. Towards, . Multiphase, and . Flows, SURFACE TENSION 85 (a) t=0.6s (b) t=1.2s (c) t=1.8s (d) t=2, CHAPTER, pp.2-2

M. Guy, Traitements thermiques dans la masse des aciers. partie 1. Techniques de l'ingénieur Traitements thermiques des aciers, des alliages et des fontes, pp.2-6, 2000.

D. S. Mackenzie, History of quenching, International Heat Treatment and Surface Engineering, vol.5, issue.2, pp.68-73, 2008.
DOI : 10.1080/00766097.1961.11735647

D. R. Garwood, J. D. Lucas, R. A. Wallis, and J. Ward, Modeling of the flow distribution in an oil quench tank, Journal of Materials Engineering and Performance, vol.21, issue.No. 12, pp.781-787, 1992.
DOI : 10.1007/BF03220824

V. Srinivasan, K. Moon, D. Greif, D. M. Wang, and M. Kim, Numerical simulation of immersion quenching process of an engine cylinder head, Applied Mathematical Modelling, vol.34, issue.8, pp.2111-2128, 2010.
DOI : 10.1016/j.apm.2009.10.023

B. Taraba, S. Duehring, J. ?panielka, and ?. Hajdu, Effect of Agitation Work on Heat Transfer during Cooling in Oil ISORAPID 277HM, Strojni??ki vestnik ??? Journal of Mechanical Engineering, vol.58, issue.2, pp.102-106, 2012.
DOI : 10.5545/sv-jme.2011.064

P. Cavaliere, E. Cerri, and P. Leo, Effect of heat treatments on mechanical properties and fracture behavior of a thixocast A356 aluminum alloy, Journal of Materials Science, vol.39, issue.5, pp.1653-1658, 2004.
DOI : 10.1023/B:JMSC.0000016165.99666.dd

C. Simsir, C. H. Gur, and P. Leo, A simulation of the quenching process for predicting temperature, microstructure and residual stresses, Journal of Mechanical Engineering, vol.56, pp.93-103, 2010.

N. Chen, L. Han, W. Zhang, and X. Hao, Enhancing mechanical properties and avoiding cracks by simulation of quenching connecting rods, Materials Letters, vol.61, issue.14-15, pp.613021-3024, 2007.
DOI : 10.1016/j.matlet.2006.10.078

J. Olivier, . Clement, F. Debie, and . Moreaux, Stirring of quenchants fluids: design considerations and metallurgical consequences, pp.29-42, 1986.

F. Lemmadi, . Chala, . Ferhati, S. Chabane, and . Benramache, Structural and mechanical behavior during quenching of 40crmov5 steel, Journal of Science and Engineering, vol.3, issue.1, pp.1-6, 2013.

D. John, I. Bernardin, and . Mudawar, Validation of the quench factor technique in predicting hardness in heat treatable aluminum alloys, International Journal of Heat and Mass Transfer, vol.38, issue.5, pp.863-873, 1995.

G. E. Lauralice-de-campos-franceschini-canale and . Totten, Quenching technology: a selected overview of the current state-of-the-art, Materials Research, vol.8, issue.12, pp.461-467

K. Vijay and . Dhir, Mechanistic prediction of nucleate boiling heat transfer?achievable or a hopeless task, Journal of Heat Transfer, vol.128, issue.1, pp.1-12, 2006.

G. Son, K. Vijay, N. Dhir, and . Ramanujapu, Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface, Journal of Heat Transfer, vol.114, issue.3, pp.623-631, 1999.
DOI : 10.1115/1.2826025

G. Son, . Ramanujapu, K. Vijay, and . Dhir, Numerical Simulation of Bubble Merger Process on a Single Nucleation Site During Pool Nucleate Boiling, Journal of Heat Transfer, vol.117, issue.1, pp.51-62, 2001.
DOI : 10.1115/1.2822535

M. Sussman, A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, Journal of Computational Physics, vol.114, issue.1, pp.146-159, 1994.
DOI : 10.1006/jcph.1994.1155

D. Jacqmin, Calculation of Two-Phase Navier???Stokes Flows Using Phase-Field Modeling, Journal of Computational Physics, vol.155, issue.1, pp.96-127, 1999.
DOI : 10.1006/jcph.1999.6332

R. Scardovelli and S. Zaleski, DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW, Annual Review of Fluid Mechanics, vol.31, issue.1, pp.567-603, 1999.
DOI : 10.1146/annurev.fluid.31.1.567

E. Hachem, T. Kloczko, H. Digonnet, and T. Coupez, Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method, International Journal for Numerical Methods in Fluids, vol.2, issue.3, pp.99-121, 2012.
DOI : 10.1504/IJCSM.2007.016531

URL : https://hal.archives-ouvertes.fr/hal-00549730

E. Hachem, B. Rivaux, T. Kloczko, H. Digonnet, and T. Coupez, Stabilized finite element method for incompressible flows with high Reynolds number, Journal of Computational Physics, vol.229, issue.23, pp.8643-8665, 2010.
DOI : 10.1016/j.jcp.2010.07.030

URL : https://hal.archives-ouvertes.fr/hal-00521881

E. Hachem, S. Feghali, R. Codina, and T. Coupez, Immersed stress method for fluid-structure interaction using anisotropic mesh adaptation, International Journal for Numerical Methods in Engineering, vol.230, issue.4, pp.805-825, 2013.
DOI : 10.1016/j.jcp.2010.11.021

URL : https://hal.archives-ouvertes.fr/hal-00815641

E. Hachem, H. Digonnet, N. Kosseifi, E. Massoni, and T. Coupez, Enriched finite element spaces for transient conduction heat transfer, Applied Mathematics and Computation, vol.217, issue.8, pp.3929-3943, 2010.
DOI : 10.1016/j.amc.2010.09.057

URL : https://hal.archives-ouvertes.fr/hal-00549723

E. Hachem, S. Feghali, R. Codina, and T. Coupez, Anisotropic adaptive meshing and monolithic Variational Multiscale method for fluid???structure interaction, Computers & Structures, vol.122, pp.88-100, 2013.
DOI : 10.1016/j.compstruc.2012.12.004

URL : https://hal.archives-ouvertes.fr/hal-00780752

T. Coupez and E. Hachem, Solution of high-Reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing, Computer Methods in Applied Mechanics and Engineering, vol.267, pp.65-85, 2013.
DOI : 10.1016/j.cma.2013.08.004

URL : https://hal.archives-ouvertes.fr/hal-00866734

T. Coupez, G. Jannoun, N. Nassif, H. C. Nguyen, H. Digonnet et al., Adaptive time-step with anisotropic meshing for incompressible flows, Journal of Computational Physics, vol.241, pp.195-211, 2013.
DOI : 10.1016/j.jcp.2012.12.010

URL : https://hal.archives-ouvertes.fr/hal-00800819

Y. Mesri, M. Khalloufi, and E. Hachem, On optimal simplicial 3D meshes for minimizing the Hessian-based errors, Applied Numerical Mathematics, vol.109, issue.28, pp.235-249, 2016.
DOI : 10.1016/j.apnum.2016.07.007

URL : https://hal.archives-ouvertes.fr/hal-01354332

L. Billon, Y. Mesri, and E. Hachem, Anisotropic boundary layer mesh generation for immersed complex geometries, Engineering with Computers, vol.12, issue.4, pp.249-260, 2017.
DOI : 10.1016/j.proeng.2014.10.400

URL : https://hal.archives-ouvertes.fr/hal-01521734

N. Wansophark, A. Malatip, and P. Dechaumphai, Streamline upwind finite element method for conjugate heat transfer problems, Acta Mechanica Sinica, vol.21, issue.5, pp.436-443, 2005.
DOI : 10.1007/s10409-005-0060-8

T. Richter, A Fully Eulerian formulation for fluid???structure-interaction problems, Journal of Computational Physics, vol.233, pp.227-240, 2013.
DOI : 10.1016/j.jcp.2012.08.047

G. Hauke, J. Thomas, and . Hughes, A comparative study of different sets of variables for solving compressible and incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.153, issue.1-2, pp.1-44, 1998.
DOI : 10.1016/S0045-7825(97)00043-1

T. J. Hughes, Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Computer Methods in Applied Mechanics and Engineering, vol.127, issue.1-4, pp.1-4387, 1995.
DOI : 10.1016/0045-7825(95)00844-9

Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. Hughes, A. Reali et al., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.1-4, pp.173-201, 2007.
DOI : 10.1016/j.cma.2007.07.016

U. Rasthofer and V. Gravemeier, Multifractal subgrid-scale modeling within a variational multiscale method for large-eddy simulation of turbulent flow, Journal of Computational Physics, vol.234, issue.1 4, pp.79-107, 2013.
DOI : 10.1016/j.jcp.2012.09.013

E. Castillo and R. Codina, Variational multi-scale stabilized formulations for the stationary three-field incompressible viscoelastic flow problem, Computer Methods in Applied Mechanics and Engineering, vol.279, pp.579-605, 2014.
DOI : 10.1016/j.cma.2014.07.006

M. Khalloufi, Y. Mesri, R. Valette, E. Massoni, and E. Hachem, High fidelity anisotropic adaptive variational multiscale method for multiphase flows with surface tension, Computer Methods in Applied Mechanics and Engineering, vol.307, pp.44-67, 2016.
DOI : 10.1016/j.cma.2016.04.014

URL : https://hal.archives-ouvertes.fr/hal-01354154

E. Hachem, M. Khalloufi, J. Bruchon, R. Valette, and Y. Mesri, Unified adaptive Variational MultiScale method for two phase compressible???incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.308, pp.238-255, 2016.
DOI : 10.1016/j.cma.2016.05.022

URL : https://hal.archives-ouvertes.fr/hal-01353998

S. Nukiyama, Film boiling water on thin wires, Society of Mechanical Engineering, vol.37, 1934.

V. Alexiades and A. D. Solomon, Mathematical Modeling of Melting or Freezing Processes. Hemisphere Pub, 1993.

V. Alexiades and J. B. Drake, Free Boundary Problems Involving Solids : A weak formulation for phase change problems with bulk movement due to unequal densities, 1993.

D. Juric and G. Tryggvason, Computations of boiling flows, International Journal of Multiphase Flow, vol.24, issue.3, pp.387-410, 1998.
DOI : 10.1016/S0301-9322(97)00050-5

R. Denis, Modelisation and simulation of Leidenfrost effect in micro-droplets, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00990977

F. Font, T. G. Myers, and S. L. Mitchell, A mathematical model for nanoparticle melting with density change, Microfluidics and Nanofluidics, vol.27, issue.2, pp.233-243, 2015.
DOI : 10.1016/S0307-904X(03)00078-7

D. H. Sharp, An overview of Rayleigh-Taylor instability, Physica D: Nonlinear Phenomena, vol.12, issue.1-3, pp.3-18, 1984.
DOI : 10.1016/0167-2789(84)90510-4

H. Johansen and P. Colella, A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains, Journal of Computational Physics, vol.147, issue.1, pp.60-85, 1998.
DOI : 10.1006/jcph.1998.5965

C. Peskin, Flow patterns around heart valves: A numerical method, Journal of Computational Physics, vol.10, issue.2, pp.252-271, 1972.
DOI : 10.1016/0021-9991(72)90065-4

R. Glowinski, T. Pan, A. Kearsley, and J. Periaux, Numerical simulation and optimal shape for viscous flow by a fictitious domain method, International Journal for Numerical Methods in Fluids, vol.1, issue.8-9, pp.695-711, 2005.
DOI : 10.1007/978-1-4612-5162-0_10

H. Kreiss and A. Petersson, A Second Order Accurate Embedded Boundary Method for the Wave Equation with Dirichlet Data, SIAM Journal on Scientific Computing, vol.27, issue.4, pp.1141-1167, 2006.
DOI : 10.1137/040604728

C. Farhat, A. Rallu, K. Wang, and T. Belytschko, Robust and provably second-order explicit-explicit and implicit-explicit staggered time-integrators for highly non-linear compressible fluid-structure interaction problems, International Journal for Numerical Methods in Engineering, vol.125, issue.1, pp.73-107, 2010.
DOI : 10.1002/nme.2883

C. Farhat, K. Maute, B. Argrow, and M. Nikbay, Shape Optimization Methodology for Reducing the Sonic Boom Initial Pressure Rise, AIAA Journal, vol.10, issue.10, pp.1007-1018, 2007.
DOI : 10.1016/S0045-7825(00)00385-6

F. Ilinca and J. Hetu, A finite element immersed boundary method for fluid flow around rigid objects, International Journal for Numerical Methods in Fluids, vol.57, issue.2-3, pp.856-875, 2011.
DOI : 10.1002/fld.1744

R. Abgrall, H. Beaugendre, and C. Dobrzynski, An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques, Journal of Computational Physics, vol.257, pp.83-101, 2014.
DOI : 10.1016/j.jcp.2013.08.052

URL : https://hal.archives-ouvertes.fr/hal-00940302

T. Coupez, Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, Journal of Computational Physics, vol.230, issue.7, pp.2391-2405, 2011.
DOI : 10.1016/j.jcp.2010.11.041

URL : https://hal.archives-ouvertes.fr/hal-00579536

S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces, 2003.

L. Ville, L. Silva, and T. Coupez, Convected level set method for the numerical simulation of fluid buckling, International Journal for Numerical Methods in Fluids, vol.4, issue.3, pp.324-344, 2011.
DOI : 10.1142/S0218202594000327

URL : https://hal.archives-ouvertes.fr/hal-00595325

A. Bonito, J. Guermond, and S. Lee, Numerical simulations of bouncing jets, International Journal for Numerical Methods in Fluids, vol.29, issue.6, pp.53-75, 2016.
DOI : 10.1002/(SICI)1097-0363(19990330)29:6<705::AID-FLD809>3.0.CO;2-C

T. Coupez, L. Silva, and E. Hachem, Implicit Boundary and Adaptive Anisotropic Meshing, New Challenges in Grid Generation and Adaptivity for Scientific Computing, pp.1-18, 2015.
DOI : 10.1007/978-3-319-06053-8_1

T. J. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.39-41, pp.4135-4195, 2005.
DOI : 10.1016/j.cma.2004.10.008

URL : https://hal.archives-ouvertes.fr/hal-01513346

J. Dompierre, M. G. Vallet, M. Fortin, W. G. Habashi, S. Boivin et al., Edge-based mesh adaptation for cfd. international conference on numerical methods for the euler and navier-stokes equations, 8th IEEE Symp. pn Parallel and Distributed Processing, pp.265-299, 1995.

P. J. Frey and F. Alauzet, Anisotropic mesh adaptation for CFD computations, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.48-49, pp.48-495068, 2005.
DOI : 10.1016/j.cma.2004.11.025

J. Remacle, X. Li, M. S. Shephard, and J. E. Flaherty, Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods, International Journal for Numerical Methods in Engineering, vol.107, issue.7, pp.899-923, 2005.
DOI : 10.1007/978-3-0348-8629-1

C. Gruau and T. Coupez, 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.48-49, pp.4951-4976, 2005.
DOI : 10.1016/j.cma.2004.11.020

URL : https://hal.archives-ouvertes.fr/hal-00517639

G. Kunert and R. Verfürth, Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes, Numerische Mathematik, vol.86, issue.2, pp.283-303, 2000.
DOI : 10.1007/PL00005407

F. Alauzet and P. Frey, Estimateur d'erreur géométrique et métriques anisotropes pour l'adaptation de maillage. Partie I : aspects théoriques, 2003.

V. Suhas and . Patankar, Numerical Heat Transfer And Fluid Flow, Series In Computational And Physical Processes In Mechanics And Thermal Sciences, 1980.

J. C. Martin and W. J. Moyce, Part IV. An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.244, issue.882, pp.312-324, 1952.
DOI : 10.1098/rsta.1952.0006

URL : https://hal.archives-ouvertes.fr/hal-00518739

L. Marioni, M. Khalloufi, F. Bay, and E. Hachem, Two-fluid flow under the constraint of external magnetic field, International Journal of Numerical Methods for Heat & Fluid Flow, vol.1, issue.3, pp.1-17, 2017.
DOI : 10.1002/fld.2525

URL : https://hal.archives-ouvertes.fr/hal-01667674

A. Murrone and H. Guillard, A five equation reduced model for compressible two phase flow problems, Journal of Computational Physics, vol.202, issue.2, pp.664-698, 2005.
DOI : 10.1016/j.jcp.2004.07.019

URL : https://hal.archives-ouvertes.fr/hal-00871724

R. N. Elias and A. Coutinho, Stabilized edge-based finite element simulation of free-surface flows, International Journal for Numerical Methods in Fluids, vol.47, issue.6-8, pp.965-993, 2007.
DOI : 10.1002/fld.1475

A. Quarteroni, What mathematics can do for the simulation of blood circulation, 2006.

A. Masud and R. Calderer, A variational multiscale method for incompressible turbulent flows: Bubble functions and fine scale fields, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.33-36, pp.2577-2593, 2011.
DOI : 10.1016/j.cma.2011.04.010

O. Guasch and R. Codina, Statistical behavior of the orthogonal subgrid scale stabilization terms in the finite element large eddy simulation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, vol.261, issue.262, pp.154-166, 2013.
DOI : 10.1016/j.cma.2013.04.006

D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the stokes equations, Calcolo, vol.21, issue.4, pp.337-344, 1984.
DOI : 10.1007/BF02576171

A. N. Brooks and T. J. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.32, issue.1-3, pp.199-259, 1982.
DOI : 10.1016/0045-7825(82)90071-8

T. J. Hughes, L. P. Franca, and M. Balestra, A new finite element formulation for computational fluid dynamics: V. circumventing the Babuska-Brezzi condition: A stable BIBLIOGRAPHY 153

J. Donea and A. Huerta, Finite element methods for flow problems, 2003.
DOI : 10.1002/0470013826

F. Brezzi, L. P. Franca, T. J. Hughes, and A. Russo, b = ??? g, Computer Methods in Applied Mechanics and Engineering, vol.145, issue.3-4, pp.329-339, 1997.
DOI : 10.1016/S0045-7825(96)01221-2

T. E. Tezduyar, R. Shih, S. Mittal, and S. E. Ray, Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements, Computer Methods in Applied Mechanics and Engineering, vol.95, issue.2, pp.221-242, 1992.
DOI : 10.1016/0045-7825(92)90141-6

L. P. Franca and C. Farhat, Bubble functions prompt unusual stabilized finite element methods, Computer Methods in Applied Mechanics and Engineering, vol.123, issue.1-4, pp.229-308, 1995.
DOI : 10.1016/0045-7825(94)00721-X

URL : http://www-math.cudenver.edu/ccmreports/rep24.ps.gz

R. Codina, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.13-14, pp.1579-1599, 2000.
DOI : 10.1016/S0045-7825(00)00254-1

R. Codina, Stabilized finite element method for the transient Navier???Stokes equations based on a pressure gradient projection, Computer Methods in Applied Mechanics and Engineering, vol.182, issue.3-4, pp.277-300, 2000.
DOI : 10.1016/S0045-7825(99)00194-2

R. Codina, Pressure Stability in Fractional Step Finite Element Methods for Incompressible Flows, Journal of Computational Physics, vol.170, issue.1, pp.112-140, 2001.
DOI : 10.1006/jcph.2001.6725

R. Codina and J. Principe, Dynamic subscales in the finite element approximation of thermally coupled incompressible flows, International Journal for Numerical Methods in Fluids, vol.13, issue.6-8, pp.707-730, 2007.
DOI : 10.1002/fld.1481

V. Gravemeier, Scale-separating operators for variational multiscale large eddy simulation of turbulent flows, Journal of Computational Physics, vol.212, issue.2, pp.400-435, 2006.
DOI : 10.1016/j.jcp.2005.07.007

V. Gravemeier, A consistent dynamic localization model for large eddy simulation of turbulent flows based on a variational formulation, Journal of Computational Physics, vol.218, issue.2, pp.677-701, 2006.
DOI : 10.1016/j.jcp.2006.03.001

V. Gravemeier, W. A. Wall, and E. Ramm, A three-level finite element method for the instationary incompressible Navier???Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.15-16, pp.15-161323, 2004.
DOI : 10.1016/j.cma.2003.12.027

R. Moser, J. Kim, and R. Mansour, Direct numerical simulation of turbulent channel flow up to Re??=590, Physics of Fluids, vol.11, issue.4, pp.943-945, 1999.
DOI : 10.1017/S0022112088000345

E. Hachem, Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00443532

R. Codina, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.39-40, pp.39-404295, 2002.
DOI : 10.1016/S0045-7825(02)00337-7

S. Badia and R. Codina, Stabilized continuous and discontinuous Galerkin techniques for Darcy flow, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.25-28, pp.25-281654, 2010.
DOI : 10.1016/j.cma.2010.01.015

R. Codina, Finite Element Approximation of the Three-Field Formulation of the Stokes Problem Using Arbitrary Interpolations, SIAM Journal on Numerical Analysis, vol.47, issue.1, pp.699-718, 2009.
DOI : 10.1137/080712726

R. Codina, J. Principe, O. Guasch, and S. Badia, Time dependent subscales in the stabilized finite element approximation of incompressible flow problems, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.21-24, pp.2413-2430, 2007.
DOI : 10.1016/j.cma.2007.01.002

S. Badia and R. Codina, On a multiscale approach to the transient Stokes problem: Dynamic subscales and anisotropic space???time discretization, Applied Mathematics and Computation, vol.207, issue.2, pp.415-433, 2009.
DOI : 10.1016/j.amc.2008.10.059

D. Forti and L. Dedè, Semi-implicit BDF time discretization of the Navier???Stokes equations with VMS-LES modeling in a High Performance Computing framework, Computers & Fluids, vol.117, pp.168-182, 2015.
DOI : 10.1016/j.compfluid.2015.05.011

R. Codina, Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Computer Methods in Applied Mechanics and Engineering, vol.156, issue.1-4, pp.185-210, 1998.
DOI : 10.1016/S0045-7825(97)00206-5

S. Badia and R. Codina, Analysis of a Stabilized Finite Element Approximation of the Transient Convection???Diffusion Equation Using an ALE Framework, SIAM Journal on Numerical Analysis, vol.44, issue.5, pp.2159-2197, 2006.
DOI : 10.1137/050643532

R. Codina, J. M. González-ondina, G. Díaz-hernández, and J. Principe, Finite element approximation of the modified Boussinesq equations using a stabilized formulation, International Journal for Numerical Methods in Fluids, vol.55, issue.9, pp.1249-1268, 2008.
DOI : 10.1080/00221687809499616

A. C. Galeão and E. G. Carmo, A consistent approximate upwind Petrov-Galerkin method for convection-dominated problems, Computer Methods in Applied Mechanics and Engineering, vol.68, issue.1, pp.83-95, 1988.
DOI : 10.1016/0045-7825(88)90108-9

J. Guermond, R. Pasquetti, and B. Popov, Entropy viscosity method for nonlinear conservation laws, Journal of Computational Physics, vol.230, issue.11, pp.4248-4267, 2011.
DOI : 10.1016/j.jcp.2010.11.043

E. Hachem, G. Jannoun, J. Veysset, and T. Coupez, On the stabilized finite element method for steady convection-dominated problems with anisotropic mesh adaptation, Applied Mathematics and Computation, vol.232, pp.581-594, 2014.
DOI : 10.1016/j.amc.2013.12.166

URL : https://hal.archives-ouvertes.fr/hal-00960089

S. Micheletti, S. Perotto, and M. Picasso, Stabilized Finite Elements on Anisotropic Meshes: A Priori Error Estimates for the Advection-Diffusion and the Stokes Problems, SIAM Journal on Numerical Analysis, vol.41, issue.3, pp.1131-1162, 2004.
DOI : 10.1137/S0036142902403759

I. Harari and T. J. Hughes, What are C and h?: Inequalities for the analysis and design of finite element methods, Computer Methods in Applied Mechanics and Engineering, vol.97, issue.2, pp.157-192, 1992.
DOI : 10.1016/0045-7825(92)90162-D

C. Förster, W. A. Wall, and E. Ramm, Stabilized finite element formulation for incompressible flow on distorted meshes, International Journal for Numerical Methods in Fluids, vol.105, issue.10, pp.1103-1126, 2009.
DOI : 10.1002/fld.1923

A. Cangiani and E. Süli, The Residual-Free-Bubble Finite Element Method on Anisotropic Partitions, SIAM Journal on Numerical Analysis, vol.45, issue.4, pp.1654-1678, 2007.
DOI : 10.1137/060658011

T. E. Tezduyar and Y. Osawa, Finite element stabilization parameters computed from element matrices and vectors, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.3-4, pp.411-430, 2000.
DOI : 10.1016/S0045-7825(00)00211-5

D. Sipp and A. Lebedev, Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows, Journal of Fluid Mechanics, vol.6, pp.333-358, 2007.
DOI : 10.1007/BF00127673

J. Sari, F. Cremonesi, M. Khalloufi, F. Cauneau, P. Meliga et al., Anisotropic adaptive stabilized finite element solver for RANS models, International Journal for Numerical Methods in Fluids, vol.16, issue.4, pp.2017-4475
DOI : 10.1006/jfls.2001.0433

URL : https://hal.archives-ouvertes.fr/hal-01629274

Y. Bao, D. Zhou, C. Huang, Q. Wu, and X. Chen, Numerical prediction of aerodynamic characteristics of prismatic cylinder by finite element method with Spalart???Allmaras turbulence model, Computers & Structures, vol.89, issue.3-4, pp.325-338, 2011.
DOI : 10.1016/j.compstruc.2010.10.019

J. Volker, Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder, International Journal for Numerical Methods in Fluids, vol.44, issue.7, pp.777-788, 2004.

M. Maleki, B. Seguin, and E. Fried, Kinematics, material symmetry, and energy densities for lipid bilayers with spontaneous curvature, Biomechanics and Modeling in Mechanobiology, vol.443, issue.5, pp.997-1017, 2013.
DOI : 10.1098/rspa.1993.0135

L. Scarbolo, F. Bianco, and A. Soldati, Coalescence and breakup of large droplets in turbulent channel flow, Physics of Fluids, vol.27, issue.7, pp.73302-69, 2015.
DOI : 10.1201/b11103

L. Ying and Q. Wang, Microfluidic chip-based technologies: emerging platforms for cancer diagnosis, BMC Biotechnology, vol.13, issue.1, pp.76-69, 2013.
DOI : 10.1016/j.cgh.2013.02.022

M. Nitschke and S. G. Costa, Biosurfactants in food industry, Trends in Food Science & Technology, vol.18, issue.5, pp.252-259, 2007.
DOI : 10.1016/j.tifs.2007.01.002

G. Agbaglah, S. Delaux, D. Fuster, J. Hoepffner, C. Josserand et al., Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method, Comptes Rendus M??canique, vol.339, issue.2-3, pp.194-207, 2011.
DOI : 10.1016/j.crme.2010.12.006

URL : https://hal.archives-ouvertes.fr/hal-01445421

Y. Ling, S. Zaleski, and R. Scardovelli, Multiscale simulation of atomization with small droplets represented by a Lagrangian point-particle model, International Journal of Multiphase Flow, vol.76, pp.122-143, 2015.
DOI : 10.1016/j.ijmultiphaseflow.2015.07.002

URL : https://hal.archives-ouvertes.fr/hal-01196361

S. P. Van-der-pijl, A. Segal, C. Vuik, and P. Wesseling, A mass-conserving Level-Set method for modelling of multi-phase flows, International Journal for Numerical Methods in Fluids, vol.37, issue.4, pp.339-361, 2005.
DOI : 10.1007/3-540-08004-X_336

Y. C. Chang, T. Y. Hou, B. Merriman, and S. Osher, A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows, Journal of Computational Physics, vol.124, issue.2, pp.449-464, 1996.
DOI : 10.1006/jcph.1996.0072

T. E. Tezduyar, M. Behr, S. Mittal, and J. Liou, A new strategy for finite element computations involving moving boundaries and interfaces???The deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Computer Methods in Applied Mechanics and Engineering, vol.94, issue.3, pp.353-371, 1992.
DOI : 10.1016/0045-7825(92)90060-W

J. Brackbill, D. Kothe, and C. Zemach, A continuum method for modeling surface tension, Journal of Computational Physics, vol.100, issue.2, pp.335-354, 1992.
DOI : 10.1016/0021-9991(92)90240-Y

U. Rasthofer, F. Henke, W. A. Wall, and V. Gravemeier, An extended residual-based variational multiscale method for two-phase flow including surface tension, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.21-22, pp.21-221866, 2011.
DOI : 10.1016/j.cma.2011.02.004

Z. Xie, D. Pavlidis, J. R. Percival, J. L. Gomes, C. C. Pain et al., Adaptive unstructured mesh modelling of multiphase flows, International Journal of Multiphase Flow, vol.67, pp.104-110, 2014.
DOI : 10.1016/j.ijmultiphaseflow.2014.08.002

S. Hysing, A new implicit surface tension implementation for interfacial flows, International Journal for Numerical Methods in Fluids, vol.33, issue.2, pp.659-672, 2006.
DOI : 10.1002/nme.1620330702

J. Xu and H. Zhao, An eulerian formulation for solving partial differential equations along a moving interface, Journal of Scientific Computing, vol.19, issue.1/3, pp.573-594, 2003.
DOI : 10.1023/A:1025336916176

W. Zheng, J. Yong, and J. Paul, Simulation of bubbles, Graphical Models, vol.71, issue.6, pp.229-239, 2009.
DOI : 10.1016/j.gmod.2009.08.001

URL : https://hal.archives-ouvertes.fr/inria-00517972

T. J. Hughes, G. R. Feijóo, L. Mazzei, and J. Quincy, The variational multiscale method???a paradigm for computational mechanics, Computer Methods in Applied Mechanics and Engineering, vol.166, issue.1-2, pp.3-24, 1998.
DOI : 10.1016/S0045-7825(98)00079-6

S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman et al., Quantitative benchmark computations of two-dimensional bubble dynamics, International Journal for Numerical Methods in Fluids, vol.3, issue.5, pp.1259-1288, 2009.
DOI : 10.1002/nme.1620150502

C. Gustavo, R. F. Buscaglia, and . Ausas, Variational formulations for surface tension, capillarity and wetting, Computer Methods in Applied Mechanics and Engineering, vol.200, pp.45-463011, 2011.

K. B. Nakshatrala, D. Z. Turner, K. D. Hjelmstad, and A. Masud, A stabilized mixed finite element method for Darcy flow based on a multiscale decomposition of the solution, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.33-36, pp.33-364036, 2006.
DOI : 10.1016/j.cma.2005.07.009

G. Scovazzi, Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach, Journal of Computational Physics, vol.231, issue.24, pp.8029-8069, 2012.
DOI : 10.1016/j.jcp.2012.06.033

L. ?trubelj, I. Tiselj, and B. Mavko, Simulations of free surface flows with implementation of surface tension and interface sharpening in the two-fluid model, International Journal of Heat and Fluid Flow, vol.30, issue.4, pp.741-750, 2009.
DOI : 10.1016/j.ijheatfluidflow.2009.02.009

E. Marchandise and J. Remacle, A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows, Journal of Computational Physics, vol.219, issue.2, pp.780-800, 2006.
DOI : 10.1016/j.jcp.2006.04.015

M. Sussman, K. M. Smith, M. Y. Hussaini, M. Ohta, and R. Zhi-wei, A sharp interface method for incompressible two-phase flows, Journal of Computational Physics, vol.221, issue.2, pp.469-505, 2007.
DOI : 10.1016/j.jcp.2006.06.020

D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, A Hybrid Particle Level Set Method for Improved Interface Capturing, Journal of Computational Physics, vol.183, issue.1, pp.83-116, 2002.
DOI : 10.1006/jcph.2002.7166

S. O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of Computational Physics, vol.100, issue.1, pp.25-37, 1992.
DOI : 10.1016/0021-9991(92)90307-K

X. Y. Hu and N. A. Adams, An incompressible multi-phase SPH method, Journal of Computational Physics, vol.227, issue.1, pp.264-278, 2007.
DOI : 10.1016/j.jcp.2007.07.013

O. Desjardins, G. Blanquart, G. Balarac, and H. Pitsch, High order conservative finite difference scheme for variable density low Mach number turbulent flows, Journal of Computational Physics, vol.227, issue.15, pp.7125-7159, 2008.
DOI : 10.1016/j.jcp.2008.03.027

URL : https://hal.archives-ouvertes.fr/hal-00399941

J. Luo, X. Y. Hu, and N. A. Adams, A conservative sharp interface method for incompressible multiphase flows, Journal of Computational Physics, vol.284, pp.547-565, 2015.
DOI : 10.1016/j.jcp.2014.12.044

R. Saurel and R. Abgrall, A Simple Method for Compressible Multifluid Flows, SIAM Journal on Scientific Computing, vol.21, issue.3, pp.1115-1145, 1999.
DOI : 10.1137/S1064827597323749

C. Farhat, J. Gerbeau, and A. Rallu, FIVER: A finite volume method based on exact two-phase Riemann problems and sparse grids for multi-material flows with large density jumps, Journal of Computational Physics, vol.231, issue.19, pp.2316360-6379, 2012.
DOI : 10.1016/j.jcp.2012.05.026

URL : https://hal.archives-ouvertes.fr/hal-00703493

R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher, A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method), Journal of Computational Physics, vol.152, issue.2, pp.457-492, 1999.
DOI : 10.1006/jcph.1999.6236

S. Y. Kadioglu, M. Sussman, S. Osher, J. P. Wright, and M. Kang, A second order primitive preconditioner for solving all speed multi-phase flows, Journal of Computational Physics, vol.209, issue.2, pp.477-503, 2005.
DOI : 10.1016/j.jcp.2005.03.020

T. G. Liu, B. C. Khoo, and C. W. Wang, The ghost fluid method for compressible gas???water simulation, Journal of Computational Physics, vol.204, issue.1, pp.193-221, 2005.
DOI : 10.1016/j.jcp.2004.10.012

R. Valette, M. R. Mackley, and G. H. Castillo, Matching time dependent pressure driven flows with a Rolie Poly numerical simulation, Journal of Non-Newtonian Fluid Mechanics, vol.136, issue.2-3, pp.118-125, 2006.
DOI : 10.1016/j.jnnfm.2006.03.012

URL : https://hal.archives-ouvertes.fr/hal-00514056

F. Xiao, R. Akoh, and S. Ii, Unified formulation for compressible and incompressible flows by using multi-integrated moments II: Multi-dimensional version for compressible and incompressible flows, Journal of Computational Physics, vol.213, issue.1, pp.31-56, 2006.
DOI : 10.1016/j.jcp.2005.08.002

R. Caiden, R. P. Fedkiw, and C. Anderson, A Numerical Method for Two-Phase Flow Consisting of Separate Compressible and Incompressible Regions, Journal of Computational Physics, vol.166, issue.1, pp.1-27, 2001.
DOI : 10.1006/jcph.2000.6624

C. Munz, S. Roller, R. Klein, and K. J. Geratz, The extension of incompressible flow solvers to the weakly compressible regime. Computers and Fluids, pp.173-196, 2003.

J. Bruchon, A. Fortin, M. Bousmina, and K. Benmoussa, Direct 2D simulation of small gas bubble clusters: from the expansion step to the equilibrium state, International Journal for Numerical Methods in Fluids, vol.7, issue.1, pp.73-101, 2007.
DOI : 10.1140/epje/i2001-10099-1

URL : https://hal.archives-ouvertes.fr/emse-00502474

M. Billaud, G. Gallice, and B. Nkonga, A simple stabilized finite element method for solving two phase compressible???incompressible interface flows, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.9-12, pp.1272-1290, 2011.
DOI : 10.1016/j.cma.2010.10.017

URL : https://hal.archives-ouvertes.fr/hal-01004944

G. Hauke and T. J. Hughes, A comparative study of different sets of variables for solving compressible and incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.153, issue.1-2, pp.1-44, 1998.
DOI : 10.1016/S0045-7825(97)00043-1

G. Hauke and T. J. Hughes, A unified approach to compressible and incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.113, issue.3-4, pp.389-395, 1994.
DOI : 10.1016/0045-7825(94)90055-8

E. Hachem, S. Feghali, R. Codina, and T. Coupez, Immersed stress method for fluid-structure interaction using anisotropic mesh adaptation, International Journal for Numerical Methods in Engineering, vol.230, issue.4, pp.805-825, 2013.
DOI : 10.1016/j.jcp.2010.11.021

URL : https://hal.archives-ouvertes.fr/hal-00815641

T. Dubois, F. Jauberteau, and R. Temam, Dynamic Multilevel Methods and the Numerical Simulation of Turbulence, p.95, 1999.

J. Caltagirone, S. Vincent, and C. Caruyer, A multiphase compressible model for the simulation of multiphase flows. Computers and Fluids, pp.24-34, 2011.

D. Bhaga and M. E. Weber, Bubbles in viscous liquids: shapes, wakes and velocities, Journal of Fluid Mechanics, vol.25, issue.-1, pp.61-85, 1981.
DOI : 10.1016/0009-2509(68)80027-2

A. Esmaeeli and G. Tryggvason, Computations of film boiling. Part I: numerical method, International Journal of Heat and Mass Transfer, vol.47, issue.25, pp.5451-5461, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2004.07.027

A. Esmaeeli and G. Tryggvason, Computations of film boiling. Part II: multi-mode film boiling, International Journal of Heat and Mass Transfer, vol.47, issue.25, pp.475463-5476, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2004.07.028

G. Tryggvason, A. Esmaeeli, and N. , Direct numerical simulations of flows with phase change Frontier of Multi-Phase Flow Analysis and Fluid-StructureFrontier of Multi-Phase Flow Analysis and Fluid-Structure, Computers & Structures, vol.83, pp.6-7445, 2005.

W. J. Samuel, J. Welch, and . Wilson, A volume of fluid based method for fluid flows with phase change, Journal of Computational Physics, vol.160, issue.112, pp.662-682, 2000.

W. J. Samuel and . Welch, Local simulation of two-phase flows including interface tracking with mass transfer, Journal of Computational Physics, vol.121, issue.1, pp.142-154, 1995.

Y. Sato and B. Ni?eno, A sharp-interface phase change model for a mass-conservative interface tracking method, Journal of Computational Physics, vol.249, pp.127-161, 2013.
DOI : 10.1016/j.jcp.2013.04.035

S. Hardt and F. Wondra, Evaporation model for interfacial flows based on a continuum-field representation of the source terms, Journal of Computational Physics, vol.227, issue.11, pp.5871-5895, 2008.
DOI : 10.1016/j.jcp.2008.02.020

S. Tanguy, T. Ménard, and A. Berlemont, A Level Set Method for vaporizing two-phase flows, Journal of Computational Physics, vol.221, issue.2, pp.837-853, 2007.
DOI : 10.1016/j.jcp.2006.07.003

URL : https://hal.archives-ouvertes.fr/hal-00649783

J. Schlottke and B. Weigand, Direct numerical simulation of evaporating droplets, Journal of Computational Physics, vol.227, issue.10, pp.5215-5237, 2008.
DOI : 10.1016/j.jcp.2008.01.042

J. Lee, G. Son, and H. Y. Yoon, Numerical simulation of the quenching process in liquid jet impingement, International Communications in Heat and Mass Transfer, vol.61, pp.146-152, 2015.
DOI : 10.1016/j.icheatmasstransfer.2014.12.017

M. Yazdani, T. Radcliff, M. Soteriou, and A. A. Alahyari, A highfidelity approach towards simulation of pool boiling, Physics of Fluids, vol.28, issue.1, p.2016

V. Mihalef, B. Unlusu, D. Metaxas, M. Sussman, and M. Y. Hussaini, Physics based boiling simulation, Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '06, pp.317-324, 2006.

R. Chirag, I. Kharangate, and . Mudawar, Review of computational studies on boiling and condensation, International Journal of Heat and Mass Transfer, vol.108, pp.1164-1196, 2017.

J. Liu, C. M. Landis, H. Gomez, and T. J. Hughes, Liquid???vapor phase transition: Thermomechanical theory, entropy stable numerical formulation, and boiling simulations, Computer Methods in Applied Mechanics and Engineering, vol.297, pp.476-553, 2015.
DOI : 10.1016/j.cma.2015.09.007

J. Bueno and H. Gomez, Liquid-vapor transformations with surfactants. Phase-field model and Isogeometric Analysis, Journal of Computational Physics, vol.321, pp.797-818, 2016.
DOI : 10.1016/j.jcp.2016.06.008

J. Bueno, C. Bona-casas, Y. Bazilevs, and H. Gomez, Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion, Computational Mechanics, vol.196, issue.2930, pp.1105-1118, 2015.
DOI : 10.1016/j.cma.2007.02.009

R. Saurel and R. Abgrall, A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows, Journal of Computational Physics, vol.150, issue.2, pp.425-467, 1999.
DOI : 10.1006/jcph.1999.6187

R. Saurel, F. Petitpas, and R. Abgrall, Modelling phase transition in metastable liquids: application to cavitating and flashing flows, Journal of Fluid Mechanics, vol.15, pp.313-350, 2008.
DOI : 10.1017/S0022112087003227

URL : https://hal.archives-ouvertes.fr/inria-00333908

L. Marioni, F. Bay, and E. Hachem, Numerical stability analysis and flow simulation of lid-driven cavity subjected to high magnetic field, Physics of Fluids, vol.15, issue.3, p.57102, 2016.
DOI : 10.1016/j.jcp.2010.11.041

URL : https://hal.archives-ouvertes.fr/hal-01311179

S. Riber, R. Valette, Y. Mesri, and E. Hachem, Adaptive variational multiscale method for bingham flows, Computers & Fluids, vol.138, pp.51-60, 2016.
DOI : 10.1016/j.compfluid.2016.08.011

URL : https://hal.archives-ouvertes.fr/hal-01369945

F. Gibou, L. Chen, D. Nguyen, and S. Banerjee, A level set based sharp interface method for the multiphase incompressible Navier???Stokes equations with phase change, Journal of Computational Physics, vol.222, issue.2, pp.536-555, 2007.
DOI : 10.1016/j.jcp.2006.07.035

W. Mohammad, S. J. Akhtar, and . Kleis, Boiling flow simulations on adaptive octree grids, International Journal of Multiphase Flow, vol.53, pp.88-99, 2013.

P. J. Berenson, Film-Boiling Heat Transfer From a Horizontal Surface, Journal of Heat Transfer, vol.83, issue.3, pp.351-356, 1961.
DOI : 10.1115/1.3682280

V. V. Klimenko, Film boiling on a horizontal plate ??? new correlation, International Journal of Heat and Mass Transfer, vol.24, issue.1, pp.69-79, 1981.
DOI : 10.1016/0017-9310(81)90094-6

C. Bahbah, Simulation of the quenching process and conservative interpolation from mesh to mesh, pp.2016-2019

W. Daldoul, Moving and conformal mesh for complex geometries, pp.2016-2019

C. Tevi and M. , Finite element methods for the simulation of radiative transfers, pp.2017-2020