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1.1 Introduction to quenching
Quenching processes of metals are widely adopted procedures in the industry, in particular
automotive, nuclear and aerospace industries, since they have direct impacts on changing me-
chanical properties, controlling microstructure and releasing residual stresses of critical parts.
Safety being the highest priority in these industries, the elaboration of a part must be compliant
with the highest standards.

Quenching is a process that belongs to the family of heat treatments. Heat treatments aim
at giving a certain microstructure to the metal to obtain desired mechanical properties. A part
is heated in a furnace to allow the diffusion of specific atoms (e.g. carbon atoms). To prevent
segregation of theses atoms during the cooling phase and therefore inhomogeneity of the mi-
crostructure, the cooling must be sudden. As a consequence, the control of the cooling rate is
of the utmost importance in the quenching.

Quenching is generally carried out by immersing the part in a medium that will extract the
heat contained therein (see Fig. 1.1). The medium may be a liquid (water, oil, polymer,...) or
a gas (air, nitrogen, helium, argon,...). An inhomogeneous cooling of the part leads to uncon-
trolled distortion and cracks. In the case of complex geometries, the control of the cooling rate
is even more difficult to achieve. During quenching, heat transfers are performed through a
solid/fluid interface.

In the case of a liquid quenching medium (known as the quenchant), a vapor film surrounds
the part because of the high thermal gradient at the interface, insulating the part from cooling
(see 1st picture in Fig. 1.2). This phenomenon, known as calefaction, can last several hours in
the case of massive parts. The main heat transfer mechanisms during calefaction are radiation
and conduction through the vapor. The cooling rate is therefore very low and this phase needs
to be shortened in order to improve the efficiency of the process. When the surface temperature
of the metal is lower than a critical temperature, the liquid comes into contact with the surface
and the liquid boils from the surface; this is nucleate boiling. The heat transfer during this

1
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phase is the most efficient of the whole process and the maximum cooling rate is reached. At
the end of the process, when the surface temperature of the metal is lower than the temperature
of vaporization of the quenchant, the boiling ceases and the cooling is achieved by convection
(see last picture in Fig. 1.2).

Figure 1.1: Quenching of industrial parts in a liquid medium.
Pictures taken from: a) thermalhire.com, b) westernindiaforgings.com, c)d) conmecheng.com,
e) heattreatmentsservices.com, f) heattreatmart.com, g) Tata, h) Tenaxol.

The cooling rate of the part depends on several parameters: thermal properties of the metal
and their evolution w.r.t. temperature, geometry of the part, thermal and physical properties
of the quenching medium and their evolution w.r.t. temperature, operating conditions (volume
and agitation of the quenching medium, orientation of the part, surface state of the part,...)[1].
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Figure 1.2: Interactions and complexity of the involved physics at different time and space scale
during the successive stages of immersed quenching. (credit : www.wizcol.com & Infinity
ANR Chair)

However, manufacturers only have few means to control the cooling rate while all the afore-
mentioned parameters have to be taken into account. The efficiency of the process relies on the
ability of the quenching medium to achieve maximum cooling of the part without heating up.
For instance, using a large quenching tank with constant renewal of the quenchant avoids ex-
cessive heating of the quenchant. To take another example, an efficient quenching requires that
no vapor is trapped in a cavity due to an unfavorable orientation of the part. This can be avoided
if the part is oriented in the right way, with possibility for a stirred quenching medium to be in
contact with the whole surface.

1.2 Motivation
Today there is a strong demand from many industrial companies to control this cooling process
taking into account optimal combinations of quench parameters with their complexity in order
to obtain the desired metallurgical properties such as hardness and yield strength. This demand
is accented by the severe requirements in shorter deadlines to design new materials and high
quality product. Indeed, the mastering of the cooling rates respecting the metallurgical route
with a good homogeneity and reliability is essential to achieve the required microstructure and
the mechanical performance.

A full experimental optimization of this process is not a viable strategy due to the cost of
the processes involved (see the size of the ingot in Fig. 1.3). A physical modeling of the system
and a numerical simulation is then the alternative since Computational Fluid Dynamics (CFD)
offers a powerful tool due to the increasing performance of computational resources. However,
a clear knowledge of the physical phenomena occurring during this process is required. The
heat transfer of a metallic part under extreme conditions such as quenching still represents a
challenging issue in industrial processes and will be tackled in this thesis.

Numerical simulation is a quite standard tool in the framework of metallurgical industry for
forming processes but at this time no software is predictable enough due to the complexity of
the boiling multiphase flows during immersed or jet quenching. A precise numerical modeling
that offers detailed understanding of the complex behavior of fluid flow and its impact on part
cooling is then a subject of major importance. Indeed, it allows first to reduce the time and
cost of developing new materials (by reducing time experimentation), and therefore to contin-
ually develop safe and reliable products that meet the customer specifications and second, to
improve the designing of quenching systems, limiting production costs and decreasing energy
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Figure 1.3: Ingot - Areva NP

consumption.
Despite the evident industrial interest for modeling precisely quenching process during al-

loy heat treatment, there is no global study neither global answer addressing this problem in
an industrial context. In order to predict precisely the liquid-to-vapor phase transition during
boiling as well as to study the optimal combinations of quench parameters to reduce residual
stresses in solid ingots, an innovative coupled numerical framework needs to be designed and
implemented.

Modeling the liquid-to-vapor phase change, predicting different boiling modes with the
transition between them and modeling the fluid-solid-heat coupling with solid phase trans-
formation are mainly aimed. The main representative quenching environments that will be
considered is immersed quenching. Moreover a large part of the proposed work will be also
dedicated to analytic and experimental investigations.

A variety of numerical codes for quenching processes have been developed with variable
levels of success since the late 1980s [2]. The work by Garwood et al. [3] is one of the first
attempts to characterize a quench tank using computational fluid dynamics. Almost 20 years
later, an agitated quench tank was analyzed during the heat treatment of an aluminum cylinder
[4].

Although computational fluid dynamics are being used increasingly in quenching tank de-
sign, there is still considerable imprecision due to assumptions that must be made in particular
the use of simple geometries and approximated quenching environment. Under the pressure
of industrial needs and taking advantage of the rapid increase of affordable computer perfor-
mance, many developments were tested in laboratories and introduced in actual heat treatment
commercial codes. Today there is a strong demand from many industrial companies to intro-
duce more realistic physical behavior and also to predict precisely the liquid-to-vapor phase
transition during boiling as well as the fluid-solid-heat coupling with solid phase transforma-
tions which are both interrelated and of major importance concerning the final metallurgical
properties.

A precise numerical modeling that offers detailed understanding of the complex behavior
of fluid flow and its impact on part cooling is then a subject of major importance. Indeed, it
allows first to reduce the time and cost of developing new materials, and therefore to contin-
ually develop safe and reliable products that meet the customer specifications and second, to
improve the design of quench systems. Detailed cooling rates can then be used to predict part
metallurgical properties.

The classical well known methods for thermal treatment of a solid generally refer to the
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use of experimentally deduced heat transfer coefficients. These latter replace the quenching
environment. This approach is obviously simple but limited by any necessity to develop either
new materials or new quench devices. On the other hand, the quenching fluid environment
is classically modeled using a multiphase framework that consists on the resolution of a fluid
motion with an interface tracking, which separates liquid from vapor, combined with additional
film and boiling heat transfer coefficients. This framework is quite convenient for coupling
thermal, mechanical with empirical physical computations, but it suffers severe limitations
and needs generally a large amount of experiments to identify precisely, according to a new
geometry, agitation rate, fluid viscosity, tank size, and other variables, the transfer coefficients
describing different boiling modes and the transition between them.

Finally a coupled approach that models both the fluid-solid interactions is then potentially
much more accurate. But due to the differences between existing numerical methods and to the
computational cost related to the strategy of coupling them, such approach seems today limited.

Indeed, providing advanced metallurgical solutions is progressively required in the most
demanding industries especially aerospace, automotive or energy generation. This covers all
the range of production for high performance steels, titanium alloys, aluminum or next gener-
ation nickel-based superalloys, from elaboration to machining. For all these materials, many
mechanical and microstructural properties are required. These characteristics are strongly de-
pendent on the thermal history during all the manufacturing process. Consequently, cooling
rates or temperature history have to be predicted at any location of the parts, during heat treat-
ments.

Moreover, increasingly stringent demands by customers, concerning product quality and
consistency and the need to continually process new grades of steel, require that steel producers
develop improved control of process routes and quenching systems.

Direct economic and societal benefits are expected for the different industries, in particular
automotive, nuclear and aerospace. The improvement of the quenching process must enable
them to continuously develop high quality products that meet the increasingly stringent de-
mands by customers while minimizing residual stresses, controlling microstructure, improving
the thermo-mechanical and metallurgical behavior and finally optimizing the energy efficiency.
It allows the industrials to make considerable savings (>30%) not only in energy but also in
consumption of waste metal, quenching liquids and services and CO2 emission.

This work was done within the consortium THOST (THermal Optimization SysTem), which
is supported by 6 industrial partners: Areva NP, Aubert & Duval, Faurecia, Industeel CRMC
(Arcelor Mittal), Lisi Aerospace and Safran. All the numerical developments will serve to ex-
tend the software THOST towards industrial quenching. Indeed, the scientific editor Science
Computer and Consultants (SCC), working in close relation with the CFL research group, will
use these developments and insert them in the upcoming version of THOST and will distribute
it to the partners. This allows an outstanding dissemination for the results of the thesis. This
software is supported today by 8 industrial partners, regroups almost 20 industrial users and
will be completed by a newly obtained ANR (French National Research Agency) industrial
chair regrouping a consortium of 12 industrials.

The success of this project will be instrumental in developing innovative framework that
has the ability to design advanced engineering systems using multiphase CFD with boiling.
Note also that these developments will serve also in the in-house C++ library Cimlib-CFD,
developed by the CFL research group, bringing two-phase flow applications in other areas of
engineering: microfluidic, renewable energy, medicine, biology and more.
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1.3 State of the art

Several studies in the literature, most of them are experimental investigations under simplified
conditions, shows that quenching severity is dependent on different parameters: agitation rate,
size of the tank, fluid viscosity, type and placement of agitators, and other variables [5, 6, 7]. It
is know that agitation clearly affects the hardness and depth of hardening during the quenching
because of the mechanical rupture of the relatively unstable film boiling cooling process that
typically occurs in vaporizable quenchants such as oil, water, and aqueous polymers [5]. How-
ever, other variables such as fluid viscosity and vapor pressure of the fluid are clearly important
as well. For instance, it has been reported in [6] that the ability to through-harden given steel
in a conventional quench oil increased with increasing agitation. Authors in [7, 8, 9, 10] also
showed that increasing agitation increased cooling rates and the through-hardening ability of
both oil and water quenchants [5, 11, 12]. They showed that agitation of a quenching oil was
necessary to destabilize film boiling and nucleate boiling processes if uniform heat transfer
throughout the quenching operation was to be achieved. Moreover, the relative efficiency of
using immersion or spray quenching with an aqueous polymer and a mineral oil quenchant was
studied in [9]. Their results showed that depth of hardness increased with increasing agitation.
In [1], the author proposed that cracking and deformation are predominantly affected by the
uniformity of the quenching and not the quenchant itself. Simulations of wall nucleate boil-
ing (WNB) were done by Dhir et al. in [13, 14, 15]. Since WNB is dominated by solid-wall,
thin-film nanophysics, Dhir et al. coupled their two-dimensional DNS code with a nanofilm,
lubrication-theory model. This model is applied at the base of the nucleating bubble [14] and
provides the vapor mass source near heated wall.

In view of this review, it is clear that the physical phenomena taking place are rich and that
the experimental investigations remains time consuming, difficult to realize and not reliable
in a real industrial context. Thus, direct numerical simulation would open up for detailed
study and new insights. Indeed, it becomes of prime importance to simulate and visualize the
complexity of the flows (liquid-vapor phase transition, agitation,...) and to deal with fluid-solid-
heat coupling. Of course both challenges are intrinsically linked.

In the literature, various efforts were proposed to deal with this process. They can be gath-
ered into two groups : one-fluid flow model with boiling heat transfer coefficients or two-fluid
model with heat transfer coefficients for the solid part. In the latter case, the classical approach
is to combine the fluid motion with interface tracking technique such as level set [16], phase
field [17], Volume Of Fluid [18], etc. For example, Garwood et al. [3] have characterized a
quenching tank for the heat treatment of superalloy via finite difference methods and heat trans-
fer coefficients. Srinivasan et al. [4] developed a specific CFD modeling procedure to simulate
particular immersion quench cooling process using boiling transfer coefficients. Engine cylin-
der heads have also been modeled using heat transfer coefficients.

As expected, computational fluid dynamics is now being used increasingly for multiphase
flows and quenching design. However there are still considerable uncertainties due to assump-
tions that must be made in particular: (i) the use of simple geometries, (ii) the use of decoupled
fluid-solid resolution and finally, (iii) the use of transfer coefficients that approximate the com-
plex quenching environments. Moreover, the consequences of the numerical method limitations
are the set of physical model assumptions, e.g. : incompressibility, low density ratio between
phases, omission of heat conduction in one of the phases, low-fidelity for boiling phenomena,
laminar flows, ... Most of these assumptions are justifiable for their intended applications; how-
ever their use remains generally limited and suffers from systematic re-validation when facing
new materials, new geometries or new thermomechanical conditions ... Indeed one needs to
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predict precisely the liquid to vapor phase change during boiling as well as to study the optimal
combinations of quenching parameters to reduce residual stresses in solid ingots. Therefore an
innovative couple numerical framework remains to be designed and implemented.

1.4 Contribution of the thesis

We believe that achieving a breakthrough requires first the development of a unified ground-
breaking numerical multiscale framework for quenching and, second, the development of an
immersed multiphase strategy with implicit representation of each phase (liquid-vapor-solid)
in order to leverage the simplicity and flexibility of fluid-solid-heat coupling.

An innovative multiscale numerical framework to design industrial quenching process safely
will be proposed. It should provide the industrial partners access to the cooling efficiency of
their quenching devices, but also to deeply understand the process issues and to classify which
phenomenon plays a major role on the thermal homogeneity of the product. It should allow the
industrials to continuously improve the product quality, and even to create new microstructures,
in order to fulfill the current and future demands of customers. Finally, it should support the
industrials to adjust and to regulate their quenching devices limiting though several tests and
trials and empirical calibrations.

Therefore we propose a new Finite Element numerical immersed framework based on an
implicit representation of different phases (liquid, gas, solid) using a level set description com-
bined with remeshing capabilities. Several validations will be conducted and comparison will
be proposed with benchmark solutions and experimental results.

Indeed, the immersed volume methods is intensively used for two fluid modeling in the
context of multiphase flows and for the fluid-structure interactions in the context of heat and
mass transfer [19, 20, 21, 22, 23].

To achieve high-fidelity spatial resolution, we will use the work done in CEMEF by the CFL
research group on anisotropic parallel adaptive meshing techniques [23, 24, 25, 26, 27, 28].
Indeed, it is shown in recent works that edge-based error estimator allows to dynamically track
moving interfaces, thus enabling high-accuracy not only in the bulk fluid, but also near the
interface, where high gradients are concentrated. The computational cost remains reasonable
for simple applications and improving our parallel 3D remeshing method is another promising
route for this objective.

Finally, it is important to mention that classical Finite Element methods to solve the un-
steady Navier-Stokes and heat transfer equations suffer from lack of stability, in particular at
high Reynolds and Peclet numbers. Another numerical issue related to the transport level set
equation is the mass conservation. These sources of numerical difficulties have been treated
using different approaches (for an overview, see [29, 30, 31, 32, 33, 34, 35, 36]).

We completed this framework by developing a unified Variational Multiscale LES (Large
Eddy simulation) formulation to handle turbulent multiphase flows with high density ratio,
phase change model, interface forces, surface tension and bubbles dynamics [37, 38]. We
propose here to test this parallel 3D framework with the level set method and remeshing capa-
bilities for quenching simple industrial parts inside a water tank with and without agitation. We
also examined the orientation of a cylinder part.

To conclude, the real breakthroughs and innovation of the proposed work, allowing to deal
with realistic industrial conditions and quenching devices (compared to other codes), and ro-
bustness by limiting the assumptions made and restraining non-physical use of quenching pa-
rameters are translated by the following summarized objectives:
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1. To achieve high fidelity simulations of the multiphysics and multiscale nature of practical
boiling flows in quenching applications, gaining insight into the physics of multiphase
flow regimes, and generating a basis for effective-field modeling in terms of its formula-
tion/closure laws;

2. To build up a unified 3D numerical framework allowing, relevant boiling multiphase
flows and their impact on part cooling. This objective implies also to develop high-
fidelity treatment of interfacial dynamics during quenching processes;

3. To develop a ground breaking unified immersed method for quenching environments and
to enhance the adaptive Finite Element numerical strategy following a two-fold logic of
simplicity and flexibility for the fluid-solid-heat coupling;

4. To propose experimental investigations and validations allowing (1) to validate the previ-
ous numerical objectives and (2) to give insights on physically based boiling heat transfer.
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Résumé en français
Présent dans l’élaboration de pièces critiques aussi bien dans le domaine aérospatiale, nucléaire,
la trempe est un procédé largement utilisé par les métallurgistes dans l’élaboration des aciers.
Ce procédé, qui vise à donner des propriétés mécaniques bien précises à une pièce appartient à
la famille des traitements thermiques. Ces pièces sont chauffées dans des fours afin de permettre
la diffusion des atomes de carbone. Afin d’empêcher la diffusion de ces atomes de carbone
lors du refroidissement souvent inhomogène de la pièce, la pièce est refroidie brutalement.
Ce refroidissement peut s’effectuer en plongeant la pièce dans un bain liquide à température
proche de la température ambiante mais peut aussi s’effectuer par application d’un jet d’eau
(ou spray).

L’amélioration et le contrôle de ce procédé suscitent un intérêt grandissant et deviennent
un axe majeur de progrès pour les industriels. Les forts gradients thermiques présents aux
interfaces, le changement de phase du liquide de trempe, l’agitation et la transformation de
phase dans le solide sont autant d’éléments rendant la trempe extrêmement difficile à modéliser.
La multiplicité des échelles spatiales, du mm à la dizaine de mètres et des échelles temporelles,
de la ms à plusieurs heures, rend encore plus compliquée l’utilisation de modèles uniques et
simplifiés.

Les coûts engendrés par les expérimentations effectuées dans le but d’améliorer ce procédé
sont rédhibitoires et rendent les expériences difficiles a mener. Le fait que les installations
soient préexistantes limitent aussi les axes de progression du procédé.

La simulation numérique représente un outil puissant permettant aussi de déterminer l’efficacité
du procédé en se basant sur des indicateurs pertinents développés par l’industriel mais aussi de
modifier les configurations possibles de la pièce métallique à tremper. Ainsi l’orientation de la
pièce et sa position dans le bain de trempe sera étudiée. Une trempe efficace nécessite que le
liquide de trempe puisse extraire le maximum de chaleur tout en ne s’échauffant pas immod-
érément. Pour cela, il est nécessaire d’avoir un large volume de liquide et une forte agitation
de celui-ci. Les vitesses d’agitation ainsi que les dispositifs d’agitation peuvent être incorporés
dans la simulation numérique.

Dans cette thèse de doctorat sera montrée la construction d’un environnement numérique
permettant de simuler de manière précise et robuste un procédé industriel aussi exigeant que la
trempe. Une étude des mécanismes physiques du procédé de trempe nous a permis de déter-
miner les axes prioritaires de développement du nouvel environnement numérique.

En se basant sur les outils existants au sein de la librairie de calcul élément finis de l’équipe
Calcul Intensif et Mécanique des Fluides (CFL) du Centre de Mise en Forme des Matériaux
(CEMEF) de l’école des Mines de Paris (Mines ParisTech), nous avons identifié les nouveaux
besoins numériques. La méthode d’immersion de volume largement développée au sein de
l’équipe CFL est utilisée dans ce travail, pour son aptitude à prendre en compte toutes les
composantes du procédé de manière unifiée. Alliée à des méthodes puissantes d’adaptation
de maillage, la méthode des volumes immergés permet une résolution fine des physiques aux
interfaces, déterminante dans l’obtention de résultats précis et fiables.

Le cadre de travail ainsi proposé répondra aux besoins des industriels en leur permettant de
simuler le procédé de trempe dans des conditions réalistes, supprimant ainsi toute hypothèse
simplificatrice et limitant l’utilisation de paramètres non physiques.
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2.1 Introduction
The present chapter is dedicated to the study of the physical mechanisms in the quenchant
during the process. In this work, only the physics of the fluid (the quenchant) in quenching
tank is addressed. The purpose here is to give an insight of the main physical mechanisms
involved in quenching. Once these phenomena are identified, we will investigate their impact
by quantifying characteristic time and scale of the different mechanisms involved in boiling.
From vaporization of the quenchant and therefore the formation of a vapor film, to the dynamics
of the vapor film due to gravity and surface tension, the main mechanisms are investigated.

Unsteady 3D simulations of turbulent boiling still require large computational resources.
A way to circumvent the need of tremendous computational resources is to identify the phe-
nomena to simulate, with satisfactory precision and fidelity with respect to the real process. To
enable the numerical tool to be predictive, only phenomena with no significant impact on the
results must be neglected.

Choice has been made to prioritized the physics involved in boiling according to the dynam-
ics of the interface. The interface position and the interface velocity will be quantified for each
phenomenon and compared. Phase change, hydrodynamic instability and vapor film expansion
are considered here. Other phenomena such as radiation are not considered in this work.

13
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First we will investigate the creation of vapor from water through the resolution of the
well known Stefan problem. Then we will investigate the destabilization of the vapor film
due to the gravity and surface tension through the Rayleigh-Taylor instability. In the case of
a compressible vapor, vaporization creates an over-pressurization and the containment by the
surrounding water therefore requires a relaxation and an expansion of the vapor phase.

According to the results, emphasis will be put on the modeling and the implementation of
the predominant mechanisms/phenomena.

2.2 Phase change

Phase change is present in various industrial but also in natural phenomena: boiling of water,
condensation that creates clouds, the dew and the mist, cavitation in ship propellers, icing of
aircraft wings. Each kind of phase change is characterized by triggering mechanisms induced
by temperature or pressure. In the quenching process, the phase change is boiling and it is due
to the metallic part that provides the required heat.

Boiling modes play an essential role in the cooling of a metallic part. Nukiyama [39]
highlighted in 1934 the different boiling regimes of water in contact with a heated metal. As
one progresses from the saturation temperature to higher temperatures, more and more bubbles
appear and then merge into a vapor film, which act as a thermal insulation. The boiling curve,
when the temperature at the surface of the part is controlled (see Fig. 2.1), describing the boiling
modes, reads as follows:

1 Free convection: Starting before saturation, it is due to the change of density of the fluid,
the higher the temperature, the lower the density. Bubbles do not appear yet.

2 Nucleate boiling at low heat flux: Isolated bubbles start to appear in preferential sites
called nucleation sites.

3 Nucleate boiling at high heat flux: Bubbles tend to collapse and to form columns. This is
the most efficient heat transfer mode as the heat is convected by the bubble and its wake.

4 Transition boiling: A vapor film, restraining the contact between the liquid and the solid
starts to appear on a periodic and spatial way. The vapor film is not stable.

5 Beyond the Leidenfrost point, the surface is entirely covered by permanent vapor film,
preventing any contact between the water and the metal.

When the excess temperature is larger than 300K, the surface heat flux due to radiation
-the latter being a function of T4 (T temperature)- is of the same order as the heat flux due to
boiling. That is all the more true when the excess temperature exceeded the Leidenfrost point,
as the vapor film is stable and radiation becomes the dominant heat transfer mode. Thus, this
heat transfer mode should be investigated.

In the case of industrial applications, nucleate boiling represents the most efficient boiling
heat transfer regime. Therefore, steel manufacturer aim at improving their processes by reach-
ing this regime. In quenching processes, the temperature is considerably larger than the Lei-
denfrost temperature. Steel in water, for example, is quenched at Tsurface−Tstaturation > 400K.
Therefore, a vapor film surrounds instantaneously the part and prevents it from cooling.
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Figure 2.1: Nukiyama curve. Evolution of the surface heat flux as a function of the excess
temperature

2.2.1 The Stefan problem

The Stefan problem is a widely used and studied problem. It was originally proposed by Jozef
Stefan to study the formation of ice in the polar seas. Nowadays, a large class of free boundary
problems are referred to as Stefan problem. From a set of physical parameters defining two
phases and for a given heat source, one seeks to find the evolution of the interface between the
phases. Since heat is the driving force of this phenomenon, the transfer of energy has to be
finely described between the phases.

The popularity of this class of problems lies in the fact that analytical solutions can be found.
This makes the Stefan problem a good candidate to assess the validity of a numerical method
for phase change. Several assumptions are usually required to find an analytical solution. For
example, most of the Stefan problem in the literature deal with phases of equal density. This
assumption, if applicable in case of the melting of a solid or the solidification of a liquid, shows
its limits when dealing with two phases of a density ratio of about 1000 such as water and vapor.
We will solve the Stefan problem for the general case of two phases of different densities even if
a special care will be given to water and vapor in this thesis since it is the most used quenchant.

The purpose here is not to propose a literature review on the Stefan problem. Therefore
we will refer to the standard formulation of the problem. The solution of the Stefan problem
is found by solving the heat equation, with additional assumptions regarding convection in the
phases as well as boundary conditions.

2.2.2 Resolution of the classical Stefan problem

We consider the one-dimensional Stefan problem. The problem is defined schematically in Fig.
2.2. We consider a semi-infinite domain in the x-direction and infinite in the other direction.
Initially the domain is filled with a liquid. The temperature at the wall Twall is set constant
and larger than the saturation temperature Tsat. The water is at saturation temperature. At
t > 0, a phase change occurs and induces a motion of the interface between vapor and water.
The convective term in the energy conservation equation is neglected in both phases even if in
quenching, convection will play an important role.
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Figure 2.2: Initial setup for the classic Stefan problem.

We consider the following heat equations:

ρlcl
p

∂Tl

∂ t
− kl

∂ 2Tl

∂x2 = 0 in the liquid (2.1)

ρvcv
p

∂Tv

∂ t
− kv

∂ 2Tv

∂x2 = 0 in the vapor (2.2)

where ρ is the density, cp is the specific heat, T is the temperature, and k the thermal con-
ductivity. We assume continuity of temperature at the interface. Furthermore, we assume that
the temperature at the interface TΓ equals the temperature of saturation. Therefore the initial
boundary conditions for this problem read:

T (x = s, t) = TΓ = Tsat (2.3)
T (x = 0, t) = Twall = constant (2.4)

We can recast the heat equation, using α = k/ρcp the thermal diffusivity:

∂T
∂ t
− k

ρcp

∂ 2T
∂x2 =

∂T
∂ t
−α

∂ 2T
∂x2 = 0 (2.5)

We use the similarity variable referred to as the Neumann solution ξ = x/
√

t. Then the tem-
perature is expressed as a function F such as T (x, t) = F(ξ ). The heat equation as a function
of ξ reads:

ξ
2α

dF
dξ

+
d2F
dξ 2 = 0 (2.6)

Using separation of variables gives:

d lnG
dξ

= − ξ
2α

(2.7)

G =
dF
dξ

(2.8)

By integration, we obtain the following expression for F(ξ ):

F(ξ ) = A

ξ∫
0

exp
(
− s2

4α

)
ds+B (2.9)
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where A and B are integration constants, whose values are given by the boundary conditions.
By a change of variable:

F(ξ ) = 2A
√

α

ξ
2
√

α∫
0

exp
(
−y2)dy+B (2.10)

Recall the definition of the error function erf:

erf(x) =
2√
π

x∫
0

exp(−t2)dt (2.11)

and the complementary error function erfc:

erfc(x) = 1− erf(x) (2.12)

The temperature is given by:

F(ξ ) = A
√

απ erf
(

ξ
2
√

α

)
+B (2.13)

Using the boundary conditions (2.3)-(2.4), the temperature in vapor and water at time t are
given then by:

Tv(x, t) = Twall +
Tsat−Twall

erf
(

s
2
√

αvt

) erf
(

x
2
√

αvt

)
(2.14)

Tl(x, t) = T∞ +
Tsat−T∞

erfc
(

s
2
√

αlt

) erfc
(

x
2
√

αlt

)
(2.15)

Let χv =
s

2
√

αvt
and χl =

s
2
√

αlt
. The position of the interface is given by:

s(t) = 2χv
√

αvt (2.16)

In the vapor, the gradient of the temperature is:

∂Tv

∂x
=

Tsat−Tw

erf(χ)
1√
π

1√
αvt

exp
(
− x2

4αvt

)
(2.17)

In the liquid, the gradient of the temperature is:

∂Tl

∂x
=−Tsat−T∞

erfc(χl)

1√
π

1√
αlt

exp
(
− x2

4αlt

)
(2.18)

At the interface, for x = s, we therefore obtain:

∂Tv

∂x
=

Tsat−Tw

erf(χv)

1√
π

1√
αvt

exp
(
−χ2

v
)

(2.19)

∂Tl

∂x
=−Tsat−T∞

erfc(χl)

1√
π

1√
αlt

exp
(
−χ2

l
)

(2.20)
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The velocity of the interface, referred to as the Stefan condition is:

ρvL
ds
dt

=

(
−kv

∂Tv

∂ t
+ kl

∂Tl

∂ t

)
(2.21)

where L is the latent heat of vaporization.
In the classical Stefan problem, the liquid being at saturation temperature, the Stefan con-

dition reduces to:

− kv
∂T
∂x

= ρvL
ds
dt

= ρvLχv

√
α
t

(2.22)

By combining (2.19) and (2.22), we obtain the following relation describing the evolution
of the interface:

Tw−Tsat√
πL

cv
p = χv erf(χv)exp

(
χ2

v
)

(2.23)

The resolution of (2.23) gives the temperature and the position of the interface using equa-
tions (2.14)-(2.16).

Considering the following physical properties for water and vapor defined in Table 2.1
and setting Twall− Tsat = 900K, we solve the transcendental equation (2.23) using a Newton
algorithm to find χv.

Table 2.1: Density, dynamic viscosity, specific heat and thermal conductivity for vapor and
water at atmospheric pressure

ρ [kg/m3] µ [Pa·s] cp [J/(kg·K)] k [W/(m·K)] Lvap [J/kg]

Vapor 0.597 1.26×10−5 2030 0.025

Water 958.4 2.8×10−4 4216 0.679 2.26×106

The temperature profile at t=1s is depicted in Fig.2.3. The analytical evolution in time of
the interface is given in Fig. 2.4. The Fig. 2.5 shows the evolution of the velocity. The velocity
of the interface is of the order of m/s at the very beginning of the problem. This indicates that
almost instantaneously, a thickness of vapor of about few millimeters was already formed. It
is an additional information to the curve in Fig 2.1 regarding the boiling regime for which this
work should focus on.

2.2.2.1 Stefan condition for ρv/ρl 6= 1

In the literature, the Stefan problem is usually solved using a constant density. To consider a
two-phase Stefan problem, the density ratio has to be taken into account. In order to conserve
heat, an additional term appears in the balance of fluxes (2.21). The derivation of the Stefan
condition, neglecting inertial effects, for two phases of variable densities was derived in [40]
and reads:

−ρvLvap
ds
dt
− 1

2
ρv

(
1− ρv

ρl

)2(ds
dt

)3

= (−kl∇Tl + kv∇Tv) ·~ex (2.24)

If ρv = ρl , we retrieve the case with no density change. This condition does not allow a sim-
ilarity solution. However, because of the high value of the latent heat, the influence of the
cubic term is negligible except when the velocity of the interface is very large [41, 42, 43].
The velocity reaches its highest values at the very early times of the problem, at a time scale of
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Figure 2.3: Temperature profile at t=1s
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Figure 2.4: Stefan problem: Evolution of the interface position

micro- or nano-seconds, which is out of the scope of this work. The modified Stefan condition
was shown to be essential in the case of the melting of nanoparticles [44]. We will refer to the
standard Stefan condition (2.21) in this work.

Some partial conclusions can be made according to the results of this problem. When
we consider the range of excess temperature in quenching, since a thickness of vapor forms
very quickly at the beginning of the process, we can assume that there is no need to simulate
nucleation of bubbles. Therefore we will start all the simulations with a pre-existing vapor film
surrounding the metallic part.

2.3 Rayleigh Taylor instability
When a light fluid lies below a heavy fluid, if the interface is unstable, fluids will interpenetrate,
creating fingers or spikes and afterwards, bubbles. Depending on the fluids at play, the rising
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Figure 2.5: Stefan problem: Velocity of the interface.

velocity of the light fluid and the shape of the interface will differ. Several factors influence the
growth of this instability, called Rayleigh-Taylor instability, such as the density, the viscosity,
the surface tension or the compressibility of the fluids. Fig.2.6 shows the configuration of a 2D
Rayleigh-Taylor instability.

This instability occurs during quenching after the creation of the vapor film. A comparison
of the evolution of the interface position due to the Rayleigh-Taylor instability and vaporization
of water is therefore relevant. Indeed, if at some point, the dynamics of the interface is mainly
due to this instability, this phenomenon cannot be neglected.

xy

vapor

liquid

Figure 2.6: Setup for the 2D Rayleigh-Taylor instability. A light fluid lies below a heavy fluid.

At the early stage of this instability, using a linearization of the physical equations, a small
perturbation will grow exponentially in time. Rayleigh Taylor instabilities of small amplitude
are widely studied in the literature [45]. We recall briefly the linearized growth of the instability
to describe the rise of the vapor film after its creation. The interface perturbation is given by:

s(t) = s0 exp(ωt)exp(ikx) (2.25)

where s0 is the initial perturbation of the interface. The growth rate ω is defined by:

ω =
√

gAk (2.26)

where A = (ρl −ρv)/(ρl +ρv) is the Atwood number, g is the acceleration of the gravity and
k = 2π/λ is the wave number.
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When using the physical properties of Table 2.1, we can obtain the following simplification
for the growth rate

ω =

√
g

ρl−ρv

ρl +ρv

2π
λ
≈
√

g
2π
λ

(2.27)

For a Rayleigh Taylor instability, the critical Taylor wavelength is:

λ =

√
γ

(ρl−ρg)g
(2.28)

where γ is the surface tension and g is the acceleration due to the gravity. For the set of
parameters given in Table 2.1, the critical wavelength is about λ = 0.0027m.

Fig. 2.7 shows the evolution of the interface according to (2.25). It is worth mentioning
that the theory of the linearized regime is valid for a growth between 10% to 40% of the critical
wavelength. However, since we use this theory to obtain an order of magnitude of the rising
velocity and the interface position at the early time of the phenomenon, we will assume that a
comparison with other phenomena using this theory is valid.
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Figure 2.7: Rayleigh Taylor instability: Evolution of the interface position

2.4 Expansion of a compressible medium
Vaporization of a thickness s0 implies expansion of the gas. The principle of expansion is
depicted in Fig. 2.8, . This expansion requires to accelerate the whole mass of surrounding
water. A 1D expansion model would be then:

ρl s̈(t) =
∆p
Lc

=
p∞
Lc

(
ρl

ρv

s0

s(t)
−1
)

(2.29)

where Lc is a characteristic length taken as the length of the water column in the current study,
p∞ is the pressure at the top of the water column.

An approximation of the solution of (2.29), using a finite difference method is:

sn+1 = 2sn− sn−1 +∆t2 p∞
ρlLc

(
ρl

ρv

s0

sn −1
)

(2.30)
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Figure 2.8: Expansion of the vapor phase after vaporization of a thickness s0 of water.

where n is the time iteration. The pressure is set up to p∞ = 105Pa and Lc will be taken as the
length of the column of water. Results on the evolution of s according to (2.30) are given in the
the following paragraphs.

2.5 Comparison
In this section, we will compare the interface evolution due to vaporization, due to the Rayleigh-
Taylor instability and due to the expansion of the vapor film. The growth of the vapor film is
done in the opposite direction of gravity in order to assess the effect of the column of water
lying above the vapor film. The principle of the comparison is the following. First, we have to
consider a minimal thickness to compare the phenomena. This thickness will be given by the
solution of the Stefan problem. When a thickness s0 is reached, we additionally compute the
solution of the Rayleigh-Taylor instability and the solution of the expansion of the vapor phase
using equations (2.25)-(2.30). This enables us to show the interface evolution according to each
phenomenon after the creation of a certain thickness of vapor. We consider in the following
examples, s0=10−4, 10−3 and 10−2 m.

We approximate the interface position given by the resolution of the Stefan problem, using
the Stefan condition (2.22). Approximating the gradient of the temperature gives:

ṡ≈− kv

ρvL
Tvap−Tw

s
(2.31)

The previous equation can be rewritten in the following way:

∂
∂ t

(
1
2

s2
)
= αv(Tw−Tvap)

cv
p

L
(2.32)

By integration, we obtain:

s(t) =

√
2αv(Tw−Tvap)

cv
p

L
t =

√
2αv

Tw−Tvap

Tref
t (2.33)
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where αv = 2.10−5m2/s, Tref = 103K and the excess temperature Tw−Tvap = 900K.
Thus, a good approximation of the position of the interface is given by:

s(t)≈ 2.10−4
√
(Tw−Tvap) t (2.34)
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Figure 2.9: Evolution of the interface position with a water column of 0.1 m height. Compar-
ison of the evolution of the position of the interface starting from an initial position s0 of the
interface s0=1e-4 (bottom), 1e-3 (middle) and 1e-2 (top).
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Figure 2.10: Evolution of the interface position with a water column of 1 m height. Compar-
ison of the evolution of the position of the interface starting from an initial position s0 of the
interface. s0=1e-4 (bottom), 1e-3 (middle) and 1e-2 (top).

In Figs. 2.9-2.10, the evolution of the interface according to each phenomenon is shown.
In Fig. 2.9, a column of water of 0.1m is considered and in Fig. 2.10, a column of 1m. As
it is clearly visible in Figs 2.9-2.10, the dominant phenomenon is vaporization. Indeed, the
excess temperature being very large, the wall is still close enough to supply a large amount
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of heat. However its effect decreases with the distance from the wall beacause the vapor acts
as a thermal insulator and therefore conduction of heat is not as efficient as in water. Then,
vaporization leads to a pressure increase in the vapor phase that requires an expansion. The
evolution of the interface is faster when the column of fluid is 0.1m compared to a column of
1m. The comparison between Fig.2.9 and Fig. 2.10 emphasizes the influence of the column
of water on the displacement of the interface. With a higher column of water, the expansion is
more difficult to achieve. The results of the Rayleigh-Taylor instability clearly show that for
this excess temperature Tw−Tvap = 900K, gravity effects and surface tension do not balance
the formation of the vapor film and its expansion. As a consequence, a permanent vapor film
surrounds the part.

To sum up, at the early stage of boiling, due to the heat transfer between the solid and
the water, a vapor thickness is created and tends to expand. At high temperature, such as the
ones considered in quenching, these phenomena prevent water to reach the part. After a certain
period of time, the temperature of the part will enable gravity and surface tension to play a role
in the dynamics of the vapor film. This is the nucleate boiling regime, carrying vapor and heat
away from the solid.

2.6 Modeling strategy

Boiling still represents a challenging subjects of physics. Several complex and coupled physics
are involved. This work intends to tackle some of the most relevant phenomena involved in
boiling; the purpose being to build a numerical framework allowing the simulation of such a
complex phenomenon. Therefore a coherent and realistic strategy must be set, enabling to con-
sider additional physics. The numerical tools will be used as predictive tools for the improve-
ment of large industrial process. A major effort will thus be made to reduce the computational
requirement to perform such simulations. Furthermore, this numerical framework should be
open to evolution and to the addition of new physics, such as radiation.

We choose not to consider compressible flows using an equation of state. From a numerical
point of view, considering a fluid as compressible would result in additional complexity such as
shock, time step restriction due to the celerity of sound, low Mach approximation, etc. Instead,
as a first step, we will consider distinct phases that will exchange heat and mass. Therefore
one needs to quantify the right amount of heat and mass transferred from one phase to the
other. A mass transfer rate is required for the phase change model. The mass transfer rate will
quantify the amount of water transformed into vapor. The Stefan condition gives us access to
such a mass transfer rate. The set of conservation equations (mass, momentum, energy) and the
level set equation have to be derived to take into account a transfer of heat and mass to model
vaporization. Details are presented in Chapters 3,4 and 5.

Once the vapor film is created, the dynamics of the vapor film is given by the surface
tension. The boiling regime at a given time depends on the competition between the creation of
the vapor film and the rise of bubbles formed from the vapor film. In the case of a low surface
tension, slugs of vapor will detach quickly from the film and then rise to the free surface. On
the contrary, a high surface tension will favor the formation of a continuous and stable vapor
film. However, for a given value of surface tension, a large excess temperature will lead to
the formation of a stable vapor film. Several challenges arises from a numerical point of view.
Indeed the implementation of the surface tension imposes a severe restriction on the time step,
one or two order of magnitude smaller than other time step restriction such as the Courant-
Friedrichs-Lewy (CFL) condition.
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It was demonstrated in the last section that in some cases the expansion of a compressed
medium leads to a fast evolution of the vapor film thickness. Furthermore, in the presence of
stirring mechanism in the quenching tank that inject water at a velocity in the order of tens of
m/s, the vapor film is compressed against the metallic part and therefore the dynamics of the
vapor film changes.

The objective of this work being the development of a numerical framework to simulate
quenching, we will address the aforementioned points and include them in unified multiphase
framework. Several features are required in this framework:

• Resolution of the unsteady multiphase Navier-Stokes equations

• Computation of the mass transfer rate and derivation of the set of equations taking into
account heat and mass transfer

• Alleviation of the time step restriction due to the implementation of surface tension

• Inclusion of a compressible medium

In the introduction of this thesis, a literature review of the numerical simulation of quench-
ing showed that the most common way to treat the interaction between the fluid and the solid
is through boundary conditions and heat transfer coefficients. If the use of heat transfer coef-
ficients seems appealing by its simplicity of implementation, from a practical point of view,
it relies on the knowledge of such empirical coefficients. For any new configuration, a new
coefficient has to be identified.

In this work, we use a monolithic approach, meaning that a single domain is used and
discretized and only one set of equations in solved in this domain. All the phases of the problem
(solid, liquid, gas) are immersed in this domain. Therefore an interface capturing method is
required to distribute the physical properties of each phases and to capture the evolution of
those interfaces. In the present work, a level set method is chosen to its ability to deal with
complex topology change of the interface. Furthermore, the ease to compute from the level
set function quantities such as the curvature of the interface or the normal field to the interface
makes the level set a very useful and very used tool in multiphase applications and in particular
for surface tension. Since at very high excess temperature the vapor film is instantaneously
created, the nucleation of bubbles will be neglected and a fully developed film with a certain
thickness will be considered pre-existing. This is easily done using a standard level set method
without any assumptions on a distribution of nucleation site. The heat transfer are treated
naturally using a monolithic approach and solving the Navier-Stokes equations in the whole
domain. No arbitrary boundary condition for the heat equation are applied to the immersed
solid. A thorough presentation of the monolithic approach will be given in the next chapter.

2.7 Conclusion
In this chapter, we discussed the complexity of boiling in quenching tanks. Several physical
mechanisms are involved and make the understanding of this phenomenon difficult to achieve.
We choose to prioritized the phenomena according to their influence on the vapor film dynam-
ics. Therefore, focus is put on 3 phenomena: phase change, hydrodynamic instability of the
interface and vapor film expansion. We decomposed the phenomenon into simpler problems
that we solved. We draw some conclusions about the requirements of the future numerical
framework that will be developed in the following chapters.
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Résumé en français
Dans ce chapitre, les principaux mécanismes physiques présents dans la trempe sont identifiés
et étudiés. Des échelles caractéristiques de temps et d’espace sont associées à ces différents
mécanismes. Le changement de phase de l’eau en vapeur est tout d’abord considéré à travers
la résolution d’un problème de Stefan. Le second mécanisme est la détente d’une phase vapeur
compressible confinée par un certain volume d’eau. Le dernier mécanisme est la remontée de
la phase vapeur au sein de l’eau, dont l’évolution est obtenue par l’étude d’une instabilité de
Rayleigh-Taylor. La résolution de ces différents problèmes nous permet pour une épaisseur de
vapeur créée de déterminer quelle sera l’évolution du film de vapeur. Ainsi, pour une certaine
épaisseur de vapeur créée, la détente est le phénomène le plus rapide. Une fois la détente de
la phase vapeur achevée, c’est la compétition entre l’hydrodynamique et la vaporisation qui
va reguler le procédé. Pour des gradients thermiques très élevés comme ceux présents dans
le procédé de trempe, il apparaît clairement que l’hydrodynamique de la phase vapeur est le
facteur limitant dans le refroidissement d’une pièce solide puisqu’il se crée beaucoup plus de
vapeur au contact du solide chaud qu’il ne s’en évacue.

Cette étude nous permet de lister les différents composants nécessaires à l’élaboration d’un
cadre numérique pour la simulation de la trempe. Tout d’abord, il faudra être capable de ré-
soudre les équations de Navier-Stokes multiphasiques pour des écoulements turbulents. En-
suite, la tension de surface devra être prise en compte pour modéliser de manière la plus
fidèle possible la dynamique de la phase vapeur. Un modèle de changement de phase devra
être développé, permettant de calculer les échanges de masse et d’énergie à travers l’interface
vapeur/eau. Finalement, la compressibilité de la phase vapeur devra être considérée pour avoir
une description de la compression du film de vapeur soumis à une forte agitation.
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3.1 Introduction
Immersed methods are gaining popularity in many scientific and engineering applications such
as Fluid-Structure Interaction or multiphase flows. All the different approaches, such as the
Cartesian method [46], the Immersed Boundary method [47], the fictitious domain method [48],
the embedded boundary method [49], the immersed volume method [19], among many others,
are attractive because they simplify several inherent issues related to Fluid-Structure interaction
or multiphase applications: meshing the fluid domain, the use of fully Eulerian algorithm,
problems involving large structural motion and deformation [50] or topological changes [51].

When the grid is not body-fitted, the interface requires a special treatment. Indeed, recent
developments are focusing on the immersion of a surface mesh for 3D complex geometries,
the detection of interfaces, the computation of intersections and the transmission of boundary
conditions between the solid and the fluid region [52, 53].

In this work, we present the immersed volume method and its extension. It uses the level
set function to describe the immersed phase. For simple geometries, we resort to the use of
analytical functions (i.e. sphere, square, ...) to compute the distance function whereas for
a complex geometry we used its surface, described and discretized by a hyperplan simplex

27
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mesh (a set of triangles for 3D simulations or a set of segments for 2D simulations). Then,
we compute the distance from any given point (a node of the computational domain) to the
surface mesh. It is clear that in this case, the description of the immersed structure is limited
by the quality and the accuracy of the given surface mesh. Therefore, we rely on the use
of anisotropic mesh adaptation technique [54, 27] to obtain a high-fidelity description of the
immersed objects.

The Immersed Volume Method is an interesting tool for computational engineers, in par-
ticular for conjugate heat transfer analysis. It can be easily implemented in Finite Element
codes. It allows solving a single set of equations for the whole computational domain and
treating different subdomains as a single fluid with variable material properties. This offers a
great flexibility to deal with different shapes or to change easily the physical properties for each
immersed structure. Therefore, we start by computing the signed distance function of a given
geometry to each node in the mesh. Using the zero isovalue of this function, we can easily
identify the fluid-solid interface. Consequently, we can apply an anisotropic mesh adaptation
at this interface and then mix the thermo-physical properties appropriately for both domains.

3.2 Level set

3.2.1 Standard level set method
The level set method enables the localization of the interface between two phases. It is a signed
function distance and is a widely used tool in many applications such as multiphase flow, crystal
growth, image restoration or surface reconstruction [55]. Let Ω the whole domain, Ω f the fluid
domain and Ωs the solid domain. The level-set function is a signed distance function from the
interface Γ = Ω f ∩Ωs defined at each node X of Ω as follows:

α(X) =


−dist(X ,Γ) if X ∈Ω f
0 if X ∈ Γ
dist(X ,Γ) if X ∈Ωs

(3.1)

The evolution of the level set is given using a transport equation as follows:

d
dt

α(x, t) =
∂α
∂ t

+u ·∇α = 0 (3.2)

The level set, as a distance function, verifies ‖∇α‖ = 1. However, when the interface is con-
vected by a velocity, the level set can lose this property and need to be reinitialized to recover
it. A way to reinitialize the level set is to solve the Hamilton-Jacobi equation [16]:

∂α
∂τ

+ s(α)(‖∇α‖−1) = 0 (3.3)

where τ is a fictitious "time step" and s(α) the sign function of α . The steady state is reached
when the gradient of the level set recovers its analytical value. Therefore, the solution of this
nonlinear hyperbolic equation will be a distance function from the interface while keeping the
zero isovalue unchanged. By using this approach, we avoid to find explicitly the zero isovalue.

This property is of utmost importance since all physical properties at the interface will be
distributed in space according to the level set. As a demonstration, we perform the simulation
of 2D rising bubble in a channel full of water (see Fig. 3.2). We plot some isovalues of the
level set at the initial time in Fig. 3.2(a). As time elapses, if the level set is not reinitialized,
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Figure 3.1: Immersion of several objects (left) and a sphere (right). The zero isovalue of
the level set is represented in green. On the left picture, color represents the signed distance
function to the interface.

the isovalues start to spread far from the interface as it is depicted in Fig. 3.2(b). It means
that the level set is not a function distance anymore. If we distribute the material properties
according to this non-distance function, we will change the physics of the problem since a non-
physical thickness is created due to the diffusion of the isovalues. On the contrary, the level set
is reinitialized properly in Fig. 3.2(c) and therefore we still solve the physical problem. The
effect of the reinitialization of the physics of the problem is also confirmed by the difference in
the height reached in both cases.

(a) (b) (c)

Figure 3.2: 2D rising bubble. Isovalues of the level set in black and zero isovalue (the interface)
in red. Initial setup (left). Results at t=3s when the level set is not reinitialized (middle). Results
at t=3s when the level set is reinitialized (right).

The Hamilton-Jacobi procedure being iterative, the computational cost induced can be pro-
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hibitive for large computations. A method to alleviate this burden is proposed in [56]: the
so-called convected level set method.

3.2.2 Convected level set method

This method consists first on truncating the level set function using for the following function:

α̃ = E tanh
(α

E

)
(3.4)

where E is the thickness of the truncation.
An interesting feature of this method is the possibility of imposing Dirichlet boundary con-

ditions since the level set defined in (3.4) is bounded, Furthermore, the gradient of this level
set far from the interface is close to 0. This enables to save computational time and to pre-
vent singularity because of corners (2D) or sharp edges (3D) which is really adapted to mesh
adaptation procedure.

The truncated level set now verifies the following property:

‖∇α̃‖= 1−
(

α̃
E

)2

(3.5)

For sake of simplicity in the notations, we drop in the following the tilde and α will design
the truncated level set. We linearize the gradient to express it as a function of the level set at
previous time step:

‖∇α‖ ≈ ∇α−

‖∇α−‖∇α (3.6)

As a consequence, the Hamilton-Jacobi can be recasted into the convective form:

∂α
∂τ

+ s(α)
∇α−

‖∇α−‖∇α = s(α)

(
1−
(α

E

)2
)

(3.7)

We define U = s(α) ∇α−
‖∇α−‖ as the reinitialization velocity. Following the lines in [56], we

combine the transport and the reinitialization equations into the following equation:

∂α
∂ t

+u ·∇α +λ s(α)

(
‖∇α‖−

(
1−
(α

E

)2
))

= 0 (3.8)

where λ is homogeneous to a velocity and E is the thickness of the truncation. Solving the
following equation insures that the level set remains a signed function distance.

The equation to solve now reads:

∂α
∂ t

+(u+λU) ·∇α = λ s(α)

(
1−
(α

E

)2
)

(3.9)

It is shown in [56, 57, 58] that the proposed method reduces the computational cost and
ensure a better mass conservation than the classical level set method.
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3.3 Mesh adaptation

One key for success in innovation in industry is the ability to test new ideas as quick as possible
and progress to the optimal solution. However, the accurate prediction of the dynamics of
multiphase flows and heat transfer at the industrial scale requires large computational resources
that are not affordable for most manufacturers. Reliability in the description of the physical
phenomena involved is essential and cannot be compromised in critical application such as
aerospace or nuclear industry.

To alleviate this burden, locally refined meshes represents an appealing solution. The com-
putational cost can thus be drastically reduced compared to globally refined mesh. However, if
this approach is efficient to mesh complex motionless geometry, an expertise in the problem at
hand is required in transient problem to locally refined the region that needed it. Such meshes
are valid only for a specific configuration and if the problem exhibits unpredictable evolution
in space of the solution, the mesh is to be rebuilt. Underresolved meshes must be recreated to
meet the requirements of accuracy necessary to solve properly the problem. Furthermore, even
the generation of the first locally refined mesh from a CAD geometry is a time consuming task
that requires for a company additional manpower and additional software to be achieved. In the
automotive, aerospace, and ship building industries, mesh generation may represent up to 80%
of the overall analysis time [59]. The mesh generation can be an endless task and one seeks to
circumvent this process.

A large variety of methods were proposed to optimize the computational cost in Computa-
tional Fluid Dynamics (CFD) but keeping a certain level of accuracy with limited resources still
represents a challenge. For a given computational facility, a compromise between accuracy and
computational cost has to be found. We propose in this work the use of an anisotropic dynamic
mesh adaptation method with physics-based criteria. More specifically, an automatic mesh
adaptation procedure of unstructured mesh, working under the constraint of a fixed number of
elements will be used. This method involves the construction of a metric field that contains
the information regarding the principal direction in space and the size with respect to each di-
rection. An error estimate is used to build the metric field. In the case of anisotropic mesh
adaptation, highly stretched element are allowed, with a ratio of anisotropy up to 1000:1. This
feature is very useful in CFD where anisotropy is common such as in turbulent boundary lay-
ers or interfaces between phases whose artificial thickness should tend to zero. The numerical
methods used to solve PDE’s (partial differential equations) on this mesh are therefore modified
adequately to take into account the anisotropy of the elements.

In multiphase flows, the concern is to be able to accurately compute the velocity and tem-
perature fields in the whole domain, follow interfaces moving at high velocity and quantify
mass transfer rate in a small thickness around the interface to model the phase change. We
describe in this section a multi-criteria functional that estimates the error on a combination of
several variables including the velocity norm, all the velocity components, the temperature and
the level set function. Consequently, computation will benefit from the relevance of the criteria
chosen.

3.3.1 Anisotropic mesh adaptation for interface capturing

In the following paragraphs, we will show how to accurately capture an interface using a simple
and efficient a priori anisotropic mesh adaptation procedure. this will allows us to introduce
some notations and the purpose of using mesh adaptation. We combine the level set definition of
the interface and build a metric map according to it. Since the level set is an implicit definition
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of the interface, the interface intersects the elements of the mesh arbitrarily. As a consequence,
when considering two phases, discontinuities due to the high ratio in the physical properties
may lead to numerical oscillations during the resolution of PDEs. Instead, we will consider
a regularized interface, meaning that the properties are distributed smoothly over a certain
thickness around the interface. However, since this interface thickness does not have a physical
meaning, it has to be reduced to the minimum. Using anisotropic mesh adaptation with highly
stretched elements along the interface will help reducing the interface thickness, will increase
the accuracy of the computation due to a higher mesh resolution.

The anisotropic mesh adaptation procedure is performed using a metric map that prescribes
a mesh size according to the principal directions in the domain. These principal directions are
given by the eigenvectors of this metric and the mesh size is related to the eigenvalues of this
metric. The metric M is a symmetric positive definite tensor [60, 61, 62, 63] representing a
local base that modifies the distance computation from the Euclidean space to the metric space,
such that:

||x||M =
√

tx ·M ·x (3.10)

where x are the Cartesian coordinates. The definition of the scalar product in the metric space
is given by:

< x,y >M=
tx ·M ·y . (3.11)

To obtain an accurate description of the interface using the level set function, we consider
the normal direction as the principal direction of mesh refinement. Therefore, a given mesh size
hd can be prescribed in the whole domain while a smaller one can be prescribed in a thickness
around the interface. A choice to achieve this purpose is to consider the following evolution for
the mesh size h:

h =

hd if |α(x)|> ε/2

2hd(m−1)
m ε

|α(x)|+ hd

m
if |α(x)| ≤ ε/2

(3.12)

where ε represents the desired thickness and m represents a gradation parameter.
According to the prescribed mesh size h and the prescribed direction n = ∇α/||∇α||, we

can define the following metric:

M =C (n⊗n)+
1
hd

I with C =


0 if |α(x)| ≥ ε/2
1
h2 −

1
h2

d
if |α(x)|< ε/2

(3.13)

where I is the identity tensor. This metric corresponds to an isotropic metric far from the
interface (with a mesh size set equal to hd for all directions) and to an anisotropic metric near
the interface (with a mesh size set equal to h in the normal direction to the interface and set
equal to hd in the other directions).

As an illustration, Figure 3.3 presents the zero isovalues of the level set function for an
immersed F1 car (left) and a helicopter (right). It clearly emphasizes the extremely stretched
elements along the interfaces whereas the rest of the domain keeps the same background mesh
size.

This step is commonly used to initialize an industrial setup. This approach was extended
recently to account for boundary layers capturing in complex flows. Mesh size gradation and
curvature analysis were introduced to handle very complex geometries (see [28] for details).
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Figure 3.3: Anisotropic mesh adaptation for the detailed representation of a brain.

3.3.2 Edge based metric

The mesh adaptation procedure presented here is an automatic procedure that does not require
to deal with case dependent parameter linked to the error analysis. The mesh adaptation strategy
relies on the a posteriori definition of a metric field able, in some specified sense, to drive the re-
meshing procedure so that the interpolation error on the Finite Element solution is minimized.
It relies on a statistical representation of the distribution of edges sharing a vertex, a quantity we
call length distribution tensor. In order to relate the length distribution tensor to the interpolation
error, following [54] we define an edge based error estimator based on a gradient recovery
procedure. Once the optimal metric has been obtained, the mesh generation and adaptation
procedure described in [27], based on a topological representation, is applied to obtain the new
mesh. This metric construction is commonly used for dynamic mesh adaptation based on the
variation of several fields such as the velocity, the temperature and the level set.

3.3.2.1 Definition of the length distribution tensor: a statistical representation

Let the triangulation Ω, a subset of Rd , such as Ω is the union of simplex K. Ω reads:

Ω =
⋃

K∈K
K

Let xi be a mesh vertex and xi j the edge connecting xi to x j as in Figure 3.4.
Let Γ(i) be the "patch" associated to the mesh vertex xi, defined as the set of nodes x j

sharing an edge with xi.
The problem of finding a unitary metric Mi associated to the ith node can be formulated as
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xi
x j

xi j

Figure 3.4: Patch associated with node xi.

the least squares problem [54]:

Mi = argmin
M∈Rd×d

sym

(
∑

j∈Γ(i)
Mxi j ·xi j−|Γ(i)|

)2

. (3.14)

In the case of a valid mesh, vertices of |Γ(i)| form at least d non co-linear edges with vertex
xi. Then, an approximate solution of (3.14) is given by:

Mi =
1
d

(
Xi)−1

, (3.15)

where we introduce the length distribution tensor Xi defined as:

Xi =
1
|Γ(i)|

(
∑

j∈Γ(i)
xi j⊗xi j

)
(3.16)

whose purpose is to give an average representation of the distribution of edges in the patch.

3.3.2.2 Edge based interpolation error estimate

We consider u ∈C2(Ω) = V and Vh a simple P1 Finite Element approximation space:

Vh =
{

wh ∈C0(Ω),wh|K ∈ P1(K),K ∈K
}

We denote by U i the nodal value of u at xi and we let Πh be the Lagrange interpolation
operator from V to Vh such that:

Πhu(xi) = u(xi) = uh(xi) =U i , ∀i = 1, · · · ,N

Using the analysis carried in [54], we can set the following results:

∇uh ·xi j =U i j , (3.17)

and:

||∇uh ·xi j−∇u(xi) ·xi j||= ||U i j−∇u(xi) ·xi j|| ≤ max
Y∈[xi,x j]

|H(u)(Y )xi j ·xi j| , (3.18)

where H(u) = ∇(2)u is the associated Hessian of u. Recall that taking u ∈ C2(Ω) we obtain
∇u ∈C1(Ω).
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Applying the interpolation operator on ∇u and using (3.17) we obtain a definition of the
projected second derivative of u in terms of only the values of the gradient at the extremities of
the edge:

∇ghxij ·xij = gi j ·xij (3.19)

where ∇gh = Πh∇u, gi = ∇u(xi) and gi j = g j−gi.
Using a mean value argument, we set that:

∃Y ∈ [xi,x j], gi j ·xij =H(u)(Y )xi j ·xi j .

However this equation cannot be evaluated exactly as it requires that the gradient of u to
be known and continuous at the nodes of the mesh. For that reason, we resort to a gradient
recovery procedure.

3.3.2.3 Gradient recovery procedure

Using uh, a P1 Finite Element approximation obtained by applying the Lagrange interpolation
operator to a regular function u ∈ C2(Ω), we seek the recovered gradient gi of uh, defined at
node xi by:

gi = argmin
g∈Rd

∑
j∈Γ(i)

∣∣(g−∇uh) ·xi j∣∣2 = argmin
g∈Rd

∑
j∈Γ(i)

∣∣g ·xi j−
(
uh(x j)−uh(xi)

)∣∣2 . (3.20)

The solution to (3.20) is expressed as:

gi =
1
|Γ(i)|

(
Xi)−1 ∑

j∈Γ(i)

(
uh(x j)−uh(xi)

)
xi j. (3.21)

The quantity |gi ·xi j| gives a second order accurate approximation of the second derivative of u
along the edge xi j [54]: ∣∣∣(gi−Gi) ·xij

∣∣∣∼ (H(u)xi j ·xi j)
where gi is the recovery gradient at node i (given by (3.21)), Gi being the exact value of the
gradient at node i.

It is proved in [64] that for P1 Finite Elements on anisotropic meshes, edge residuals domi-
nate a posteriori errors. Therefore, it is suitable to define an error indicator function associated
to the edge xi j as:

ei j =
∣∣gi j ·xi j∣∣ . (3.22)

Moreover, this quantity can be easily extended to account for several sources of error, instead
of just the scalar field vh, by applying formula (3.22) to each component separately.

3.3.2.4 Metric construction

We seek to relate the error indicator ei j defined in (3.22) to a metric suitable for a mesh adap-
tation procedure. For that purpose, we introduce the concept of stretching the factor si j defined
as the ratio between the length of the edge xi j after the adaptation procedure and before the
adaptation procedure. The new metric, denoted by M̃i, will then be given by:

M̃i =
1
d

(
X̃i
)−1

(3.23)
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where

X̃i =
1
|Γ(i)|

(
∑

j∈Γ(i)
(si j)2xi j⊗xi j

)
(3.24)

is the new length distribution tensor. To relate the metric to the interpolation error, follow-
ing [26] we set a target total number of nodes N. Because of the quadratic behavior of the error
as a function of the scaling factor, denoting by ẽi j the quantity defined in (3.22) computed after
the mesh adaptation process we have:

si j =

(
ẽi j

ei j

)1/2

. (3.25)

Moreover, the number of nodes in the new mesh resulting from the application of the scaling
factor si j to the edge will be roughly equal to:

Ni j =
1
si j , (3.26)

so that the total contribution of node i (in the old mesh) to the number of nodes in the new mesh
will be given by

Ni = det

((
Xi)−1 ∑

j∈Γ(i)
Ni jxi j⊗xi j

)
(3.27)

By combining (3.25) and (3.26), it is possible to consider Ni in (3.27) is a function of ẽi j.
Assuming that the total error is equidistributed among all edges such that each edge contributes

a constant error e to the total, one can see that Ni j =
(

ei j

e

)1/2
, which results in the relation

Ni(e) = Ni(1)e−d/2. (3.28)

By summing over all the nodes of the old mesh, an expression for the global error as a function
of the number of nodes in the new mesh is obtained:

e =

(
1
N ∑

i
Ni(1)

)2/d

(3.29)

The corresponding stretching factors are given by:

si j =

(
∑
i

Ni(1)
)1/d

N1/d (ei j)1/2 . (3.30)

3.3.2.5 Mesh adaption criteria

In the last paragraphs, we showed the construction of a metric from a field u under the con-
straint of a fixed number of nodes. In coupled problems, the mesh may require to be adapted
according to several fields. If we apply the mesh adaptation to both the Navier-Stokes and heat
transfer equations, different fields can be used as a criterion: the velocity norm, the velocity
components, the temperature field, the temperature gradient components, and/or their combi-
nations. In this case, the adaptivity will account for the both the change of direction of the
velocity, its magnitude and the temperature field T .
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A way to adapt a mesh according to several variables is to construct a metric field for each
variable and then produce a unique metric by intersection of metrics [65]. The resulting metric
should yield the largest mesh size in any direction that still fulfills the size constraint given
by all the metrics. The intersection operation between several metric fields is not uniquely
defined. The most common technique, consisting of a sequence of simultaneous reductions of
two metrics, does not provide the optimal metric, is not commutative and incurs a relatively
high computational cost. Robust techniques, based on the optimization problems, are even
more costly.

In what follows, we simplify this operation by using one field that accounts for different
variables. It consists on constructing a unique metric directly using a multi-component error
vector containing, for instance, all the components of the velocity field, the temperature field,
the level set function α , etc. Consequently, we do not need to intersect several metrics.

Let us introduce u = {u1,u2, · · · ,un}. By applying the above theory for each component
of u, we end up obtaining a single metric and it comes out immediately that the error is now a
vector given by the following expression:

~ei j =
{

e1
i j,e

2
i j, · · · ,en

i j
}

(3.31)

and then the stretching factor reads:

si j =

( ||e(N)||
||−→ei j||

) 1
2

(3.32)

For example, a vector of error sources can be locally defined in two dimensions as:

Y(xi) =

 vi
x
‖vi‖ ,

vi
y

‖vi‖ ,
∥∥vi
∥∥

max
j
‖v j‖ ,

T i

Tmax
,

α̃
α̃max

 . (3.33)

The field used as input for the error estimator (3.22) is the norm
(
∑k Y 2

k

)1/2 of Y, with Yk
the components of Y. This definition measures the error in the norm as well as in the direction
of the velocity vector v, in addition to the error on the temperature T . Because all fields are
normalized (the velocity components vx, vy and vz by the local velocity norm, the velocity norm
‖v‖, the temperature and he filtered level set function α̃ by their respective global maximum),
a field that is much larger in absolute value does not dominate the error estimator, and the
variations of all variables are fairly taken into account.

Note also that there are different possibilities to compute the norm (L2, L1 or L∞) and to
produce a simple error value for each edge and thus from a unique ei j value, the scalar theory
exposed in the previous section can be used and provides a unique metric. Since we did not
observe a significant difference between the norms, we used in the numerical example only the
L2 norm to compute the error.

3.4 Mixing laws
In the monolithic approach, all the different phases considered (solid, liquid, gas) are immersed
in a single domain. As explained previously we use an implicit definition of the interfaces by
mean of level set functions. Therefore, the level set function will be used to distribute in space
the respective material properties. In order to avoid discontinuity at the interface, we compute
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a smooth Heaviside function to distribute in space the corresponding physical properties. This
Heaviside function is given by:

H(α) =


1 if α > ε
1
2

(
1+

α
ε
+

1
π

sin
(πα

ε

))
if |α| ≤ ε

0 if α <−ε

(3.34)

where α is the level set function, ε is a small parameter such that ε = O(him), known as
the interface thickness, and him is the mesh size in the normal direction to the interface. In the
vicinity of the interface, it can be computed using the following expression:

him = max
j,l∈K

∇α ·x jl, (3.35)

where x jl = xl−x j and K is the mesh element under consideration. Consequently, the PDE’s
are solved in the whole domain, using the same set of equations. All phases are considered as
"one phase" with continuous heterogeneity in their physical properties. It should be underlined
that the accuracy in the distribution of the material properties will benefit from the anisotropic
mesh adaption procedure that reduces the thickness of the transition.

The material properties such as density ρ , heat capacity cp, dynamic viscosity µ and initial
temperature are therefore computed as follows:

ρ = ρ f H(α)+ρs(1−H(α))

µ = µ f H(α)+µs(1−H(α))

ρCp =
(
ρ fCp f H(α)+ρsCps(1−H(α))

)
ρCpT = ρ fCp f Tf H(α)+ρsCpsTs(1−H(α))

(3.36)

However, using a linear mixing law for the thermal conductivity λ would lead to inaccurate
results. According to [66], a harmonic mixing laws is recommended to ensure the conservation
of the heat flux:

λ =

(
H(α)

λ f
+

1−H(α)

λs

)−1

(3.37)

The Immersed Volume Method enables to consider a direct thermal coupling without the
need of heat transfer coefficient. This method only requires the knowledge of the material
properties an deals naturally with conjugate heat transfer.

3.5 Numerical applications

We present in this section two numerical tests with validations to illustrate the propose adaptive
Eulerian framework. The first one focuses on fixed geometries and their corresponding obtained
anisotropic meshes, while the second one focuses on dynamic mesh adaptation using different
criteria and its utility.
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3.5.1 High-fidelity anisotropic meshing
In the first test case, we aim to show the flexibility of the proposed mesh adaptation technique
to deal with multiphase flows. Therefore we consider three fixed objects defined by level set
functions inside a squared domain (see Figure 3.5). The circle of radius 0.1m is centered at
(0.15;0.15). The square of 0.20m size is centered at (0.85;0.15). The regular pentagram is
centered at (0.5;0.75) and the radius of the circumcircle is 0.2m. We choose to position them
close to the wall to assess the capacity of the method to capture the features of the geometry
close to a boundary.

In multiphase simulations, we use the level set function to define the properties in each
phase. The physical properties are usually discontinuous across the interface. To avoid discon-
tinuities which lead to numerical errors, we use a smooth Heaviside function computed from
the level set function. This creates an interface transition with a thickness of few elements.
The use of mesh adaptation techniques enables to reduce this thickness. As it is depicted in
Figure 3.5, for a given number of elements (10000), the transition is finer with an anisotropic
adaptive mesh.

1 m

1 m

Figure 3.5: Three immersed objects inside a squared cavity (left). Filtered level set function
for 10000 elements in a structured mesh (middle) and in an adaptive mesh (right).

Figure 3.6 shows the obtained zero isovalue of the level set functions using different number
of nodes. The comparison with structured meshes using the same number of nodes shows that
anisotropic mesh adaptation allows easily to keep very good accuracy of the geometry, even for
a low number of nodes. Figure 3.7 shows the correct orientation and deformation of the mesh
elements (longest edges parallel to the boundary). This yields a great reduction of the number
of triangles. These results give confidence that the proposed framework allows to deal with
different shapes, with angles, singular point and curvatures.

Finally, we measure the accuracy of the mesh adaptation technique. We compute the total
perimeter and the total area of the three immersed objects and we plot the error between the
analytic and the numerical solutions. We also plot the error for a structured mesh. Figure 3.8
confirms the advantage of using anisotropic adaptive meshes for multiphase flows. For a given
accuracy, at least ten times more elements are required in a structured mesh.

3.5.2 Dam break
In this test case, we consider the collapse of a column of water of size ω2a×a. This is a widely
used benchmark in the field of multiphase flows. The initial setup for this test case is given
in Fig. 3.9. A fictitious wall, the dam, is removed at initial time. The water is thus free to
fall and evolve from left to right. Experimental results are available from [67] and make this
benchmark suitable for validation. The position of the front over time on the bottom side of the
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Figure 3.6: Zero isovalue of the level set function for 1000, 2000, 5000 and 10000 elements.
First line: result with adaptive meshing. Second line: result with structured meshes

Figure 3.7: The obtained mesh for 1000, 2000, 5000 and 10000 elements

domain or the evolution of the water height on the left side of the domain were validated against
experiment in [68]. We reproduce in Fig.3.10 the evolution of the front position. In this figure
are also plotted results from literature using various numerical methods [69, 70]. The evolution
of the water is depicted in Fig. 3.11. It shows that the proposed framework deals naturally
with complex topological changes of the interface. Water hits the wall on the right side of
the domain and splashes into several slugs. This test case represents a real challenge using a
fully Lagrangian framework because of the possible interpenetration of mesh elements during
the motion of the interface. Using an Eulerian framework enables to avoid such difficulties.
However, to obtain a better accuracy in the description of the interface and the evolution of the
flow motion, it would be helpful to use the anisotropic mesh adaptation procedure presented
earlier.

As mentioned earlier in this chapter, mesh adaptation can be performed using several vari-
ables all at once. This benchmark is an opportunity to see the effect of the mesh adaptation on
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Figure 3.8: Percentage of error for the computation of the perimeter (left) and the area (right)

a

ω2a

Figure 3.9: Initial setup for the 2D dam break test case. The column of water is represented in
gray.

the resolution of the problem. Therefore we propose to adapt the mesh according to the level
set function but also according to an additional criterion. We performed first a simulation using
viscous dissipation and a second one using shear stress. The evolution of the mesh according to
each criterion is given in Fig.3.12. On the left of Fig.3.12, we notice that only the free surface
is well captured. Other features related to the flow evolution such as eddies, recirculation at
the corner are missing. The simulation reaches a quasi-steady state after only few physical sec-
onds. In the second case, using shear stress as a mesh adaptation criterion enables the mesh to
capture key features of the flow. We clearly see the evolution of the wave from one side to the
other, recirculation at the corner, boundary layers. The importance of the criteria is therefore
highlighted. Further investigation are still required to validate this observation.

3.6 Conclusion

In this chapter, we presented the different components of the Immersed Volume method that
will be extended in the following chapters to deal with boiling and the simulation of quenching
processes. A single domain is discretized and all the phases and geometries are immersed in
this domain. Therefore, only a single set of equation is solved. The different phases are rep-
resented using a level set method that is shown to be favorable in the simulation of multiphase
flows. Physical properties are distributed to their respective phases using mixing laws that en-
able a smooth transition over a small thickness at the interface. Then we introduced the mesh
adaptation procedure using metric field built from a priori or a posteriori error estimator tak-
ing into account the interfaces but also physical features such as velocity, temperature,... The
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Figure 3.10: Non-dimensional front position evolution

dynamics mesh adaptation procedure is performed under the constraint of a fixed number of
elements thus drastically reducing the computational while preserving high accuracy where it
is required. Finally we tested the proposed framework with a coupling of all these components.
The proposed framework is shown to be very accurate for the description of interface and in
the resolution of numerical problem, with a very limited computational cost.
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Figure 3.11: Evolution of the water (in blue) at t=0, 0.1, 0.31, 0.44, 0.55, 0.80 and 3 s.
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Figure 3.12: From top to bottom, meshes at t=0, 0.1, 0.2, 0.5, 0.7, 0.8, 1, 1.5, 2 and 3s. On
the left column, the mesh adaptation criterion is viscous dissipation. On the right, the mesh
adaptation criterion is shear stress.



CHAPTER 3. EULERIAN FRAMEWORK 45

Résumé en français
Dans ce chapitre, la méthode des volumes immergées est présentée. Cette méthode consiste en
un cadre eulérien monolithique, dans lequel un unique domaine est considéré et un seul ensem-
ble d’équations est résolu dans tout ce domaine. Les différentes phases en présence sont local-
isées par l’intermédiaire d’une fonction level set. La fonction level set est une distance signée
à l’interface qui permet naturellement des évolutions topologiques complexes de l’interface.
La distribution des propriétés physiques des différentes phases est effectuée en calculant une
loi de mélange utilisant la level set. L’évolution de l’interface est obtenue par la résolution
d’une équation de transport qui, dans certain cas, peut faire perdre à la level set sa propriété de
distance, ne permettant plus un mélange exact des propriétés physiques. Ainsi, deux méthodes
dites de "réinitialisation" sont présentées, permettant de conserver cette propriété de distance.

La description des différentes phases est améliorée par l’utilisation de méthodes d’adaptation
de maillage anisotrope. Ces méthodes permettent de raffiner le maillage proche des interfaces
et de le déraffiner ailleurs. La précision des calculs est ainsi grandement améliorée tout en con-
servant un coût de calcul intéressant. La méthode présentée dans ce travail permet également
de travailler à nombre d’éléments constant, ce qui représente un intérêt lorsque les capacités
de calculs ne sont pas extensibles. L’extension de cette méthode d’adaptation de maillage
anisotrope permet de capturer avec précision les plus forts gradients des solutions du problème,
telles que la température et la vitesse, aboutissant ainsi à une précision accrue.

Des cas tests permettent de montrer la pertinence et la précision de la méthode des volumes
immergées pour la simulation d’écoulements multiphasiques.
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4.1 Context
Today, new developments in Finite Element methods enable accurate resolution of some com-
plex problems such as compressible flows governed by the Navier-Stokes equations or incom-
pressible viscous flows at high Reynolds numbers. It is well known that the essential break-
through in Computational Fluid Dynamics has first been made in the context of the finite dif-
ference and the finite volume methods. However, the use of Finite Element method to study
fluid dynamics has grown significantly. Indeed, several Finite Element approaches have been
proposed to address the challenging task of solving the Navier-Stokes and the Convection-
Diffusion-Reaction (CDR) equations accurately and efficiently in the high Reynolds (Re) and
Peclet (Pe) regimes. We will introduce in this chapter the Finite Element method implemented
at CEMEF to solve CFD problems.

47
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4.2 State of the art

The incompressible Navier-Stokes equations are used to model a number of important physical
phenomena: turbulent flow around airfoils, meteorological prediction, weather, arterial blood
flow [71], etc. The standard Galerkin formulations were not robust enough to model complex
convection dominated flows. Therefore, a significant effort has been made to develop Finite
Element approaches circumventing the weaknesses of the Galerkin method [72, 73, 35]). As
a consequence, alternatives to the standard Galerkin FEM have flourished in the literature.
Amongst them, we will focus on the Stabilized Finite Element Method (SFEM) and the Varia-
tional Multiscale method (VMS). These two classes of Finite Element are no so fundamentally
different. Indeed, even if Stabilized Finite Element methods (SFEM) are centered on the mod-
ification of the variational formulation while Variational Multiscale method modify the Finite
Element basis, it is shown in the literature, that they address the same shortcomings of the clas-
sical Galerkin method. They add weighted residual terms to the standard weak formulation of
the problem to enhance its stability while maintaining consistency.

Indeed, the stability of the discrete formulation depends on the compatibility restrictions on
the choice of the Finite Element spaces for the velocity and the pressure. According to this,
standard Galerkin mixed elements with continuous equal order linear/linear interpolation is not
a stable discretization since it does not satisfy the Babuska-Brezzi (inf-sup) condition. The lack
of stability manifests in uncontrollable oscillations that pollute the solution.

Several methods exist to circumvent the lack of stability in convection-dominated regime
and the inf-sup restriction. In [74] was proposed the concept of Mini -Element which consists
in the enrichment of the functional space by a space of bubbles function. A stabilized formu-
lation allowing equal order linear interpolation is obtained using the Mini-Element since the
bubble functions vanish on the element boundary and are eliminated by static condensation.
This method, if appropriate in diffusion dominant regime, the Mini-element formulation of the
problem yields very acceptable results. However, when the convection terms dominate, the
results are deteriorated and therefore this method requires additional stabilization to achieve
acceptable results.

A groundbreaking method is the Streamline Upwind Petrov Galerkin (SUPG) proposed
by Brooks and Hughes [75, 76]. This method modifies the test functions by adding weighted
residuals to the variational formulation of the problem. This method has proved its efficiency in
eliminating the spurious oscillations related to the Galerkin formulation and is now a standard
for computational fluid dynamics and heat transfer Finite Element solver.

A history on residual based stabilization methods can be found in the book of Donea and
Huerta [77]. The foundations of multiscale methods were made precise in the mid 90’s by
Hughes et al. [32, 78] followed by PSPG (Pressure Stabilized Petrov Galerkin) methods by
Tezduyar [79]. The Unusual Stabilized Finite Element method (USFEM) was introduced by
Franca and Farhat in [80]. Codina and co-workers introduced lately recent developments of
residual based stabilization methods using orthogonal subscales and time dependent subscales
[81, 82, 83, 84]. These methods are very promising and can be regarded as an open door to
turbulence. At the same level, one can find a complete description on the use of Variational
Multiscale method for turbulent flows in [85, 86, 87] where a three scale separation method
was developed and applied.
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4.3 Flow solver

Turbulent flows can be predicted by resolving the transient Navier-Stokes equations using a
Direct Numerical Simulation (DNS) [88] approach with a very fine mesh resolution and ad-
equate time steps. The required computing resources for such computations are tremendous
and are not always affordable especially when simulating complex industrial processes. This is
the main reason why most engineering computations involving turbulent flows use turbulence
modeling, at least for the foreseeable future.

Large numbers of models have been developed and studied in the last few decades. We
can classify these modeling approaches into three categories: VMS, LES and RANS. As one
progresses from DNS to RANS, more and more of turbulent motions are approximated and,
therefore, require less computational resources. This is especially interesting when dealing
with industrial application since it opens the choice to the user to decide which methods to
use regarding the application at hand. Each method will offer the accuracy of the results with
respect to the computational costs.

The Finite Element implementation of the unsteady Navier-Stokes and Convection-Diffusion-
Reaction will be briefly described and analyzed in the following sections.

4.3.1 The incompressible Navier-Stokes equations

4.3.1.1 Governing equations

Let Ω ⊂ Rn be the spatial domain at time t ∈ [0,T ], where n is the space dimension. Let Γ
denotes the boundary of Ω. We consider the following velocity-pressure formulation of the
Navier-Stokes equations governing unsteady incompressible flows:

ρ(∂tu+u ·∇u)−∇ ·σ = f in Ω× [0,T] (4.1)

∇ ·u = 0 in Ω× [0,T] (4.2)

where ρ and u are the density and the velocity, f the body force vector per unit density and σ
the stress tensor which reads:

σ = 2µ εεε(u)− p Id (4.3)

where p and µ are the pressure and the dynamic viscosity, Id the identity tensor and εεε the
strain-rate tensor defined as:

εεε(u) =
1
2
(
∇u+ t∇u

)
(4.4)

Dirichlet and natural boundary conditions for equation (4.1) are:

u = g on Γg× [0,T ] (4.5)

n ·σ = h on Γh× [0,T ] (4.6)

where Γg and Γh are complementary subsets of the domain boundary Γ. Functions g and h are
given and n is the unit outward normal vector of Γ.

As initial condition, a divergence-free velocity field u0(x) is specified over the domain Ω at
t = 0:

u(x,0) = u0(x) (4.7)
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4.3.1.2 Weak formulation

The function spaces for the velocity and the pressure are respectively defined by:

V =
{

u(x, t) | u(x, t) ∈ H1(Ω)n, u = g on Γg
}

(4.8)

P =
{

p(x, t) | p(x, t) ∈ L2(Ω)
}

(4.9)

and the weighting function space for the velocity

V0 =
{

u(x, t) | u(x, t) ∈ H1(Ω)n, u = 0 on Γg
}

(4.10)

(4.11)

The weak form of system (4.1 - 4.2) consists in finding u : [0,T ]→V , p : (0,T ]→ P such that:{
(ρ∂tu,w)Ω +(ρu ·∇u,w)Ω +(σ(p,u),εεε(w))Ω = (f,w)Ω +(h,w)Γh

∀w ∈V0

(∇ ·u,q)Ω = 0 ∀q ∈ P
(4.12)

where (ϕ,ψ)Ω =
∫

Ω ϕψdΩ is the standard scalar product in L2(Ω).
The standard Galerkin approximation consists in decomposing the domain Ω into Nel ele-

ments K such that they cover the domain and are either disjoint or share a complete edge (or
face in 3D). Using this partition Kh, the above-defined functional spaces (4.8) and (4.9) are
approached by finite dimensional spaces spanned by continuous piecewise polynomials such
that:

Vh =
{

uh | uh ∈C0(Ω)n, uh|K ∈ P1(K)n, ∀K ∈Th
}

(4.13)

Ph =
{

ph | ph ∈C0(Ω), ph|K ∈ P1(K), ∀K ∈Th
}

(4.14)

The Galerkin discrete problem consists therefore in solving the following mixed problem:

Find a pair uh : [0,T ]→Vh and ph : (0,T ]→ Ph, such that: ∀ (wh,qh) ∈Vh,0×Ph
(ρ∂tuh,wh)Ω +(ρuh ·∇uh,wh)Ω

+(2µεεε(uh) : εεε(wh))Ω− (ph,∇ ·wh)Ω = (f,wh)Ω +(h,wh)Γh

(∇ ·uh,qh)Ω = 0

(4.15)

Recall that the standard Galerkin formulation with equal order linear interpolation is not a
stable stabilization and suffers from spurious oscillations that pollute the solution.

4.3.2 The Variational Multiscale method (VMS)
The Variational Multiscale framework, proposed by Hughes [32] to deal with the mixed vari-
ational formulation for solving the Navier-Stokes equations, models the effects of the smallest
scales of the flow and numerically resolves the largest scales. It considers that the unknowns
can be split into two components, coarse and fine, corresponding to different scales or levels of
resolution. First, we solve the fine scales in an approximate manner and then we replace their
effect into the large scales.
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In this work, we contribute in the development of the VMS formulation of the Navier-Stokes
equation taking into account additional features such as semi-implicit surface tension, phase
change or considering a unified compressible-incompressible flows formulation. We describe
in this section the general outline of the VMS formulation for the incompressible Navier-Stokes
equation that enables the use of equal order continuous interpolations and prevent oscillations
polluting the solution in the convection dominated regime. The ability of this formulation to
deal with high Reynolds number flows is demonstrated in [89, 20, 24].

4.3.2.1 Variational formulation

Let us split the velocity and the pressure solution spaces as Vh⊕V ′ and Ph⊕P′, respectively.
Subscript h is used here and in the following to denote the Finite Element (coarse) component,
whereas the prime is used for the so-called subgrid scale (fine) component of the unknowns.
The scale decomposition reads:

u = uh +u′ ∈ Vh⊕V ′

p = ph + p′ ∈ Ph⊕P′ (4.16)

The scale decomposition is also applied to the test function spaces:

w = wh +w ∈ Vh,0⊕V ′0
q = qh +q′ ∈ Ph,0⊕P′0 (4.17)

The weak formulation of 4.15 using the scale decomposition is:

(ρ∂t(uh +u′),wh +w′)+(ρ(uh +u′) ·∇(uh +u′),wh +w′)
−(ph + p′,∇ · (wh +w′))+2(µε(uh +u′),ε(wh +w′)) = (f,wh +w′) (4.18)

(∇ · (uh +u′),qh +q′) = 0 (4.19)

In this work, additional assumption regarding the subscales are proposed, even though the
subgrid scales (or subscales) could be approximated without further assumptions and inserted
into the previous equations (see [90]), we will make use of some common approximations:

i) The subscales are not tracked in time, therefore, quasi-static subscales are considered
here. However, the subscale equation remains quasi time-dependent.

ii) The convective velocity of the non-linear term may be approximated using only the large-
scale component, so that (uh +u′) ·∇(uh +u′)≈ uh ·∇(uh +u′). Moreover, this approx-
imation can be done also if the convective term is written as ∇ · [(uh +u′)⊗ (uh +u′)],
which is relevant when integrating by parts the convective term.

iii) Terms involving subscales can be integrated by parts and the subscales on the element
boundaries will be neglected.

The equations for the coarse scales are obtained taking the subscale test functions equal to
zero. Furthermore, we can mention that for linear elements used in this work, terms of the form
∇ · (2µε(wh)) involving second derivatives within each element can be neglected. Therefore,
we get:

(ρ∂tuh,wh)+(ρuh ·∇uh,wh)− (ph + p′,∇ ·wh)+2(µε(uh),ε(wh))

+∑
K
(u′,−ρuh ·∇wh)K = (f,wh) (4.20)

(∇ ·uh,qh)−∑
K
(u′,∇qh)K = 0 (4.21)
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where ∑K stands for the summation over all the elements of the Finite Element partition Kh
and (·, ·)K denotes the L2 product in each K.

The problem for the fine scales is obtained taking (wh,qh) = (0,0) in (4.18)-(4.19) and
using approximations i)-iii) described above. Introducing the Finite Element residuals:

Rv = f−ρ∂tuh−ρuh ·∇uh−∇ph +∇ · (2µε(uh)) (4.22)
Rp = −∇ ·uh (4.23)

and using the same analysis as in [91, 92], it turns out that the subscales may be approximated
within each element K ∈Kh by:

u′ = τvΠ′v(Rv), p′ = τpΠ′p(Rp),

where Π′v and Π′p are the projections onto V ′ and P′, respectively, and τv and τp are the so-called
stabilization parameters. The choice is made here to consider the identity as the projection
when applied to Finite Element residuals (see [32, 91]). It is also possible to take them as the
orthogonal projection to the Finite Element space (see [92] and references therein). Referring
to the stabilization parameters, we compute them within each element as:

τv =

[(
c1µ
ρh2

)2

+

(
c2‖uh‖K

h

)2
]−1/2

(4.24)

τp =

[(
µ
ρ

)2

+

(
c2‖uh‖Kh

c1

)2
]1/2

(4.25)

where h is the element size, ‖u‖K a characteristic norm of uh (with the same units as uh) in
element K and c1 and c2 are algorithmic constants. We take them as c1 = 4 and c2 = 2 for linear
elements (see [93]). Very often, the time step size of the temporal discretization is included in
the expression of τv. This improves the convergence behavior of the algorithm to deal with the
nonlinearity of the problem, but has several conceptual drawbacks, as explained in [93, 94]. In
order to make τv more uniform over the computational domain and, as a consequence, improve
the behavior of the scheme, one may take:

τv =

[
1
τ2

0
+

(
c1µ
ρh2

)2

+

(
c2‖uh‖K

h

)2
]−1/2

(4.26)

where τ0 is a reference value of τv given by (4.24) computed over the whole mesh (for example
the minimum over all the elements). This value in fact should be related to the time step size
of the time discretization, ∆t.

Inserting the expression for the subscales obtained in (4.20)-(4.21) we finally obtain the
following Finite Element formulation:

(ρ∂tuh,wh)+(ρuh ·∇uh,wh)− (ph,∇ ·wh)+2(µε(uh),ε(wh))

+∑
K

τv(ρ∂tuh +ρuh ·∇uh +∇ph−∇ · (2µε(uh))− f,ρuh ·∇wh))K

+∑
K

τp(∇ ·uh,∇ ·wh) = (f,wh) (4.27)

(∇ ·uh,qh)+∑
K

τv(ρ∂tuh +ρuh ·∇uh +∇ph−∇ · (2µε(uh))− f,∇qh)K = 0 (4.28)
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When compared with the standard Galerkin method, the proposed formulation involves
additional integrals that are evaluated element wise. These additional terms represent the effects
of the sub-grid scales and enable to overcome the instability in convection dominated regime.

Writing the formulation using the stabilization parameters and the residuals defined in
(4.22)-(4.25) leads to the following formulation:

(ρ∂tuh,wh)+(ρuh ·∇uh,wh)− (ph,∇ ·wh)+2(µε(uh),ε(wh))

−∑
K
(τvRv,ρuh ·∇wh)K

−∑
K
(τpRp,∇ ·wh) = (f,wh) (4.29)

(∇ ·uh,qh)−∑
K
(τvRv,∇qh)K = 0 (4.30)

4.3.2.2 Temporal discretization

We will address here the temporal discretization, using Backward Differentiation Formula of
order σ referred as BDF-σ . The choice of this method lies in its simplicity of implementation.
These are one-step methods that only require the storage of the solution at additional time
iteration (few % of the total memory requirement). Only 1st and 2nd order are A-stable and
therefore will be considered here. Following the work in [95], we consider semi-implicit BDF
schemes using Newton-Gregory backwards polynomials for the extrapolation of the nonlinear
terms arising from this temporal schemes.

The time derivative of the velocity is approximated by:

∂tuh ≈
1
∆t

(
ασ un+1

h −un,BDFσ
h

)
(4.31)

where the leading coefficient is defined by:

ασ =


1 for σ = 1

3
2

for σ = 2

11
6

for σ = 3

(4.32)

Extrapolation using Newton-Gregory backward polynomials are given for the velocity by:

un+1,σ
h =


un

h if n > 0 for σ = 1
2un

h−un−1
h if n > 1 for σ = 2

3un
h−3un−1

h +un−2
h if n > 2 for σ = 3

(4.33)

and are given for the pressure by:

pn+1,σ
h =


pn

h if n > 0 for σ = 1
2pn

h− pn−1
h if n > 1 for σ = 2

3pn
h−3pn−1

h + pn−2
h if n > 2 for σ = 3

(4.34)
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The linearized semi-implicit formulation reads:

( ρ
∆t

(
ασ un+1

h −un,BDFσ
h

)
,wh

)
+
(

ρun+1,σ
h ·∇un+1

h ,wh

)
+
(
2µε

(
un+1

h

)
,ε (wh)

)
−
(

pn+1
h ,∇ ·wh

)
+
(
∇ ·un+1

h ,qh
)

+
(

τn+1,σ
v Rn+1,σ

v
(
un+1

h , pn+1
h

)
,ρun+1,σ

h ·∇wh +∇qh

)
−
(

τn+1,σ
p Rp

(
un+1

h

)
,∇ ·wh

)
=
(
fn+1,wh

)
(4.35)

where the stabilization parameters are defined as:

τn+1,σ
v =

(c1µ
ρh2

)2

+

(
c2‖un+1,σ

h ‖K

h

)2
−1/2

(4.36)

τn+1,σ
p =

(µ
ρ

)2

+

c2

∥∥∥un+1,σ
h

∥∥∥
K

h

c1

2
1/2

(4.37)

and the residuals are defined as:

Rn+1,σ
v

(
un+1

h , pn+1
h

)
=

ρ
∆t

(
ασ un+1

h −un,BDFσ
h

)
+ρun+1,σ

h ·∇un+1
h +∇pn+1

h −2µε
(
un+1

h

)
− fn+1

Rp
(
un+1

h

)
= ∇ ·uh

(4.38)

4.4 Convection-Diffusion-Reaction equation
In this section, the stabilized finite-element method used to solve equations such as the heat
equation, turbulence equation (Spalart-Allmaras, k-ε ,...), radiative transport equation (RTE)
is outlined briefly. Indeed, these equations can be represented by a single scalar transient
convection-diffusion-reaction equation which reads:

∂tϕ +u ·∇ϕ−∇ · (κ∇ϕ)+ rϕ = f (4.39)

where ϕ is the scalar variable, κ the diffusion coefficient, r the reaction coefficient and f a
source term. According to the problem to solve, the scalar ϕ can be a temperature, a dissipation
energy, a kinetic energy, a chemical concentration, etc.

4.4.1 Stabilized Finite Element for Convection-Diffusion-Reaction equa-
tion

Stabilization methods for transient convection-diffusion-reaction equations are discussed in
[96, 97, 98]. The stabilized weak form of equation (4.39) reads:

Find ϕ ∈ Sh such that, ∀w ∈Wh :

(∂tϕ +u ·∇ϕ,w)+(κ∇ϕ,∇w)+(rϕ,w)

+∑
K
(R(ϕ),τSUPGu ·∇w)K︸ ︷︷ ︸
streamline upwind

+∑
K
(R(ϕ),τSCPGũ ·∇w)K︸ ︷︷ ︸

discontinuity-capturing

= ( f ,w)
(4.40)
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where Sh and Wh are standard test and weight Finite Element spaces and R(ϕ) is the appropriate
residual of equation (4.39), u is the convection velocity and ũ is a function of the temperature
gradient. In equation (4.40), the first term labeled as streamline upwind refers to the SUPG
(Streamline Upwind Petrov Galerkin) stabilization [75, 76] controlling the oscillations in the
direction of the streamlines, in the convection dominated regime. The second term, labeled
as discontinuity-capturing refers to the SCPG (Shock Capturing Petrov Galerkin) stabilization,
working in the direction of the gradient of the solution [99]. The latter stabilization adds nu-
merical diffusion in the neighborhood of sharp gradient and boundary layers. The stabilization
parameters are defined in the same fashion as (4.24). We refer to [75, 99, 97] for the definition
of the stabilization parameters.

4.4.2 Stabilization by entropy viscosity
The stabilization method typically used at Cemef for convection is the SUPG (Streamline Up-
wind/Petrov Galerkin) method [75]. This method improves the result compared to a standard
Galerkin resolution. However, this method has some limits to prevent remaining oscillations
near extreme gradients of the solution. In industrial processes, these shocks are present since
the system is exposed to extreme conditions (metallic part at 1000◦c in water at 20◦C). Fol-
lowing the work in [100], we analyze in this section a new stabilization method. This method
is inspired by the physics in the sense that we use entropy as a selection principle to add an
extra-stability wherever it is needed, without polluting the solution. A more stable and physical
solution is therefore obtained.

4.4.2.1 Entropy viscosity for conservation laws

Let consider a general conservation law.

∂u
∂ t

+∇ · f (u) = 0 (4.41)

It is known that this problem has a weak solution that is physical and satisfies the following
inequality:

∂
∂ t

E(u)+∇ ·F(u)6 0 (4.42)

This solution is called the entropy solution. The inequality is verified for a pair E(u) and F(u)=∫
E ′(u) f ′(u)du where E(u) is convex. Equation (4.42) is an equality in the regions where the

solution is smooth. If the equality is not verified, it means that the solution is not smooth
and that entropy is produced. Equation (4.42) will be used to detect the regions when the
stabilization is required. To take into account this stabilization, equation (4.41) is augmented
with a dissipation term −∇ · ν∇u where ν is the entropy viscosity. The computation of the
entropy viscosity is the key point of this method since it defines the amount of diffusion to
stabilize the solution.

We define the discrete residual Dh of the entropy equation:

Dh(x, t) =
∂
∂ t

E(uh)+∇ ·F(uh) (4.43)

where the index h denotes the discrete approximation.
The so-called "entropy viscosity" νE is defined as:

νE|K
= cEh2

K
‖Dh‖∞,K

‖E(uh)− Ē(uh)‖∞,Ω
(4.44)
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where cE is a tunable constant, hK smallest edge of an element K,‖ · ‖∞,Ω is the infinity norm
in all the domain, ‖ · ‖∞,K is the infinity norm in an element K and Ē is the average entropy
over the domain. The entropy viscosity gives an order of magnitude of the ratio of the entropy
produced at the local scale and the maximal variation of entropy at the global scale.

To control the weight of the additional terms, we introduce an upper viscosity defined as
follows:

νmax|K
= cmax hK ‖ f ′(u)‖∞,K (4.45)

Finally, we set the stabilization viscosity to:

νh = min(νmax,νE) (4.46)

The new variational formulation reads:(
∂uh

∂ t
+∇ · f (uh),wh

)
+∑

K
(vh∇uh,∇wh)K = 0 ∀wh ∈Wh (4.47)

Compared to the SUPG method, an additional residual term is added to the variational
formulation. More details are given in the following section.

4.4.2.2 Entropy viscosity for the convected level set method

We recall the convected level set equation:

∂α
∂ t

+u ·∇α +λ s(α)

(
‖∇α‖−

(
1−
(α

E

)2
))

= 0 (4.48)

where α is the filtered level set function, λ is a coefficient homogeneous to a velocity and E is
the thickness of the truncation. We rewrite the equation in the general form:

∂α
∂ t

+V ·∇α = S (4.49)

where V = u+λ s(α) ∇α
‖∇α‖ is the convective velocity and S = λ s(α)

(
1−
(α

E

)2
)

is the source
term. The Galerkin variational formulation of this problem is:(

∂α
∂ t

+V ·∇α , w
)

Ω
= (S , w)Ω (4.50)

The classical way to prevent the spurious oscillations due to the convection term is SUPG. It
consists to express the test functions as follows:

w̃h = wh + τSUPGV ·∇wh (4.51)

The classical discrete formulation with SUPG stabilization reads then:(
∂αh

∂ t
+V ·∇αh , wh

)
Ωh

+∑
K

τSUPG

(
∂αh

∂ t
+V ·∇αh−S ,V ·∇wh

)
K
= (S , wh)Ωh

(4.52)

One of the difficulties associated with the use of the level set methods is the loss of mass
in underresolved region of the flow. A promising way to convect the level set is to use entropy
viscosity technique [100]. These methods [57] offer a better respect of mass conversation
compared to the actual methods.
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We propose to add the stabilization by entropy viscosity:(
∂αh

∂ t
+V ·∇αh , wh

)
Ωh︸ ︷︷ ︸

Galerkin

+ ∑
K

τSUPG

(
∂αh

∂ t
+V ·∇αh−S ,V ·∇wh

)
K︸ ︷︷ ︸

SUPG

+ ∑
K

νh|K
(∇αh , ∇wh)K︸ ︷︷ ︸

Entropy viscosity

= (S , wh)Ωh
(4.53)

If we compare SUPG and entropy viscosity, both are adding residual terms. In SUPG, these
terms, for a total of 5, are numerically added to the formulation. In the entropy viscosity case,
only one numerical term is added.

The choice of the entropy function E(α) = 1
2α2 leads to:

νE|K
= cEh2

K
‖Dh‖∞,K

‖E(uh)− Ē(uh)‖∞,Ω
(4.54)

where the entropy residual is:

Dh =
∂
∂ t

(
α2

h
2

)
+V ·∇

(
α2

h
2

)
−Sαh (4.55)

and the upper viscosity is defined by:

νmax|K
= cmax hK ‖V‖∞,K (4.56)

4.4.2.3 Entropy viscosity for convection-diffusion-reaction equations

We will highlight briefly the steps needed to introduce the new stabilization. We consider the
general convection-diffusion-reaction equation (4.39) that solves a certain scalar ϕ .

Using the entropy E(ϕ) = 1
2ϕ2, the entropy residual is defined as:

D =
∂
∂ t

(
ϕ2

2

)
+u ·∇

(
ϕ2

2

)
−ϕ∇ · (κ∇ϕ)+ rϕ2− f ϕ (4.57)

The convective term (u ·∇ϕ) of (4.39) is the term usually treated using the classical SUPG
stabilization. The interest of the entropy viscosity is that all the other terms are taken into
account.

The first term of the residual equation (4.57) is very important since this term causes high
gradient at the beginning of the computation. Indeed, in a furnace for example, a temperature
of 1000◦C is injected in a cavity at an initial temperature of 20◦C. The gradient is extreme and
this term destabilizes the solution. However, when the solution converges in time, this term is
close to null.

Finally, the effect of the reaction and source terms are also taken into account with the
entropy viscosity, adding consistency to this method compared to others stabilization methods.

The entropy viscosity is:

κE|K
= hK

‖Dh‖∞,K

‖u2‖∞,Ω
(4.58)
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The stabilization viscosity is defined as follows:

κE|K
= hK min

(
cK

1 ‖u2‖∞,K , cK
2 vE|K

)
(4.59)

The variational formulation now reads:(
∂ϕ
∂ t

+u ·∇ϕ + rϕ− f , w
)

Ω
+∑

K

(
κE|K

+κ
)
(∇ϕ , ∇w)K = 0 (4.60)

4.5 Synergy between Stabilized Finite Element method and
mesh adaptation

We combine in this work anisotropic mesh adaptation with flow solver based on the Variational
Multiscale method or with stabilized Finite Element for the Convection-Diffusion-Reaction
equation. As a result, we may be able to:

• Produce very good accuracy properties for high Reynolds number flows [24]

• Allow the recovery of the global convergence order of the numerical schemes in the
convection dominated regimes [101]

• Reduce the computational cost [26]

• Ensure accurate and oscillation free numerical solutions [25]

However, for a better synergy, it requires particular attention on the stabilization coefficients
in both the convective and diffusive terms to take into account highly stretched elements with an
anisotropic ratio of 1000:1. Therefore, the use of an appropriate definition of the stabilization
parameters using the directional element diameter is highly recommended.

Recall that these stability coefficients weight the extra terms added to the weak formulation
in the Navier-Stokes and Convection-Diffusion-Reaction equations. They are defined for each
element K of the triangulation. Typically, these coefficients depend on the local mesh size hK .
Many numerical experiments show that good results can be obtained when using the minimum
edge length of K [102], while others always use a modified triangle diameter (see [103] for
details).

Figure 4.1: Longest triangle length in the streamline direction

Nevertheless, in the case of strongly anisotropic meshes with highly stretched elements, the
definition of hK is still an open problem and plays a critical role in the design of the stabilizing
coefficients [104, 81]. In [105] the authors examine deeply the effect of different element length
definitions on distorted meshes. In [106] anisotropic error estimates for the residual free bubble
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(RFB) method are developed to derive a new choice of the stabilizing parameters suitable for
anisotropic partitions. In this work, we adopted the definition proposed in [107] to compute hK
as the diameter of K in the direction of the velocity v (see Figure 4.1):

hK =
2|vh|

ΣNK
i=1|vh ·∇ϕi|

(4.61)

where NK is the number of vertices of K and ϕ1, ...,ϕNK are the usual basis functions of P1(K)
mapped onto K. Note also that the use of the time step in the definition of the stabilizing param-
eter (4.26) is another important issue, in particular for small time steps. Several approaches can
be found in the literature, in particular the use of dynamic subscales in [84] and the definition
of the stabilization parameters computed from element matrices and vectors in [107]. These
approaches have been used successfully and in both cases, the steady solution is independent
of the time step and are stable for small time steps.

4.6 Validation
Although several test cases will be proposed in the following chapters, we limit here to three
representative test cases as first validations. First we consider the open cavity problem to assess
the ability of The Navier-Stokes to deal with critical Reynolds number flow. Both 1s and 2nd
order of the BDF time discretization will be tested. Then, we will consider the coupling of
flow solver with a Spalart -Allmaras model cast into a convection-diffusion-reaction equation.
Finally we will consider a 2D-forced convection taking into account the Navier-Stokes equation
and the heat equation.

4.6.1 Open cavity
We consider a 2D open square cavity of side h as depicted in Fig. 4.2, upon which lies a channel
of height 0.5h [108]. For the square, 0 6 x 6 h and −h 6 y 6 0. A uniform velocity field is
prescribed at the left side of the channel. A free-slip condition with zero tangential stress is
prescribed on the lower boundary of the channel, for (−1.2h 6 x 6 −0.4h) and (1.75h 6 x 6
2.5h). No-slip boundary conditions are imposed on (−0.4h 6 x 6 0) and (h 6 x 6 1.75h)

In the following computations, we choose h = 1. As it is shown in Fig. 4.3, the prescribed
velocity field and boundary conditions lead to the formation of a recirculating eddy in the
square cavity. The Reynolds number is set to Re = 4500.

The case being unsteady, we are interested in this test case in the comparison of the velocity
field u at (0.75;0.05). The velocity u is expected to exhibit oscillations whose frequency and
magnitude will serve to compare different flow solver implementations. Results obtained using
a DNS (Direct Numerical Simulation) approach are set as the reference. We will perform the
same simulation using our Variational Multiscale flow solver and using a time discretization
BDF1 and BDF2 schemes.

Fig. 4.3 shows that the flow seems to be steady at the point of interest while the flow is
unsteady in Fig. 4.4. Comparison of the evolution in time of the velocity is given in Fig. 4.5.
Both DNS and VMS-BDF2 are unsteady while the VMS-BDF1 has reached a steady state. This
is due to the important numerical of the first order time discretization. To fix this issue, a higher
time discretization is needed. In Fig. 4.6, we show the results at Re = 5000. Results confirm
the benefit of a higher time discretization. Indeed, even though the velocity field is unsteady
for VMS-BDF1, the magnitude of the velocity is damped compared to DNS and VMS-BDF2.
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Figure 4.2: Driven flow cavity setup.

A great improvement is therefore obtained using VMS-BDF2. Recall that the computational
cost is similar to VMS-BDF1. Only few percent of additional memory are required.

Figure 4.3: Cavity flow at Re=4500. Velocity magnitude obtained using VMS with a BDF-1
time discretization scheme.

4.6.2 Turbulent flow past a 2D prismatic cylinder
We consider the fully turbulent flow past a prismatic cylinder [109]. The prismatic cylinder is
used because of the sharp and localized flow features that represent a challenge for the stabi-
lization method. Here, the VMS flow solver will be used combined with the Spalart-Allmaras
turbulence model. An extensive use of the mesh adaptation method will be done here to solve
more accurately the flow and capture the maximum features. To this end, we will consider the
test cases proposed in [110]. The prismatic cylinders is parametrized by two lengths H1 and
H2. According to the value of the ratio H2/H1, the cylinder can be a square (H2/H1 = 1),
a triangle (H2/H1 = 0) or a cone (H2/H1 6∈ {0;1}). The configuration of the computational
domain is given in Fig.4.7. The cylinder is centered in width, and its front side is located 8H1
downstream of the inlet boundary on the left of the domain. We will consider here the ratio
H2/H1 = 0.6. The values of the uniform inlet velocity Vin and the dynamic viscosity µ are
chosen to yield a Reynolds number based on H1 equal to Re = 2.2×104.



CHAPTER 4. STABILIZED FEM FOR COMPUTATIONAL FLUID DYNAMICS 61

Figure 4.4: Cavity flow at Re=4500. Velocity magnitude obtained using VMS with a BDF-2
time discretization scheme.

Figure 4.5: Cavity flow at Re=4500. Evolution of the velocity. Black line refers to DNS, blue
line refers to VMS-BDF1 and red line refers to VMS-BDF2.

Results in Fig. 4.8, using a fixed mesh, indicate that the flow exhibits Von Karman vortex
street. The turbulence model is only active in the restricted area of interest, and the effects
of the averaging process and damping function seem to be correctly taken into account since
streamlines shown in Figure 4.8 are in agreement with those given in [110] in the cylinder
wake.

The results of drag and lift coefficients given in Table 4.1 are in good agreement with the
literature presented in [110] and the references therein. Recall that we use for the convection-
diffusion-reaction solver a first order time discretization. As it was shown in the previous test
case, stabilization technique would benefit from a higher order time discretization [111]. In
addition to the use of a first-order implicit time integration scheme, the time splitting error may
contribute to this inaccuracy.

We now consider the use of anisotropic mesh adaptation to solve this test case presented in
Chapter 3. The mesh adaptation procedure starts from an arbitrary uniform mesh and is iterated
every 5 time steps. It considers a multi-criteria adaptivity taking into account the velocity
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Figure 4.6: Cavity flow at Re=5000. Evolution of the velocity. Black line refers to DNS, blue
line refers to VMS-BDF1 and red line refers to VMS-BDF2.

33H1

21H1H1

H1

H2

e1

e2

Figure 4.7: Geometry for cylinder case.

Figure 4.8: Plots of streamlines (left) and the turbulent viscosity ν̃ (right) for H2/H1 = 0.6.

components, the velocity magnitude and the turbulent viscosity. The number of nodes N is set
to 105. Results using mesh adaptation are given in Fig. 4.9. The evolution of the mesh, under
the constraint of a fixed number of elements, is shown in Fig. 4.10. This figure shows that
the mesh is refined around the evolving vortices and is automatically coarsened in the regions
of less interest far from the cylinder. As it is depicted in Fig. 4.11, we have a concentration
of elements not only along the boundary layers but also in the wake region. The zoom-in
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Table 4.1: Comparisons of drag and lift coefficients with the literature for H2/H1 = 0.6.
mean CD r.m.s. CL

Bao et al. [110] 2.50 ± 0.125 1.7 ± 0.1
Present work 2.57 1.79

Figure 4.9: Plots of velocity (left), pressure (middle) and turbulent viscosity (right) at t = 11.64.

in Fig. 4.12 highlights how sharply the layers are captured. The shape but also the size and
the orientation of the elements match the directional features of the flow (boundary layers,
flow detachments). The zoom-out in Fig. 4.12 shows how the anisotropic adaptive procedure
modifies the mesh in a way that the local mesh resolutions become adequate in all directions.

Figure 4.10: Evolution of the adapted meshes.

Figure 4.11: Velocity field and corresponding adapted mesh.

Beyond the evolution of the mesh, the evolution of drag and lift coefficients for different
aspect ratios H2/H1 is given in Fig. 4.13 for both adapted and fixed mesh. Both reach as
expected a steady oscillating state, and compare well to the plots shown in [110]. This confirms
that the developed stabilized Finite Element methods is shown to be very efficient and robust
for solving flows at high Reynolds number using highly stretched elements.
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Figure 4.12: Zoom-out with vortex shedding (left) and zoom-in the adapted mesh (right).

Figure 4.13: Drag (lines) and lift (dots) coefficients for aspect ratios H2/H1 = 0.6.

4.6.2.1 2D forced convection

To highlight the effect of the entropy viscosity stabilization, we placed ourselves in numerical
severe conditions. Therefore, we consider a small cavity of 1m side filled with air at an initial
temperature of 20◦C (Fig. 4.14). Hot air at 1000◦C is injected with an inlet velocity of 1m/s.
This cavity can be seen as a small furnace. An outlet enables the air to go out of the cavity.
The physical parameters are summarized in Table 4.2. The high gradients of temperature at the
beginning of the computation leads to spurious oscillations. The computation is done from t=0s
to t=100s with a time step ∆t=0.1s. The mesh is isotropic and contains only 10,000 elements.

Table 4.2: Physical parameters for the 2D force convection

ρ [kg/m3] µ [Pa·s] gravity [m/s2] vinlet [m/s] Tinlet [◦C]

1 10−5 0 1 1000

Fig. 4.15 shows the solution at two different times at the beginning of the computation.
The effect of the stabilization with entropy viscosity is clear. The solution is expected to be
very unstable due to the high gradients of temperature and velocity at the beginning of the
computation. The oscillations are reduced with the entropy viscosity. The temperature front
is the same for both methods. This indicates that the diffusion added by the entropy viscosity
method does not pollute the solution and does not lead to a nonphysical solution, which is a
drawback of several stabilization methods.

Fig. 4.16 shows the evolution of the maximum temperature and the minimum temperature
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Figure 4.14: Set-up for the 2D forced convection

Figure 4.15: Temperature at two different times. Stabilization with entropy viscosity and SUPG
(left). Stabilization with SUPG only (right). The temperature scale is fixed to highlight the areas
where the solution is nonphysical.

in the cavity. This enables to see the effect of the stabilization on the spurious oscillations.
From a physical point of view, since the initial temperature is 20◦C and the injected air is at
1000◦C, the maximum and minimum temperature should be in the range [20◦C - 1000◦C]. A
value outside this range indicates a nonphysical solution. This test cannot be performed using
the standard Galerkin resolution. A stabilization is thus required.
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Fig. 4.16a shows the result for the SUPG stabilization typically used for convection. This
method exhibits here, for this example, large oscillations and these oscillations remain during a
long time in the computation. Performing this test was made possible through the use of mesh
adaptation as it can be seen in Fig. 4.16c. The mesh is adapted according to the velocity, the
norm of the velocity and the temperature, every 5 time steps.

Fig. 4.16b shows the results obtained with SUPG and entropy viscosity, without mesh adap-
tation. This figure indicates a drastic reduction of the oscillations and therefore of the nonphys-
ical points in the domain. Coupled with mesh adaptation, the solution obtained in Fig. 4.16d
exhibits marginal oscillations.
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Figure 4.16: Evolution of the maximum temperature and minimum temperature in the cavity
for four different resolution methods: (a) SUPG stabilization, (b) SUPG and entropy viscosity,
(c) SUPG and mesh adaptation, (d) SUPG, entropy viscosity and mesh adaptation.

4.7 Conclusion
In this chapter, we presented the Stabilized Finite Element methods for the resolution of the un-
steady Navier-Stokes equations and the convection-diffusion-reaction equation. We introduced
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and discussed several stabilization methods and derived the corresponding variational formula-
tion to improve the accuracy and the stability of the Galerkin formulation. These methods were
validated using various test cases, therefore showing the benefits of the stabilization methods
and the validity of the implementation of the proposed methods.



CHAPTER 4. STABILIZED FEM FOR COMPUTATIONAL FLUID DYNAMICS 68

Résumé en français
Dans ce chapitre, les méthodes Eléments Finis utilisées pour la dynamique des fluides numérique
sont présentées. Les équations de Navier-Stokes sont résolues par l’intermédiaire d’une méth-
ode variationelle multi-échelles (Variational MultiScale - VMS). En effet, la formulation faible
de Galerkin souffre d’instabilités dans les écoulements à convection dominante. De plus, la
méthode VMS permet de contourner la condition inf-sup et permet ainsi l’utilisation d’éléments
finis P1-P1 pour la vitesse et la pression dans la résolution mixte des équations de Navier-
Stokes. Les méthodes d’éléments finis stabilisés utilisant la méthode Streamline Upwind Petrov
Galerkin (SUPG) et SCPG (Shock Capturing Petrov Galerkin) pour la résolution de l’équation
de convection-diffusion-réaction sont présentées. Une méthode additionnelle dite a viscosité
entropique est présentée. Cette méthode repose sur la production d’entropie comme principe
de sélection des zones à stabiliser. Une extra-diffusion est ajoutée dans ces zones, permettant
de traiter les fortes discontinuités des solutions. Une solution plus stable et plus physique est
ainsi obtenue. La modification de ces méthodes de stabilisation pour prendre en compte les
particularités des maillages anisotropes utilisés pour la résolution des équations est décrite.
Des applications numériques exigeantes sont traitées à l’aide de ces méthodes. La validité des
méthodes choisies ainsi que leur précision sont discutées.
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5.1 Introduction
Many essential features in hydrodynamics are accessible only through extremely detailed anal-
ysis that capture different spatial and temporal scales set by the physics and the geometry of
the problem. This includes a multitude of applications with great scientific interest such as
microfluidic cell separation in biology [112], droplet coalescence in chemistry [113], micro-
fabricated platforms for cancer diagnosis [114], emulsion in food industry [115], and more.
For various reasons, these multi-fluid applications are very hard or impossible to investigate
experimentally, and thus only reliable computational simulation can open up for detailed study
and new insights [116, 117].

In spite of the maturity and popularity of numerical formulations, they are still characterized
by a high computational cost and may lack of reliability and generality. In particular, major
open challenges of computational multiphase flows include: (i) the discretization mesh for
moving interfaces with fast dynamics cannot be easily built in a preprocessing, (ii) the high
discontinuity in material properties that represent the interface must be found as a part of the
solution, (iii) mass conservation, efficiency and robustness of the computations are difficult to
achieve without dynamic adaptive methods and quantitative error estimation and finally, (iv)
the capillary time step restriction condition is difficult to respect when treating explicitly the
surface tension term in the Navier-Stokes equations [118].

69
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Indeed, the surface tension, as a result of the discontinuity of attractive forces at the inter-
face between two phases, plays an essential role in the mechanical behaviour of this interface.
Difficult to solve directly at the molecular scale, different approaches were proposed in the
literature to express it as a surface stress condition [119, 120]. A famous approach, known
as the Continuum Surface Force (CSF) method, is proposed by Brackbill [121]. It enables to
avoid the computation of surface integral by mean of a regularized Dirac function. This can be
obtained easily when using either a level set method or a volume of fluid approach.

However, the implementation of the surface tension is generally treated explicitly and in-
serted as a source term in the Navier-Stokes equations [122, 123]. This implementation may
suffer from limitations due to the need to capture the capillary wave. Indeed, one should use
a restrictive time step of order of (∆x)3/2 where ∆x is the element size [121]. Hysing in [124]
proposed a semi-implicit implementation of the surface tension derived from the CSF method.
Using a Laplace-Beltrami operator, the variational formulation of the surface tension is rewrit-
ten in its semi-implicit form. In [125, 126], the Laplace-Beltrami operator is written as a
function of a standard Laplacian to remove the stiffness caused by the surface diffusion.

Therefore, to address points (i)-(iv), we propose in this work to derive a new adaptive Vari-
ational MultiScale (VMS) method [32, 127], designed to circumvent the time step restriction
condition due to the use of the surface tension and to handle the abrupt changes at the inter-
face. Indeed, it consists on the decomposition for both the velocity and the pressure fields
into coarse/resolved scales and fine/unresolved scales [20], needed to deal with convection
dominated problems and pressure instabilities. Note that this choice of decomposition is ex-
tended here to account for the surface tension additional terms which in return are shown to be
favourable to remove spurious oscillations at the interface and for simulating flows with large
density and viscosity ratios. A convected level set method [57, 58] is used to provide a precise
position of the interfaces and to enable homogeneous physical properties for each subdomain.

Finally, we combine this new VMS formulation with an a posteriori error estimator for
dynamic anisotropic mesh adaptation [24, 26]. It involves building a mesh based on a metric
map. It provides both the size and the stretching of elements in a very condensed information
data. Consequently, due to the presence of high gradients, it provides highly stretched elements
at the interfaces, at the inner and the boundary layers, and thus yields an accurate modelling
framework for two-fluid incompressible isothermal flows. We assess the behaviour and ac-
curacy of the proposed formulation in the simulation of several two- and three-dimensional
time-dependent challenging numerical examples [122, 128].

5.2 Implicit surface tension
As described previously, a common way to introduce the surface tension as a volume source
term in the Navier-Stokes equations is by rewriting the surface force as follows:

fST = −γκδ (Γ)n (5.1)

where γ is the surface tension coefficient, δ (Γ) is a Dirac function locating the interface Γ, κ is
the mean curvature and n is the normal to the interface Γ.

Moreover, the use of a level set function enables the direct computation of the normal as
n=∇α/|∇α| and the mean curvature as κ =−∇ ·n. As a result, the surface tension is expressed
as a function of the level set as follows:

− γκδ (Γ)n = γδ ε(α)

[
∇ ·
(

∇α
|∇α|

)]
∇α (5.2)
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where δ ε(α) is a smoothed Dirac function [118].
As discussed in [124], this implementation imposes a restriction on the time step that must

respect the propagation of the capillary wave:

cφ ∆t
∆x

<
1
2

(5.3)

where cφ =
√

γk/(2ρ̄) is the capillary wave phase velocity and ρ̄ is the average density at the
interface. Using the maximum wave-number k = π/∆x, the time step is restricted to:

∆t < (∆x)
3
2

√
ρ̄

2πγ
(5.4)

As an example, if we consider an air bubble inside a water channel with a mesh size of ∆x =
1mm and a surface tension coefficient γ = 0.07N/m, the maximum time step allowed for the
simulation is then ∆tmax = 0.001s and thus penalizing the computational cost of the simulations.

On the other hand, it is stated in [129] that the surface Laplacian of an identity mapping
function can be expressed according to the curvature and the normal to this interface as follows:

∆sIΓ = ∇s ·∇sIΓ =−κn (5.5)

Following the work in [124], we express the evolution of the position of the interface in time:

In+1
Γ = In

Γ +un+1∆t (5.6)

where the index n+1 is the current time and n the previous one. Applying the surface Laplacian
operator ∆S on (5.6) leads to:

∆sIn+1
Γ = ∆sIn

Γ +∆t∆sun+1 (5.7)

−(κn)n+1 = −(κn)n +∆t(∆sun+1) (5.8)

For sake of simplicity, we drop in the following the exponent n and only use n+ 1 for the
unknowns. Multiplying (5.8) by the surface tension coefficient, we obtain:

− γ(κn)n+1 =−γκn+ γ∆t(∆sun+1) (5.9)

In [125, 126], we find that the surface Laplacian ∆S can be decomposed into a standard Lapla-
cian as follows:

∆su = ∇2
s u = ∇2u− ∂ 2u

∂n2 −κ
∂u
∂n

(5.10)

where
∂u
∂n

= ∇u ·n.

Therefore, the new expression for the surface tension force will finally reads:

fST =−γκδ (α)n− γδ (α)∆t
(

∂ 2u
∂n2 +κ

∂u
∂n
−∇2un+1

)
(5.11)

The usual term −γκδ (α)n is now completed by additional terms proportional to the time
step. These additional terms act as an isotropic diffusion minus a diffusion in the normal
direction of the interface [125]. Note also that when the time step tends toward zero, the
surface tension is defined only by the usual term −γκδ (α)n and therefore we retrieve the
explicit treatment.
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5.3 Variational Multiscale method with surface tension
Flow motion of an incompressible fluid is described by the Navier-Stokes equations given by

ρ(∂tu+u ·∇u)−∇ · (2µε(u))+∇p = f + fST (5.12)
∇ ·u = 0 (5.13)

where u, p, ρ , µ and f are the velocity, the pressure, the density, the viscosity and the source
term respectively. It is well known that the stability of the discrete formulation of Navier-
Stokes depends on appropriate compatibility restrictions on the choice of the Finite Element
spaces for the velocity and the pressure. According to this, standard Galerkin mixed elements
with continuous equal order linear/linear interpolation is not a stable discretization. This lack
of stability manifests in uncontrollable oscillations that pollute the solution.

Many measures may be distinguished to solve and get around these difficulties. In particu-
lar, the classical stabilized Finite Element methods may be applied to deal with the instabilities
in convection-dominated regime and the velocity-pressure compatibility condition. However,
the direct use of such methods may be inadequate when additional terms are inserted in the
Navier-Stokes equations or when different physics is applied. Indeed, one needs to seek for
a general framework that deal with different and new variant of mixed variational formula-
tions. The Variational Multiscale method, proposed by Hughes [32, 127] offers such an ideal
framework. Therefore, terms related to such as Darcy [130], extra stress constraint [21], hydro-
dynamics [131], turbulence [35], viscoelastic flow [36] among others are treated accordingly
and taken into account by the stabilization process.

We briefly described the main steps to derive this formulation. First, it considers that the
velocity and the pressure unknowns can be split into two components corresponding to different
scales or levels of resolution: resolvable coarse-scale and unresolved fine-scale u = uh + ũ and
p = ph+ p̃. Likewise, we apply the same decomposition for the weighting functions v = vh+ ṽ
and q = qh+ q̃. The unresolved fine-scales are then modeled using residual based terms that are
derived consistently. The static condensation consists of substituting the fine-scale solution into
the large-scale problem providing additional terms, tuned by a local stabilizing parameter. The
latter enhances the stability and accuracy of the standard Galerkin formulation. The enrichment
of the functional spaces is performed as follows: V =Vh⊕ Ṽ , V0 =Vh,0⊕ Ṽ0 and Q = Qh⊕ Q̃.
Thus, the mixed-Finite Element approximation of the time-dependent incompressible problem
with surface tension can read:

Coarse scale

(
ρ

∂ (uh + ũ)
∂ t

,vh

)
+(ρ(uh + ũ) ·∇(uh + ũ),vh)− (ph + p̃,∇ · vh)

+(2µε(uh) : ε(vh))=( f + fST,vh) ∀vh ∈Vh,0

(∇ · (uh + ũ),qh)=0 ∀qh ∈ Qh

(5.14)

Fine scale

(
ρ

∂ (uh + ũ)
∂ t

, ṽ
)
+(ρ(uh + ũ) ·∇(uh + ũ), ṽ)− (ph + p̃,∇ · ṽ)

+(2µε(ũ) : ε(ṽ))=( f + fST, ṽ) ∀ṽ ∈ Ṽ

(∇ · (uh + ũ), q̃)=0 ∀q̃ ∈ Q̃

(5.15)
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At this level, two assumptions can be made to simplify the resolution of the fine scale
equation as proposed in [24]: the subscales are considered quasi-static and the convection is
approximated by (uh + ũ).∇(uh + ũ) ≈ uh.∇(uh + ũ). Therefore, by formulating the expres-
sion of ũ and p̃ as in [24], by substituting them into the large-scales equation, and applying
integration by parts, the system to solve becomes:



ρ(∂tuh,vh)Ω +ρ(ui
h.∇uh,vh)Ω− ∑

K∈Th

(τKRM,ρuh∇vh)K +(2µε(uh) : ε(vh))Ω

−(ph,∇ · vh)Ω + ∑
K∈Th

(τCRC,∇ · vh)K = ( f ,vh)Ω +( fST,vh)Ω

(∇uh,qh)Ω− ∑
K∈Th

(τKRM,∇qh)K = 0

(5.16)

with RM and RC the residuals defined by

RM = f + fST−ρ∂tuh−ρui
h ·∇uh−∇ph

RC =−∇ ·uh
(5.17)

where ui
h is the velocity at Newton iteration i. Finally, replacing the expression of fST in (5.16)

and (5.17) we obtain:



ρ(∂tuh,vh)Ω +ρ(ui
h.∇uh,vh)Ω− ∑

K∈Th

(τKRM,ρuh∇vh)K +(2µε(uh) : ε(vh))Ω

−(ph,∇ · vh)Ω + γδ (α)∆t (∇uh : ∇vh)Ω + ∑
K∈Th

(τCRC,∇ · vh)K =(
f − γδ (α)κn− γδ (α)∆t

(
∂nnui

h +κ∂nui
h

)
,vh
)

Ω

(∇uh,qh)Ω− ∑
K∈Th

(τKRM,∇qh)K = 0

(5.18)

where τK and τC are the known stabilization parameters (see [81] for details). Note that in
the case of strongly anisotropic meshes with highly stretched elements, the definition of the
stabilization parameters is still an open problem and plays a critical role in the design of the
stabilizing coefficients. In [24] the authors propose a particular choice of the stabilizing param-
eters suitable for anisotropic partitions that we adopt it again here.

RM and RC are now defined by:

RM = f − γδ (α)κn− γδ (α)∆t
(
∂nnui

h +κ∂nui
h−∇2uh

)
−ρ∂tuh−ρui

h ·∇uh−∇ph
RC =−∇ ·uh

(5.19)

By comparing the standard Galerkin method with the proposed stable formulation, addi-
tional integrals that are evaluated element-wise are involved. These additional terms, obtained
by replacing the approximated ũ and p̃ into the large-scale equation, represent the effects of the
sub-grid scales and above all take into account the modified surface tension terms. They are in-
troduced in a consistent way to the Galerkin formulation and enable to overcome the instability
of the standard formulation arising in convection dominated flows and to deal with the pressure
instabilities [20].

5.4 Numerical test cases
In order to validate the proposed methods, two- and three-dimensional time-dependent numeri-
cal test cases are presented in this section. The results obtained with the proposed approach are
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compared with either analytic solutions or with those obtained by other approaches that can be
found in the literature. Some test cases cannot be handled using classical model in particular
for high property ratios and in 3D attest of the benefit of adaptive VMS formulation.

5.4.1 Oscillating square bubble

In this test case, we assess the new implementation of the surface tension source term in the
Navier-Stokes equations. Therefore, we analyze an ethanol square bubble placed in a cavity
filled with air. This test case is proposed in [132]. The initial configuration is provided in Fig-
ure 5.1. No gravity is applied and the surface tension is constant. The physical parameters are
summarized in Table 5.1. The ethanol bubble interface, initially set as a square is expected to
become a circle since the surface tension tends to minimize the energy of the surface (propor-
tional in 2D to the length of the interface). The minimal value of energy is found for a circular
shape. The bubble will oscillate until it reaches its final shape. If the time step exceeds the
criterion given in equation (5.4), numerical oscillations lead to an unstable interface.

We use an unstructured mesh of about 15000 triangular elements. The average size of the
elements is 9.5×10−3m. According to (5.4), the time step restriction for the explicit treatment
of the surface tension is about 0.0015s. We perform simulations for ∆t=0.001s, 0.005s, 0.01s
and 0.05s.

Figures 5.2-5.4 present the shape of the bubble obtained using different time step that ex-
ceed gradually the given criterion. As expected, the explicit treatment deviates the solution
gradually from the stable one and exhibits numerical oscillations that end up by a deteriorated
solution in particular for ∆t=0.05s. Whereas, the new implementation shows as expected very
stable solution even for large time step.

Table 5.1: Physical parameters for the oscillating square bubble

ρliquid ρgas ηliquid ηgas gravity γ
797.88 1.1768 1.2×10−3 1.0×10−5 0 0.02361

75 mm

75 mm

40 mm

x
y Ωgas

Ωfluid

Figure 5.1: Set-up for the oscillating bubble

To quantify further the effect of the non-physical oscillations on the interface of the bubble
due to the treatment of the surface tension, we computed the degree of circularity found in [128]
and defined by :

c =
perimeter of area-equivalent circle

perimeter of the bubble
(5.20)
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(a) t=0.1s (b) t=0.2s (c) t=0.3s (d) t=1.0s (e) t=6.0s

Figure 5.2: Interface shape for ∆t=0.005s. Black line refers to the implicit formulation of the
surface tension, red line refers to its explicit treatment.

(a) t=0.1s (b) t=0.2s (c) t=0.3s (d) t=1.0s (e) t=6.0s

Figure 5.3: Interface shape for ∆t=0.01s. Black line refers to the implicit formulation of the
surface tension, red line refers to its explicit treatment.

(a) t=0.1s (b) t=0.2s (c) t=0.3s (d) t=1.0s (e) t=6.0s

Figure 5.4: Interface shape for ∆t=0.05s. Black line refers to the implicit formulation of the
surface tension.

If a bubble is perfectly circular, the circularity is equal to 1. If the bubble is deformed, the
circularity decreases. In Figure 5.5, we plot the circularity for all the simulations performed.
According to the results obtained for ∆t=0.001s, we notice that after few seconds, the shape of
the bubble is circular and therefore that the problem is not physically unstable. Furthermore,
if we increase the time step, the amplitude of the oscillations in the circularity increases only
when using an explicit treatment of the surface tension. The implicit treatment of the surface
tension does not result in higher amplitude. It is obvious that increasing the time step does not
enable us to capture all the physical oscillations (see the curve for ∆t=0.05s).

5.4.2 Rayleigh-Taylor instability

The two dimensional Rayleigh-Taylor instability benchmark [122, 133] is investigated in this
section. It consists of two fluids placed in a closed cavity and submitted to gravity (g =
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Figure 5.5: Circularity of the oscillating bubble for different time step.

(0,−10)m/s2). This benchmark represents a challenge due to the fast dynamics of the sys-
tem and due to the appearance of swirls, difficult to capture. The upper side of the cavity
is occupied by a fluid with a density ρ = 3kg/m3 and a viscosity η = 0.0135kg/(m · s) (see
Case#1 in Table 5.2). The lower part is occupied with a fluid of density ρ = 1kg/m3 and vis-
cosity η = 0.0045kg/(m · s). As shown in Figure 5.6, the initial shape of the interface between
the two fluids is a cosine function defined as y = 0.05cos(2πx) and the fluids are at rest at the
initial time. The criteria chosen for the adaptive meshing is both the velocity (in direction and
magnitude) and the level set function. The simulation is performed using 16000 elements and
the time step is set to ∆t = 0.01s. The surface tension is first set to zero.

In Figure 5.7, we can see the evolution of the two-fluid interface and the deformation of its
shape. A very good agreement is found with [122] and [133] in term of front position, general
shape of the perturbation and swirls shape. Figure 5.8 shows how the mesh is coupled to the
evolution of the system and is refined close to the interface. This enables a more accurate
capturing of such interface dynamics.

We repeated the same simulation using only 8000 elements to assess the ability to capture
the swirls. Figure 5.9 shows that even for a low number of elements, swirls are still well
captured. The mesh at t=1.25s in Figure 5.9 and the mesh at t=1.25s in Figure 5.8 show that
the finest elements are concentrated close to the swirls. Since the velocity field far from the
interface is still close to null, the elements far from the interface are coarsened.

Table 5.2: Physical parameters defining the test case for the Rayleigh-Taylor instability

ρ1 ρ2 η1 η2 gravity

Case #1 1 3 0.0045 0.0135 10

Case #2 1 1.5 0.0022 0.0033 10

Finally, we repeated the same test case using the surface tension (see Case#2 in Table 5.2).
Figure 5.10 presents the obtained results at t=1.85s for different values of surface tension.
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g

1 m

4 m

x
y

Ω1

Ω2

Figure 5.6: Setup for the 2D Rayleigh-Taylor instability

Figure 5.7: The interface shape of the Rayleigh-Taylor instability at t=0.5s, t=0.70s, t=1s and
t=1.25s.

Again, the results are in very good agreement with the reference.

5.4.3 2D Rising bubble
We simulate the rising bubble benchmark from [128]. A bubble of diameter 0.5 centered at
(0.5,0.5) is surrounded by a liquid of higher density and viscosity (see Figure 5.11). A free slip
boundary condition is prescribed on the vertical walls and a no-slip condition is prescribed on
the top and the bottom of the cavity. The motion of the bubble is only due to the buoyancy force.
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Figure 5.8: The obtained meshes for the Rayleigh-Taylor instability benchmark at t=0.5s,
t=0.70s, t=1s and t=1.25s.

Figure 5.9: The interface shape (left) and the obtained mesh(right) of the Rayleigh-Taylor
instability at t=1.25s using 8000 elements.

The simulations are performed for two different sets of parameters (see Table 5.3) respectively
Case #1 and Case #2. The ratio between the physical parameters leads to different shapes of
the bubble. In Case #1, the ratio between the physical property is 10. The high surface tension
coefficient maintains the bubble as an ellipsoid. Case #2 is more challenging due to the high
ratio between the physical properties of the two phases. Furthermore, the break up of the bubble
represents an additional challenge for the level set method.
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(a) γ=0.0 (b) γ=0.03 (c) γ=0.06 (d) γ=0.09

Figure 5.10: Rayleigh-Taylor instability at t=1.85s for different values of surface tension.

Figure 5.12 compares the shape obtained in the current work and the shape obtained by
other teams in [128] for Case #2. Four different methods of resolution give four different final
shapes of the bubble. It is therefore difficult to assess the accuracy of the methods. Since the
visual evolution of the shape of the bubble is not rigorous enough to compare results provided
by different methods of resolution, Hysing et al. decided in [128] to define benchmark quanti-
ties such as the position of the center of mass of the bubble and the rise velocity of the center
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Table 5.3: Physical parameters defining the test case for the 2D rising bubble

ρliquid ρgas ηliquid ηgas gravity γ
Case #1 1000 100 10 1 0.98 24.5

Case #2 1000 1 10 0.1 0.98 1.96

g

1 m

2 m

x
y

0.5m

Ωgas

Ωfluid

Figure 5.11: Setup for the 2D rising bubble case

of mass. The position of the center of mass of the bubble is defined by Xc =
∫

Ωg
xdx/

∫
Ωg

1dx
whereas the rise velocity of the center of mass is defined by Uc =

∫
Ωg

udx/
∫

Ωg
1dx.

For each case, we perform two simulations, using adaptive anisotropic meshing, under the
constraint of a fixed number of elements. The criteria chosen for the adaptive meshing is again
both the velocity (in direction and magnitude) and the level set function. The first simulation
is performed using about 5000 elements and the second simulation is performed using about
10000 elements. The time step is set to ∆t = 0.002s. The results of the two simulations are
compared to the simulations performed with the finest grids in [128]. Table 5.4 gives a general
overview on the used number of elements and iterations for each code.

Table 5.4: Number of elements and iterations for the 2D rising bubble

Mesh Iteration

Case #1 TP2D 204800 rectangles 15360

FreeLIFE 102400 structured triangles 960

MooNMD 8066 degrees of freedom at the interface 6000

Current work 5000/10000 unstructured and anisotropic 1500

Case #2 TP2D 819200 rectangles 30720

FreeLIFE 102400 structured triangles 960

MooNMD 8066 degrees of freedom at the interface 6000

Current work 5000/10000 unstructured and anisotropic 1500
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Figure 5.13 shows the comparison with the three methods described in [128] for the position
of the center of mass. Figure 5.14 shows the comparison for the rising velocity of the center of
mass. Figure 5.15 compares the shape of the bubble at t=3s.

For Case #1, as expected, the shape at the final time is found to be ellipsoidal. The results
from all simulations are in very good agreement. This shows the ability of the proposed adap-
tive meshing procedure to accurately solve the problem, not only by refining the mesh close to
the interface but also wherever it is relevant from a physical point of view, as it is depicted in
Figure 5.16.

For Case #2, during the rise of the bubble, thin filaments are developed and eventually break
up for some methods. The break of the filaments has an effect on the rise of the bubble and
could explain the differences found in Figure 5.13 and Figure 5.14. In [128], simulations per-
formed with MooNMD, using Arbitrary Lagragian Eulerian technique to follow the interface
and remeshing according to the degree of deformation, show the formation of thin filaments.
Simulations performed in fixed meshes with TP2D and FreeLIFE, using level set method to
follow the interface, show that the break up does not occur when the mesh is very fine. The
adaptive meshing used in the current work enables the formation of two thin filaments even for
a low number of elements. Once again, the ability of the proposed method is well highlighted
in Figure 5.17 by capturing with high fidelity the characteristics of the flow at the interface and
under the bubble where the velocity gradients are important due to the ascending motion of the
bubble.

To assess the formation of the thin filaments, we perform a simulation using a very fine
structured mesh with 409600 elements and a time step ∆t = 0.0002s. Figure 5.18 shows that
the results obtained using an adaptive meshing with 10000 elements (40 times less elements)
remain in a very good agreement with the reference solution.

TP2D FreeLIFE MooNMD Current work

Figure 5.12: 2D rising bubble: Results from different teams for Case #2

5.4.4 3D Rising bubble
The final case examined here is the three-dimensional rising bubble of diameter D in a closed
cavity from [122]. The setup of this case is depicted in Figure 5.19 and the physical parameters
are summarized in Table 5.5. The bubble is at rest at initial time and the center of the bubble is
located at z=-D. A free slip boundary condition is prescribed on all the walls. The motion of the
bubble is only due to the buoyancy force. The simulations are performed using the proposed
adaptive meshing technique with 128000 elements. The time step is set to ∆t = 0.002s. Two
cases are considered. In the first one, the diameter is fixed to D=0.05m. Since the surface
tension is null, this case is challenging for the level set method due to the skirted shape of
the bubble. The adaptive meshing enables easily the formation of the skirt of the bubble and
no break up occurs during the simulation as it is depicted in Figure 5.20. In the second case,
the diameter is set to D=0.01m. Due to the surface tension effects, the form of the bubble is
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Figure 5.13: Evolution of the position of the center of mass
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Figure 5.14: Evolution of the rising velocity of the center of mass

expected to be ellipsoidal. The shape and the mesh for this case are presented in Figure 5.21
and agree with the reference [122].

Table 5.5: Physical parameters defining the test case for the 3D rising bubble

D ρliquid ρgas ηliquid ηgas gravity γ
0.05 1000 1.225 0.35 0.00358 9.81 0

0.01 1000 1.225 0.35 0.00358 9.81 0.11
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Figure 5.15: Shape of the bubble at t=3s
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(a) t=0.6s (b) t=1.2s (c) t=1.8s (d) t=2.2s

(e) t=2.4s (f) t=2.6s (g) t=2.8s (h) t=3.0s

Figure 5.16: 2D rising bubble: Case #1 mesh (10000 elements) at different times.
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(a) t=0.6s (b) t=1.2s (c) t=1.8s (d) t=2.2s

(e) t=2.4s (f) t=2.6s (g) t=2.8s (h) t=3.0s

Figure 5.17: 2D rising bubble: Case #2 mesh (10000 elements) at different times.
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Figure 5.18: 2D rising bubble: Shape of the bubble at t=3s for Case #2. Simulations per-
formed with 5000 and 10000 elements using mesh adaptation are compared with a simulation
performed with 409600 structured elements.
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Figure 5.19: Set-up for the 3D rising bubble case
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Figure 5.20: 3D rising bubble (γ = 0.0) at t=0, 0.04, 0.12, 0.18, 0.26, 0.42 s.
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Figure 5.21: 3D rising bubble (γ = 0.11) at t=0, 0.04, 0.1, 0.12, 0.18, 0.26 s.
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5.5 Conclusion
We have proposed in this chapter an implicit formulation of the surface tension to simulate in-
compressible two phase flows and to circumvent the numerical time step restriction due to the
surface tension implementation. We have demonstrated the efficiency of the proposed frame-
work by performing challenging cases in 2 and 3 dimensions. The results of the numerical tests
show that this approach produces accurate numerical solutions. The comparison with the litera-
ture shows that despite a limited number of elements, simulations do not suffer any instabilities
and a good accuracy is obtained. The computational cost is therefore drastically reduced.
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Résumé en français
Dans ce chapitre, le développement et l’implémentation de la tension de surface dans les équa-
tions de Navier-Stokes multiphasiques sont présentées. Grâce à l’utilisation de la méthode
level set, la dérivation des termes nécessaires au calcul de la tension de surface est directe.
L’implémentation explicite en temps de cette force comme un terme source dans l’équation de
conservation de mouvements mène à une sévère restriction du pas de temps, pénalisant ainsi
les simulations multiphasiques. Si cette condition en temps n’est pas respectée, des oscillations
parasites déstabilisant l’interface apparaissent. Cette condition est encore plus sévère avec
l’utilisation d’outils d’adaptation de maillage anisotrope. A l’aide d’un théorème de géométrie
différentielle et d’un opérateur de Laplace-Beltrami, il est possible d’exprimer la tension de
manière semi-implicite. Cette nouvelle formulation empêche l’apparition de ces oscillations
parasites, permettant ainsi l’utilisation de pas de temps plus grands. L’implémentation de cette
méthode dans le cadre de la méthode VMS est décrite. La validation de cette approche et de
son implémentation sur des cas tests en 2D et 3D permet de montrer la grande précision de
cette méthode pour un coût dérisoire en comparaison avec les méthodes généralement utilisées
dans la littérature.
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6.1 Introduction

Multiphase flows describe a wide variety of natural and industrial problems arising mostly in
fluid mechanics, environmental applications and nuclear and chemical engineering. Indeed,
it plays an important role to understand the physical phenomena such as bubble dynamics,
groundwater flow, oil propagation, phase change and evaporation, and blood flow in biome-
chanical applications. Therefore, it is essential in most of these situations to well consider
each phase and to treat precisely the dynamics of the interface (e.g. liquid-gas mixture). For
instance, in bubbly flows (see Figure 6.1), bubbles are compressible while the water is incom-
pressible, raising the question of whether or not the compressibility should be considered in the
modeling and simulation of such phenomenon.

In the literature, several advanced computational approaches have treated both phases as
incompressible fluids. To cite few, we refer to the sharp interface method in [134], hybrid parti-
cle level set method in [135], a front-tracking method proposed in [136], SPH method in [137],
high order finite difference method suggested in [138], and recently a conservative sharp inter-
face method in [139]. At the same level, numerous works investigated compressible multiphase
flows, in particular for applications related to underwater explosion, fuel injections, bubble dy-
namics and confined flows among many others [140, 141, 142, 143, 144, 145]. However, the

91
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Incompressible water

Compressible bubbles

Figure 6.1: Bubbles rising in water

use of a single model encounters several numerical issues, in particular when simulating cou-
pled complex problems. Indeed, the assumption that both fluids are treated as incompressible
does not allow the change of volume, whereas if we assume that both gas and liquids are com-
pressible, using an equation of state to mimic the incompressibility in the liquid phase, then the
mass conservation is not controlled. These difficulties among many others have motivated the
development of unified formulations. In this context, there is a renewed interest in modeling
appropriately and in a coupled manner the properties of each phase [146]. The remaining chal-
lenge is to provide a numerical strategy to each component ensuring: (i) mass conservation,
(ii) the ability to deal with large density and viscosity ratios, and (iii) accurate transmission of
waves across the interface.

Only few attempts in the literature can be found that deals with the coupling of incompress-
ible liquid and compressible gas. We can mention the coupling of sharp interface method with
Ghost fluid approach proposed in [147], the use of multiple pressure variable approach [148],
the use of the level set method to simulate small gas bubble clusters [149] and also the applica-
tion of Galerkin Least Square method to the modified Navier-Stokes equation with a level set
approach in [150].

In this work, we derived a new unified adaptive Variational MultiScale (VMS) method for
liquid-gas flows. First, the same set of primitive unknowns and equations is described every-
where and the coupling between the pressure and the flow velocity is ensured by introducing
mass conservation terms in the momentum equation. The main reasons for this choice of global
description of the flow are stability, robustness and computational efficiency (see [151, 152]).
The obtained system is then solved using a new derived Variational MultiScale stabilized Finite
Element method designed to handle the abrupt changes at the liquid-gas interface. Indeed, it
consists on the decomposition for both the velocity and the pressure fields into coarse/resolved
scales and fine/unresolved scales [32, 33, 34, 20], needed to deal with convection dominated
problems and pressure instabilities. Note that this choice of decomposition is extended here
to the pressure equation which in return is shown to be favorable for simulating flows at high
Reynolds number and to remove spurious oscillations at the interface due to the high disconti-
nuity in the material properties. A conservative level set method is used in this case to provide
a precise position of the interfaces and to enable homogeneous physical properties for each
subdomain [16].

Finally, we combine this new Variational MultiScale formulation with an a posteriori error
estimator for dynamic anisotropic mesh adaptation [16]. It involves building a mesh based
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on a metric map. It provides both the size and the stretching of elements in a very condensed
information data. Consequently, due to the presence of high gradients in the primitive variables,
it provides highly stretched elements at the interfaces, at the inner and the boundary layers, and
thus yields an accurate modeling framework for two-phase compressible and incompressible
isothermal flows. We assess the behavior and accuracy of the proposed formulation in the
simulation of three time-dependent challenging numerical examples.

6.2 Governing equations for compressible-incompressible cou-
pling

In this section, the general equations of the global compressible-incompressible model are pre-
sented. The same set of primitive unknowns will be used by introducing mass conservation
terms in the momentum and energy equations. To keep the presentation simple, we sidestep
the surface tension effects and we assume no slip condition at the interface and that the viscous
part of the stress tensor is negligible in comparison to the pressure contribution. The mass and
momentum equations are first formulated in the following conservative form:

∂ρ
∂ t

+∇ · (ρu) = 0 (6.1)

ρ
∂u
∂ t

+ρu ·∇u−∇ ·σ = ρg (6.2)

where ρ , g and u are the density, the gravity and the velocity, and σ the stress tensor which
reads:

σ = 2µ ε(u)− p Id (6.3)

with p and µ the pressure and the dynamic viscosity, ε the deviatoric part of the strain rate
tensor and Id the identity tensor .

The system must be closed by a state equation relating the density, the thermodynamic
pressure and the temperature.

ρ = ρ(T, p) (6.4)

In order to express the global model, and assuming that the fluid is divariant, we reformulate
the density as function of the pressure and the temperature (see [151, 152]):

dρ
dt

=
∂ρ
∂T

∣∣∣∣
p

dT
dt

+
∂ρ
∂ p

∣∣∣∣
T

d p
dt

(6.5)

Consequently, the mass conservation equation can be reformulated as an equation for the
pressure

1
ρ

∂ρ
∂ p

∣∣∣∣
T

d p
dt

+
1
ρ

∂ρ
∂T

∣∣∣∣
p

dT
dt

+∇ ·u = 0 (6.6)

By introducing

χp =
1
ρ

∂ρ
∂ p

∣∣∣∣
T

and χT =− 1
ρ

∂ρ
∂T

∣∣∣∣
p

(6.7)
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as the isothermal compressibility coefficient and the thermal expansion coefficient respectively,
the mass conservation now reads

∇ ·u+χp
∂ p
∂ t

+χpu ·∇p = χT
dT
dt

(6.8)

Finally, the system of equations (6.1)-(6.2) is now transformed in a unified form that can be
used for both incompressible and compressible flows as follow:

ρ
∂u
∂ t

+ρu ·∇u−∇ · (2µε(u))+∇p = ρg (6.9)

∇ ·u+χp
∂ p
∂ t

+χpu ·∇p = χT
dT
dt

(6.10)

The following Table 6.1 resumes all the required physical parameters and coefficients needed
in (6.9)-(6.10) to simply solve an incompressible liquid with a compressible gas. We used in
this case the perfect gas equation of state with R as the perfect gas constant.

Table 6.1: Model parameters

liquid ρl χl = (0 , 0) µl

gas ρg = p/RT χg = (1/T , 1/p) µg

6.3 Variational MultiScale method for the unified solver
It is well known, that the stability of the discrete formulation of Navier-Stokes depends on
appropriate compatibility restrictions on the choice of the Finite Element spaces for the velocity
and the pressure. According to this, standard Galerkin mixed elements with continuous equal
order linear/linear interpolation is not a stable discretization. This lack of stability manifests in
uncontrollable oscillations that pollute the solution.

Many measures may be distinguished to solve and get around these difficulties. In particu-
lar, the classical stabilized Finite Element methods may be applied to deal with the instabilities
in convection-dominated regime and the velocity-pressure compatibility condition. However,
the direct use of such methods may be inadequate when additional terms are inserted in the
Navier-Stokes equations or when different physics is applied. Indeed, one needs to seek for
a general framework that deal with different and new variant of mixed variational formula-
tions. The Variational MultiScale method, proposed by Hughes [32, 33, 34, 127] offers such an
ideal framework. Therefore, terms related to such as Darcy [130], extra stress constraint [153],
hydrodynamics [131], turbulence [34, 35], viscoelastic flow [36] among others are treated ac-
cordingly and taken into account by the stabilization process.

Accordingly, in this section, we derive a new Variational MultiScale formulation for the
unified two-phase compressible and incompressible isothermal flows. It considers that the un-
knowns of the mixed problem (6.9)-(6.10) can be split into two components, coarse and fine,
corresponding to different scales or levels of resolution.

Following the lines in [32], we consider a direct sum decomposition of the velocity and
the pressure fields into resolvable coarse-scale and unresolved fine-scale u = uh + ũ and p =
ph + p̃. Likewise, we apply the same decomposition for the weighting functions v = vh + ṽ
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and q = qh+ q̃. The unresolved fine-scales are usually modeled using residual based terms that
are derived consistently. The static condensation consists of substituting the fine-scale solution
into the large-scale problem providing additional terms, tuned by a local stabilizing parame-
ter. The latter enhances the stability and accuracy of the standard Galerkin formulation. The
enrichment of the functional spaces is performed as follows: V = Vh⊕ Ṽ , V0 = Vh,0⊕ Ṽ0 and
Q = Qh⊕ Q̃. Thus, the mixed-Finite Element approximation of the time-dependent unified
compressible-incompressible problem can read:

Coarse scale

(
ρ

∂ (uh + ũ)
∂ t

,vh

)
+(ρ(uh + ũ) ·∇(uh + ũ),vh)− (ph + p̃,∇ · vh)+(2µε(uh) : ε(vh))

=( fv,vh) ∀vh ∈Vh,0

(∇ · (uh + ũ),qh)+χp

(
∂ (ph + p̃)

∂ t
,qh

)
+χp ((uh + ũ) ·∇(ph + p̃),qh)=( fp,qh) ∀qh ∈ Qh

(6.11)
Fine scale

(
ρ

∂ (uh + ũ)
∂ t

, ṽ
)
+(ρ(uh + ũ) ·∇(uh + ũ), ṽ)− (ph + p̃,∇ · ṽ)+(2µε(ũ) : ε(ṽ))

=( fv, ṽ) ∀ṽ ∈ Ṽ

(∇ · (uh + ũ), q̃)+χp

(
∂ (ph + p̃)

∂ t
, q̃
)
+χp ((uh + ũ) ·∇(ph + p̃), q̃)=( fp, q̃) ∀q̃ ∈ Q̃

(6.12)
To simplify the notation, we used fv and fp as the source terms in (6.9)-(6.10). To derive

the stabilized formulation, we first solve the fine scale problem, defined on the sum of element
interiors and written in terms of the time-dependent large-scale variables. Then we substitute
the fine-scale solution back into the coarse problem, thereby eliminating the explicit appearance
of the fine-scale while still modeling their effects. At this stage, two important remarks have
to be made in order to deal with the time-dependency and the non-linearity of the momentum
equation of the subscale system:

i) the subscales are not tracked in time, therefore, quasi-static subscales are considered
here (see [154] for a justification of this choice); however, the subscale equation remains
quasi time-dependent since it is driven by the large-scale time-dependent residual. For
time-tracking of subscales, see [84].

ii) the convective velocity of the non-linear term may be approximated using only large-
scale part so that (uh+ ũ) ·∇(uh+ ũ)≈ uc

h ·∇(uh+ ũ) where uc
h is the convection velocity

(see [20]).

The equations for the coarse scales are obtained taking the subscale test functions equal to
zero. Therefore, using the previous assumptions, we have
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(
ρ

∂uh

∂ t
,vh

)
+(ρuc

h ·∇uh,vh)− (ph + p̃,∇ · vh)+(2µε(uh) : ε(vh))

+ ∑
K∈Th

(
ũ,−ρuc

h ·∇vh
)

= ( fv,vh) ∀vh ∈Vh,0

(∇ ·uh,qh)+χp

(
∂ ph

∂ t
,qh

)
+χp

(
uc

h ·∇ph,qh
)

− ∑
K∈Th

(ũ,∇ ·qh)− ∑
K∈Th

(
p̃,χpuc

h ·∇qh
)

= ( fp,qh) ∀qh ∈ Qh

(6.13)

for all (vh,qh) ∈ Vh,0×Ph,0, where ∑K stands for the summation over all the elements of the
Finite Element partition Kh and (·, ·)K denotes the L2 product in each K. The problem for
the fine scales is obtained from (6.12) and using approximations i) and ii) described above.
Introducing the Finite Element residuals

Ru = fv−ρ
∂uh

∂ t
−ρuc

h ·∇uh +∇ · (2µε(uh))−∇ph

Rc = fp−∇ ·uh−χp
∂ ph

∂ t
−χpuc

h ·∇ph

(6.14)

and using the same ideas as in [91], it turns out that the subscales may be approximated within
each element K ∈Kh by

ũ = ∑
Th

τuP̃u(Ru)

p̃ = ∑
Tc

τcP̃c(Rc)
(6.15)

where P̃v and P̃p are the projections onto Ṽ and Q̃, respectively, and τu and τc are the so called
stabilization parameters. The most common choice is to take the former as the identity when
applied to Finite Element residuals (see [32]), and this is what we will do here, although it is
also possible to take them as the projection orthogonal to the Finite Element space (see [90]
and references therein).

Inserting the expression for the subscales, we finally obtain the stabilized Finite Element
problem. The new variational formulation reads:

(
ρ

∂uh

∂ t
,vh

)
+(ρuc

h ·∇uh,vh)− (ph,∇ · vh)+(2µε(uh) : ε(vh))

+ ∑
K∈Th

τu

(
ρ

∂uh

∂ t
+ρuc

h ·∇uh−∇ · (2µε(uh))+∇ph− fv , ρuc
h ·∇vh

)
+ ∑

K∈Th

τc

(
∇ ·uh +χp

∂ ph

∂ t
+χpuc

h ·∇ph− fp,∇ · vh

)
= ( fv,vh) ∀vh ∈Vh,0

(∇ ·uh,qh)+χp

(
∂ ph

∂ t
,qh

)
+χp

(
uc

h ·∇ph,qh
)

+ ∑
K∈Th

τu

(
ρ

∂uh

∂ t
+ρuc

h ·∇uh−∇ · (2µε(uh))+∇ph− fv,∇qh

)
+ ∑

K∈Th

τc

(
∇ ·uh +χp

∂ ph

∂ t
+χpuc

h ·∇ph− fp,χpuc
h ·∇qh

)
= ( fp,qh) ∀qh ∈ Qh

(6.16)
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When compared with the standard Galerkin method and even to the Variational MultiScale
method for the incompressible Navier-Stokes equations, the proposed stable formulation in-
volves new additional integrals that are evaluated element-wise. These additional terms, ob-
tained by replacing the approximated ũ and p̃ into the large-scale equation (6.13), represent the
effects of the sub-grid scales in both incompressible and compressible phases. This is the first
attempt that takes into account these new terms. They are introduced in a consistent way to the
Galerkin formulation and are multiplied by stabilizing parameters and enable to overcome the
instability of the classical formulation arising in convection dominated flows and to deal with
the pressure instabilities. Similar conclusions were obtained in other applications such as in
shock hydrodynamics [131].

6.4 Numerical test cases

In order to validate the proposed unified formulation, three time-dependent numerical test cases
are presented in this section. The results obtained with the proposed approach are compared
with either analytic solutions or with those obtained by other approaches that can be found
in the literature. Some test cases cannot be handled using classical incompressible model for
liquid and gas and attest of the benefit of a unified compressible-incompressible formulation.

6.4.1 Shrinking Bubble

The first test case is the shrinking bubble as proposed in [155]. An air bubble of radius r = 0.03
m is compressed by water in a closed cavity of length side equal to 0.1 m (see Fig. 6.2). The
water is injected at a velocity of u0=0.0025 m.s−1, in the direction normal to the boundaries of
the domain. The gravity and the surface tension are set null. The evolution in time of the density
is given by the analytic solution ρ(t) = ρ0/

(
1− qt

πR2

)
where q=0.001 m2.s−1 is the flow rate

of injected water and ρ0 is the initial density. The isothermal compressibility coefficients for
gas and liquid are set to χg

p = 9.8692327×10−6 Pa−1 and χ l
p = 0.444×10−9 Pa−1.

u0 u0

u0

u0

0.
1

m 0.0
3 m

Ωgas

Ωfluid

Figure 6.2: Set-up for the shrinking bubble.
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Figure 6.3 shows how quickly the bubble volume is decreasing until it collapses. The
number of nodes is set to 10,000 and the mesh adaptation criteria are both the level set and the
velocity (in direction and in norm).

As expected, the nodes are concentrated along the interface of the bubble and follows the
change of direction of the velocity. This reflects how, for a controlled number of nodes, the
mesh is naturally and automatically coarsened in smooth regions while extremely refined near
the interface. It also illustrates the right orientation and deformation of the mesh elements
(longest edges parallel to the boundary). This yields a great reduction of the number of triangles
compared to [155] and consequently a reduction in the computational cost.

Figure 6.3: Shrinking bubble: Anisotropic adapted mesh at different times.

Figure 6.4: Shrinking bubble: Evolution in time of the density

Figure 6.4 shows a very good agreement between the numerical results for the evolution of
the density and the analytic solution.
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6.4.2 One sided bubble compression
We consider the 2D bubble compression test case inside a cavity of 1m side as presented
in [150]. A bubble of radius 0.25m is initially placed at the center of the square and sur-
rounded by an incompressible liquid (see Fig. 6.5). The liquid is injected in the square at an
inflow velocity defined by :

u(t)|x=0 = 100t(y−0.75)(0.25− y) m.s−1 for y ∈ [0.25;0.75] (6.17)

Gravity and surface tension are neglected. The initial pressure is the atmospheric one (105

Pa). We assume the flow isothermal with a sound speed c = 317 m.s−1 in the gas. Densities
and viscosities are summarized in Table 6.2.

u(t)

1 m

inlet

x
y

0.25 m

Ωgas

Ωfluid

Figure 6.5: Set-up for the bubble compression

Table 6.2: Physical parameters for the bubble compression.
ρg ρl µg µl g ρl/ρg µl/µg

1 1000 0.01 1 0 1000 100

As the liquid is progressively injected inside the closed cavity, the gas bubble is compressed.
In Figure 6.6, we show a very good agreement between a reference solution and the current ob-
tained results at two different time step. We highlight also that the interfaces do not show
instabilities and this is mainly due to the use of adaptive Variational MultiScale method. The
results here are obtained using a decreased number of elements and allow further the compres-
sion of the bubble. Indeed, Figure 6.7 shows new obtained results for the time evolution of the
interface until a quasi complete compression.

Again, all the main directional features characterizing the velocity inside the cavity are
detected and well captured by the anisotropic error estimator. The mesh elements are highly
stretched along the direction of the layers, at the detachment regions and around the interface.
Once again, the developed adaptive unified VMS solver is shown to be very efficient and ro-
bust to deal with discontinuities using highly stretched elements. For a given constraint on
the number of elements we can find the mesh that maximizes the accuracy of the numerical
solution.
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Figure 6.6: Bubble compression velocity field. The red line represents the interface at t=0.165s
(left) and t=0.331s (right). Comparison between Billaud et al. (top) and current work (bottom).
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Figure 6.7: Bubble compression: evolution in time of the bubble shape and the mesh.
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The zoom on the interface and at the right side of the cavity in Figure 6.8 highlights how
sharply the interface and the layers can be captured. It shows the correct orientation and de-
formation of the mesh elements (longest edges parallel to the boundary). This yields a great
reduction of the number of triangles. These results give confidence that the extension of the
approach to take into account different components seems to work very well and plays an im-
portant role for transient flows.

Figure 6.8: Bubble compression: focus on the mesh adaptation around the bubble and at the
boundaries. Highly stretched elements are found at the interface of the bubble, allowing an
accurate capture of physical phenomena.

The evolution of the volume is given by V (t) = π
16 − 100t2

96 . Finally, comparison with this
analytic solution in Figure 6.9 shows a good agreement.

6.4.3 Rising bubble
In this numerical example, we consider the test case of the rising bubble inside a 2D cavity
of 0.3 m side [150]. A circular bubble of radius 0.05 m is initially placed at the center of the
square and surrounded by an incompressible liquid (see Fig. 6.10). The system being initially
at rest, the motion of the bubble is driven by the buoyancy force only.

Two test cases are considered, defined by the density ratio ρl/ρg and the viscosity ratio
µl/µg. Densities and viscosities are summarized in Table 6.3.

Table 6.3: Physical parameters for the rising bubble test cases.
g Re ρl/ρg µl/µg

Case #1 10 10 100 100

Case #2 10 100 1000 100
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Figure 6.9: Bubble compression: evolution in time of the bubble volume using two meshes

g

0.3 m

0.05m
Ωgas

Ωfluid

Figure 6.10: Set-up for the rising bubble
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Figures 6.11 and 6.12 show the evolution of the bubble shape in time. The obtained results
are in good agreement with those obtained by [156]. We can clearly see the impact of using dif-
ferent density and viscosity ratio. It is also worth mentioning that we show additional snapshots
of the results until the bubble gets closer to the top wall. Whereas in the literature, comparisons
stops at the middle of the cavity. This is mostly due to the use of a dynamic anisotropic mesh
adaptation with multi-criteria. Indeed, the interfaces are very well captured and the boundary
layers as well as the detachments are automatically detected. This again highlights the capacity
of the developed adaptive unified to treat accurately liquid-gas flows.

Figure 6.11: Rising bubble #1: Evolution in time of the bubble shape and the mesh.

6.5 Conclusion
We proposed in this chapter a new unified Variational MultiScale method to address easily the
coupling between two-phase compressible and incompressible flows. Using a level set function
that describes implicitly the interface between the two phases, combined with an edge based
error estimator for anisotropic mesh adaptation, it results in a simple and accurate framework
that allows simulating liquid-gas flows. All the details to implement the new derived stabilized
Finite Element method were presented. Several time-dependent test cases, where the compress-
ibility effects are important, were presented. The numerical results and the comparisons with
the literature show that the new solver is able to exhibit good stability and accuracy properties
on anisotropic meshes with highly stretched elements.
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Figure 6.12: Rising bubble #2: Evolution in time of the bubble shape and the mesh.
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Résumé en français
Dans ce chapitre, une nouvelle formulation des équations de Navier-Stokes permettant de pren-
dre en compte de manière unifiée une phase compressible et une phase incompressible est
présentée. Pour un fluide divariant, l’équation de conservation de la masse est réécrite en
fonction de la vitesse, de la pression et de la température en utilisant des variables thermody-
namiques dérivées de l’équation d’état utilisée pour la phase compressible. L’implémentation
de cette méthode dans le cadre de la méthode VMS est présentée. L’étude de plusieurs cas
permet de valider l’approche et la comparaison avec les solutions analytiques ou provenant de
la littérature montre la robustesse et la précision de l’approche proposée.
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7.1 Introduction
An accurate and robust simulation of the boiling is still an ongoing challenge. Indeed, the
complexity of boiling lies in the wide range of scales to consider and in the physics involved.
From the nucleation of a vapor bubble to the film boiling, one needs to consider scales from µm
to the m. In industrial processes, such as quenching of a solid hot metallic part, the variety of
configurations and the complexity of the surrounding flow must be taken into account. Indeed,
they have direct impacts on changing mechanical properties, controlling microstructure and
releasing residual stresses.

The classical well known methods for thermal treatment of a solid generally refer to the use
of experimentally deduced heat transfer coefficients. However, these latter are only useful for
a particular configuration in term of geometry, orientation of the surface, range of temperature
and flow motion. Therefore, heat transfer coefficients are not suitable to analyze different
industrial processes and cannot be generalized to all configurations. Only a direct numerical
simulation can take into account all the physics and all the scales involved in boiling.

Therefore an abundant research has been devoted to the simulation of boiling. Several ap-
proaches can model such phenomenon. These approaches fall into two categories that depend
on the thickness of the interface: sharp interface and diffuse interface. The sharp interface

107
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approach considers the presence of different phases that interact through the interface using
boundary conditions. Within this approach, two methods are commonly used. In interface
tracking methods, the interface is represented by a set of nodes. This set of nodes moves
accordingly to the interface. This requires particular mesh movements at each iteration and
also requires a special treatment of complex topological configurations [157, 158, 42, 159].
Interface capturing methods consist in a implicit definition of the interface. A volume frac-
tion (Volume-Of-Fluid) or a signed distance function (Level Set) is convected using a transport
equation [160, 161, 162, 163, 164, 165, 166, 167, 168]. These methods are popular due to the
simplicity of implementation and the fact that complex topology changes such as the coales-
cence of bubbles are handled naturally. An excellent literature review of these methods applied
to boiling is given by Kharangate and Mudawar in [169]. Other approaches in the literature can
be mentioned. Phase-field approaches seem the most promising one [170, 171, 172]. An order
parameter is used to distinguish different phases and its evolution gives access to the interface
location. The interface is assumed to have a thickness of few nanometers. However, an equation
of state is required for the fluid that introduces complexity from a mathematical and numeri-
cal point of view. Furthermore, this approach introduces high-order differential terms that are
stiff and require innovative discretization techniques.We can also mention the fluid mixtures
approaches [173, 174] considering two compressible phases. A complete hyperbolic system is
derived using conservation equations for each phase. An equation of state that reproduces the
phase diagram is usually required to close the system.

We propose in this work an adaptive Eulerian framework for dealing at the same time
with an immersed solid and a fluid experiencing phase change. We follow the different in-
terfaces using a level set method. We propose a pseudo-compressible Variational Multiscale
method for the Navier-Stokes accounting for the mass transfer between the phases at the inter-
face. Combined with an a posteriori error estimator for dynamic anisotropic mesh adaptation
[27, 54, 109], leading to highly stretched anisotropic elements, it yields an accurate modeling
framework for such multiphase flows. It was shown that this framework is very favorable for
the simulation of Newtonian flows [37, 68, 175], yield stress fluids [176], compressible and
incompressible flows [38]. This framework will be extended in this work to deal with phase
change.

7.2 Phase change model

In this section, we derive a pseudo-compressible model accounting for mass transfer at the
interface. Such derivation has already be done in the previous work of Denis [43], in the
context of finite difference method.

7.2.1 Derivation of the governing equations for the phase change

We recall the Navier-Stokes equations:

ρ(∂tu+u ·∇u)−∇ · (2µε(u))+∇p = fST + f (7.1)
∂ρ
∂ t

+∇ · (ρu) = 0 (7.2)

where u, p, ρ , µ , fST and f are the velocity, the pressure, the density, the viscosity, the surface
tension force and additional source term of the momentum equation respectively.
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The derivation of the model relies on the mixing law used to distribute the density in space.
Therefore, we first define a mixing law for the density:

ρ = (ρv−ρl)H(α)+ρl (7.3)

where H is a Heaviside function defined using a level set function α . The mass conservation in
the domain Ω reads:

∂ρ
∂ t

+∇ · (ρu) = 0 (7.4)

We define a mass transfer between the liquid and vapor phases:

∂
∂ t

(ρvH(α))+∇ · (ρvH(α)u) = ṁ|∇α|δ (α) (7.5)

∂
∂ t

((1−H(α))ρl)+∇ · (ρl(1−H(α))u) = −ṁ|∇α|δ (α) (7.6)

where ṁ is the mass transfer rate (kg ·m−2 · s−1).
Developing (7.5) and (7.6) leads to:

ρv
∂H(α)

∂ t
+ρvH(α)∇ ·u+ρvu ·∇H(α) = ṁ|∇α|δ (α) (7.7)

−ρl
∂H(α)

∂ t
+ρl(1−H(α))∇ ·u−ρlu ·∇H(α) = −ṁ|∇α|δ (α) (7.8)

By dividing (7.7) and (7.8) by their respective density and summing, we obtain the new mass
conservation equation:

∇ ·u = ṁ
(

1
ρv
− 1

ρl

)
|∇α|δ (α) (7.9)

The velocity is not divergence free since a mass transfer occurs at the interface between the
vapor and the liquid.

Summing (7.7) and (7.8) and dividing by (ρv−ρl) leads to:

∂H(α)

∂ t
+u ·∇H(α) =

ρ
ρl−ρv

∇ ·u (7.10)

Considering the derivative w.r.t. time of the Heaviside function:

∂H(α)

∂ t
=

∂H(α)

∂α
∂α
∂ t

= δ (α)
∂α
∂ t

and the derivative w.r.t. space:
∇H(α) = δ (α)∇α

we obtain:

δ (α)
∂α
∂ t

+δ (α)u ·∇α =
ρ

ρl−ρv
∇ ·u (7.11)

Replacing ∇ ·u by (7.9):

δ (α)
∂α
∂ t

+δ (α)u ·∇α =
ρ

ρl−ρv
ṁ
(

1
ρv
− 1

ρl

)
|∇α|δ (α) (7.12)
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Extending in the whole domain and simplifying, it leads to:

∂α
∂ t

+u ·∇α =
ρ

ρlρv
ṁ|∇α| (7.13)

The level set equation now reads:

∂α
∂ t

+

[
u− ρ

ρlρv
ṁ

∇α
|∇α|

]
·∇α = 0 (7.14)

Neglecting the heat generated by viscosity forces and capillary forces, the energy equation
reads:

ρcp

(
∂T
∂ t

+u ·∇T
)
−∇ · (k∇T ) =−

(
L+(cv

p− cl
p)(T −Tsat)

)
ṁδ (α)|∇α| ρ2

ρvρl
(7.15)

The formulation accounts naturally for the thickness of the mixing law. It is a generic
formulation that requires the definition of the mass transfer rate ṁ.

7.2.2 Derivation of the mass transfer rate
The mass transfer rate is defined using the heat released by a volume V of liquid that has
vaporized between the time t and t +∆t. We consider a domain composed of water and vapor
(see Figure 7.1). The position of the interface at the time t is given by s(t).

s(t +∆t)s(t)

V

x=0 x=l

Figure 7.1: Volume that has vaporized between t and t +∆t

The heat released Q by a volume V of liquid that has vaporized during the elapsed time
between t and t +∆t is:

Q = ρV L (7.16)

where L is the enthalpy of vaporization (latent heat). The heat fluxes are defined on a surface
of area A, respectively in the vapor and the liquid by φv =−kv∇Tv and φl =−kl∇Tl:

Q =

t+∆t∫
t

∫
A

φv ·~ex +φl · (−~ex)dAdt (7.17)

Dividing by ∆t and passing to the limit:

lim
∆t→0

ρL
s(t +∆t)− s(t)

∆t
= lim

∆t→0

1
∆t

t+∆t∫
t

(−kv∇Tv + kl∇Tl) ·~exdt (7.18)
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We obtain the velocity of the interface, the so-called Stefan condition:

ρL
ds
dt

= (−kv∇Tv + kl∇Tl) ·~ex (7.19)

Eq. (7.19) requires the evaluation of the balance of fluxes at the interface. This evaluation
is not straightforward when using an implicit definition of the interface. We therefore propose
an approximation of this balance of fluxes using a delta Dirac function. Approximating the
surface integral by mean of a delta Dirac function leads to:

Q =

t+∆t∫
t

∫
V

δ (α)(φv ·~ex +φl · (−~ex))dV

 dt =
t+∆t∫
t

∫
V

δ (α)(−kv∇Tv + kl∇Tl) ·~exdV

 dt

(7.20)
Passing to the limit:

lim
∆t→0

ρL
s(t +∆t)− s(t)

∆t

∫
V

δ (α)dV = lim
∆t→0

1
∆t

t+∆t∫
t

∫
V

δ (α)(−kv∇Tv + kl∇Tl) ·~exdV

 dt

(7.21)
We obtain the velocity of the interface for an implicit interface, without any interpolation:

ρL
ds
dt

=

∫
V

δ (α)(−kv∇Tv + kl∇Tl) ·~exdV∫
V

δ (α)dV
(7.22)

7.3 Variational Multiscale method for phase change
Following the developments from previous sections, we generalize the Navier-Stokes equa-
tions, into:
Find the velocity u and the pressure p such that:

ρ(∂tu+u ·∇u)−∇ · (2µε(u))+∇p = fST + f (7.23)
∇ ·u = fc (7.24)

where ρ , µ , fST , f and fc are the density, the viscosity, the surface tension force, additional
source term of the momentum equation and the source term of the continuity equation respec-
tively.

Recall that the surface tension is defined by:

fST =−γκδn− γδ∆t
(

∂ 2u
∂n2 +κ

∂u
∂n
−∇2un+1

)
(7.25)

To simplify the notation, we use fm and fc as the source terms in (7.23)-(7.24), adding the
explicit terms of (7.25) into fm. Inserting the expression for the subscales, we finally obtain the
stabilized Finite Element problem. The new variational formulation reads:

Coarse scale
(ρ∂t(uh + ũ),vh)+(ρ(uh + ũ) ·∇(uh + ũ),vh)− (ph + p̃,∇ · vh)

+(2µε(uh) : ε(vh))+(γδ∆t∇(uh + ũ) : ∇vh) = ( fm,vh) ∀vh ∈Vh,0

(∇ · (uh + ũ),qh) = ( fc,qh) ∀qh ∈ Qh

(7.26)
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Fine scale
(ρ∂t(uh + ũ), ṽ)+(ρ(uh + ũ) ·∇(uh + ũ), ṽ)− (ph + p̃,∇ · ṽ)
+(2µε(ũ) : ε(ṽ))+(γδ∆t∇(uh + ũ) : ∇ṽ) = ( fm, ṽ) ∀ṽ ∈ Ṽ

(∇ · (uh + ũ), q̃) = ( fc, q̃) ∀q̃ ∈ Q̃

(7.27)

By substituting the small scale variables into the coarse scale equations, and applying inte-
gration by parts, the system to solve becomes finally:



(ρ∂tuh,vh)+(ρuc
h ·∇uh,vh)− (ph,∇ · vh)+(2µε(uh) : ε(vh))+(γδ∆t∇uh : ∇vh)

− ∑
K∈Th

(
τuRu , ρuc

h ·∇vh
)
− ∑

K∈Th

(τcRc,∇ · vh) = ( fm,vh) ∀vh ∈Vh,0

(∇ ·uh,qh)− ∑
K∈Th

(τuRu,∇qh) = ( fc,qh) ∀qh ∈ Qh

(7.28)
where Ru and Rc are the residuals defined by:

Ru = fm−ρ∂tuh−ρuc
h ·∇uh−∇ph

Rc = fc−∇ ·uh
(7.29)

7.4 Numerical test cases

In this section, two well known benchmark will be used to asses the validity of the approach
developed in this chapter. The results obtained with the proposed approach are then compared
with either analytical solutions or with results obtained by other approaches found in the liter-
ature. Some test cases cannot be handled using classical model in particular for high property
ratios and this will be the opportunity to demonstrate the benefit of adaptive VMS formulation.

7.4.1 Stefan problem

First, we consider the one-dimensional Stefan benchmark. It is a well known problem and
serves as a benchmark to assess the accuracy of phase change models [160, 163, 177]. It is
defined schematically in Figure 7.2. The domain is initially filled with water. The temperature
at the wall is set constant and higher to the saturation temperature. The water is at saturation
temperature. At t > 0, a phase change occurs and induces a motion of the interface between
the vapor and the water. The convective term in the energy conservation equation is neglected
in both phases.

The position of the interface is given by:

s(t) = 2χ
√

αvt (7.30)

The temperature in the vapor at a given time t is given by:

T (x, t) = Twall +
Tsat−Twall

erf(χ)
erf
(

x
2
√

αvt

)
(7.31)
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liquidvapor
x=0 x=s(t)

w
al

l
TΓ = TsatTwall > Tsat Tl = Tsat

Figure 7.2: Initial setup for the classic Stefan problem.

where αv is the thermal diffusivity defined by α = kv/(ρvcv
p) and s is the position of the inter-

face. If the temperature in the liquid is constant, we find the following transcendental equation
describing the evolution of the interface:

Tsat−Tw√
πL

cv
p = χ erf(χ)exp

(
χ2) (7.32)

We consider the physical properties for the water and the vapor given in Table 7.1 and we
consider Tw−Tsat = 10K. We solve the transcendental equation using a Newton algorithm to
find the value of χ .

Figure 7.3 shows the evolution of the position of the interface for both the analytical and
the numerical solution having good agreement.

Table 7.1: Density, dynamic viscosity, specific heat and thermal conductivity for the vapor and
the water at atmospheric pressure

ρ [kg/m3] µ [Pa·s] cp [J/(kg·K)] k [W/(m·K)] Lsat [J/kg]

Vapor 0.597 1.26×10−5 2030 0.025

Water 958.4 2.8×10−4 4216 0.679 2.26×106
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Figure 7.3: Evolution of the interface position for the Stefan problem
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Figure 7.4 shows that the use of a delta Dirac function to compute the mass transfer rate
results in a better convergence. This comparison was done by prescribing a maximum number
of iteration (3000) to reach a residual (10−7) using the GMRES method for the resolution of
the linear system.
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Figure 7.4: Final residual norm for the level set solver.

7.4.2 2D Film boiling
This test case serves as a validation for the phase change model in several articles [157, 160,
178]. Indeed, when the temperature at the wall is much greater than the saturation temperature,
a persistent layer of vapor forms and remains between the wall and the water. This regime is
known as film boiling. In the configuration depicted in Figure 7.5, a Rayleigh-Taylor instability
is triggered due to the low density fluid below the high density fluid. Furthermore, the phase
change will induce a growth of the film, amplifying the instability.

For a Rayleigh Taylor instability, the most unstable Taylor wavelength is in 2D:

λ0 = 2π
(

3γ
(ρl−ρg)g

)1/2

(7.33)

where γ is the surface tension.
The physical parameters taken from [160] are given in Table 7.2. For this set of parameters,

the most unstable wavelength is about λ0 ≈ 0.078m. Figure 7.5 shows the initial profile of the
interface, defined by the following function:

y = 0.5+0.4cos(2πx/λ0) (7.34)

Two cases will be studied. For the first case, the temperature at the wall is maintained
constant at a temperature of 5K above the saturation temperature and for the second, 10K.

To assess the accuracy of the computations, the authors in [157, 160, 178] used space-
averaged Nusselt number obtained from the numerical simulation and compare it to correlation
found in the literature. The local Nusselt number defined as the dimensionless heat flux through
the wall is:

Nu =
λ0

Tw−Tsat

∂T
∂y

∣∣∣∣
y=0

(7.35)
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Figure 7.5: Setup for the 2D film boiling

Regarding the correlation of the Nusselt number in the literature, we use the correlation of
Berenson [179] and Klimenko [180] given by:

NuB = 0.425(GrPr/Ja)1/4 (7.36)

and:
NuK = 0.1691(GrPr/Ja)1/3 for Ja < 0.71 (7.37)

where the Grashof number Gr = ρv(ρl−ρv)gλ0/µ2
v represents the ratio of the buoyancy force

over the viscous force, the Prandtl number Pr = µvcv
p/kv represents the ratio of the momentum

diffusivity over the thermal diffusivity and the Jakob number Ja = cv
p(Tw− Tsat) the ratio of

sensible heat over latent heat.

Table 7.2: Density, dynamic viscosity, specific heat and thermal conductivity for the vapor and
the water at atmospheric pressure

ρ [kg/m3] µ [Pa·s] cp [J/(kg·K)] k [W/(m·K)] Lsat [J/kg]

Vapor 5.0 0.005 200 1.0

Water 200 0.1 400 40 104

Figure 7.6 shows the evolution of the temperature field and the interface for ∆T = 10K. The
vapor film grows to a mushroom shape due to the Rayleigh-Taylor instability. Since we per-
formed 2D computations, no break up occurs due to surface tension. Therefore the mushroom
cap rises along the channel followed by a long and thin filament. Notice that due to the width of
the channel, there is clearly an effect of the lateral confinement on the shape of the vapor mush-
room. Figure 7.7 shows the evolution of the mesh. The mesh is adapted using the anisotropic
mesh adaptation procedure presented in this paper, using only 25,000 elements. Therefore the
mesh is very fine at the vapor/water interface and at the bottom when the thermal gradient is
the highest. The mesh remains coarse far from the interface, where the thermal gradient is null
and the velocity field is still 0.
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Figure 7.6: 2D Film boiling for ∆T = 10K. Temperature field and interface location at t=0.01,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1.0 and 1.5s. The interface is represented by the white line.

The evolution of the space-averaged Nusselt number is depicted in Figure 7.8. The compar-
ison with the correlation of Berenson and Klimenko shows a good agreement for both cases.
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Figure 7.7: 2D Film boiling for ∆T = 10K. Evolution of the mesh and the interface location at
t=0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1.0 and 1.5s. The interface is represented by the white
line.
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Figure 7.8: Evolution of the space-averaged Nusselt number for ∆T = 5K (top) and ∆T = 10K
(bottom).
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7.5 Conclusion
We proposed in this chapter a new Eulerian framework for the numerical simulation of phase
change. A Variational Multiscale Finite Element formulation for the Navier-Stokes equation
taking into account the transfer of mass occurring during the phase change is presented. The
dynamics of the vapor phase is given by the surface tension, implemented in a semi-implicit
way to circumvent the usual severe capillary time step restriction. We have demonstrated the
efficiency of this adaptive framework by performing validation test cases in 2 dimensions. More
challenging computations, including comparison with experimental data are performed in the
next chapter. We will show that the direct numerical simulation of industrial water quenching
using the approach developed in this chapter can be performed accurately.



CHAPTER 7. BOILING MULTIPHASE FLOWS: PHASE CHANGE MODEL 120

Résumé en français
Le changement de phase dans le cas diphasique nécessite le développement d’un modèle per-
mettant de décrire l’échange de masse et d’énergie entre deux phases. Les équations de Navier-
Stokes prenant en compte de tels échanges sont dérivées dans ce chapitre. Ainsi, l’équation
de conservation de la masse, de l’énergie et de transport de la fonction level set sont com-
plétées par des termes dépendant d’un taux de transfert de masse. Cette nouvelle quantité est
déterminée à l’aide d’un modèle quasi-statique dérivé du problème de Stefan. La modification
des équations dans le cadre VMS est montrée et la validation de ce modèle est faite pour des
problèmes avec solution analytique ou des problèmes avec corrélation expérimentale.
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Industrial applications
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8.1 Context
In the previous chapters of this thesis, all the components of the new numerical framework have
been introduced. We recall that one main objective of this work is to be able to simulate 3D
industrial processes taking into account the direct solid-liquid-vapor interactions.

However, in this thesis we did not explore the thermomechanical behavior and character-
istic of the solid part. Indeed, most of the metallic alloys experience phases transformation,
meaning that the microstructure of the material is inhomogeneous in the part due to the differ-
ence of cooling rate in the different area of a part. This leads to variation, sometimes large,
of the thermal and mechanical properties of the solid. These analyses are well covered by dif-
ferent research groups at CEMEF and in particular through the well-known software Forge.
But until recently, the quenching environment was simply replaced by experimentally deduced
transfer coefficients. This makes any simulation generally limited and suffers from systematic
re-validation when facing new materials, new geometries or new thermomechanical conditions.

In this chapter, we will highlight further this issue and will show how the new developments
in all the previous chapters make this novel Eulerian adaptive framework very efficient to simu-
late 3D boiling and phase change inside quench water tanks. To do so, several test cases will be
presented that allow us to investigate easily different quenching parameters such as orientation,
geometry, positioning and to deal with different quenching processes.

First we will consider the quenching of a solid and comparison to unclassified experimental
data to validate the proposed numerical tools. It will enable to assess the accuracy and robust-
ness of the proposed approach to help us closing the bridge between experiment and numerical
simulation.

Then we will move on more challenging configurations with different quenching parame-
ters. We increase the size of the part and consider different geometries. This will show the
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ability of the proposed innovative numerical framework to be a predictive tool for manufactur-
ers.

Finally we consider an extreme challenging case, the water jet cooling. It consists in pro-
jecting at high velocity a water jet to cool down a part. This process aims at avoiding the
formation of a vapor film counting on high convective regime. To the best of the author’s
knowledge, such 3D validations and simulations have never been performed.

8.2 Quenching of a solid and comparison to experimental
data

We will now consider the quenching of a solid into water. We consider a domain of size
0.60 × 0.60 × 0.40 m3, three-quarters full of water, in which a metallic sample, made of
Inconel 718 alloy, of dimension 0.075× 0.075× 0.0015 m3, is immersed (see Figure 8.1). The
temperature of the sample is Tsolid = 880◦C and the temperature of the water is Twater = 25◦C.
A thermocouple is placed at the core of the metallic sample. From a practical point of view,
due to the small thickness of the part, the temperature at the core reflects the behavior of the
temperature field at the interface.

A free slip boundary condition is prescribed on all the walls. The motion of the vapor film
is due to the buoyancy force and the surface tension force. The simulations are performed using
the proposed adaptive meshing technique with 100,000 tetrahedra and then 200,000 tetrahedra.
The time step is set to ∆t = 0.002s.

All the physical parameters related to each phase are presented in Table 8.1.
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Figure 8.1: Set-up for the 3D industrial quenching

Table 8.1: Initial physical parameters for the 3D industrial quenching

ρ [kg/m3] µ [Pa·s] cp [J/(kg·K)] k [W/(m·K)] Lsat [J/kg]

Vapor 1.0 1.2×10−5 2010 0.025 2.26×106

Water 1000 1.0×10−3 4185 0.6

Solid 8000 435 11.4
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The evolution of the liquid-vapor phase is depicted in Figure 8.2 and shows again the ability
of the proposed framework with adaptive meshing to deal with such challenging test case.

Figure 8.2: Industrial quenching. Results at t=2, 3.70 et 6.25 s. Perspective view (left), front
view (right). The zero isovalue of the level set is represented in blue.

Figure 8.3 represents a clip of the quenching tank. Water is depicted in blue and the solid
in red. A slice enables to visualize the adaptive mesh over time. At the top left corner, the
picture shows the initial mesh, mostly concentrated around the part and the free surface. As the
simulation starts and bubbles form, the mesh is adapted automatically according to the level
set interface but also the velocity and the temperature. Under the constraint of a fixed number
of elements, one can notice that the mesh is coarsened automatically at the bottom of the tank,
where the variation of the solution is small.

Finally, Figure 8.4 shows a good agreement for the temperature evolution between the ex-
perimental data and the numerical simulation without the need to adjust the physical para-
maters. Moreover, the strong coupling between the solid, the water and the vapor enables to
perform such simulation without the use of a heat transfer coefficient at the solid boundaries.
The anisotropic mesh adaptation enables to capture the high thermal gradient as well as the
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Figure 8.3: Industrial quenching: Results at different time. The solid is represented in red. A
clip of the quenching tank, with visible adapted mesh.

complexity of the flow.
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Figure 8.4: Evolution of the temperature at the core of the sample.
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8.3 Numerical quenching water tank

Several studies show that heat transfer at the surface of quenched part is dependent on differ-
ent parameters: orientation, position, shape and size, agitation rate, fluid viscosity, and other
variables. In this test case, we will analyze at least the first three parameters. The objective
is to show that the physical phenomena taking place are complex and that the experimental
investigation remains generally limited. Indeed, the latter suffers from systematic revalidation
of heat transfer coefficients when dealing with each parameter. Numerical simulation provides
some insight of the effects of each quenching parameter.

To achieve this purpose, we consider a water tank of dimension L×L×L (see Figure 8.5),
filled to three quarters. Two geometries are proposed; a hot metallic cylinder of length 0.5m
and diameter 0.1m with L=1m and a hot hollow cylinder (see Figure 8.9) of inner radius 3cm
and outer radius of 6cm with L=0.40m.

L

L

L
w

at
er

ai
r

Figure 8.5: Set-up for the 3D film boiling.

For the first geometry, three different configurations are considered. The cylinder is im-
mersed horizontally at mid-height (see Figure 8.6), at a quarter of the height of the tank (see
Figure 8.7) or vertically (see Figure 8.8).

Figure 8.6 shows a persistent vapor film surrounding the cylinder. As expected, the position
of the cylinder has an important effect on the film evolution and thus on the cooling velocity
of the cylinder. Furthermore, such distance from the cylinder to the free surface has a direct
impact on the overall flow inside the quenching bath. The larger the distance, the larger the
velocity of the vapor phase breaking up at the surface.

Whereas, when the cylinder is immersed vertically inside the water tank, the shape of the
film is totally different. Indeed, we can notice in Figure 8.8 a periodic release of the film all
along the surface. Thus, the distribution of the flow is more concentrated in the upper part
of the cylinder. This is due to the vaporization of water nearby but also due to the rise of
vapor from the lower part of the cylinder. Therefore this induces lower cooling velocity when
compared to the previous case. Information of this kind usually requires a thorough knowledge
of hydrodynamic theory. It is worth mentioning that most of quenching tanks do not enable to
get an inside view of the process, except from the free surface.
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Figure 8.6: Cylinder at mid-height. Results at t=0.1, 0.5, 1 and 2 s. Perspective view (left),
front view (right).
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Figure 8.7: Cylinder at a quarter of the height. Results at t=0.1, 0.5, 1 and 2 s. Perspective view
(left), front view (right).
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Figure 8.8: Vertical cylinder. Results at t=0.1, 0.5, 1 and 2 s. Perspective view (left), front view
(right).
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Figure 8.9: Hollow cylinder : Full domain with the ring (in red) and the gas-liquid interface in
blue(left). Zoom on the ring (right)

Let us now consider the hollow cylinder. Figure 8.10 shows this time that both the size
of the hallow cylinder and its geometrical features seem to affect completely the flow. Sharp
edges of the sample encourage the formation of bubbles instead of a vapor film. The vapor film
is well guided by the top surface with additional concentration along the extremity. This test
case highlights the suitability of the numerical framework developed in this thesis to predict
the behavior of the vapor film during quenching. Manufacturers can already investigate the
relevance of their operating conditions in terms of position of the part, its orientation as well as
to handle easily optimal combination of these parameters.
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Figure 8.10: Hollow cylinder. Results at t=0.13, 1.09, 5.44 and 10.75 s. Perspective view (left),
front view (right).
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8.4 Extension to water jet cooling
We propose in this section to simulate the water jet cooling of a static sheet. This represents a
different setup for the process since the part is not immersed in a quenching tank. However it
consists in a drastic test to investigate the effect of convection (agitation in the case of quench-
ing tanks) on the cooling efficiency. Indeed a further refinement should take into account the
collapsing of the vapor film due to convection or pressure forces.

Fig. 8.11 shows the initial setup for the water jet cooling. Water is injected through a
rounded nozzle and impinges the surface of the sheet. In this challenging process inhomoge-
neous cooling could lead to severe distortion of the metal and, as a consequence, the sheet is
discarded.

The interest in the simulation is to improve the homogeneity of the cooling by optimizing
the jet velocity, the jet orientation and the geometry of the nozzle.
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Figure 8.11: Set-up for the 3D water jet cooling

The purpose is to investigate the robustness of the proposed method when simulating a very
challenging case such as 3D water jet quenching. A nickel sheet of 3mm thickness and 50mm
length is heated at a temperature of 451◦C. Water is injected through a nozzle of 6mm diameter.
The exit velocity of the jet from the nozzle is 6.1 m/s. The distance between the nozzle and the
sheet is 60mm. The temperature at the bottom surface is obtained by infrared camera beneath
the sample.

In the computations, we consider 3 phases: solid, water and gas. First, we perform a 2D
simulation using 50,000 elements. The wall are adiabatic in this simulation. The evolution of
the temperature and the evolution of the adaptive mesh are shown in Fig. 8.12.

We also perform a 3D simulation using 700,000 tetrahedra, where the sheet is immersed
in a domain of dimension 90× 90× 93mm3 as it is depicted in Fig. 8.13. First results of this
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simulation are shown in Fig. 8.14 and Fig. 8.15. Despite the low number of elements, interfaces
are well described and the mesh is fine enough at the interface to expect a good accuracy in the
heat and mass transfer during the simulation.

Enriching this simulation with a vapor film collapse model should provide a complete tool
for water jet cooling simulations.



CHAPTER 8. INDUSTRIAL APPLICATIONS 133

Figure 8.12: 2D Water jet cooling. Results from top to bottom at t=1ms, 8ms, 13ms, 22ms,
86ms and 250ms. On the left is depicted the mesh evolution. The mesh of the gas phase is not
displayed. On the right, evolution of the temperature.
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Figure 8.13: 3D Water jet cooling. Results at t=0ms.

Figure 8.14: 3D Water jet cooling. Results at t=6ms.
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Figure 8.15: 3D Water jet cooling. Results at t=6ms. View of the adapted mesh.
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8.5 Conclusion
In this chapter, we presented the simulation of quenching industrial processes using the numer-
ical framework developed in this thesis. The cases simulated here represent very challenging
cases due to the complexity of the coupled phenomena involved, the large span of space and
time scales to consider and due to the extreme operating conditions such as high thermal gra-
dients, high ratio of the physical properties or high convection.

The results obtained from the first simulation demonstrate that we provide a useful tool to
predict the evolution of the temperature in immersed quenching with a very good agreement.
Recall that the number of non physical parameters to achieve the simulation has been reduced
to the minimum. The second test case shows the further use of this numerical framework as
a predictive tool for manufacturers to investigate and improve their quenching processes. We
increased the complexity of the test cases by considering water jet cooling. This test case is
used to assess the potential of the proposed method.
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Résumé en français
L’ensemble des outils développés dans ce manuscript sont utilisés pour la simulation numérique
directe des procédés de trempe. Dans un premier temps, la simulation de la trempe d’un échan-
tillon provenant d’un partenaire industriel est effectuée. L’évolution de la température au coeur
de cet échantillon est très proche de celle relevée expérimentalement. Cela prouve la pertinence
et la capacité du nouveau cadre numérique à reproduire fidèlement les résultats d’un procédé
aussi exigeant que la trempe. Dans un deuxième temps, l’outil numérique est utilisé tel un outil
prospectif pour l’étude de différents scénarios de trempe. Ainsi, en considérant l’orientation et
la position d’un cylindre dans un bain de trempe, la simulation numérique se révèle être d’une
aide précieuse dans la description de la dynamique du film de vapeur entourant la pièce. Cela
permet d’utiliser la simulation numérique pour optimiser le procédé de trempe. Finalement,
une trempe par jet d’eau impactant est étudiée. L’ensemble des outils développés permettent
une simulation robuste de ce procédé. Cependant un modèle de fermeture du film de vapeur
doit être considéré pour parvenir à simuler ce procédé. Les résultats montrés dans ce chapitre
représentent les premiers résultats de simulation numérique directe de trempe à l’échelle indus-
trielle.





Chapter 9

Conclusion & Perspectives

This thesis was devoted to the development of an innovative numerical framework to accu-
rately and robustly simulate an industrial process as demanding as quenching. In this work, we
balanced physical modeling, numerical methods and industrial applications.

The physics involved in the process are numerous and complex. We have investigated
some of these physical mechanisms, ranging from boiling to the expansion of a vapor film.
We decomposed boiling into simpler problems in order to quantify its characteristic scales and
characteristic times. It was demonstrated that to be able to model correctly boiling, several
mechanisms should be included in our numerical framework. According to this investigation,
we decided to develop new numerical methods in the context of the Immersed Volume Method
and to extend the software THOST, dedicated firstly for the heating in furnaces, to the cooling
in quenching water tank.

This work took advantage of the previous developments in the parallel Finite Element li-
brary CimlibCFD developed by the Computing & Fluids group at CEMEF, a research center of
MINES ParisTech-PSL Research University. The Immersed Volume Method was used in this
work for its ability to take into account all the features of the process in a unified way. This
method is a monolithic approach, meaning that only a single set of equation is solved in a single
domain, all the phases being immersed by mean of level set functions. This enables to consider
conjugate heat transfer without the need of heat transfer coefficients. Thermal coupling are
therefore handled naturally. Furthermore, the use of an anisotropic mesh adaptation method
provides a better description of the interfaces. Coupled with an a posteriori error estimator,
this method enables to increase the accuracy of the computation by following all the physical
features of the flow. The numerical framework can be extended and readily devoted to other
research field such as rheology, microfluidic, etc (see [Art4] and [Art9]).

We propose here a summary of the argumentation supported during the thesis. In Chapter
1, we have introduced the quenching process and the numerous difficulties arising from the
simulation of this process. The common heat transfer computations considering only the solid
with heat transfer coefficients (obtained from inverse analysis) fail to be predictive. Therefore
we have proposed a direct numerical simulation of the process, in the context of the Immersed
Volume method, considering the vapor-liquid-solid couplings.

We have discussed in Chapter 2 the complexity of boiling in quenching tanks. Several
physical mechanisms are involved and make the understanding of this phenomenon difficult
to achieve. We have proposed to decompose the process into simpler problems and compare
their influence on the dynamics of the vapor film. This gave us an insight into the relevant
mechanisms to model and simulate in the following chapters. Some conclusions have been
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drawn about the requirements for the new numerical framework.
In Chapter 3, we have presented the Immersed Volume Method within which the current

work has been done. We have introduced all the component of this Eulerian framework en-
abling to consider complex geometries by mean of level set function, to refine the mesh ac-
cording to the interface and the features of the flows, and to deal naturally and accurately with
conjugate heat transfer without the need of heat transfer coefficients.

We have described in Chapter 4 the stabilized Finite Element method (SFEM) dedicated to
Computational Fluid Dynamics. Standard Galerkin mixed Finite Element suffer from instabil-
ities when using equal order interpolation and exhibit oscillation of the solution in convection
dominated regime. Several stabilization methods such as SUPG, VMS or the recent entropy
viscosity have been introduced. The capability of SFEM to circumvent numerical instabilities
has been demonstrated.

In Chapter 5, we have shown that the usual implementation of surface tension suffers from a
severe time restriction that is prohibitive for large computations. Therefore we have proposed a
semi-implicit time discretization of surface tension and we have implemented it in the context
of Variational Multiscale method, to alleviate this computational burden and to enable large
simulation involving surface tension.

The issue of the compressibility of a gaseous phase has been addressed in Chapter 6. Con-
sidering bubbly flows only using incompressible approaches does not allow the change of vol-
ume in the gas phase. Whereas using a compressible approach and an equation of state that
mimics the incompressibility in the liquid is not mass conservative. Therefore we have pro-
posed a new adaptive Variational Multiscale formulation for the Navier-Stokes equations taking
into account a compressible phase and an incompressible one in a natural way.

In Chapter 7, we have proposed a phase change model to simulate the heat and mass transfer
occurring during boiling. We have derived the Navier-Stokes equations taking into account heat
and mass transfer in the context of regularized interface. We have demonstrated the accuracy
of the proposed model using physical analytical solution.

In Chapter 8, we have validated against experimental data the numerical tools developed
in this thesis. First, we have considered an unclassified experiment to assess the accuracy of
the proposed approach. We have found an excellent agreement between the numerical and
experimental temperature fields. Then, we have increased the complexity of the test cases by
considering larger parts and more complex geometries. The robustness of the new numerical
framework has been demonstrated.

It is worth mentioning that all the numerical methods developed in this work will be imple-
mented by the software company Sciences Computers Consultants into the software THOST
and will be made available to the industrial in the upcoming version of the software.

Apart from using and adapting the Immersed Volume Method, the edge based anisotropic
mesh adaptation technique and the CFD tools, I highlight here the main direct contributions of
this thesis:

A new physical modeling for phase change (Chapters 2 & 7, [Art6]) :
We proposed to identify the relevant mechanisms involved in boiling. We quantified their

relevance and their effect on the dynamics of the vapor film surrounding the hot part in quench-
ing tanks. We obtained characteristic times and scales enabling us to draw conclusions on the
physical mechanisms to simulate. Therefore, we considered using a balance of heat fluxes at
the water/vapor interface to quantify the heat and mass transfer during boiling. The Navier-
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Stokes equations formulation, dedicated to this phase change model, was derived. The model
was validated using analytical solution and test cases from the literature.

A new Navier-Stokes solver with implicit surface tension (Chapter 5, [Art1],[Art8]) :
We proposed an adaptive variational multiscale method for two-fluid flows with surface

tension. A level set function is used to provide a precise position of the interfaces. The imple-
mentation of the surface tension in the context of the Continuum Surface Force is proposed to
circumvent the capillary time step restriction. The obtained system is then solved using a new
derived Variational Multiscale stabilized finite element method designed to handle the abrupt
changes at the interface and large density and viscosity ratios. Combined with an a posteriori
error estimator, we show that anisotropic mesh adaptation provides highly stretched elements
at the interfaces and thus yield an accurate modeling framework for two-phase incompressible
isothermal flows. Stable and accurate results are obtained for all two- and three-dimensional
numerical examples. To the best of our knowledge, these are the first simulation results for rep-
resentative time-dependent three-dimensional two-fluid flow problems using an implicit treat-
ment of the surface tension and a dynamic unstructured anisotropic mesh adaptation.

A unified Navier-Stokes solver for compressible-incompressible two phase flows
(Chapter 6 and [Art2]) :

We presented a new stabilized Finite Element method to solve the two phase compressible-
incompressible fluid flow problems using the level set method. The coupling between the pres-
sure and the flow velocity is ensured by introducing mass conservation terms in the momentum
equation. Therefore, the same set of primitive unknowns and equations is described for both
phases. The unified system is solved using a new derived Variational MultiScale formulation. It
was tested and validated on several time-dependent liquid-gas interface problems. The numer-
ical results show good stability and accuracy properties, allowing also to deal with important
compressibility effect, high density ratio, and extremely stretched anisotropic elements.

3D boiling using a level set framework (Chapters 7 & 8, [Art6], [Art7]) :
We proposed a novel numerical framework, for simulating the cooling of an immersed

3D solid with boiling and evaporation at the liquid-gas interfaces. Standard numerical methods
may not able to deal with these heat transfer interactions simultaneously: gas-liquid-solid phase
changes, vapor formations and dynamics, and 3D quenching of a heated solid. Therefore, we
proposed a full adaptive Eulerian framework to achieve this challenging task. A Variational
Multiscale solver for the Navier-Stokes equations, which can deal with turbulent multiphase
flows, is extended using the implicit treatment of the surface tension. The use of an a poste-
riori error estimator leading to highly stretched anisotropic elements at the interface enables
to drastically reduce the interface thickness. Therefore the phase change is performed without
the use of conforming mesh. This avoids the need of interface reconstruction or interpolation
procedure. Finally, a series of 2D and 3D problems are solved to validate the efficiency and
accuracy of the proposed framework. The cooling of an immersed solid is also presented and
shows good agreement with the experimental results.

Several perspectives have be drawn from this work. These outlooks are not only considering
numerical aspects but also physical aspects to obtain a better understanding of the phenomena
involved in quenching:
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• Conservative interpolation: The anisotropic mesh adaptation procedure requires an in-
terpolation from mesh to mesh that can lead to accumulation of error. To reduce this er-
ror inherent to interpolation, a conservative interpolation technique ensuring consistency,
continuity and accuracy of the solution is thus required. A PhD thesis by Chahrazade
Bahbah has already started on this topic in 2016 [181].

• Moving meshes: From the furnaces to the quenching tank, heat transfer between the
solid and its surrounding environment take place and make difficult to obtain realistic
initial condition. A promising way of circumventing this issue is to simulate at once the
whole process using moving meshes for the solid parts in order to alleviate the compu-
tational cost of remeshing. However, the simulation of physical phenomena involving
moving bodies undergoing large displacements still represents a real challenge. Wafa
Daldoul, a PhD student is currently addressing these issues [182].

• Experimental investigations: Further experimental investigations are necessary to im-
prove our immersed framework, to validate it and to generate experimental database.
Indeed the development of physically based robust numerical models for simulating
quenching environments requires to get a better understanding of the involved physical
phenomena such as contact angle, wetting, nucleation and many others.

• Thermomechanical behavior: The prediction of residual stresses and thermo-elasto-
plastic stresses developed during heat treatment and the investigation of the effect of
phase transformation and temperature dependence of material properties.

• Radiation: In film boiling, since a permanent vapor film surrounds the solid and due to
the poor thermal conductivity, it is obvious that radiation plays a major role. Radiation
models in liquid are not common in the literature. A new PhD student Carlos Mensah
has started in 2017 to work on radiative heat transfer [183].

Finally, a new setup of experimental investigation is sought to have new physical insights.
Indeed, comparison between experiment and numerical simulation is not straightforward in
quenching processes. Indeed, quenching processes suffer from a lack of direct observation.
When a part is immersed in quenching tank, water boils, bubbles rise to the free surface and
therefore visualization of the phenomena occurring is not possible. Therefore, the vapor film
dynamics in quenching is not well known. Another issue inherent to quenching is the carriage
of the hot part from the furnaces to the quenching tank. At this occasion, thermal exchanges
with the surrounding environment take place. Radiation through the air and thermal conduction
by the carrying tools prevent the prediction of the temperature field shortly before the immer-
sion in the tank. As a consequence, a thorough comparison between numerical simulation and
experiment is not possible unless the carriage time is short enough to consider a homogeneous
temperature field.

To overcome these obstacles we designed the new experimental device shown in Figure
9.1 and Figure 9.2. The working principle is the following. A part is heated inside a tank full
of water. Thermocouples measure the temperature field in the part. When a steady state is
reached, heat supplier is shut down, enabling the cooling of the part. We perform the corre-
sponding simulation of the heating and cooling phases, thus enabling us to obtain a realistic
initial temperature field for the cooling phase and to assess the accuracy of the numerical sim-
ulation. Furthermore the visualization of the formation of the vapor film and its dynamics is
straightforward since the part is heated at the bottom of the transparent tank. Quantities such
as vapor film thickness and vapor formed during the process can be measured.
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Figure 9.1: New in-situ multi-task quenching device

Figure 9.2: Zoom on the heater (left) and assembly heater/solid part (right). Different sizes and
geometries of the part can easily be considered.
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Résumé en français
Dans ce manuscrit, la construction d’un cadre numérique permettant une simulation numérique
robuste et précise des procédés de trempe a été décrite. Tout d’abord, les différents mécanismes
présents dans le procédé de trempe ont été étudiés. Des échelles et des temps caractéristiques
ont été donnés permettant de connaître l’influence de chacun de ces mécanismes sur l’évolution
de la phase vapeur. Cette étude a permis de dégager les principaux axes de développement
numérique.

Les outils développés vont intégrer un cadre numérique existant utilisant la méthode des
volumes immergées. Ce paradigme allie la méthode level set pour la description des inter-
faces, des lois de mélange pour distribuer en espace les propriétés physiques respectives et
une méthode d’adaptation de maillage anisotrope pour une meilleure résolution des équations
dans le domaine. Ainsi, les transferts thermiques aux interfaces s’opèrent naturellement sans
utilisation de coefficient de transfert thermique.

Les équations de la mécanique sont résolues en utilisant une méthode d’Eléments Finis sta-
bilisés permettant de simuler des écoulements turbulents et de traiter les régimes à convection
et à diffusion dominantes. Les différents solveurs et notamment le solveur concernant les équa-
tions de conservation de la masse et de mouvement sont modifiés pour prendre en compte des
physiques additionnelles.

Une méthode implicite de tension de surface permettant de s’affranchir de la restriction
du pas de temps capillaire a été utilisée et implémentée. L’utilisation de cette méthode avec
l’adaptation de maillage anisotrope résulte en un puissant outil, robuste, précis et peu coûteux
pour la simulation des écoulements multiphasiques avec tension de surface.

Une formulation unifiée des équations de Navier-Stokes prenant en compte une phase com-
pressible et une phase incompressible a été développée. Elle permet de considérer la phase
vapeur comme une phase compressible tout en considérant l’eau comme incompressible. Cela
permet de décrire plus précisément la dynamique du film de vapeur lorsqu’il est soumis à une
forte agitation dans le bain de trempe.

La modélisation du changement de phase nécessite une modification de l’ensemble des
équations. Des termes additionnels quantifiant l’échange de masse et d’énergie à travers l’interface
vapeur/eau apparaissent et doivent être intégrés dans la résolution de ces équations. Le taux de
transfert de masse est dérivé à l’aide d’un modèle quasi-statique. La validation de ce dernier est
effectuée en utilisant aussi bien des problèmes analytiques que des corrélations expérimentales
sur les gradients thermiques.

Finalement, l’ensemble des outils de ce nouveau cadre numérique est utilisé pour la sim-
ulation numérique directe des procédés de trempe. La comparaison avec des résultats expéri-
mentaux montre d’ores et déjà la validité, la robustesse et la précision de l’approche proposée.
Les outils proposés peuvent ainsi être utilisés pour optimiser le procédé en étudiant différentes
orientations, positions et différentes géométries.

Pour aller plus loin dans la compréhension du procédé de trempe, un nouveau banc expéri-
mental a été développé durant cette thèse. Ce banc permettra de suivre la montée en tempéra-
ture d’un échantillon jusqu’à un état stationnaire et le refroidissement de cet échantillon dans un
contexte de trempe par immersion. La phase d’immersion, présente dans les procédés de trempe
et difficile à contrôler, est ainsi supprimée. Le but recherché est d’obtenir un historique complet
du champ de température dans la pièce, pouvant être reproduit par la simulation numérique. De
plus, l’observation directe du bain par l’intermédiaire de caméras rapides permettra de calculer
les épaisseurs du film de vapeur à différents instants, avec ou sans agitation. Cela permettra
ainsi de valider le modèle de changement de phase dans un environnement contrôlé.
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Résumé

Les procédés de trempe sont largement ré-
pandus dans l’industrie en particulier dans
le domaine de l’automobile, du nucléaire et
de l’aérospatiale car ils ont un impact di-
rect sur la microstructure, les propriétés mé-
caniques et les contraintes résiduelles de
pièces critiques. La trempe est un proces-
sus fortement non-linéaire à cause des cou-
plages forts entre la mécanique des fluides,
les transferts thermiques aux différentes in-
terfaces, les transformations de phase du
solide et l’ébullition du milieu de trempe. Mal-
gré les progrès effectués par la simulation
numérique, ce procédé reste extrêmement
difficile à modéliser.
Dans ce travail, nous proposons le
développement d’outils numériques per-
mettant la simulation réaliste de ce procédé
à l’échelle industrielle. La mécanique des
fluides est simulée en utilisant une méthode
d’Elements Finis stabilisés permettant de
considérer des écoulements à haut nombre
de Reynolds. Les transferts thermiques
sont calculés directement sans l’utilisation
de coefficients de transferts empiriques,
en utilisant le couplage fort entre le fluide
et le solide. Nous avons développé un
modèle de changement de phase pour
l’eau permettant de considérer les différents
régimes d’ébullition. Une formulation unifiée
des équations de Navier-Stokes, considérant
une phase compressible et une phase incom-
pressible a été développée afin de prendre
en compte plus précisément la dynamique
de la vapeur et de l’eau. Une procédure
dynamique d’adaptation anisotrope de
maillage, permettant une description plus
fine des interfaces et une prise en compte
plus précise des caractéristiques des écoule-
ments est utilisée. Des exemples numériques
exigeants ainsi qu’une validation expérimen-
tale permettent d’évaluer la précision et la
robustesse des outils proposés.
Les outils développés permettent ainsi
l’optimisation du mode opératoire du
procédé, des ressources consommées et
servent ainsi d’outils prospectifs pour la
conception de produits.

Mots Clés

Procédés de trempe, Ebullition, Ecoule-
ments multiphasiques, Eléments Finis sta-
bilisés, Level Set, Adaptation de maillage
anisotrope.

Abstract

Quenching processes of metals are widely
adopted procedures in the industry, in par-
ticular automotive, nuclear and aerospace
industries, since they have direct impacts
on changing mechanical properties, con-
trolling microstructure and releasing resid-
ual stresses of critical parts. Quenching is
a highly nonlinear process because of the
strong coupling between the fluid mechanics,
heat transfer at the interface solid-fluid, phase
transformation in the metal and boiling. In
spite of the maturity and the popularity of nu-
merical formulations, several involved mecha-
nisms are still not well resolved.
Therefore we propose a Direct Numerical
Simulation of quenching processes at the in-
dustrial scale dealing with these phenomena.
The fluid mechanics is simulated using a Fi-
nite Element Method adapted for high con-
vective flows allowing the use of high stirring
velocity in the quenching bath. Heat transfers
are computed directly without the use of heat
transfer coefficients but using the strong cou-
pling between the fluid and the solid. We use
a phase change model for the water that mod-
els all boiling regimes. A unified formulation of
the Navier-Stokes equations, taking into ac-
count a compressible gas and an incompress-
ible liquid is developed to model more accu-
rately the vapor-water dynamics. A dynamic
mesh adaptation procedure is used, increas-
ing the resolution in the description of the in-
terfaces and capturing more accurately the
features of the flows. We assess the behavior
and the accuracy of the proposed formulation
in the simulation of time-dependent challeng-
ing numerical examples and experimental re-
sults.
These recent developments enable the opti-
mization of the process in terms of operating
conditions, resources consumed and prod-
ucts conception.

Keywords

Quenching processes, Boiling, Multiphase
flows, Stabilized Finite Element Method, Level
Set, Anisotropic mesh adaptation
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