thomas, and J. F. Deü, Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS, Finite Elements in Analysis and Design, vol.49, issue.1, pp.35-51, 2012.
DOI : 10.1016/j.finel.2011.08.019

URL : https://hal.archives-ouvertes.fr/hal-01084700

W. Larbi, J. F. Deü, and R. Ohayon, Finite element reduced order model for noise and vibration reduction of double sandwich panels using shunted piezoelectric patches, Applied Acoustics, vol.108, pp.40-49, 2016.
DOI : 10.1016/j.apacoust.2015.08.021

O. Thomas, J. Ducarne, and J. Deü, Performance of piezoelectric shunts for vibration reduction, Smart Materials and Structures, vol.21, issue.1, pp.15008-15021, 2012.
DOI : 10.1088/0964-1726/21/1/015008

URL : https://hal.archives-ouvertes.fr/hal-01082925

T. Bailey and E. J. Hubbard, Distributed piezoelectric-polymer active vibration control of a cantilever beam, Journal of Guidance, Control, and Dynamics, vol.26, issue.5, pp.605-611, 1985.
DOI : 10.1016/0016-0032(66)90067-6

C. Fuller, S. Elliott, and P. Nelson, Active Control of Vibration, 1996.

A. Preumont, Active Control of Vibration, 2011.

O. Abdeljaber, O. Avci, and D. J. Inman, Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks, Journal of Sound and Vibration, vol.363, pp.33-53, 2016.
DOI : 10.1016/j.jsv.2015.10.029

S. Nacivet, C. Pierre, F. Thouverez, and L. , A dynamic Lagrangian frequency???time method for the vibration of dry-friction-damped systems, Journal of Sound and Vibration, vol.265, issue.1, pp.201-219, 2003.
DOI : 10.1016/S0022-460X(02)01447-5

URL : https://hal.archives-ouvertes.fr/hal-01635272

J. F. Allard and N. Atalla, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, 2009.

H. Frahm, Device for damping vibrations of bodies, United states patent office 989, pp.1-9, 1911.

M. G. Soto and H. Adeli, Tuned Mass Dampers, Archives of Computational Methods in Engineering, vol.126, issue.8, pp.419-431, 2013.
DOI : 10.1061/(ASCE)0733-9445(2000)126:8(906)

M. Alster, Improved calculation of resonant frequencies of Helmholtz resonators, Journal of Sound and Vibration, vol.24, issue.1, pp.63-85, 1972.
DOI : 10.1016/0022-460X(72)90123-X

R. C. Chanaud, Effects Of Geometry On The Resonance Frequency Of Helmholtz Resonators, Journal of Sound and Vibration, vol.178, issue.3, pp.337-348, 1994.
DOI : 10.1006/jsvi.1994.1490

J. M. De-bebout, M. A. Franchek, R. J. Bernhard, and L. Mongeau, ADAPTIVE-PASSIVE NOISE CONTROL WITH SELF-TUNING HELMHOLTZ RESONATORS, Journal of Sound and Vibration, vol.202, issue.1, pp.109-123, 1997.
DOI : 10.1006/jsvi.1996.0796

S. J. Estève, Control of sound transmission into payload fairings using distributed vibration absorbers and Helmholtz resonators, Faculty of the Virginia Polytechnic Institute, 2004.

S. J. Esteve and M. E. Johnson, Adaptive Helmholtz resonators and passive vibration absorbers for cylinder interior noise control, Journal of Sound and Vibration, vol.288, issue.4-5, pp.1105-1130, 2005.
DOI : 10.1016/j.jsv.2005.01.017

H. D. Nam and S. J. Elliott, Adaptive active attenuation of noise using multiple model approaches, Mechanical Systems and Signal Processing, vol.9, issue.5, pp.555-567, 1995.
DOI : 10.1006/mssp.1995.0042

S. Nagarajaiah, M. Asce, and E. Sonmez, Structures with Semiactive Variable Stiffness Single/Multiple Tuned Mass Dampers, Journal of Structural Engineering, vol.133, issue.1, pp.67-77, 2007.
DOI : 10.1061/(ASCE)0733-9445(2007)133:1(67)

V. G. Veselago, THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF $\epsilon$ AND ??, Soviet Physics Uspekhi, vol.10, issue.4, pp.509-514, 1968.
DOI : 10.1070/PU1968v010n04ABEH003699

D. Smith and . Kroll, Negative Refractive Index in Left-Handed Materials, Physical Review Letters, vol.13, issue.14, pp.2933-2936, 2000.
DOI : 10.1088/2058-7058/13/6/24

K. Xu and T. Igusa, Dynamic characteristics of multiple substructures with closely spaced frequencies, Earthquake Engineering & Structural Dynamics, vol.36, issue.12, pp.1059-1070, 1992.
DOI : 10.1002/eqe.4290211203

N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich et al., Ultrasonic metamaterials with negative modulus, Nature Materials, vol.97, issue.6, pp.452-456, 2006.
DOI : 10.1121/1.412085

X. Liu, G. Hu, G. Huang, and C. Sun, An elastic metamaterial with simultaneously negative mass density and bulk modulus, Applied Physics Letters, vol.98, issue.25, p.251907, 2011.
DOI : 10.1007/978-1-4612-0555-5

R. Zhu, X. Liu, G. Hu, C. Sun, and G. Huang, A chiral elastic metamaterial beam for broadband vibration suppression, Journal of Sound and Vibration, vol.333, issue.10, pp.2759-2773, 2014.
DOI : 10.1016/j.jsv.2014.01.009

J. Chen, B. Sharma, and C. Sun, Dynamic behaviour of sandwich structure containing spring-mass resonators, Composite Structures, vol.93, issue.8, pp.2120-2125, 2011.
DOI : 10.1016/j.compstruct.2011.02.007

T. P. Bandivadekar and R. S. Jangid, Mass distribution of multiple tuned mass dampers for vibration control of structures, International Journal of Civil and Structural Engineering, vol.3, issue.1, pp.70-84, 2012.

Y. Xiao, J. Wen, and X. Wen, Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators, Journal of Sound and Vibration, vol.331, issue.25, pp.5408-5423, 2012.
DOI : 10.1016/j.jsv.2012.07.016

X. Wang, Dynamic behaviour of a metamaterial system with negative mass and modulus, International Journal of Solids and Structures, vol.51, issue.7-8, pp.1534-1541, 2014.
DOI : 10.1016/j.ijsolstr.2014.01.004

P. Pai, H. Peng, and S. Jiang, Acoustic metamaterial beams based on multi-frequency vibration absorbers, International Journal of Mechanical Sciences, vol.79, pp.195-205, 2014.
DOI : 10.1016/j.ijmecsci.2013.12.013

P. Sheng, X. Zhang, Z. Liu, and C. Chan, Locally resonant sonic materials, Physica B: Condensed Matter, vol.338, issue.1-4, pp.201-205, 2003.
DOI : 10.1016/S0921-4526(03)00487-3

C. R. Fuller and R. L. Harne, Advanced Passive Treatment of Low Frequency Sound and Vibration, pp.1-7, 2009.

S. Varanasi, J. Bolton, T. Siegmund, and R. Cipra, The low frequency performance of metamaterial barriers based on cellular structures, Applied Acoustics, vol.74, issue.4, pp.485-495, 2013.
DOI : 10.1016/j.apacoust.2012.09.008

P. Sheng, J. Mei, Z. Liu, and W. Wen, Dynamic mass density and acoustic metamaterials, Physica B: Condensed Matter, vol.394, issue.2, pp.256-261, 2007.
DOI : 10.1016/j.physb.2006.12.046

Y. Ding, Z. Liu, C. Qiu, and J. Shi, Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density, Physical Review Letters, vol.99, issue.9, p.93904, 2007.
DOI : 10.1103/PhysRevLett.93.024301

Z. Yang, J. Mei, M. Yang, N. Chan, and P. Sheng, Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass, Physical Review Letters, vol.101, issue.20, 2008.
DOI : 10.1063/1.3058151

URL : http://repository.ust.hk/ir/bitstream/1783.1-6034/1/PhysRevLett.101.204301.pdf

S. Lee, C. Park, Y. Seo, Z. Wang, and C. Kim, Acoustic metamaterial with negative density, Physics Letters A, vol.373, issue.48, pp.4464-4469, 2009.
DOI : 10.1016/j.physleta.2009.10.013

X. Zhou and G. Hu, Analytic model of elastic metamaterials with local resonances, Physical Review B, vol.79, issue.19, 2009.
DOI : 10.1063/1.2803315

Z. Yang, H. Dai, N. Chan, G. Ma, and P. Sheng, Acoustic metamaterial panels for sound attenuation in the 50???1000 Hz regime, Applied Physics Letters, vol.96, issue.4, p.41906, 2010.
DOI : 10.1103/PhysRevLett.101.204301

X. Wang, H. Zhao, X. Luo, and Z. Huang, Membrane-constrained acoustic metamaterials for low frequency sound insulation, Applied Physics Letters, vol.108, issue.4, p.41905, 2016.
DOI : 10.1103/PhysRevB.92.104110

B. Wang and D. , On the design and optimization of acoustic network resonators for tire/road noise reduction, Applied Acoustics, vol.120, pp.75-84, 2017.
DOI : 10.1016/j.apacoust.2017.01.017

URL : https://hal.archives-ouvertes.fr/hal-01695358

Y. S. Lee, A. Vakakis, L. Bergman, D. M. Mcfarland, G. Kerschen et al., Passive non-linear targeted energy transfer and its applications to vibration absorption: A review, Proceedings of the Institution of Mechanical Engineers, pp.77-134, 2008.
DOI : 10.1115/1.3424568

O. Gendelman, L. Manevitch, A. Vakakis, and R. M. Closkey, Energy Pumping in Nonlinear Mechanical Oscillators: Part I???Dynamics of the Underlying Hamiltonian Systems, Journal of Applied Mechanics, vol.66, issue.1, pp.34-41, 2001.
DOI : 10.1115/1.2791057

A. Vakakis and O. Gendelman, Energy Pumping in Nonlinear Mechanical Oscillators: Part II???Resonance Capture, Journal of Applied Mechanics, vol.170, issue.1, pp.42-48, 2001.
DOI : 10.1006/jsvi.1994.1049

B. Cochelin, P. Herzog, and P. Mattei, Experimental evidence of energy pumping in acoustics, Comptes Rendus M??canique, vol.334, issue.11, pp.639-644, 2006.
DOI : 10.1016/j.crme.2006.08.005

URL : https://hal.archives-ouvertes.fr/hal-00106907

R. Bellet, B. Cochelin, P. Herzog, and P. Mattei, Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber, Journal of Sound and Vibration, vol.329, issue.14, pp.2768-2791, 2010.
DOI : 10.1016/j.jsv.2010.01.029

URL : https://hal.archives-ouvertes.fr/hal-00461706

R. Mariani, S. Bellizzi, B. Cochelin, P. Herzog, and P. Mattei, Toward an adjustable nonlinear low frequency acoustic absorber, Journal of Sound and Vibration, vol.330, issue.22, pp.5245-5258, 2011.
DOI : 10.1016/j.jsv.2011.03.034

URL : https://hal.archives-ouvertes.fr/hal-00628729

E. Gourdon, N. Alexander, C. Taylor, C. Lamarque, and S. Pernot, Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results, Journal of Sound and Vibration, vol.300, issue.3-5, pp.522-551, 2007.
DOI : 10.1016/j.jsv.2006.06.074

URL : https://hal.archives-ouvertes.fr/hal-00815136

N. Alexander and F. Schilder, Exploring the performance of a nonlinear tuned mass damper, Journal of Sound and Vibration, vol.319, issue.1-2, pp.445-462, 2009.
DOI : 10.1016/j.jsv.2008.05.018

Z. Nili-ahmadabadi and S. Khadem, Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device, Journal of Sound and Vibration, vol.333, issue.19, pp.4444-4457, 2014.
DOI : 10.1016/j.jsv.2014.04.033

P. Mattei, R. Ponçot, M. Pachebat, and R. Côte, Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment, Journal of Sound and Vibration, vol.373, pp.29-51, 2016.
DOI : 10.1016/j.jsv.2016.03.008

URL : https://hal.archives-ouvertes.fr/hal-01318317

A. Vakakis, Shock Isolation Through the Use of Nonlinear Energy Sinks, Journal of Vibration and Control, vol.9, issue.1, pp.79-93, 2003.
DOI : 10.1177/1077546303009001742

R. Bellet, B. Cochelin, R. Côte, and P. O. Mattei, Enhancing the dynamic range of targeted energy transfer in acoustics using several nonlinear membrane absorbers, Journal of Sound and Vibration, vol.331, issue.26, pp.5657-5668, 2012.
DOI : 10.1016/j.jsv.2012.07.013

URL : https://hal.archives-ouvertes.fr/hal-01024445

L. Viet and N. Nghi, On a nonlinear single-mass two-frequency pendulum tuned mass damper to reduce horizontal vibration, Engineering Structures, vol.81, pp.175-180, 2014.
DOI : 10.1016/j.engstruct.2014.09.038

C. Soize, Probabilistic Structural Modeling in Linear Dynamic Analysis of Complex Mechanical Systems, Recherche Aerospatiale (English Edition), vol.4, pp.39-51, 1986.
URL : https://hal.archives-ouvertes.fr/hal-00770388

C. Soize, Vibration damping in low-frequency range due to structural complexity. A model based on the theory of fuzzy structures and model parameters estimation, Computers & Structures, vol.58, issue.5, pp.901-915, 1995.
DOI : 10.1016/0045-7949(95)00207-W

URL : https://hal.archives-ouvertes.fr/hal-00770275

F. Georgiadis, A. F. Vakakis, D. M. Mcfarland, and L. Bergman, SHOCK ISOLATION THROUGH PASSIVE ENERGY PUMPING CAUSED BY NONSMOOTH NONLINEARITIES, International Journal of Bifurcation and Chaos, vol.8, issue.06, 1989.
DOI : 10.1016/S0022-460X(02)01207-5

C. Lamarque, F. Thouverez, B. Rozier, and Z. Dimitrijevic, Targeted energy transfer in a 2-DOF mechanical system coupled to a non-linear energy sink with varying stiffness, Journal of Vibration and Control, vol.222, issue.16, pp.2567-2577, 2017.
DOI : 10.1061/(ASCE)ST.1943-541X.0000978

R. Rubinstein and D. Kroese, Simulation and the Monte Carlo Method, 2008.

L. Verlet, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review, vol.30, issue.1, pp.98-103, 1967.
DOI : 10.1016/0031-8914(64)90224-1

E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration illustrated by the StrmerVerlet method, Acta Numerica, vol.12, pp.399-450, 2003.
DOI : 10.1017/S0962492902000144

B. Coleman and W. Noll, Foundations of Linear Viscoelasticity, Reviews of Modern Physics, vol.4, issue.2, pp.239-249, 1961.
DOI : 10.1007/BF00281388

C. Desceliers and C. Soize, Non-linear viscoelastodynamic equations of three-dimensional rotating structures in finite displacement and finite element discretization, International Journal of Non-Linear Mechanics, vol.39, issue.3, pp.343-368, 2004.
DOI : 10.1016/S0020-7462(02)00191-9

URL : https://hal.archives-ouvertes.fr/hal-00686206

L. Guikhman and A. Skorokhod, The Theory of Stochastic Processes, 1979.
DOI : 10.1007/978-3-642-61921-2

M. Priestley, The Spectral Analysis of Time Series., Journal of the Royal Statistical Society. Series A (Statistics in Society), vol.151, issue.3, 1981.
DOI : 10.2307/2983035

M. Shinozuka, Simulation of Multivariate and Multidimensional Random Processes, The Journal of the Acoustical Society of America, vol.49, issue.1B, pp.357-367, 1971.
DOI : 10.1121/1.1912338

F. Poirion and C. Soize, Numerical methods and mathematical aspects for simulation of homogeneous and non homogeneous gaussian vector fields, Probabilistic Methods in Applied Physics, pp.17-53, 1995.
DOI : 10.1007/3-540-60214-3_50

URL : https://hal.archives-ouvertes.fr/hal-00770416

C. Soize and I. E. Poloskov, Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation, Computers & Mathematics with Applications, vol.64, issue.11, pp.3594-3612, 2012.
DOI : 10.1016/j.camwa.2012.09.010

URL : https://hal.archives-ouvertes.fr/hal-00746280

R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, 1992.

R. Ohayon and C. Soize, Structural Acoustics and Vibration, The Journal of the Acoustical Society of America, vol.109, issue.6, 1998.
DOI : 10.1121/1.1352086

URL : https://hal.archives-ouvertes.fr/hal-00770412

D. Lavazec, G. Cumunel, D. Duhamel, C. Soize, and A. Batou, Métamatériau microstructuré non linéaire pour l'atténuation du bruit et des vibrations en basses fréquences, in: 13ème Congrès Francais d'Acoustique et 20ème colloque VIbrations, SHocks and NOise, pp.11-15, 2016.

D. Lavazec, G. Cumunel, D. Duhamel, C. Soize, and A. Batou, Nonlinear Microstructured Material to Reduce Noise and Vibrations at Low Frequencies, Joint International Conference on Motion and Vibration Control and Recent Advances in Structural Dynamics, Proceedings of MoVIC and RASD 2016, pp.1-10, 2016.
DOI : 10.1088/1742-6596/744/1/012190

URL : https://hal.archives-ouvertes.fr/hal-01657607

D. Lavazec, G. Cumunel, D. Duhamel, C. Soize, and A. Batou, Attenuation of noise and vibration at low frequencies using a nonlinear microstructured material, International Conference on Noise and Vibration Engineering Proceedings of ISMA 2016, pp.1-11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01370625

D. Lavazec, G. Cumunel, D. Duhamel, and C. Soize, Attenuation of acoustic waves and mechanical vibrations at low frequencies by a nonlinear dynamical absorber, CFM 2017 Proceedings of CFM 2017, pp.1-12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01566420

D. Lavazec, G. Cumunel, D. Duhamel, and C. Soize, Attenuation of acoustic waves and mechanical vibrations at low frequencies by a nonlinear dynamical absorber, USNCCM 2017, 14th U. S. National Congress on Computational Mechanics, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01566420