Three-dimensional numerical modeling of ductile fracture mechanisms at the microscale - Archive ouverte HAL Access content directly
Theses Year : 2016

Three-dimensional numerical modeling of ductile fracture mechanisms at the microscale

Modélisation numérique tridimensionnelle des mécanismes de rupture ductile à l'échelle microscopique

(1)
1

Abstract

The present PhD thesis aims at a better understanding and modeling of ductile fracture during the forming of metallic materials. These materials are typically formed using series of thermomechanical loads where many parameters such as loading type and direction vary. Predictive numerical tools are necessary to model fracture mechanisms, and then optimize production costs.Ductile fracture in metallic materials is the result of a progressive deterioration of their load carrying capacity due to the nucleation, growth, and coalescence of microscopic voids. In this work, a micromechanical approach is developed in order to conduct realistic full field finite element simulations of ductile fracture at the microscale. Meshing and remeshing methods relying on the use of Level-Set functions are proposed to discretize the microstructure. Thanks to these methods, the geometric properties of Level-Set functions are preserved, as well as the volume and morphology of each component of the microstructure, even at large plastic strains. These numerical methods are extended to account for cracks and model the failure of some components of the microstructure, or interfaces between them. A new contact detection method based on mesh adaptation is also developed.The interest of these numerical developments and micromechanical models is first demonstrated at the scale of representative volume elements with statistically generated microstructures. Then, a new methodology is proposed to conduct simulations of real microstructures observed via in-situ X-ray laminography, with boundary conditions that are measured using digital volume correlation techniques.
L'objectif de cette thèse de doctorat est de contribuer à une meilleure compréhension et modélisation de la rupture ductile lors de la mise en forme des métaux. Cette mise en forme se réalise en général par une série de chargements thermomécaniques où de multiples paramètres comme le type et la direction de chargement varient. Des outils de simulations prédictifs sont nécessaires pour modéliser les mécanismes de rupture, et ensuite optimiser les coûts de production.La rupture ductile des matériaux métalliques est précédée par la détérioration progressive de leur capacité de charge due à la germination, croissance, et coalescence de cavités microscopiques. Dans ce travail, une approche micromécanique est développée afin de conduire des simulations éléments finis réalistes et à champ complet de la rupture ductile à l'échelle microscopique. Des méthodes de génération et d'adaptation de maillage s'appuyant sur des fonctions de niveau sont proposées pour discrétiser la microstructure. Avec ces méthodes, les propriétés géométriques des fonctions de niveau sont conservées, ainsi que le volume et la morphologie de chaque composante de la microstructure, et ce pour de grandes déformations plastiques. Ces méthodes numériques sont étendues pour permettre la modélisation de fissures aux interfaces entre certaines composantes de la microstructure, ou à l'intérieur même de ces composantes. Une nouvelle méthode de détection de contact par adaptation de maillage est aussi développée.L'intérêt de ces développements numériques et modèles micromécaniques est démontré tout d'abord pour des microstructures générées statistiquement. Ensuite, une nouvelle méthodologie est proposée pour modéliser des microstructures réelles (laminographie in-situ) avec des conditions aux limites mesurées expérimentalement (corrélation d'images volumiques).
Fichier principal
Vignette du fichier
2016PSLEM049_archivage.pdf (135.88 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)

Dates and versions

tel-01744733 , version 1 (27-03-2018)

Identifiers

  • HAL Id : tel-01744733 , version 1

Cite

Modesar Shakoor. Three-dimensional numerical modeling of ductile fracture mechanisms at the microscale. Mechanics of materials [physics.class-ph]. Université Paris sciences et lettres, 2016. English. ⟨NNT : 2016PSLEM049⟩. ⟨tel-01744733⟩
353 View
233 Download

Share

Gmail Facebook Twitter LinkedIn More