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Chapter 1

Introduction

Contents
1.1 Introductiontoquenching . ... ... ... ... .. .. .. .. ..... 1
1.2 Motivation . . . . . . . e 3
1.3 Stateoftheart . . . . .. . . ... . .. 6
1.4 Contributionofthethesis . . . ... ... ... ... . ... ........ 7

1.1 Introduction to quenching

Quenching processes of metals are widely adopted procedures in the industry, in particular
automotive, nuclear and aerospace industries, since they have direct impacts on changing me-
chanical properties, controlling microstructure and releasing residual stresses of critical parts.
Safety being the highest priority in these industries, the elaboration of a part must be compliant
with the highest standards.

Quenching is a process that belongs to the family of heat treatments. Heat treatments aim
at giving a certain microstructure to the metal to obtain desired mechanical properties. A part
is heated in a furnace to allow the diffusion of speci c atoms (e.g. carbon atoms). To prevent
segregation of theses atoms during the cooling phase and therefore inhomogeneity of the mi-
crostructure, the cooling must be sudden. As a consequence, the control of the cooling rate is
of the utmost importance in the quenching.

Quenching is generally carried out by immersing the part in a medium that will extract the
heat contained therein (see Fig. 1.1). The medium may be a liquid (water, oil, polymer,...) or
a gas (air, nitrogen, helium, argon,...). An inhomogeneous cooling of the part leads to uncon-
trolled distortion and cracks. In the case of complex geometries, the control of the cooling rate
is even more dif cult to achieve. During quenching, heat transfers are performed through a
solid/ uid interface.

In the case of a liquid quenching medium (known as the quenchant), a vapor Im surrounds
the part because of the high thermal gradient at the interface, insulating the part from cooling
(see 1st picture in Fig. 1.2). This phenomenon, known as calefaction, can last several hours in
the case of massive parts. The main heat transfer mechanisms during calefaction are radiation
and conduction through the vapor. The cooling rate is therefore very low and this phase needs
to be shortened in order to improve the ef ciency of the process. When the surface temperature
of the metal is lower than a critical temperature, the liquid comes into contact with the surface
and the liquid boils from the surface; this is nucleate boiling. The heat transfer during this

1
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phase is the most ef cient of the whole process and the maximum cooling rate is reached. At
the end of the process, when the surface temperature of the metal is lower than the temperature
of vaporization of the quenchant, the boiling ceases and the cooling is achieved by convection
(see last picture in Fig. 1.2).

Figure 1.1: Quenching of industrial parts in a liquid medium.
Pictures taken from: a) thermalhire.com, b) westernindiaforgings.com, c)d) conmecheng.com,
e) heattreatmentsservices.com, f) heattreatmart.com, g) Tata, h) Tenaxol.

The cooling rate of the part depends on several parameters: thermal properties of the metal
and their evolution w.r.t. temperature, geometry of the part, thermal and physical properties
of the quenching medium and their evolution w.r.t. temperature, operating conditions (volume
and agitation of the quenching medium, orientation of the part, surface state of the part,...)[1].
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Figure 1.2: Interactions and complexity of the involved physics at different time and space scale
during the successive stages of immersed quenching. (credit : www.wizcol.com & In nity
ANR Chair)

However, manufacturers only have few means to control the cooling rate while all the afore-
mentioned parameters have to be taken into account. The ef ciency of the process relies on the
ability of the quenching medium to achieve maximum cooling of the part without heating up.
For instance, using a large quenching tank with constant renewal of the quenchant avoids ex-
cessive heating of the quenchant. To take another example, an ef cient quenching requires that
no vapor is trapped in a cavity due to an unfavorable orientation of the part. This can be avoided
if the part is oriented in the right way, with possibility for a stirred quenching medium to be in
contact with the whole surface.

1.2 Motivation

Today there is a strong demand from many industrial companies to control this cooling process
taking into account optimal combinations of quench parameters with their complexity in order
to obtain the desired metallurgical properties such as hardness and yield strength. This demand
is accented by the severe requirements in shorter deadlines to design new materials and high
guality product. Indeed, the mastering of the cooling rates respecting the metallurgical route
with a good homogeneity and reliability is essential to achieve the required microstructure and
the mechanical performance.

A full experimental optimization of this process is not a viable strategy due to the cost of
the processes involved (see the size of the ingot in Fig. 1.3). A physical modeling of the system
and a numerical simulation is then the alternative since Computational Fluid Dynamics (CFD)
offers a powerful tool due to the increasing performance of computational resources. However,
a clear knowledge of the physical phenomena occurring during this process is required. The
heat transfer of a metallic part under extreme conditions such as quenching still represents a
challenging issue in industrial processes and will be tackled in this thesis.

Numerical simulation is a quite standard tool in the framework of metallurgical industry for
forming processes but at this time no software is predictable enough due to the complexity of
the boiling multiphase ows during immersed or jet quenching. A precise numerical modeling
that offers detailed understanding of the complex behavior of uid ow and its impact on part
cooling is then a subject of major importance. Indeed, it allows rst to reduce the time and
cost of developing new materials (by reducing time experimentation), and therefore to contin-
ually develop safe and reliable products that meet the customer speci cations and second, to
improve the designing of quenching systems, limiting production costs and decreasing energy
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Figure 1.3: Ingot - Areva NP

consumption.

Despite the evident industrial interest for modeling precisely quenching process during al-
loy heat treatment, there is no global study neither global answer addressing this problem in
an industrial context. In order to predict precisely the liquid-to-vapor phase transition during
boiling as well as to study the optimal combinations of quench parameters to reduce residual
stresses in solid ingots, an innovative coupled numerical framework needs to be designed and
implemented.

Modeling the liquid-to-vapor phase change, predicting different boiling modes with the
transition between them and modeling the uid-solid-heat coupling with solid phase trans-
formation are mainly aimed. The main representative quenching environments that will be
considered is immersed quenching. Moreover a large part of the proposed work will be also
dedicated to analytic and experimental investigations.

A variety of numerical codes for quenching processes have been developed with variable
levels of success since the late 1980s [2]. The work by Garwood et al. [3] is one of the rst
attempts to characterize a quench tank using computational uid dynamics. Almost 20 years
later, an agitated quench tank was analyzed during the heat treatment of an aluminum cylinder
[4].

Although computational uid dynamics are being used increasingly in quenching tank de-
sign, there is still considerable imprecision due to assumptions that must be made in particular
the use of simple geometries and approximated quenching environment. Under the pressure
of industrial needs and taking advantage of the rapid increase of affordable computer perfor-
mance, many developments were tested in laboratories and introduced in actual heat treatment
commercial codes. Today there is a strong demand from many industrial companies to intro-
duce more realistic physical behavior and also to predict precisely the liquid-to-vapor phase
transition during boiling as well as the uid-solid-heat coupling with solid phase transforma-
tions which are both interrelated and of major importance concerning the nal metallurgical
properties.

A precise numerical modeling that offers detailed understanding of the complex behavior
of uid ow and its impact on part cooling is then a subject of major importance. Indeed, it
allows rst to reduce the time and cost of developing new materials, and therefore to contin-
ually develop safe and reliable products that meet the customer speci cations and second, to
improve the design of quench systems. Detailed cooling rates can then be used to predict part
metallurgical properties.

The classical well known methods for thermal treatment of a solid generally refer to the
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use of experimentally deduced heat transfer coef cients. These latter replace the quenching
environment. This approach is obviously simple but limited by any necessity to develop either
new materials or new quench devices. On the other hand, the quenching uid environment
is classically modeled using a multiphase framework that consists on the resolution of a uid
motion with an interface tracking, which separates liquid from vapor, combined with additional
Im and boiling heat transfer coef cients. This framework is quite convenient for coupling
thermal, mechanical with empirical physical computations, but it suffers severe limitations
and needs generally a large amount of experiments to identify precisely, according to a new
geometry, agitation rate, uid viscosity, tank size, and other variables, the transfer coef cients
describing different boiling modes and the transition between them.

Finally a coupled approach that models both the uid-solid interactions is then potentially
much more accurate. But due to the differences between existing numerical methods and to the
computational cost related to the strategy of coupling them, such approach seems today limited.

Indeed, providing advanced metallurgical solutions is progressively required in the most
demanding industries especially aerospace, automotive or energy generation. This covers all
the range of production for high performance steels, titanium alloys, aluminum or next gener-
ation nickel-based superalloys, from elaboration to machining. For all these materials, many
mechanical and microstructural properties are required. These characteristics are strongly de-
pendent on the thermal history during all the manufacturing process. Consequently, cooling
rates or temperature history have to be predicted at any location of the parts, during heat treat-
ments.

Moreover, increasingly stringent demands by customers, concerning product quality and
consistency and the need to continually process new grades of steel, require that steel producers
develop improved control of process routes and quenching systems.

Direct economic and societal bene ts are expected for the different industries, in particular
automotive, nuclear and aerospace. The improvement of the quenching process must enable
them to continuously develop high quality products that meet the increasingly stringent de-
mands by customers while minimizing residual stresses, controlling microstructure, improving
the thermo-mechanical and metallurgical behavior and nally optimizing the energy ef ciency.

It allows the industrials to make considerable savings (>30%) not only in energy but also in
consumption of waste metal, quenching liquids and services ante@@sion.

This work was done within the consortium THOST (THermal Optimization SysTem), which
is supported by 6 industrial partners: Areva NP, Aubert & Duval, Faurecia, Industeel CRMC
(Arcelor Mittal), Lisi Aerospace and Safran. All the numerical developments will serve to ex-
tend the software THOST towards industrial quenching. Indeed, the scienti ¢ editor Science
Computer and Consultants (SCC), working in close relation with the CFL research group, will
use these developments and insert them in the upcoming version of THOST and will distribute
it to the partners. This allows an outstanding dissemination for the results of the thesis. This
software is supported today by 8 industrial partners, regroups almost 20 industrial users and
will be completed by a newly obtained ANR (French National Research Agency) industrial
chair regrouping a consortium of 12 industrials.

The success of this project will be instrumental in developing innovative framework that
has the ability to design advanced engineering systems using multiphase CFD with boiling.
Note also that these developments will serve also in the in-house C++ library Cimlib-CFD,
developed by the CFL research group, bringing two-phase ow applications in other areas of
engineering: micro uidic, renewable energy, medicine, biology and more.
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1.3 State of the art

Several studies in the literature, most of them are experimental investigations under simpli ed
conditions, shows that quenching severity is dependent on different parameters: agitation rate,
size of the tank, uid viscosity, type and placement of agitators, and other variables [5, 6, 7]. It
is know that agitation clearly affects the hardness and depth of hardening during the quenching
because of the mechanical rupture of the relatively unstable Im boiling cooling process that
typically occurs in vaporizable quenchants such as oil, water, and aqueous polymers [5]. How-
ever, other variables such as uid viscosity and vapor pressure of the uid are clearly important
as well. For instance, it has been reported in [6] that the ability to through-harden given steel
in a conventional quench oil increased with increasing agitation. Authors in [7, 8, 9, 10] also
showed that increasing agitation increased cooling rates and the through-hardening ability of
both oil and water quenchants [5, 11, 12]. They showed that agitation of a quenching oil was
necessary to destabilize Im boiling and nucleate boiling processes if uniform heat transfer
throughout the quenching operation was to be achieved. Moreover, the relative ef ciency of
using immersion or spray quenching with an aqueous polymer and a mineral oil quenchant was
studied in [9]. Their results showed that depth of hardness increased with increasing agitation.
In [1], the author proposed that cracking and deformation are predominantly affected by the
uniformity of the quenching and not the quenchant itself. Simulations of wall nucleate boil-
ing (WNB) were done by Dhir et al. in [13, 14, 15]. Since WNB is dominated by solid-wall,
thin- Im nanophysics, Dhir et al. coupled their two-dimensional DNS code with a nano Im,
lubrication-theory model. This model is applied at the base of the nucleating bubble [14] and
provides the vapor mass source near heated wall.

In view of this review, it is clear that the physical phenomena taking place are rich and that
the experimental investigations remains time consuming, dif cult to realize and not reliable
in a real industrial context. Thus, direct numerical simulation would open up for detailed
study and new insights. Indeed, it becomes of prime importance to simulate and visualize the
complexity of the ows (liquid-vapor phase transition, agitation,...) and to deal with uid-solid-
heat coupling. Of course both challenges are intrinsically linked.

In the literature, various efforts were proposed to deal with this process. They can be gath-
ered into two groups : one- uid ow model with boiling heat transfer coef cients or two- uid
model with heat transfer coef cients for the solid part. In the latter case, the classical approach
is to combine the uid motion with interface tracking technique such as level set [16], phase
eld [17], Volume Of Fluid [18], etc. For example, Garwood et al. [3] have characterized a
guenching tank for the heat treatment of superalloy via nite difference methods and heat trans-
fer coef cients. Srinivasan et al. [4] developed a speci ¢ CFD modeling procedure to simulate
particular immersion quench cooling process using boiling transfer coef cients. Engine cylin-
der heads have also been modeled using heat transfer coef cients.

As expected, computational uid dynamics is now being used increasingly for multiphase
ows and quenching design. However there are still considerable uncertainties due to assump-
tions that must be made in particular: (i) the use of simple geometries, (ii) the use of decoupled
uid-solid resolution and nally, (iii) the use of transfer coef cients that approximate the com-
plex quenching environments. Moreover, the consequences of the numerical method limitations
are the set of physical model assumptions, e.g. : incompressibility, low density ratio between
phases, omission of heat conduction in one of the phases, low- delity for boiling phenomena,
laminar ows, ... Most of these assumptions are justi able for their intended applications; how-
ever their use remains generally limited and suffers from systematic re-validation when facing
new materials, new geometries or new thermomechanical conditions ... Indeed one needs to
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predict precisely the liquid to vapor phase change during boiling as well as to study the optimal
combinations of quenching parameters to reduce residual stresses in solid ingots. Therefore an
innovative couple numerical framework remains to be designed and implemented.

1.4 Contribution of the thesis

We believe that achieving a breakthrough requires rst the development of a uni ed ground-
breaking numerical multiscale framework for quenching and, second, the development of an
immersed multiphase strategy with implicit representation of each phase (liquid-vapor-solid)
in order to leverage the simplicity and exibility of uid-solid-heat coupling.

An innovative multiscale numerical framework to design industrial quenching process safely
will be proposed. It should provide the industrial partners access to the cooling ef ciency of
their quenching devices, but also to deeply understand the process issues and to classify which
phenomenon plays a major role on the thermal homogeneity of the product. It should allow the
industrials to continuously improve the product quality, and even to create new microstructures,
in order to ful Il the current and future demands of customers. Finally, it should support the
industrials to adjust and to regulate their quenching devices limiting though several tests and
trials and empirical calibrations.

Therefore we propose a new Finite Element numerical immersed framework based on an
implicit representation of different phases (liquid, gas, solid) using a level set description com-
bined with remeshing capabilities. Several validations will be conducted and comparison will
be proposed with benchmark solutions and experimental results.

Indeed, the immersed volume methods is intensively used for two uid modeling in the
context of multiphase ows and for the uid-structure interactions in the context of heat and
mass transfer [19, 20, 21, 22, 23].

To achieve high- delity spatial resolution, we will use the work done in CEMEF by the CFL
research group on anisotropic parallel adaptive meshing techniques [23, 24, 25, 26, 27, 28].
Indeed, it is shown in recent works that edge-based error estimator allows to dynamically track
moving interfaces, thus enabling high-accuracy not only in the bulk uid, but also near the
interface, where high gradients are concentrated. The computational cost remains reasonable
for simple applications and improving our parallel 3D remeshing method is another promising
route for this objective.

Finally, it is important to mention that classical Finite Element methods to solve the un-
steady Navier-Stokes and heat transfer equations suffer from lack of stability, in particular at
high Reynolds and Peclet numbers. Another numerical issue related to the transport level set
eqguation is the mass conservation. These sources of numerical dif culties have been treated
using different approaches (for an overview, see [29, 30, 31, 32, 33, 34, 35, 36]).

We completed this framework by developing a uni ed Variational Multiscale LES (Large
Eddy simulation) formulation to handle turbulent multiphase ows with high density ratio,
phase change model, interface forces, surface tension and bubbles dynamics [37, 38]. We
propose here to test this parallel 3D framework with the level set method and remeshing capa-
bilities for quenching simple industrial parts inside a water tank with and without agitation. We
also examined the orientation of a cylinder part.

To conclude, the real breakthroughs and innovation of the proposed work, allowing to deal
with realistic industrial conditions and quenching devices (compared to other codes), and ro-
bustness by limiting the assumptions made and restraining non-physical use of quenching pa-
rameters are translated by the following summarized objectives:
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1. To achieve high delity simulations of the multiphysics and multiscale nature of practical
boiling ows in quenching applications, gaining insight into the physics of multiphase
ow regimes, and generating a basis for effective- eld modeling in terms of its formula-
tion/closure laws;

2. To build up a uni ed 3D numerical framework allowing, relevant boiling multiphase
ows and their impact on part cooling. This objective implies also to develop high-
delity treatment of interfacial dynamics during quenching processes;

3. To develop a ground breaking uni ed immersed method for quenching environments and
to enhance the adaptive Finite Element numerical strategy following a two-fold logic of
simplicity and exibility for the uid-solid-heat coupling;

4. To propose experimental investigations and validations allowing (1) to validate the previ-
ous numerical objectives and (2) to give insights on physically based boiling heat transfer.
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Résumé en francais

Présent dans I'élaboration de piéces critiques aussi bien dans le domaine aérospatiale, nucléaire,
la trempe est un procédé largement utilisé par les métallurgistes dans I'élaboration des aciers.
Ce procédé, qui vise a donner des propriétés mécaniques bien précises a une piece appartient a
la famille des traitements thermiques. Ces pieces sont chauffées dans des fours a n de permettre
la diffusion des atomes de carbone. A n d'empécher la diffusion de ces atomes de carbone
lors du refroidissement souvent inhomogéne de la piece, la piece est refroidie brutalement.
Ce refroidissement peut s'effectuer en plongeant la piéce dans un bain liquide a température
proche de la température ambiante mais peut aussi s'effectuer par application d'un jet d'eau
(ou spray).

L'amélioration et le contrle de ce procédé suscitent un intérét grandissant et deviennent
un axe majeur de progres pour les industriels. Les forts gradients thermiques présents aux
interfaces, le changement de phase du liquide de trempe, I'agitation et la transformation de
phase dans le solide sont autant d'éléments rendant la trempe extrémement dif cile a modéliser.
La multiplicité des échelles spatiales, du mm a la dizaine de metres et des échelles temporelles,
de la ms a plusieurs heures, rend encore plus compliquée I'utilisation de modeles uniques et
simpli és.

Les colts engendrés par les expérimentations effectuées dans le but d'améliorer ce procédé
sont rédhibitoires et rendent les expériences dif ciles a mener. Le fait que les installations
soient préexistantes limitent aussi les axes de progression du procédé.

La simulation numérique représente un outil puissant permettant aussi de déterminer I'ef cacité
du procédé en se basant sur des indicateurs pertinents développés par l'industriel mais aussi de
modi er les con gurations possibles de la piece métallique a tremper. Ainsi l'orientation de la
piéce et sa position dans le bain de trempe sera étudiée. Une trempe ef cace nécessite que le
liquide de trempe puisse extraire le maximum de chaleur tout en ne s'échauffant pas immod-
erément. Pour cela, il est nécessaire d'avoir un large volume de liquide et une forte agitation
de celui-ci. Les vitesses d'agitation ainsi que les dispositifs d'agitation peuvent étre incorporés
dans la simulation numérique.

Dans cette thése de doctorat sera montrée la construction d'un environnement numérique
permettant de simuler de maniere précise et robuste un procédé industriel aussi exigeant que la
trempe. Une étude des mécanismes physiques du procédeé de trempe nous a permis de déter-
miner les axes prioritaires de développement du nouvel environnement numérique.

En se basant sur les outils existants au sein de la librairie de calcul élément nis de I'équipe
Calcul Intensif et Mécanique des Fluides (CFL) du Centre de Mise en Forme des Matériaux
(CEMEF) de I'école des Mines de Paris (Mines ParisTech), nous avons identi € les nouveaux
besoins numériques. La méthode d'immersion de volume largement développée au sein de
I'équipe CFL est utilisée dans ce travail, pour son aptitude a prendre en compte toutes les
composantes du procédé de maniéere uni ée. Alliée a des méthodes puissantes d'adaptation
de maillage, la méthode des volumes immergés permet une résolution ne des physiques aux
interfaces, déterminante dans I'obtention de résultats précis et ables.

Le cadre de travail ainsi proposé répondra aux besoins des industriels en leur permettant de
simuler le procédé de trempe dans des conditions réalistes, supprimant ainsi toute hypothése
simpli catrice et limitant I'utilisation de parametres non physiques.
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2.1 Introduction

The present chapter is dedicated to the study of the physical mechanisms in the quenchant
during the process. In this work, only the physics of the uid (the quenchant) in quenching
tank is addressed. The purpose here is to give an insight of the main physical mechanisms
involved in quenching. Once these phenomena are identi ed, we will investigate their impact
by quantifying characteristic time and scale of the different mechanisms involved in boiling.
From vaporization of the quenchant and therefore the formation of a vapor Im, to the dynamics
of the vapor Im due to gravity and surface tension, the main mechanisms are investigated.

Unsteady 3D simulations of turbulent boiling still require large computational resources.
A way to circumvent the need of tremendous computational resources is to identify the phe-
nomena to simulate, with satisfactory precision and delity with respect to the real process. To
enable the numerical tool to be predictive, only phenomena with no signi cant impact on the
results must be neglected.

Choice has been made to prioritized the physics involved in boiling according to the dynam-
ics of the interface. The interface position and the interface velocity will be quanti ed for each
phenomenon and compared. Phase change, hydrodynamic instability and vapor Im expansion
are considered here. Other phenomena such as radiation are not considered in this work.

13
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First we will investigate the creation of vapor from water through the resolution of the
well known Stefan problem. Then we will investigate the destabilization of the vapor Im
due to the gravity and surface tension through the Rayleigh-Taylor instability. In the case of
a compressible vapor, vaporization creates an over-pressurization and the containment by the
surrounding water therefore requires a relaxation and an expansion of the vapor phase.

According to the results, emphasis will be put on the modeling and the implementation of
the predominant mechanisms/phenomena.

2.2 Phase change

Phase change is present in various industrial but also in natural phenomena: boiling of water,
condensation that creates clouds, the dew and the mist, cavitation in ship propellers, icing of
aircraft wings. Each kind of phase change is characterized by triggering mechanisms induced
by temperature or pressure. In the quenching process, the phase change is boiling and it is due
to the metallic part that provides the required heat.

Boiling modes play an essential role in the cooling of a metallic part. Nukiyama [39]
highlighted in 1934 the different boiling regimes of water in contact with a heated metal. As
one progresses from the saturation temperature to higher temperatures, more and more bubbles
appear and then merge into a vapor Im, which act as a thermal insulation. The boiling curve,
when the temperature at the surface of the part is controlled (see Fig. 2.1), describing the boiling
modes, reads as follows:

Free convection: Starting before saturation, it is due to the change of density of the uid,
the higher the temperature, the lower the density. Bubbles do not appear yet.

Nucleate boiling at low heat ux: Isolated bubbles start to appear in preferential sites
called nucleation sites.

Nucleate boiling at high heat ux: Bubbles tend to collapse and to form columns. This is
the most ef cient heat transfer mode as the heat is convected by the bubble and its wake.

Transition boiling: A vapor Im, restraining the contact between the liquid and the solid
starts to appear on a periodic and spatial way. The vapor Im is not stable.

Beyond the Leidenfrost point, the surface is entirely covered by permanent vapor Im,
preventing any contact between the water and the metal.

When the excess temperature is larger than 300K, the surface heat ux due to radiation
-the latter being a function of“T(T temperature)- is of the same order as the heat ux due to
boiling. That is all the more true when the excess temperature exceeded the Leidenfrost point,
as the vapor Im is stable and radiation becomes the dominant heat transfer mode. Thus, this
heat transfer mode should be investigated.

In the case of industrial applications, nucleate boiling represents the most ef cient boiling
heat transfer regime. Therefore, steel manufacturer aim at improving their processes by reach-
ing this regime. In quenching processes, the temperature is considerably larger than the Lei-
denfrost temperature. Steel in water, for example, is quench&gate Tstaturation™ 400K.
Therefore, a vapor Im surrounds instantaneously the part and prevents it from cooling.
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Figure 2.1: Nukiyama curve. Evolution of the surface heat ux as a function of the excess
temperature

2.2.1 The Stefan problem

The Stefan problem is a widely used and studied problem. It was originally proposed by Jozef
Stefan to study the formation of ice in the polar seas. Nowadays, a large class of free boundary
problems are referred to as Stefan problem. From a set of physical parameters de ning two
phases and for a given heat source, one seeks to nd the evolution of the interface between the
phases. Since heat is the driving force of this phenomenon, the transfer of energy has to be
nely described between the phases.

The popularity of this class of problems lies in the fact that analytical solutions can be found.
This makes the Stefan problem a good candidate to assess the validity of a numerical method
for phase change. Several assumptions are usually required to nd an analytical solution. For
example, most of the Stefan problem in the literature deal with phases of equal density. This
assumption, if applicable in case of the melting of a solid or the solidi cation of a liquid, shows
its limits when dealing with two phases of a density ratio of about 1000 such as water and vapor.
We will solve the Stefan problem for the general case of two phases of different densities even if
a special care will be given to water and vapor in this thesis since it is the most used quenchant.

The purpose here is not to propose a literature review on the Stefan problem. Therefore
we will refer to the standard formulation of the problem. The solution of the Stefan problem
is found by solving the heat equation, with additional assumptions regarding convection in the
phases as well as boundary conditions.

2.2.2 Resolution of the classical Stefan problem

We consider the one-dimensional Stefan problem. The problem is de ned schematically in Fig.
2.2. We consider a semi-in nite domain in tkxedirection and in nite in the other direction.
Initially the domain is lled with a liquid. The temperature at the wajl, is set constant

and larger than the saturation temperatlgg The water is at saturation temperature. At

t > 0, a phase change occurs and induces a motion of the interface between vapor and water.
The convective term in the energy conservation equation is neglected in both phases even if in
guenching, convection will play an important role.
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Figure 2.2: Initial setup for the classic Stefan problem.

We consider the following heat equations:

2

r.c'p% k.% =0 intheliquid (2.1)
2

rvc‘é% k\,‘l]”—x-gv =0 in the vapor (2.2)

wherer is the densitycy is the speci ¢ heatT is the temperature, arkithe thermal con-
ductivity. We assume continuity of temperature at the interface. Furthermore, we assume that
the temperature at the interfatg equals the temperature of saturation. Therefore the initial
boundary conditions for this problem read:

T(x=st) Te= Tsat (2.3)
T(x=0;t) = Tyay = constant (2.4)

We can recast the heat equation, using k=r cp the thermal diffusivity:

1T Kk 12T _ 9T _91°7
— ————=— a_-—5=0 2.5

Tt rcpx® 1t X2 (2:3)
We use the similarity variable referred to as the Neumann sollxtignx:p t. Then the tem-
perature is expressed as a functlosuch asT (x;t) = F(x). The heat equation as a function
of X reads:

x dF d?F
53 ax + pvvke 0 (2.6)
Using separation of variables gives:
dinG X
dx ~ 2a 2.7)
dF
G = ax (2.8)

By integration, we obtain the following expression fofx):

z &
F(x)= A exp 1a ds+ B (2.9)
0
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where A and B are integration constants, whose values are given by the boundary conditions.
By a change of variable:

) e
F(x)=2A a exp V° dy+B (2.10)
0

Recall the de nition of the error function erf:

) ZX
erf(x) = p—5 exp( t?)dt (2.11)
0

and the complementary error function erfc:

erfx)= 1 erf(x) (2.12)
The temperature is given by:
P— X
F(x)= A ap erf Ep? + B (2.13)

Using the boundary conditions (2.3)-(2.4), the temperature in vapor and water &t éirae
given then by:

Tsat T
Ty (1) = T+ —22L Wl gpp X (2.14)
erf pS_ 2" aut
2" ad
T(xt)= Ty + Merfc —pX: (2.15)
erfc P 2 at
|
Letcy = —p— andc, = —p— The position of the interface is given by:
_ on P
s(t) = 2cy aut (2.16)
In the vapor, the gradient of the temperature is:
T Tsat Tw. 1 1 X2
= — 2.17
X erf(c) p— ayt exp dat ( )
In the liquid, the gradient of the temperature is:
1T Tsat Ty 1 1 X2
— = —p— — 2.18
x erfc(c)) p_p at P Zat (2.18)
At the interface, fox = s, we therefore obtain:
v _ Tsar Tw 1 1 2
— = —ex c 2.19
ix  erf(cy) p_p ayt P Cv (2.19)
T Tsat Ty 1 1
Th_ T ¥p_p —exp c? (2.20)

ix  erfdc) p at
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The velocity of the interface, referred to as the Stefan condition is:

ds 1T 1
ryb— = ky——+ k— 2.21
L vt ki Tt (2.21)
whereL is the latent heat of vaporization.

In the classical Stefan problem, the liquid being at saturation temperature, the Stefan con-

dition reduces to: ro
1T ds a
k\/ﬂ = I‘VL& = I’VLCV T (222)
By combining (2.19) and (2.22), we obtain the following relation describing the evolution
of the interface: _—_—
b3t = cyerf(cy) exp c2 (2.23)

pL

The resolution of (2.23) gives the temperature and the position of the interface using equa-
tions (2.14)-(2.16).

Considering the following physical properties for water and vapor de ned in Table 2.1
and settinglwan  Tsat= 900K, we solve the transcendental equation (2.23) using a Newton
algorithm to ndc,.

Table 2.1: Density, dynamic viscosity, speci ¢ heat and thermal conductivity for vapor and
water at atmospheric pressure

r [kg/m3] m[Pas] Cp [J/(kgK)] k[W/(m K)] L vap [J/kg]
Vapor 0597 126 10 ° 2030 0.025
Water  958.4 B8 104 4216 0.679 26 1(°

The temperature pro le at t=1s is depicted in Fig.2.3. The analytical evolution in time of
the interface is given in Fig. 2.4. The Fig. 2.5 shows the evolution of the velocity. The velocity
of the interface is of the order of m/s at the very beginning of the problem. This indicates that
almost instantaneously, a thickness of vapor of about few millimeters was already formed. It
is an additional information to the curve in Fig 2.1 regarding the boiling regime for which this
work should focus on.

2.2.2.1 Stefan condition for =r; 6 1

In the literature, the Stefan problem is usually solved using a constant density. To consider a
two-phase Stefan problem, the density ratio has to be taken into account. In order to conserve
heat, an additional term appears in the balance of uxes (2.21). The derivation of the Stefan
condition, neglecting inertial effects, for two phases of variable densities was derived in [40]

and reads: ) 2
ds 1 ry ds ~ .
rvaapa érv 1 ﬁ a = ( k| NT| + k\/NT\/) (S% (224)
If ry=r), we retrieve the case with no density change. This condition does not allow a sim-
ilarity solution. However, because of the high value of the latent heat, the in uence of the
cubic term is negligible except when the velocity of the interface is very large [41, 42, 43].

The velocity reaches its highest values at the very early times of the problem, at a time scale of
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Figure 2.3: Temperature pro le at t=1s

Figure 2.4: Stefan problem: Evolution of the interface position

micro- or nano-seconds, which is out of the scope of this work. The modi ed Stefan condition
was shown to be essential in the case of the melting of nanopatrticles [44]. We will refer to the
standard Stefan condition (2.21) in this work.

Some partial conclusions can be made according to the results of this problem. When
we consider the range of excess temperature in quenching, since a thickness of vapor forms
very quickly at the beginning of the process, we can assume that there is no need to simulate
nucleation of bubbles. Therefore we will start all the simulations with a pre-existing vapor Im
surrounding the metallic part.

2.3 Rayleigh Taylor instability

When a light uid lies below a heavy uid, if the interface is unstable, uids will interpenetrate,
creating ngers or spikes and afterwards, bubbles. Depending on the uids at play, the rising
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Figure 2.5: Stefan problem: Velocity of the interface.

velocity of the light uid and the shape of the interface will differ. Several factors in uence the
growth of this instability, called Rayleigh-Taylor instability, such as the density, the viscosity,
the surface tension or the compressibility of the uids. Fig.2.6 shows the con guration of a 2D
Rayleigh-Taylor instability.

This instability occurs during quenching after the creation of the vapor Im. A comparison
of the evolution of the interface position due to the Rayleigh-Taylor instability and vaporization
of water is therefore relevant. Indeed, if at some point, the dynamics of the interface is mainly
due to this instability, this phenomenon cannot be neglected.

Figure 2.6: Setup for the 2D Rayleigh-Taylor instability. A light uid lies below a heavy uid.

At the early stage of this instability, using a linearization of the physical equations, a small
perturbation will grow exponentially in time. Rayleigh Taylor instabilities of small amplitude
are widely studied in the literature [45]. We recall brie y the linearized growth of the instability
to describe the rise of the vapor Im after its creation. The interface perturbation is given by:

S(t) = spexp(wt) exp(ikx) (2.25)
wheres is the initial perturbation of the interface. The growth ratés de ned by:
w= " gAk (2.26)

whereA=(r; ry)=(r,+ ry) is the Atwood number is the acceleration of the gravity and
k= 2p= isthe wave number.
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When using the physical properties of Table 2.1, we can obtain the following simpli cation

for the growth rate S ;

rrvp 2p 2.27)

W =
ri+ryl I

For a Rayleigh Taylor instability, the critical Taylor wavelength is:
r

- g
I " o (2.28)
whereg is the surface tension arglis the acceleration due to the gravity. For the set of
parameters given in Table 2.1, the critical wavelength is about0:0027m.

Fig. 2.7 shows the evolution of the interface according to (2.25). It is worth mentioning
that the theory of the linearized regime is valid for a growth between 10% to 40% of the critical
wavelength. However, since we use this theory to obtain an order of magnitude of the rising
velocity and the interface position at the early time of the phenomenon, we will assume that a
comparison with other phenomena using this theory is valid.

Figure 2.7: Rayleigh Taylor instability: Evolution of the interface position

2.4 Expansion of a compressible medium

Vaporization of a thicknessy implies expansion of the gas. The principle of expansion is
depicted in Fig. 2.8, . This expansion requires to accelerate the whole mass of surrounding
water. A 1D expansion model would be then:

. Dp px 1 S
r t)y= —= — — — 1 2.29
1S Lc Le ryvs(t) ( )
whereL is a characteristic length taken as the length of the water column in the current study,
py is the pressure at the top of the water column.
An approximation of the solution of (2.29), using a nite difference method is:

+1_ 1, 2P NS
grl=o9 Ml (2.30)
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Figure 2.8: Expansion of the vapor phase after vaporization of a thickpessvater.

wheren is the time iteration. The pressure is set upyo= 10°Pa and_. will be taken as the
length of the column of water. Results on the evolutios aécording to (2.30) are given in the
the following paragraphs.

2.5 Comparison

In this section, we will compare the interface evolution due to vaporization, due to the Rayleigh-
Taylor instability and due to the expansion of the vapor Im. The growth of the vapor Im is
done in the opposite direction of gravity in order to assess the effect of the column of water
lying above the vapor Im. The principle of the comparison is the following. First, we have to
consider a minimal thickness to compare the phenomena. This thickness will be given by the
solution of the Stefan problem. When a thicknggss reached, we additionally compute the
solution of the Rayleigh-Taylor instability and the solution of the expansion of the vapor phase
using equations (2.25)-(2.30). This enables us to show the interface evolution according to each
phenomenon after the creation of a certain thickness of vapor. We consider in the following
exampless,=10 4, 10 3 and 10 2 m.

We approximate the interface position given by the resolution of the Stefan problem, using
the Stefan condition (2.22). Approximating the gradient of the temperature gives:

ﬁ Tvap  Tw

2.31
rvL S ( )
The previous equation can be rewritten in the following way:
T 1, _ Cp
2 = ay(Tw Tvap)r (2.32)
By integration, we obtain:
r A P
C
)= 2a(Tw Twap-t= 2ay,———Pt (2.33)
L Tref
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wherea, = 2:10 °n?=s, Trer = 10°K and the excess temperatdig Tyap= 900K.
Thus, a good approximation of the position of the interface is given by:

q —
sty 210 % (Tw Tapt (2.34)

Figure 2.9: Evolution of the interface position with a water column of 0.1 m height. Compar-
ison of the evolution of the position of the interface starting from an initial posgjoof the
interfacesp=1e-4 (bottom), 1e-3 (middle) and 1e-2 (top).

Figure 2.10: Evolution of the interface position with a water column of 1 m height. Compar-
ison of the evolution of the position of the interface starting from an initial posgjoof the
interface.sp=1e-4 (bottom), 1e-3 (middle) and le-2 (top).

In Figs. 2.9-2.10, the evolution of the interface according to each phenomenon is shown.
In Fig. 2.9, a column of water of 0.1m is considered and in Fig. 2.10, a column of 1m. As
it is clearly visible in Figs 2.9-2.10, the dominant phenomenon is vaporization. Indeed, the
excess temperature being very large, the wall is still close enough to supply a large amount
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of heat. However its effect decreases with the distance from the wall beacause the vapor acts
as a thermal insulator and therefore conduction of heat is not as ef cient as in water. Then,
vaporization leads to a pressure increase in the vapor phase that requires an expansion. The
evolution of the interface is faster when the column of uid is 0.1m compared to a column of
1m. The comparison between Fig.2.9 and Fig. 2.10 emphasizes the in uence of the column
of water on the displacement of the interface. With a higher column of water, the expansion is
more dif cult to achieve. The results of the Rayleigh-Taylor instability clearly show that for

this excess temperatuli,  Tvap= 900K, gravity effects and surface tension do not balance

the formation of the vapor Im and its expansion. As a consequence, a permanent vapor Im
surrounds the part.

To sum up, at the early stage of boiling, due to the heat transfer between the solid and
the water, a vapor thickness is created and tends to expand. At high temperature, such as the
ones considered in quenching, these phenomena prevent water to reach the part. After a certain
period of time, the temperature of the part will enable gravity and surface tension to play a role
in the dynamics of the vapor Im. This is the nucleate boiling regime, carrying vapor and heat
away from the solid.

2.6 Modeling strategy

Boiling still represents a challenging subjects of physics. Several complex and coupled physics
are involved. This work intends to tackle some of the most relevant phenomena involved in
boiling; the purpose being to build a numerical framework allowing the simulation of such a
complex phenomenon. Therefore a coherent and realistic strategy must be set, enabling to con-
sider additional physics. The numerical tools will be used as predictive tools for the improve-
ment of large industrial process. A major effort will thus be made to reduce the computational
requirement to perform such simulations. Furthermore, this numerical framework should be
open to evolution and to the addition of new physics, such as radiation.

We choose not to consider compressible ows using an equation of state. From a numerical
point of view, considering a uid as compressible would result in additional complexity such as
shock, time step restriction due to the celerity of sound, low Mach approximation, etc. Instead,
as a rst step, we will consider distinct phases that will exchange heat and mass. Therefore
one needs to quantify the right amount of heat and mass transferred from one phase to the
other. A mass transfer rate is required for the phase change model. The mass transfer rate will
guantify the amount of water transformed into vapor. The Stefan condition gives us access to
such a mass transfer rate. The set of conservation equations (mass, momentum, energy) and the
level set equation have to be derived to take into account a transfer of heat and mass to model
vaporization. Details are presented in Chapters 3,4 and 5.

Once the vapor Im is created, the dynamics of the vapor Im is given by the surface
tension. The boiling regime at a given time depends on the competition between the creation of
the vapor Im and the rise of bubbles formed from the vapor Im. In the case of a low surface
tension, slugs of vapor will detach quickly from the Im and then rise to the free surface. On
the contrary, a high surface tension will favor the formation of a continuous and stable vapor
Im. However, for a given value of surface tension, a large excess temperature will lead to
the formation of a stable vapor Im. Several challenges arises from a numerical point of view.
Indeed the implementation of the surface tension imposes a severe restriction on the time step,
one or two order of magnitude smaller than other time step restriction such as the Courant-
Friedrichs-Lewy (CFL) condition.



CHAPTER 2. PHYSICAL MECHANISMS INVOLVED IN QUENCHING TANKS 25

It was demonstrated in the last section that in some cases the expansion of a compressed
medium leads to a fast evolution of the vapor Im thickness. Furthermore, in the presence of
stirring mechanism in the quenching tank that inject water at a velocity in the order of tens of
m/s, the vapor Im is compressed against the metallic part and therefore the dynamics of the
vapor Im changes.

The objective of this work being the development of a numerical framework to simulate
guenching, we will address the aforementioned points and include them in uni ed multiphase
framework. Several features are required in this framework:

Resolution of the unsteady multiphase Navier-Stokes equations

Computation of the mass transfer rate and derivation of the set of equations taking into
account heat and mass transfer

Alleviation of the time step restriction due to the implementation of surface tension
Inclusion of a compressible medium

In the introduction of this thesis, a literature review of the numerical simulation of quench-
ing showed that the most common way to treat the interaction between the uid and the solid
is through boundary conditions and heat transfer coef cients. If the use of heat transfer coef-
cients seems appealing by its simplicity of implementation, from a practical point of view,
it relies on the knowledge of such empirical coef cients. For any new con guration, a new
coef cient has to be identi ed.

In this work, we use a monolithic approach, meaning that a single domain is used and
discretized and only one set of equations in solved in this domain. All the phases of the problem
(solid, liquid, gas) are immersed in this domain. Therefore an interface capturing method is
required to distribute the physical properties of each phases and to capture the evolution of
those interfaces. In the present work, a level set method is chosen to its ability to deal with
complex topology change of the interface. Furthermore, the ease to compute from the level
set function quantities such as the curvature of the interface or the normal eld to the interface
makes the level set a very useful and very used tool in multiphase applications and in particular
for surface tension. Since at very high excess temperature the vapor Im is instantaneously
created, the nucleation of bubbles will be neglected and a fully developed Im with a certain
thickness will be considered pre-existing. This is easily done using a standard level set method
without any assumptions on a distribution of nucleation site. The heat transfer are treated
naturally using a monolithic approach and solving the Navier-Stokes equations in the whole
domain. No arbitrary boundary condition for the heat equation are applied to the immersed
solid. A thorough presentation of the monolithic approach will be given in the next chapter.

2.7 Conclusion

In this chapter, we discussed the complexity of boiling in quenching tanks. Several physical
mechanisms are involved and make the understanding of this phenomenon dif cult to achieve.
We choose to prioritized the phenomena according to their in uence on the vapor Im dynam-
ics. Therefore, focus is put on 3 phenomena: phase change, hydrodynamic instability of the
interface and vapor Im expansion. We decomposed the phenomenon into simpler problems
that we solved. We draw some conclusions about the requirements of the future numerical
framework that will be developed in the following chapters.
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Résumé en francais

Dans ce chapitre, les principaux mécanismes physiques présents dans la trempe sont identi és
et étudiés. Des échelles caractéristiques de temps et d'espace sont associées a ces différents
mécanismes. Le changement de phase de I'eau en vapeur est tout d'abord considéré a travers
la résolution d'un probléme de Stefan. Le second mécanisme est la détente d'une phase vapeur
compressible con née par un certain volume d'eau. Le dernier mécanisme est la remontée de
la phase vapeur au sein de I'eau, dont I'évolution est obtenue par I'étude d'une instabilité de
Rayleigh-Taylor. La résolution de ces différents problémes nous permet pour une épaisseur de
vapeur créée de déterminer quelle sera I'évolution du Im de vapeur. Ainsi, pour une certaine
épaisseur de vapeur créee, la détente est le phénomene le plus rapide. Une fois la détente de
la phase vapeur achevée, c'est la compétition entre I'nydrodynamique et la vaporisation qui
va reguler le procédé. Pour des gradients thermiques trés élevés comme ceux présents dans
le procédé de trempe, il apparait clairement que I'hnydrodynamique de la phase vapeur est le
facteur limitant dans le refroidissement d'une piéce solide puisqu'il se crée beaucoup plus de
vapeur au contact du solide chaud qu'il ne s'en évacue.

Cette étude nous permet de lister les différents composants nécessaires a I'élaboration d'un
cadre numérique pour la simulation de la trempe. Tout d'abord, il faudra étre capable de ré-
soudre les équations de Navier-Stokes multiphasiques pour des écoulements turbulents. En-
suite, la tension de surface devra étre prise en compte pour modéliser de maniéere la plus
dele possible la dynamique de la phase vapeur. Un modéle de changement de phase devra
étre développé, permettant de calculer les échanges de masse et d'énergie a travers l'interface
vapeur/eau. Finalement, la compressibilité de la phase vapeur devra étre considérée pour avoir
une description de la compression du Im de vapeur soumis a une forte agitation.
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3.1 Introduction

Immersed methods are gaining popularity in many scienti ¢ and engineering applications such
as Fluid-Structure Interaction or multiphase ows. All the different approaches, such as the
Cartesian method [46], the Immersed Boundary method [47], the ctitious domain method [48],
the embedded boundary method [49], the immersed volume method [19], among many others,
are attractive because they simplify several inherent issues related to Fluid-Structure interaction
or multiphase applications: meshing the uid domain, the use of fully Eulerian algorithm,
problems involving large structural motion and deformation [50] or topological changes [51].

When the grid is not body- tted, the interface requires a special treatment. Indeed, recent
developments are focusing on the immersion of a surface mesh for 3D complex geometries,
the detection of interfaces, the computation of intersections and the transmission of boundary
conditions between the solid and the uid region [52, 53].

In this work, we present the immersed volume method and its extension. It uses the level
set function to describe the immersed phase. For simple geometries, we resort to the use of
analytical functions (i.e. sphere, square, ...) to compute the distance function whereas for
a complex geometry we used its surface, described and discretized by a hyperplan simplex

27
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mesh (a set of triangles for 3D simulations or a set of segments for 2D simulations). Then,
we compute the distance from any given point (a node of the computational domain) to the
surface mesh. It is clear that in this case, the description of the immersed structure is limited
by the quality and the accuracy of the given surface mesh. Therefore, we rely on the use
of anisotropic mesh adaptation technique [54, 27] to obtain a high- delity description of the
immersed objects.

The Immersed Volume Method is an interesting tool for computational engineers, in par-
ticular for conjugate heat transfer analysis. It can be easily implemented in Finite Element
codes. It allows solving a single set of equations for the whole computational domain and
treating different subdomains as a single uid with variable material properties. This offers a
great exibility to deal with different shapes or to change easily the physical properties for each
immersed structure. Therefore, we start by computing the signed distance function of a given
geometry to each node in the mesh. Using the zero isovalue of this function, we can easily
identify the uid-solid interface. Consequently, we can apply an anisotropic mesh adaptation
at this interface and then mix the thermo-physical properties appropriately for both domains.

3.2 Level set

3.2.1 Standard level set method

The level set method enables the localization of the interface between two phases. Itis a signed
function distance and is a widely used tool in many applications such as multiphase ow, crystal
growth, image restoration or surface reconstruction [55] W#te whole domainW; the uid

domain andAs the solid domain. The level-set function is a signed distance function from the
interfaceG= W\ W, de ned at each node X diVas follows:

8
< dis(X:Q if X2 W
a(X)= 0 if X2 G (3.1)
dis(X;0  if X2 W,

The evolution of the level set is given using a transport equation as follows:

d Ma .

—a(xt)= —+u Na=0 3.2

G206 = (32)
The level set, as a distance function, verikl§ak = 1. However, when the interface is con-
vected by a velocity, the level set can lose this property and need to be reinitialized to recover

it. A way to reinitialize the level set is to solve the Hamilton-Jacobi equation [16]:

1111—f+ ga)(kNak 1)= 0 (3.3)

wheret is a ctitious "time step” andy(a) the sign function ofi. The steady state is reached
when the gradient of the level set recovers its analytical value. Therefore, the solution of this
nonlinear hyperbolic equation will be a distance function from the interface while keeping the
zero isovalue unchanged. By using this approach, we avoid to nd explicitly the zero isovalue.
This property is of utmost importance since all physical properties at the interface will be
distributed in space according to the level set. As a demonstration, we perform the simulation
of 2D rising bubble in a channel full of water (see Fig. 3.2). We plot some isovalues of the
level set at the initial time in Fig. 3.2(a). As time elapses, if the level set is not reinitialized,
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Figure 3.1: Immersion of several objects (left) and a sphere (right). The zero isovalue of
the level set is represented in green. On the left picture, color represents the signed distance
function to the interface.

the isovalues start to spread far from the interface as it is depicted in Fig. 3.2(b). It means
that the level set is not a function distance anymore. If we distribute the material properties
according to this non-distance function, we will change the physics of the problem since a non-
physical thickness is created due to the diffusion of the isovalues. On the contrary, the level set
is reinitialized properly in Fig. 3.2(c) and therefore we still solve the physical problem. The
effect of the reinitialization of the physics of the problem is also con rmed by the difference in
the height reached in both cases.

(@) (b) (c)

Figure 3.2: 2Drising bubble. Isovalues of the level set in black and zero isovalue (the interface)
in red. Initial setup (left). Results at t=3s when the level set is not reinitialized (middle). Results
at t=3s when the level set is reinitialized (right).

The Hamilton-Jacobi procedure being iterative, the computational cost induced can be pro-
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hibitive for large computations. A method to alleviate this burden is proposed in [56]: the
so-calledconvected level set method

3.2.2 Convected level set method

This method consists rst on truncating the level set function using for the following function:

4= Etanh 2 (3.4)
E
whereE is the thickness of the truncation.

An interesting feature of this method is the possibility of imposing Dirichlet boundary con-
ditions since the level set de ned in (3.4) is bounded, Furthermore, the gradient of this level
set far from the interface is close to 0. This enables to save computational time and to pre-
vent singularity because of corners (2D) or sharp edges (3D) which is really adapted to mesh
adaptation procedure.

The truncated level set now veri es the following property:

2

kN&k = 1 (3.5)

M| D

For sake of simplicity in the notations, we drop in the following the tilde andill design
the truncated level set. We linearize the gradient to express it as a function of the level set at
previous time step:
Na .
< Na
kNa k

kNak (3.6)

As a consequence, the Hamilton-Jacobi can be recasted into the convective form:

Na 2

kNa k

Na = s(a) 1 (3.7)

m| o

fa
ﬂ_t+ sa)

We de neU = s(a)k—ﬂ% as the reinitialization velocity. Following the lines in [56], we
combine the transport and the reinitialization equations into the following equation:

- . 2
ﬂ_a+u Na + 1 s(a) kNak 1

i =0 (3.8)

a
E
wherel is homogeneous to a velocity and E is the thickness of the truncation. Solving the
following equation insures that the level set remains a signed function distance.

The equation to solve now reads:

T8 (u+1u) Ra=1ga) 1

i (3.9)

m| o

It is shown in [56, 57, 58] that the proposed method reduces the computational cost and
ensure a better mass conservation than the classical level set method.
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3.3 Mesh adaptation

One key for success in innovation in industry is the ability to test new ideas as quick as possible
and progress to the optimal solution. However, the accurate prediction of the dynamics of
multiphase ows and heat transfer at the industrial scale requires large computational resources
that are not affordable for most manufacturers. Reliability in the description of the physical
phenomena involved is essential and cannot be compromised in critical application such as
aerospace or nuclear industry.

To alleviate this burden, locally re ned meshes represents an appealing solution. The com-
putational cost can thus be drastically reduced compared to globally re ned mesh. However, if
this approach is ef cient to mesh complex motionless geometry, an expertise in the problem at
hand is required in transient problem to locally re ned the region that needed it. Such meshes
are valid only for a speci ¢ con guration and if the problem exhibits unpredictable evolution
in space of the solution, the mesh is to be rebuilt. Underresolved meshes must be recreated to
meet the requirements of accuracy necessary to solve properly the problem. Furthermore, even
the generation of the rst locally re ned mesh from a CAD geometry is a time consuming task
that requires for a company additional manpower and additional software to be achieved. In the
automotive, aerospace, and ship building industries, mesh generation may represent up to 80%
of the overall analysis time [59]. The mesh generation can be an endless task and one seeks to
circumvent this process.

A large variety of methods were proposed to optimize the computational cost in Computa-
tional Fluid Dynamics (CFD) but keeping a certain level of accuracy with limited resources still
represents a challenge. For a given computational facility, a compromise between accuracy and
computational cost has to be found. We propose in this work the use of an anisotropic dynamic
mesh adaptation method with physics-based criteria. More speci cally, an automatic mesh
adaptation procedure of unstructured mesh, working under the constraint of a xed number of
elements will be used. This method involves the construction of a metric eld that contains
the information regarding the principal direction in space and the size with respect to each di-
rection. An error estimate is used to build the metric eld. In the case of anisotropic mesh
adaptation, highly stretched element are allowed, with a ratio of anisotropy up to 1000:1. This
feature is very useful in CFD where anisotropy is common such as in turbulent boundary lay-
ers or interfaces between phases whose arti cial thickness should tend to zero. The numerical
methods used to solve PDE's (partial differential equations) on this mesh are therefore modi ed
adequately to take into account the anisotropy of the elements.

In multiphase ows, the concern is to be able to accurately compute the velocity and tem-
perature elds in the whole domain, follow interfaces moving at high velocity and quantify
mass transfer rate in a small thickness around the interface to model the phase change. We
describe in this section a multi-criteria functional that estimates the error on a combination of
several variables including the velocity norm, all the velocity components, the temperature and
the level set function. Consequently, computation will bene t from the relevance of the criteria
chosen.

3.3.1 Anisotropic mesh adaptation for interface capturing

In the following paragraphs, we will show how to accurately capture an interface using a simple
and ef cienta priori anisotropic mesh adaptation procedure. this will allows us to introduce
some notations and the purpose of using mesh adaptation. We combine the level set de nition of
the interface and build a metric map according to it. Since the level set is an implicit de nition
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of the interface, the interface intersects the elements of the mesh arbitrarily. As a consequence,
when considering two phases, discontinuities due to the high ratio in the physical properties
may lead to numerical oscillations during the resolution of PDEs. Instead, we will consider
a regularized interface, meaning that the properties are distributed smoothly over a certain
thickness around the interface. However, since this interface thickness does not have a physical
meaning, it has to be reduced to the minimum. Using anisotropic mesh adaptation with highly
stretched elements along the interface will help reducing the interface thickness, will increase
the accuracy of the computation due to a higher mesh resolution.

The anisotropic mesh adaptation procedure is performed using a metric map that prescribes
a mesh size according to the principal directions in the domain. These principal directions are
given by the eigenvectors of this metric and the mesh size is related to the eigenvalues of this
metric. The metridM is a symmetric positive de nite tensor [60, 61, 62, 63] representing a
local base that modi es the distance computation from the Euclidean space to the metric space,
such that:

JiXiiu = P X M X (3.10)

wherex are the Cartesian coordinates. The de nition of the scalar product in the metric space
is given by:
<Xy>y=% M y: (3.11)

To obtain an accurate description of the interface using the level set function, we consider
the normal direction as the principal direction of mesh re nement. Therefore, a given mesh size
hg can be prescribed in the whole domain while a smaller one can be prescribed in a thickness
around the interface. A choice to achieve this purpose is to consider the following evolution for
the mesh sizé: 8

< hy if ja(x)] > e=2

h="2hgm 1) . hg .. . .
Tla(x)ﬁﬁ if ja(x)j e=2

(3.12)

wheree represents the desired thickness aneepresents a gradation parameter.
According to the prescribed mesh stzeand the prescribed direction= Na =jjNajj, we
can de ne the following metric:

1 3 0 if ja(x)] e=2
M=C(n n)+ —|I with C= 1 1 . . 3.13
( ) hg . h_g if ja(x)j < e=2 ( )

wherel is the identity tensor. This metric corresponds to an isotropic metric far from the
interface (with a mesh size set equahtpfor all directions) and to an anisotropic metric near
the interface (with a mesh size set equahtm the normal direction to the interface and set
equal tohy in the other directions).

As an illustration, Figure 3.3 presents the zero isovalues of the level set function for an
immersed F1 car (left) and a helicopter (right). It clearly emphasizes the extremely stretched
elements along the interfaces whereas the rest of the domain keeps the same background mesh
size.

This step is commonly used to initialize an industrial setup. This approach was extended
recently to account for boundary layers capturing in complex ows. Mesh size gradation and
curvature analysis were introduced to handle very complex geometries (see [28] for detalils).
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Figure 3.3: Anisotropic mesh adaptation for the detailed representation of a brain.

3.3.2 Edge based metric

The mesh adaptation procedure presented here is an automatic procedure that does not require
to deal with case dependent parameter linked to the error analysis. The mesh adaptation strategy
relies on the posterioride nition of a metric eld able, in some speci ed sense, to drive the re-
meshing procedure so that the interpolation error on the Finite Element solution is minimized.

It relies on a statistical representation of the distribution of edges sharing a vertex, a quantity we
call length distribution tensor. In order to relate the length distribution tensor to the interpolation
error, following [54] we de ne an edge based error estimator based on a gradient recovery
procedure. Once the optimal metric has been obtained, the mesh generation and adaptation
procedure described in [27], based on a topological representation, is applied to obtain the new
mesh. This metric construction is commonly used for dynamic mesh adaptation based on the
variation of several elds such as the velocity, the temperature and the level set.

3.3.2.1 De nition of the length distribution tensor: a statistical representation

Let the triangulatioW, a subset oRY, such adVis the union of simplex KWreads:

K2K

Letx' be a mesh vertex and' the edge connecting to x! as in Figure 3.4.

Let (i) be the "patch" associated to the mesh vertexde ned as the set of noded
sharing an edge witk'.

The problem of nding a unitary metriM' associated to th&" node can be formulated as
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Figure 3.4: Patch associated with nodie

the least squares problem [54]:

by

M'=argmin  § Mx" xI j qi)j (3.14)
M2R%A  j2G(i)

~ Inthe case of a valid mesh, verticegGfi)j form at leastl non co-linear edges with vertex
x'. Then, an approximate solution of (3.14) is given by:

Mi:% xit (3.15)

where we introduce thiength distribution tensoX' de ned as:

. 1 o
X'= — a x XY (316)
JqI)J i2Q()

whose purpose is to give an average representation of the distribution of edges in the patch.

3.3.2.2 Edge based interpolation error estimate

We considen 2 C3(W) = V andVj a simpleP! Finite Element approximation space:
Vh= Wh2 COW;whjk 2 PY(K);K 2 K

We denote byJ' the nodal value ofi at x' and we letP, be the Lagrange interpolation
operator fromV to Vj, such that:

Phou(x) = u(x)= uy(x')= U';8i=1; ;N
Using the analysis carried in [54], we can set the following results:
Nu, x=u"; (3.17)
and:

jiNu, x1 Rux) x1jj = jju’l  Ru(x') x1jj n[wax,]jH(u)(Y)xii xj; (3.18)
Y2[x;x!

whereH(u) = KN@u is the associated Hessian wf Recall that takings 2 C2(W) we obtain
Nu2 Cl(w).
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Applying the interpolation operator dlu and using (3.17) we obtain a de nition of the
projected second derivative ofn terms of only the values of the gradient at the extremities of
the edge: o o

Ngpx! x! = ¢! x! (3.19)
whereNg, = PNu, g = Nu(x') andg = g/ ¢

Using a mean value argument, we set that:

9y 2 [xi;xj]; gij Xl = H(u)(Y)xij xH:

However this equation cannot be evaluated exactly as it requires that the gradietat of
be known and continuous at the nodes of the mesh. For that reason, we resort to a gradient
recovery procedure.

3.3.2.3 Gradient recovery procedure

Usingup, a P1 Finite Element approximation obtained by applying the Lagrange interpolation
operator to a regular functiom?2 C?(W), we seek the recovered gradightof up, de ned at
nodex' by:

g=argmn & (g RNuy xI *=argmin & g x/  uw(xd) w(x) % (3.20)
2RY j2i) 2RY  j24(i)

The solution to (3.20) is expressed as:

gi:jG(Li)jxi L& un(x) (X)) i (3.21)
j2G()

The quantityjg' __x”j gives a second order accurate approximation of the second derivative of
along the edge" [54]:
g G xI  Hux! x!

whereg' is the recovery gradient at nodégiven by (3.21)),G' being the exact value of the
gradient at node

It is proved in [64] that folP1 Finite Elements on anisotropic meshes, edge residuals domi-
nate a posteriori errors. Therefore, it is suitable to de ne an error indicator function associated
to the edged'l as: o

gl= g’ x!: (3.22)

Moreover, this quantity can be easily extended to account for several sources of error, instead
of just the scalar eldv,, by applying formula (3.22) to each component separately.

3.3.2.4 Metric construction

We seek to relate the error indica@t de ned in (3.22) to a metric suitable for a mesh adap-
tation procedure. For that purpose, we introduce the concept of stretching thesfadened

as the ratio between the length of the eddeafter the adaptation procedure and before the
adaptation procedure. The new metric, denote®@bywill then be given by:

Ri== R (3.23)
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where !
R'= — é (S'J)ZX” x') (324)
is the new length distribution tensor. To relate the metric to the interpolation error, follow-
ing [26] we set a target total number of nodésBecause of the quadratic behavior of the error
as a function of the scaling factor, denotingdbytfie quantity de ned in (3.22) computed after
the mesh adaptation process we have:
-
= = :
s 3] (3.25)
Moreover, the number of nodes in the new mesh resulting from the application of the scaling
factors! to the edge will be roughly equal to:
T |
ij— —.
N g (3.26)
so that the total contribution of nodén the old mesh) to the number of nodes in the new mesh
will be given by !

Ni=det X ' & Nixi i (3.27)
j2¢(i)
By combining (3.25) and (3.26), it is possible to consitiérin (3.27) is a function of.

Assuming that the total error is equidistributed among all edges such that each edge contributes
el
e

a constant errog to the total, one can see tHdt = , which results in the relation

N'(e) = N'(1)e 92 (3.28)

By summing over all the nodes of the old mesh, an expression for the global error as a function

of the number of nodes in the new mesh is obtained:
P o=
a N'(1) (3.29)

e=

Zl =

The corresponding stretching factors are given by:

‘ 1=d
. anN(D
di = W: (3.30)

3.3.2.5 Mesh adaption criteria

In the last paragraphs, we showed the construction of a metric from au eldder the con-
straint of a xed number of nodes. In coupled problems, the mesh may require to be adapted
according to several elds. If we apply the mesh adaptation to both the Navier-Stokes and heat
transfer equations, different elds can be used as a criterion: the velocity norm, the velocity
components, the temperature eld, the temperature gradient components, and/or their combi-
nations. In this case, the adaptivity will account for the both the change of direction of the
velocity, its magnitude and the temperature dld
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A way to adapt a mesh according to several variables is to construct a metric eld for each
variable and then produce a unique metric by intersection of metrics [65]. The resulting metric
should yield the largest mesh size in any direction that still ful lls the size constraint given
by all the metrics. The intersection operation between several metric elds is not uniquely
de ned. The most common technique, consisting of a sequence of simultaneous reductions of
two metrics, does not provide the optimal metric, is not commutative and incurs a relatively
high computational cost. Robust techniques, based on the optimization problems, are even
more costly.

In what follows, we simplify this operation by using one eld that accounts for different
variables. It consists on constructing a unique metric directly using a multi-component error
vector containing, for instance, all the components of the velocity eld, the temperature eld,
the level set functiom, etc. Consequently, we do not need to intersect several metrics.

Let us introduceu = fug;up; ;ung. By applying the above theory for each component
of u, we end up obtaining a single metric and it comes out immediately that the error is now a
vector given by the following expression:

&= e €] (3.31)

and then the stretching factor reads:

1
CaN)i
= JN (3.32)
nejl
For example, a vector of error sources can be locally de ned in two dimensions as:
8 9

S v v T &~

Y(X)= | i = =—; '
o kvik' kvik’ maxkv!k’ Tmax &max:
j

(3.33)

The eld used as input for the error estimator (3.22) is the noﬁka2 =2 of Y, with Yy

the components of . This de nition measures the error in the norm as well as in the direction
of the velocity vectow, in addition to the error on the temperature Because all elds are
normalized (the velocity componenig vy andv; by the local velocity norm, the velocity norm

kvk, the temperature and he ltered level set funct®ty their respective global maximum),

a eld that is much larger in absolute value does not dominate the error estimator, and the
variations of all variables are fairly taken into account.

Note also that there are different possibilities to compute the nbpnLg or Ly) and to
produce a simple error value for each edge and thus from a usigualue, the scalar theory
exposed in the previous section can be used and provides a unique metric. Since we did not
observe a signi cant difference between the norms, we used in the numerical example only the
L> norm to compute the error.

3.4 Mixing laws

In the monolithic approach, all the different phases considered (solid, liquid, gas) are immersed
in a single domain. As explained previously we use an implicit de nition of the interfaces by

mean of level set functions. Therefore, the level set function will be used to distribute in space
the respective material properties. In order to avoid discontinuity at the interface, we compute
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a smooth Heaviside function to distribute in space the corresponding physical properties. This
Heaviside function is given by:

8
%1 ifa>e
_ 1 a 1 . pa .
H(@)= _ - 1+ —+ =sin — ifjaj e (3.34)
32 e p e
"0 fa< e

wherea is the level set functiong is a small parameter such that O(hiy,), known as
the interface thickness, afng, is the mesh size in the normal direction to the interface. In the
vicinity of the interface, it can be computed using the following expression:

Rim = jr_rlwza%lila i (3.35)

wherex!! = X' xJ andK is the mesh element under consideration. Consequently, the PDE's
are solved in the whole domain, using the same set of equations. All phases are considered as
"one phase" with continuous heterogeneity in their physical properties. It should be underlined
that the accuracy in the distribution of the material properties will bene t from the anisotropic
mesh adaption procedure that reduces the thickness of the transition.

The material properties such as densifyneat capacitgp, dynamic viscositynand initial
temperature are therefore computed as follows:

r r{H@)+ rg(1 H(a))

m = mH(a)+ m(1 H(a))
(3.36)
rCy = rCpiH(a)+ rCp(l H(a))
rCpT = rCpsTtH(a)+ rCpsls(1 H(a))

However, using a linear mixing law for the thermal conductivityould lead to inaccurate
results. According to [66], a harmonic mixing laws is recommended to ensure the conservation
of the heat ux:

H(@), 1 H(a) 1

| =
|f |s

(3.37)

The Immersed Volume Method enables to consider a direct thermal coupling without the
need of heat transfer coef cient. This method only requires the knowledge of the material
properties an deals naturally with conjugate heat transfer.

3.5 Numerical applications

We present in this section two numerical tests with validations to illustrate the propose adaptive
Eulerian framework. The rst one focuses on xed geometries and their corresponding obtained
anisotropic meshes, while the second one focuses on dynamic mesh adaptation using different
criteria and its utility.
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3.5.1 High- delity anisotropic meshing

In the rst test case, we aim to show the exibility of the proposed mesh adaptation technique
to deal with multiphase ows. Therefore we consider three xed objects de ned by level set
functions inside a squared domain (see Figure 3.5). The circle of radius 0.1m is centered at
(0.15;0.15). The square of 0.20m size is centered at (0.85;0.15). The regular pentagram is
centered at (0.5;0.75) and the radius of the circumcircle is 0.2m. We choose to position them
close to the wall to assess the capacity of the method to capture the features of the geometry
close to a boundary.

In multiphase simulations, we use the level set function to de ne the properties in each
phase. The physical properties are usually discontinuous across the interface. To avoid discon-
tinuities which lead to numerical errors, we use a smooth Heaviside function computed from
the level set function. This creates an interface transition with a thickness of few elements.
The use of mesh adaptation techniques enables to reduce this thickness. As it is depicted in
Figure 3.5, for a given number of elements (10000), the transition is ner with an anisotropic
adaptive mesh.

Figure 3.5: Three immersed objects inside a squared cavity (left). Filtered level set function
for 10000 elements in a structured mesh (middle) and in an adaptive mesh (right).

Figure 3.6 shows the obtained zero isovalue of the level set functions using different number
of nodes. The comparison with structured meshes using the same number of nodes shows that
anisotropic mesh adaptation allows easily to keep very good accuracy of the geometry, even for
a low number of nodes. Figure 3.7 shows the correct orientation and deformation of the mesh
elements (longest edges parallel to the boundary). This yields a great reduction of the number
of triangles. These results give con dence that the proposed framework allows to deal with
different shapes, with angles, singular point and curvatures.

Finally, we measure the accuracy of the mesh adaptation technique. We compute the total
perimeter and the total area of the three immersed objects and we plot the error between the
analytic and the numerical solutions. We also plot the error for a structured mesh. Figure 3.8
con rms the advantage of using anisotropic adaptive meshes for multiphase ows. For a given
accuracy, at least ten times more elements are required in a structured mesh.

3.5.2 Dam break

In this test case, we consider the collapse of a column of water ofi€e a. This is a widely

used benchmark in the eld of multiphase ows. The initial setup for this test case is given
in Fig. 3.9. A ctitious wall, the dam, is removed at initial time. The water is thus free to
fall and evolve from left to right. Experimental results are available from [67] and make this
benchmark suitable for validation. The position of the front over time on the bottom side of the
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Figure 3.6: Zero isovalue of the level set function for 1000, 2000, 5000 and 10000 elements.
First line: result with adaptive meshing. Second line: result with structured meshes

Figure 3.7: The obtained mesh for 1000, 2000, 5000 and 10000 elements

domain or the evolution of the water height on the left side of the domain were validated against
experiment in [68]. We reproduce in Fig.3.10 the evolution of the front position. In this gure
are also plotted results from literature using various numerical methods [69, 70]. The evolution
of the water is depicted in Fig. 3.11. It shows that the proposed framework deals naturally
with complex topological changes of the interface. Water hits the wall on the right side of
the domain and splashes into several slugs. This test case represents a real challenge using a
fully Lagrangian framework because of the possible interpenetration of mesh elements during
the motion of the interface. Using an Eulerian framework enables to avoid such dif culties.
However, to obtain a better accuracy in the description of the interface and the evolution of the
ow motion, it would be helpful to use the anisotropic mesh adaptation procedure presented
earlier.

As mentioned eatrlier in this chapter, mesh adaptation can be performed using several vari-
ables all at once. This benchmark is an opportunity to see the effect of the mesh adaptation on
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Figure 3.8: Percentage of error for the computation of the perimeter (left) and the area (right)

Figure 3.9: Initial setup for the 2D dam break test case. The column of water is represented in
gray.

the resolution of the problem. Therefore we propose to adapt the mesh according to the level
set function but also according to an additional criterion. We performed rst a simulation using
viscous dissipation and a second one using shear stress. The evolution of the mesh according to
each criterion is given in Fig.3.12. On the left of Fig.3.12, we notice that only the free surface

is well captured. Other features related to the ow evolution such as eddies, recirculation at
the corner are missing. The simulation reaches a quasi-steady state after only few physical sec-
onds. In the second case, using shear stress as a mesh adaptation criterion enables the mesh to
capture key features of the ow. We clearly see the evolution of the wave from one side to the
other, recirculation at the corner, boundary layers. The importance of the criteria is therefore
highlighted. Further investigation are still required to validate this observation.

3.6 Conclusion

In this chapter, we presented the different components of the Immersed Volume method that
will be extended in the following chapters to deal with boiling and the simulation of quenching
processes. A single domain is discretized and all the phases and geometries are immersed in
this domain. Therefore, only a single set of equation is solved. The different phases are rep-
resented using a level set method that is shown to be favorable in the simulation of multiphase
ows. Physical properties are distributed to their respective phases using mixing laws that en-
able a smooth transition over a small thickness at the interface. Then we introduced the mesh
adaptation procedure using metric eld built froapriori or a posteriorierror estimator tak-

ing into account the interfaces but also physical features such as velocity, temperature,... The
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Figure 3.10: Non-dimensional front position evolution

dynamics mesh adaptation procedure is performed under the constraint of a xed number of
elements thus drastically reducing the computational while preserving high accuracy where it
is required. Finally we tested the proposed framework with a coupling of all these components.
The proposed framework is shown to be very accurate for the description of interface and in
the resolution of numerical problem, with a very limited computational cost.
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Figure 3.11: Evolution of the water (in blue) at t=0, 0.1, 0.31, 0.44, 0.55, 0.80 and 3 s.
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Figure 3.12: From top to bottom, meshes at t=0, 0.1, 0.2, 0.5, 0.7, 0.8, 1, 1.5, 2 and 3s. On
the left column, the mesh adaptation criterion is viscous dissipation. On the right, the mesh
adaptation criterion is shear stress.
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Résumé en francais

Dans ce chapitre, la méthode des volumes immergées est présentée. Cette méthode consiste en
un cadre eulérien monolithique, dans lequel un unigue domaine est considéré et un seul ensem-
ble d'équations est résolu dans tout ce domaine. Les différentes phases en présence sont local-
isées par l'intermédiaire d'une fonction level set. La fonction level set est une distance signée
a l'interface qui permet naturellement des évolutions topologiques complexes de l'interface.
La distribution des propriétés physiques des différentes phases est effectuée en calculant une
loi de mélange utilisant la level set. L'évolution de l'interface est obtenue par la résolution
d'une équation de transport qui, dans certain cas, peut faire perdre a la level set sa propriété de
distance, ne permettant plus un mélange exact des propriétés physiques. Ainsi, deux méthodes
dites de "réinitialisation" sont présentées, permettant de conserver cette propriété de distance.

La description des différentes phases est améliorée par |'utilisation de méthodes d'adaptation
de maillage anisotrope. Ces méthodes permettent de raf ner le maillage proche des interfaces
et de le déraf ner ailleurs. La précision des calculs est ainsi grandement améliorée tout en con-
servant un colt de calcul intéressant. La méthode présentée dans ce travail permet également
de travailler 2 nombre d'éléments constant, ce qui représente un intérét lorsque les capacités
de calculs ne sont pas extensibles. L'extension de cette méthode d'adaptation de maillage
anisotrope permet de capturer avec précision les plus forts gradients des solutions du probléme,
telles que la température et la vitesse, aboutissant ainsi & une précision accrue.

Des cas tests permettent de montrer la pertinence et la précision de la méthode des volumes
immergées pour la simulation d'écoulements multiphasiques.






Chapter 4

Stabilized Finite Element method for
Computational Fluid Dynamics

Contents
4.1 Context . . . . . . . e e e 47
42 Stateoftheart . . . ... .. . . . .. 48
4.3 Flowsolver . . . . . . 49
4.3.1 The incompressible Navier-Stokes equations . . . . .. ... .. .. 49
4.3.2 The Variational Multiscale method (VMS) . . . . . .. .. ... ... 50
4.4 Convection-Diffusion-Reaction equation . . . . . . .. . ... ... .... 54

4.4.1 Stabilized Finite Element for Convection-Diffusion-Reaction equation 54

4.4.2 Stabilization by entropy viscosity . . . . .. ... . . o L. 55
4.5 Synergy between Stabilized Finite Element method and mesh adaptation 58
46 Validation. . . . . . ... 59
4.6.1 Opencavity . . . . . . .. 59
4.6.2 Turbulent ow pasta 2D prismaticcylinder . . . ... ... ..... 60
4.7 Conclusion . . . . . . . e e e e e e 66
4.1 Context

Today, new developments in Finite Element methods enable accurate resolution of some com-
plex problems such as compressible ows governed by the Navier-Stokes equations or incom-
pressible viscous ows at high Reynolds numbers. It is well known that the essential break-
through in Computational Fluid Dynamics has rst been made in the context of the nite dif-
ference and the nite volume methods. However, the use of Finite Element method to study
uid dynamics has grown signi cantly. Indeed, several Finite Element approaches have been
proposed to address the challenging task of solving the Navier-Stokes and the Convection-
Diffusion-Reaction (CDR) equations accurately and ef ciently in the high Reynolds (Re) and
Peclet (Pe) regimes. We will introduce in this chapter the Finite Element method implemented
at CEMEF to solve CFD problems.

47



CHAPTER 4. STABILIZED FEM FOR COMPUTATIONAL FLUID DYNAMICS 48

4.2 State of the art

The incompressible Navier-Stokes equations are used to model a number of important physical
phenomena: turbulent ow around airfoils, meteorological prediction, weather, arterial blood
ow [71], etc. The standard Galerkin formulations were not robust enough to model complex
convection dominated ows. Therefore, a signi cant effort has been made to develop Finite
Element approaches circumventing the weaknesses of the Galerkin method [72, 73, 35]). As
a consequence, alternatives to the standard Galerkin FEM have ourished in the literature.
Amongst them, we will focus on the Stabilized Finite Element Method (SFEM) and the Varia-
tional Multiscale method (VMS). These two classes of Finite Element are no so fundamentally
different. Indeed, even if Stabilized Finite Element methods (SFEM) are centered on the mod-
i cation of the variational formulation while Variational Multiscale method modify the Finite
Element basis, it is shown in the literature, that they address the same shortcomings of the clas-
sical Galerkin method. They add weighted residual terms to the standard weak formulation of
the problem to enhance its stability while maintaining consistency.

Indeed, the stability of the discrete formulation depends on the compatibility restrictions on
the choice of the Finite Element spaces for the velocity and the pressure. According to this,
standard Galerkin mixed elements with continuous equal order linear/linear interpolation is not
a stable discretization since it does not satisfy the Babuska-Brezzi (inf-sup) condition. The lack
of stability manifests in uncontrollable oscillations that pollute the solution.

Several methods exist to circumvent the lack of stability in convection-dominated regime
and the inf-sup restriction. In [74] was proposed the concept of Mini -Element which consists
in the enrichment of the functional space by a space of bubbles function. A stabilized formu-
lation allowing equal order linear interpolation is obtained using the Mini-Element since the
bubble functions vanish on the element boundary and are eliminated by static condensation.
This method, if appropriate in diffusion dominant regime, the Mini-element formulation of the
problem yields very acceptable results. However, when the convection terms dominate, the
results are deteriorated and therefore this method requires additional stabilization to achieve
acceptable results.

A groundbreaking method is the Streamline Upwind Petrov Galerkin (SUPG) proposed
by Brooks and Hughes [75, 76]. This method modi es the test functions by adding weighted
residuals to the variational formulation of the problem. This method has proved its ef ciency in
eliminating the spurious oscillations related to the Galerkin formulation and is now a standard
for computational uid dynamics and heat transfer Finite Element solver.

A history on residual based stabilization methods can be found in the book of Donea and
Huerta [77]. The foundations of multiscale methods were made precise in the mid 90's by
Hugheset al. [32, 78] followed by PSPG (Pressure Stabilized Petrov Galerkin) methods by
Tezduyar [79]. The Unusual Stabilized Finite Element method (USFEM) was introduced by
Franca and Farhat in [80]. Codina and co-workers introduced lately recent developments of
residual based stabilization methods using orthogonal subscales and time dependent subscales
[81, 82, 83, 84]. These methods are very promising and can be regarded as an open door to
turbulence. At the same level, one can nd a complete description on the use of Variational
Multiscale method for turbulent ows in [85, 86, 87] where a three scale separation method
was developed and applied.
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4.3 Flow solver

Turbulent ows can be predicted by resolving the transient Navier-Stokes equations using a
Direct Numerical Simulation (DNS) [88] approach with a very ne mesh resolution and ad-
eguate time steps. The required computing resources for such computations are tremendous
and are not always affordable especially when simulating complex industrial processes. This is
the main reason why most engineering computations involving turbulent ows use turbulence
modeling, at least for the foreseeable future.

Large numbers of models have been developed and studied in the last few decades. We
can classify these modeling approaches into three categories: VMS, LES and RANS. As one
progresses from DNS to RANS, more and more of turbulent motions are approximated and,
therefore, require less computational resources. This is especially interesting when dealing
with industrial application since it opens the choice to the user to decide which methods to
use regarding the application at hand. Each method will offer the accuracy of the results with
respect to the computational costs.

The Finite Elementimplementation of the unsteady Navier-Stokes and Convection-Diffusion-
Reaction will be brie y described and analyzed in the following sections.

4.3.1 The incompressible Navier-Stokes equations
4.3.1.1 Governing equations

LetW R" be the spatial domain at timie2 [0; T], wheren is the space dimension. L&
denotes the boundary &. We consider the following velocity-pressure formulation of the
Navier-Stokes equations governing unsteady incompressible ows:

r(ftu+u Nu) N s=f inwW [0,T] (4.1)
Nu=0 inW [0,T] (4.2)

wherer andu are the density and the velocifythe body force vector per unit density asd
the stress tensor which reads:

s =2me&u) plg (4.3)
where p and m are the pressure and the dynamic viscodiythe identity tensor ane the
strain-rate tensor de ned as: L

e(u) = > Nu+ 'Nu (4.4)

Dirichlet and natural boundary conditions for equation (4.1) are:

u=g onG [0;T] (4.5)
ns=honG [0T] (4.6)

whereGy andG, are complementary subsets of the domain boun@afunctionsy andh are
given andn is the unit outward normal vector &
As initial condition, a divergence-free velocity elaph(x) is speci ed over the domaiwat
t=0:
u(x;0) = uo(x) (4.7)
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4.3.1.2 Weak formulation

The function spaces for the velocity and the pressure are respectively de ned by:

V= u(xt)juxt)2 H(W"; u= gonG (4.8)

P="p(xt)j p(xt) 2 L3(W) (4.9)

and the weighting function space for the velocity
Vo= u(xt)ju(xt)2 H{(W"; u= 0onG (4.10)
(4.11)

The weak form of system (4.1 - 4.2) consists in nding[0;T]! V, p:(0;T]! P such that:
(

(reu; W+ (ru Nusw)y+ (s (piu);ew)) = (Fw)y+(hiw)g  8w2 Vo
4.12
(N u;q)y=0 8q2P (4.12)

where(j ;Y )w= Rij dWis the standard scalar productlif(W).

The standard Galerkin approximation consists in decomposing the ddhaio Ng ele-
mentsK such that they cover the domain and are either disjoint or share a complete edge (or
face in 3D). Using this partitio ,, the above-de ned functional spaces (4.8) and (4.9) are
approached by nite dimensional spaces spanned by continuous piecewise polynomials such
that:

Vh= Unjunh2 CUW"; uyk 2 PHK)™ 8K 2 Ty, (4.13)

Ph=" Pnj Pn2 CO(W); prk 2 PH(K); 8K 2 Ty, (4.14)
The Galerkin discrete problem consists therefore in solving the following mixed problem:
gind apairup : [0;T]! Vhandpn:(0;T]! R, suchthat8 (Wh;0n) 2 Vo P
3 (MfeUnwh)y +(run Nun Wiy
+(2mefun) ce(Wn))w (PN Wh)y = (Fiwh)w+ (hiwh)g

(N UniOn)w =0

(4.15)

2

Recall that the standard Galerkin formulation with equal order linear interpolation is not a
stable stabilization and suffers from spurious oscillations that pollute the solution.

4.3.2 The Variational Multiscale method (VMS)

The Variational Multiscale framework, proposed by Hughes [32] to deal with the mixed vari-
ational formulation for solving the Navier-Stokes equations, models the effects of the smallest
scales of the ow and numerically resolves the largest scales. It considers that the unknowns
can be splitinto two components, coarse and ne, corresponding to different scales or levels of
resolution. First, we solve the ne scales in an approximate manner and then we replace their
effect into the large scales.
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In this work, we contribute in the development of the VMS formulation of the Navier-Stokes
equation taking into account additional features such as semi-implicit surface tension, phase
change or considering a uni ed compressible-incompressible ows formulation. We describe
in this section the general outline of the VMS formulation for the incompressible Navier-Stokes
eqguation that enables the use of equal order continuous interpolations and prevent oscillations
polluting the solution in the convection dominated regime. The ability of this formulation to
deal with high Reynolds number ows is demonstrated in [89, 20, 24].

4.3.2.1 Variational formulation

Let us split the velocity and the pressure solution spaca4 as/®andR, P° respectively.
Subscripth is used here and in the following to denote the Finite Element (coarse) component,
whereas the prime is used for the so-called subgrid scale ( ne) component of the unknowns.
The scale decomposition reads:
u=u,+u’2 v, VO
p=pn+ p°2 B, P° (4.16)
The scale decomposition is also applied to the test function spaces:
W= Wh+ W2 Vi VW
q=oh+a°2 Ryo P (4.17)
The weak formulation of 4.15 using the scale decomposition is:
(rTe(up+ udswh+ w+(r (up+ u9 Niup+ u9;wi+ wo
(Pn+ PIN (Wit wI)+ 2(mdun+ uYe(wn+ w)) = (fiwn+ w9 (4.18)
(N (un+ uYsan+ ) = 0 (4.19)
In this work, additional assumption regarding the subscales are proposed, even though the

subgrid scales (or subscales) could be approximated without further assumptions and inserted
into the previous equations (see [90]), we will make use of some common approximations:

i) The subscales are not tracked in time, therefore, quasi-static subscales are considered
here. However, the subscale equation remains quasi time-dependent.

i) The convective velocity of the non-linear term may be approximated using only the large-
scale component, so thaty+ u% N(up+ u9  u, N(up+ u9. Moreover, this approx-
imation can be done also if the convective term is writteMNa§{u,+ u9 (un+ u9],
which is relevant when integrating by parts the convective term.

lii) Terms involving subscales can be integrated by parts and the subscales on the element
boundaries will be neglected.

The equations for the coarse scales are obtained taking the subscale test functions equal to
zero. Furthermore, we can mention that for linear elements used in this work, terms of the form
N (2méwy)) involving second derivatives within each element can be neglected. Therefore,
we get:

(reun;wh) +(rup Nupwh)  (pn+ PSR wh) + 2(meun); e(wp))
+3 S rup Rwpk=(fiwn)  (4.20)
K

(N un;an) & (usNagn)k = 0 (4.21)
K
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whered  stands for the summation over all the elements of the Finite Element pakition
and( ; )k denotes th&? product in eackK.

The problem for the ne scales is obtained taki(w; dn) = ( 0;0) in (4.18)-(4.19) and
using approximations i)-iii) described above. Introducing the Finite Element residuals:

Ry = f rfwp ruy Nu, Npp+ N (2médup)) (4.22)
Ro = N up (4.23)

and using the same analysis as in [91, 92], it turns out that the subscales may be approximated
within each elemeri 2 K j, by:

W= t,PUAR); 7= tpPR(Rp);

whereP 9 andP are the projections ont¢’andP’, respectively, antl andit , are the so-called
stabilization parameters. The choice is made here to consider the identity as the projection
when applied to Finite Element residuals (see [32, 91]). It is also possible to take them as the
orthogonal projection to the Finite Element space (see [92] and references therein). Referring
to the stabilization parameters, we compute them within each element as:

" cm 2 cokupk # 1
1 2KURKK
= - + .
ty ) h (4.24)
" kupkk h e
tp= O C2KURKK (4.25)
r C1

whereh is the element siz&kukk a characteristic norm afy, (with the same units agy) in
elemenK andc; andc; are algorithmic constants. We take thentas 4 andc, = 2 for linear
elements (see [93]). Very often, the time step size of the temporal discretization is included in
the expression dfy. This improves the convergence behavior of the algorithm to deal with the
nonlinearity of the problem, but has several conceptual drawbacks, as explained in [93, 94]. In
order to make, more uniform over the computational domain and, as a consequence, improve
the behavior of the scheme, one may take:
" 5 # 1=
1 cim + C2kUth

o+ =
t2 r h2 h

ty=

(4.26)

wheret g is a reference value of, given by (4.24) computed over the whole mesh (for example
the minimum over all the elements). This value in fact should be related to the time step size
of the time discretizatiorDx.

Inserting the expression for the subscales obtained in (4.20)-(4.21) we nally obtain the
following Finite Element formulation:

(rTeUn;wh) +(r up Nupswp)  (pni N wi) + 2(meup); e(wp))

+ & tu(rTeun+ rup Nup+ Npn N (2meup)  firu, Rwp))k
K

+ A tp(N un R wy) = (fwp) (4.27)
K

(N up;gn)+ & tu(rfeup+ rup Nup+ Np, N (2mdup)) f;Ngy)k = 0 (4.28)
K
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When compared with the standard Galerkin method, the proposed formulation involves
additional integrals that are evaluated element wise. These additional terms represent the effects
of the sub-grid scales and enable to overcome the instability in convection dominated regime.

Writing the formulation using the stabilization parameters and the residuals de ned in
(4.22)-(4.25) leads to the following formulation:

(rfeun;wp)+(rup Nupywh)  (prs N wp) + 2(meun); e(wp))
a (tvRy;r up Nwp)k

K
A (RN wp) = (fywp) (4.29)
K
(N upan) & (tR;Ngyk = 0 (4.30)
K

4.3.2.2 Temporal discretization

We will address here the temporal discretization, using Backward Differentiation Formula of
orders referred as BDFs. The choice of this method lies in its simplicity of implementation.
These are one-step methods that only require the storage of the solution at additional time
iteration (few % of the total memory requirement). Only 1st and 2nd ordeAatable and
therefore will be considered here. Following the work in [95], we consider semi-implicit BDF
schemes using Newton-Gregory backwards polynomials for the extrapolation of the nonlinear
terms arising from this temporal schemes.

The time derivative of the velocity is approximated by:

1 .
f:un o asultt upreore (4.31)

where the leading coef cient is de ned by:

8
E 1 fors=1
3 —
as = E > fors = 2 (4.32)
11
— f =3
5 ors

Extrapolation using Newton-Gregory backward polynomials are given for the velocity by:

< up ifn>0 fors =1
uprtt = 200wl ? ifn>1 fors =2 (4.33)
3ul 3uf +ul? ifn>2 fors =3
and are given for the pressure by:
< pp ifn>0 fors =1
prte = 2pd pnt ifn>1 fors =2 (4.34)
" 3pd 3ph t+ph 2 ifn>2 fors =3



CHAPTER 4. STABILIZED FEM FOR COMPUTATIONAL FLUID DYNAMICS 54

The linearized semi-implicit formulation reads:

r . < o
= asuf™t urBP™ wy + ru S Rt hwy
n+1

+ 2meu™?t se(wn) P LN owh + Nl

N . 1s « .
+ s RC+1,5 UR+1; pﬂ” ;ru2+ S Rwp+ Ngp (4.35)

n+1s n+1
tp " Rp uy
— gn+1l.
- fn lWh
where the stabilization parameters are de ned as:
2 1,3 1=

2 ntls, = 2
(mis — 4 Gam ©, coku,” 77 ki
! =

rh? h
2 0 1 931=2

tpe=g T +@ KA (4.37)

N Wh

5 (4.36)

and the residuals are de ned as:

n+t1ls ,n+l. n+1 _ n+ 1 n;BDFs nt+1s &, ntl, QA+l n+1 n+1
Ry Uy 5 Pn~ = o @sUn Un +ruy Nup™ =+ Npp 2me uy f
(4.38)

4.4 Convection-Diffusion-Reaction equation

In this section, the stabilized nite-element method used to solve equations such as the heat
equation, turbulence equation (Spalart-Allmara®,.k), radiative transport equation (RTE)
is outlined briey. Indeed, these equations can be represented by a single scalar transient
convection-diffusion-reaction equation which reads:

% +u N N (kNj)+rj = f (4.39)

wherej is the scalar variables the diffusion coef cient,r the reaction coef cient and a
source term. According to the problem to solve, the sgalean be a temperature, a dissipation
energy, a kinetic energy, a chemical concentration, etc.

4.4.1 Stabilized Finite Element for Convection-Diffusion-Reaction equa-
tion
Stabilization methods for transient convection-diffusion-reaction equations are discussed in
[96897’ 98]. The stabilized weak form of equation (4.39) reads:
% Findj 2 S, such that8w?2 W, :
(T +u Nj ;w)+(kNj ;Rw)+(rj ;w)

o . . o L (4.40)
% +a (R( )itsoet NW) + @ (R(j )itscedd NW)y = ( fiw)

I {z b {z }

streamline upwind discontinuity-capturing
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where§, andW, are standard test and weight Finite Element space&gngdis the appropriate
residual of equation (4.39) is the convection velocity and is a function of the temperature
gradient. In equation (4.40), the rst term labeledsieeamline upwindefers to the SUPG
(Streamline Upwind Petrov Galerkin) stabilization [75, 76] controlling the oscillations in the
direction of the streamlines, in the convection dominated regime. The second term, labeled
asdiscontinuity-capturingefers to the SCPG (Shock Capturing Petrov Galerkin) stabilization,
working in the direction of the gradient of the solution [99]. The latter stabilization adds nu-
merical diffusion in the neighborhood of sharp gradient and boundary layers. The stabilization
parameters are de ned in the same fashion as (4.24). We refer to [75, 99, 97] for the de nition
of the stabilization parameters.

4.4.2 Stabilization by entropy viscosity

The stabilization method typically used at Cemef for convection is the SUPG (Streamline Up-
wind/Petrov Galerkin) method [75]. This method improves the result compared to a standard
Galerkin resolution. However, this method has some limits to prevent remaining oscillations
near extreme gradients of the solution. In industrial processes, these shocks are present since
the system is exposed to extreme conditions (metallic part at td@0vater at 20C). Fol-

lowing the work in [100], we analyze in this section a new stabilization method. This method

is inspired by the physics in the sense that we use entropy as a selection principle to add an
extra-stability wherever it is needed, without polluting the solution. A more stable and physical
solution is therefore obtained.

4.4.2.1 Entropy viscosity for conservation laws

Let consider a general conservation law.

TR f(u=0 (4.41)
It
It is known that this problem has a weak solution that is physical and satis es the following

inequality:
%E(u)+ N F(w6 o0 (4.42)

his solution is called the entropy solution. The inequality is veri ed for a péir) andF (u) =

EQu) fQu)duwhereE(u) is convex. Equation (4.42) is an equality in the regions where the
solution is smooth. If the equality is not veri ed, it means that the solution is not smooth
and that entropy is produced. Equation (4.42) will be used to detect the regions when the
stabilization is required. To take into account this stabilization, equation (4.41) is augmented
with a dissipation term N nNu wheren is the entropy viscosity. The computation of the
entropy viscosity is the key point of this method since it de nes the amount of diffusion to
stabilize the solution.

We de ne the discrete residuBl, of the entropy equation:

Dn(x;t) = %E(uh)+ N F(up) (4.43)

where the inde denotes the discrete approximation.
The so-called "entropy viscosityie is de ned as:

kDrky -
_ 2 hR¥:K
&y = CENK i E U E(unkea

(4.44)
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wherece is a tunable constanl smallest edge of an elementkKKky . is the in nity norm
in all the domaink ky:k is the in nity norm in an element K ané& is the average entropy
over the domain. The entropy viscosity gives an order of magnitude of the ratio of the entropy
produced at the local scale and the maximal variation of entropy at the global scale.

To control the weight of the additional terms, we introduce an upper viscosity de ned as
follows:

Nmax, = Cmaxhic K {U)ky (4.45)
Finally, we set the stabilization viscosity to:

Nh = MIiN(Nmax; NE) (4.46)

The new variational formulation reads:

fu Tlun |

ﬂt + N f(Uh) Wh + a (VhNUh,NWh)K 0 8wh2W, (4.47)

Compared to the SUPG method, an additional residual term is added to the variational
formulation. More details are given in the following section.

4.4.2.2 Entropy viscosity for the convected level set method

We recall the convected level set equation:

MTa

- . 2
ﬁ+uNa+ls(a) kNa k 1 a

= =0 (4.48)

wherea is the lItered level set function, is a coef cient homogeneous to a velocity and E is
the thickness of the truncation. We rewrite the equation in the general form:

T2 .V Ra=s (4.49)
1t
whereV = u+ | s(a)kNak is the convective velocity anfi= | s(a) 1 £ is the source
term. The Galerkin variational formulation of this problem is:
Ta ~
—+tV Na;w =(Sw)y (4.50)
fit W

The classical way to prevent the spurious oscillations due to the convection term is SUPG. It
consists to express the test functions as follows:

Wh = Wh+ tsupgV NWh (4.51)

The classical discrete formulation with SUPG stabilization reads then:
Tan o fTan < . N — /.
—+V Nah Wh +atsuprc —*+V Nap S;V Nw, =(S; Wh)\M1 (4.52)
It WK qt K

One of the dif culties associated with the use of the level set methods is the loss of mass
in underresolved region of the ow. A promising way to convect the level set is to use entropy
viscosity technique [100]. These methods [57] offer a better respect of mass conversation
compared to the actual methods.
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We propose to add the stabilization by entropy viscosity:

a ~ a ~ ~
%+V Nap; Wh + étSUPG ﬂ—th+V Nap S;V Nw,
K
| g— 2 y
Galerkin SUPG
+ & (Nan; Rwh) = (S5 wh)y, (4.53)

K

| {z—-}

Entropy viscosity

If we compare SUPG and entropy viscosity, both are adding residual terms. In SUPG, these
terms, for a total of 5, are numerically added to the formulation. In the entropy viscosity case,
only one numerical term is added.

The choice of the entropy functidi(a) = %az leads to:

KDpky -k
= cegh? ' 4.54
" = E B () Eunkew (459
where the entropy residual is:
1 af - ap
Dh=— 4% +V N 2 S 4.55
Il T > an (4.55)
and the upper viscosity is de ned by:

4.4.2.3 Entropy viscosity for convection-diffusion-reaction equations

We will highlight brie y the steps needed to introduce the new stabilization. We consider the
general convection-diffusion-reaction equation (4.39) that solves a certainjscalar

Using the entrop¥(j ) = %j 2 the entropy residual is de ned as:
j 2
2

P2
p= 1 17 LuK P R(kRjY+rj 2 f (4.57)
it 2

The convective termu( Nj ) of (4.39) is the term usually treated using the classical SUPG
stabilization. The interest of the entropy viscosity is that all the other terms are taken into
account.

The rst term of the residual equation (4.57) is very important since this term causes high
gradient at the beginning of the computation. Indeed, in a furnace for example, a temperature
of 1000 C is injected in a cavity at an initial temperature of 20 The gradient is extreme and
this term destabilizes the solution. However, when the solution converges in time, this term is
close to null.

Finally, the effect of the reaction and source terms are also taken into account with the
entropy viscosity, adding consistency to this method compared to others stabilization methods.

The entropy viscosity is:

ke = thk¥;K

= My (4.58)
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The stabilization viscosity is de ned as follows:
ke, = hkmin ckuky . ; cngjK (4.59)

The variational formulation now reads:
oy Nj +rj f;w +3d ke +k (Nj ;Rw),=0 (4.60)
ﬂt W K TK

4.5 Synergy between Stabilized Finite Element method and
mesh adaptation

We combine in this work anisotropic mesh adaptation with ow solver based on the Variational
Multiscale method or with stabilized Finite Element for the Convection-Diffusion-Reaction
equation. As a result, we may be able to:

Produce very good accuracy properties for high Reynolds number ows [24]

Allow the recovery of the global convergence order of the numerical schemes in the
convection dominated regimes [101]

Reduce the computational cost [26]
Ensure accurate and oscillation free numerical solutions [25]

However, for a better synergy, it requires particular attention on the stabilization coef cients
in both the convective and diffusive terms to take into account highly stretched elements with an
anisotropic ratio of 1000:1. Therefore, the use of an appropriate de nition of the stabilization
parameters using the directional element diameter is highly recommended.

Recall that these stability coef cients weight the extra terms added to the weak formulation
in the Navier-Stokes and Convection-Diffusion-Reaction equations. They are de ned for each
elementK of the triangulation. Typically, these coef cients depend on the local mesthhgize
Many numerical experiments show that good results can be obtained when using the minimum
edge length oK [102], while others always use a modi ed triangle diameter (see [103] for
details).

Figure 4.1: Longest triangle length in the streamline direction

Nevertheless, in the case of strongly anisotropic meshes with highly stretched elements, the
de nition of hk is still an open problem and plays a critical role in the design of the stabilizing
coef cients [104, 81]. In [105] the authors examine deeply the effect of different element length
de nitions on distorted meshes. In [106] anisotropic error estimates for the residual free bubble



CHAPTER 4. STABILIZED FEM FOR COMPUTATIONAL FLUID DYNAMICS 59

(RFB) method are developed to derive a new choice of the stabilizing parameters suitable for
anisotropic partitions. In this work, we adopted the de nition proposed in [107] to confpute
as the diameter &f in the direction of the velocity (see Figure 4.1):

hk = # (4.61)

SiZvn Nj ij

whereNk is the number of vertices &€ andj 1;:::;] n¢ are the usual basis functions Bf(K)
mapped ontd. Note also that the use of the time step in the de nition of the stabilizing param-
eter (4.26) is another important issue, in particular for small time steps. Several approaches can
be found in the literature, in particular the use of dynamic subscales in [84] and the de nition
of the stabilization parameters computed from element matrices and vectors in [107]. These
approaches have been used successfully and in both cases, the steady solution is independent
of the time step and are stable for small time steps.

4.6 Validation

Although several test cases will be proposed in the following chapters, we limit here to three
representative test cases as rst validations. First we consider the open cavity problem to assess
the ability of The Navier-Stokes to deal with critical Reynolds number ow. Both 1s and 2nd
order of the BDF time discretization will be tested. Then, we will consider the coupling of
ow solver with a Spalart -Allmaras model cast into a convection-diffusion-reaction equation.
Finally we will consider a 2D-forced convection taking into account the Navier-Stokes equation
and the heat equation.

4.6.1 Open cavity

We consider a 2D open square cavity of dides depicted in Fig. 4.2, upon which lies a channel

of height 0.%1 [108]. For the square, ® x6 hand h6 y6 0. A uniform velocity eld is
prescribed at the left side of the channel. A free-slip condition with zero tangential stress is
prescribed on the lower boundary of the channel, fot:gh6 x6 0:4h) and (X75h6 x6

2:5h). No-slip boundary conditions are imposed ord(4h6 x6 0) and (6 x6 1:75h)

In the following computations, we chooke= 1. As it is shown in Fig. 4.3, the prescribed
velocity eld and boundary conditions lead to the formation of a recirculating eddy in the
square cavity. The Reynolds number is seiRe= 4500.

The case being unsteady, we are interested in this test case in the comparison of the velocity
eld uat (0.75;0.05). The velocity is expected to exhibit oscillations whose frequency and
magnitude will serve to compare different ow solver implementations. Results obtained using
a DNS (Direct Numerical Simulation) approach are set as the reference. We will perform the
same simulation using our Variational Multiscale ow solver and using a time discretization
BDF1 and BDF2 schemes.

Fig. 4.3 shows that the ow seems to be steady at the point of interest while the ow is
unsteady in Fig. 4.4. Comparison of the evolution in time of the velocity is given in Fig. 4.5.
Both DNS and VMS-BDF2 are unsteady while the VMS-BDF1 has reached a steady state. This
is due to the important numerical of the rst order time discretization. To x thisissue, a higher
time discretization is needed. In Fig. 4.6, we show the resulReat 5000. Results con rm
the bene t of a higher time discretization. Indeed, even though the velocity eld is unsteady
for VMS-BDF1, the magnitude of the velocity is damped compared to DNS and VMS-BDF2.
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Figure 4.2: Driven ow cavity setup.

A great improvement is therefore obtained using VMS-BDF2. Recall that the computational
cost is similar to VMS-BDF1. Only few percent of additional memory are required.

Figure 4.3: Cavity ow at Re=4500. Velocity magnitude obtained using VMS with a BDF-1
time discretization scheme.

4.6.2 Turbulent ow past a 2D prismatic cylinder

We consider the fully turbulent ow past a prismatic cylinder [109]. The prismatic cylinder is
used because of the sharp and localized ow features that represent a challenge for the stabi-
lization method. Here, the VMS ow solver will be used combined with the Spalart-Allmaras
turbulence model. An extensive use of the mesh adaptation method will be done here to solve
more accurately the ow and capture the maximum features. To this end, we will consider the
test cases proposed in [110]. The prismatic cylinders is parametrized by two léhidusd

H2. According to the value of the ratid,=H1, the cylinder can be a squardfH; = 1),

a triangle Hy=H; = 0) or a cone l,=H; 62 D;1g). The con guration of the computational
domain is given in Fig.4.7. The cylinder is centered in width, and its front side is locéted 8
downstream of the inlet boundary on the left of the domain. We will consider here the ratio
H,=H; = 0:6. The values of the uniform inlet veloci®, and the dynamic viscosityn are
chosen to yield a Reynolds number basedHgrequal toRe= 2:2  10°.
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Figure 4.4: Cavity ow at Re=4500. Velocity magnitude obtained using VMS with a BDF-2
time discretization scheme.

Figure 4.5: Cavity ow at Re=4500. Evolution of the velocity. Black line refers to DNS, blue
line refers to VMS-BDF1 and red line refers to VMS-BDF2.

Results in Fig. 4.8, using a xed mesh, indicate that the ow exhibits Von Karman vortex
street. The turbulence model is only active in the restricted area of interest, and the effects
of the averaging process and damping function seem to be correctly taken into account since
streamlines shown in Figure 4.8 are in agreement with those given in [110] in the cylinder
wake.

The results of drag and lift coef cients given in Table 4.1 are in good agreement with the
literature presented in [110] and the references therein. Recall that we use for the convection-
diffusion-reaction solver a rst order time discretization. As it was shown in the previous test
case, stabilization technique would bene t from a higher order time discretization [111]. In
addition to the use of a rst-order implicit time integration scheme, the time splitting error may
contribute to this inaccuracy.

We now consider the use of anisotropic mesh adaptation to solve this test case presented in
Chapter 3. The mesh adaptation procedure starts from an arbitrary uniform mesh and is iterated
every 5 time steps. It considers a multi-criteria adaptivity taking into account the velocity
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Figure 4.6: Cavity ow at Re=5000. Evolution of the velocity. Black line refers to DNS, blue
line refers to VMS-BDF1 and red line refers to VMS-BDF2.

Figure 4.7: Geometry for cylinder case.

Figure 4.8: Plots of streamlinekeft) and the turbulent viscosity (right) for Ho=H; = 0:6.

components, the velocity magnitude and the turbulent viscosity. The number of nodes N is set
to 1. Results using mesh adaptation are given in Fig. 4.9. The evolution of the mesh, under
the constraint of a xed number of elements, is shown in Fig. 4.10. This gure shows that
the mesh is re ned around the evolving vortices and is automatically coarsened in the regions
of less interest far from the cylinder. As it is depicted in Fig. 4.11, we have a concentration
of elements not only along the boundary layers but also in the wake region. The zoom-in
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Table 4.1: Comparisons of drag and lift coef cients with the literatureHgrH; = 0:6.
meanCp r.m.s.C_
Baoetal [110] 2.50 0.125 1.7 0.1
Present work 2.57 1.79

Figure 4.9: Plots of velocityéft), pressurerfiddle and turbulent viscosityright) att = 11:64.

in Fig. 4.12 highlights how sharply the layers are captured. The shape but also the size and
the orientation of the elements match the directional features of the ow (boundary layers,
ow detachments). The zoom-out in Fig. 4.12 shows how the anisotropic adaptive procedure
modi es the mesh in a way that the local mesh resolutions become adequate in all directions.

Figure 4.10: Evolution of the adapted meshes.

Figure 4.11: Velocity eld and corresponding adapted mesh.

Beyond the evolution of the mesh, the evolution of drag and lift coef cients for different
aspect ratiodH,=H; is given in Fig. 4.13 for both adapted and xed mesh. Both reach as
expected a steady oscillating state, and compare well to the plots shown in [110]. This con rms
that the developed stabilized Finite Element methods is shown to be very ef cient and robust
for solving ows at high Reynolds number using highly stretched elements.
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Figure 4.12: Zoom-out with vortex sheddingff) and zoom-in the adapted meslglt).

Figure 4.13: Drag (lines) and lift (dots) coef cients for aspect ratiosH; = 0:6.

4.6.2.1 2D forced convection

To highlight the effect of the entropy viscosity stabilization, we placed ourselves in numerical
severe conditions. Therefore, we consider a small cavity of 1m side lled with air at an initial
temperature of 2@ (Fig. 4.14). Hot air at 100 is injected with an inlet velocity of 1m/s.

This cavity can be seen as a small furnace. An outlet enables the air to go out of the cavity.
The physical parameters are summarized in Table 4.2. The high gradients of temperature at the
beginning of the computation leads to spurious oscillations. The computation is done from t=0s
to t=100s with a time stept=0.1s. The mesh is isotropic and contains only 10,000 elements.

Table 4.2: Physical parameters for the 2D force convection

r [kg/m®] milPas] gravity [W/$] Vinet [M/S] Tipet [ Cl
1 10 ° 0 1 1000

Fig. 4.15 shows the solution at two different times at the beginning of the computation.
The effect of the stabilization with entropy viscosity is clear. The solution is expected to be
very unstable due to the high gradients of temperature and velocity at the beginning of the
computation. The oscillations are reduced with the entropy viscosity. The temperature front
is the same for both methods. This indicates that the diffusion added by the entropy viscosity
method does not pollute the solution and does not lead to a nonphysical solution, which is a
drawback of several stabilization methods.

Fig. 4.16 shows the evolution of the maximum temperature and the minimum temperature
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Figure 4.14: Set-up for the 2D forced convection

Figure 4.15: Temperature at two different times. Stabilization with entropy viscosity and SUPG
(left). Stabilization with SUPG only (right). The temperature scale is xed to highlight the areas
where the solution is nonphysical.

in the cavity. This enables to see the effect of the stabilization on the spurious oscillations.
From a physical point of view, since the initial temperature is@nd the injected air is at

1000 C, the maximum and minimum temperature should be in the rang€[22000 C]. A

value outside this range indicates a nonphysical solution. This test cannot be performed using
the standard Galerkin resolution. A stabilization is thus required.
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Fig. 4.16a shows the result for the SUPG stabilization typically used for convection. This
method exhibits here, for this example, large oscillations and these oscillations remain during a
long time in the computation. Performing this test was made possible through the use of mesh
adaptation as it can be seen in Fig. 4.16c. The mesh is adapted according to the velocity, the
norm of the velocity and the temperature, every 5 time steps.

Fig. 4.16b shows the results obtained with SUPG and entropy viscosity, without mesh adap-
tation. This gure indicates a drastic reduction of the oscillations and therefore of the nonphys-
ical points in the domain. Coupled with mesh adaptation, the solution obtained in Fig. 4.16d
exhibits marginal oscillations.

(a) SUPG (b) SUPG and entropy viscosity

(c) SUPG and mesh adaptation (d) SUPG, Entropy and mesh adaptation

Figure 4.16: Evolution of the maximum temperature and minimum temperature in the cavity
for four different resolution methods: (a) SUPG stabilization, (b) SUPG and entropy viscosity,
(c) SUPG and mesh adaptation, (d) SUPG, entropy viscosity and mesh adaptation.

4.7 Conclusion

In this chapter, we presented the Stabilized Finite Element methods for the resolution of the un-
steady Navier-Stokes equations and the convection-diffusion-reaction equation. We introduced
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and discussed several stabilization methods and derived the corresponding variational formula-
tion to improve the accuracy and the stability of the Galerkin formulation. These methods were
validated using various test cases, therefore showing the bene ts of the stabilization methods
and the validity of the implementation of the proposed methods.
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Résumé en francais

Dans ce chapitre, les méthodes Eléments Finis utilisées pour la dynamique des uides numérigue
sont présentées. Les équations de Navier-Stokes sont résolues par l'intermédiaire d'une méth-
ode variationelle multi-échelles (Variational MultiScale - VMS). En effet, la formulation faible

de Galerkin souffre d'instabilités dans les écoulements a convection dominante. De plus, la
méthode VMS permet de contourner la condition inf-sup et permet ainsi l'utilisation d'éléments
nis P1-P1 pour la vitesse et la pression dans la résolution mixte des équations de Navier-
Stokes. Les méthodes d'éléments nis stabilisés utilisant la méthode Streamline Upwind Petrov
Galerkin (SUPG) et SCPG (Shock Capturing Petrov Galerkin) pour la résolution de I'équation
de convection-diffusion-réaction sont présentées. Une méthode additionnelle dite a viscosité
entropique est présentée. Cette méthode repose sur la production d'entropie comme principe
de sélection des zones a stabiliser. Une extra-diffusion est ajoutée dans ces zones, permettant
de traiter les fortes discontinuités des solutions. Une solution plus stable et plus physique est
ainsi obtenue. La modi cation de ces méthodes de stabilisation pour prendre en compte les
particularités des maillages anisotropes utilisés pour la résolution des équations est décrite.
Des applications numeériques exigeantes sont traitées a l'aide de ces méthodes. La validité des
méthodes choisies ainsi que leur précision sont discutées.
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5.1 Introduction

Many essential features in hydrodynamics are accessible only through extremely detailed anal-
ysis that capture different spatial and temporal scales set by the physics and the geometry of
the problem. This includes a multitude of applications with great scienti ¢ interest such as
micro uidic cell separation in biology [112], droplet coalescence in chemistry [113], micro-
fabricated platforms for cancer diagnosis [114], emulsion in food industry [115], and more.
For various reasons, these multi- uid applications are very hard or impossible to investigate
experimentally, and thus only reliable computational simulation can open up for detailed study
and new insights [116, 117].

In spite of the maturity and popularity of numerical formulations, they are still characterized
by a high computational cost and may lack of reliability and generality. In particular, major
open challenges of computational multiphase ows include: (i) the discretization mesh for
moving interfaces with fast dynamics cannot be easily built in a preprocessing, (ii) the high
discontinuity in material properties that represent the interface must be found as a part of the
solution, (iii) mass conservation, ef ciency and robustness of the computations are dif cult to
achieve without dynamic adaptive methods and quantitative error estimation and nally, (iv)
the capillary time step restriction condition is dif cult to respect when treating explicitly the
surface tension term in the Navier-Stokes equations [118].

69
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Indeed, the surface tension, as a result of the discontinuity of attractive forces at the inter-
face between two phases, plays an essential role in the mechanical behaviour of this interface.
Dif cult to solve directly at the molecular scale, different approaches were proposed in the
literature to express it as a surface stress condition [119, 120]. A famous approach, known
as the Continuum Surface Force (CSF) method, is proposed by Brackbill [121]. It enables to
avoid the computation of surface integral by mean of a regularized Dirac function. This can be
obtained easily when using either a level set method or a volume of uid approach.

However, the implementation of the surface tension is generally treated explicitly and in-
serted as a source term in the Navier-Stokes equations [122, 123]. This implementation may
suffer from limitations due to the need to capture the capillary wave. Indeed, one should use
a restrictive time step of order ¢bx)32 whereDx is the element size [121]. Hysing in [124]
proposed a semi-implicit implementation of the surface tension derived from the CSF method.
Using a Laplace-Beltrami operator, the variational formulation of the surface tension is rewrit-
ten in its semi-implicit form. In [125, 126], the Laplace-Beltrami operator is written as a
function of a standard Laplacian to remove the stiffness caused by the surface diffusion.

Therefore, to address points (i)-(iv), we propose in this work to derive a new adaptive Vari-
ational MultiScale (VMS) method [32, 127], designed to circumvent the time step restriction
condition due to the use of the surface tension and to handle the abrupt changes at the inter-
face. Indeed, it consists on the decomposition for both the velocity and the pressure elds
into coarse/resolved scales and ne/unresolved scales [20], needed to deal with convection
dominated problems and pressure instabilities. Note that this choice of decomposition is ex-
tended here to account for the surface tension additional terms which in return are shown to be
favourable to remove spurious oscillations at the interface and for simulating ows with large
density and viscosity ratios. A convected level set method [57, 58] is used to provide a precise
position of the interfaces and to enable homogeneous physical properties for each subdomain.

Finally, we combine this new VMS formulation with an a posteriori error estimator for
dynamic anisotropic mesh adaptation [24, 26]. It involves building a mesh based on a metric
map. It provides both the size and the stretching of elements in a very condensed information
data. Consequently, due to the presence of high gradients, it provides highly stretched elements
at the interfaces, at the inner and the boundary layers, and thus yields an accurate modelling
framework for two- uid incompressible isothermal ows. We assess the behaviour and ac-
curacy of the proposed formulation in the simulation of several two- and three-dimensional
time-dependent challenging numerical examples [122, 128].

5.2 Implicit surface tension

As described previously, a common way to introduce the surface tension as a volume source
term in the Navier-Stokes equations is by rewriting the surface force as follows:

fst = gkd(Gn (5.1)

whereg is the surface tension coef cierd(G) is a Dirac function locating the interfa€g k is
the mean curvature ands the normal to the interfad@.

Moreover, the use of a level set function enables the direct computation of the normal as
n= Na=jNaj and the mean curvaturelass N n. As aresult, the surface tension is expressed
as a function of the level set as follows:

gkd(Gn=gd®a) N ~— Na (5.2)
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whered®(a) is a smoothed Dirac function [118].
As discussed in [124], this implementation imposes a restriction on the time step that must
respect the propagation of the capillary wave:
Dt 1
2 "< = 5.3
ox < 3 (5.3)
wherec; = P gk=(2r ) is the capillary wave phase velocity ands the average density at the
interface. Using the maximum wave-numler p=Dx, the time step is restricted to:
s
Dt < (Dx)? i (5.4)
2pg '
As an example, if we consider an air bubble inside a water channel with a mesh 8ize of
Immand a surface tension coef ciegt= 0:07N/m, the maximum time step allowed for the
simulation is thetax= 0:001sand thus penalizing the computational cost of the simulations.
On the other hand, it is stated in [129] that the surface Laplacian of an identity mapping
function can be expressed according to the curvature and the normal to this interface as follows:

Dsdg= Ns Nglg= kn (5.5)
Following the work in [124], we express the evolution of the position of the interface in time:
1= 12+ u™ D (5.6)

where the index+ 1 is the current time analthe previous one. Applying the surface Laplacian
operatorDs on (5.6) leads to:

Dot = D@+ DiDu™? (5.7)
(km™*t = (kn)"+ D(Du™ ) (5.8)

For sake of simplicity, we drop in the following the exponenand only usen+ 1 for the
unknowns. Multiplying (5.8) by the surface tension coef cient, we obtain:

gkn)™ =" gkn+ gDt(Dsu™*) (5.9)

In [125, 126], we nd that the surface Laplaci&g can be decomposed into a standard Lapla-
cian as follows:

2
_Reu- feg TU T

Dsu= Ngu= N 2 kﬂn (5.10)

where Tu_ Nu n.
in
Therefore, the new expression for the surface tension force will nally reads:
ﬂzu ﬂu K12, N+ 1
= —+t K— .
fsT gkd(a)n gd(a)Dt . k'ﬂn N“u (5.11)

The usual term gkd(a)n is now completed by additional terms proportional to the time
step. These additional terms act as an isotropic diffusion minus a diffusion in the normal
direction of the interface [125]. Note also that when the time step tends toward zero, the
surface tension is de ned only by the usual terngkd(a)n and therefore we retrieve the
explicit treatment.
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5.3 Variational Multiscale method with surface tension

Flow motion of an incompressible uid is described by the Navier-Stokes equations given by

r(fiu+u Nu) N (2mdu))+ Np f+ fsT (5.12)
Nu-=20 (5.13)

whereu, p, r, mand f are the velocity, the pressure, the density, the viscosity and the source
term respectively. It is well known that the stability of the discrete formulation of Navier-
Stokes depends on appropriate compatibility restrictions on the choice of the Finite Element
spaces for the velocity and the pressure. According to this, standard Galerkin mixed elements
with continuous equal order linear/linear interpolation is not a stable discretization. This lack
of stability manifests in uncontrollable oscillations that pollute the solution.

Many measures may be distinguished to solve and get around these dif culties. In particu-
lar, the classical stabilized Finite Element methods may be applied to deal with the instabilities
in convection-dominated regime and the velocity-pressure compatibility condition. However,
the direct use of such methods may be inadequate when additional terms are inserted in the
Navier-Stokes equations or when different physics is applied. Indeed, one needs to seek for
a general framework that deal with different and new variant of mixed variational formula-
tions. The Variational Multiscale method, proposed by Hughes [32, 127] offers such an ideal
framework. Therefore, terms related to such as Darcy [130], extra stress constraint [21], hydro-
dynamics [131], turbulence [35], viscoelastic ow [36] among others are treated accordingly
and taken into account by the stabilization process.

We brie y described the main steps to derive this formulation. First, it considers that the
velocity and the pressure unknowns can be split into two components corresponding to different
scales or levels of resolution: resolvable coarse-scale and unresolved netscale+ G and
p= pnt P. Likewise, we apply the same decomposition for the weighting functiensy, + vV
andg= g,+ §. The unresolved ne-scales are then modeled using residual based terms that are
derived consistently. The static condensation consists of substituting the ne-scale solution into
the large-scale problem providing additional terms, tuned by a local stabilizing parameter. The
latter enhances the stability and accuracy of the standard Galerkin formulation. The enrichment
of the functional spaces is performed as folloWs= V, Vo = Vho Vp andQ = Q Q
Thus, the mixed-Finite Element approximation of the time-dependent incompressible problem
with surface tension can read:

Coarse scale

8
3 T D (Wt O Rt D) (e BN W)
+(2m€up) 1 e(vh)) =(f+ fsT;vh)  8Vh 2 Vo (5.14)

:

(N (up+ 0G);0n)=0 802 Qn

Fine scale

;0 +(r (up+ 0) N(up+ 0);%)  (pn+ BN 0)

% ‘ﬂ(Uh+U)
: +(2me(u) e(V) =(f+ fs;;¥) 872V (5.15)

(N (ur+ 0);8)=0 8G2Q
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At this level, two assumptions can be made to simplify the resolution of the ne scale
equation as proposed in [24]: the subscales are considered quasi-static and the convection is
approximated by(un+ 0):N(uy,+ 0)  up:N(un + 0). Therefore, by formulating the expres-
sion of Uand p'as in [24], by substituting them into the large-scales equation, and applying
integration by parts, the system to solve becomes:

5 2Th 5
(PN vp)w+ & (tcRciN Vi) = ( fiv)w+ ( fsivh)w
K2Th, (5.16)

8 . N
% r (Teun; Va)w+ 1 (Up:NUn; Vi) w Ké’l (tk Rm; T unNvi)y +(2meun) : e(vh)) w

% (Nuh;qh)w a (tKRM;th)K:O
K2Th

with R andR ¢ the residuals de ned by

Rm= f+ fst rfwn ru Nu, Npy
Rc= KN u, (5.17)
whereuih is the velocity at Newton iteration Finally, replacing the expression &7 in (5.16)
and (5.17) we obtain:

2Th

(pn; N vih)w+ gd(a) Dt (Nup, : Nvy),,+ a (tcRc N Vh)g =

8 ~
% r (Teun; Vi)w+ 1 (Ul :Nun; i) w Ké (tkRm:r unNvy) +(2meup) - e(Vh)) w
% f gd@a)kn gd@)Dt T+ k‘ﬂnuh vh w (5.18)

NUn; Oh)w a (tkRwm;Nagn) = 0
h

wheretk andtc are the known stabilization parameters (see [81] for details). Note that in
the case of strongly anisotropic meshes with highly stretched elements, the de nition of the
stabilization parameters is still an open problem and plays a critical role in the design of the
stabilizing coef cients. In [24] the authors propose a particular choice of the stabilizing param-
eters suitable for anisotropic partitions that we adopt it again here.

Rwm andR¢ are now de ned by:

Rm=f gda)kn gd@)Dt Tanth+ kTt N2up  rfeun oy Nug

NIDh
Re= N un (5.19)

By comparing the standard Galerkin method with the proposed stable formulation, addi-
tional integrals that are evaluated element-wise are involved. These additional terms, obtained
by replacing the approximatetandp'into the large-scale equation, represent the effects of the
sub-grid scales and above all take into account the modi ed surface tension terms. They are in-
troduced in a consistent way to the Galerkin formulation and enable to overcome the instability
of the standard formulation arising in convection dominated ows and to deal with the pressure
instabilities [20].

5.4 Numerical test cases

In order to validate the proposed methods, two- and three-dimensional time-dependent numeri-
cal test cases are presented in this section. The results obtained with the proposed approach are
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compared with either analytic solutions or with those obtained by other approaches that can be
found in the literature. Some test cases cannot be handled using classical model in particular
for high property ratios and inC3attest of the bene t of adaptive VMS formulation.

5.4.1 Oscillating square bubble

In this test case, we assess the new implementation of the surface tension source term in the
Navier-Stokes equations. Therefore, we analyze an ethanol square bubble placed in a cavity
lled with air. This test case is proposed in [132]. The initial con guration is provided in Fig-

ure 5.1. No gravity is applied and the surface tension is constant. The physical parameters are
summarized in Table 5.1. The ethanol bubble interface, initially set as a square is expected to
become a circle since the surface tension tends to minimize the energy of the surface (propor-
tional in 2D to the length of the interface). The minimal value of energy is found for a circular
shape. The bubble will oscillate until it reaches its nal shape. If the time step exceeds the
criterion given in equation (5.4), numerical oscillations lead to an unstable interface.

We use an unstructured mesh of about 15000 triangular elements. The average size of the
elementsis % 10 3m. According to (5.4), the time step restriction for the explicit treatment
of the surface tension is about 0.0015s. We perform simulationStfd.001s, 0.005s, 0.01s
and 0.05s.

Figures 5.2-5.4 present the shape of the bubble obtained using different time step that ex-
ceed gradually the given criterion. As expected, the explicit treatment deviates the solution
gradually from the stable one and exhibits numerical oscillations that end up by a deteriorated
solution in particular foDt=0.05s. Whereas, the new implementation shows as expected very
stable solution even for large time step.

Table 5.1: Physical parameters for the oscillating square bubble

liquid [ gas Niiquid Ngas gravity g
797.88 1.1768 2 103 1.0 10° 0 0.02361

Figure 5.1: Set-up for the oscillating bubble

To quantify further the effect of the non-physical oscillations on the interface of the bubble
due to the treatment of the surface tension, we computed the degree of circularity found in [128]
and de ned by :

o= perimeter of area-equivalent circle

perimeter of the bubble (5.20)
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(a) t=0.1s (b) t=0.2s (c) t=0.3s (d) t=1.0s (e) t=6.0s

Figure 5.2: Interface shape f®=0.005s. Black line refers to the implicit formulation of the
surface tension, red line refers to its explicit treatment.

(a) t=0.1s (b) t=0.2s (c) t=0.3s (d) t=1.0s (e) t=6.0s

Figure 5.3: Interface shape f@it=0.01s. Black line refers to the implicit formulation of the
surface tension, red line refers to its explicit treatment.

(a) t=0.1s (b) t=0.2s (c) t=0.3s (d) t=1.0s (e) t=6.0s

Figure 5.4: Interface shape fBt=0.05s. Black line refers to the implicit formulation of the
surface tension.

If a bubble is perfectly circular, the circularity is equal to 1. If the bubble is deformed, the
circularity decreases. In Figure 5.5, we plot the circularity for all the simulations performed.
According to the results obtained fBt=0.001s, we notice that after few seconds, the shape of
the bubble is circular and therefore that the problem is not physically unstable. Furthermore,
if we increase the time step, the amplitude of the oscillations in the circularity increases only
when using an explicit treatment of the surface tension. The implicit treatment of the surface
tension does not result in higher amplitude. It is obvious that increasing the time step does not
enable us to capture all the physical oscillations (see the cuni£06r05s).

5.4.2 Rayleigh-Taylor instability

The two dimensional Rayleigh-Taylor instability benchmark [122, 133] is investigated in this
section. It consists of two uids placed in a closed cavity and submitted to gragity (
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Figure 5.5: Circularity of the oscillating bubble for different time step.

(0; 10)m=s?). This benchmark represents a challenge due to the fast dynamics of the sys-
tem and due to the appearance of swirls, dif cult to capture. The upper side of the cavity
is occupied by a uid with a density = 3kg=m® and a viscosityh = 0:013%g=(m 9) (see
Case#1 in Table 5.2). The lower part is occupied with a uid of density 1kg=m® and vis-
cosityh = 0:004%g=(m s). As shown in Figure 5.6, the initial shape of the interface between
the two uids is a cosine function de ned gs= 0:05co%2px) and the uids are at rest at the
initial time. The criteria chosen for the adaptive meshing is both the velocity (in direction and
magnitude) and the level set function. The simulation is performed using 16000 elements and
the time step is set tbt = 0:01s. The surface tension is rst set to zero.

In Figure 5.7, we can see the evolution of the two- uid interface and the deformation of its
shape. A very good agreement is found with [122] and [133] in term of front position, general
shape of the perturbation and swirls shape. Figure 5.8 shows how the mesh is coupled to the
evolution of the system and is re ned close to the interface. This enables a more accurate
capturing of such interface dynamics.

We repeated the same simulation using only 8000 elements to assess the ability to capture
the swirls. Figure 5.9 shows that even for a low number of elements, swirls are still well
captured. The mesh at t=1.25s in Figure 5.9 and the mesh at t=1.25s in Figure 5.8 show that
the nest elements are concentrated close to the swirls. Since the velocity eld far from the
interface is still close to null, the elements far from the interface are coarsened.

Table 5.2: Physical parameters de ning the test case for the Rayleigh-Taylor instability

ri ro h1 h, gravity
Case#1 1 3 0.0045 0.0135 10
Case#2 1 15 0.0022 0.0033 10

Finally, we repeated the same test case using the surface tension (see Case#2 in Table 5.2).
Figure 5.10 presents the obtained results at t=1.85s for different values of surface tension.
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Figure 5.6: Setup for the 2D Rayleigh-Taylor instability

Figure 5.7: The interface shape of the Rayleigh-Taylor instability at t=0.5s, t=0.70s, t=1s and
t=1.25s.

Again, the results are in very good agreement with the reference.

5.4.3 2D Rising bubble

We simulate the rising bubble benchmark from [128]. A bubble of diameter 0.5 centered at
(0.5,0.5) is surrounded by a liquid of higher density and viscosity (see Figure 5.11). A free slip
boundary condition is prescribed on the vertical walls and a no-slip condition is prescribed on
the top and the bottom of the cavity. The motion of the bubble is only due to the buoyancy force.
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Figure 5.8: The obtained meshes for the Rayleigh-Taylor instability benchmark at t=0.5s,
t=0.70s, t=1s and t=1.25s.

Figure 5.9: The interface shape (left) and the obtained mesh(right) of the Rayleigh-Taylor
instability at t=1.25s using 8000 elements.

The simulations are performed for two different sets of parameters (see Table 5.3) respectively
Case #1 and Case #2. The ratio between the physical parameters leads to different shapes of
the bubble. In Case #1, the ratio between the physical property is 10. The high surface tension
coef cient maintains the bubble as an ellipsoid. Case #2 is more challenging due to the high
ratio between the physical properties of the two phases. Furthermore, the break up of the bubble
represents an additional challenge for the level set method.
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(a) g=0.0 (b) g=0.03 (c) g=0.06 (d) g=0.09

Figure 5.10: Rayleigh-Taylor instability at t=1.85s for different values of surface tension.

Figure 5.12 compares the shape obtained in the current work and the shape obtained by
other teams in [128] for Case #2. Four different methods of resolution give four different nal
shapes of the bubble. It is therefore dif cult to assess the accuracy of the methods. Since the
visual evolution of the shape of the bubble is not rigorous enough to compare results provided
by different methods of resolution, Hysing et al. decided in [128] to de ne benchmark quanti-
ties such as the position of the center of mass of the bubble and the rise velocity of the center
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Table 5.3: Physical parameters de ning the test case for the 2D rising bubble

Miquid 'gas Nigqud hgas Qgravity g
Case #1 1000 100 10 1 098 245
Case #2 1000 1 10 0.1 0.98 1.96

Figure 5.11: Setup for the 2D rising bubble case

of mass. The position of the center of mass of the bubble is de nedd R\,\,gxdx:R\,\,g 1dx
whereas the rise velocity of the center of mass is de netlpy W, udx= W 1dx

For each case, we perform two simulations, using adaptive anisotropic meshing, under the
constraint of a xed number of elements. The criteria chosen for the adaptive meshing is again
both the velocity (in direction and magnitude) and the level set function. The rst simulation
is performed using about 5000 elements and the second simulation is performed using about
10000 elements. The time step is seDto= 0:002. The results of the two simulations are
compared to the simulations performed with the nest grids in [128]. Table 5.4 gives a general
overview on the used number of elements and iterations for each code.

Table 5.4: Number of elements and iterations for the 2D rising bubble

Mesh Iteration
Case#1 TP2D 204800 rectangles 15360
FreeLIFE 102400 structured triangles 960

MooNMD 8066 degrees of freedom at the interface 6000
Current work  5000/10000 unstructured and anisotropic 1500
Case#2 TP2D 819200 rectangles 30720
FreeLIFE 102400 structured triangles 960
MooNMD 8066 degrees of freedom at the interface 6000
Current work  5000/10000 unstructured and anisotropic 1500
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Figure 5.13 shows the comparison with the three methods described in [128] for the position
of the center of mass. Figure 5.14 shows the comparison for the rising velocity of the center of
mass. Figure 5.15 compares the shape of the bubble at t=3s.

For Case #1, as expected, the shape at the nal time is found to be ellipsoidal. The results
from all simulations are in very good agreement. This shows the ability of the proposed adap-
tive meshing procedure to accurately solve the problem, not only by re ning the mesh close to
the interface but also wherever it is relevant from a physical point of view, as it is depicted in
Figure 5.16.

For Case #2, during the rise of the bubble, thin laments are developed and eventually break
up for some methods. The break of the laments has an effect on the rise of the bubble and
could explain the differences found in Figure 5.13 and Figure 5.14. In [128], simulations per-
formed with MooNMD, using Arbitrary Lagragian Eulerian technique to follow the interface
and remeshing according to the degree of deformation, show the formation of thin laments.
Simulations performed in xed meshes with TP2D and FreeLIFE, using level set method to
follow the interface, show that the break up does not occur when the mesh is very ne. The
adaptive meshing used in the current work enables the formation of two thin laments even for
a low number of elements. Once again, the ability of the proposed method is well highlighted
in Figure 5.17 by capturing with high delity the characteristics of the ow at the interface and
under the bubble where the velocity gradients are important due to the ascending motion of the
bubble.

To assess the formation of the thin laments, we perform a simulation using a very ne
structured mesh with 409600 elements and a time Btep 0:000%. Figure 5.18 shows that
the results obtained using an adaptive meshing with 10000 elements (40 times less elements)
remain in a very good agreement with the reference solution.

Figure 5.12: 2D rising bubble: Results from different teams for Case #2

5.4.4 3D Rising bubble

The nal case examined here is the three-dimensional rising bubble of diameter D in a closed
cavity from [122]. The setup of this case is depicted in Figure 5.19 and the physical parameters
are summarized in Table 5.5. The bubble is at rest at initial time and the center of the bubble is
located at z=-D. A free slip boundary condition is prescribed on all the walls. The motion of the
bubble is only due to the buoyancy force. The simulations are performed using the proposed
adaptive meshing technique with 128000 elements. The time step isBett0:002. Two

cases are considered. In the rst one, the diameter is xed to D=0.05m. Since the surface
tension is null, this case is challenging for the level set method due to the skirted shape of
the bubble. The adaptive meshing enables easily the formation of the skirt of the bubble and
no break up occurs during the simulation as it is depicted in Figure 5.20. In the second case,
the diameter is set to D=0.01m. Due to the surface tension effects, the form of the bubble is
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(a) Case#l (b) Case#2

Figure 5.13: Evolution of the position of the center of mass

(a) Case#l (b) Case#2

Figure 5.14: Evolution of the rising velocity of the center of mass

expected to be ellipsoidal. The shape and the mesh for this case are presented in Figure 5.21
and agree with the reference [122].

Table 5.5: Physical parameters de ning the test case for the 3D rising bubble

D riqud Tgas Miqud hgas Qgravity ¢
0.05 1000 1.225 0.35 0.00358 9.81 0
0.01 1000 1.225 0.35 0.00358 9.81 0.11
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(a) Case#l (b) Case#2

Figure 5.15: Shape of the bubble at t=3s
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(a) t=0.6s (b) t=1.2s (c) t=1.8s (d) t=2.2s

(e) t=2.4s (f) t=2.6s (g) t=2.8s (h) t=3.0s

Figure 5.16: 2D rising bubble: Case #1 mesh (10000 elements) at different times.
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(a) t=0.6s (b) t=1.2s (c) t=1.8s (d) t=2.2s

(e) t=2.4s (f) t=2.6s (g) t=2.8s (h) t=3.0s

Figure 5.17: 2D rising bubble: Case #2 mesh (10000 elements) at different times.
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Figure 5.18: 2D rising bubble: Shape of the bubble at t=3s for Case #2. Simulations per-
formed with 5000 and 10000 elements using mesh adaptation are compared with a simulation
performed with 409600 structured elements.

Figure 5.19: Set-up for the 3D rising bubble case
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Figure 5.20: 3D rising bubblegE 0:0) at t=0, 0.04, 0.12, 0.18, 0.26, 0.42 s.
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Figure 5.21: 3D rising bubblegE 0:11) at t=0, 0.04, 0.1, 0.12, 0.18, 0.26 s.
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5.5 Conclusion

We have proposed in this chapter an implicit formulation of the surface tension to simulate in-
compressible two phase ows and to circumvent the numerical time step restriction due to the
surface tension implementation. We have demonstrated the ef ciency of the proposed frame-
work by performing challenging cases in 2 and 3 dimensions. The results of the numerical tests
show that this approach produces accurate numerical solutions. The comparison with the litera-
ture shows that despite a limited number of elements, simulations do not suffer any instabilities
and a good accuracy is obtained. The computational cost is therefore drastically reduced.



CHAPTER 5. TOWARDS BOILING MULTIPHASE FLOWS: SURFACE TENSION 90

Résumé en francais

Dans ce chapitre, le développement et I'implémentation de la tension de surface dans les équa-
tions de Navier-Stokes multiphasiques sont présentées. Grace a l'utilisation de la méthode
level set, la dérivation des termes nécessaires au calcul de la tension de surface est directe.
Limplémentation explicite en temps de cette force comme un terme source dans I'équation de
conservation de mouvements méne a une sévere restriction du pas de temps, pénalisant ainsi
les simulations multiphasiques. Si cette condition en temps n'est pas respectée, des oscillations
parasites déstabilisant l'interface apparaissent. Cette condition est encore plus sévére avec
l'utilisation d'outils d'adaptation de maillage anisotrope. A I'aide d'un théoreme de géométrie
différentielle et d'un opérateur de Laplace-Beltrami, il est possible d'exprimer la tension de
maniere semi-implicite. Cette nouvelle formulation empéche I'apparition de ces oscillations
parasites, permettant ainsi l'utilisation de pas de temps plus grands. Limplémentation de cette
méthode dans le cadre de la méthode VMS est décrite. La validation de cette approche et de
son implémentation sur des cas tests en 2D et 3D permet de montrer la grande précision de
cette méthode pour un codt dérisoire en comparaison avec les methodes généralement utilisées
dans la littérature.
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6.1 Introduction

Multiphase ows describe a wide variety of natural and industrial problems arising mostly in
uid mechanics, environmental applications and nuclear and chemical engineering. Indeed,
it plays an important role to understand the physical phenomena such as bubble dynamics,
groundwater ow, oil propagation, phase change and evaporation, and blood ow in biome-
chanical applications. Therefore, it is essential in most of these situations to well consider
each phase and to treat precisely the dynamics of the interface (e.g. liquid-gas mixture). For
instance, in bubbly ows (see Figure 6.1), bubbles are compressible while the water is incom-
pressible, raising the question of whether or not the compressibility should be considered in the
modeling and simulation of such phenomenon.

In the literature, several advanced computational approaches have treated both phases as
incompressible uids. To cite few, we refer to the sharp interface method in [134], hybrid parti-
cle level set method in [135], a front-tracking method proposed in [136], SPH method in [137],
high order nite difference method suggested in [138], and recently a conservative sharp inter-
face method in [139]. At the same level, numerous works investigated compressible multiphase

ows, in particular for applications related to underwater explosion, fuel injections, bubble dy-
namics and con ned ows among many others [140, 141, 142, 143, 144, 145]. However, the

91
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Figure 6.1: Bubbles rising in water

use of a single model encounters several numerical issues, in particular when simulating cou-
pled complex problems. Indeed, the assumption that both uids are treated as incompressible
does not allow the change of volume, whereas if we assume that both gas and liquids are com-
pressible, using an equation of state to mimic the incompressibility in the liquid phase, then the
mass conservation is not controlled. These dif culties among many others have motivated the
development of uni ed formulations. In this context, there is a renewed interest in modeling
appropriately and in a coupled manner the properties of each phase [146]. The remaining chal-
lenge is to provide a numerical strategy to each component ensuring: (i) mass conservation,
(i) the ability to deal with large density and viscosity ratios, and (iii) accurate transmission of
waves across the interface.

Only few attempts in the literature can be found that deals with the coupling of incompress-
ible liquid and compressible gas. We can mention the coupling of sharp interface method with
Ghost uid approach proposed in [147], the use of multiple pressure variable approach [148],
the use of the level set method to simulate small gas bubble clusters [149] and also the applica-
tion of Galerkin Least Square method to the modi ed Navier-Stokes equation with a level set
approach in [150].

In this work, we derived a new uni ed adaptive Variational MultiScale (VMS) method for
liquid-gas ows. First, the same set of primitive unknowns and equations is described every-
where and the coupling between the pressure and the ow velocity is ensured by introducing
mass conservation terms in the momentum equation. The main reasons for this choice of global
description of the ow are stability, robustness and computational ef ciency (see [151, 152]).
The obtained system is then solved using a new derived Variational MultiScale stabilized Finite
Element method designed to handle the abrupt changes at the liquid-gas interface. Indeed, it
consists on the decomposition for both the velocity and the pressure elds into coarse/resolved
scales and ne/unresolved scales [32, 33, 34, 20], needed to deal with convection dominated
problems and pressure instabilities. Note that this choice of decomposition is extended here
to the pressure equation which in return is shown to be favorable for simulating ows at high
Reynolds number and to remove spurious oscillations at the interface due to the high disconti-
nuity in the material properties. A conservative level set method is used in this case to provide
a precise position of the interfaces and to enable homogeneous physical properties for each
subdomain [16].

Finally, we combine this new Variational MultiScale formulation with an a posteriori error
estimator for dynamic anisotropic mesh adaptation [16]. It involves building a mesh based
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on a metric map. It provides both the size and the stretching of elements in a very condensed
information data. Consequently, due to the presence of high gradients in the primitive variables,
it provides highly stretched elements at the interfaces, at the inner and the boundary layers, and
thus yields an accurate modeling framework for two-phase compressible and incompressible
isothermal ows. We assess the behavior and accuracy of the proposed formulation in the
simulation of three time-dependent challenging numerical examples.

6.2 Governing equations for compressible-incompressible cou-
pling

In this section, the general equations of the global compressible-incompressible model are pre-
sented. The same set of primitive unknowns will be used by introducing mass conservation
terms in the momentum and energy equations. To keep the presentation simple, we sidestep
the surface tension effects and we assume no slip condition at the interface and that the viscous
part of the stress tensor is negligible in comparison to the pressure contribution. The mass and
momentum equations are rst formulated in the following conservative form:

r |« _
TN = o (6.1)
r%+ru Nu Ns = rg (6.2)

wherer , g andu are the density, the gravity and the velocity, andhe stress tensor which
reads:

s=2mdu) plqg (6.3)

with p and mthe pressure and the dynamic viscoséyhe deviatoric part of the strain rate
tensor andy the identity tensor .

The system must be closed by a state equation relating the density, the thermodynamic
pressure and the temperature.

r=r(T;p (6.4)

In order to express the global model, and assuming that the uid is divariant, we reformulate
the density as function of the pressure and the temperature (see [151, 152]):

dr _ 9r dT+‘ﬂr dp

QAT dt Tp gt (6-5)

Consequently, the mass conservation equation can be reformulated as an equation for the
pressure

l‘ﬂ_r d_p+l‘|]_r d_T+N u=0 (6.6)
rfprdt r 9T ;dt '
By introducing
_1qr o 19r
Cp= r__p ; and ct= FAT (6.7)
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as the isothermal compressibility coef cient and the thermal expansion coef cient respectively,
the mass conservation now reads
~ Tp - dT
N u+ cp—+cpu Np=cT1— 6.8
Pt p p=cCTt dt (6.8)
Finally, the system of equations (6.1)-(6.2) is now transformed in a uni ed form that can be
used for both incompressible and compressible ows as follow:

r%+ ruNu N (2mdu))+ Np = rg (6.9)
. Tp _ . dr
N u+ Cpﬁ+ cpu Np = CT4¢ (6.10)

The following Table 6.1 resumes all the required physical parameters and coef cients needed
in (6.9)-(6.10) to simply solve an incompressible liquid with a compressible gas. We used in
this case the perfect gas equation of state Wi#s the perfect gas constant.

Table 6.1: Model parameters
iquid | 1, c1=(0;0) m
gas ‘ rg= p=RT ‘ Cg=(1=T; 1=p) ‘ my

6.3 Variational MultiScale method for the uni ed solver

It is well known, that the stability of the discrete formulation of Navier-Stokes depends on
appropriate compatibility restrictions on the choice of the Finite Element spaces for the velocity
and the pressure. According to this, standard Galerkin mixed elements with continuous equal
order linear/linear interpolation is not a stable discretization. This lack of stability manifests in
uncontrollable oscillations that pollute the solution.

Many measures may be distinguished to solve and get around these dif culties. In particu-
lar, the classical stabilized Finite Element methods may be applied to deal with the instabilities
in convection-dominated regime and the velocity-pressure compatibility condition. However,
the direct use of such methods may be inadequate when additional terms are inserted in the
Navier-Stokes equations or when different physics is applied. Indeed, one needs to seek for
a general framework that deal with different and new variant of mixed variational formula-
tions. The Variational MultiScale method, proposed by Hughes [32, 33, 34, 127] offers such an
ideal framework. Therefore, terms related to such as Darcy [130], extra stress constraint [153],
hydrodynamics [131], turbulence [34, 35], viscoelastic ow [36] among others are treated ac-
cordingly and taken into account by the stabilization process.

Accordingly, in this section, we derive a new Variational MultiScale formulation for the
uni ed two-phase compressible and incompressible isothermal ows. It considers that the un-
knowns of the mixed problem (6.9)-(6.10) can be split into two components, coarse and ne,
corresponding to different scales or levels of resolution.

Following the lines in [32], we consider a direct sum decomposition of the velocity and
the pressure elds into resolvable coarse-scale and unresolved ne+scalg, + G andp =
pn+ P. Likewise, we apply the same decomposition for the weighting functonsv, + V
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andg= gn+ §. The unresolved ne-scales are usually modeled using residual based terms that
are derived consistently. The static condensation consists of substituting the ne-scale solution
into the large-scale problem providing additional terms, tuned by a local stabilizing parame-
ter. The latter enhances the stability and accuracy of the standard Galerkin formulation. The
enrichment of the functional spaces is performed as follows: Vi, V, Vo = Vho V, and

Q= Q, O. Thus, the mixed-Finite Element approximation of the time-dependent uni ed
compressible-incompressible problem can read:

Coarse scale

' '”(“:T: Dive +(r (Un+ @) Ri(n+ D3v) (Pt iR v+ ( 2meu) © e(wy)

=(fv;vh) 8h2 Vho

VWA AR Q0

+ D ~
ﬂ(p;}—t p);qh + Cp((Un+ @) N(pn+ P);ch) =(fp;an) 80h2 Qn

(6.11)

(N (up+ G);an)+ cp
Fine scale

r ﬂ(U:T:' G),V +(r (up+ 0) N(Uh"' a);%)  (pn+ ﬁ,N V) +( 2m€Q) : e(V))

=(f,;0) 872V

p ) )
11(|0:Tt PG+ cpl(tn+ 0 Npo+ PiD=(T5i@) 8520

(6.12)

To simplify the notation, we usef|, and f, as the source terms in (6.9)-(6.10). To derive
the stabilized formulation, we rst solve the ne scale problem, de ned on the sum of element
interiors and written in terms of the time-dependent large-scale variables. Then we substitute
the ne-scale solution back into the coarse problem, thereby eliminating the explicit appearance
of the ne-scale while still modeling their effects. At this stage, two important remarks have
to be made in order to deal with the time-dependency and the non-linearity of the momentum
equation of the subscale system:

VWA AR 00

(N (up+ 0);8)+ cp

i) the subscales are not tracked in time, therefore, quasi-static subscales are considered
here (see [154] for a justi cation of this choice); however, the subscale equation remains
guasi time-dependent since it is driven by the large-scale time-dependent residual. For
time-tracking of subscales, see [84].

i) the convective velocity of the non-linear term may be approximated using only large-
scale part so thgup+ G) N(up+ 0) uf N(un+ ) whereuy is the convection velocity
(see [20]).

The equations for the coarse scales are obtained taking the subscale test functions equal to
zero. Therefore, using the previous assumptions, we have
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8

flu -

Fgrivh +(r o Nuve) (ot BN i)+ (2meun) < e(v)
+ & G ruf Nvh = (fuVh) 8Vh 2 Vho

K2Th
(6.13)

It
4 (GN o) & pcpul Nan = (fpian) 80h 2 Qn
KZTh KZTh

~ |
§ (N un;on)+ Cp p“,qh +cp U Npn;an

for all (vnh;an) 2 Vo Ph.o, Whered g stands for the summation over all the elements of the
Finite Element partitiork ,, and ( ; )k denotes thé-? product in eactK. The problem for

the ne scales is obtained from (6.12) and using approximations i) and ii) described above.
Introducing the Finite Element residuals

Tun

Ri=fy r-— rut Nup+N (2mgun) Npy
o (6.14)
Re=fy N u, (:,D."—th cput Npp

and using the same ideas as in [91], it turns out that the subscales may be approximated within
each elemerk 2 K j, by

Tho (6.15)

whereP, and I5p are the projections ontd andQ, respectively, andl, andt . are the so called
stabilization parameters. The most common choice is to take the former as the identity when
applied to Finite Element residuals (see [32]), and this is what we will do here, although it is
also possible to take them as the projection orthogonal to the Finite Element space (see [90]
and references therein).

Inserting the expression for the subscales, we nally obtain the stabilized Finite Element
problem The new variational formulation reads:

vy, +(ru Nupvh) (PN Vi) +( 2meun) @ e(vp))

ty ‘"'”th+ruC Nu, N (2meun)+ Np,  fy,rug Nv,

+ 8 te N up+ cpﬂph+ cpuf Npn fuN v = (fy;vh) 8vh 2 Vho

K2Th It
T -

(N un;gn) + cp % Gh + Cp Uy Nphnian

bty T e Ry R @mdu))+ Ripe iR,
K2Th It

+ & tc N up+ Cpﬂp + CpUp, Npn fp; Cpup Na, = (fp:ah) 80h 2 n
K2Th It

(6.16)
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When compared with the standard Galerkin method and even to the Variational MultiScale
method for the incompressible Navier-Stokes equations, the proposed stable formulation in-
volves new additional integrals that are evaluated element-wise. These additional terms, ob-
tained by replacing the approximateandpinto the large-scale equation (6.13), represent the
effects of the sub-grid scales in both incompressible and compressible phases. This is the rst
attempt that takes into account these new terms. They are introduced in a consistent way to the
Galerkin formulation and are multiplied by stabilizing parameters and enable to overcome the
instability of the classical formulation arising in convection dominated ows and to deal with
the pressure instabilities. Similar conclusions were obtained in other applications such as in
shock hydrodynamics [131].

6.4 Numerical test cases

In order to validate the proposed uni ed formulation, three time-dependent numerical test cases
are presented in this section. The results obtained with the proposed approach are compared
with either analytic solutions or with those obtained by other approaches that can be found
in the literature. Some test cases cannot be handled using classical incompressible model for
liquid and gas and attest of the bene t of a uni ed compressible-incompressible formulation.

6.4.1 Shrinking Bubble

The rst test case is the shrinking bubble as proposed in [155]. An air bubble of nadi®s03

m is compressed by water in a closed cavity of length side equalltm(see Fig. 6.2). The
water is injected at a velocity @b=0.0025 m.s?, in the direction normal to the boundaries of

the domain. The gravity and the surface tension are set null. The evolution in time of the density
is given by the analytic solution(t) = ro= 1 p%i whereg=0.001 nt.s 1 is the ow rate

of injected water and g is the initial density. The isothermal compressibility coef cients for
gas and liquid are set o = 9:8692327 10 ®Pa andc, = 0:444 10 °Pa’.

Figure 6.2: Set-up for the shrinking bubble.
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Figure 6.3 shows how quickly the bubble volume is decreasing until it collapses. The
number of nodes is set to @O0 and the mesh adaptation criteria are both the level set and the
velocity (in direction and in norm).

As expected, the nodes are concentrated along the interface of the bubble and follows the
change of direction of the velocity. This re ects how, for a controlled number of nodes, the
mesh is naturally and automatically coarsened in smooth regions while extremely re ned near
the interface. It also illustrates the right orientation and deformation of the mesh elements
(longest edges parallel to the boundary). This yields a great reduction of the number of triangles
compared to [155] and consequently a reduction in the computational cost.

Figure 6.3: Shrinking bubble: Anisotropic adapted mesh at different times.

Figure 6.4: Shrinking bubble: Evolution in time of the density

Figure 6.4 shows a very good agreement between the numerical results for the evolution of
the density and the analytic solution.
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6.4.2 One sided bubble compression

We consider the 2D bubble compression test case inside a cavity of 1m side as presented
in [150]. A bubble of radius 0.25m is initially placed at the center of the square and sur-
rounded by an incompressible liquid (see Fig. 6.5). The liquid is injected in the square at an
in ow velocity de ned by :

U(t)jeo = 10Q(y 0:75)(0:25 y) m.s fory2 [0:25;075 (6.17)

Gravity and surface tension are neglected. The initial pressure is the atmosphericone (10
Pa). We assume the ow isothermal with a sound speed317 m.s? in the gas. Densities
and viscosities are summarized in Table 6.2.

Figure 6.5: Set-up for the bubble compression

Table 6.2: Physical parameters for the bubble compression.
rg I m m g =g m=m
1 1000 0.01 1 O 1000 100

As the liquid is progressively injected inside the closed cavity, the gas bubble is compressed.
In Figure 6.6, we show a very good agreement between a reference solution and the current ob-
tained results at two different time step. We highlight also that the interfaces do not show
instabilities and this is mainly due to the use of adaptive Variational MultiScale method. The
results here are obtained using a decreased number of elements and allow further the compres-
sion of the bubble. Indeed, Figure 6.7 shows new obtained results for the time evolution of the
interface until a quasi complete compression.

Again, all the main directional features characterizing the velocity inside the cavity are
detected and well captured by the anisotropic error estimator. The mesh elements are highly
stretched along the direction of the layers, at the detachment regions and around the interface.
Once again, the developed adaptive uni ed VMS solver is shown to be very ef cient and ro-
bust to deal with discontinuities using highly stretched elements. For a given constraint on
the number of elements we can nd the mesh that maximizes the accuracy of the numerical
solution.
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Figure 6.6: Bubble compression velocity eld. The red line represents the interface at t=0.165s
(left) and t=0.331s (right). Comparison betwdgiltaud et al. (top) and current work (bottom).
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Figure 6.7: Bubble compression: evolution in time of the bubble shape and the mesh.
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The zoom on the interface and at the right side of the cavity in Figure 6.8 highlights how
sharply the interface and the layers can be captured. It shows the correct orientation and de-
formation of the mesh elements (longest edges parallel to the boundary). This yields a great
reduction of the number of triangles. These results give con dence that the extension of the
approach to take into account different components seems to work very well and plays an im-
portant role for transient ows.

Figure 6.8: Bubble compression: focus on the mesh adaptation around the bubble and at the
boundaries. Highly stretched elements are found at the interface of the bubble, allowing an
accurate capture of physical phenomena.

The evolution of the volume is given bBy(t) = 5 %gz. Finally, comparison with this

analytic solution in Figure 6.9 shows a good agreement.

6.4.3 Rising bubble

In this numerical example, we consider the test case of the rising bubble inside a 2D cavity
of 0.3 m side [150]. A circular bubble of radius 0.05 m is initially placed at the center of the
square and surrounded by an incompressible liquid (see Fig. 6.10). The system being initially
at rest, the motion of the bubble is driven by the buoyancy force only.

Two test cases are considered, de ned by the density ratiog and the viscosity ratio
m=ny. Densities and viscosities are summarized in Table 6.3.

Table 6.3: Physical parameters for the rising bubble test cases.
g Re rji=rg m=my
Case#1 10 10 100 100
Case#2 10 100 1000 100
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Figure 6.9: Bubble compression: evolution in time of the bubble volume using two meshes

Figure 6.10: Set-up for the rising bubble
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Figures 6.11 and 6.12 show the evolution of the bubble shape in time. The obtained results
are in good agreement with those obtained by [156]. We can clearly see the impact of using dif-
ferent density and viscosity ratio. Itis also worth mentioning that we show additional snapshots
of the results until the bubble gets closer to the top wall. Whereas in the literature, comparisons
stops at the middle of the cavity. This is mostly due to the use of a dynamic anisotropic mesh
adaptation with multi-criteria. Indeed, the interfaces are very well captured and the boundary
layers as well as the detachments are automatically detected. This again highlights the capacity
of the developed adaptive uni ed to treat accurately liquid-gas ows.

Figure 6.11: Rising bubble #1: Evolution in time of the bubble shape and the mesh.

6.5 Conclusion

We proposed in this chapter a new uni ed Variational MultiScale method to address easily the
coupling between two-phase compressible and incompressible ows. Using a level set function
that describes implicitly the interface between the two phases, combined with an edge based
error estimator for anisotropic mesh adaptation, it results in a simple and accurate framework
that allows simulating liquid-gas ows. All the details to implement the new derived stabilized
Finite Element method were presented. Several time-dependent test cases, where the compress-
ibility effects are important, were presented. The numerical results and the comparisons with
the literature show that the new solver is able to exhibit good stability and accuracy properties
on anisotropic meshes with highly stretched elements.
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Figure 6.12: Rising bubble #2: Evolution in time of the bubble shape and the mesh.
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Résumé en francais

Dans ce chapitre, une nouvelle formulation des équations de Navier-Stokes permettant de pren-
dre en compte de maniére uni ée une phase compressible et une phase incompressible est
présentée. Pour un uide divariant, I'équation de conservation de la masse est réécrite en
fonction de la vitesse, de la pression et de la température en utilisant des variables thermody-
namiques dérivées de I'équation d'état utilisée pour la phase compressible. L'implémentation
de cette méthode dans le cadre de la méthode VMS est présentée. L'étude de plusieurs cas
permet de valider I'approche et la comparaison avec les solutions analytiques ou provenant de
la littérature montre la robustesse et la précision de I'approche proposée.
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7.1 Introduction

An accurate and robust simulation of the boiling is still an ongoing challenge. Indeed, the
complexity of boiling lies in the wide range of scales to consider and in the physics involved.
From the nucleation of a vapor bubble to the Im boiling, one needs to consider scalesfnom

to them. In industrial processes, such as quenching of a solid hot metallic part, the variety of
con gurations and the complexity of the surrounding ow must be taken into account. Indeed,
they have direct impacts on changing mechanical properties, controlling microstructure and
releasing residual stresses.

The classical well known methods for thermal treatment of a solid generally refer to the use
of experimentally deduced heat transfer coef cients. However, these latter are only useful for
a particular con guration in term of geometry, orientation of the surface, range of temperature
and ow motion. Therefore, heat transfer coef cients are not suitable to analyze different
industrial processes and cannot be generalized to all con gurations. Only a direct numerical
simulation can take into account all the physics and all the scales involved in boiling.

Therefore an abundant research has been devoted to the simulation of boiling. Several ap-
proaches can model such phenomenon. These approaches fall into two categories that depend
on the thickness of the interface: sharp interface and diffuse interface. The sharp interface

107
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approach considers the presence of different phases that interact through the interface using
boundary conditions. Within this approach, two methods are commonly used. In interface
tracking methods, the interface is represented by a set of nodes. This set of nodes moves
accordingly to the interface. This requires particular mesh movements at each iteration and
also requires a special treatment of complex topological con gurations [157, 158, 42, 159].
Interface capturing methods consist in a implicit de nition of the interface. A volume frac-
tion (Volume-Of-Fluid) or a signed distance function (Level Set) is convected using a transport
equation [160, 161, 162, 163, 164, 165, 166, 167, 168]. These methods are popular due to the
simplicity of implementation and the fact that complex topology changes such as the coales-
cence of bubbles are handled naturally. An excellent literature review of these methods applied
to boiling is given by Kharangate and Mudawar in [169]. Other approaches in the literature can
be mentioned. Phase- eld approaches seem the most promising one [170, 171, 172]. An order
parameter is used to distinguish different phases and its evolution gives access to the interface
location. The interface is assumed to have a thickness of few nanometers. However, an equation
of state is required for the uid that introduces complexity from a mathematical and numeri-
cal point of view. Furthermore, this approach introduces high-order differential terms that are
stiff and require innovative discretization techniques.We can also mention the uid mixtures
approaches [173, 174] considering two compressible phases. A complete hyperbolic system is
derived using conservation equations for each phase. An equation of state that reproduces the
phase diagram is usually required to close the system.

We propose in this work an adaptive Eulerian framework for dealing at the same time
with an immersed solid and a uid experiencing phase change. We follow the different in-
terfaces using a level set method. We propose a pseudo-compressible Variational Multiscale
method for the Navier-Stokes accounting for the mass transfer between the phases at the inter-
face. Combined with an a posteriori error estimator for dynamic anisotropic mesh adaptation
[27, 54, 109], leading to highly stretched anisotropic elements, it yields an accurate modeling
framework for such multiphase ows. It was shown that this framework is very favorable for
the simulation of Newtonian ows [37, 68, 175], yield stress uids [176], compressible and
incompressible ows [38]. This framework will be extended in this work to deal with phase
change.

7.2 Phase change model

In this section, we derive a pseudo-compressible model accounting for mass transfer at the
interface. Such derivation has already be done in the previous work of Denis [43], in the
context of nite difference method.

7.2.1 Derivation of the governing equations for the phase change

We recall the Navier-Stokes equations:

r(ftu+u Nu) N (2mdu))+ Np = fgr+ f (7.1)
HT_EJFN (ru) = 0 (7.2)

whereu, p,r, m fsyandf are the velocity, the pressure, the density, the viscosity, the surface
tension force and additional source term of the momentum equation respectively.
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The derivation of the model relies on the mixing law used to distribute the density in space.
Therefore, we rst de ne a mixing law for the density:

r=(ry rp)H@)+r, (7.3)

whereH is a Heaviside function de ned using a level set functeoonThe mass conservation in

the domainWreads:

T oo
rru=o (7.4)

We de ne a mass transfer between the liquid and vapor phases:

%(MH(&I))+ N (ryH(a)u) = miNajd(a) (7.5)
%((1 H@)r)+ N (r(1 H(a)u = mNajd(a) (7.6)
wheremis the mass transfer rateg m 2 s 1).
Developing (7.5) and (7.6) leads to:
rvﬂ?(ta)+r\,H(a)N u+rw NH(a) = miNajd(a) (7.7)
r|ﬂ|_‘|ﬂ(ta)+r|(1 H@)N u ru RH@) = miNajd(a) (7.8)

By dividing (7.7) and (7.8) by their respective density and summing, we obtain the new mass
conservation equation:

1 1 o .
N u=m — — jNajd(a) (7.9)
v I
The velocity is not divergence free since a mass transfer occurs at the interface between the

vapor and the liquid.
Summing (7.7) and (7.8) and dividing iy, r) leads to:

H(a) N _r
it +u NH(a)—rI S

Considering the derivative w.r.t. time of the Heaviside function:

N u (7.10)

fH(a) _ TH(a) Ta _ fa
it ga gt 4@

and the derivative w.r.t. space:

NH(a) = d(a)Na

we obtain: q
a - ro.
d(a)ﬁ+ d(a)u Na = o rVN u (7.11)
Replacing\ u by (7.9):
Ta O | 1 1 - .
d(a)ﬁ+ d(a)u Na = > rVm o jNajd(a) (7.12)
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Extending in the whole domain and simplifying, it leads to:

fTa - o
—+ U Na = mjNa 7.13
Tt o minNa (7.13)
The level set equation now reads:
r N .
Ta, 2 Ra=0 (7.14)

— u M—=—
fit riry jNaj

Neglecting the heat generated by viscosity forces and capillary forces, the energy equation
reads:

T - . T
rcp 1]”—t+u NT N (kNT)= L+(cp c'p)(T Tsa) rnd(a)JNajr -
vl
The formulation accounts naturally for the thickness of the mixing law. It is a generic
formulation that requires the de nition of the mass transfer mte

(7.15)

7.2.2 Derivation of the mass transfer rate

The mass transfer rate is de ned using the heat released by a volume V of liquid that has
vaporized between the timeandt + Dt. We consider a domain composed of water and vapor
(see Figure 7.1). The position of the interface at the tinsegiven bys(t).

Figure 7.1: Volume that has vaporized betweandt + Dt

The heat released Q by a volume V of liquid that has vaporized during the elapsed time
betweert andt + Dt is:
Q=rVL (7.16)

wherelL is the enthalpy of vaporization (latent heat). The heat uxes are de ned on a surface
of areaA, respectively in the vapor and the liquid by= k/NT, andf; = KkNT;:

Z Dz
Q= fv ex+f; ( &)dAdt (7.17)
t A
Dividing by Dt and passing to the limit:

Dt
112

. s(t+ Dt) s(t) . ~ ~
DI:!rnorL o = EI):!moa t ( kyNT + kNT;) edt (7.18)
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We obtain the velocity of the interface, the so-called Stefan condition:

ds - -
ot =( kNT,+ kNT) & (7.19)

Eq. (7.19) requires the evaluation of the balance of uxes at the interface. This evaluation
is not straightforward when using an implicit de nition of the interface. We therefore propose
an approximation of this balance of uxes using a delta Dirac function. Approximating the
surface integral by mean of a delta Dirac function leads to:

rL

0 1 0 1
D 7 zh 7z
Q= @ d(a)(fy &+ ( &)dVAdt= @ d(a)( kNT+kNT) edVA dt
t V t Vv
(7.20)
Passing to the limit:
Z 1Z"DtOZ 1
_ s(t+Dt)  s(t) 1 - . A
lim rL o d(a)dV—DI:!mOE @ d(a)( kNT,+ KkNT) edVA dt
Vv t V
(7.21)

We obtain the velocity of the interface for an implicit interface, without any interpolation:

R . .
ds d(a)( kyNT,+ kNT)) edV

rL—-V

= R .
dt d(a)dVv (7.22)
Vv

7.3 Variational Multiscale method for phase change

Following the developments from previous sections, we generalize the Navier-Stokes equa-
tions, into:
Find the velocityu and the pressurg such that:

r(ftu+u Nu) N (2mdu))+ Np for+ f (7.23)
Nu-= f (7.24)

wherer , m fst, f and fc are the density, the viscosity, the surface tension force, additional
source term of the momentum equation and the source term of the continuity equation respec-
tively.

Recall that the surface tension is de ned by:

T°u.  Tu o
fst= gkdn gdbt _—+k— R2uM?

To simplify the notation, we usé, and f. as the source terms in (7.23)-(7.24), adding the
explicit terms of (7.25) intd,. Inserting the expression for the subscales, we nally obtain the
stabilized Finite Element problem. The new variational formulation reads:

Coarse scale

8 . N
3 (rTe(un+ @);vh)+(r (up+ @ N(un+ 0);vh)  (pn+ BN Vh)
+(2meun) : e(vn)) +( gdDtN(up+ 0) : Nvp) = (fmivn)  8vh 2 Viyo (7.26)

(N (un+0);an) = (fciom) 80h 2 Qn

(7.25)
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Fine scale

8 - ~
3 ("Te(un+ 09 +(r (Un+ 0) N(up+ 0);%)  (pn+ BN V)
+(2me0) : e(V)+( gaDtN(up+ 0) :N9) = (fm;¥) 872V (7.27)

(N (un+ 0;8) = (fe:d) 842 Q
By substituting the small scale variables into the coarse scale equations, and applying inte-

gration by parts, the system to solve becomes nally:

(rfeun; Vi) + (1 uf Nupve) (PN Vi) +( 2meup) @ e(vh)) +( gdDtNup : Nivy)

VW AR 00

8 tuRy,ruf Nvn & (teRN vy) = (fmivh) 8Vh 2 Vino
K2Th K2Th
(N up;op) KS’IT (tuRy;Nop) = (fe;an) 80h 2 Qn
h
(7.28)
whereR, andR; are the residuals de ned by:
Ri= fm rfeun rut Nup Npj (7.29)

RC: fC N Uh

7.4 Numerical test cases

In this section, two well known benchmark will be used to asses the validity of the approach
developed in this chapter. The results obtained with the proposed approach are then compared
with either analytical solutions or with results obtained by other approaches found in the liter-
ature. Some test cases cannot be handled using classical model in particular for high property
ratios and this will be the opportunity to demonstrate the bene t of adaptive VMS formulation.

7.4.1 Stefan problem

First, we consider the one-dimensional Stefan benchmark. It is a well known problem and
serves as a benchmark to assess the accuracy of phase change models [160, 163, 177]. Itis
de ned schematically in Figure 7.2. The domain is initially lled with water. The temperature
at the wall is set constant and higher to the saturation temperature. The water is at saturation
temperature. At > 0, a phase change occurs and induces a motion of the interface between
the vapor and the water. The convective term in the energy conservation equation is neglected
in both phases.

The position of the interface is given by:

P

)= 2¢" agt (7.30)

The temperature in the vapor at a given time given by:

Tsat  Twall X
T(xt) = Tyan+ f p— 7.31
(x;t) wall erf(c) er P ad (7.31)
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Figure 7.2: Initial setup for the classic Stefan problem.

whereay is the thermal diffusivity de ned by = k,=(r \cy) andsis the position of the inter-
face. If the temperature in the liquid is constant, we nd the following transcendental equation
describing the evolution of the interface:

T—sﬁ%c‘é = cerf(c)exp c? (7.32)

We consider the physical properties for the water and the vapor given in Table 7.1 and we
considerTy, Tsai= 10K. We solve the transcendental equation using a Newton algorithm to
nd the value ofc.

Figure 7.3 shows the evolution of the position of the interface for both the analytical and
the numerical solution having good agreement.

Table 7.1: Density, dynamic viscosity, speci ¢ heat and thermal conductivity for the vapor and
the water at atmospheric pressure

r [kg/m3] m[Pas] Cp [J/(kgK)] k[W/(m K)] Lsat[J/kg]
Vapor 0597 16 10° 2030 0.025
Water  958.4 B 10° 4216 0.679 26 10°

Figure 7.3: Evolution of the interface position for the Stefan problem
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Figure 7.4 shows that the use of a delta Dirac function to compute the mass transfer rate
results in a better convergence. This comparison was done by prescribing a maximum number
of iteration (3000) to reach a residual (10 using the GMRES method for the resolution of
the linear system.

Figure 7.4: Final residual norm for the level set solver.

7.4.2 2D Film boiling

This test case serves as a validation for the phase change model in several articles [157, 160,
178]. Indeed, when the temperature at the wall is much greater than the saturation temperature,
a persistent layer of vapor forms and remains between the wall and the water. This regime is
known as Im boiling. In the con guration depicted in Figure 7.5, a Rayleigh-Taylor instability
is triggered due to the low density uid below the high density uid. Furthermore, the phase
change will induce a growth of the Im, amplifying the instability.

For a Rayleigh Taylor instability, the most unstable Taylor wavelength is in 2D:

3 g 1=2

T rog 0 (7.33)

lo=2p
whereg is the surface tension.
The physical parameters taken from [160] are given in Table 7.2. For this set of parameters,
the most unstable wavelength is abbyt 0:078m. Figure 7.5 shows the initial pro le of the
interface, de ned by the following function:

y= 0:5+ 0:4cog2px= o) (7.34)

Two cases will be studied. For the rst case, the temperature at the wall is maintained
constant at a temperature of 5K above the saturation temperature and for the second, 10K.

To assess the accuracy of the computations, the authors in [157, 160, 178] used space-
averaged Nusselt number obtained from the numerical simulation and compare it to correlation
found in the literature. The local Nusselt number de ned as the dimensionless heat ux through
the wall is:

N, = lo IT

= — 7.35
Tw Tsat Ty y=0 ( )
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Figure 7.5: Setup for the 2D Im boiling

Regarding the correlation of the Nusselt number in the literature, we use the correlation of
Berenson [179] and Klimenko [180] given by:

Nug = 0:425GrPr=Ja)** (7.36)
and:
Nuk = 0:169%GrPr=Ja)*™ for Ja< 0:71 (7.37)

where the Grashof numb@r = r(r, r,)gl o=n¢ represents the ratio of the buoyancy force
over the viscous force, the Prandtl numPer= mcp=ky represents the ratio of the momentum
diffusivity over the thermal diffusivity and the Jakob numlder= c‘lg(TW Tsa) the ratio of
sensible heat over latent heat.

Table 7.2: Density, dynamic viscosity, speci ¢ heat and thermal conductivity for the vapor and
the water at atmospheric pressure

r [kg/m3] m[Pas] cp[J/(kgK)] k[W/(m K)] Lsat[J/kg]
Vapor 5.0 0.005 200 1.0
Water 200 0.1 400 40 fo

Figure 7.6 shows the evolution of the temperature eld and the interfad@lfer 10K. The
vapor Im grows to a mushroom shape due to the Rayleigh-Taylor instability. Since we per-
formed 2D computations, no break up occurs due to surface tension. Therefore the mushroom
cap rises along the channel followed by a long and thin lament. Notice that due to the width of
the channel, there is clearly an effect of the lateral con nement on the shape of the vapor mush-
room. Figure 7.7 shows the evolution of the mesh. The mesh is adapted using the anisotropic
mesh adaptation procedure presented in this paper, using only 25,000 elements. Therefore the
mesh is very ne at the vapor/water interface and at the bottom when the thermal gradient is
the highest. The mesh remains coarse far from the interface, where the thermal gradient is null
and the velocity eld is still 0.
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Figure 7.6: 2D Film boiling foDT = 10K. Temperature eld and interface location at t=0.01,
0.1,0.2,0.3,0.4,0.5,0.6,0.7, 1.0 and 1.5s. The interface is represented by the white line.

The evolution of the space-averaged Nusselt number is depicted in Figure 7.8. The compar-
ison with the correlation of Berenson and Klimenko shows a good agreement for both cases.
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Figure 7.7: 2D Film boiling foDT = 10K. Evolution of the mesh and the interface location at
t=0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1.0 and 1.5s. The interface is represented by the white
line.



CHAPTER 7. BOILING MULTIPHASE FLOWS: PHASE CHANGE MODEL 118

Figure 7.8: Evolution of the space-averaged Nusselt numb&Tar 5K (top) andDT = 10K
(bottom).
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7.5 Conclusion

We proposed in this chapter a new Eulerian framework for the numerical simulation of phase
change. A Variational Multiscale Finite Element formulation for the Navier-Stokes equation
taking into account the transfer of mass occurring during the phase change is presented. The
dynamics of the vapor phase is given by the surface tension, implemented in a semi-implicit
way to circumvent the usual severe capillary time step restriction. We have demonstrated the
ef ciency of this adaptive framework by performing validation test cases in 2 dimensions. More
challenging computations, including comparison with experimental data are performed in the
next chapter. We will show that the direct numerical simulation of industrial water quenching
using the approach developed in this chapter can be performed accurately.
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Résumé en francais

Le changement de phase dans le cas diphasique nécessite le développement d'un modéle per-
mettant de décrire I'échange de masse et d'énergie entre deux phases. Les équations de Navier-
Stokes prenant en compte de tels échanges sont dérivées dans ce chapitre. Ainsi, I'équation
de conservation de la masse, de I'énergie et de transport de la fonction level set sont com-
plétées par des termes dépendant d'un taux de transfert de masse. Cette nouvelle quantité est
déterminée a l'aide d'un modeéle quasi-statique dérivé du probleme de Stefan. La modi cation
des équations dans le cadre VMS est montrée et la validation de ce modele est faite pour des
problémes avec solution analytique ou des problémes avec corrélation expérimentale.
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8.1 Context

In the previous chapters of this thesis, all the components of the new numerical framework have
been introduced. We recall that one main objective of this work is to be able to simulate 3D
industrial processes taking into account the direct solid-liquid-vapor interactions.

However, in this thesis we did not explore the thermomechanical behavior and character-
istic of the solid part. Indeed, most of the metallic alloys experience phases transformation,
meaning that the microstructure of the material is inhomogeneous in the part due to the differ-
ence of cooling rate in the different area of a part. This leads to variation, sometimes large,
of the thermal and mechanical properties of the solid. These analyses are well covered by dif-
ferent research groups at CEMEF and in particular through the well-known software Forge.
But until recently, the quenching environment was simply replaced by experimentally deduced
transfer coef cients. This makes any simulation generally limited and suffers from systematic
re-validation when facing new materials, new geometries or new thermomechanical conditions.

In this chapter, we will highlight further this issue and will show how the new developments
in all the previous chapters make this novel Eulerian adaptive framework very ef cient to simu-
late 3D boiling and phase change inside quench water tanks. To do so, several test cases will be
presented that allow us to investigate easily different quenching parameters such as orientation,
geometry, positioning and to deal with different quenching processes.

First we will consider the quenching of a solid and comparison to unclassi ed experimental
data to validate the proposed numerical tools. It will enable to assess the accuracy and robust-
ness of the proposed approach to help us closing the bridge between experiment and numerical
simulation.

Then we will move on more challenging con gurations with different quenching parame-
ters. We increase the size of the part and consider different geometries. This will show the
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ability of the proposed innovative numerical framework to be a predictive tool for manufactur-
ers.

Finally we consider an extreme challenging case, the water jet cooling. It consists in pro-
jecting at high velocity a water jet to cool down a part. This process aims at avoiding the
formation of a vapor Im counting on high convective regime. To the best of the author's
knowledge, such 3D validations and simulations have never been performed.

8.2 Quenching of a solid and comparison to experimental
data

We will now consider the quenching of a solid into water. We consider a domain of size
0.60 0.60 0.40 n?, three-quarters full of water, in which a metallic sample, made of
Inconel 718 alloy, of dimension 0.0750.075 0.0015 n, is immersed (see Figure 8.1). The
temperature of the sampleTggig = 880 C and the temperature of the watefMiger= 25 C.
A thermocouple is placed at the core of the metallic sample. From a practical point of view,
due to the small thickness of the part, the temperature at the core re ects the behavior of the
temperature eld at the interface.

A free slip boundary condition is prescribed on all the walls. The motion of the vapor Im
is due to the buoyancy force and the surface tension force. The simulations are performed using
the proposed adaptive meshing technique with 100,000 tetrahedra and the@@@rahedra.
The time step is set tbt = 0:00.

All the physical parameters related to each phase are presented in Table 8.1.

Figure 8.1: Set-up for the 3D industrial quenching

Table 8.1: Initial physical parameters for the 3D industrial quenching

r [kg/m’] m[Pas] Cp [J(kgK)] k[W/(m K)] Lsat[J/kg]
Vapor 1.0 12 10° 2010 0.025 26 10°
Water 1000 0 10°3 4185 0.6
Solid 8000 435 11.4
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The evolution of the liquid-vapor phase is depicted in Figure 8.2 and shows again the ability
of the proposed framework with adaptive meshing to deal with such challenging test case.

Figure 8.2: Industrial quenching. Results at t=2, 3.70 et 6.25 s. Perspective view (left), front
view (right). The zero isovalue of the level set is represented in blue.

Figure 8.3 represents a clip of the quenching tank. Water is depicted in blue and the solid
in red. A slice enables to visualize the adaptive mesh over time. At the top left corner, the
picture shows the initial mesh, mostly concentrated around the part and the free surface. As the
simulation starts and bubbles form, the mesh is adapted automatically according to the level
set interface but also the velocity and the temperature. Under the constraint of a xed number
of elements, one can notice that the mesh is coarsened automatically at the bottom of the tank,
where the variation of the solution is small.

Finally, Figure 8.4 shows a good agreement for the temperature evolution between the ex-
perimental data and the numerical simulation without the need to adjust the physical para-
maters. Moreover, the strong coupling between the solid, the water and the vapor enables to
perform such simulation without the use of a heat transfer coef cient at the solid boundaries.
The anisotropic mesh adaptation enables to capture the high thermal gradient as well as the
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Figure 8.3: Industrial quenching: Results at different time. The solid is represented in red. A
clip of the quenching tank, with visible adapted mesh.

complexity of the ow.

Figure 8.4: Evolution of the temperature at the core of the sample.
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8.3 Numerical quenching water tank

Several studies show that heat transfer at the surface of quenched part is dependent on differ-
ent parameters: orientation, position, shape and size, agitation rate, uid viscosity, and other
variables. In this test case, we will analyze at least the rst three parameters. The objective
is to show that the physical phenomena taking place are complex and that the experimental
investigation remains generally limited. Indeed, the latter suffers from systematic revalidation
of heat transfer coef cients when dealing with each parameter. Numerical simulation provides
some insight of the effects of each quenching parameter.

To achieve this purpose, we consider a water tank of dimerisioh L (see Figure 8.5),
lled to three quarters. Two geometries are proposed; a hot metallic cylinder of length 0.5m
and diameter 0.1m with L=1m and a hot hollow cylinder (see Figure 8.9) of inner radius 3cm
and outer radius of 6cm with L=0.40m.

Figure 8.5: Set-up for the 3D Im boiling.

For the rst geometry, three different con gurations are considered. The cylinder is im-
mersed horizontally at mid-height (see Figure 8.6), at a quarter of the height of the tank (see
Figure 8.7) or vertically (see Figure 8.8).

Figure 8.6 shows a persistent vapor Im surrounding the cylinder. As expected, the position
of the cylinder has an important effect on the Im evolution and thus on the cooling velocity
of the cylinder. Furthermore, such distance from the cylinder to the free surface has a direct
impact on the overall ow inside the quenching bath. The larger the distance, the larger the
velocity of the vapor phase breaking up at the surface.

Whereas, when the cylinder is immersed vertically inside the water tank, the shape of the
Im is totally different. Indeed, we can notice in Figure 8.8 a periodic release of the Im all
along the surface. Thus, the distribution of the ow is more concentrated in the upper part
of the cylinder. This is due to the vaporization of water nearby but also due to the rise of
vapor from the lower part of the cylinder. Therefore this induces lower cooling velocity when
compared to the previous case. Information of this kind usually requires a thorough knowledge
of hydrodynamic theory. It is worth mentioning that most of quenching tanks do not enable to
get an inside view of the process, except from the free surface.
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Figure 8.6: Cylinder at mid-height. Results at t=0.1, 0.5, 1 and 2 s. Perspective view (left),
front view (right).



CHAPTER 8. INDUSTRIAL APPLICATIONS 127

Figure 8.7: Cylinder at a quarter of the height. Results at t=0.1, 0.5, 1 and 2 s. Perspective view
(left), front view (right).
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Figure 8.8: Vertical cylinder. Results at t=0.1, 0.5, 1 and 2 s. Perspective view (left), front view
(right).
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Figure 8.9: Hollow cylinder : Full domain with the ring (in red) and the gas-liquid interface in
blue(left). Zoom on the ring (right)

Let us now consider the hollow cylinder. Figure 8.10 shows this time that both the size
of the hallow cylinder and its geometrical features seem to affect completely the ow. Sharp
edges of the sample encourage the formation of bubbles instead of a vapor Im. The vapor Im
is well guided by the top surface with additional concentration along the extremity. This test
case highlights the suitability of the numerical framework developed in this thesis to predict
the behavior of the vapor Im during quenching. Manufacturers can already investigate the
relevance of their operating conditions in terms of position of the part, its orientation as well as
to handle easily optimal combination of these parameters.
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Figure 8.10: Hollow cylinder. Results att=0.13, 1.09, 5.44 and 10.75 s. Perspective view (left),
front view (right).
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8.4 Extension to water jet cooling

We propose in this section to simulate the water jet cooling of a static sheet. This represents a
different setup for the process since the part is not immersed in a quenching tank. However it
consists in a drastic test to investigate the effect of convection (agitation in the case of quench-
ing tanks) on the cooling ef ciency. Indeed a further re nement should take into account the
collapsing of the vapor Im due to convection or pressure forces.

Fig. 8.11 shows the initial setup for the water jet cooling. Water is injected through a
rounded nozzle and impinges the surface of the sheet. In this challenging process inhomoge-
neous cooling could lead to severe distortion of the metal and, as a consequence, the sheet is
discarded.

The interest in the simulation is to improve the homogeneity of the cooling by optimizing
the jet velocity, the jet orientation and the geometry of the nozzle.

Figure 8.11: Set-up for the 3D water jet cooling

The purpose is to investigate the robustness of the proposed method when simulating a very
challenging case such as 3D water jet quenching. A nickel sheet of 3mm thickness and 50mm
length is heated at a temperature of 451Water is injected through a nozzle of 6mm diameter.
The exit velocity of the jet from the nozzle is 6.1 m/s. The distance between the nozzle and the
sheet is 60mm. The temperature at the bottom surface is obtained by infrared camera beneath
the sample.

In the computations, we consider 3 phases: solid, water and gas. First, we perform a 2D
simulation using 50,000 elements. The wall are adiabatic in this simulation. The evolution of
the temperature and the evolution of the adaptive mesh are shown in Fig. 8.12.

We also perform a 3D simulation using 700,000 tetrahedra, where the sheet is immersed
in a domain of dimension 9090 93mn? as it is depicted in Fig. 8.13. First results of this
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simulation are shown in Fig. 8.14 and Fig. 8.15. Despite the low number of elements, interfaces
are well described and the mesh is ne enough at the interface to expect a good accuracy in the
heat and mass transfer during the simulation.

Enriching this simulation with a vapor Im collapse model should provide a complete tool
for water jet cooling simulations.
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Figure 8.12: 2D Water jet cooling. Results from top to bottom at t=1ms, 8ms, 13ms, 22ms,
86ms and 250ms. On the left is depicted the mesh evolution. The mesh of the gas phase is not
displayed. On the right, evolution of the temperature.
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Figure 8.13: 3D Water jet cooling. Results at t=0ms.

Figure 8.14: 3D Water jet cooling. Results at t=6ms.
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Figure 8.15: 3D Water jet cooling. Results at t=6ms. View of the adapted mesh.
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8.5 Conclusion

In this chapter, we presented the simulation of quenching industrial processes using the numer-
ical framework developed in this thesis. The cases simulated here represent very challenging
cases due to the complexity of the coupled phenomena involved, the large span of space and
time scales to consider and due to the extreme operating conditions such as high thermal gra-
dients, high ratio of the physical properties or high convection.

The results obtained from the rst simulation demonstrate that we provide a useful tool to
predict the evolution of the temperature in immersed quenching with a very good agreement.
Recall that the number of non physical parameters to achieve the simulation has been reduced
to the minimum. The second test case shows the further use of this numerical framework as
a predictive tool for manufacturers to investigate and improve their quenching processes. We
increased the complexity of the test cases by considering water jet cooling. This test case is
used to assess the potential of the proposed method.



CHAPTER 8. INDUSTRIAL APPLICATIONS 137

Résumé en francais

L'ensemble des outils développés dans ce manuscript sont utilisés pour la simulation numérique
directe des procédés de trempe. Dans un premier temps, la simulation de la trempe d'un échan-
tillon provenant d'un partenaire industriel est effectuée. L'évolution de la température au coeur
de cet échantillon est trés proche de celle relevée expérimentalement. Cela prouve la pertinence
et la capacité du nouveau cadre numérique a reproduire delement les résultats d'un procédé
aussi exigeant que la trempe. Dans un deuxieme temps, I'outil numérique est utilisé tel un outil
prospectif pour I'étude de différents scénarios de trempe. Ainsi, en considérant |'orientation et
la position d'un cylindre dans un bain de trempe, la simulation numérique se révele étre d'une
aide précieuse dans la description de la dynamique du Im de vapeur entourant la piece. Cela
permet d'utiliser la simulation numérique pour optimiser le procédé de trempe. Finalement,
une trempe par jet d'eau impactant est étudiée. L'ensemble des outils développés permettent
une simulation robuste de ce procédé. Cependant un modéle de fermeture du Im de vapeur
doit étre considéré pour parvenir a simuler ce procédé. Les résultats montrés dans ce chapitre
représentent les premiers résultats de simulation numérique directe de trempe a |'échelle indus-
trielle.






Chapter 9

Conclusion & Perspectives

This thesis was devoted to the development of an innovative numerical framework to accu-
rately and robustly simulate an industrial process as demanding as quenching. In this work, we
balanced physical modeling, numerical methods and industrial applications.

The physics involved in the process are numerous and complex. We have investigated
some of these physical mechanisms, ranging from boiling to the expansion of a vapor Im.
We decomposed boiling into simpler problems in order to quantify its characteristic scales and
characteristic times. It was demonstrated that to be able to model correctly boiling, several
mechanisms should be included in our numerical framework. According to this investigation,
we decided to develop new numerical methods in the context of the Immersed Volume Method
and to extend the software THOST, dedicated rstly for the heating in furnaces, to the cooling
in quenching water tank.

This work took advantage of the previous developments in the parallel Finite Element li-
brary CimlibCFD developed by the Computing & Fluids group at CEMEF, a research center of
MINES ParisTech-PSL Research University. The Immersed Volume Method was used in this
work for its ability to take into account all the features of the process in a uni ed way. This
method is a monolithic approach, meaning that only a single set of equation is solved in a single
domain, all the phases being immersed by mean of level set functions. This enables to consider
conjugate heat transfer without the need of heat transfer coef cients. Thermal coupling are
therefore handled naturally. Furthermore, the use of an anisotropic mesh adaptation method
provides a better description of the interfaces. Coupled with an a posteriori error estimator,
this method enables to increase the accuracy of the computation by following all the physical
features of the ow. The numerical framework can be extended and readily devoted to other
research eld such as rheology, micro uidic, etc (see [Art4] and [Art9]).

We propose here a summary of the argumentation supported during the thesis. In Chapter
1, we have introduced the quenching process and the numerous dif culties arising from the
simulation of this process. The common heat transfer computations considering only the solid
with heat transfer coef cients (obtained from inverse analysis) fail to be predictive. Therefore
we have proposed a direct numerical simulation of the process, in the context of the Immersed
Volume method, considering the vapor-liquid-solid couplings.

We have discussed in Chapter 2 the complexity of boiling in quenching tanks. Several
physical mechanisms are involved and make the understanding of this phenomenon dif cult
to achieve. We have proposed to decompose the process into simpler problems and compare
their in uence on the dynamics of the vapor Im. This gave us an insight into the relevant
mechanisms to model and simulate in the following chapters. Some conclusions have been
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drawn about the requirements for the new numerical framework.

In Chapter 3, we have presented the Immersed Volume Method within which the current
work has been done. We have introduced all the component of this Eulerian framework en-
abling to consider complex geometries by mean of level set function, to re ne the mesh ac-
cording to the interface and the features of the ows, and to deal naturally and accurately with
conjugate heat transfer without the need of heat transfer coef cients.

We have described in Chapter 4 the stabilized Finite Element method (SFEM) dedicated to
Computational Fluid Dynamics. Standard Galerkin mixed Finite Element suffer from instabil-
ities when using equal order interpolation and exhibit oscillation of the solution in convection
dominated regime. Several stabilization methods such as SUPG, VMS or the recent entropy
viscosity have been introduced. The capability of SFEM to circumvent numerical instabilities
has been demonstrated.

In Chapter 5, we have shown that the usual implementation of surface tension suffers from a
severe time restriction that is prohibitive for large computations. Therefore we have proposed a
semi-implicit time discretization of surface tension and we have implemented it in the context
of Variational Multiscale method, to alleviate this computational burden and to enable large
simulation involving surface tension.

The issue of the compressibility of a gaseous phase has been addressed in Chapter 6. Con-
sidering bubbly ows only using incompressible approaches does not allow the change of vol-
ume in the gas phase. Whereas using a compressible approach and an equation of state that
mimics the incompressibility in the liquid is not mass conservative. Therefore we have pro-
posed a new adaptive Variational Multiscale formulation for the Navier-Stokes equations taking
into account a compressible phase and an incompressible one in a natural way.

In Chapter 7, we have proposed a phase change model to simulate the heat and mass transfer
occurring during boiling. We have derived the Navier-Stokes equations taking into account heat
and mass transfer in the context of regularized interface. We have demonstrated the accuracy
of the proposed model using physical analytical solution.

In Chapter 8, we have validated against experimental data the numerical tools developed
in this thesis. First, we have considered an unclassi ed experiment to assess the accuracy of
the proposed approach. We have found an excellent agreement between the numerical and
experimental temperature elds. Then, we have increased the complexity of the test cases by
considering larger parts and more complex geometries. The robustness of the new numerical
framework has been demonstrated.

It is worth mentioning that all the numerical methods developed in this work will be imple-
mented by the software company Sciences Computers Consultants into the software THOST
and will be made available to the industrial in the upcoming version of the software.

Apart from using and adapting the Immersed Volume Method, the edge based anisotropic
mesh adaptation technique and the CFD tools, | highlight here the main direct contributions of
this thesis:

A new physical modeling for phase change (Chapters 2 & 7, [Art6])

We proposed to identify the relevant mechanisms involved in boiling. We quanti ed their
relevance and their effect on the dynamics of the vapor Im surrounding the hot part in quench-
ing tanks. We obtained characteristic times and scales enabling us to draw conclusions on the
physical mechanisms to simulate. Therefore, we considered using a balance of heat uxes at
the water/vapor interface to quantify the heat and mass transfer during boiling. The Navier-
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Stokes equations formulation, dedicated to this phase change model, was derived. The model
was validated using analytical solution and test cases from the literature.

A new Navier-Stokes solver with implicit surface tension (Chapter 5, [Art1],[Art8])

We proposed an adaptive variational multiscale method for two- uid ows with surface
tension. A level set function is used to provide a precise position of the interfaces. The imple-
mentation of the surface tension in the context of the Continuum Surface Force is proposed to
circumvent the capillary time step restriction. The obtained system is then solved using a new
derived Variational Multiscale stabilized nite element method designed to handle the abrupt
changes at the interface and large density and viscosity ratios. Combined with an a posteriori
error estimator, we show that anisotropic mesh adaptation provides highly stretched elements
at the interfaces and thus yield an accurate modeling framework for two-phase incompressible
isothermal ows. Stable and accurate results are obtained for all two- and three-dimensional
numerical examples. To the best of our knowledge, these are the rst simulation results for rep-
resentative time-dependent three-dimensional two- uid ow problems using an implicit treat-
ment of the surface tension and a dynamic unstructured anisotropic mesh adaptation.

A uni ed Navier-Stokes solver for compressible-incompressible two phase ows
(Chapter 6 and [Art2])

We presented a new stabilized Finite Element method to solve the two phase compressible-
incompressible uid ow problems using the level set method. The coupling between the pres-
sure and the ow velocity is ensured by introducing mass conservation terms in the momentum
equation. Therefore, the same set of primitive unknowns and equations is described for both
phases. The uni ed system is solved using a new derived Variational MultiScale formulation. It
was tested and validated on several time-dependent liquid-gas interface problems. The numer-
ical results show good stability and accuracy properties, allowing also to deal with important
compressibility effect, high density ratio, and extremely stretched anisotropic elements.

3D boiling using a level set framework (Chapters 7 & 8, [Art6], [Art7]):

We proposed a novel numerical framework, for simulating the cooling of an immersed
3D solid with boiling and evaporation at the liquid-gas interfaces. Standard numerical methods
may not able to deal with these heat transfer interactions simultaneously: gas-liquid-solid phase
changes, vapor formations and dynamics, and 3D quenching of a heated solid. Therefore, we
proposed a full adaptive Eulerian framework to achieve this challenging task. A Variational
Multiscale solver for the Navier-Stokes equations, which can deal with turbulent multiphase
ows, is extended using the implicit treatment of the surface tension. The use of an a poste-
riori error estimator leading to highly stretched anisotropic elements at the interface enables
to drastically reduce the interface thickness. Therefore the phase change is performed without
the use of conforming mesh. This avoids the need of interface reconstruction or interpolation
procedure. Finally, a series of 2D and 3D problems are solved to validate the ef ciency and
accuracy of the proposed framework. The cooling of an immersed solid is also presented and
shows good agreement with the experimental results.

Several perspectives have be drawn from this work. These outlooks are not only considering
numerical aspects but also physical aspects to obtain a better understanding of the phenomena
involved in quenching:
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Conservative interpolation: The anisotropic mesh adaptation procedure requires an in-
terpolation from mesh to mesh that can lead to accumulation of error. To reduce this er-
ror inherent to interpolation, a conservative interpolation technique ensuring consistency,
continuity and accuracy of the solution is thus required. A PhD thesis by Chahrazade
Bahbah has already started on this topic in 2016 [181].

Moving meshes From the furnaces to the quenching tank, heat transfer between the
solid and its surrounding environment take place and make dif cult to obtain realistic
initial condition. A promising way of circumventing this issue is to simulate at once the
whole process using moving meshes for the solid parts in order to alleviate the compu-
tational cost of remeshing. However, the simulation of physical phenomena involving
moving bodies undergoing large displacements still represents a real challenge. Wafa
Daldoul, a PhD student is currently addressing these issues [182].

Experimental investigations Further experimental investigations are necessary to im-
prove our immersed framework, to validate it and to generate experimental database.
Indeed the development of physically based robust numerical models for simulating
guenching environments requires to get a better understanding of the involved physical
phenomena such as contact angle, wetting, nucleation and many others.

Thermomechanical behavior The prediction of residual stresses and thermo-elasto-
plastic stresses developed during heat treatment and the investigation of the effect of
phase transformation and temperature dependence of material properties.

Radiation: In Im boiling, since a permanent vapor Im surrounds the solid and due to
the poor thermal conductivity, it is obvious that radiation plays a major role. Radiation
models in liquid are not common in the literature. A new PhD student Carlos Mensah
has started in 2017 to work on radiative heat transfer [183].

Finally, a new setup of experimental investigation is sought to have new physical insights.
Indeed, comparison between experiment and numerical simulation is not straightforward in
guenching processes. Indeed, quenching processes suffer from a lack of direct observation.
When a part is immersed in quenching tank, water boils, bubbles rise to the free surface and
therefore visualization of the phenomena occurring is not possible. Therefore, the vapor Im
dynamics in quenching is not well known. Another issue inherent to quenching is the carriage
of the hot part from the furnaces to the quenching tank. At this occasion, thermal exchanges
with the surrounding environment take place. Radiation through the air and thermal conduction
by the carrying tools prevent the prediction of the temperature eld shortly before the immer-
sion in the tank. As a consequence, a thorough comparison between numerical simulation and
experiment is not possible unless the carriage time is short enough to consider a homogeneous
temperature eld.

To overcome these obstacles we designed the new experimental device shown in Figure
9.1 and Figure 9.2. The working principle is the following. A part is heated inside a tank full
of water. Thermocouples measure the temperature eld in the part. When a steady state is
reached, heat supplier is shut down, enabling the cooling of the part. We perform the corre-
sponding simulation of the heating and cooling phases, thus enabling us to obtain a realistic
initial temperature eld for the cooling phase and to assess the accuracy of the numerical sim-
ulation. Furthermore the visualization of the formation of the vapor Im and its dynamics is
straightforward since the part is heated at the bottom of the transparent tank. Quantities such
as vapor Im thickness and vapor formed during the process can be measured.
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Figure 9.1: New in-situ multi-task quenching device

Figure 9.2: Zoom on the heater (left) and assembly heater/solid part (right). Different sizes and
geometries of the part can easily be considered.
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Résumé en francais

Dans ce manuscrit, la construction d'un cadre numérigue permettant une simulation numérique
robuste et précise des procédés de trempe a été décrite. Tout d'abord, les différents mécanismes
présents dans le procédé de trempe ont été eétudiés. Des échelles et des temps caractéristiques
ont été donnés permettant de connaitre I'in uence de chacun de ces mécanismes sur I'évolution
de la phase vapeur. Cette étude a permis de dégager les principaux axes de développement
numerique.

Les outils développés vont intégrer un cadre numérique existant utilisant la méthode des
volumes immergées. Ce paradigme allie la méthode level set pour la description des inter-
faces, des lois de mélange pour distribuer en espace les propriétés physiques respectives et
une méthode d'adaptation de maillage anisotrope pour une meilleure résolution des équations
dans le domaine. Ainsi, les transferts thermiques aux interfaces s'operent naturellement sans
utilisation de coef cient de transfert thermique.

Les équations de la mécanique sont résolues en utilisant une méthode d'Eléments Finis sta-
bilisés permettant de simuler des écoulements turbulents et de traiter les régimes a convection
et a diffusion dominantes. Les différents solveurs et notamment le solveur concernant les équa-
tions de conservation de la masse et de mouvement sont modi €s pour prendre en compte des
physiques additionnelles.

Une méthode implicite de tension de surface permettant de s'affranchir de la restriction
du pas de temps capillaire a été utilisée et implémentée. L'utilisation de cette méthode avec
I'adaptation de maillage anisotrope résulte en un puissant outil, robuste, précis et peu colteux
pour la simulation des écoulements multiphasiques avec tension de surface.

Une formulation uni ée des équations de Navier-Stokes prenant en compte une phase com-
pressible et une phase incompressible a été développée. Elle permet de considérer la phase
vapeur comme une phase compressible tout en considérant I'eau comme incompressible. Cela
permet de décrire plus précisément la dynamique du Im de vapeur lorsqu'il est soumis a une
forte agitation dans le bain de trempe.

La modélisation du changement de phase nécessite une modi cation de I'ensemble des
éguations. Des termes additionnels quanti ant I'échange de masse et d'énergie a travers l'interface
vapeur/eau apparaissent et doivent étre intégrés dans la résolution de ces équations. Le taux de
transfert de masse est dérivé a l'aide d'un modele quasi-statique. La validation de ce dernier est
effectuée en utilisant aussi bien des problémes analytiques que des corrélations expérimentales
sur les gradients thermiques.

Finalement, I'ensemble des outils de ce nouveau cadre numérique est utilisé pour la sim-
ulation numérique directe des procédés de trempe. La comparaison avec des résultats expéri-
mentaux montre d'ores et déja la validité, la robustesse et la précision de I'approche proposée.
Les outils proposés peuvent ainsi étre utilisés pour optimiser le procédé en étudiant différentes
orientations, positions et différentes géométries.

Pour aller plus loin dans la compréhension du procédé de trempe, un nouveau banc expéri-
mental a été développé durant cette thése. Ce banc permettra de suivre la montée en tempéra-
ture d'un échantillon jusqu'a un état stationnaire et le refroidissement de cet échantillon dans un
contexte de trempe par immersion. La phase d'immersion, présente dans les procédés de trempe
et dif cile a contréler, est ainsi supprimée. Le but recherché est d'obtenir un historique complet
du champ de température dans la piece, pouvant étre reproduit par la simulation numérique. De
plus, I'observation directe du bain par l'intermédiaire de caméras rapides permettra de calculer
les épaisseurs du Im de vapeur a différents instants, avec ou sans agitation. Cela permettra
ainsi de valider le modéle de changement de phase dans un environnement controlé.
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