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Résumé

La défaillance d’une structure est souvent provoquée par la propagation de fissures dans
le matériau initialement sain qui la compose. Une connaissance approfondie dans le do-
maine de la mécanique de la rupture est essentielle pour l’ingénieur. Il permet notamment
de prévenir des mécanismes de fissurations garantissant l’intégrité des structures civiles,
ou bien, de les développer comme par exemple dans l’industrie pétrolière. Du point de
vue de la modélisation ces problèmes sont similaires, complexes et difficiles. Ainsi, il est
fondamental de pouvoir prédire où et quand les fissures se propagent.

Ce travail de thèse se restreint à l’étude des fissures de type fragile et ductile dans les
matériaux homogènes sous chargement quasi-statique. On adopte le point de vue macro-
scopique c’est-à-dire que la fissure est une réponse de la structure à une sollicitation
excessive et est caractérisée par une surface de discontinuité du champ de déplacement.
La théorie la plus communément admise pour modéliser les fissures est celle de Griffith.
Elle prédit l’initiation de la fissure lorsque le taux de restitution d’énergie est égal à la
ténacité du matériau le long d’un chemin préétabli. Ce type de critère requière d’évaluer
la variation de l’énergie potentielle de la structure à l’équilibre pour un incrément de
longueur de la fissure. Mais l’essence même de la théorie de Griffith est une compétition
entre l’énergie de surface et l’énergie potentielle de la structure.

Cependant ce modèle n’est pas adapté pour des singularités d’entaille faible i.e. une
entaille qui ne dégénère pas en pré-fissure. Pour pallier à ce défaut des critères de type
contraintes critiques ont été développés pour des géométries régulières. Malheureuse-
ment ils ne peuvent prédire correctement l’initiation d’une fissure puisque la contrainte
est infinie en fond d’entaille. Une seconde limitation de la théorie de Griffith est l’effet
d’échelle. Pour illustrer ce propos, considérons une structure unitaire coupé par une
fissure de longueur a. Le chargement critique de cette structure évolue en 1/

√
a, par

conséquent le chargement admissible est infini lorsque la taille du défaut tend vers zéro.
Ceci n’a pas de sens physique et est en contradiction avec les expériences. Il est connu
que cette limitation provient du manque de contrainte critique (ou longueur caractéris-
tique) dans le modèle. Pour s’affranchir de ce défaut Dugdale et Barenblatt ont proposé
dans leurs modèles de prendre en compte des contraintes cohésives sur les lèvres de la
fissure afin d’éliminer la singularité de contraintes en fond d’entaille.
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Plus récemment, les modèles variationnels à champ de phase aussi connu sous le nom
de modèles d’endommagements à gradient [80, 35] ont fait leurs apparition début des
années 2000. Ces modèles permettent de s’affranchir des problèmes liés aux chemins de
fissures et sont connus pour converger vers le modèle de Griffith lorsque le paramètre de
régularisation tend vers 0. De plus les résultats numériques montrent qu’il est possible de
faire nucléer une fissure sans singularité grâce à la présence d’une contrainte critique. Ces
modèles à champ de phase pour la rupture sont-ils capables de surmonter les limitations
du modèle de Griffith ?

Concernant les chemins de fissures, les modèles à champ de phase ont prouvé être red-
outablement efficaces pour prédire les réseaux de fractures lors de chocs thermiques [167,
40]. Dans cette thèse, les résultats obtenus montrent que les modèles d’endommagement
à gradient sont efficaces pour prédire la nucléation de fissure en mode I et de tenir
compte de l’effet d’échelle. Naturellement ces modèles respectent le critère d’initiation
de la théorie de Griffith et sont étendus à la fracturation hydraulique comme illustré
dans le deuxième volet de cette thèse. Cependant ils ne peuvent rendre compte de la
rupture de type ductile tel quel. Un couplage avec les modèles de plasticité parfaite est
nécessaire afin d’obtenir des mécanismes de rupture ductile semblables à ceux observés
pour les métaux.

Le manuscrit est organisé comme suit: Dans le premier chapitre, une large introduc-
tion est dédiée à l’approche variationnelle de la rupture en partant de Griffith vers une
approche moderne des champs de phase en rappelant les principales propriétés. Le sec-
ond chapitre étudie la nucléation de fissures dans des géométries pour lesquels il n’existe
pas de solution exacte. Des entailles en U- et V- montrent que le chargement critique
évolue continûment du critère en contrainte critique au critère de ténacité limite avec
la singularité d’entaille. Le problème d’une cavité elliptique dans un domaine allongé
ou infini est étudié. Le troisième chapitre se concentre autour de la fracturation hy-
draulique en prenant en compte l’influence d’un fluide parfait sur les lèvres de la fissure.
Les résultats numériques montrent que la stimulation par injection de fluide dans d’un
réseau de fissures parallèles et de même longueur conduit à la propagation d’une seule
des fissures du réseau. Il s’avère que cette configuration respecte le principe de moindre
énergie. Le quatrième chapitre se focalise uniquement sur le modèle de plasticité parfaite
en partant de l’approche classique vers une l’approche variationnelle. Une implémen-
tation numérique utilisant le principe de minimisation alternée de l’énergie est décrite
et vérifiée dans un cas simple de Von Mises. Le dernier chapitre couple les modèles
d’endommagement à gradient avec les modèles de plasticité parfaite. Les simulations
numériques montrent qu’il est possible d’obtenir des fissures de type fragile ou ductile
en variant un seul paramètre uniquement. De plus ces simulations capturent qualitative-
ment le phénomène de nucléation et de propagation de fissures en suivant les bandes de
cisaillement.
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Introduction

Structural failure is commonly due to fractures propagation in a sound material. A better
understanding of defect mechanics is fundamental for engineers to prevent cracks and
preserve the integrity of civil buildings or to control them as desired in energy industry
for instance. From the modeling point of view those problems are similar, complex and
still facing many challenges. Common issues are determining when and where cracks will
propagate.

In this work, the study is restricted to brittle and ductile fractures in homogeneous
materials for rate-independent evolution problems in continuum mechanics. We adopt
the macroscopic point of view, such that, the propagation of a macro fracture represents
a response of the structure geometry subject to a loading. A fracture à la Griffith is a
surface of discontinuity for the displacement field along which stress vanishes. In this
widely used theory the fracture initiates along an a priori path when the energy release
rate becomes critical, this limit is given by the material toughness. This criterion requires
one to quantify the first derivative of potential energy with respect to the crack length
for a structure at the equilibrium. Many years of investigations were focused on the
notch tips to predict when the fracture initiates, resulting to a growing body of literature
on computed stress intensity factors. Griffith is by essence a competition between the
surface energy and the recoverable bulk energy. Indeed, a crack increment reduces the
potential energy of the structure while it is compensated by the creation of a surface
energy.

However such a fracture criterion is not appropriate to account for weak singularity
i.e. a notch angle which does not degenerate into a crack. Conversely many criteria based
on a critical stress are adapted for smooth domains, but fail near stress singularities. In-
deed, a nucleation criterion based solely on pointwise maximum stress will be unable to
handle with crack formation at the singularity point i.e. σ → ∞. A second limitation
of Griffith’s theory is the scale effects. To illustrate this, consider a unit structure size
cut by a pre-fracture of length a. The critical loading evolves as ∼ 1/

√
a, consequently

the maximum admissible loading is not bounded when the defect size decays. Again this
is physically not possible and is inconsistent with experimental observations. It is well
accepted that this discrepancy is due to the lack of a critical stress (or a critical length
scale) in Griffith’s theory. To overcome these aforementioned issues in Griffith’s theory,
Dugdale and Barenblatt pioneers of cohesive and ductile fractures theory proposed to
kill the stress singularity at the tip by accounting of stresses on fracture lips.
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Recently, many variational phase-field models [35] are known to converge to a varia-
tional Griffith - like model in the vanishing limit of their regularization parameter. They
were conceived to handle the issues of crack path. Furthermore, it has been observed
that they can lead to numerical solution exhibiting crack nucleation without singulari-
ties. Naturally, these models raise some interesting questions: can Griffith limitations be
overcome by those phase-field models?

Concening crack path, phase-field models have proved to be accurate to predict frac-
ture propagation for thermal shocks [167, 40]. In this dissertation, numerical examples
illustrate that Griffith limitations such as, nucleation and size effects can be overcome by
the phase-field models referred to as gradient damage models in the Chapter 2. Naturally
this models preserve Griffith’s propagation criterion as shown in the extended models for
hydraulic fracturing provided in Chapter 3. Of course Griffith’s theory is unable to deal
with ductile fractures, but in Chapter 5 we show that by coupling perfect plasticity with
gradient damage models we are able to capture some of ductile fractures features, pre-
cisely the phenomenology of nucleation and propagation.

The dissertation is organized as follows: In Chapter 1, a large introduction of phase-
field models to brittle fracture is exposed. We start from Griffith to the modern approach
of phase-field models, and recall some of their properties. Chapter 2 studies crack nu-
cleation in commonly encountered geometries for which closed-form solutions are not
available. We use U- and V-notches to show that the nucleation load varies smoothly
from that predicted by a strength criterion to that of a toughness criterion, when the
strength of the stress concentration or singularity varies. We present validation and veri-
fications of numerical simulations for both types of geometries. We consider the problem
of an elliptic cavity in an infinite or elongated domain to show that variational phase-field
models properly account for structural and material size effects. Chapter 3 focuses on
fractures propagation in hydraulic fracturing, we extend the variational phase-field mod-
els to account for fluid pressure on the crack lips. We recover the closed form solution of
a perfect fluid injected into a single fracture. For stability reason, in this example we con-
trol the total amount of injected fluid. Then we consider a network of parallel fractures
stimulated. The numerical results show that only a single crack grows and this situation
is always the best energy minimizer compared to a multi-fracking case where all frac-
tures propagate. This loss of symmetry in the cracks patterns illustrates the variational
structure and the global minimization principle of the phase-field model. A third exam-
ple deals with fracture stability in a pressure driven laboratory test for rocks. The idea
is to capture different stability regimes using linear elastic fracture mechanics to prop-
erly design the experiment. We test the phase-field models to capture fracture stability
transition (from stable to unstable). Chapter 4 is concerned with the variational perfect
plasticity models and its implementation and verification. We start by recalling main
ingredients of the classic approach of perfect elasto-plasticity models and then recasting
into the variational structure. Later the algorithm strategy is exposed with a verification
example. The strength of the proposed algorithm is to solve perfect elasto-plasticity ma-
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terials by prescribing the yield surfaces without dealing with non differentiability issues.
Chapter 5 studies ductile fractures, the proposed model couple gradient damage models
with perfect plasticity independently exposed in Chapter 1 and 4. Numerical simulations
show that transition from brittle to ductile fractures is recovered by changing only one
parameter. Also the ductile fracture phenomenology, such as crack initiation at the cen-
ter and propagation along shear bands are studied in plane strain specimens and round
bars in three dimensions.

The main research contributions is in Chapter 2,3 and 5. My apologies to the reader
perusing the whole dissertation which contains repetitive elements due to self consistency
and independent construction of all chapters.
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Chapter 1

Variational phase-field models of
brittle fracture

In Griffith’s theory, a crack in brittle materials is a surface of discontinuity for the dis-
placement field with vanishing stress along the fracture. Assuming an a priori known
crack path, the fracture propagates when the first derivative of the potential energy with
respect to the crack length at the equilibrium becomes critical. This limit called the
fracture toughness is a material property. The genius of Griffith was to link the crack
length to the surface energy, so the crack propagation condition becomes a competition
between the surface energy and the recoverable bulk energy. By essence this criterion
is variational and can be recast into a minimality principle. The idea of Francfort and
Marigo in variational approach to fracture [80] is to keep Griffith’s view and extend to any
possible crack geometry and complex time evolutions. However cracks remain unknown
and a special method needs to be crafted. The approach is to approximate the fracture
by a damage field with a non zero thickness. In this region the material stiffness is deteri-
orated leading to decrease the sustainable stresses. This stress-softening material model
is ill-posed mathematically [54] due to a missing term limiting the damage localization
thickness size. Indeed, since the surface energy is proportional to the damage thickness
size, we can construct a broken bar without paying any surface energy, i.e. by decaying
the damaged area. To overcome this aforementioned issue, the idea is to regularize the
surface energy. The adopted regularization takes its roots in Ambrosio and Tortorelli’s
[9, 11] functionals inspired by Mumford-Shah’s work [137] in image segmentation. Gra-
dient damage models is closely related to Ambrosio and Tortorelli’s functionals and have
been adapted to brittle fracture. The introduction of a gradient damage term comes up
with a regularized parameter. This parameter denoted ` is also called internal length and
governs the damage thickness. Following Pham and Marigo [147, 148, 149], the dam-
age evolution problem is built on three principles, the damage irreversibility, stability
and balance of the total energy. The beauty of the model is that the unknown discrete
crack evolution is approximated by a regularized functional evolution which is intimately
related to Griffith by its variational structure and its asymptotic behavior.

This chapter is devoted to a large introduction of gradient damage models which
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Chapter 1. Variational phase-field models of brittle fracture

constitute a basis of numerical simulations performed in subsequent chapters. The pre-
sentation is largely inspired by previous works of Bourdin-Maurini-Marigo-Francfort and
many others. In the sequel, section 1.1 starts with the Griffith point of view and recasts
the fracture evolution into a variational problem. By relaxing the pre-supposed crack
path constraint in Griffith’s theory, the Francfort and Marigo’s variational approach to
fracture models is retrieved. We refer the reader to [80, 38] for a complete exposition
of the theory. Following the spirit of the variations principle, gradient damage models
are introduced and constitute the basis of numerical simulations performed. Section 1.2
focuses on the application to a relevant one-dimensional problem which shows up mul-
tiple properties, such as, nucleation, critical admissible stress, size effects and optimal
damage profile investigated previously by [147, 148]. To pass from a damage model to
Griffith-like models, connections need to be highlighted, i.e letting the internal length
to zero. Hence, section 1.3 is devoted to the Γ-convergence in one-dimensional setting,
to show that gradient damage models behave asymptotically like Griffith. Finally, the
implementation of such models is exposed in section 1.4 .

1.1 Gradient damage models

1.1.1 From Griffith model to its minimality principle

The Griffith model can be settled as follow, consider a perfectly brittle-elastic material
with A the Hooke’s law tensor and Gc the critical energy release rate occupying a region
Ω ⊂ Rn in the reference configuration. The domain is partially cut by a fracture set Γ of
length l, which grows along an a priori path Γ̄. Along the fracture, no cohesive effects or
contact lips are considered here, thus, it stands for stress free on Γ(l). The sound region
Ω\Γ is subject to a time dependent boundary displacement ū(t) on a Dirichlet part of its
boundary ∂DΩ and time stress dependent g(t) = σ ·ν on the remainder ∂NΩ = ∂Ω\∂DΩ,
where ν denotes the appropriate normal vector. Also, for the sake of simplicity, body
force is neglected. The infinitesimal total deformation e(u) is the symmetrical part of
the spatial gradient of the displacement field u such that

e(u) =
∇u+∇Tu

2
.

In linear elasticity the free energy is a differentiable convex state function given by
ψ
(
e(u)

)
= 1

2Ae(u) : e(u) . Thereby, the stress-strain relation naturally follows

σ =
∂ψ(e)

∂e
= Ae(u).

By the quasi-static assumption made, the cracked solid is, at each time, in elastic equi-
librium with the loads that it supports at that time. The problem is finding the unknown
displacement u = u(t, l) for a given t and l = l(t) that satisfies the following constitutive
equations,

2



1.1. Gradient damage models





div σ =0 in Ω \ Γ(l)

u =ū(t) on ∂DΩ \ Γ(l)

σ · ν =g(t) on ∂NΩ

σ · ν =0 on Γ(l)

(1.1)

At the time t and for l(t) let the kinematic field u(t, l) be at the equilibrium such
that it solves (1.1). Hence, the potential energy can be computed and is composed of
the elastic energy and the external work force, such that,

P(t, l) =

∫

Ω\Γ(l)

1

2
Ae(u) : e(u) dx−

∫

∂NΩ
g(t) · u dHn−1

where dHn−1 denotes the Hausdorff n−1 - dimensional measure, i.e. its aggregate length
in two dimensions or surface area in three dimensions. The evolution of the crack is given
by Griffith’s criterion:

Definition 1 (Crack evolution by Griffith’s criterion)

i. Consider that the crack can only grow, this is the irreversibility condition,

l̇(t) ≥ 0.

ii. The stability condition says that the energy release rate G is bounded from above by
its critical value Gc,

G(t, l) = −∂P(t, l)

∂l
≤ Gc.

iii. The energy balance guarantee that the energy release rate is critical when the crack
grows,

(
G(t, l)−Gc

)
l̇ = 0

Griffith says in his paper [95], the “theorem of minimum potential energy” may be
extended so as to of predicting the breaking loads of elastic solids, if account is taken of
the increase of surface energy which occurs during the formation of cracks. Following
Griffith, let us demonstrate that crack evolution criteria are optimality conditions of a
total energy to minimize. Provided some regularity on P(t, l) and l(t), let formally the
minimization problem be: for any loading time t such that the displacement u is at the
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Chapter 1. Variational phase-field models of brittle fracture

equilibrium, find the crack length l which minimizes the total energy composed of the
potential energy and the surface energy subject to irreversibility,

min
l≥l(t)

P(t, l) +Gcl (1.2)

An optimal solution of the above constraint problem must satisfy the KKT1 condi-
tions. A common methods consist in computing the Lagrangian, given by,

L(t, l, λ) := P(t, l) +Gcl + λ(l(t)− l) (1.3)

where λ denotes the Lagrange multiplier. Then, apply the necessary conditions,

1. Stationarity
∂L(t, l, λ)

∂l
= 0, which gives, λ =

∂P(t, l)

∂l
+Gc (1.4)

2. Primal feasibility
l ≥ l(t)

3. Dual feasibility
λ ≥ 0

4. Complementary slackness
λ(l − l(t)) = 0

Substitute the Lagrange multiplier λ given by the stationarity into the dual feasibility
and complementary slackness condition to recover the irreversibility, stability and energy
balance of Griffith criterion.

Futhermore, let the crack length l and the displacement u be an internal variables
of a variational problem. Note that the displacement does not depend on l anymore.
Provided a smooth enough displacement field and evolution of t 7→ l(t) to ensure that
calculations make sense, the evolution problem can be written as a minimality principle,
such as,

Definition 2 (Fracture evolution by minimality principle)

Find stable evolutions of
(
l(t), u(t)

)
satisfying at all t:

i. Initial conditions l(t0) = l0 and u(t0, l0) = u0

ii.
(
l(t), u(t)

)
is a minimizer of the total energy,

E(t, l, u) =

∫

Ω\Γ(l)

1

2
Ae(u) : e(u)dx−

∫

∂NΩ
g(t) · u dHn−1 +Gcl (1.5)

amongst all l ≥ l(t) and u ∈ Ct :=
{
u ∈ H1(Ω \ Γ(l)) : u = ū(t) on ∂DΩ \ Γ(l)

}
.

1Karush–Kuhn–Tucker
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1.1. Gradient damage models

iii. The energy balance,

E(t, l, u) = E(t0, l0, u0) +

∫ t

t0

[∫

∂DΩ
(σ · ν) · ˙̄u dHn−1

−
∫

∂NΩ
ġ(t) · udHn−1

]
ds

(1.6)

One observes that stability and irreversibility have been substituted by minimality,
and the energy balance takes a variational form. To justify this choice, we show first that
irreversibility, stability and kinematic equilibrium are equivalent to the first order opti-
mality conditions of E(t, l, u) for u and l separately. Then, followed by the equivalence of
the energy balance adopted in the evolution by minimality principle and within Griffith
criterion.

Proof. For a fixed l, u is a local minimizer of E(t, l, u), if for all v ∈ H1
0 (Ω \ Γ(l)), for

some h > 0 small enough, such that u+ hv ∈ Ct,

E(t, l, u+ hv) = E(t, l, u) + hE ′(t, l, u) · v + o(h) ≥ E(t, l, u) (1.7)

thus,

E ′(t, l, u) · v ≥ 0 (1.8)

where E ′(t, l, u) denotes the first Gateaux derivative of E at u in the direction v. By
standard arguments of calculus of variations, one obtains,

E ′(t, l, u) · v =

∫

Ω\Γ(l)

1

2
Ae(u) : e(v)dx−

∫

∂NΩ
g(t) · v dHn−1 (1.9)

Integrating the term in e(v) by parts over Ω \ Γ(l), and considering both faces of Γ(l)
with opposites normals, one gets,

E ′(t, l, u) · v =−
∫

Ω\Γ(l)
div
(
Ae(u)

)
· v dx+

∫

∂Ω

(
Ae(u) · ν

)
· v dHn−1

−
∫

Γ(l)

(
Ae(u) · ν

)
· JvK dHn−1 −

∫

∂NΩ
g(t) · v dHn−1

(1.10)

Splitting the second integral over ∂Ω = (∂NΩ ∪ ∂DΩ) \ Γ(l) into the Dirichlet and the
remainder Neumann boundary part and using the condition v = 0 on ∂DΩ, the Gateaux
derivative of E becomes,

E ′(t, l, u) · v =−
∫

Ω\Γ(l)
div
(
Ae(u)

)
· v dx

+

∫

∂NΩ

(
Ae(u) · ν − g(t)

)
· v dHn−1

−
∫

Γ(l)

(
Ae(u) · ν

)
· JvK dHn−1

(1.11)

5



Chapter 1. Variational phase-field models of brittle fracture

Taking v = −v ∈ H1
0 (Ω\Γ(l)), the optimality condition leads to E ′(t, l, u)·v = 0. Formally

by a localization argument taking v such that it is concentrated around boundary and
zero almost everywhere, we obtain that all integrals must vanish for any v. Since the
stress-strain relation is given by σ = Ae(u), we recover the equilibrium constitutive
equations,





div
(
Ae(u)

)
= 0 in Ω \ Γ(l)

u = ū(t) on ∂DΩ \ Γ(l)

Ae(u) · ν = g(t) on ∂NΩ

Ae(u) · ν = 0 on Γ(l)

(1.12)

Now consider u is given. For any l̃ > 0 for some h > 0 small enough, such that
l + hl̃ ≥ l(t), the derivative of E(t, l, u) at l in the direction l̃ is,

E ′(t, l, u) · l̃ ≥ 0

∂P(t, l, u)

∂l
+Gc ≥ 0

(1.13)

this becomes an equality, G(t, l, u) = Gc when the fracture propagates.

To complete the equivalence between minimality evolution principle and Griffith, let
us verify the energy balance. Provided a smooth evolution of l, the time derivative of
the right hand side equation (1.6) is,

dE(t, l, u)

dt
=

∫

∂DΩ
(σ · ν) · ˙̄udHn−1 −

∫

∂NΩ
ġ(t) · udHn−1 (1.14)

and the explicit left hand side,

dE(t, l, u)

dt
= E ′(t, l, u) · u̇+ E ′(t, l, u) · l̇ −

∫

∂NΩ
ġ(t) · udHn−1. (1.15)

The Gateaux derivative with respect to u have been calculated above, so E ′(t, l, u) · u̇
stands for,

E ′(t, l, u) · u̇ =−
∫

Ω\Γ
div(Ae(u)) · u̇ dx+

∫

∂DΩ

(
Ae(u) · ν

)
· u̇dHn−1

+

∫

∂NΩ

(
Ae(u) · ν

)
· u̇dHn−1 −

∫

∂NΩ
g(t) · u̇dHn−1.

(1.16)

Since u respects the equilibrium and the admissibility u̇ = ˙̄u on ∂DΩ, all kinematic
contributions to the elastic body vanish and the energy balance condition becomes,

E ′(t, l, u) · l̇ = 0 ⇔
(
∂P
∂l

+Gc

)
l̇ = 0 (1.17)
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1.1. Gradient damage models

At this stage minimality principle is equivalent to Griffith criterion for smooth evo-
lution of l(t). Let’s give a graphical interpretation of that. Consider a domain partially
cut by a pre-fracture of length l0 subject to a monotonic increasing displacement load,
such that, ū(t) = tū on ∂DΩ and stress free on the remainder boundary part. Hence, the
elastic energy is ψ

(
e(tu)

)
= t2

2 Ae(u) : e(u) and the irreversibility is l ≥ l0. The fracture
stability is given by

t2
∂P (1, l)

∂l
+Gc ≥ 0

and for any loading t > 0, the energy release rate for a unit loading is bounded by
G(1, l) ≤ Gc/t2.

Forbidden
 region

Figure 1.1: Sketch on the left shows the evolution of the crack (red curve) for a strict
decreasing function G(1, l) subject to the irreversibility (l ≥ l0) and G(1, l) ≤ Gc/t

2.
Picture on the right shows the crack evolution for a local minimality principle (red curve)
and for a global minimality (blue curve) without taking into account the energy balance.

The fracture evolution is smooth if G(1, l) is strictly decreasing in l, i.e. P(1, l)
is strictly convex as illustrated on the Figure 1.1(left). Thus, stationarity and local
minimality are equivalent. Let’s imagine that material properties are not constant in
the structure, simply consider the Young’s modulus varying in the structure such that
G(1, l) has a concave part, see Figure 1.1(right). Since G(1, l) is a deceasing function,
the fracture grows smoothly by local minimality argument until being stuck in the local
well for any loadings which is physically inconsistent. Conversely, considering global
minimization allows up to a loading point, the nucleation of a crack in the material,
leading to a jump of the fracture evolution.

1.1.2 Extension to Francfort-Marigo’s model

In the previous analysis, the minimality principle adopted was a local minimization
argument because it considers small perturbations of the energy. This requires a topology,
which includes a concept of distance defining small transformations, whereas for global
minimization principle it is topology-independent. Without going too deeply into details,
arguments in favor of global minimizers are described below. Griffith’s theory does not

7



Chapter 1. Variational phase-field models of brittle fracture

hold for a domain with a weak singularity. By weak singularity, we consider any free stress
acute angle that does not degenerate into a crack (as opposed to strong singularity). For
this problem, by using local minimization, stationary points lead to the elastic solution.
The reason for this are that the concept of energy release rate is not defined for a weak
singularity and there is no sustainable stress limit over which the crack initiates. Hence,
to overcome the discrepancy due to the lack of a critical stress in Griffith’s theory, double
criterion have been developed to predict fracture initiation in notched specimen, more
details are provided in Chapter 2. Conversely, global minimization principle has a finite
admissible stress allowing cracks nucleation, thus cracks can jump from a state to another,
passing through energy barriers. For physical reasons, one can blame global minimizers
to not enforce continuity of the displacement and damage field with respect to time.
Nevertheless, it provides a framework in order to derive the fracture model as a limit
of the variational damage evolution presented in section 1.3. This is quite technical
but global minimizers from the damage model converge in the sens of Γ-convergence to
global minimizers of the fracture model. Finally, under the assumptions of a pre-existing
fracture and strict convexity of the potential energy, global or local minimization are
equivalent and follow Griffith.

In order to obtain the extended model of Francfort-Marigo variational approach to
fracture [80, 38, 125, 36] one has to keep the rate independent variational principle and the
Griffith fracture energy, relax the constrain on the pre-supposed crack path by extending
to all possible crack geometries Γ and consider the global minimization of the following
total energy

E(u,Γ) :=

∫

Ω\Γ

1

2
Ae(u) : e(u) dx−

∫

∂NΩ
g(t) · u dHn−1 +GcHn−1(Γ) (1.18)

associated to cracks evolution problem given by,

Definition 3 (Crack evolution by global minimizers)(
u(t),Γt

)
satisfies the variational evolution associated to the energy E(u,Γ) if the follow-

ing three conditions hold:

i. t 7→ Γt is increasing in time, i.e Γt ⊇ Γs for all t0 ≤ s ≤ t ≤ T .

ii. for any configuration (v, Γ̃) such that v = g(t) on ∂DΩ \ Γt and Γ̃ ⊇ Γt,

E
(
v, Γ̃

)
≥ E

(
u(t),Γt

)
(1.19)

iii. for all t,

E
(
u(t),Γt

)
= E

(
u(t0),Γt0

)
+

∫ t

t0

[∫

∂DΩ
(σ · ν) · ˙̄u(t) dHn−1

−
∫

∂NΩ
ġ(t) · udHn−1

]
ds

(1.20)
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1.1. Gradient damage models

It is convenient, to define the weak energy by extending the set of admissibility
function to an appropriate space allowing discontinuous displacement field, but preserving
“good” properties.

SBD(Ω) =
{
u ∈ SBV (Ω);Du = ∇u+ (u+ − u−) · ν dHn−1

(
J(u)

)}
(1.21)

where, Du denotes the distributional derivative, J(u) is the jump set of u. Following De
Giorgi in [62], the minimization problem is reformulated in a weak energy form functional
of SBV , such as,

min
u∈SBV (Ω)

∫

Ω

1

2
Ae(u) : e(u) dx−

∫

∂NΩ
g(t) · u dHn−1 +GcHn−1

(
J(u)

)
(1.22)

For existence of solution in the discrete time evolution and time continuous refer to
[79, 14]. The weak energy formulation will be recalled in section 1.3 for the Γ-convergence
in one dimension.

1.1.3 Gradient damage models to brittle fracture

Because the crack path remains unknown a special method needs to be crafted. The
approach is to consider damage as an approximation of the fracture with a finite thickness
where material properties are modulated continuously. Hence, let the damage α being
an internal variable which evolves between two extreme states, up to a rescaling α can
be bounded between 0 and 1, where α = 0 is the sound state material and α = 1 refers
to the broken part. Intermediate values of the damage can be seen as “micro cracking”,
a partial disaggregation of the Young’s modulus. A possible choice is to let the damage
variable α making an isotropic deterioration of the Hooke’s tensor, i.e. a(α)A where
a(α) is a stiffness function. Naturally the recoverable energy density becomes, ψ(α, e) =
1
2a(α)Ae(u) : e(u), with the elementary property that ψ(α, e) is monotonically decreasing
in α for any fixed u. The difficulty lies in the choice of a correct energy dissipation
functional. At this stage of the presentation a choice would be to continue by following
Marigo-Pham [147, 148, 149, 123, 150] for a full and self consistent construction of the
model. Their main steps are, assume a dissipation potential k(α), apply the Drucker-
Ilushin postulate, then, introduce a gradient damage term to get a potential dissipation of
the form k(α,∇α). Instead, we will continue by following the historical ideas which arose
from the image processing field with Mumford-Shah [137] where continuous functional
was proposed to find the contour of the image in the picture by taking into account
strong variations of pixels intensity across boundaries. Later, Ambrosio-Tortorelli [9, 11]
proposed the following functional which constitute main ingredients of the regularized
damage models,

∫

Ω

1

2
(1− α)2|∇u|2 dx+

∫

Ω

α2

`
+
`

2
|∇α|2 dx

9



Chapter 1. Variational phase-field models of brittle fracture

where ` > 0 is a regularized parameter called internal length. One can recognize the
second term as the dissipation potential composed of two parts, a local term depending
only on the damage state and a gradient damage term which penalizes sharp localization
of the damage. The regularized parameter ` came up with the presence of the gradient
damage term which has a dimension of the length. Following [10, 11, 30, 38, 41], we
define the regularized total energy of the gradient damage model for a variety of local
dissipations and stiffness functions denoted w(α) and a(α), not only w(α) = α2 and
a(α) = (1− α)2 by

E`(u, α) =

∫

Ω

1

2
a(α)Ae(u) : e(u) dx−

∫

∂NΩ
g(t) · u dHn−1

+
Gc
4cw

∫

Ω

w(α)

`
+ `|∇α|2 dx

(1.23)

where Gc is the critical energy release rate, cw =
∫ 1

0

√
w(α)dα with w(α) and a(α)

following some elementary properties.

1. The local dissipation potential w(α) is strictly monotonically increasing in α. For
a sound material no dissipation occurs hence w(0) = 0, for a broken material the
dissipation must be finite, and up to a rescaling we have w(1) = 1.

2. The elastic energy is monotonically decreasing in α for any fixed u. An undamaged
material should conserve its elasticity property and no elastic energy can be stored
in a fully damaged material such that, the stiffness function a(α) is a decreasing
function with a(0) = 1 and a(1) = 0.

3. For numerical optimization reasons one can assume that a(α) and w(α) are con-
tinuous and convex.

A large variety of models with different material responses can be constructed just by
choosing different functions for a(α) and w(α). A non exhaustive list of functions used in
the literature is provided in Table 1.1. Despite many models used, we will mainly focus
on AT1 and sometimes refers to AT2 for numerical simulations.

Now let us focus on the damage evolution of E`(u, α) defined in (1.23). First, remark
that to get a finite energy, the gradient damage is in L2(Ω) space. Consequently, the
trace can be defined at the boundary, so, damage values can be prescribed. Accordingly
let the set of admissible displacements and admissible damage fields Ct and D, equipped
with their natural H1 norm,

Ct =
{
u ∈ H1(Ω) : u = ū(t) on ∂DΩ

}
,

D =
{
α ∈ H1(Ω) : 0 ≤ α ≤ 1, ∀x ∈ Ω

}
.

The evolution problem is formally similar to one defined in Definition 2 and reads as,

10



1.1. Gradient damage models

Name a(α) w(α)

AT2 (1− α)2 α2

AT1 (1− α)2 α

LSk
1− w(α)

1 + (c1 − 1)w(α)
1− (1− α)2

KKL 4(1− α)3 − 3(1− α)4 α2(1− α)2/4

Bor c1

(
(1− α)3 − (1− α)2

)

+ 3(1− α)2 − 2(1− α)3

α2

SKBN (1− c1)
1− exp (−c2(1− α)c3)

1− exp (−c2)
α

Table 1.1: Variety of possible damage models, where c1, c2, c3 are constants. AT2 intro-
duced by Ambrosio Tortorelli and used by Bourdin [30], AT1 model initially introduced
by Pham-Amor [146], LSk in Alessi-Marigo [4], KKL for Karma-Kessler-Levine used in dy-
namics [108], Bor for Borden in [28], SKBN for Sargadoa-Keilegavlena-Berrea-Nordbottena
in [158].

Definition 4 (Damage evolution by minimality principle)
For all t find (u, α) ∈ (Ct,D) that satisfies the damage variational evolution:

i. Initial condition αt0 = α0 and ut0 = u0

ii. (u, α) is a minimizer of the total energy, E`(u, α)

E`(u, α) =

∫

Ω

1

2
a(α)Ae(u) : e(u) dx−

∫

∂NΩ
g(t) · u dHn−1

+
Gc
4cw

∫

Ω

w(α)

`
+ `|∇α|2 dx

(1.24)

amongst all α ≥ α(t)

iii. Energy balance,

E`(ut, αt) = E`(u0, α0) +

∫ t

t0

[∫

∂DΩ
(σ · ν) · ˙̄u dHn−1

−
∫

∂NΩ
ġ(t) · udHn−1

]
ds.

(1.25)

This damage evolution is written in a weak form in order to obtain the damage
criterion in a strong formulation, we have to explicit the first order necessary optimality
conditions of the constraint minimization of E` for (u, α) given by,

E ′`(u, α)(v, β) ≥ 0 ∀(v, β) ∈ H1
0 (Ω)×D (1.26)

11



Chapter 1. Variational phase-field models of brittle fracture

Using calculus of variation argument, one gets,

E ′`(u, α)(v, β) =

∫

Ω
a(α)Ae(u) : e(v) dx−

∫

∂NΩ
(g(t) · ν) · v dHn−1

+

∫

Ω

1

2
a′(α)Ae(u) : e(u)β dx

+
Gc
4cw

∫

Ω

w′(α)

`
β + 2`∇α · ∇β dx.

(1.27)

Integrating by parts the first term in e(v) and the last term in ∇α · ∇β, the expression
leads to,

E ′`(u, α)(v, β) =−
∫

Ω
div
(
a(α)Ae(u)

)
· v dx

+

∫

∂NΩ

(
[a(α)Ae(u)− g(t)] · ν

)
· v dHn−1

+

∫

Ω

[
1

2
a′(α)Ae(u) : e(u) +

Gc
4cw

(w′(α)

`
− 2`∆α

)]
β dx

+
Gc
4cw

∫

∂Ω
2`
(
∇α · ν

)
β dHn−1.

(1.28)

This holds for all β ≥ 0 and for all v ∈ H1
0 (Ω), thus, one can take β = 0 and v = −v.

Necessary, the first two integrals are equal to zero. Again, we recover the kinematic
equilibrium with the provided boundary condition since σ = a(α)Ae(u),





div
(
a(α)Ae(u)

)
= 0 in Ω

a(α)Ae(u) = g(t) on ∂NΩ

u = ū(t) on ∂DΩ

(1.29)

The damage criteria and its associated boundary conditions arise for any β ≥ 0 and
by taking v = 0 in (1.28), we obtain that the third and fourth integrals are non negative.





1

2
a′(α)Ae(u) : e(u) +

Gc
4cw

(
w′(α)

`
− 2`∆α

)
≥ 0 in Ω

∇α · ν ≥ 0 on ∂Ω

(1.30)

The damage satisfies criticality when (1.30) becomes an equality.

Before continuing with the energy balance expression, let us focus a moment on the
damage criterion. Notice that it is composed of an homogeneous part depending in w′(α)
and a localized contribution in ∆α. Assume the structure being at an homogeneous
damage state, such that α is constant everywhere, hence the laplacian damage term
vanishes. In that case, the elastic domain in a strain space is given by,

12



1.1. Gradient damage models

Ae(u) : e(u) ≤ Gc
2cw`

w′(α)(
− a′(α)

) (1.31)

and in stress space, by,

A−1σ : σ ≤ Gc
2cw`

w′(α)a(α)2

(
− a′(α)

) (1.32)

this last expression requires to be bounded such that the structure has a maximum
admissible stress,

max
α

w′(α)

c′(α)
< C (1.33)

where c(α) = 1/a(α) is the compliance function.
If α 7→ w′(α)/c′(α) is increasing the material response will be strain-hardening. For

a decreasing function it is a stress-softening behavior. This leads to,

w′(α)a′′(α) > w′′(α)a′(α) (Strain-hardening)
w′′(α)c′(α) < w′(α)c′′(α) (Stress-softening)

(1.34)

Those conditions restrict proper choice for w(α) and a(α).

Let us turn our attention back to find the strong formulation of the problem using
the energy balance. Assuming a smooth evolution of damage in time and space, the time
derivative of the energy is given by,

dE`(u, α)

dt
= E ′`(u, α)(u̇, α̇)−

∫

∂NΩ
(ġ(t) · ν) dHn−1 (1.35)

The first term has already been calculated by replacing (v, β) with (u̇, α̇) in (1.27),
so that,

dE`(u, α)

dt
=

−
∫

Ω
div
(
a(α)Ae(u)

)
· u̇ dx+

∫

∂NΩ

(
[a(α)Ae(u)− g(t)] · ν

)
· u̇ dHn−1

+

∫

∂DΩ

(
a(α)Ae(u) · ν

)
· u̇ dHn−1 −

∫

∂NΩ

(
ġ(t) · ν

)
· u dHn−1

+

∫

Ω

[
1

2
a′(α)Ae(u) : e(u) +

Gc
4cw

(w′(α)

`
− 2`∆α

)]
α̇ dx

+
Gc
4cw

∫

∂Ω
2`
(
∇α · ν

)
α̇ dHn−1

(1.36)
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Chapter 1. Variational phase-field models of brittle fracture

The first line vanishes with the equilibrium and boundary conditions, the second line is
equal to the right hand side of the energy balance definition (1.25). Since the irreversibil-
ity α̇ ≥ 0 and the damage criterion (1.30) hold, the integral is non negative, therefore
the energy balance condition gives,





(
1

2
a′(α)Ae(u) : e(u) +

Gc
4cw

(w′(α)

`
− 2`∆α

))
· α̇ = 0 in Ω

(∇α · ν) · α̇ = 0 on ∂Ω

(1.37)

Notice that the first condition in (1.37) is similar to the energy balance of Griffith,
in the sense that the damage criterion is satisfied when damage evolves. Finally, the
evolution problem is given by the damage criterion (1.30), the energy balance (1.37) and
the kinematic admissibility (1.29).

The next section is devoted to the construction of the optimal damage profile by
applying the damage criterion to a one-dimensional traction bar problem for a given `.
Then, defined the critical energy release rate as the energy required to break a bar and
to create an optimal damage profile.

1.2 Application to a bar in traction

1.2.1 The one-dimension problem

The aim of this section is to apply the gradient damage model to a one-dimensional bar
in traction. Relevant results are obtained with this example such as, the role of critical
admissible stress, the process of damage nucleation due to stress-softening, the creation
of an optimal damage profile for a given ` and the role of gradient damage terms which
ban spacial jumps of the damage.

In the sequel, we follow Pham-Marigo [145, 149, 147] by considering a one-dimensional
evolution problem of a homogeneous bar of length 2L stretched by a time controlled
displacement at boundaries and no damage value is prescribed at the extremities, such
that, the admissible displacement and damage sets are respectively,

Ct := {u : u(−L) = −tL, u(L) = tL}, D := {α : 0 ≤ α ≤ 1 in [0, L]} (1.38)

with the initial condition u0(x) = 0 and α0(x) = 0. Since no external force is applied,
the total energy of the bar is given by,

E`(u, α) =

∫ L

−L

1

2
a(α)Eu′2 dx+

Gc
4cw

∫ L

−L

w(α)

`
+ `|α′|2 dx (1.39)

where E is the Young’s modulus, ` > 0 and (•)′ = ∂(•)/∂x. For convenience, let the
compliance being the inverse of the stiffness such that c(α) = a−1(α). Assume that α is
at least continuously differentiable, but a special treatment would be required for α = 1
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1.2. Application to a bar in traction

which is out of the scope in this example. The pair (ut, αt) ∈ Ct ×D is a solution of the
evolution problem if the following conditions holds:

1. The equilibrium,
σ′t(x) = 0, σt(x) = a(αt(x))Eu′t(x),

ut(−L) = −tL and ut(L) = tL

The stress is constant along the bar. Hence it is only a function of time, such that,

2tLE = σt

∫ L

−L
c
(
αt(x)

)
dx (1.40)

Once the damage field is known. The equation (1.40) gives the stress-displacement
response.

2. The irreversibility,
α̇t(x) ≥ 0 (1.41)

3. The damage criterion in the bulk,

− c′(αt(x))

2E
σ2
t +

Gc
4cw

(
w′(αt(x))

`
− 2`α′′t (x)

)
≥ 0 (1.42)

4. The energy balance in the bulk,
[
−c
′(αt(x))

2E
σ2
t +

Gc
4cw

(
w′(αt(x))

`
− 2`α′′t (x)

)]
α̇t(x) = 0 (1.43)

5. The damage criterion at the boundary,

α′t(−L) ≥ 0 and α′t(L) ≤ 0 (1.44)

6. The energy balance at the boundary,

α′t(±L)α̇t(±L) = 0 (1.45)

For smooth or brutal damage evolutions the first order stability enforce α′t(±L) = 0
to respect E ′`(u, α) = 0. Thus the damage boundary condition is replaced by α′t(±L) = 0
when damage evolves. All equations are settled to solve the evolution problem. Subse-
quently, we study a uniform damage in the bar and then focus on the localized damage
solution.
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Chapter 1. Variational phase-field models of brittle fracture

1.2.2 The homogeneous damage profile

Consider a case of a uniform damage in the bar αt(x) = αt, which is called the ho-
mogeneous solution. We will see that the damage response depends on the evolution
of α 7→ w′(α)/c′(α), i.e. for stress-hardening (increasing function) the damage evolves
uniformly in the bar, and localizes for stress-softening configuration.

Now suppose that the damage does not evolve and remains equal to its initial value,
αt = α0 = 0. Then using the damage criterion in the bulk (1.42) the admissible stress
must satisfy,

σ2
t ≤

2EGc
4cw`

w′(0)

c′(0)
(1.46)

and the response remains elastic until the loading time te, such that,

t2 ≤ − Gc
2E`cw

w′(0)

a′(0)
= t2e (1.47)

Suppose the damage evolves uniformly belongs to the bar, using the energy balance
(1.43) and the damage criterion (1.42) we have,

σ2
t ≤

2EGc
4cw`

w′(αt)

c′(αt)
,

(
σ2
t −

2EGc
4cw`

w′(αt)

c′(αt)

)
α̇t = 0 (1.48)

The homogeneous damage evolution is possible only if αt 7→ w′(α)/c′(α) is growing, this
is the stress-hardening condition. Since α̇t > 0, the evolution of the stress is given by,

σ2
t =

2EGc
4cw`

w′(αt)

c′(αt)
≤ max

0<α<1

(
2EGc
4cw`

w′(αt)

c′(αt)

)
= σ2

c (1.49)

where σc is the maximum admissible stress for the homogeneous solution. One can define
the maximum damage state αc obtained when σt = σc. This stage is stable until the
loading time tc,

t2 ≤ − Gc
2E`cw

w′(αc)

a′(αc)
= t2c (1.50)

Since w′(α)/c′(α) is bounded and ` > 0, a fundamental property of gradient damage
model is there exists a maximum value of the stress called critical stress, which allows
crack to nucleate using the minimality principle.

1.2.3 The localized damage profile

The homogeneous solution is no longer stable if the damage αt 7→ w′(α)/c′(α) is decreas-
ing after αc. To prove that, consider any damage state such that, αt(x) > αc and the
stress-softening property, leading to,
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1.2. Application to a bar in traction

0 ≤ 2EGc
4cw`

w′(αt(x))

c′(αt(x))
≤ 2EGc

4cw`

w′(αc)

c′(αc)
= σ2

c (1.51)

By integrating the damage criterion (1.42) over (−L,L) and using (1.44), we have,

σ2
t

2E

∫ L

−L
c′(αt(x)) dx ≤

Gc
4cw

[∫ L

−L

w′(αt(x))

`
dx+ 2`

(
α′t(L)− α′t(−L)

)]
≤ Gc

4cw

∫ L

−L

w′(αt(x))

`
dx

(1.52)

then, put (1.51) into (1.52) to conclude that σt ≤ σc and use the equilibrium (1.40) to
obtain σt ≥ 0. Therefore using (1.52) we get that α′′t (x) ≥ 0, consequently the damage
is no longer uniform when stress decreases 0 ≤ σt ≤ σc.

Assume α′t(x) is monotonic over (−L, x0) with αt(−L) = αc and the damage is
maximum at x0, such that, αt(x0) = maxx αt(x) > αc. Multiplying the equation (1.42)
by α′t(x), an integrating over [−L, x) for x < x0 we get,

`α′2t (x) = −2cwσ
2
t

EGc

[
c(αt(x))− c(αc)

]
+
w(αt(x))− w(αc)

`
(1.53)

Plugging this above equation into the total energy restricted to the (−L, x0) part,

E`(ut(x), αt(x))c(−L,x0)

=

∫ x0

−L

σ2
t

2a(αt(x))E
dx+

Gc
4cw

∫ x0

−L

w(αt(x))

`
+ `α′2t (x) dx

=

∫ x0

−L

σ2
t

2a(αc)E
dx+

Gc
4cw

∫ x0

−L

2w(α)− w(αc)

`
dx

(1.54)

Note that the energy does not depend on α′ anymore, we just have two terms: the elastic
energy and the surface energy which depends on state variation of w(α).

The structure is broken when the damage is fully localized α(x0) = 1. From the
equilibrium (1.40), the ratio stress over stiffness function is bounded such that |σtc(α)| <
C, thus, |σ2

t c(1)| → 0 and (1.53) becomes,

`α′2t (x) =
w(αt(x))− w(αc)

`
, ∀x ∈ (−L, x0)

Remark that, the derivative of the damage and u′ across the point x0 where α = 1 is
finite. By letting the variable β = αt(x), the total energy of the partial bar (−L, x0) is
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Chapter 1. Variational phase-field models of brittle fracture

E`(ut(x), αt(x))c(−L,x0)

= lim
x→x0

Gc
4cw

∫ x

−L

2w(αt(x))− w(αc)

`
dx

= lim
β→1

Gc
4cw

∫ β

αc

2w(α)− w(αc)

`β′
dβ

= lim
β→1

Gc
4cw

∫ β

αc

2w(β)− w(αc)√
w(β)− w(αc)

dβ

= lim
β→1

Gc
4cw

∫ β

αc

[
2
√
w(β)− w(αc) +

w(αc)√
w(β)− w(αc)

]
dβ

=
Gc
2cw

k(αc)

(1.55)

with,

k(αc) :=

∫ 1

αc

√
w(β)− w(αc) dβ + w(αc)

D

4`
,

where D is the damage profile size between the homogeneous and fully localized state,
given by,

D =

∫ L

−L

dx

α′(x)
=

∫ 1

αc

2`√
w(β)− w(αc)

dβ. (1.56)

Note that the right side of the bar (x0, L) contribute to the exact same total energy than
the left one (−L, x0).

Different damage response is observed depending on the choice of w(α) and a(α). The
model AT1 for instance has an elastic part, thus αc = 0 and the energy release during the
breaking process of a 1d bar is equal to Gc. Models with an homogeneous response before
localization, AT2 for example, overshoot Gc due to the homogeneous damage profile. A
way to overcome this issue, is to consider that partial damage do not contribute to the
dissipation energy, it can be relaxed after localization by removing the irreversibility.
Another way is to reevaluate cw such as, cw = k(αc).

1.3 Limit of the damage energy

From inception to completion gradient damage models follows the variational structure
of Francfort-Marigo’s [80, 38] approach seen as an extension of Griffith, but connections
between both need to be highlighted. Passing from damage to fracture, i.e. letting `→ 0
requires ingredients adapted from Ambrosio Tortorelli [10, 11] on convergence of global
minimizers of the total energy. A framework to study connections between damage and
fracture variational models is that of Γ–convergence which we briefly introduce below.
We refer the reader to [41, 42, 60] for a complete exposition of the underlying theory.
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1.3. Limit of the damage energy

In the sequel, we restrict the study to a 1d case structure of interval Ω ⊂ R whose
size is large compare to the internal length ` and with a unit Young’s modulus. We
prescribe a boundary displacement ū on a part ∂DΩ and stress free on the remaining
part ∂NΩ := ∂Ω \ ∂DΩ. We set aside the issue of damage boundary conditions for now
and we define the weak fracture energy,

E(u, α,Ω) =

{
F(u,Ω) if u ∈ SBV (Ω)

+∞ otherwise
(1.57)

and

F(u,Ω) :=
1

2

∫

Ω
(u′)2 dx+Gc#(J(u)) (1.58)

where #(J(u)) denotes the cardinality of jumps in the set of u. Derived from E(u, α,Ω)
its associated regularized fracture energy is,

E`(u, α,Ω) =

{
F`(u, α,Ω) if u ∈W 1,2(Ω), α ∈W 1,2(Ω; [0, 1])

+∞ otherwise
(1.59)

and

F`(u, α,Ω) :=
1

2

∫

Ω
a(α)(u′)2 dx+

Gc
4cw

∫

Ω

w(α)

`
+ `α′2 dx (1.60)

To prove that up to a subsequence minimizers for E` converge to global minimizers
of E we need the fundamental theorem of the Γ-convergence given in the Appendix A.

We first show the compactness of the sequence of minimizers of E`, then the Γ-
convergence of E` to E . Before we begin, let the truncation and optimal damage profile
lemma be,

Lemma 1 Let u (resp. (u, α)) be a kinematically admissible global minimizer of F (resp.
F`). Then ‖u‖L∞(Ω) ≤ ‖ū‖L∞(Ω)

Proof. Let M = ‖ū‖L∞ , and u∗ = inf {sup{−M,u},M}. Then F(u∗) ≤ F(u) with
equality if u = u∗.

Lemma 2 Let α` be the optimal profile of

S`(α`) :=

∫

I

w(α`)

`
+ `(α′`)

2 dx

where I ⊂ R, then S`(α`) = 4cw.

Proof. In order to construct α` we solve the optimal profile problem: Let γ` be
the solution of the following problem: find γ` ∈ C1[−δ, x0) such that γ(−δ) = 0 and
limx→x0 γ(x) = ϑ, and which is a minimum for the function,
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Chapter 1. Variational phase-field models of brittle fracture

F (γ) =

∫ x0

−δ
f(γ(x), γ′(x), x)dx (1.61)

where

f(γ(x), γ′(x), x) :=
w(γ(x))

`
+ `γ′2(x) (1.62)

Note that the first derivative of f is continuous. We will apply the first necessary opti-
mality condition to solve the optimization problem described above, if γ is an extremum
of F , then it satisfies the Euler-Lagrange equation,

2γ′′ =
w′(γ)

`2
and γ′(−δ) = 0 (1.63)

Note that w′(γ) ≥ 0 implies γ convex, thus γ′ is monotonic in [−δ, x0). Multiplying by
γ′ and integrating form −δ to x, we obtain,

γ′2(x)− γ′2(−δ) =
w(γ(x))− w(γ(−δ))

`2
(1.64)

Since γ′(−δ) = 0 and w(γ(−δ)) = 0, one gets,

γ′(x) =

√
w(γ(x))

`2
(1.65)

Let us define, α`(x) = γ`(|x− x0|) then,

α`(x) :=

{
γ`(|x− x0|) if |x− x0| ≤ δ
0 otherwise

(1.66)

Note that α` is continuous at x0 and values ϑ, we have that,

S`(α`) =

∫

I

w(α`)

`
+ `(α′`)

2 dx = 2

∫ x0

−δ

w(γ`)

`
+ `(γ′`)

2 dx (1.67)

Plug (1.65) into the last integral term, and change the variables β = γ`(x), it turns into

S`(α`) = 2

∫ x0

−δ

w(γ`)

`
+ `(γ′`)

2 dx = 2

∫ γ(x0)

γ(−δ)

w(β)

`β′
dβ = 4

∫ ϑ

0

√
w(β) dβ (1.68)

The fully damage profile is obtained once ϑ→ 1, we get,

S`(α`) = lim
ϑ→1

4

∫ ϑ

0

√
w(β) dβ = 4cw
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1.3. Limit of the damage energy

Remark 1 The above expression (1.68) is invariant by a change of variable x = `x̄, thus
β(x) = β̄(`x̄)

∫ γ(−b`)/`

γ(−δ)/`

w(β̄)

`β̄′
dβ̄ = 2cw

This will be usefull for the recovery sequence in higer dimensions.

1.3.1 Compactness

Theorem 1 Let $(x) :=
∫ x

0

√
w(s)ds, and assume that there exists C > 0 such that

1 − $(s) ≤ C
√
a(s) for any 0 ≤ s ≤ 1. Let (u`, α`) be a kinematic admissible global

minimizer of E`. Then, there exists a subsequence (still denoted by (u`, α`)`), and a
function u ∈ SBV (Ω) such that u` → u in L2(Ω) and α` → 0 a.e. in Ω as `→ 0

Proof. Note that the technical hypothesis is probably not optimal but sufficient to
account for the AT1 and AT2 functionals. Testing α = 0 and an arbitrary kinematically
admissible displacement field ũ, we get that,

E`(u`, α`) ≤ E`(ũ, 0)

≤ 1

2

∫

Ω
|ũ′|2 dx

≤ C

(1.69)

So that E`(u`, α`) is uniformly bounded by some C > 0. Also, this implies that
w(α`) → 0 almost everywhere in Ω, and from properties of w, that α` → 0 almost
everywhere in Ω.Using the inequality a2 + b2 ≥ 2|ab| on the surface energy part, we have
that,

∫

Ω
2
√
w(α`)|α′`| dx ≤

∫

Ω

w(α`)

`
+ `(α′`)

2 dx ≤ C (1.70)

In order to obtain the compactness of the sequence u`, let v` := (1−$(α`))u` and using
the truncation Lemma 1, v` is uniformly bounded in L∞(Ω). Then,

∣∣v′`
∣∣ =
∣∣(1−$(α`))u

′
` −$′(α`)α′`u`

∣∣

≤ (1−$(α`))|u′`|+
√
w(α`)|α′`||u`|

≤
√
a(α`)|u′`|+

√
w(α`)|α′`||u`|

(1.71)

From the uniform bound on E`(u`, α`), we get that the first term is bounded in L2(Ω),
while (1.70) and the truncation Lemma 1 show that the second term is bounded in L1(Ω)
thus in L2(Ω). Finally,

i. v` is uniformly bounded in L∞(Ω)

ii. v′` is uniformly bounded in L2(Ω)
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Chapter 1. Variational phase-field models of brittle fracture

iii. J(v`) = ∅

invoking the Ambrosio’s compactness theorem in SBV (in the Appendix A), we get
that there exists v ∈ SBV (Ω) such that v` → v strongly in L2(Ω). To conclude, since
u` = v`

(1−$(α`))
and α` → 0 almost everywhere, we have,

u` → u in L2(Ω)

Remark the proof above applies unchanged to the higher dimension case.

1.3.2 Gamma-convergence in 1d

The second part of the fundamental theorem of Γ-convergence requires that E` Γ-converges
to E . The definition of the Γ-convergence is in the Appendix A. The first condition means
that E provides an asymptotic common lower bound for the E`. The second condition
means that this lower bound is optimal.

The Γ-convergence is performed in 1d setting and is decomposed in two steps as fol-
low: first prove the lower inequality, then construct the recovery sequence.

Lower semi-continuity inequality in 1d

We want to show that for any u ∈ SBV (Ω), and any (u`, α`) such that u` → u and
α` → 0 almost everywhere in Ω, we have,

lim inf
`→0

E`(u`, α`,Ω) ≥ 1

2

∫

Ω
(u′)2 dx+Gc#(J(u)) (1.72)

Proof. Consider any interval I ⊂ Ω ⊂ R, such that,

lim inf
`→0

E`(u`, α`, I) ≥ 1

2

∫

I
(u′)2 dx if u ∈W 1,2(I) (1.73)

and,

lim inf
`→0

E`(u`, α`, I) ≥ Gc otherwise (1.74)

If lim inf`→0 E`(u`, α`, I) = ∞, both statements are trivial, so we can assume that there
exist 0 ≤ C <∞ such that,

lim inf
`→0

E`(u`, α`, I) ≤ C (1.75)

We focus on (1.73) first, and assume that u ∈ W 1,2(I). From (1.75) we deduce that
w(α`) → 0 almost everywhere in I. Consequently, α` → 0 almost everywhere in I. By
Egoroff’s theorem, for any ε > 0 there exists Iε ⊂ I such that |Iε| < ε and such that
α` → 0 uniformly on I \ Iε. For any δ > 0, thus we have,
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1.3. Limit of the damage energy

1− δ ≤ a(α`) on I \ Iε,
for all ` and ε small enough, so that,

∫

I\Iε
(1− δ) (u′`)

2 dx ≤
∫

I\Iε
a(α`) (u′`)

2 dx ≤
∫

I
a(α`) (u′`)

2 dx (1.76)

Since u` → u in W 1,2(I) , and taking the lim inf on both sides, one gets,

(1− δ)
2

∫

I\Iε
(u′)2 dx ≤ lim inf

`→0

1

2

∫

I
a(α`) (u′`)

2 dx (1.77)

we obtain the desired inequality (1.73) by letting ε→ 0 and δ → 0.

To prove the second assertion (1.74), we first show that lim`→0 supx∈I α` = 1, pro-
ceeding by contradiction. Suppose there exists δ > 0 such that α` < 1− δ on I. Then,

∫

I
a(1− δ) (u′`)

2 dx ≤
∫

I
a(α`) (u′`)

2 dx

Taking the lim inf on both sides and using (1.75) , we get that,

lim inf
`→0

∫

I
(u′`)

2 dx ≤ C

a(1− δ)
So u` is uniformly bounded in W 1,2(I), and therefore u ∈ W 1,2(I), which contradicts
our hypothesis. Reasoning as before, we have that α` → 0 almost everywhere in I.
Combining this two statements, we deduce that there exists a`, b`, c` in I such that,
a` ≤ b` ≤ c`, and

lim
`→0

α`(a`) = lim
`→0

α`(c`) = 0 and lim
`→0

α`(b`) = 1

thus,

∫

I

w(α`)

`
+ `(α′`)

2 dx =

∫ b`

a`

w(α`)

`
+ `(α′`)

2 dx+

∫ c`

b`

w(α`)

`
+ `(α′`)

2 dx (1.78)

Again using the identity, a2 + b2 ≥ 2|ab|, we have that,

∫ b`

a`

w(α`)

`
+ `(α′`)

2 dx ≥2

∫ b`

a`

√
w(α`)|α′`| dx

≥2

∣∣∣∣
∫ b`

a`

√
w(α`)α

′
` dx

∣∣∣∣

≥2

∣∣∣∣
∫ b`

a`

$′(α`)α
′
` dx

∣∣∣∣

(1.79)
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where $(x) :=
∫ x

0

√
w(s)ds. Using the substitution rule we then get,
∫ b`

a`

w(α`)

`
+ `(α′`)

2 dx ≥ 2 |$(b`)−$(a`)| , (1.80)

and since $(0) = 0 and $(1) = cw, we obtain,

lim inf
`→0

∫ b`

a`

w(α`)

`
+ `(α′`)

2 dx ≥ 2cw,

Proceeding the same way on the interval (b`, c`), one gets that,

lim inf
`→0

Gc
4cw

∫

I

w(α`)

`
+ `(α′`)

2 dx ≥ Gc

which is (1.74). In order to obtain (1.72), we apply (1.74) on arbitrary small intervals
centered around each points in the jump set of u and (1.73) on each remaining intervals
in I.

Recovery sequence for the Γ-limit in 1d

The construction of the recovery sequence is more instructive. Given (u, α) we need to
buid a sequence (u`, α`) such that lim supF`(u`, α`) ≤ F(u, α).

Proof. If F`(u, α) = ∞, we can simply take u` = u and α` = α, so that we can
safely assume that F(u, α) < ∞. As in the lower inequality, we consider the area near
discontinuity points of u and away from them separately. Let (u, α) be given, consider
an open interval I ⊂ R and a point x0 ∈ J(u) ∩ I. Without loss of generality, we can
assume that x0 = 0 and I = (−δ, δ) for some δ > 0 . The construction of the recovery
sequence is composed of two parts, first the recovery sequence for the damage, then one
for the displacement.

The optimal damage profile obtained in the Lemma 2, directly gives,

lim sup
`→0

Gc
4cw

∫ δ

−δ

w(α`)

`
+ `(α′`)

2 dx ≤ Gc, (1.81)

this is the recovery sequence for the damage.

Now, let’s focus on the recovery sequence for the bulk term. We define b` � ` and

u`(x) :=





x

b`
u(x) if − b` ≤ x ≤ b`

u(x) otherwise
(1.82)

Since a(α`) ≤ 1, we get that,
∫ −b`
−δ

a(α`) (u′`)
2 dx ≤

∫ −b`
−δ

(u′`)
2 dx (1.83)
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and

∫ b`

δ
a(α`) (u′`)

2 dx ≤
∫ b`

δ
(u′`)

2 dx. (1.84)

Assuming (1.82) and α` = 1 for |x| ≤ b`, we get that,

∫ b`

−b`
a(α`) (u′`)

2 dx ≤
∫ b`

−b`
(u′`)

2 dx

≤
∫ b`

−b`

∣∣∣∣
u

b`
+
xu′

b`

∣∣∣∣
2

dx

≤ 2

∫ b`

−b`

∣∣∣∣
u

b`

∣∣∣∣
2

dx+ 2

∫ b`

−b`

∣∣∣∣
xu′

b`

∣∣∣∣
2

dx

≤ 2

b2`

∫ b`

−b`
|u|2 dx+ 2

∫ b`

−b`
(u′)2 dx

(1.85)

Since |u| ≤ M , the first term vanish when b` → 0. Combining (1.83),(1.85) and (1.84).
Then, taking the lim sup on both sides and using

∫
I |u′|2dx <∞, we get that,

lim sup
`→0

1

2

∫ δ

−δ
a(α`) (u′`)

2 dx ≤ 1

2

∫ δ

−δ
(u′)2 dx (1.86)

Finally combining (1.81) and (1.86), one obtains

lim sup
`→0

∫ δ

−δ

1

2
a(α`) (u′`)

2 +
Gc
4cw

∫ δ

−δ

w(α`)

`
+ `(α′`)

2 dx ≤ 1

2

∫ δ

−δ
(u′)2 dx+Gc (1.87)

For the final construction of the recovery sequence, notice that we are free to assume
that #(J(u)) is finite and chose δ ≤ inf{|xi − xj |/2 s.t. xi, xj ∈ J(u), xi 6= xj}. For
each xi ∈ J(u), we define Ii = (xi − δ, xi + δ) and use the construction above on each Ii
whereas on I \⋃ Ii we chose u` = u and α` linear and continuous at the end points of
the Ii. With this construction, is easy to see that α→ 1 uniformly in I \⋃ Ii and that,

lim sup
`→0

∫

I\
⋃
Ii

1

2
a(α`)(u

′
`)

2 dx ≤
∫

I
(u′)2 dx, (1.88)

and,

lim sup
`→0

∫

I\
⋃
Ii

w(α`)

`
+ `(α′`)

2 dx = 0 (1.89)

Altogether, we obtain the upper estimate for the Γ-limit for pairs (u, 1) of finite energy,
i.e.

lim sup
`→0

F`(u`, α`) ≤ F`(u`, 1) (1.90)
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Chapter 1. Variational phase-field models of brittle fracture

1.3.3 Extension to higher dimensions

To extend the Γ-limit to higher dimensions the lower inequality part is technical and is
not developed here. But, the idea is to use Fubini’s theorem, to build higher dimension
by taking 1d slices of the domain, and use the lower continuity on each section see [9, 41].

The recovery sequence is more intuitive, a possible construction is to consider a
smooth Γ ⊂ Ω and compute the distance to the crack J(u), such that,

d(x) = dist(x, J(u)) (1.91)

and let the volume of the region bounded by p-level set of d, such that,

s(y) = |{x ∈ Rn; d(x) ≤ y}| (1.92)

Figure 1.2: Iso distance to the crack J(u) for the level set b` and δ

Following [74, 73], the co-area formula from Federer [76] is,

∫

Ω
f(x) ‖∇g(x)‖ dx =

∫ +∞

−∞

(∫

g−1(y)
f(x)dHn−1(x)

)
dy (1.93)

In particular, taking g(x) = d(x) which is 1-Lipschitz, i.e. ‖∇d(x)‖ = 1 almost every-
where. We get surface s(y),

s(y) =

∫

s(y)
‖∇d(x)‖ dx =

∫ y

0
Hn−1({x; d(x) = t})dt (1.94)

and

s′(y) = Hn−1({x; d(x) = y}) (1.95)

In particular,

s′(0) = lim
y→0

s(y)

y
= 2Hn−1(J(u)) (1.96)
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1.3. Limit of the damage energy

Consider the damage,

α`(d(x)) :=





1 if d(x) ≤ b`
γ`(d(x)) if b` ≤ d(x) ≤ δ
0 otherwise

(1.97)

The surface energy term is,

∫

Ω

w(α`)

`
+ `|∇α`|2 dx

=
1

`

∫

d(x)≤b`

dx+

∫

b`≤d(x)≤δ

w(α`(d(x)))

`
+ `|∇α`(d(x))|2 dx

(1.98)

The first integral term, is the surface bounded by the iso-contour distant b` from the
crack, i.e

s(b`) =

∫

d(x)≤b`

dx =

∫ b`

0
Hn−1 ({x; d(x) = y}) dy (1.99)

Passing to the limit `→ 0

lim
b`→0

∫ b`

0
Hn−1 ({x; d(x) = y}) dy = 2Hn−1(J(u)) (1.100)

and for the second term,

∫

b`≤d(x)≤δ

w(α`(d(x)))

`
+ `|∇α`(d(x))|2 dx

=

∫ δ

b`

( ∫

x∈Ω
d(x)=y

w(α`(d(x)))

`
+ `
∣∣α′`(d(x))∇d(x)

∣∣2 dHn−1(x)
)

dy

=

∫ δ

b`

( ∫

x∈Ω

w(α`(y))

`
+ `

∣∣α′`(y)∇d(x)
∣∣2 dHn−1({x; d(x) = y})

)
dy

=

∫ δ

b`

(w(α`(y))

`
+ `
∣∣α′`(y)

∣∣2
) ∫

x∈Ω

dHn−1({x; d(x) = y}) dy

(1.101)

Making the change of variable y = x`,
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Chapter 1. Variational phase-field models of brittle fracture

∫

b`≤d(x)≤δ

w(α`(d(x)))

`
+ `|∇α`(d(x))|2 dx

=

∫ δ

b`

(w(α`(y))

`
+ `
∣∣α′`(y)

∣∣2
)
Hn−1({x; d(x) = y}) dy

=

∫ δ

b`

(w(α`(y))

`
+ `
∣∣α′`(y)

∣∣2
)
s′(y) dy

≤
∫ δ/`

0

(w(α`(x`))

`
+ `

∣∣α′`(x`)
∣∣2
)
s′(x`) `dx

(1.102)

Passing the limit ` → 0 and using the Remark 1 on the optimal profile invariance, we
get,

lim sup
`→0

Gc
4cw

∫

Ω

w(α`(x))

`
+ `|∇α`(x)|2 dx ≤ GcHn−1(J(u)) (1.103)

For the bulk term, consider the displacement,

u`(x) :=





d(x)

b`
u(x) if d(x) ≤ b`

u(x) otherwise
(1.104)

Similarly to the 1d, one gets,

lim sup
`→0

∫

Ω

1

2
a(α`)(∇u`)2dx ≤

∫

Ω

1

2
(∇u`)2dx (1.105)

Therefore,

lim sup
`→0

∫

Ω

1

2
a(α`)(∇u`)2dx+

Gc
4cw

∫

Ω

w(α`
`

+ `|∇α`|2 dx

≤
∫

Ω

1

2
(∇u`)2dx+GcHn−1(J(u))

(1.106)

1.4 Numerical implementation

In a view to numerically implement gradient damage models, it is common to consider
time and space discretization. Let’s first focus on the time-discrete evolution, by consid-
ering a time interval [0, T ] subdivided into (N + 1) steps, such that, 0 = t0 < t1 < · · · <
ti−1 < ti < · · · < tN = T . At any step i, the sets of admissible displacement and damage
fields Ci and Di are,

Ci :=
{
u ∈ H1(Ω) : u = ūi on ∂DΩ

}

Di :=
{
β ∈ H1(Ω) : αi−1(x) ≤ β ≤ 1, ∀x ∈ Ω

}
,

(1.107)
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1.4. Numerical implementation

and the discrete time evolution problem is given by,

Definition 5 (Damage discrete evolution by local minimizers)

For any i find (ui, αi) ∈ (Ci,Di) that satisfies the discrete evolution by local minimizer
if the following hold:

i. Initial condition αt0 = α0 and ut0 = u0

ii. For some hi > 0, find (ui, αi) ∈ (Ci,Di), such that,

‖(v, β)− (ui, αi)‖ ≤ hi, E`(ui, αi) ≤ E`(v, β) (1.108)

where,

E`(u, α) =

∫

Ω

1

2
a(α)Ae(u) : e(u) dx−

∫

∂NΩ
g(t) · u dHn−1

+
Gc
4cw

∫

Ω

w(α)

`
+ `|∇α|2 dx

(1.109)

One observes that our time-discretization evolution do not enforce energy balance.
Since a(α) and w(α) are convex, the total energy E`(u, α) is separately convex with re-
spect to u and α, but that is not convex. Hence, a proposed alternate minimization
algorithm guarantees to converge to a critical point of the energy satisfying the irre-
versibility condition [30, 43]. The idea is for each time-step ti, we minimize the problem
with respect to any kinematic admissible u for a given α, then, fixed u and minimize
E`(u, α) with respect to α subject to the irreversibility αi ≥ αi−1, repeat the proce-
dure until the variation of the damage is small. This gives the following algorithm see
Algorithm 1, where δα is a fixed tolerance parameter.

For the space discretization of E`(u, α), we use the finite element methods consider-
ing linear Lagrange elements for u and α. To solve the elastic problem preconditioned
conjugate gradient solvers is employed, and the constraint minimization with respect to
the damage is implemented using the variational inequality solvers provided by PETSc
[16, 15, 17]. All computations were performed using the open source mef902.

Due to the non-convexity of E`, solution satisfying irreversibility and stationarity
might not be unique.

For remainder solutions, a study selection can be performed. For instance looking at
solutions which satisfy the energy balance, or selecting displacement and damage fields
which are continuous in time. Another way is to compare results with all previous one in
order to avoid local minimizers solution (see [35, 31] for more details on the backtracking
idea). This method will select global minimizers from the set of solutions.

2available at https://www.bitbucket.org/bourdin/mef90-sieve
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Algorithm 1 Alternate minimization algorithm at the step i
1: Let j = 0 and α0 := αi−1

2: repeat
3: Compute the equilibrium,

uj+1 := argmin
u∈Ci

E`(u, αj)

4: Compute the damage,

αj+1 := argmin
α∈Di
α≥αi−1

E`(uj+1, α)

5: j := j + 1
6: until

(∣∣αj − αj−1
∣∣
L∞
≤ δα

)

7: Set, ui := uj and αi := αj

Conclusion

The strength of the phase fields models to brittle fracture is the variational structure
of the model conceived as an approximation of Griffith and its evolution based on three
principles: irreversibility of the damage, stability and energy balance of the total energy.
A fundamental property of the model is the maximum admissible stress illustrated in
the one dimensional example. This also constrained the damage thickness size, since it
governs `. Numerically the fracture path is obtained by alternate searching of the damage
trajectory which decreases the total energy and the elastic solution of the problem.
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Appendix A

Theorem 2 (Ambrosio’s compactness and lower semicontinuity on SBV)
Let (fn)n be a sequence of functions in SBV (Ω) such that there exists non-negative
constants C1, C2 and C3 such that,

i. fn is uniformly bounded in L∞(Ω)

ii. ∇fn is uniformly bounded in Lq(Ω,Rn) with q > 1

iii. Hn−1(J(fn)) is uniformly bounded

Then, there exists f ∈ SBV (Ω) and a subsequence fk(n) such that,

i. fk(n) → f strongly in Lp(Ω), for all p <∞

ii. ∇fk(n) → ∇f weakly in Lq(Ω;Rn)

iii. Hn−1(J(f)) ≤ lim infnHn−1(J(fn))

Theorem 3 (Fundamental theorem of Γ-convergence)
If E` Γ - converges to E, u` is a minimizer of E`, and (u`)` is compact in X, then there
exists u ∈ X such that u is a minimizer of E, u` → u, and E`(u`)→ E(u).

Definition 6 (Γ-convergence)
Let E : X → R̄ and E` : X → R̄, where X is a topological space. Then E` Γ converges to
E if the following two conditions hold for any u ∈ X

i. Lower semi continuity inequality: for every equence (u`)` ∈ Xsuch that u` → u

E(u) ≤ lim inf
`→0

E`(u`),

ii. Existence of a recovery sequence: there exists a sequence (u`)` ∈ X with u` → u
such that

lim sup
`→0

E`(u`) ≤ E(u).
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Chapter 2

Crack nucleation in variational
phase-field models of brittle fracture

Despite its many successes, Griffith’s theory of brittle fracture [95] and its heir, Linear
Elastic Fracture Mechanics (LEFM), still faces many challenges. In order to identify
a crack path, additional branching criteria whose choice is still unsettled have to be
considered. Accounting for scale effects in LEFM is also challenging, as illustrated by
the following example: consider a reference structure of unit size rescaled by a factor L.
The critical loading at the onset of fracture scales then as 1/

√
L, leading to a infinite

nucleation load as the structure size approaches 0, which is inconsistent with experimental
observation for small structures [20, 104, 51].

It is well accepted that this discrepancy is due to the lack of a critical stress (or a
critical lengthscale) in Griffith’s theory. Yet, augmenting LEFM to account for a critical
stress is very challenging. In essence, the idea of material strength is incompatible with
the concept of elastic energy release rate near stress singularity, the pillar of Griffith-like
theories, as it would imply crack nucleation under an infinitesimal loading. Furthermore,
a nucleation criterion based solely on pointwise maximum stress will be unable to handle
crack formation in a body subject to a uniform stress distribution.

Many approaches have been proposed to provide models capable of addressing the
aforementioned issues. Some propose to stray from Griffith fundamental hypotheses by
incorporating cohesive fracture energies [144, 65, 61, 48] or material non-linearities [93].
Others have proposed dual-criteria involving both elastic energy release rate and material
strength such as [115], for instance. Models based on the peridynamics theory [168] may
present an alternative way to handle these issues, but to our knowledge, they are still
falling short of providing robust quantitative predictions at the structural scale.

Francfort and Marigo [80] set to devise a formulation of brittle fracture based solely on
Griffith’s idea of competition between elastic and fracture energy, yet capable of handling
the issues of crack path and crack nucleation. However, as already pointed-out in [80],
their model inherits a fundamental limitation of the Griffith theory and LEFM: the lack
of an internal length scale and of maximum allowable stresses.

Amongst many numerical methods originally devised for the numerical implemen-
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tation of the Francfort-Marigo model [32, 141, 83, 160], Ambrosio-Tortorelli regulariza-
tions [10, 11], originally introduced in [37], have become ubiquitous. They are known
nowadays as phase-field models of fracture, and share several common points with the
approaches coming from Ginzburg-Landau models for phase-transition [108]. They have
been applied to a wide variety of fracture problems including fracture of ferro-magnetic
and piezo-electric materials [1, 186], thermal and drying cracks [127, 40], or hydraulic
fracturing [33, 185, 52, 187] to name a few. They have been expended to account for
dynamic effects [112, 39, 28, 100], ductile behavior [4, 130, 7], cohesive effects [56, 55, 84],
large deformations [8, 129, 27], or anisotropy [117], for instance.

Although phase-field models were originally conceived as approximations of Francfort
and Marigo’s variational approach to fracture in the vanishing limit of their regulariza-
tion parameter, a growing body of literature is concerned with their links with gradient
damage models [86, 121]. In this setting, the regularization parameter ` is kept fixed
and interpreted as a material’s internal length [151, 85, 66]. In particular, [147, 148]
proposed an evolution principle for an Ambrosio-Tortorelli like energy based on irre-
versibility, stability and energy balance, where the regularization parameter ` is kept
fixed and interpreted as a material’s internal length. This approach, which we refer to as
variational phase-field models, introduces a critical stress proportional to 1/

√
`. As ob-

served in [151, 40, 143], it can potentially reconcile stress and toughness criteria for crack
nucleation, recover pertinent size effect at small and large length-scales, and provide a
robust and relatively simple approach to model crack propagation in complex two- and
three-dimensional settings. However, the few studies providing experimental verifications
[152, 143, 40] are still insufficient to fully support this conjecture.

The goal of this chapter is precisely to provide such evidences, focusing on nucleation
and size-effects for mode-I cracks. We provide quantitative comparisons of nucleation
loads near stress concentrations and singularities with published experimental results for
a range of materials. We show that variational phase-field models can reconcile strength
and toughness thresholds and account for scale effect at the structural and the material
length-scale. In passing, we leverage the predictive power of our approach to propose
a new way to measure a material’s tensile strength from the nucleation load of a crack
near a stress concentration or a weak singularity. In this study, we focus solely on the
identification of the critical stress at the first crack nucleation event and are not concerned
by the post-critical fracture behavior.

The chapter is organized as follows: in Section 2.1, we introduce variational phase-
field models and recall some of their properties. Section 2.2 focuses on the links between
stress singularities or concentrations and crack nucleation in these models. We provide
validation and verification results for nucleation induced by stress singularities using V-
shaped notches, and concentrations using U-notches. Section 2.3 is concerned with shape
and size effects. We investigate the role of the internal length on nucleation near a defect,
focusing on an elliptical cavity and a mode-I crack, and discussing scale effects at the
material and structural length scales.
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Chapter 2. Crack nucleation in variational phase-field models of brittle fracture

2.1 Variational phase-field models

We start by recalling some important properties of variational phase-field models, fo-
cussing first on their construction as approximation method of Francfort and Marigo’s
variational approach to fracture, then on their alternative formulation and interpretation
as gradient-damage models.

2.1.1 Regularization of the Francfort-Marigo fracture energy

Consider a perfectly brittle material with Hooke’s law A and critical elastic energy release
rate Gc occupying a region Ω ⊂ Rn, subject to a time dependent boundary displacement
ū(t) on a part ∂DΩ of its boundary and stress-free on the remainder ∂NΩ. In the
variational approach to fracture, the quasi-static equilibrium displacement ui and crack
set Γi at a given discrete time step ti are given by the minimization problem (see also [38])

(ui,Γi) = argmin
u=ūi on ∂DΩ

Γ⊃Γi−1

E(u,Γ) :=

∫

Ω\Γ

1

2
Ae(u) · e(u) dx+GcHn−1(Γ ∩ Ω̄ \ ∂NΩ), (2.1)

where Hn−1(Γ) denotes the Hausdorff n− 1–dimensional measure of the unknown crack
Γ, i.e. its aggregate length in two dimensions or surface area in three dimensions, and
e(u) := 1

2(∇u+∇Tu) denotes the symmetrized gradient of u.
Because in (2.1) the crack geometry Γ is unknown, special numerical methods had

to be crafted. Various approaches based for instance on adaptive or discontinuous finite
elements were introduced [32, 90, 83]. Variational phase-field methods, take their roots in
Ambrosio and Tortorelli’s regularization of the Mumford-Shah problem in image process-
ing [10, 11], adapted to brittle fracture in [37]. In this framework, a regularized energy
E` depending on a regularization length ` > 0 and a “phase–field” variable α taking its
values in [0, 1] is introduced. A broad class of such functionals was introduced in [41].
They are

E`(u, α) =

∫

Ω

a(α) + η`
2

Ae(u) · e(u) dx+
Gc
4cw

∫

Ω

(
w(α)

`
+ `|∇α|2

)
dx, (2.2)

where a and w are continuous monotonic functions such that a(0) = 1, a(1) = 0, w(0) =
0, and w(1) = 1, η` = o(`), and cw :=

∫ 1
0

√
w(s) ds is a normalization parameter. The

approximation of E by E` takes place with the framework of Γ–convergence (see [58, 42]
for instance). More precisely, if E` Γ–converges to E , then the global minimizers of E`
converge to that of E . The Γ–convergence of a broad class of energies, including the ones
above was achieved with various degrees of refinement going from static scalar elasticity
to time discrete and time continuous quasi-static evolution linearized elasticity, and their
finite element discretization [21, 29, 41, 90, 46, 47, 89, 43, 44, 105].

Throughout this chapter, we focus on two specific models:

E`(u, α) =

∫

Ω

(1− α)2 + η`
2

Ae(u) · e(u) dx+
Gc
2

∫

Ω

(
α2

`
+ `|∇α|2

)
dx, (AT2)
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2.1. Variational phase-field models

introduced in [11] for the Mumford-Shah problem and in [37] for brittle fracture, and

E`(u, α) =

∫

Ω

(1− α)2 + η`
2

Ae(u) · e(u) dx+
3Gc

8

∫

Ω

(α
`

+ `|∇α|2
)

dx (AT1)

used in [40].
The “surfing” problem introduced in [102] consists in applying a translating boundary

displacement on ∂Ω given by ū(x, y) = ūI(x−V t, y), where ūI denotes the asymptotic far-
field displacement field associated with a mode-I crack along the x-axis with tip at (0, 0),
V is a prescribed loading “velocity”, and t a loading parameter (“time”). Figure 2.1(left)
shows the outcome of a surfing experiment on a rectangular domain Ω = [0, 5]× [−1

2 ,
1
2 ]

with an initial crack Γ0 = [0, l0] × {0} for several values of `. The AT1 model is used,
assuming plane stress conditions, and the mesh size h is adjusted so that `/h = 5, keeping
the “effective” numerical toughness Geff := Gc

(
1 + h

4cw`

)
fixed (see [38]). The Poisson

ratio is ν = 0.3, the Young’s modulus is E = 1, the fracture toughness is Gc = 1.5,
and the loading rate V = 4. As expected, after a transition stage, the crack length
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Figure 2.1: Mode-I “surfing” experiment along straight (left) and circular (right) paths.
Dependence of the crack length and elastic energy release rate on the loading parameter
for multiple values of `.

depends linearly on the loading parameter with slope 3.99, 4.00 and 4.01 for ` =0.1,
0.05 and 0.025 respectively. The elastic energy release rate G, computed using the Gθ
method [67, 166, 119] is very close to Geff . Even though Γ–convergence only mandates
that the elastic energy release rate in the regularized energy converges to that of Griffith
as ` → 0, we observe that as long as ` is “compatible” with the discretization size and
domain geometry, its influence on crack propagation is insignificant. Similar observations
were reported in [109, 189, 152].

Figure 2.1(right) repeats the same experiment for a curve propagating along a circular
path. Here, the boundary displacement is given by Muskhelishvili’s exact solution for a
crack propagating in mode-I along a circular path [139]. The Young’s modulus, fracture
toughness, and loading rate are set to 1. Again, we see that even for a fixed regularization
length, the crack obeys Griffith’s criterion.
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Chapter 2. Crack nucleation in variational phase-field models of brittle fracture

When crack nucleation is involved, the picture is considerably different. Consider
a one-dimensional domain of length L, fixed at one end and submitted to an applied
displacement ū = eL at the other end. For the lack of an elastic singularity, LEFM
is incapable of predicting crack nucleation here, and predicts a structure capable of
supporting arbitrarily large loads without failing. A quick calculation shows that the
global minimizer of (2.1) corresponds to an uncracked elastic solution if e < ec :=

√
2Gc
EL ,

while at e = ec, a single crack nucleates at an arbitrary location (see [80, 38]). The failure
stress is σc =

√
2GcE/L, which is consistent with the scaling law σc = O

(
1/
√
L
)

mentioned in the introduction. The uncracked configuration is always a stable local
minimizer of (2.1), so that if local minimization of (2.1) is considered, nucleation never
takes place. Just as before, one can argue that for the lack of a critical stress, an evolution
governed by the generalized Griffith energy (2.1) does not properly account for nucleation
and scaling laws.

When performing global minimization of (2.2) using the backtracking algorithm
of [30] for instance, a single crack nucleates at an `–dependent load. As predicted by
the Γ–convergence of E` to E , the critical stress at nucleation converges to

√
2GcE/L as

`→ 0. Local minimization of (2.2) using the alternate minimizations algorithm of [37], or
presumably any gradient-based monotonically decreasing scheme, leads to the nucleation
of a single crack at a critical load ec, associated with a critical stress σc = O

(√
GcE/`

)
,

as described in [30] for example. In the limit of vanishing `, local and global minimiza-
tion of (2.2) inherit therefore the weaknesses of Griffith-like theories when dealing with
scaling properties and crack nucleation.

2.1.2 Variational phase-field models as gradient damage models

More recent works have sought to leverage the link between σc and `. Ambrosio-Tortorelli
functionals are then seen as the free energy of a gradient damage model [86, 121, 22, 147,
148] where α plays the role of a scalar damage field. In [151], a thorough investigation
of a one-dimensional tension problem led to interpreting ` as a material’s internal or
characteristic length linked to a material’s tensile strength. An overview of this latter
approach, which is the one adopted in the rest of this work, is given below.

In all that follows, we focus on a time-discrete evolution but refer the reader to [147,
148, 123] for a time-continuous formulation which can be justified within the framework
of generalized standard materials [98] and rate-independent processes [132]. At any time
step i > 1, the sets of admissible displacement and damage fields Ci and Di, equipped
with their natural H1 norm, are

Ci =
{
u ∈ H1(Ω) : u = ūi on ∂DΩ

}
,

Di =
{
β ∈ H1(Ω) : αi−1(x) ≤ β(x) ≤ 1, ∀x ∈ Ω

}
,

where the constraint αi−1(x) ≤ β(x) ≤ 1 in the definition of Di mandates that the
damage be an increasing function of time, accounting for the irreversible nature of the
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2.1. Variational phase-field models

damage process. The damage and displacement fields (ui, αi) are then local minimizers
of the energy E`, i.e. there exists hi > 0 such that

∀(v, β) ∈ Ci ×Di such that ‖(v, β)− (ui, αi)‖ ≤ hi, E`(ui, αi) ≤ E`(v, β), (2.3)

where ‖·‖ denotes the natural H1 norm of Ci×Di. We briefly summarize the solution of
the uniaxial tension of a homogeneous bar [146, 151], referring the reader to the recent
review [123] for further details: As one increases the applied strain, the damage field
remains 0 and the stress field constant until it reaches the elastic limit

σe =

√
GcE

cw`

√
w′(0)

2s′(0)
. (2.4)

where E is the Young modulus of the undamaged material, and s(α) = 1/a(α). If
the applied displacement is increased further, the damage field increases but remains
spatially constant. Stress hardening is observed until peak stress σc, followed by stress
softening. A stability analysis shows that for long enough domains (i.e. when L � `),
the homogeneous solution is never stable in the stress softening phase, and that a snap-
back to a fully localized solution such that maxx∈(0,L) α(x) = 1 is observed. The profile
of the localized solution and the width D of the localization can be derived explicitly
from the functions a and w. With the choice of normalization of (2.2), the surface energy
associated to the fully localized solution is exactly Gc and its elastic energy is 0, so that
the overall response of the bar is that of a brittle material with toughness Gc and strength
σc.

Knowing the material’s toughness Gc and the Young’s modulus E, one can then
adjust ` in such a way that the peak stress σc matches the nominal material’s strength.
Let us denote by

`ch =
GcE

′

σ2
c

=
K2
Ic

σ2
c

(2.5)

the classical material’s characteristic length (see [153, 75], for instance), where E′ = E
in three dimensions and in plane stress, or E′ = E/(1 − ν2) in plane strain, and KIc =√
GcE′ is the mode-I critical stress intensity factor. The identification above gives

`1 :=
3

8
`ch; `2 :=

27

256
`ch, (2.6)

for the AT1 and AT2 models, respectively.
Table 2.1 summarizes the specific properties of the AT1 and AT2 models. The AT1

model has some key conceptual and practical advantages over the AT2 model used in
previous works, which were leveraged in [40] for instance: It has a non-zero elastic limit,
preventing diffuse damage at small loading. The length localization band D is finite so
that equivalence with Griffith energy is obtained even for a finite value of `, and not only
in the limit of `→ 0, as predicted by Γ–convergence [166]. By remaining quadratic in the
α and u variables, its numerical implementation using alternate minimizations originally
introduced in [37] is very efficient.
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Chapter 2. Crack nucleation in variational phase-field models of brittle fracture

Model w(α) a(α) cw σe σc D `ch

AT1 α (1− α)2 2
3

√
3GcE′

8`

√
3GcE′

8` 4` 8
3`

AT2 α2 (1− α)2 1
2 0 3

16

√
3GcE′

` ∞ 256
27 `

Table 2.1: Properties of the gradient damage models considered in this work: the elastic
limit σe, the material strength σc, the width of the damage band D, and the conventional
material length `ch defined in (2.5). We use the classical convention E′ = E in three
dimension and in plane stress, and E′ = E/(1− ν2) in plane strain.

In all the numerical simulations presented below, the energy (2.2) is discretized using
linear Lagrange finite elements, and minimization performed by alternating minimization
with respect to u and α. Minimization with respect to u is a simple linear problem solved
using preconditioned gradient conjugated while constrained minimization with respect
to α is reformulated as a variational inequality and implemented using the variational
inequality solvers provided by PETSc [17, 15, 16]. All computations were performed
using the open source implementations mef901 and gradient-damage2.

2.2 Effect of stress concentrations

The discussion above suggests that variational phase-field models, as presented in Sec-
tion 2.1.2, can account for strength and toughness criteria simultaneously, on an ideal-
ized geometry. We propose to investigate this claim further by focusing on more general
geometries, a V-shaped notch to illustrate nucleation near stress singularities and a U-
shaped notch for stress concentrations. There is a wealth of experimental literature on
crack initiation in such geometries using three-point bending (TPB), four-point bending
(FPB), single or double edge notch tension (SENT and DENT) allowing us to provide
qualitative validation and verification simulations of the critical load at nucleation.

2.2.1 Initiation near a weak stress singularity: the V-notch

Consider a V-shaped notch in a linear elastic isotropic homogeneous material. Let (r, θ)
be the polar coordinate system emanating from the notch tip with θ = 0 corresponding
to the notch symmetry axis, shown on Figure 2.2(left). Assuming that the notch lips
Γ+ ∪ Γ− are stress-free, the mode-I component of the singular part of the stress field in

1available at https://www.bitbucket.org/bourdin/mef90-sieve
2available at https://bitbucket.org/cmaurini/gradient-damage

38

https://www.bitbucket.org/bourdin/mef90-sieve
https://bitbucket.org/cmaurini/gradient-damage


2.2. Effect of stress concentrations

plane strain is given in [116]:

σθθ = krλ−1F (θ),

σrr = krλ−1F
′′(θ) + (λ+ 1)F (θ)

λ(λ+ 1)
,

σrθ = −krλ−1 F ′(θ)

(λ+ 1)
,

(2.7)

where

F (θ) = (2π)λ−1 cos((1 + λ)θ)− f(λ, ω̄) cos((1− λ)θ)

1− f(λ, ω̄)
, (2.8)

and

f(λ, ω̄) =
(1 + λ) sin((1 + λ)(π − ω̄))

(1− λ) sin((1− λ)(π − ω̄))
, (2.9)

and the exponent of the singularity λ ∈ [1/2, 1], see Figure 2.2(right), solves

sin (2λ (π − ω̄)) + λ sin (2 (π − ω̄)) = 0. (2.10)

From (2.7), it is natural to define a generalized stress intensity factor

0 π/4 π/2

ω̄

0.5

0.6

0.7

0.8

0.9

1.0

λ
(ω̄

)

Figure 2.2: Pac-man geometry for the study of the crack nucleation at a notch. Left:
sketch of the domain and notation. Right: relation between the exponent of the singular-
ity λ and the notch opening angle ω̄ determined by the solution of equation (2.10). For
any opening angle ω̄ we apply on ∂DΩ the displacement boundary condition obtained by
evaluating on ∂DΩ the asymptotic displacement (2.12) with λ = λ(ω).

k =
σθθ

(2π r)λ−1

∣∣∣∣
θ=0

. (2.11)

Note that this definition differs from the one often encountered in the literature by a
factor (2π)λ−1, so that when ω = 0 (i.e. when the notch degenerates into a crack),
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Chapter 2. Crack nucleation in variational phase-field models of brittle fracture

k corresponds to the mode-I stress intensity factor whereas when ω = π/2, k is the
tangential stress, and that the physical dimension of [k] ≡ N/m−λ− 1 is not a constant
but depends on the singularity power λ.

If ω̄ < π/2 (i.e. ω > π/2), the stress field is singular at the notch tip so that a
nucleation criterion based on maximum pointwise stress will predict crack nucleation
for any arbitrary small loading. Yet, as long as ω̄ > 0 (ω < π), the exponent of the
singularity is sub-critical in the sense of Griffith, so that LEFM forbids crack nucleation,
regardless of the magnitude of the loading.

The mode-I Pac-Man test

Consider a Pac-Man–shaped3 domain with radius L � ` and notch angle ω̄ as in Fig-
ure 2.2(left). In linear elasticity, a displacement field associated with the stress field (2.7)
is

ūr =
rλ

E

(1− ν2)F ′′(θ) + (λ+ 1)[1− νλ− ν2(λ+ 1)]F (θ)

λ2(λ+ 1)

ūθ =
rλ

E

(1− ν2)F ′′′(θ) + [2(1 + ν)λ2 + (λ+ 1)(1− νλ− ν2(λ+ 1)]F ′(θ)

λ2(1− λ2)
.

(2.12)

In the mode-I Pac-Man test, we apply a boundary displacement on the outer edge of the
domain ∂DΩ of the form tū on both components of u, t being a monotonically increasing
loading parameter.

We performed series of numerical simulations varying the notch angle ω̄ and regular-
ization parameter ` for the AT1 and AT2 models. Up to a rescaling and without loss of
generality, it is always possible to assume that E = 1 and Gc = 1. The Poisson ratio was
set to ν = 0.3. We either prescribed the value of the damage field on Γ+ ∪ Γ− to 1 (we
refer this to as “damaged notch conditions”) or let it free (“undamaged notch conditions”).
The mesh size was kept at a fixed ratio of the internal length h = `/5.

For “small” enough loadings, we observe an elastic or nearly elastic phase during which
the damage field remains 0 or near 0 away from an area of radius o(`) near the notch tip.
Then, for some loading t = tc, we observed the initiation of a “large” add-crack associated
with a sudden jump of the elastic and surface energy. Figure 2.3 shows a typical mesh,
the damage field immediately before and after nucleation of a macroscopic crack and the
energetic signature of the nucleation event.

Figure 2.4 shows that up to the critical loading, the generalized stress intensity factor
can be accurately recovered by averaging σθθ(r, 0)/(2π r)λ−1 along the symmetry axis of
the domain, provided that the region r ≤ 2` be excluded.

Figure 2.5(left) shows the influence of the internal length on the critical generalized
stress intensity factor for a sharp notch (ω̄ = 0.18°) for the AT1 and AT2 models, using
damaged and undamaged notch boundary conditions on the damage field. In this case,
with the normalization (2.11), the generalized stress intensity factor coincides with the
standard mode-I stress intensity factor KIc. As suggested by the surfing experiment in

3https://en.wikipedia.org/wiki/Pac-Man

40

https://en.wikipedia.org/wiki/Pac-Man


2.2. Effect of stress concentrations
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Figure 2.3: Pac-Man test with the AT1 model, L = 1, ` = 0.015, ω = 0.7π, and ν =
0.3. From left to right: typical mesh (with element size ten times larger than that in
typical simulation for illustration purpose), damage field immediately before and after
the nucleation of a crack, and plot of the energies versus the loading parameter t. Note
the small damaged zone ahead of the notch tip before crack nucleation, and the energetic
signature of a nucleation event.
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Figure 2.4: Identification of the generalized stress intensity factor: σθθ(r,0)
(2π r)λ−1 along the

domain symmetry axis for the AT1(left) and AT2(right) models with undamaged notch
conditions, and sub-critical loadings. The notch aperture is ω̄ = π/10
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Chapter 2. Crack nucleation in variational phase-field models of brittle fracture

the introduction, the internal length ` also has a very minor influence on the critical
load t := kATc ' KIc =

√
GcE′. As reported previously in [109] for instance, undamaged

notch conditions lead to overestimating the critical load. We speculate that this is because
with undamaged notch condition, the energy barrier associated with bifurcation from an
undamaged (or partially damaged) state to a fully localized state needs to be overcome.
As expected, this energy barrier is larger for the AT1 model than for the AT2 model for
which large damaged areas ahead of the notch tip are observed.

For flat notches (2ω̄ = 179.64°) as shown in Figure 2.5(right), the generalized stress
intensity factor k takes the dimension of a stress, and crack nucleation is observed when
kc reaches the `–dependent value σc given in Table 2.1, i.e. when σθθ|θ=0 = σc, as in the
uniaxial tension problem. In this case the type of damage boundary condition on the
notch seems to have little influence.
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Figure 2.5: Critical generalized critical stress intensity factor at crack nucleation as a
function of the internal length for ω̄ ' 0 (left) and ω ' π/2 (right). AT1-U, AT1-D, AT2-U,
and AT2-D refer respectively to computations using the AT1 model with damaged notch
and undamaged notch boundary conditions, and the AT2 model with damaged notch and
undamaged notch boundary conditions. (KIc)eff :=

√
GeffE
1−ν2 denotes the critical mode-I

stress intensity factor modified to account for the effective toughness Geff .

For intermediate values of ω̄, we observe in Figure 2.6 that the critical generalized
stress intensity factor varies smoothly and monotonically between its extreme values
and remains very close to KIc for opening angles as high as 30°, which justifies the
common numerical practice of replacing initial cracks with slightly open sharp notches
and damaged notch boundary conditions. See Table 2.3 for numerical data.

Validation

For intermediate values 0 < 2ω̄ < π, we focus on validation against experiments from the
literature based on measurements of the generalized stress intensity factor at a V-shaped
notch.
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Figure 2.6: Critical generalized stress intensity factor k for crack nucleation at a notch
as a function of the notch opening angle ω̄. Results for the AT1 and AT2 models with
damaged -D and undamaged -U notch lips conditions. The results are obtained with
numerical simulations on the Pac-Man geometry with (KIc)eff = 1 and ` = 0.01 so that
σc = 10 under plane-strain conditions with a unit Young’s modulus and a Poisson ratio
ν = 0.3.

Data from single edge notch tension (SENT) test of soft annealed tool steel, (AISI
O1 at −50◦C) [174], four point bending (FPB) experiments of Divinycell® H80, H100,
H130, and H200 PVC foams) [94], and double edge notch tension (DENT) experiments
of poly methyl methacrylate (PMMA) and Duraluminium [165], were compiled in [91].
We performed a series of numerical simulations of Pac-Man tests using the material
properties reported in [91] and listed in Table 2.2. In all cases, the internal length ` was
computed using (2.6).

Material E ν KIc σc source
[MPa] [MPa

√
m] [MPa]

Al2O3 − 7%ZrO2 350,000 0.24 4.1 290 [188]
PMMA 2,300 0.36 1.03 124 [71, 188]
Plexiglass 3,000 0.36 1.86 104.9 [165]
PVC H80 85 0.32 0.32 2.51 [91, 94]
PVC H100 125 0.32 0.26 4.02 [91, 94]
PVC H130 175 0.32 0.34 5.70 [91, 94]
PVC H200 310 0.32 0.57 9.38 [91, 94]
Steel 205,000 0.3 52 1170 [91, 174]
Duraluminium 70,000 0.3 50.6 705 [165]

Table 2.2: Material properties used in the numerical simulations as given in the literature

Figures 2.7 and 2.8 compare the critical generalized stress intensity factor from our

43



Chapter 2. Crack nucleation in variational phase-field models of brittle fracture

0 20 40 60 80 100 120 140 160

Notch angle 2ω̄ [◦]

50

100

150

200

250

k
c

[M
P

a.
m

1
−
λ
]

Steel SENT (Strandberg)

AT1-U

AT1-D

AT2-U

AT2-D

0 20 40 60 80 100

Notch angle ω̄ [◦]

100

200

300

400

500

600

700

k
c

[M
P

a.
m

1
−
λ
]

Duraluminium DENT (Seweryn)

AT1-U

AT1-D

AT2-U

AT2-D

0 20 40 60 80 100

Notch angle ω̄ [◦]

0

20

40

60

80

100

120

k
c

[M
P

a.
m

1
−
λ
]

Plexiglass DENT (Seweryn)

AT1-U

AT1-D

AT2-U

AT2-D

Figure 2.7: Critical generalized stress intensity factor kc vs notch angle. Comparison
between numerical simulations with the AT1 and AT2 models and damaged and undamaged
boundary conditions on the notch edges with experiments in steel from [174] (top-left),
and Duraluminium (top-right) and PMMA (bottom) from [165].

numerical simulations with experimental values reported in the literature for V-notch
with varying aperture. The definition (2.11) for k is used. For the AT1 model, we observe
a good agreement for the entire range of notch openings, as long as damaged notch
conditions are used for small notch angles and undamaged notch conditions for large
notch angles. For the AT2 model, the same is true, but the agreement is not as good
for large notch angles, due to the presence of large areas of distributed damage prior to
crack nucleation.

The numerical values of the critical generalized stress intensity factors for the AT1

models and the experiments from the literature are included in Tables 2.4, 2.5, 2.6,
and 2.7 using the convention of (2.11) for k. As suggested by Figure 2.5 and reported in
the literature see [109], nucleation is best captured if damaged notch boundary conditions
are used for sharp notches and undamaged notch conditions for flat ones.

These examples strongly suggest that variational phase-field models of fracture are
capable of predicting mode-I nucleation in stress and toughness dominated situations, as
seen above, but also in the intermediate cases. Conceptually, toughness and strength (or
equivalently internal length) could be measured by matching generalized stress intensity
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Figure 2.8: Critical generalized stress intensity factor kc vs notch angle and depth in
PVC foam samples from [94]. Numerical simulations with the AT1 model with damaged
and undamaged notch conditions (left), and AT2 model with damaged and undamaged
notch conditions (right).

factors in experiments and simulations. When doing so, however, extreme care has
to be exerted in order to ensure that the structural geometry has no impact on the
measured generalized stress. Similar experiments were performed in [71, 188] for three
and four point bending experiments on PMMA and Aluminum oxide-Zirconia ceramics
samples. While the authors kept the notch angle fixed, they performed three and four
point bending experiments or varied the relative depth of the notch as a fraction of the
sample height (see Figure 2.9).

55
40

15
5

13.3

76.2

h=17.8

90°

2.5

Figure 2.9: Schematic of the geometry and loading in the four point bending experiments
of [188] (left) and three point bending experiments of [71] (right). The geometry of the
three point bending experiment of [188] is identical to that of their four point bending,
up to the location of the loading devices.

Figure 2.10 compares numerical values of the generalized stress intensity factor using
the AT1 model with experimental measurements, and the actual numerical values are
included in Table 2.8 and 2.9.

For the Aluminum oxide-Zirconia ceramic, we observe that the absolute error between
measurement and numerical prediction is typically well within the standard deviation of
the experimental measurement. As expected, damaged notch boundary conditions lead
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Figure 2.10: Critical generalized stress intensity factor kc vs notch angle for
Al2O3−7%ZrO2(left) and PMMA (right). The black markers represents all experimen-
tal results. The numerical results are obtained through the Pac-Man test using the AT1

model. See Tables 2.8-2.9 in the Appendix B for the raw data.

to better approximation of kc for small angles, and undamaged notches are better for
larger values of ω̄.

For the three point bending experiments in PMMA of [71] later reported in [188],
the experimental results suggest that the relative depth a/h of the notch has a signifi-
cant impact on kc. We therefore performed full-domain numerical simulation using the
geometry and loading from the literature, and compared the critical force upon which a
crack nucleates in experiments and simulations. All computations were performed using
the AT1 model in plane strain with undamaged notch boundary conditions. Figure 2.11
compares the experimental and simulated value of the critical load at failure, listed in
Table 2.10 and 2.11.

These simulations show that a robust quantitative prediction of the failure load in
geometries involving a broad range of stress singularity power can be achieved numerically
with the AT1 model, provided that the internal length be computed using (2.6), which
involves only material properties. In other words, our approach is capable of predicting
crack nucleation near a weak stress singularity using only elastic properties, fracture
toughness Gc, the tensile strength σc, and the local energy minimization principle (2.3).

In light of Figure 2.11, we suggest that both toughness and tensile strength (or equiv-
alently toughness and internal length) can be measured by matching full domain or Pac-
Man computations and experiments involving weak elastic singularity of various power
(TPB, FPB, SENT, DENT with varying notch depth or angle) instead of measuring σc
directly. We expect that this approach will be much less sensitive to imperfections than
the direct measurement of tensile strength, which is virtually impossible. Furthermore,
since our criterion is not based on crack tip asymptotics, using full domain computa-
tions do not require that the experiments be specially designed to isolate the notch tip
singularity from structural scale deformations.
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Figure 2.11: Critical load in the three- and four-point bending experiments of a
Al2O3 − 7%ZrO2 sample (left) and four-point bending of a PMMA sample (right) from
[188] compared with numerical simulations using the AT1 model and undamaged notch
boundary conditions. Due to significant variations in measurements in the first set of
experiments, each data point reported in [188] is plotted. For the PMMA experiments,
average values are plotted. See Table 2.10 and 2.11 in the Appendix B for raw data.

2.2.2 Initiation near a stress concentration: the U-notch

Crack nucleation in a U-shaped notch is another classical problem that has attracted a
wealth of experimental and theoretical work. Consider a U-shaped notch of width ρ and
length a� ρ subject to a mode-I local loading (see Figure 2.12 for a description of notch
geometry in the context of a double edge notch tension sample). Assuming “smooth”
loadings and applied boundary displacements, elliptic regularity mandates that the stress
field be non-singular near the notch tip, provided that ρ > 0. Within the realm of Griffith
fracture, this of course makes crack nucleation impossible. As it is the case for the V-
notch, introducing a nucleation principle based on a critical stress is also not satisfying
as it will lead to a nucleation load going to 0 as ρ→ 0, instead of converging to that of an
infinitely thin crack given by Griffith’s criterion. There is a significant body of literature
on “notch mechanics”, seeking to address this problem introducing stress based criteria,
generalized stress intensity factors, or intrinsic material length and cohesive zones. A
survey of such models, compared with experiments on a wide range of brittle materials
is given [92].

In what follows, we study crack nucleation near stress concentrations in the AT1 and
AT2 models and compare with the experiments gathered in [92]. The core of their analysis
consist in defining a generalized stress intensity factor

KU = Ktσ
∞
c

√
πρ

4
, (2.13)

where Kt, the notch stress concentration factor, is a parameter depending on the local (a
and ρ), as well as global sample geometry and loading. Through a dimensional analysis,
they studied the dependence of the critical generalized stress intensity factor at the onset
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Figure 2.12: DENT geometry

of fracture and the notch radius. We performed series of numerical simulations of double
edge tension (DENT) experiments on a sample of length h = 40 for multiple values of
the notch depth a = 10, spacing b = 20, radius ρ = 2.5, 1.25, and 0.5 for which the value
Kt, computed in [113] is respectively 5.33, 7.26, and 11.12. In each case, we leveraged
the symmetries of the problem by performing computations with the AT1 and AT2 models
on a quarter of the domain for a number of values of the internal length ` corresponding
to ρ/`ch between 0.05 and 20. In all cases, undamaged notch boundary conditions were
used.

In Figure 2.13, we overlay the outcome of our simulations over the experimental
results gathered in [92]. As for the V-notch, we observe that the AT2 model performs
poorly for weak stress concentrations (large values of ρ/`ch), as the lack of an elastic
phase leads to the creation of large partially damaged areas. For sharp notches (ρ ' 0),
our simulations concur with the experiments in predicting crack nucleation when KU =
KIc. As seen earlier, the AT1 slightly overestimates the critical load in this regime when
undamaged notch boundary conditions are used. In light of Figure 2.13, we claim that
numerical simulations based on the variational phase-field model AT1 provides a simple
way to predict crack nucleation that does not require the computation of a notch stress
concentration factors Kt or the introduction of an ad-hoc criterion.

2.3 Size effects in variational phase-field models

Variational phase-field models are characterized by the intrinsic length `, or `ch. In
this section, we show that this length-scale introduces physically pertinent scale effects,
corroborating its interpretation as a material length. To this end, we study the nucleation
of a crack in the uniaxial traction of a plate (−W,W )× (−L,L) with a centered elliptical
hole with semi-axes a and ρa (0 ≤ ρ ≤ 1) along the x- and y-axes respectively, see
Figure 2.14. In Section 2.3.1, we study the effect of the size and shape of the cavity,
assumed to be small with respect to the dimension of the plate (a � W,L). In Section
2.3.2, we investigate material and structural size effects for a plate of finite width in the
limit case of a perfect crack (ρ = 0).
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Figure 2.13: Crack nucleation at U-notches. Comparison between experimental data
of [92] and numerical simulations using the AT1 (top) and AT2 (bottom) models.
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2.3.1 Effect of an elliptical cavity: size and shape effects

h =
ah
ρ

h = ρ2ah

h =
R

100

Figure 2.14: Crack nucleation in an infinite domain containing an elliptical hole. (left)
domain geometry (center) computational domain (right) typical mesh.

For a small hole (a � W,L), up to a change of scale, the problem can be fully
characterized by two dimensionless parameters: a/`, and ρ. For a linear elastic and
isotropic material occupying an infinite domain, a close form expression of the stress
field as a function of the hole size and aspect ratio is given in [103]. The stress is
maximum at the points A = (a, 0) and A′ = (−a, 0), where the radial stress is zero and
the hoop stress is given by:

σmax = t

(
1 +

2

ρ

)
, (2.14)

t denoting the applied tensile stress along the upper and lower edges of the domain, i.e.
the applied macroscopic stress at infinity. We denote by ū the corresponding displacement
field for t = 1, which is given in [87].

As for the case of a perfect bar, (2.14) exposes a fundamental issue: if ρ > 0, the
stress remains finite, so that Griffith–based theories will only predict crack nucleation if
ρ = 0. In that case the limit load given by the Griffith’s criterion for crack nucleation is

t = σG :=

√
GcE′

aπ
. (2.15)

However, as ρ → 0, the stress becomes singular so that the critical tensile stress σc is
exceeded for an infinitesimally small macroscopic stress t.

Following the findings of the previous sections, we focus our attention on the AT1

model only, and present numerical simulations assuming a Poisson ratio ν = 0.3 and
plane-stress conditions. We perform our simulations in domain of finite size, here a
disk of radius R centered around the defect. Along the outer perimeter of the domain,
we apply a boundary displacement u = tū, where ū is as in [103], and we use the
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2.3. Size effects in variational phase-field models

macroscopic stress t a loading parameter. Assuming a symmetric solution, we perform
our computations on a quarter domain. For the circular case ρ = 1, we use a reference
mesh size h = `min/10, where `min is the smallest value of the internal length of the
set of simulations. For ρ < 1, we selectively refine the element size near the expected
nucleation site (see Figure 2.14-right). In order to minimize the effect of the finite size
of the domain, we set R = 100a.

We performed numerical simulations varying the aspect ratio a/` from 0.1 to 50 and
the ellipticity ρ from 0.1 to 1.0. In each case, we started from an undamaged state an
monotonically increased the loading. In all numerical simulations, we observe two critical
loading te and tc, the elastic limit and structural strength, respectively. For 0 ≤ t < te the
solution is purely elastic, i.e. the damage field α remains identically 0 (see Figure 2.15-
left). For te ≤ t < tc, partial distributed damage is observed. The damage field takes
its maximum value αmax < 1 near point A (see Figure 2.15-center). At t = tc, a fully
developed crack nucleates, then propagates for t > tc (see Figure 2.15-right). As for the
Pac-Man problem, we identify the crack nucleation with a jump in surface energy, and
focus on loading at the onset of damage.

Figure 2.15: Damage field at the boundary of the hole in the elastic phase 0 < t < te
(left), the phase with partial damage te < t < tc (center), and after the nucleation of a
crack t > tc (right). Blue: α = 0, red: α = 1. The simulation is for ρ = 1.0 and a/` = 5.

From the one-dimensional problem of Section 2.1.2 and [146, 151], we expect damage
nucleation to take place when the maximum stress σmax reaches the nominal material
strength σc =

√
3GcE′/8` (see Table 2.1), i.e. for a critical load

te =
ρ

2 + ρ
σc =

ρ

2 + ρ

√
3GcE′

8`
. (2.16)

Figure 2.16-left confirms this expectation by comparing the ratio te/σc to its expected
value ρ/(2 + ρ) for ρ ranging from 0.1 to 1. Figure 2.16-right highlights the absence of
size effect on the damage nucleation load, by comparing te/σc for multiple values of a/`
while keeping ρ fixed at 0.1 and 1.

Figure 2.17 focuses on the crack nucleation load tc, showing its dependence on the
defect shape (left) and size (right). Figure 2.17-right shows the case of circular hole
(ρ = 1) and an elongated ellipse, which can be identified to a crack (ρ = 0.1). It clearly
highlights a scale effect including three regimes:

i. For “small” holes (a � `), crack nucleation takes place when t = σc, as in the
uniaxial traction of a perfect bar without the hole: the hole has virtually no effect on
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Figure 2.16: Normalized applied macroscopic stress te/σc at damage initiation as a func-
tion of the aspect ratio ρ for a/` = 1 (left) and of the relative defect sizes a/` for ρ = 1
and ρ = 0.1 (right).

crack nucleation. In this regime the strength of a structure is completely determined
by that of the constitutive material. Defects of this size do not reduce the structural
strength and can be ignored at the macroscopic level.

ii. Holes with length of the order of the internal length (a = O(`)), have a strong
impact on the structural strength. In this regime the structural strength can be
approximated by

log(tc/σc) = D log(a/`) + c, (2.17)

where D is an dimensionless coefficient depending on the defect shape. For a
circular hole ρ = 1, we have D ≈ −1/3.

iii. When a � `, the structural failure is completely determined by the stress dis-
tribution surrounding the defect. We observe that for weak stress singularities
(ρ ≡ 1), nucleation takes place when the maximum stress reaches the elastic limit
σe, whereas the behavior as ρ ≡ 0 is consistent with Griffith criterion, i.e. the
nucleation load scales as 1/

√
a.

Figure 2.17-right shows that the shape of the cavity has a significant influence on
the critical load only in the latter regime, a � `. Indeed, for a/` of the order of the
unity or smaller, the critical loads tc for circular and highly elongated cavities are almost
indistinguishable. This small sensitivity of the critical load on the shape is the result of
the stress-smoothing effect of the damage field, which is characterized by a cut-off length
of the order of `. Figure 2.17-left shows the critical stress tc at nucleation when varying
the aspect ratio ρ for a/` = 48, for which σG/σc = 2/15. As expected, the critical stress
varies smoothly from the value σG (2.15) predicted by the Griffith theory for a highly
elongated cavity identified to a perfect crack, to te (2.16) for circular cracks, where the
crack nucleates as soon as the maximum stress σmax attains the elastic limit.

This series of experiments is consistent with the results of Section 2.2.2 showing that
variational phase-field models are capable of simultaneously accounting for critical elastic
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Figure 2.17: Normalized applied macroscopic stress tc/σe at crack nucleation for an
elliptic cavity in an infinite plate. Left: shape effect for cavities of size much larger than
the internal length (a/` = 48); the solid line is the macroscopic stress at the damage
initiation te (see also Figure 2.16) and dots are the numerical results for the AT1 model.
Right: size effect for circular (ρ = 1.0) and highly elongated (ρ = 0.1) cavities.

energy release rate and critical stress. Furthermore, they illustrate how the internal
length ` can be linked to critical defect size as the nucleation load for a vanishing defect
of size less than ` approaches that of a flawless structure.

2.3.2 Competition between material and structural size effects

We can finally conclude the study of size effects in variational phase-field models by
focusing on the competition between material and structural size effects. For that matter,
we study the limit case ρ = 0 of a perfect crack of finite length 2a in a plate of finite
width 2W (see Figure 2.18-left). Under the hypotheses of LEFM, the critical load upon
which the crack propagates is

σG(a/`ch, a/W ) =

√
GcE′ cos( aπ2W )

aπ
= σc

√
1

π

`ch
a

cos
( aπ

2W

)
, (2.18)

which reduces to (2.15) for large plate (W/a→∞). As before, we note that σG/σc →∞
as a/`ch → 0, so that for any given load, the material’s tensile strength is exceeded for
short enough initial crack.

We performed series of numerical simulations using the AT1 model on a quarter of the
domain with W = 1, L = 4, ν = 0.3, ` = W/25, h = `/20, and the initial crack’s half-
length a ranging from from 0.025` to 12.5` (i.e. 0.001W to 0.5W ). The pre-existing crack
was modeled as a geometric feature and undamaged crack lip boundary conditions were
prescribed. The loading was applied by imposing a uniform normal stress of amplitude
t to its upper and lower edge.

Figure 2.18, displays the normalized macroscopic structural strength of the sample,
tc/σc, where σc is given by the Table 2.1 for AT1, and tc is the applied load upon which
the crack grows, identified as before. The results are in good agreement with classical
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Figure 2.18: Initiation of a crack of length 2a in a plate of finite width 2W . The numerical
results (dots) are obtained with the AT1 model for ` = W/25. The strength criterion and
the Griffith’s criterion (2.18).

theories linking size-effect on the strength of the material [19]. When a � `, i.e. when
the defect is large compared to the material’s length, crack initiation is governed by
Griffith’s criterion (2.18). As noted earlier, the choice of undamaged notch boundary
conditions on the damage fields leads to slightly overestimating the nucleation load. Our
numerical simulations reproduce the structural size effect predicted by LEFM when the
crack length is comparable to the plate width W .

When a � `, we observe that the macroscopic structural strength is very close to
the material’s tensile strength. Again, below the material’s internal length, defects have
virtually no impact on the structural response. LEFM and Griffith–based models cannot
account for this material size-effect. These effects are introduced in variational phase-field
model by the additional material parameter `.

In the intermediate regime a = O(`), we observe a smooth transition between strength
and toughness criteria, where the tensile strength is never exceeded.

When a � `, our numerical simulations are consistent with predictions from Linear
Elastic Fracture Mechanics shown as a dashed line in Figure 2.18, whereas when a� `,
the structural effect of the small crack disappear, and nucleation takes place at or near
the material’s tensile strength, i.e. tc/σc ' 1.

Conclusion

In contrast with most of the literature on phase-field models of fracture focusing vali-
dation and verification in the context of propagation “macroscopic” cracks [128, 152],
we have studied crack nucleation and initiation in multiple geometries. We confirmed
observations reported elsewhere in the literature that although they are mathematically
equivalent in the limit of ` → 0, damaged notch boundary conditions lead to a more
accurate computation near strong stress singularities whereas away from singularities,
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undamaged notch boundary conditions are to be used. Our numerical simulations also
highlight the superiority of phase-field models such as AT1 which exhibit an elastic phase
in the one-dimensional tension problem over those who don’t (such as AT2), when nucle-
ation away from strong singularity is involved. Our numerical simulations suggest that it
is not possible to accurately account for crack nucleation near “weak” singularities using
the AT2 model. We infer that a strictly positive elastic limit σe is a required feature of a
phase-field model that properly account for crack nucleation.

We have shown that as suggested by the one-dimensional tension problem, the reg-
ularization parameter ` must be understood (up to a model-dependent multiplicative
constant) as the material’s characteristic or internal length `ch = GcE/σ

2
c , and linked

to the material strength σc. With this adjustment, we show that variational phase-
field models are capable of quantitative prediction of crack nucleation in a wide range
of geometries including three- and four-point bending with various type of notches, sin-
gle and double edge notch tests, and a range of brittle materials, including steel and
Duraluminium at low temperatures, PVC foams, PMMA, and several ceramics.

We recognize that measuring a material’s tensile strength is difficult and sensitive to
the presence of defect, so that formulas (2.6) may not be a practical way of computing a
material’s internal length. Instead, we propose to perform a series of experiments such as
three point bending with varying notch depth, radius or angle, as we have demonstrated in
Figure 2.11 that with a properly adjusted internal length, variational phase-field models
are capable of predicting the nucleation load for any notch depth or aperture. Further-
more, since variational phase-field models do not rely on any crack-tip asymptotic, this
identification can be made even in a situation where generalized stress or notch intensity
factors are not known or are affected by the sample’s structural geometry.

We have also shown that variational phase-field models properly account for size ef-
fects that cannot be recovered from Griffith-based theories. By introducing the material’s
internal length, they can account for the vanishing effect of small defects on the struc-
tural response of a material, or reconcile the existence of a critical material strength with
the existence of stress singularity. Most importantly, they do not require introducing
ad-hoc criteria based on local geometry and loading. On the contrary, we see that in
most situation, criteria derived from the asymptotic analysis of a micro-geometry can be
recovered a posteriori. Furthermore, variational phase-field models are capable of quan-
titative prediction of crack path after nucleation. Again, they do so without resolving
to introduce additional ad-hoc criteria, but only rely on a general energy minimization
principle.

In short, we have demonstrated that variational phase-field models address some of
the most vexing issues associated with brittle fracture: scale effects, nucleation, existence
of a critical stress, and path prediction.

Of course, there are still remaining issues that need to be addressed. Whereas the
models are derived from irreversibility, stability and energy balance, our numerical sim-
ulations do not enforce energy balance as indicated by a drop of the total energy upon
crack nucleation without string singularities. Note that to this day, devising an evolution
principle combining the strength of (2.3) while ensuring energy balance is still an open
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problem. Perhaps extensions into phase field models of dynamic fracture will address
this issue.

Fracture in compression remains an issue in variational phase-field models. Although
several approaches have been proposed that typically consist in splitting the strain energy
into a damage inducing and non damage inducing terms, neither of the proposed splits
are fully satisfying (see [12, 111, 118] for instance). In particular, it is not clear if either
of this models is capable of simultaneously accounting for nucleation under compression
and self-contact.

Finally, even though a significant amount of work has already been invested in ex-
tending the scope of phase-field models of fracture beyond perfectly brittle materials, to
our knowledge, none of the proposed extensions has demonstrated its predictive power
yet.
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Appendix B

Tables of experimental an numerical data for V-notch exper-
iments

ω λ kc kc kc kc
(AT1-U) (AT1-D) (AT2-U) (AT2-D)

0 01° 0.500 1.292 1.084 1.349 1.284
10 0° 0.500 1.308 1.091 1.328 1.273
20 0° 0.503 1.281 1.121 1.376 1.275
30 0° 0.512 1.359 1.186 1.397 1.284
40 0° 0.530 1.432 1.306 1.506 1.402
50 0° 0.563 1.636 1.540 1.720 1.635
60 0° 0.616 2.088 1.956 2.177 2.123
70 0° 0.697 2.955 2.704 3.287 3.194
80 0° 0.819 4.878 4.391 5.629 5.531
85 0° 0.900 6.789 5.890 7.643 7.761
89 9° 0.998 9.853 8.501 9.936 9.934

Table 2.3: Critical generalized stress intensity factor k for crack nucleation at a notch
as a function of the notch opening angle ω̄ from Figure 2.5. Results for the AT1 and
AT2 models with damaged -D and undamaged -U notch lips conditions. The results are
obtained with numerical simulations on the Pac-Man geometry with (KIc)eff = 1 and
` = 0.01 so that σc = 10 under plane-strain conditions with a unit Young’s modulus and
a Poisson ratio ν = 0.3.
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Experiments Undamaged notch Damaged notch
2ω̄ Type k

(exp)
c stdev k

(num)
c rel. error k

(num)
c rel. error

0° TPB 51.77 3.06 67.09 22.84 % 54.69 5.35 %

30° SENT 60.97 1.97 66.91 8.88 % 56.99 6.98 %

60° SENT 65.81 1.52 69.55 5.39 % 62.95 4.53 %

90° TPB 88.62 3.58 85.16 4.06 % 78.15 13.40 %

120° SENT 142.74 2.25 130.81 9.12 % 121.68 17.30 %

140° SENT 243.73 31.86 211.06 15.48 % 191.91 27.00 %

Table 2.4: Generalized critical stress intensity factors as a function of the notch aperture
in soft annealed tool steel, (AISI O1 at −50◦C). Experimental measurements from [174]
using SENT and TPB compared with Pac-Man simulations with the AT1 model.

Experiments Undamaged notch Damaged notch
2ω̄ Mat k

(exp)
c stdev k

(num)
c rel. error k

(num)
c rel. error

0° H80 0.14 0.01 0.18 22.91 % 0.15 5.81 %
H100 0.26 0.02 0.34 24.62 % 0.28 7.61 %
H130 0.34 0.01 0.44 29.34 % 0.36 5.09 %
H200 0.57 0.02 0.74 47.60 % 0.61 6.53 %

90° H80 0.20 0.02 0.22 12.65 % 0.21 4.73 %
H100 0.36 0.02 0.41 12.29 % 0.38 4.10 %
H130 0.49 0.05 0.54 11.33 % 0.50 0.50 %
H200 0.81 0.08 0.91 20.54 % 0.83 2.21 %

140° H80 0.53 0.06 0.53 0.37 % 0.48 9.26 %
H100 0.89 0.04 0.92 3.43 % 0.84 5.91 %
H130 1.22 0.10 1.25 2.95 % 1.13 7.48 %
H200 2.02 0.14 2.07 4.92 % 1.89 6.80 %

155° H80 0.86 0.07 0.83 3.63 % 0.75 14.36 %
H100 1.42 0.08 1.42 0.14 % 1.29 10.63 %
H130 1.90 0.10 1.95 2.82 % 1.76 8.06 %
H200 3.24 0.15 3.23 0.89 % 2.92 11.02 %

Table 2.5: Generalized critical stress intensity factors as a function of the notch aper-
ture in Divinycell® PVC foam. Experimental measurements from [94] using four point
bending compared with Pac-Man simulations with the AT1 model.
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Experiments Undamaged notch Damaged notch
ω̄ Type k

(exp)
c stdev k

(num)
c rel. error k

(num)
c rel. error

10° DENT 53.55 0.94 64.80 17.36 % 56.40 5.05 %

20° DENT 57.10 0.26 65.11 12.30 % 58.52 2.43 %

30° DENT 60.50 0.60 67.17 9.94 % 62.11 2.59 %

40° DENT 66.34 0.50 74.07 10.44 % 69.24 4.18 %

50° DENT 80.15 0.46 86.61 7.46 % 82.25 2.55 %

60° DENT 102.00 1.17 114.20 10.69 % 107.43 5.05 %

70° DENT 150.44 1.17 170.19 11.61 % 158.91 5.33 %

80° DENT 291.75 1.94 305.03 4.35 % 274.74 6.19 %

90° DENT 705.27 8.53 661.19 6.67 % 592.59 19.01 %

Table 2.6: Generalized critical stress intensity factors as a function of the notch aperture
in Duraluminium. Experimental measurements from [165] using single edge notch tension
compared with Pac-Man simulations with the AT1 model.

Experiments Undamaged notch Damaged notch
ω̄ Type k

(exp)
c stdev k

(num)
c rel. error k

(num)
c rel. error

10° DENT 1.87 0.03 2.50 25.29 % 2.07 10.03 %

20° DENT 1.85 0.03 2.53 26.89 % 2.13 12.97 %

30° DENT 2.17 0.03 2.65 18.17 % 2.33 6.92 %

40° DENT 2.44 0.02 3.07 20.65 % 2.73 10.70 %

50° DENT 3.06 0.05 3.94 22.31 % 3.54 13.63 %

60° DENT 4.35 0.18 5.95 26.97 % 5.41 19.69 %

70° DENT 8.86 0.18 11.18 20.74 % 10.10 12.26 %

80° DENT 28.62 0.68 27.73 3.20 % 24.55 16.56 %

90° DENT 104.85 10.82 96.99 8.11 % 85.37 22.82 %

Table 2.7: Generalized critical stress intensity factors as a function of the notch aper-
ture in PMMA. Experimental measurements from [165] using single edge notch tension
compared with Pac-Man simulations with the AT1 model.
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Experiments Undamaged notch Damaged notch
2ω̄ type k

(exp)
c stdev k

(num)
c rel. error k

(num)
c rel. error

30° TPB 4.49 0.57 4.97 9.6% 4.53 0.9%
FPB 4.24 0.30 4.97 14.6% 4.53 6.4%

60° TPB 6.02 n/a 5.35 12.6% 5.00 20.3%
FPB 5.14 0.09 5.35 3.8% 5.00 2.8%

90° TPB 6.66 0.50 6.99 4.8% 6.72 1.0%
FPB 6.81 0.54 6.99 2.6% 6.72 1.3%

120° TPB 13.21 0.87 13.12 0.7% 12.38 6.8%
FPB 14.66 1.23 13.12 11.7% 12.38 18.4%

Table 2.8: Generalized critical stress intensity factors as a function of the notch aperture
in Aluminium oxide ceramics. Experimental measurements from [188] using three and
four point bending compared with Pac-Man simulations.

Experiments Undamaged notch Damaged notch
2ω̄ a/h k

(exp)
c stdev k

(num)
c rel. error k

(num)
c rel. error

60° 0.1 1.41 0.02 1.47 4.5% 1.29 9.3%
0.2 1.47 0.04 1.47 0.4% 1.29 14.0%
0.3 1.28 0.03 1.47 13.0% 1.29 0.4%
0.4 1.39 0.04 1.47 5.8% 1.29 7.8%

90° 0.1 2.04 0.02 1.98 3.0% 1.81 12.9%
0.2 1.98 0.01 1.98 0.0% 1.81 9.6%
0.3 2.08 0.03 1.98 5.1% 1.81 15.2%
0.4 2.10 0.03 1.98 5.9% 1.81 16.1%

120° 0.1 4.15 0.02 3.87 7.3% 3.63 14.3%
0.2 4.03 0.06 3.87 4.2% 3.63 11.0%
0.3 3.92 0.18 3.87 1.4% 3.63 8.0%
0.4 3.36 0.09 3.87 13.0% 3.63 7.4%

Table 2.9: Generalized critical stress intensity factors as a function of the notch aperture
in PMMA. Experimental measurements from [71] using three and four point bending
compared with Pac-Man simulations. The value a/h refers to the ratio depth of the
notch over sample thickness. See Figure 2.9 for geometry and loading.
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2ω̄ type P
(exp)
c [N] stdev P

(num)
c [N] rel. error

30° TPB 1470.50 72.01 1517.59 3.1%
FPB 1726.00 56.29 1976.59 12.7%

60° TPB 1736.00 0.00 1517.59 14.4%
FPB 1909.17 60.88 1986.62 3.9%

90° TPB 1528.40 149.41 1608.04 5.0%
FPB 2024.40 212.03 2127.09 4.8%

120° TPB 1933.00 75.15 1949.75 0.9%
FPB 2711.29 187.66 2618.73 3.5%

Table 2.10: Critical load reported in [188] using three- and four-point bending experi-
ments of an Al2O3 − 7%ZrO2 sample compared with numerical simulations using the AT1

model and undamaged notch boundary conditions. TPB and FPB refer respectively to
three point bending and four point bending. See Figure 2.9 for geometry and loading.

2ω̄ a/h P
(exp)
c [N] stdev P

(num)
c [N] rel. error

60° 0.1 608.50 6.69 630.81 3.5%
0.2 455.75 12.48 451.51 0.9%
0.3 309.00 8.19 347.98 11.2%
0.4 258.75 6.61 268.69 3.7%

90° 0.1 687.33 5.19 668.69 2.8%
0.2 491.00 2.94 491.41 0.1%
0.3 404.33 5.44 383.33 5.5%
0.4 316.00 4.24 297.48 6.2%

120° 0.1 881.75 4.60 822.22 7.2%
0.2 657.25 9.36 632.32 3.9%
0.3 499.60 25.41 499.50 0.0%
0.4 336.25 9.09 386.87 13.1%

Table 2.11: Load at failure reported in [188] using three point bending experiments of a
PMMA sample compared to full domain numerical simulations using the AT1 model with
undamaged notch boundary conditions. The value a/h refers to the ratio depth of the
notch over sample thickness. See Figure 2.9 for geometry and loading.
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Chapter 3

A phase-field model for hydraulic
fracturing in low permeability
reservoirs: propagation of stable
fractures

Hydraulic fracturing is a process to initiate and to extend fractures by injecting fluid
into subsurface. Mathematical modeling of hydraulic fracturing requires coupled solu-
tion of models for fluid flows and reservoir-fracture deformation. The governing equations
for these processes are fairly well understood and includes, for example, the Reynold’s
equation, cubic law, diffusivity equation and Darcy’s law for fluid flow modeling, lin-
ear poro-elasticity equation for reservoir-fracture deformation and Griffith’s criterion for
fracture propagation. Considering that fracture propagation is a moving boundary prob-
lem, the numerical and computational challenges of solving these governing equations
on the fracture domain limit the ability to comprehensively model hydraulic fracturing.
These challenges include but are not limited to, finding efficient ways of representing nu-
merically the fracture and reservoir domains in the same computational framework while
still ensuring hydraulic and mechanical coupling between both subdomains. To address
these issues, several authors have assumed a known propagation path that is limited to a
coordinate direction of the computational grid [45, 26] while some others simply treated
fractures as external boundaries of the reservoir computational domain [106, 63]. Special
interface elements called zero-thickness elements have also been used to handle fluid flow
in fractures embedded in continuum media [45, 162, 163, 164, 26, 120]. Despite the sim-
plicity of these approaches and contrary to field evidence of complex fracture geometry
and propagation paths, they have limited ability to reproduce realistic fracture behaviors.
Where attempts have been made to represent fractures and reservoir in the same compu-
tational domain, for instance using the extended finite element method (XFEM) [135, 57]
and the generalized finite element method (GFEM) [96], the computational cost is high
and the numerics cumbersome, characterized by continuous remeshing to provide grids
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3.1. A phase fields model for hydraulic fracturing

that explicitly match the evolving fracture surface. Some of these challenges can be
overcome using a phase field representation for fractures as evident in the work of [33]
and [34].

This chapter extends the works of [33] by applying the variational phase field model
to a network of fractures. The hydraulic fracture model is developed by incorporating
fracturing fluid pressure in Francfort and Marigo’s variational approach to fracture [35].
Specifically, the fracture model recast Griffith’s propagation criteria into a total energy
minimization problem, where the global energy is the sum of the elastic and fracture
surface energies, the fracturing fluid pressure force and the work done by in-situ stresses.
We assume quasi static fracture propagation and in this setting, the fractured state
of the reservoir is the solution of a series of minimizations of this total energy with
respect to any kinematically admissible crack sets and displacement field. Numerical
implementation of the model is based on a phase field representation of the fracture
and subsequent regularization of the total energy function. The phase field technique
avoids the need for explicit knowledge of fracture location, it permits the use of a single
computational domain for fracture and reservoir representation. The strength of this
method is to provide a unified setting for handling path determination, nucleation and
growth of arbitrary number of stable cracks in any dimensions based on the energy
minimization principle. This work focuses on the fracture propagation stability through
various examples such as, a pressurized single fracture stimulated by a controlled injected
volume in a large domain, a network of multiple parallel fractures and a pressure driven
laboratory experiment to measure rocks toughness.

The Chapter is organized as follows: Section 3.1 is devoted to recall phase field
models for hydraulic fracturing in the toughness dominated regime with no fluid loss
to the impermeable elastic reservoir [69]. Then, our numerical implementation scheme
and algorithm for volume driven hydraulic fracturing simulations is exposed in section
3.1.3. Tough the toughness dominated regime may not cover the whole spectrum of
fracture propagation but provides an appropriate framework for verifications since it
does not require the solution of a flow model. Therein, section 3.2 is concerned with
comparisons between our numerical results and the closed form solutions provided by
Sneddon [169, 170] for the fluid pressure, fracture length/radius and fracture volume in
a single crack case. Section 3.3 focuses on the propagation of infinite pressurized parallel
fractures and it is compared with the derived solution. Section 3.4 is devoted to study
the pre-fracture stability in the burst experiment at a controlled pressure. This test
proposed by Abou-Sayed [2] is designed to measure the fracture toughness of the rock
and replicates situations encountered downhole with a borehole and bi-wing fracture.

3.1 A phase fields model for hydraulic fracturing

3.1.1 A variational model of fracture in a poroelastic medium

Consider a reservoir consisting of a perfectly brittle isotropic homogeneous linear poroe-
lastic material with A the Hooke’s law tensor and Gc the critical energy release rate
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occupying a domain Ω ⊂ Rn, n = 2 or 3 in its reference configuration. The domain
is partially cut by a sufficiently regular crack set Γ ⊂ Ω with Γ ∩ ∂Ω = ∅. A uniform
pressure denoted by p applies on both faces of the fracture lips i.e. Γ = Γ+∪Γ− and pore
pressure denoted by pp applies in the porous material which follows the Biot poroelastic
coefficient λ. The sound region Ω \ Γ is subject to a time independent boundary dis-
placement ū(t) = 0 on the Dirichlet part of its boundary ∂DΩ and time stress dependent
g(t) = σ · ν on the remainder ∂NΩ = ∂Ω \ ∂DΩ, where ν denotes the appropriate normal
vector. For the sake of simplicity body forces are neglected such that at the equilibrium,
the stress satisfies,

div σ = 0

where the Cauchy stress tensor follows Biot’s theory [25], i.e.

σ = σ′ − λppI,

σ′ being the effective stress tensor. The infinitesimal total deformation e(u) is the sym-
metrical part of the spatial gradient of the displacement field u,

e(u) =
∇u+∇Tu

2
.

The stress-strain relation is σ′ = Ae(u), so that,

σ = A

(
e(u)− λ

3κ
ppI

)
,

where 3κ is the material’s bulk modulus.
Those equations can be rewritten in a variational form, by multiplying the equilibrium

by the virtual displacement v ∈ H1
0 (Ω \ Γ;Rn) and using Green’s formula over Ω \ Γ.

After calculation, we get that,

∫

Ω\Γ
σ : e(v) dx−

∫

∂NΩ
g(t) · v dHn−1 −

∫

Γ
p JvK · ν dHn−1 = 0 (3.1)

where Hn−1 denotes the n− 1–dimensional Hausdorff measure, i.e. its aggregate length
in 2 dimensions and surface area in 3 dimensions.

Finally, we remark that the above equation (3.1) can be seen as the Euler-Lagrange
equation for the minimization of the elastic energy,

E(u,Γ) =

∫

Ω\Γ

1

2
A

(
e(u)− λ

3κ
ppI

)
:

(
e(u)− λ

3κ
ppI

)
dx

−
∫

∂NΩ
g(t) · udHn−1 −

∫

Γ
p JuK · ν dHn−1

(3.2)

amongst all displacement fields u ∈ H1(Ω \ Γ; Rn) such that u = 0 on ∂DΩ.
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3.1. A phase fields model for hydraulic fracturing

Remark 2 Of course, fluid equilibrium mandates continuity of pressure so that pp = p
along Γ. Our choice to introduce two pressure fields is motivated by our focus on low-
permeability reservoirs. In this situation, assuming very small leak-off, it is reasonable
to assume that for short injection time, the pore pressure is “almost” constant away from
the crack, hence that p 6= pp.

We follow the formalism of [80, 38] and propose a time-discrete variational model of
crack propagation. To any crack set Γ ⊂ Ω and any kinematically admissible displace-
ment field u, we associate the fracture energy,

E(u,Γ) =

∫

Ω\Γ

1

2
A

(
e(u)− λ

3κ
ppI

)
:

(
e(u)− λ

3κ
ppI

)
dx

−
∫

∂NΩ
g(t) · udHn−1 −

∫

Γ
p JuK · ν dHn−1 +GcHn−1(Γ)

(3.3)

Considering then a time interval [0, T ] and a discrete set of time steps 0 = t0 <
t1 < · · · < tN = T , and denoting by pi, ppi and gi, the crack pressure, pore pressure
and external stress at time ti (i > 0), we postulate that the displacement and crack set
(ui,Γi) are minimizers of E amongst all kinematically admissible displacement fields u
and all crack sets Γ satisfying a growth condition Γj ⊂ Γ for all j < i, with Γ0 possibly
representing pre-existing cracks.

It is worth emphasizing that in this model, no assumptions are made on the crack
geometry Γi. As in Francfort and Marigo’s pioneering work [80], minimization of the
total fracture energy is all that is needed to fully identify the crack geometry (path) and
topology (nucleation, merging, branching).

3.1.2 Variational phase-field approximation

Several techniques have been proposed for the numerical implementation of the fracture
energy E , the main difficulty being to handle discontinuous displacements along unknown
surfaces. In recent years, variational phase-field models, originally devised in [11, 10],
and extended to brittle fracture [37] have become very popular.

We follow this approach by introducing a regularization length `, an auxiliary field α
with values in [0, 1] representing the unknown crack surface, and the regularized energy.

E`(u, α) =

∫

Ω

1

2
A

(
(1− α)e(u)− λ

3κ
ppI

)
:

(
(1− α)e(u)− λ

3κ
ppI

)
dx

−
∫

∂NΩ
g(t) · u dHn−1 +

∫

Ω
pu · ∇α dx+

3Gc
8

∫

Ω

α

`
+ `|∇α|2 dx

(3.4)

where α = 0 is the undamaged state material and α = 1 refers to the broken part. One
can recognize the AT1 model introduced in the Chapter 1 which differs from one used in
[52].
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At each time step, the constrained minimization of the fracture energy E is then re-
placed with that of E`, with respect to all (ui, αi) such that ui is kinematically admissible
and 0 ≤ αi−1 ≤ αi ≤ 1.

The Γ-convergence of (3.4) to (3.3), which constitutes the main justification of vari-
ational phase-field models is a straightforward extension of [46, 47], or [105]. It is quite
technical and not quoted here. The form of the regularization of the surface energy in
(3.4) is slightly different from the one originally proposed in [34, 33] but this choice is
motivated by the work of [177, 40].

In the context of poro-elasticity, the regularization of the elastic energy of the form
of, ∫

Ω

1

2
A

(
(1− α)e(u)− λ

3κ
ppI

)
:

(
(1− α)e(u)− λ

3κ
ppI

)
dx

is different from that of [134] and follow-up work, or [131, 186] which use a regularization
of the form ∫

Ω

1

2
(1− α)2A

(
e(u)− λ

3κ
ppI

)
:

(
e(u)− λ

3κ
ppI

)
dx.

This choice is consistent with the point of view that damage takes place at the sub-pore
scale, so that the damage variable α should impact the Cauchy stress and not the effective
poro-elastic stress. Note that as `→ 0, both expressions will satisfy Γ–convergence to E .

A fundamental requirement of hydraulic fracturing modeling is volume conservation,
that is the sum of the fracture volume and fluid lost to the surrounding reservoir must
equal the amount of fluid injected denoted V . In the K-regime, the injected fluid is in-
viscid and no mass is transported since the reservoir is impermeable. Of course, reservoir
impermeability means no fluid loss from fracture to reservoir and this lack of hydraulic
communication means that the reservoir pressure pp and fracture fluid pressure p are
two distinct and discontinuous quantities. Furthermore, the zero viscosity of the injected
fluid is incompatible with any fluid flow model, leaving global volume balance as the
requirement for computing the unknown fracturing fluid pressure p. In the sequel we
set aside the reservoir pressure pp and consider this as a hydrostatic stress offset in the
domain, which can be recast by applying a constant pressure on the entire boundary of
the domain.

3.1.3 Numerical implementation

The numerical implementation of the variational phase-field model is well established. In
the numerical simulations presented below, we discretized the regularized fracture energy
using linear or bilinear finite elements. We follow the classical alternate minimizations
approach of [37] and adapt to volume-driven fractures where main steps are:

i. For a given (α, p) the minimization of E with respect to u is an elastic problem
with the prescribed boundary condition. To solve this, we employed preconditioned
conjugate gradient methods solvers.
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ii. The minimization of E with respect to α for fixed (u, p) and subject to irreversibility
(α ≥ αi−1) is solved using variational inequality solvers provided by PETCs [17,
15, 16].

iii. For a fixed (u, α), the total volume of fluid can be computed, such that,

V = −
∫

Ω
u · ∇α dx.

The idea is to rescale the fluid pressure using the secant method (a root-finding
algorithm) based on a recurrence relation.

A possible algorithm to solve volume-driven hydraulic fracturing is to use nested
loops. The inner loop solves the elastic problem i. and rescale the pressure iii. until the
error between the target and the computed volume is below a fixed tolerance. The outer
loop is composed of ii. and the previous procedure and the exit is triggered once the
damage has converged. This leads to the following Algorithm 2 where δV and δα are
fixed tolerances. Remark that the inner loop solves a linear problem, hence, finding the
pressure p associated to the target volume V should converge in strictly less than four
iterations. All computations were performed using the open source mef901.

In-situ stresses play a huge role in hydraulic fracture propagation and the ability to
incorporate them in a numerical model is an important requirement for robust hydraulic
fracturing modeling. Our numerical model easily accounts for these compressive stresses
on boundaries of the reservoir. However in-situ stresses simulated cannot exceeded the
maximum admissible stress of the material given by σc =

√
3EGc/8`. We run a series of

two- and three- dimensions computations to verify our numerical model and investigate
stability of fractures.

3.2 Numerical verification case of a pressurized single frac-
ture in a two and three dimensions

Using the Algorithm 2 a pressurized line and penny shape fractures have been respectively
simulated in two- and three- dimensions, and their results compared with the closed
form solutions. Both problems have a symmetric axis, i.e. its aggregate a reflexion
axis in 2d and a rotation in 3d, leading to a invariant geometry drawn on Figure 3.1.
Also, all geometric and material parameters are identically set up for both problems and
summarized in the Table 3.1. The closed form solutions provided by Sneddon in [170, 169]
are recalled in the Appendix C and assume an infinite domain with vanishing stress
and displacement at the boundary. To satisfy those boundary conditions we performed
simulations on a huge domain clamped at the boundary, where the reservoir size is 100
times larger than the pre-fracture length as reported in the Table 3.1. To moderate the
number of elements in the domain, a casing (W,H) with a constant refined mesh size of
resolution h is encapsulated around the fracture. Outside the casing a coarsen mesh is
spread out see Figure 3.1.
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Algorithm 2 Volume driven hydraulic fracturing algorithm at the step i
1: Let j = 0 and α0 := αi−1

2: repeat
3: Set, pk−1

i 6= pki and V k−1
i 6= V k

i

4: repeat
5: pk+1

i := pki − V k
i (pki − pk−1

i )/(V k
i − V k−1

i )
6: Compute the equilibrium,

uk+1 := argmin
u∈Ci

E`(u, αj)

7: Compute volume of fractures,

V k+1
i := −

∫

Ω
uk+1 · ∇αj dx

8: k := k + 1
9: until

(∣∣V k
i − Vi

∣∣
L∞
≤ δV

)

10: Compute the damage,

αj+1 := argmin
α∈Di
α≥αi−1

E`(uj+1, α)

11: j := j + 1
12: until

(∣∣αj − αj−1
∣∣
L∞
≤ δα

)

13: Set, ui := uj and αi := αj

refined mesh, 
size h

coarsen mesh

symmetry axis

Figure 3.1: Sketch of the geometry (invariant). The symmetry axis being a reflection for
2d and a revolution axis in 3d.
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h L H W l0 E ν Gc `

0.005 100 11h 75h 0.114 1 0 1 3h

Table 3.1: Parameters used for the simulation of a single fracture in two and three
dimensions.

A loading cycle is preformed by pressurizing the fracture until propagation, then,
pumping all the fluid out of the crack. The pre-fracture of length l0 is measured by a iso-
values contour plot for α = .8 before refilling the fracture of fluid again. The reason of this
is we do not have an optimal damage profile at the fracture tips, leading to underestimate
the critical pressure pc. Similar issues have been observed during the nucleation process
in [177] where Gc is overshoot due to the solution stability. Snap-shots of the damage
before and after the loading cycle in the Figure 3.3 illustrate differences between damage
profiles at the crack tips. Since the critical crack pressure is a decreasing function with
respect to the crack length, the maximum value is obtained at the loading point when
the crack initiates (for the pre-fracture). One can see on the Figure 3.4 that the penny
shape fracture growth is not necessary symmetrical with respect to the geometry but
remains a disk shape which is consistent with the invariant closed form solution.

We know from prior work see [38] that the “effective” numerical toughness is quantified
by (Gc)eff = Gc (1 + 3h/(8`) ) in two dimensions. However, for the penny shape crack
(Gc)eff = Gc(1 + 3h/(8`) + 2h/l ), where 2h is the thickness of the crack and l the radius.
The additional term of 2h/l comes from the lateral surface contribution which becomes
negligible for thin fractures.

The fluid pressure p and the fracture length l closed form solution with respect to the
total injected volume of fluid V is provided by [170] and is recalled in the Appendix C.
Figure 3.2 shows a perfect match between the numerical results and the closed solution
for the line fracture and penny shape crack. In both cases as long as the V ≤ Vc the
crack does not grow, and since V > Vc the pressure drop as p ∼ V −1/3 (line fracture)
and p ∼ V −1/5 (penny shape crack). Notice that the pressure decreases when the crack
grows, therein a pressure driven crack is necessary unstable, indeed there is no admissible
pressure over the maximum value pc.

Remark 3 The Griffith regime requires σc =
√

3E′Gc/(8`) ≥
√
πE′Gc/(4l) = pc in two

dimensions, leading to l ≥ 2π`/3. Therefore, the pre-fracture must be longer than twice
the material internal length ` to avoid any size effects phenomena as reported in Chapter
2.

Those simulations show that the variational phase field model to hydraulic fracturing
recovers Griffith’s initiation and propagation for a single pressurized crack. Even if this
can be seen as a toy example because the fracture propagation is rectilinear, without
any changes on the implementation multi-fracking can be simulated as illustrated in
the Figure 3.5. Fracture paths are obtained by total energy minimization and satisfies
Griffith’s propagation criterion.

1available at https://www.bitbucket.org/bourdin/mef90-sieve
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Figure 3.2: Evolutions of normalized p, V and l for the line fracture (left column figures)
and penny shape crack (right column figures). Colored dots refer to numerical results and
solid black lines to the closed form solution given in Appendix C. For the line fracture,
Vc =

√
4πl30(Gc)eff/E′ and pc =

√
E′(Gc)eff/(πl0), where E′ = E/(1−ν2) in plane strain

theory and E′ = E in plane stress. For the penny shape crack, Vc = 8/3
√
πl50(Gc)eff/E

and pc =
√
πE(Gc)eff/(4l0).

70



3.2. Numerical verification case of a pressurized single fracture in a two and three
dimensions

Figure 3.3: Snap-shots of damage for the line fracture example at different loadings, such
that, before the loading cycle (top), before refilling the fracture (middle) and during the
propagation (bottom). The red color is fully damage material and blue undamaged. We
see the casing mesh which encapsulates the fracture.

Figure 3.4: Snap shots (view from above) of fracture damage (α ≥ .99) for the penny
shape crack example at different loadings, that is before refilling the fracture (left) and
during the propagation (right). The solid black lines are the limit of the casing.
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Figure 3.5: Fracture illustration of multi-fracking with in-situ stresses in 2d and 3d.
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3.3 Multi fractures in two dimensions

One of the most important features of our phase field hydraulic fracturing model is
its ability to handle multiple fractures without additional computational or modeling
effort than is required for simulating single fracture. This capability is highlighted in
the following study of the stimulation of a network of parallel fractures. All cracks are
subject to the same pressure and we control the total amount of fluid injected into cracks,
i.e. fluid can migrate from a crack to another via a wellbore.

The case where all fractures of a parallel network propagate (multi fracking scenario)
is often postulated. However, considering the variational structure of Griffith leads to a
different conclusion. For the sake of simplicity consider only two parallel fractures. A
virtual extension of one of the cracks (variational argument) induces a drop of pressure in
both fractures. Consequently the shorter fracture is sub-critical and remains unchanged
since the pressure p < pc. Moreover the longer fracture requires less pressure to propagate
than the shorter because the critical pressure decreases with the crack length. Finally
the longer crack continues to propagate. This non restrictive situation can be extended
to multiple fractures (parallel and the same size). In the sequel, we propose to revisit the
hypothesis of multi-fracking by performing numerical simulations using the Algorithm 2.

3.3.1 Multi-fracking closed form solution

Figure 3.6: Infinite network of parallel cracks domain (left). Domain duplications form
the smallest invariant domain (right).

Consider a network of infinite parallel cracks with the same pressure p where their
individual length is l and the spacing between cracks is δ drawn in the Figure 3.6 (left).
At the initial state all pre-cracks have the same length denoted l0 and no in-situ stresses
is applied on the reservoir domain.

This network of parallel cracks is a duplication of an invariant geometry, precisely a
strip domain Ω̄ = (−∞,+∞)× [−δ, δ] cut in the middle by a fracture Γ̄ = [−l, l]× {0}.
An asymptotic solution of this cell domain problem is provided by Sneddon in [170]
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assuming uy(x,±δ) = σxy(x,±δ) = 0, so that the volume of fluid in Γ̄ denoted V is given
by

V (ρ) =
8pδ2

E′π
ρ2f(ρ), (3.5)

where the density of fractures ρ = lπ/(2δ) and f(ρ) = 1− ρ2/2 + ρ4/3 + o(ρ6).
The Taylor series of f(ρ) in 0 provided by Sneddon differs from one given in the

reference [138] where f(ρ) = 1−ρ2/2+3ρ4/8+o(ρ6). The latter is exactly the first three
terms of the expansion of

f(ρ) =
1√

1 + ρ2
. (3.6)

The critical pressure satisfying Griffith propagation for this network of fractures prob-
lem is

p(ρ) =

√
E′Gc

δ(ρ2f(ρ))′
(3.7)

Of course the closed form expression consider that all cracks grow by symmetry. It is
convenient for numerical reason to consider an half domain and an half fracture (a crack
lip) of the reference geometry such that we have (Ω1,Γ1) and by symmetry expansion
(Ω2,Γ2), (Ω4,Γ4),..,(Ω2n,Γ2n) illustrated in the Figure 3.6 (right).

3.3.2 Numerical simulation of multi-fracking by computation of unit
cells construction

The idea is to reproduce numerically multi-fracking scenario, thus simulation is performed
on stripes of length 2L with pre-fractures of length 2l0 such that, geometries considered
are:

Ω2n = [−L,L]× [0, (2n− 2)δ]

Γ0, 2n = [−l0, l0]×
n⋃
k=1

{2(k − 1)δ} (3.8)

for n ≥ 1, n being the number of crack lips. Naturally a crack is composed of two lips.
The prescribed boundary displacement on the top-bottom extremities is uy(0) =

uy(2(n − 1)δ) = 0, and on the left-right is u(±L) = 0. All numerical parameters used
are set up in the Table 3.2.

h L δ l0 E ν Gc `

0.005 10 1 0.115 1 0 1 3h

Table 3.2: Parameters used in the numerical simulation for infinite cracks

Using the same technique of loading cycle as in section 3.2 and after pumping enough
fluid into the system of cracks we observed in all simulations performed that only one
fracture grows, precisely the one at the boundary as illustrated in the Figure 3.7. By
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3.3. Multi fractures in two dimensions

using reflexion symmetry we have a periodicity of large fractures of 1/n. We notice
that simulations performed never stimulate middle fracture. Indeed, by doing so after
reflexions this will lead to an higher periodicity cases.

Figure 3.7: Domains in the deformed configuration for respectively Ω1,Ω2,Ω4 and Ω6.
The pseudo-color blue is for undamaged material and turns white when (α ≤ .01) (visi-
bility reason). The full colors correspond to numerical simulations cells domain see table
3.2, and opacity color refers to the rebuild solution using symmetries. In all simulations
only one crack propagates in the domain. Using the multiplicity pictures from left to
right we obtain a fracture propagation periodicity denoted period. of 6/6, 3/6, 1.5/6 and
1/6.

To compare the total injected fluid V between simulations, we introduce the fluid
volume density i.e the fluid volume for a unit geometry cell given by 2V/n. The evolution
of normalized pressure, volume of fluid per cell and length are plotted in Figure 3.8 and
show that the multi-fracking situation (one periodic) match perfectly with the close form
solution provided by the equations (3.7),(3.5) and (3.6). Also, one can see that Sneddon
approximation is not accurate for dense fractures. We can observe from simulations in
Figure 3.8 that a lower periodicity (1/n) of growing cracks implies a reduction in pressure
evolution. Also notice that the rate of pressure drop increases when the number of long
cracks decrease, so that rapid pressure drop may indicate a poor stimulation. Also this
loss of multi fracking stimulation decreases the fracture surface are for resource recovery.
All cracks propagating simultaneously case is not stable in the sense that there exits a
lower energy state with fewer growing crack. However as we will be discussed in the
section 3.3.3 multi fracking may work for low fracture density since their interactions are
negligible.
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3.3.3 Multi-fracking for dense fractures

In the following we investigate critical pressure with respect to the density of fracture for
different periodicity.
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Figure 3.8: Plots of normalized variables such that crack pressure, average fracture length
and energy density (per Ω̄) vs. fluid volume density (per Ω̄) respectively on the (top-left)
and (top-right) and (bottom-right). The aperture of the longest crack for 2V/(nVc) = 13.
Colored plot are numerical results for different domain sizes Ω1,Ω2,Ω4 and Ω6. The
solid black line is the closed form solution and gray the approximated solution given by
Sneddon [170].

Let us focus on fractures propagation when their interactions become stronger i.e.
higher fracture density ρ = lπ/(2δ). We start by normalizing the pressure relation for
multi-fracking equation (3.7) with p =

√
E′Gc/(lπ) which is a single fracture problem

studied in section 3.2.

rp(ρ) =
√

2ρ
(ρ2f(ρ))′ =

√
2(ρ2+1)3/2

ρ2+2
. (3.9)

Remark that rp(0) = 1 means that critical pressure for largely spaced fractures are
identical to a line fracture in a infinite domain problem, thus cracks behave without
interacting each other.

We run a set of numerical simulations using the same set of parameters than pre-
viously recalled in the Table 3.2 except that δ varies. For a high fractures density we
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3.4. Fracture stability in the burst experiment with a confining pressure

discovered another loss of symmetry shown on Figure 3.9 such that the fracture grows
only in one direction.

Figure 3.9: Domains in the deformed configuration for respectively Ω2 and Ω4 with
2δ = .5. The pseudo-color blue is for undamaged material and turns white when (α ≤ .01)
(visibility reason). The full colors correspond to numerical simulation domain and opacity
color refers to the rebuild solution using symmetries. In all simulations only one crack
tip propagates in one direction in the simulated domain.

We report pressures obtained numerically depending on the fracture density in the
Figure 3.10 and comparison with (3.9). One can see that the closed form solution is
in good agreement with numerical simulation for the periodicity one and also lower
periodicity obtained by doing ρ ← ρ/n in the equation (3.9). We see that for low
fractures density the critical pressure is equal to a line fracture in a infinite domain.
For higher fractures density, interactions become stronger and propagating all fractures
require a high pressure compare to grow only one of them. As an example, a network
of pre-fractures of length l = 6.36m and spaced δ = 10m thus ρ = 1, in this situation
the required pressure is equal to r(1)KIc/

√
lπ with r(1) = 1.4 to propagate all cracks

together compare to r(1) = 1 for only one single fracture. Naturally the system bifurcate
to less fractures propagation leading to a drop of the fluid pressure.

3.4 Fracture stability in the burst experiment with a con-
fining pressure

This section focuses on the stability of fractures propagation in the burst experiment.
This laboratory experiment was conceived to measure the resistance to fracturing KIc

(also called the fracture toughness) of rock under confining pressure which is a critical
parameter to match the breakdown pressure in mini-frac simulation. The idea is to
provide a value ofKIc for hydraulic fracturing simulations in the K-regime [68]. However,
past experimental studies suggest that the fracture toughness of rock is dependent on the
confining pressure under which the rock is imposed. Various methodologies exist for the
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Figure 3.10: Ratio of critical pressures (multi-fracking over single fracture) vs. the inverse
of the fracture density (hight density on the left x-axis and low density on the right side).
Black dash line is rp(ρ/n) with 1/n the periodicity. Colored line is numerical results for
respectively a periodicity 6/6, 3/6 and 1.5/6.

measurement of KIc under confining pressure and results differ in each study. The most
accepted methodology in petroleum industry is the so called burst experiment, which
was proposed by Abou-Sayed [2], as the experimental geometry replicates a situation
encountered downhole with a borehole and bi-wing fracture. Under linear elastic fracture
mechanics, stable and unstable crack growth regime have been calculated depending on
the confining pressure and geometry. During unstable crack propagation the phase-field
models for hydraulic fracturing do not bring information. Instead we perform a Stress
Intensity Factor (SIF) analysis along the fracture path to determine propagation stability
regimes, herein this section is different from the phase-field sprite of the dissertation.
However at the end we will verify the ability of the phase-field model to capture fracture
stability transition from stable to unstable.

3.4.1 The burst experiment

The effect of confining pressure on the fracture toughness was first studied by Schmidt and
Huddle [161] on Indiana limestone using single-edge-notch samples in a pressure vessel. In
their experiments, increase in the fracture toughness up to four fold have been reported.
Other investigations to quantify the confining pressure dependency were performed on the
three point bending [136, 183], modified ring test [180], chevron notched Brazillian disk
[154], cylinder with a partially penetrating borehole [101, 179], and thick wall cylinder
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3.4. Fracture stability in the burst experiment with a confining pressure

with notches [2, 49] and without notches [173]. Published results on Indiana limestone
are shown in Figure 3.11 and the data suggest the fracture toughness dependency on the
confining pressure with a linear relationship. Provided increasing reports on confining
pressure dependent fracture toughness, theoretical works to describe the mechanisms
focus mainly on process zones ahead of the fracture as a culprit of the “apparent” fracture
toughness including Dugdale type process zone [190, 159], Barenblatt cohesive zone model
[156], and Dugdale-Barenblatt tension softening model [99, 77].
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Figure 3.11: Fracture toughness vs. confining pressure for the Indiana limestone

The burst experiment developed by Abou-Sayed [2] is one of the most important
methods to determine the critical stress intensity factor of rocks subject to confining
pressure in the petroleum industry as the geometry closely represents actual downhole
conditions of hydraulic fracturing stimulation (Figure 3.12). A hydraulic internal pressure
is applied on a jacketed borehole of the thick-walled cylinder with pre-cut notches. Also,
a confining pressure is applied on the outer cylinder. The inner and the outer pressures
increase keeping a constant ratio of the outer to the inner pressure until the complete
failure of the sample occurs and the inner and outer pressures will equilibrate to the
ambient pressure abruptly. This test has great advantages in sample preparation, no
fluid leak off to the rock, and easeness of measurement with various confining pressures.
In this section, we firstly revisit the derivation of the stress intensity factor and analyze
stabilities of fracture growth from actual burst experiment results. Subsequent analytical
results indicate that fracture growth is not necessarily unstable and can have a stable
phase in our experiments. In fact, stable fracture propagation has been observed also in
past studies with PMMA samples [53] and sandstone and shale rocks without confining
pressure [50].
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L
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2b

L

Figure 3.12: Schematic of burst experiment for jacketed bore on the (left). Pre- (middle)
and Post- (right) burst experiment photos.

3.4.2 Evaluation and computation of the stress intensity factor for the
burst experiment

Under Griffith’s theory and for a given geometry (a, b, L) see Figure 3.12, the fracture
stability is governed by,

KI(Pi, L, b, a, Po) ≤ KIc

where KIc is a material property named the critical fracture toughness. The stress
intensity factor (SIF) denoted KI is such that, KI < 0 when crack lips interpenetrate
and KI ≥ 0 otherwise.

Let us define dimensionless parameters as,

w =
b

a
, l =

L

b− a, r =
Po
Pi

(3.10)

Hence, the dimensionless crack stability becomes

K∗I (1, l, w, r) ≤ KIc

(Pi
√
aπ)

(3.11)

whereK∗I (1, l, w, r) = KI(1, l, w, r)/
√
aπ. Necessarily, the inner pressure must be positive

Pi > 0 to propagate the crack.
For a given thick wall ratio w and pressure confinement r, we are able to evaluate the

fracture toughness of the material by computing K∗I if the experiment provides a value
of the inner pressure Pi and the crack length L at the time when the fracture propagates.
The difficulty is to measure the fracture length in-situ during the experiment whose
technique is yet to be established. However the burst experiment should be designed
for unstable crack propagation. The idea is to maintain the crack opening by keeping
the tensile load at the crack tips all along the path, so that the sample bursts (unstable
crack propagation) after initiation. Therefore the fracture toughness is computed for the
pre-notch length and the critical pressure measured.
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3.4. Fracture stability in the burst experiment with a confining pressure

Let us study the evolution of K∗I (1, l, w, r) with the crack length l for the parameter
analysis (w, r) to capture stability crack propagation regimes.

Using Linear Elastic Fracture Mechanics (LEFM) the burst problem denoted (B) is
decomposed into the following elementary problems: a situation where pressure is applied
only on the inner cylinder called the jacketed problem (J) and a problem with only a
confining pressure applied on the outer cylinder problem named (C). This decomposition
is illustrated in Figure 3.13. Therefore, the SIF for (B) can then be superposed as

KB∗
I (1, l, w, r) = KJ∗

I (1, l, w)− rKC∗
I (1, l, w) (3.12)

where KC∗
I (1, l, w) is positive for negative applied external pressure Po.

In Abou-Sayed [2] the burst problem is decomposed following the Figure 3.14 such
that, the decomposition is approximated by the jacketed problem (J) and the unjacketed
problem (U) in which the fluid pressurized all internal sides. We get the following SIF,

KB∗
I (1, l, w, r) ≈ KJ∗

I (1, l, w)− rKU∗
I (1, l, w) (3.13)

where KU∗
I (1, l, w) ≥ 0 for a positive Po applied in the interior of the geometry.
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Figure 3.13: Rigorous superposition of the burst problem.
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Figure 3.14: Superposition of the burst problem applied in Abou-Sayed (1978).

Note that in our decomposition, no pore pressure (Pp) is considered in the sample,
i.e. a drain evacuates the embedded pressure in the rock.

Normalized stress intensity factor for the jacketed and unjacketed problems have been
derived in Clifton [53]. The Figure 3.15 shows a good agreement between our results
(computational SIF based on the Gθ methods) and one provided by Clifton [53]. The Gθ

81



Chapter 3. A phase-field model for hydraulic fracturing in low permeability reservoirs:
propagation of stable fractures

technique [67, 175] is an estimation of the second derivatives of the potential energy with
respect to the crack length, i.e. to make a virtual perturbation of the domain (vector
θ) in the crack propagation direction. Then, the SIF is calculated using Irwin formula
KI =

√
EG/(1− ν2) based on the computed G.
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Figure 3.15: Comparison of the normalized stress intensity factor for the jacketed and
unjacketed problems receptively denoted KJ∗

I and KU∗
I vs. the normalized crack length l.

Numerical computational SIF based on Gθ method (colored lines) overlay plots provided
by Clifton in [53].

3.4.3 Influence of the confinement and wall thickness ratio on stability
of the initial crack

Based on the above result we compare KC∗
I with KU∗

I (Figures 3.13 and 3.14), and we
found out their relative error is less than 15% for l ∈ [.2, .8] and w ∈ {3, 7, 10}. So, in a
first approximation both problems are similar.

For the burst experiment, the fracture propagation occurs when (3.11) becomes an
equality, thus we have Pi = KIc/(K

B∗
I

√
aπ). A decreasing KB∗

I induces a growing Pi,
a contrario a growing KB∗

I implies to decrease the inner pressure which contradicts the
burst experiment set up (monotonic increasing pressure). Consequently the fracture
growth is unstable (brutal) for a growing KB∗

I , and vice versa.
In the Figure 3.16 we show different evolutions of the stress intensity factor with the

crack length for various wall thickness ratio and confinement. We observe that when the
confining pressure r increases fractures propagation are contained and the same effect is
noticed for larger thick wall ratio w.

Depending where the pre-fracture tip is located we can draw different fracture regime
summarized in three possible evolutions (see Figure 3.17) and described as follow:
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(a) For this evolution KB∗
I is strictly increasing thus for any pre-fracture length l0 the

sample will burst. The idea is the fracture initiates once the pressure is critical,
then propagates along the sample until the failure. A sudden drop of the pressure
is measured signature of the initiation pressure. By recording this pressure Pi the
fracture toughness KIc is calculated using equation (3.11).

(b) By making a pre-fracture l0 ≥ lSU , this leads to the same conclusion than (a).
However for lUS ≤ l0 ≤ lSU the fracture propagation is stable. To get an estimation
of the fracture toughness, we need to track the fracture and to measure its length
otherwise is vain. A risky calculation is to assume the fracture initiation length be
at the inflection point lSU before the burst. Reasons are the critical point can be a
plateau shape leading to imprecise measure of lSU , secondly, since the rock is not
a perfect brittle materials the lSU can be slightly different.

(c) For Griffith and any cohesive models which assume compressive forces in front of
the notch tips, the fracture propagation is not possible. Of course others initiation
criterion are possible as critical stress as an example.

3.4.4 Application to sandstone experiments

A commercial rock mechanics laboratory provided fracture toughness results for different
pressure ratios on sandstones and the geometries summarized in the Table 3.3. As their
end-caps and hardware are built for 0.25’ center hole diameter with 2.5" diameter sample,
w values are restricted to 9. Considering no pore pressure and applying stricto sensu the
following equation

Pi
√
aπKB∗

I (1, l, w, r) = KIc,
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(a)

(b)

(c)

Figure 3.17: Three possible regime for KB∗
I denoted (a), (b) and (c). lUS is a critical

point from unstable to stable crack propagation, vice versa for lSU . The fracture does
not propagates at stop point denoted lST

by taking l equals to the dimensionless pre-notch length l0 and the critical pressure
recorded Pi = Pic, we obtain that the fracture toughness KIc is influenced by the confin-
ing pressure r as reported in the last column of the Table 3.3. However, the evolutions
of KB∗

I with respect to l in the Figure 3.18 (right) shows that all confining experiments
(Id 1-5) have a compressive area in front of the fracture tips. Moreover pre-fractures are
located in the stable propagation regime, in fine the sample cannot break according to
Griffith’s theory.

Sample
ID

2a
[in] w

Pic
[Psi] r l0

KIc

[Psi
√

in]

Id 0 0.288 10.07 1310 0 0.218 365
Id 1 0.279 8.93 9775 1/8 0.2025 1462
Id 2 0.258 9.65 14907 1/8 0.2060 1954
Id 3 0.273 9.12 11282 1/6 0.2128 1023
Id 4 0.283 8.82 17357 1/6 0.1102 2550
Id 5 0.257 9.70 18258 1/6 0.2022 1508

Table 3.3: Rock specimen dimensions provided by the commercial laboratory and calcu-
lated fracture toughness.

The wall thickness cylinder w and the confining pressure ratio r play a fundamental
role in the crack stability regime, to obtain a brutal fracture propagation after initiation
smaller (w, r) is required. A possible choice is to take w = 3 for r = {1/8, 1/6} as shown
in Figure 3.19.

A stable-unstable regime is observed for (r = 1/6, w = 5). We performed a numerical
simulation with the phase-field model to hydraulic fracturing to verify the ability of the
simulation to capture the bifurcation point. For that we fix KIc = 1, the geometric
parameters (a = 1, b = 5, l0 = .15, r = 1/5) and the internal length ` = 0.01. Then, by
pressuring the sample (driven-pressure) damage grows until the critical point. After this
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Figure 3.18: Computed normalized SIF vs. normalized crack length for the unconfined
(left) and confined (right) burst experiments according to the Table 3.3.

loading, the damage jumps to the external boundary and break the sample. The normal-
ized SIF is computed using the KIc/(Pi

√
aπ) for different fracture length and reported

in the Figure 3.19

Remark 4 Stability analysis can be also done by volume-driven injection into the inner
cylinder using phase-field models. This provides stable fracture propagation, and normal-
ized stress intensity factor can be rebuild using simulations outputs.
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Figure 3.19: Colored lines are computed normalized SIF vs. normalized crack length for
unstable propagation (l0 ≥ .5). Red markers are time step results obtained using the
phase-field model.

Conclusion

Through this chapter we have shown that the phase-field models for hydraulic fracturing
is a good candidate to simulate fractures propagation in the toughness dominated regime.
The verification is done for a single-fracture and multi-fracking propagation scenario.
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Simulations show that the multi-fractures propagation is the worst case energetically
speaking contrary to the growth of a single fracture in the network which is the best
total energy minimizer. Moreover the bifurcation to a loss of symmetries (e.g. single
fracture tip propagation) is intensified by the density of fractures in the network.

The pressure-driven burst experiment focuses on fracture stability. The confining
pressure and the thickness of the sample might contain fractures growth. By carefully
selecting those two parameters (confinement pressure ratio and the geometry) the exper-
iment can be designed to calculate the fracture toughness for rocks.

In short those examples illustrate the potential of the variational phase-field models
for hydraulic fracturing associated with the minimization principle to account for stable
volume-driven fractures. The loss of symmetry in the multi-fracking scenario is a relevant
example to illustrate the concept of variational argument. Same results is confirmed by
coupling this model with fluid flow as detailed in Chukwudozie [52].
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Appendix C

Single fracture in a infinite domain

Line Fracture (2d domain):

The volume of a line fracture in a 2d domain is

V =
2πpl2

E′
(3.14)

where E′ = E/(1− ν2) in plane strain and E′ = E in plane stress theory.
Before the start of propagation, l = l0 and the fluid pressure in this regime is

p =
V E′

2πl20
(3.15)

If we consider an existing line fracture with an initial length of l0. Prior to fracture
propagation, the fracture length does not change so that l = l0. Since fracture length at
the onset of propagation is l0, the critical fluid pressure [169] is

pc =

√
GcE′

πl0
(3.16)

The critical fracture volume at the critical fluid pressure is obtained by substituting
(3.16) into (3.14)

Vc =

√
4πl30Gc
E′

(3.17)

During quasi-static propagation of the fracture, l ≥ l0 and the fracture is always in a
critical state so that (3.16) applies. Therefore, the fluid pressure and fracture length in
this regime are

p =

√
GcE′

πl
(3.18)

and
l =

GcE
′

πp2
(3.19)
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Substituting (3.19) into (3.14), the fluid pressure is obtained.

p =
3

√
2G2

cE
′

π V
(3.20)

Similarly, the fracture length during propagation is obtained by substituting (3.16) into
(3.14).

l = 3

√
E′ V 2

4πGc
(3.21)

Penny-Shaped Fracture (3d domain):

For a penny-shaped fracture in a 3d domain, the fracture volume is

V =
16pl3

3E′
(3.22)

where l denotes the radius, while the critical fluid pressure [169] is

pc =

√
πGcE′

4l0
(3.23)

For an initial fracture radius l0, the critical volume is,

Vc =

√
64πl50Gc

9E′
(3.24)

If one follows a procedure similar to that for the line fracture, we will obtain the following
relationships for the evolution of the fluid pressure and fracture radius

pc =
5

√
π3G3

cE
′2

12V

l = 5

√
9E′V 2

64πGc

(3.25)
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Chapter 4

Variational models of perfect
plasticity

Elasto-plasticity is a branch of solid mechanics which deals with permanent deformation
in a structure once the stress reached a critical value at a macroscopic level. This topic
is a vast research area and it is impossible to cover all contributions. We will focus on
recalling basic mathematical and numerical aspects of perfect elasto-plasticity in small
strain theory under quasi-static evolution problems. The perfect elasto-plastic materials
fall into the theory of generalized standard materials developed by [98, 176, 157, 124, 133].
Recently, a modern formalism of perfect plasticity arose [126, 171, 13, 78, 81], the idea
is to discretize in time and find local minimizers of the total energy.

In this chapter we focus only on perfect elasto-plasticity materials and set aside the
damage. We start with concepts of generalized standard materials in the section 4.1.
Then using some convex analysis [72, 178] we show the equivalence with the variational
formulation presented in the section 4.2. The last part 4.3 presents an algorithm to solve
perfect elasto-plasticity materials evolution problems. A numerical verification example
is detailed at the end of the chapter.

4.1 Ingredients for generalized standard plasticity models

For the moment we set aside the evolution problem and we focus on main ingredients
to construct standard elasto-plasticity models [88, 142, 176]. This theory requires a
choice of internal variables, a recoverable and a dissipation potentials energies where
both functionals are convex. The driving forces (conjugate variables) usually the stress
and the thermodynamical force lie respectively in the elastic and dissipation potential
energies. For smooth evolutions of the internal variables, the material response is dictated
by the normality rule of the dissipation potential convex set (flow law rule). By doing
so, it is equivalent to find global minimizers of the total energy sum of the elastic and
dissipation potential energies.

Consider that our material has a perfect elasto-plastic response and can be modeled
by the generalized standard materials theory, which is based on two statements.
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Definition 7 (Generalized standard plasticity models)

i. A choice of independent states variables which includes one or multiple internal
variables.

ii. Define a convex set where thermodynamical forces lie in.

Concerning i. we choose the plastic strain tensor (symmetric) p and the infinitesimal
total deformation denoted e(u). The total strain is the symmetrical part of the spatial
gradient of the displacement u, i.e.

e(u) =
∇u+∇Tu

2
.

The kinematic admissibility is the sum of the plastic and elastic strains denoted ε, given
by,

e(u) = ε+ p.

For ii. consider a free energy density ψ a differentiable convex state function which
depends on internal variables. Naturally, thermodynamical forces are defined from the
free energy by

σ =
∂ψ

∂e
(e, p), τ = −∂ψ

∂p
(e, p). (4.1)

Commonly the free energy takes the form of ψ(e, p) = 1
2A(e(u)− p) : (e(u)− p), where A

is the Hooke’s law tensor. It follows that, σ = τ = A(e(u) − p). However for clarity we
continue to use τ instead. Internal variables (e, p) and their duals (σ, τ) are second order
symmetric tensors and become n × n symmetric matrices denoted Mn

s after a choice of
an orthonormal basis and space dimension of the domain (Ω ⊂ Rn). To complete the
second statement ii., let K be a non empty closed convex subset of Mn

s where τ lies in.
This subset is called elastic domain for τ . Assume that K is fixed and time independent,
such that its boundary is the convex yield surface fY : Mn

s 7→ R, defined by,

τ ∈ K = {τ∗ ∈Mn
s : fY (τ∗) ≤ 0} (4.2)

Precisely, for any τ that lies in the interior of K denoted int(K) the yield surface is
strictly negative. Otherwise, τ belongs to the boundary noted ∂K and the yield function
vanishes:

{
fY (τ) < 0, τ ∈ int(K)
fY (τ) = 0, τ ∈ ∂K .

(4.3)

Let us apply the normality rule on it to get the plastic evolution law. In the case
where ∂K is differentiable the plastic flow rule is defined as,
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4.1. Ingredients for generalized standard plasticity models

ṗ = η̇
∂fY
∂τ

(τ), with η̇ =

{
0 if fY (τ) < 0
≥ 0 if fY (τ) = 0

(4.4)

where η̇ is the Lagrange multiplier. Sometimes the convex K has corners and the outer
normal cannot be defined (fY is not differentiable), thus, the normality rule is written
using Hill’s principle, also known as maximum dissipation power principle, i.e.,

τ ∈ K, (τ − τ∗) : ṗ ≥ 0, ∀τ∗ ∈ K. (4.5)

This is equivalent to say that ṗ lies in the outer normal cone of K in τ ,

ṗ ∈ NK(τ) := {ṗ : (τ∗ − τ) ≤ 0 ∀τ∗ ∈ K}. (4.6)

However we prefer to introduce the indicator function of τ ∈ K, and write equivalently
the normality rule as, ṗ lies in the subdifferential set of the indicator function. For that,
the indicator function is,

IK(τ) =

{
0 if τ ∈ K
+∞ if τ /∈ K (4.7)

and is convex by construction. The normality rule is recovered by applying the definition
of subgradient, such that, ṗ is a subgradient of IK at a point τ ∈ K for any τ∗ ∈ K, given
by,

τ ∈ K, IK(τ∗) ≥ IK(τ) + ṗ : (τ∗ − τ), ∀τ∗ ∈ K ⇔ ṗ ∈ ∂IK(τ), τ ∈ K (4.8)

where the set of all sub-gradients at τ is the sub-differential of IK at τ and is denoted by
∂IK(τ). At this stage of the analysis, Hill’s principle is equivalent to convex properties
of the elastic domain K and the normality plastic strain flow rule.

For τ ∈ K, Hill ⇔ ṗ ∈ NK(τ) ⇔ ṗ ∈ ∂IK(τ) (4.9)

4.1.1 Dissipation of energy during plastic deformations

All ingredients are settled, such as, we have the variable set (u, p) and their duals (σ, τ)
which lie in the convex set K. Also, the plastic evolution law is given by ṗ ∈ ∂IK(τ).
It is convenient to compute the plastic dissipated energy during a plastic deformation
process. For that, the dissipated plastic power density can be constructed from the
Clausius-Duhem inequality. To construct such dissipation energy let us define first the
support function H(q),

q ∈M3
s 7→ H(q) := sup

τ∈K
{τ · q} ∈ (−∞,+∞] (4.10)

The support function is convex, 1-homogeneous,
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H(λq) = λH(q), ∀λ > 0, ∀q ∈Mn
s (4.11)

and it follows the triangle inequality, i.e.,

H(q1 + q2) ≤ H(q1) +H(q2), for every q1, q2 ∈Mn
s . (4.12)

The support function of the plastic strain rate H(ṗ) is null if the plastic flow is zero, non
negative when 0 ∈ K, and takes the value +∞ when K is not bounded. Using Clausius-
Duhem inequality for an isotherm transformation, the dissipation power is defined by

D = σ : ė− ψ̇, (4.13)

and the second law of thermodynamics enforce the dissipation to be positive or null,

D = τ : ṗ ≥ 0. (4.14)

Using Hill’s principle, the definition of the support function and some convex analysis,
one can show that the plastic dissipation is equal to the support function of the plastic
flow.

D = H(ṗ) (4.15)

The starting point to prove (4.15) is the Hill’s principle or equivalently the plastic strain
flow rule.

For τ ∈ K, τ : ṗ ≥ τ∗ : ṗ, ∀τ∗ ∈ K. (4.16)

By applying the supremum function for all τ∗ ∈ K, it comes that,

for τ ∈ K, τ : ṗ ≥ sup
τ∗∈K
{τ∗ : ṗ}. (4.17)

By passing the right term to the left and taking the supremum over all ṗ ∈Mn
s , we get,

sup
ṗ∈Mn

s

{τ : ṗ−H(ṗ)} ≥ 0. (4.18)

Since K is a non empty close convex set, H(ṗ) is convex and lower semi continuous, we
have built the convex conjugate function of H(q̇) in the sense of Legendre-Fenchel. More-
over, one observes that the conjugate of the support function is the indicator function,
given by,

IK(τ) := sup
ṗ∈Mn

s

{τ : ṗ−H(ṗ)} =

{
0 if τ ∈ K
+∞ if τ /∈ K

(4.19)

Hence, the following equality holds for τ ∈ K,

D = τ : ṗ = H(ṗ). (4.20)
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4.2. Variational formulation of perfect plasticity models

Remark 5 The conjugate subgradient theorem says that, for τ ∈ K a non empty closed
convex set,

ṗ ∈ ∂IK(τ)⇔ D = τ : ṗ = H(ṗ) + IK(τ)⇔ τ ∈ ∂H(ṗ)

Finally, once the plastic dissipation power defined, by integrating over time [ta, tb] for
smooth evolution of p, the plastic dissipated energy is,

D(p; [ta, tb]) =

∫ tb

ta

H(ṗ(s)) ds (4.21)

This problem is rate independent because the dissipation does not depend on the
strain rate , i.e. D(ė, ṗ) = D(ṗ) and is 1-homogeneous.

4.2 Variational formulation of perfect plasticity models

Consider a perfect elasto-plastic material with a free energy ψ(e, p) occupying a smooth
region Ω ⊂ Rn, subject to time dependent boundary displacement ū(t) on a Dirichlet
part ∂DΩ of its boundary. For the sake of simplicity the domain is free of stress and
no body force applies on it, such that, σ · ν = 0 on the complementary portion ∂NΩ =
∂Ω \ ∂DΩ, where ν denotes the appropriate normal vector. Assume the initial state of
the material being (e0, p0) = (0, 0) at t = 0. Internal variables e(u) and p are supposed
to be continuous-time solution of the quasi-static evolution problem. At each time the
body is in elastic equilibrium with the prescribed loads at that time, such as it satisfies
the following equations,





σ =
∂ψ

∂e
(e, p) in Ω

τ = −∂ψ
∂p

(e, p) ∈ ∂H(ṗ) in Ω

div(σ) = 0 in Ω
u = ū(t) on ∂DΩ
σ · ν = 0 on ∂NΩ

We set aside problems where plasticity strain may develop at the interface ∂DΩ. The
problem can be equivalently written in a variational formulation, which is based on two
principles,

i. Energy balance

ii. Stability condition

Let the total energy density be defined as the sum of the elastic energy and the
dissipated plastic energy,

Et(e(u), p) = ψ(e(u), p)− ψ(e0, p0) + D(p; [0, t])
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4.2.1 Energy balance

The concept of energy balance is related to the evolution of state variables in a material
point, and enforce the total energy rate be equal to the mechanical power energy at each
time, i.e.

Ėt = σt : ėt. (4.22)

The total energy rate is,

Ėt =
∂ψ

∂e
(et, pt) : ėt +

∂ψ

∂p
(et, pt) : ṗt +H(ṗt), (4.23)

and using the definition of τ = −∂ψ/∂e and σ = ∂ψ/∂e, we obtain,

τt · ṗt = sup
τ∈K
{τ : ṗt} (4.24)

4.2.2 Stability condition for the plastic strain

The stability condition for p is finding stable pt ∈ Mn
s for a given loading deformation

et. We propose to approximate the continuous time evolution by a time discretization,
such that, 0 = t0 < · · · < ti < · · · < tN = tb and at the limit maxi |ti− ti−1| → 0. At the
current time ti = t, let the material be at the state eti = e and pti = p and the previous
state (eti−1 , pti−1). The discretized plastic strain rate is ṗt ' (p−pti−1)/(t−ti−1). During
the laps time from ti−1 to t the increment of plastic energy dissipated is

∫ t
ti−1

H(ṗt)ds '
H(p − pti−1). Hence taking into account all small previous plastic dissipated energy
events, the total dissipation is approximated by,

D(p) := H(p− pti−1) + D(pti−1) (4.25)

At the current time, a plastic strain perturbation is performed for a fixed total strain
changing the system from (e, p) to (e, q). The definition of the stability condition adopted
here is written as a variation of the total energy between this two states,

p stable, e given⇔ ψ(e, q) +H(q − pti−1) ≥ H(p− pti−1) + ψ(e, p), ∀q ∈M3
s (4.26)

We wish to highlight the stability definition adopted, which is for infinitesimal trans-
formations the flow rule.

H(q − pti−1) ≥ H(p− pti−1)−
[ψ(e, q)− ψ(e, p)

q − p
]

: (q − p), ∀q ∈Mn
s , q 6= p (4.27)

Consider small variations of the plastic strain p in the direction p̃ for a growing total
energy, such that for some h > 0 small enough and p+ hp̃ ∈Mn

s we have,
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q = p+ hp̃, ∀p̃ ∈Mn
s

Plug this into (4.27) and send h → 0, then using the definition of Gateaux derivative
and the subgradient, the stability definition leads to

τ = −∂ψ̂
∂p

(e, p) = lim
h→0
−
[ ψ̂(e, p+ hp̃)− ψ̂(e, p)

hp̃

]
∈ ∂H(p− pti−1). (4.28)

Using the Legendre transform, we get,

τ ∈ ∂H(p− pti−1)⇔ (p− pti−1) ∈ ∂IK(τ). (4.29)

To recover the continuous-time evolution stability for p, divide by δt = t − ti−1 and
pass δt to the limit. We recover the flow rule ṗ ∈ ∂IK(τ), or equivalently in the conjugate
space τ ∈ ∂H(ṗ).

Let us justify the definition adopted of the stability by showing that there is no
lowest energy that can be found for a given et. Without loss of any generality assume a
continuous straight smooth path p(t) starting at p(0) = p and finishing at p(1) = q, such
as,

t ∈ [0, 1] 7→ p(t) = (1− t)p+ tq, ∀q ∈Mn
s (4.30)

For any given τ∗ a fixed element of K,

D(p; [0, 1]) =

∫ 1

0
sup
τ∈K
{τ : ṗ(s)}ds ≥

∫ 1

0
τ∗ : p(s) ds = τ∗ : (q − p). (4.31)

The right hand side is path independent, by taking the infimum over all plastic strain
paths, we get,

inf
t7→p(t)

p(0)=p, p(1)=q

∫ 1

0
H(ṗ(s))ds ≥ τ∗ : (q − p) (4.32)

The left hand side does not depends on τ∗, taking the supremum for all τ∗ ∈ K, and
applying the triangle inequality for any pti−1 , one obtains,

inf
t7→p(t)

p(0)=p, p(1)=q

∫ 1

0
H(ṗ(s))ds ≥ H(q − p) ≥ H(q − pti−1)−H(p− pti−1). (4.33)

which justifies the a posteriori adopted definition of the stability.

The stability condition for the displacement is performed on the first chapter and we
simply recover the equilibrium constitutive equations for the elastic problem with the
prescribed boundary conditions.
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4.3 Numerical implementation and verification of perfect
elasto-plasticity models

4.3.1 Numerical implementation of perfect plasticity models

Consider the same problem with stress conditions at the boundary and a free energy of
the form of,

ψ(e(u), p) =
1

2
A(e(u)− p) : (e(u)− p),

where A is the Hooke’s law tensor. The domain is subject to time dependent stress
boundary condition σ · ν = g(t) on ∂NΩ. A safe load condition g(t) is prescribed to
prevent issues in plasticity theory. The total energy is formulated for every x ∈ Ω and
every t by

Et(u, p) =

∫

Ω

[
1

2
A(e(u)− p) : (e(u)− p) +

∫ t

0
sup
τ∈K
{τ : ṗ(s)}ds

]
dx

−
∫

∂NΩ
g(t) · udHn−1,

where Hn−1 denotes the Hausdorff n− 1-dimensional measure of the boundary. Typical
plastic yields criterion used for metal are Von Mises or Tresca, which are well known
to have only a bounded deviatoric part of the stress, thus they are insensitive to any
stress hydrostatic contributions. Consequently, the plastic strain rate is also deviatoric
ṗ ∈ dev(Mn

s ) and it is not restrictive to assume that p ∈ dev(Mn
s ). For being more precise

but without going into details, existence and uniqueness is given for solving the problem
in the stress field, σ ∈ L2(Ω;Mn

s ) (or e(u) ∈ L2(Ω;Mn
s ) ) with a yield surface constraint

σ ∈ L∞(Ω; dev(Mn
s )). Experimentally it is observed that plastic strain deformations

concentrate into shear bands, as a macroscopic point of view this localization creates
sharp surface discontinuities of the displacement field. In general the displacement field
cannot be solved in the Sobolev space, but find a natural representation in a bounded
deformation space u ∈ BD(Ω) when the plastic strain becomes a Radon measure p ∈
M(Ω ∪ ∂DΩ; dev(M3

s)).
The problem of finding (u, p) minimizing the total energy and satisfying the bound-

ary conditions is solved by finding stable states variables trajectory i.e. stationary points.
This quasi-static evolution problem, is numerically approximated by solving the incre-
mental time problem, i.e. for a given time interval [0, T ] subdivided into (N + 1) steps
we have, 0 = t0 < t1 < · · · < ti−1 < ti < · · · < tN = T . The discrete problem converges
to the continuous time evolution provided maxi(ti − ti−1) → 0, and the total energy at
the time ti in the discrete setting is,

Eti(ui, pi) =

∫

Ω

[
1

2
A(e(ui)− pi) : (e(ui)− pi) + Di(pi)

]
dx−

∫

∂NΩ
g(ti) · ui dHn−1

where,
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Di(pi) = H(pi − pi−1) +Di−1 (4.34)

for a prescribed ui = ūi on ∂DΩ. Let i be the the current time step, the problem is
finding (ui, pi) that minimizes the discrete total energy, i.e

(ui, pi) := argmin
u∈Ci

p∈M(Ω∪∂DΩ;dev(M3
s))

Eti(u, p) (4.35)

where p = (ūi − u) · ν on ∂DΩ and Ci is the set of admissible displacement,

Ci = {u ∈ H1(Ω) : u = ūi on ∂DΩ}.

The total energy E(u, p) is quadratic and strictly convex in u and p separately. For
a fixed u or p, the minimizer of E(•, p) or E(u, •) exists, is unique and can easily be
computed. Thus, a natural algorithm technique employed is the alternate minimization
detailed in Algorithm 3, where δp is a fixed tolerance.

More precisely, at the loading time ti, for a given pji , let find uji that minimizes
E(u, pji ), notice that the plastic dissipation energy does not depend on the strain e(u),
thus,

uji := argmin
u∈Ci

∫

Ω

1

2
A(e(u)− pji ) : (e(u)− pji ) dx−

∫

∂NΩ
g(t) · udHn−1 (4.36)

This is a linear elastic problem.
Then, for a given uji let find p on each element cell, such as it minimizes E(uji , p).

This problem is not easy to solve in the primal formulation,

pji := argmin
p∈M(Ω∪∂DΩ;dev(Mn

s ))

1

2
A(e(uji )− p) : (e(uji )− p) +H(p− pi−1)

but from the previous analysis, the stability condition of this problem is

A(e(uji )− p) 3 ∂H(p− pi−1).

Using the Legendre-transform, the stability of the conjugate problem is given by

(p− pi−1) ∈ ∂IK(A(e(uji )− p)).

One can recognize the flow rule in the discretized time. This is the stability condition of
the problem,

pji := argmin
p∈M(Ω∪∂DΩ;dev(Mn

s ))

A(e(uji )−p)∈K

1

2
A(p− pi−1) : (p− pi−1).

The minimization with respect to u is a simple linear problem solved using pre-
conditioned conjugated gradient while minimization with respect to p can be reformulated
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as a constraint optimization problem implemented using SNLP solvers provided by the
open source snlp1. All computations were performed using the open source mef902.

Algorithm 3 Elasto-plasticity alternate minimization algorithm for the step i
1: Let j = 0 and p0 := pi−1

2: repeat
3: Solve the equilibrium,

uj+1 := argmin
u∈Ci

Ei(u, pj)

4: Solve the plastic strain projection on each cell,

pj+1 := argmin
p∈Mn

s

A(e(uj+1)−p)∈K

1

2
A(p− pi−1) : (p− pi−1)

5: j := j + 1
6: until

∣∣pj − pj−1
∣∣
L∞
≤ δp

7: Set, ui := uj and pi := pj

4.3.2 Numerical verifications

A way to do a numerical verification is to recover the closed form solution of a bi–axial
test in 3D provided in [81].

In the fixed orthonormal basis (e1, e2, e3), consider a domain Ω = (−d/2, d/2) ×
(−l/2, l/2)× (0, l), (d < l), with the boundary conditions:





σ11 = 0 on x1 = ±d/2
σ22 = g2 on x1 = ±l/2
σ13 = σ23 = 0 on x3 = 0, l

and, add

{
u3 = 0 on x3 = 0
u3 = tl on x3 = l.

Considering the classical problem to solve,




div(σ) = 0 in Ω
σ = Ae(u) in Ω
e(u) = (∇u+∇Tu)/2 in Ω

1available at http://abs-5.me.washington.edu/snlp/ and at https://bitbucket.org/bourdin/
snlp

2available at https://www.bitbucket.org/bourdin/mef90-sieve
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4.3. Numerical implementation and verification of perfect elasto-plasticity models

constrained by a Von Mises plasticity yield criterion,
√

3

2
dev(σ) : dev(σ) ≤ σp

It is shown in [81] that the domain remains elastic until the plasticity is triggered at a
critical loading time tc as long as 0 ≤ g2 ≤ σp/

√
1− ν + ν2,

tc =
1

2E

(
(1− 2ν)g2 +

√
4σ2

p − 3g2
2

)

where (E, ν) denote respectively the Young’s modulus and the Poisson ratio.
For 0 ≤ t ≤ tc the elastic solution stands for





σ(t) = g2e2 ⊗ e2 + νg2e3 ⊗ e3 + tEe3 ⊗ e3

e(t) = −ν(1 + ν)
g2

E
e1 ⊗ e1 + (1− ν2)

g2

E
e2 ⊗ e2 + t(−νe1 ⊗ e1 − νe2 ⊗ e2 + e3 ⊗ e3)

u(t) = −ν(1 + ν)

E
g2x1e1 +

1− ν2

E
g2x2e2 + t(−νx1e1 − νx2e2 + x3e3)

(4.37)
After the critical loading, permanent deformation takes place in the structure and the
solution is




σ(t) =g2e2 ⊗ e2 + σ̄3e3 ⊗ e3, σ̄3 =
1

2

(
g2 +

√
4σ2

p − 3g2
2

)

e(t) =− ν(1 + ν)
g2

E
e1 ⊗ e1 + (1− ν2)

g2

E
e2 ⊗ e2 + t(−νe1 ⊗ e1 − νe2 ⊗ e2 + e3 ⊗ e3)

p(t) =(t− tc)
(
− g2 + σ̄3

2σ̄3 − g2
e1 ⊗ e1 +

2g2 − σ̄3

2σ̄3 − g2

)
e2 ⊗ e2 + e3 ⊗ e3

u(t) =
[
− ν(1 + ν)

g2

E
− νtc −

g2 + σ̄3

2σ̄3 − g2
(t− tc)

]
x1e1

+
[
(1− ν2)

g2

E
− νtc +

2g2 − σ̄3

2σ̄3 − g2
(t− tc)

]
x2e2 + tx3e3

(4.38)
A numerical simulation has been performed on a domain parametrized by l = .5 and d =
.2, pre-stressed on opposite faces by g2 = .5 with the material parameters E = 1,σp = 1
and a Poisson ratio set to ν = .3. For those parameters, numerical results and exact
solution have been plotted see Figure 4.1, and matches perfectly.

One difficulty is to get closed form for different geometry and plasticity criterion.
Alternate minimization technique converge to the exact solution on this example for Von
Mises in 3D

Conclusion

The adopted strategy to model a perfect elasto-plastic material is to prescribe the elastic
stress domain set (closed convex) with plastic yields functions without dealing with cor-
ners and approximate the continuous evolution problem by discretized time steps. The
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Figure 4.1: The closed-form solution equations (4.37),(4.38) are denoted in solid-lines
and dots referred to numerical results is in dots. (Top-left) and (-right) figures show
respectively the hydrostatics evolution of stresses and plastic strains with the time load-
ing. The figure in the bottom shows displacements for t = 2.857 along the lineout axis
[(−d/2,−l/2, 0)× (d/2, l/2, l)]
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implemented algorithm solves alternately the elastic problem and the plastic projection
onto the yield surface. Hence, there is no difficulty to implement other perfect plastic
yield criteria. A verification is performed on the biaxial test for Von Mises plastic yield
criteria.
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Chapter 5

Variational phase-field models of
ductile fracture by coupling
plasticity with damage

Phase-field models referred to as gradient damage models of brittle fracture are very
efficient to predict cracks initiation and propagation in brittle and quasi-brittle materials
[147, 148, 37, 30, 38]. They were originally conceived as an approximation of Francfort
Marigo’s variational formulation [80] which is based on Griffith’s idea of competition
between elastic and fracture energy. Their model inherits a fundamental limitation of
Griffith’s theory which is a discontinuity of the displacement belongs to the damage
localization strip, and this is not observed during fractures nucleation in ductile materials.
Moreover, they cannot be used to predict cohesive-ductile fractures since no permanent
deformations are accounted for. Plasticity models [176, 157, 98, 59, 13] are widely used to
handle with the aforementioned effects by the introduction of the plastic strain variable.
To capture ductile fracture patterns the idea is to couple the plastic strain coming from
plasticity models with the damage in the phase-field approaches to fracture.

The goal of this chapter is to extend the Alessi-Marigo-Vidoli work [3, 5, 4, 6] by
considering any associated perfect plasticity and to provide a general algorithm to solve
the problem for any dimensions. We provide a qualitative comparison of crack nucleation
in various specimen with published experimental results on metals material. We show
capabilities of the model to recover cracks patterns characteristics of brittle and ductile
fractures. After the set of parameters being adjusted to recover ductile fracture we focus
solely on such regime to study cracks nucleation and propagation phenomenology in mild
notched specimens.

The chapter is organized as follow: Section 5.1.1 starts by aggregating some experi-
ments illustrating mechanisms of ductile fracture which will constitute basis of numerical
comparisons provided in the last part of this chapter. Section 5.1.2 is devoted to the in-
troduction of variational phase-field models coupled with perfect plasticity and to recall
some of their properties. Section 5.1.3 focuses on one dimension bar in traction to provide
the cohesive response of the material and draw some fundamental properties similarly
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to [3, 5, 4, 6]. A numerical implementation technique to solve such coupled models is
provided in section 5.2. For the remainder we investigate ductile fracture phenomenology
by performing simulations on various geometries such as, rectangular specimen, a mild
notch 2d plane strain and 3d round bar respectively exposed in sections 5.3.1, 5.3.2 and
5.3.3.

5.1 Phase-field models to fractures from brittle to ductile

5.1.1 Experimental observations of ductile fractures

It is common to separate fractures into two categories; brittle and ductile fractures with
different mechanisms. However relevant experiments [110] on Titanium alloys glass show
a transition from brittle to ductile fractures response (see Figure 5.1) by varying only one
parameter: the concentration of Vanadium. Depending on the Vanadium quantity, they
observed a brutal formation of a straight crack, signature of brittle material response
for low concentrations. Conversely a smooth stress softening plateau is measured before
failure for higher concentrations. The post mortem samples show a shear dominating
fracture characteristic of ductile behaviors.

www.nature.com/scientificreports/
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extensive tensile ductility, with varying amounts of strain hardening and necking. Excluding results for V0, σmax, 
percent plastic strain (εplastic), and the amount of strain hardening - as roughly parameterized by the slope of the 
stress strain curve after σmax -reached a minimum at V8.

Figure 1. Plot of uniaxial tension test data with optical images of dogbone specimens post-failure. (top 
left) Engineering stress as a function of engineering strain is plotted from tensile tests on dogbone samples of 
vanadium series composites. Samples were loaded until failure at a constant strain rate of 0.2 mm/min. Curves 
are offset on the x-axis to highlight differences in plastic deformation behavior between alloys. (top right) 
Photograph of complete V0 dogbone sample after failure in tension. (bottom) Optical microscope images at 
point of failure in deformed alloys V2–V10 and DV1.

Bulk Alloy 
Composition

Bulk Properties Dendrite Properties Matrix Properties Tensile Test

χ
ρ   

[g/cc]
E 

[GPa]
G 

[GPa] ν Er,d [GPa] Hd [GPa] Er,m [GPa] Hm [GPa]
σ max 

[MPa]
εtot 
[%]

εplastic 
[%]

Ti53 Zr27 Cu5 
Be15 V0 0.63 5.19 107.3 40.5 0.326 117.82 ±  0.47 5.65 ±  0.02 111.63 ±  1.23 6.49 ±  0.15 1649 2.56 0.92

Ti52 Zr26 Cu5 
Be15 V2 0.61 5.16 83.8 30.8 0.361 89.47 ±  0.59 4.51 ±  0.05 109.41 ±  1.12 6.79 ±  0.09 1503 7.97 6.11

Ti51 Zr25 Cu5 
Be15 V4 0.59 5.18 85.0 31.2 0.362 87.56 ±  0.54 4.49 ±  0.03 108.13 ±  2.13 6.72 ±  0.17 1528 6.89 5.28

Ti50 Zr24 Cu5 
Be15 V6 0.56 5.17 88.3 32.4 0.362 87.08 ±  0.93 4.34 ±  0.02 107.08 ±  1.16 6.74 ±  0.08 1493 6.36 4.31

Ti49 Zr23 Cu5 
Be15 V8 0.55 5.20 87.3 32.1 0.361 87.83 ±  0.56 4.27 ±  0.02 105.92 ±  1.56 6.61 ±  0.19 1450 4.63 2.89

Ti48 Zr22 Cu5 
Be15 V10 0.57 5.22 90.6 33.4 0.356 93.52 ±  1.16 4.39 ±  0.04 108.24 ±  0.51 6.90 ±  0.06 1467 6.22 4.85

Ti48 Zr20 Cu5 
Be15 V12 0.58 5.15 94.2 34.4 0.368 97.71 ±  1.41 4.49 ±  0.07 107.07 ±  1.01 7.05 ±  0.10 1477 14.99 13.78

Table 1.  Experimentally determined properties of bulk metallic glass matrix composites. χ is the dendrite 
fraction calculated from SEM images. ρ is the bulk density measured using Archimedes’ method. E is Young’s 
modulus, G is shear modulus, and ν is Poisson’s ratio, all calculated from speed of sound measurements on the 
bulk composite. Er,d and Er,m are the dendrite and matrix reduced moduli, respectively; while Hd and Hm are the 
dendrite and matrix hardness values. Both Er and H were determined by nanoindentation, with standard errors 
reported. σmax is the ultimate tensile stress, and εtot is the percent strain to failure from tensile tests on composite 
dogbone samples. εplastic is the percent plastic strain, calculated by subtracting elastic strain (obtained from 
extrapolated unloading curves) from εtot. Data presented in the bottom row corresponds to benchmark alloy DV1.

Figure 5.1: Pictures produced by [110] show post failure stretched specimens of Ti-based
alloys Vx ––Ti53–x/2Zr27–x/2Cu5Be15Vx. From left to right: transition from brittle to
ductile with a concentration of Vanadium respectively equal to 2%, 6% and 12%.

Numerous experimental evidences show a common phenomenology of fracture nucle-
ation in a ductile materials. To illustrate this, we have selected relevant experiments
showing fracture nucleation and propagation in a plate and in a round bar.

For instance in [172] the role of ductility with the influence of the iron content in
the formation of shear band have been investigated. Experiments on Aluminum alloy
AA5754Al–Mg show fractures nucleation and evolution in the thickness direction of the
plate specimen illustrated in Figure 5.2.

The tensile round bar is another widely used test to investigate ductile fractures. How-
ever, tracking fractures nucleation inside the material is a challenging task and requires
special equipment like tomography imaging to probe. Nevertheless Benzerga [23, 24] and
Luu [122] results show pictures of cracks nucleation and propagation inside those types
of samples see Figure 5.19. A simpler method is the fractography which consists in stud-
ding fracture surfaces of materials after failure of the samples. Typical ductile fractures
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Figure 5.2: Pictures in [172] show the fracture nucleation and propagation in a 2d plane
strain configuration for the ductile material AA5754Al–Mg. The evolution from left to
right is described as follows: formation of shear bands amplified by the necking effects,
voids coalescence and macro fracture formation at the center, finally, fracture propagation
along shear bands.

shapes are cup cones or shear dominating (slant-flat-slant) with a dull and fibrous surface
aspects shown on Figures 5.15 and 5.16.

In all of these experiments main observations of fractures nucleation reported are:
(i) formations of shear bands in “X” shape intensified by necking effects, (ii) growing
voids and coalescence, (iii) macro-crack nucleation at the center of the specimen, (iv)
propagation of the macro crack, straightly along the cross section or following shear bands
depending on the experiment and (v) failure of the sample when the fracture reaches
external free surfaces stepping behind shear bands path. Observed fracture shapes are
mostly cup-cones or shear dominating.

The aforementioned ductile features examples will be investigated through this chap-
ter by considering similar geometries such as, rectangular samples, round notched speci-
mens in plane strain condition and round bars.

Pioneers to model ductile fractures are Dugdale [70] and Barenblatt [18] with their
contributions on cohesive fractures following Griffith’s idea. Later on, a modern branch
focused on micro voids nucleations and convalescence as the driven mechanism of ductile
fracture. Introduced by Gurson [97] a yield surface criterion evolves with the micro-void
porosity density. Then, came different improved and modified versions of this criterion,
Gurson-Tvergaard-Needleman (GTN) [181, 182, 140], Rousselier [155], Leblond [114] to
be none exhaustive. The idea to couple phase-field models to brittle fracture with plas-
ticity to recover cohesive fractures is not new and have been developed theoretically and
numerically in [3, 55, 8, 7, 56, 129, 184, 129].

5.1.2 Gradient damage models coupled with perfect plasticity

Our model is settled on the basis of perfect plasticity and gradient damage models which
has proved to be efficient to predict cracks initiation and propagation in brittle materials.
Both mature models have been developed separately and are expressed in the variational
formulation in the spirit of [132, 38, 64, 147, 148, 126] which provides a fundamental
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and powerful approach to study theoretically and solve numerically those problems. The
coupling between both models is done at the proposed total energy level. We start
by recalling some important properties of variational phase-field models interpreted as
gradient-damage models and variational perfect plasticity.

Consider an elasto-plastic-damageable material with A the Hooke’s law tensor occu-
pying a region Ω ⊂ Rn in the reference configuration. The region Ω is subject to a time
dependent boundary displacement ū(t) on a Dirichlet part of its boundary ∂DΩ and time
stress dependent g(t) = σ · ν on the remainder ∂NΩ = ∂Ω \ ∂DΩ, where ν denotes the
appropriate normal vector. A safe load condition is required for g(t) to set aside issues
in plasticity theory. For the sake of simplicity body forces are neglected such that at the
equilibrium, the stress satisfies,

div(σ) = 0 in Ω

The infinitesimal total deformation e(u) is the symmetrical part of the spatial gradient
of the displacement field u, i.e.

e(u) =
∇u+∇Tu

2

Since the material has permanent deformations, it is usual in small deformations plasticity
to consider the plastic strain tensor p (symmetric) such that the kinematic admissibility
is an additive decomposition,

e(u) = ε+ p

where ε is the elastic strain tensor.
The material depends on the damage variable denoted α which is bounded between

two extreme states, α = 0 is the undamaged state material and α = 1 refers to the
broken part. Let the damage deteriorate the material properties by making an isotropic
modulation of the Hooke’s law tensor a(α)A, where the stiffness function a(α) is contin-
uous and decreasing such that a(0) = 1, a(1) = 0. In linearized elasticity the recoverable
energy density of the material stands for,

ψ(e(u), α, p) :=
1

2
a(α)A(e(u)− p) : (e(u)− p)

Consequently the relation which relates the stress tensor σ to the strain is,

σ =
∂ψ

∂e
= a(α)A(e(u)− p)

Plasticity occurs in the material once the stress reaches a critical value defined by the
plastic yield function fY : Mn×n

s → R convex such that fY (0) < 0. We proposed to couple
the damage with the admissible stress set through the coupling function b(α) such that,
the stress is constrained by σ ∈ b(α)K, where K := {τ ∈Mn×n

s s.t. fY (τ) ≤ 0} is a non
empty close convex set. The elastic stress domain is subject to isotropic transformations
by b(α) a state function of the damage. Naturally to recover a stress-softening response,
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the coupling function b(α) is continuous decreasing such that b(0) = 1 and b(1) = ηb,
where ηb is a residual. By considering associated plasticity the plastic potential is equal
to the yield function and the plastic flow occurs once the stress hits the yield surface, i.e.
σ ∈ b(α)∂K. At this moment, the plastic evolution is driven by the normality rule such
that the plastic flow lies in the subdifferential of the indicator function denoted I at σ,
written as,

ṗ ∈ ∂Ib(α)K(σ)

One can recognize the Hill’s principle by applying the definition of subdifferential and
the indicator function. Since b(α)K is a none empty closed convex set, using Legendre-
Fenchel, the conjugate of the plastic flow is σ ∈ b(α)∂H(ṗ), where the plastic dissipation
potential H(q) = supτ∈K {τ : q} is convex, subadditive, positively 1-homogeneous for all
q ∈Mn×n

s .
The dissipated plastic energy is obtained by integrating the plastic dissipation power

over time, such that,

φp :=

∫ t

0
b(α)H(ṗ(s)) ds (5.1)

This dissipation is not unique and we have to take into account the surface energy
produced by the fracture. Inspired by the phase-field models to brittle fracture [11, 38,
146, 150] we define the surface dissipation term as,

φd :=

∫ t

0

σ2
c

2Ek

[
w′(α)α̇+ `2∇α · ∇α̇

]
+ b′(α)α̇

(∫ t

0
H(ṗ(s)) ds

)
dt (5.2)

where the first term is the classical approximated surface energy in brittle fracture
and the last term is artificially introduced to be combined with φp. Precisely, after
summation of the free energy ψ(e(u), α, p), the work force, the dissipated plastic energy
φp and the dissipated damage energy φd, the total energy has the following form,

Et(u, α, p, p̄) =

∫

Ω

1

2
a(α)A(e(u)− p) : (e(u)− p) dx−

∫

∂NΩ
g(t) · udHn−1

+

∫

Ω
b(α)

∫ t

0
H(ṗ(s)) ds dx+

σ2
c

2Ek

∫

Ω
w(α) + `2|∇α|2 dx

(5.3)

where p̄ =
∫ t

0 ‖ṗ(s)‖ ds is the cumulated plastic strain which is embedded in the cumu-
lated plastic dissipation energy

∫ t
0 H(ṗ(s)) ds. The surface dissipation potential w(α) is

a continuous increasing function such that w(0) = 0 and up to a rescaling, w(1) = 1.
Since the damage is a dimensionless variable, the introduction of ∇α enforce to have
` > 0 a regularized parameter which has a dimension of the length. Note that the total
energy (5.3) is composed of two dissipations potentials ϕp and ϕd coupled where,

ϕp =

∫

Ω
b(α)

∫ t

0
H(ṗ(s)) ds dx, ϕd =

σ2
c

2Ek

∫

Ω
w(α) + `2|∇α|2 dx. (5.4)
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Taking p = 0 in (5.3), the admissible stress space is bounded by,

A−1σ : σ ≤ σ2
c

Ek
max
α

(
w′(α)

c′(α)

)

where E is the Young’s modulus, the compliance function is c(α) = 1/a(α) and let
k = maxα

(
w′(α)
c′(α)

)
. Therefore, without plasticity in one dimensional setting an upper

bound of the stress is σc.
A first conclusion is the total energy (5.3) is composed of two coupled dissipation

potentials associated with two yields surfaces and their evolutions will be discussed later.

In the context of smooth triplet state variable ζ = (u, α, p) and since the above
total energy (5.3) must be finite, we have α ∈ H1(Ω) and e(u), p belong to L2(Ω).
However, experimentally it is observed that plastic strain concentrates into shear bands.
In our model since ṗ ∈ b(α)K, the plastic strain concentration is driven by the damage
localization and both variables intensifies on the same confined region denoted J(ζ),
where J is a set of “singular part” which a priori depends on all internal variables.
Also, the damage is continuous across the normal surfaces of J(ζ) but not the gradient
damage term which may jump. Accordingly, the displacement field cannot be solved
in the Sobolev space, but find a natural representation in special bounded deformation
space SBD if the Cantor part of e(u) vanishes, so that the strain measure can be written
as,

e(u) = e(u) + JuK� νHn−1 on J(ζ(x))

where e(u) is the Lebesgue continuous part and � denotes the symmetrized tensor prod-
uct. For the sake of simplicity, consider the jumps set of the displacement being a smooth
enough surface, i.e the normal ν is well defined, and there is no intersections with bound-
aries such that J(ζ)∩∂Ω = ∅. The plastic strain turns into a Dirac measure on the surface
J(ζ). Without going into details, the plastic strain lies in a non-conventional topological
space for measures called Radon space denotedM.

Until now, the damage evolution have not been set up and the plastic flow rule is
hidden in the total energy adopted. Let us highlight this by considering the total energy
be governed by three principles; damage irreversibility, the stability of Et(u, α, p) with
respect to all admissible variables (u, α, p) and the energy balance.

We focus on the time-discrete evolution, by considering a time interval [0, T ] subdi-
vided into (N + 1) steps such that, 0 = t0 < t1 < · · · < ti−1 < ti < · · · < tN = T .
The following discrete problem converges to the continuous time evolution provided
max(ti − ti−1) → 0. At any time ti, the sets of admissible displacement, damage and
plastic strain fields respectively denoted Ci,Di and Qi are:
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Ci =
{
u ∈ SBD(Ω) : u = ū(ti) on ∂DΩ

}
,

Di =
{
α ∈ H1(Ω) : αi−1 ≤ α < 1 in Ω

}
,

Qi =
{
p ∈M(Ω̄;Mn×n

s )
}

such that,
p = JuK� ν on J

(
ζ(x)

)
(5.5)

and because plastic strains may develop at the boundary, we know from prior works on
plasticity [126] that we cannot expect the boundary condition to be satisfied, thus we
will have to set up

p = (ū(ti)− u)� ν on ∂DΩ.

It is convenient to introduce Ω̄ ⊃ Ω a larger computational domain which includes the
jump set and ∂DΩ, this will become clearer. Note that the damage irreversibility is in
the damage set Di.

The total energy of the time-discrete problem is composed of (5.3) on the regular
part and b(α)D (JuK� ν, [0, ti]) on the singular part, such that,

Eti(u, α, p) =

∫

Ω\J(ζ)

1

2
a(α)A(e(u)− p) : (e(u)− p) dx−

∫

∂NΩ
g(ti) · udHn−1

+

∫

Ω̄
b(α)Di(p) dx+

σ2
c

2Ek

∫

Ω\J(ζ)
w(α) + `2|∇α|2 dx

(5.6)

where

Di(p) = H(p− pi−1) + Di−1 (5.7)

the total energy is defined over the regular and singular part of the domain, and the
evolution is governed by,

Definition 8 (Time discrete coupled plasticity-damage evolution by local minimization)

At every time ti find stable variables trajectory (ui, αi, pi) ∈ Ci×Di×Qi that satisfies
the variational evolution:

i. Initial conditions: u0 = 0, α0 = 0 and p0 = 0

ii. Find the triplet ζi = (ui, αi, pi) which minimizes the total energy,

Eti(u, α, p)
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iii. Energy balance,

Eti(ui, αi, pi) =Et0(u0, α0, p0) +

i∑

k=1

[∫

∂DΩ
(σkν) · (ūk − ūk−1) dHn−1

−
∫

∂NΩ
(g(tk)− g(tk−1)) · uk dHn−1

] (5.8)

The damage and plasticity criterion are obtained by writing the necessary first order
optimality condition of the minimizing problem Eti(u, α, p). Explicitly, there exists h > 0
small enough, such that for (ui + hv, αi + hβ, pi + hq) ∈ Ci ×Di ×Qi,

Eti(ui + hv, αi + hβ, pi + hq) ≥ Eti(ui, αi, pi) (5.9)

Consider that the displacement at ui in the direction v might extend the jump set of
J(v). The variation of the total energy Eti(ui + hv, αi + hβ, pi + hq) is equal to,

∫

Ω\(J(ζi)∪J(v))

1

2
a(αi + hβ)A

(
e(ui + hv)− (pi + hq)

)
:
(
e(ui + hv)− (pi + hq)

)
dx

−
∫

∂NΩ
g(ti) · (ui + hv) dHn−1

+

∫

Ω\(J(ζi)∪J(v))
b(αi + hβ)Di(pi + hq) dx

+

∫

J(ζi)∪J(v)
b(αi + hβ)Di ((JuiK + hv)� ν) dHn−1

+
σ2
c

2Ek

∫

Ω\(J(ζi)∪J(v))
w(αi + hβ) + `2|∇(αi + hβ)|2 dx

(5.10)
Note that the plastic dissipation term is split over the regular part and the singu-

lar part and for simplicity we set aside the plastic strain localization on the Dirichlet
boundary.

1. Equilibrium and kinematic admissibility:

Take β = 0 and q = 0 in (5.9) and (5.10) such that Eti(ui+hv, αi, pi) ≥ Eti(ui, αi, pi).
Using (5.7) we just have to deal with the current plastic potential H which is sub-
additive and 1-homogeneous. Hence, the fourth term in (5.10) becomes,
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∫

J(ζi)∪J(v)
b(αi)H((JuiK + hv)� ν − pi−1) dHn−1 ≤

∫

J(ζi)∪J(v)
b(αi)H(JuiK� ν − pi−1) dHn−1

+ h

∫

J(ζi)∪J(v)
b(αi)H(JvK� ν) dHn−1

(5.11)

Passing Eti(ui, αi, pi) to left and dividing by h and letting h → 0 at the limit, we
obtain,

∫

Ω\(J(ζi)∪J(v))
a(αi)A

(
e(ui)− pi

)
: e(v) dx−

∫

∂NΩ
g(ti) · v dHn−1

+

∫

J(v)
b(αi)H(JvK� ν) dHn−1 ≥ 0

(5.12)

By integrating by part the integral term in e(v) over Ω \ (J(ζi) ∪ J(v)), we get,

∫

Ω\(J(ζi)∪J(v))
σi : e(v) dx = −

∫

Ω\(J(ζi)∪J(v))
div(σi) · v dx+

∫

∂NΩ
σiν · v dHn−1

−
∫

J(ζi)∪J(v)
JσivK · ν dHn−1

(5.13)

where σi = a(αi)A
(
e(ui)−pi

)
. Without plasticity there is no cohesive effect, hence,

σiν = 0 and the non-interpenetration condition leads to JuiK · ν ≥ 0 on J(ζi),
however for a general cohesive model we do not have information for JσiK ν on
J(ζi). So, to overcome this issue we restrict our study to material with tr (pi) = 0,
consequently on the jump set J(ζi) we have tr (JuiK� ν) = JuiK · ν = 0. The
material can only shear along J(ζi) which is commonly accepted for Von Mises
and Tresca plasticity criterion. Thus, we have JvK · ν = 0 on J(ζi) and naturally
JσiK ν = 0 on J(v). The last term of (5.13) stands for,

∫

J(ζi)∪J(v)
JσivK · ν dHn−1 =

∫

J(ζi)
JσiK ν · v dHn−1 +

∫

J(v)
σiν · JvK dHn−1

Combining the above equation, (5.12) and (5.13), considering J(v) = ∅ and by a
standard localization argument i.e. taking v concentrated around Hn−1 and zero
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almost everywhere, we obtain that all the following integrals must vanish,

0 = −
∫

Ω\J(ζi)
div(σi) · v dx+

∫

∂NΩ
(σiν − g(ti)) · v dHn−1

−
∫

J(ζi)
JσiK ν · v dHn−1

(5.14)

which leads to the equilibrium and the prescribed boundary conditions,





div(σi) in Ω \ J(ζi)
σiν = g(ti) on ∂NΩ
JσiK ν = 0 on J(ζi)

(5.15)

Note that the normal stress σiν is continuous across J(ζi) but the tangential com-
ponent might be discontinuous.

2. Plastic yield criteria on the jump set: Since the above equation (5.15) holds, for
J(v) 6= ∅ in (5.12) we have,

∫

J(v)
b(αi)H(JvK� ν) dHn−1 ≥

∫

J(v)
σiν · JvK dHn−1 (5.16)

Thus, on each point of the jump set J(v),

b(αi) sup
τ∈K
{τ : JvK� ν} ≥ σiν · JvK (5.17)

The right hand side of the above inequality,

σiν · JvK = (σiν − (σiν · ν)ν) · JvK

Considering Von Mises criterion we get on the left hand side,

sup
τ∈K
{τ : JvK� ν} = σp|| JvK ||

√
n− 1

n
.

Taking the maximum for all ‖ν‖ = 1, and letting σi = a(αi)ςi we obtain that (5.17)
becomes,

σp

√
n− 1

n
≥ a(αi)

b(αi)
max
‖ν‖=1

(
ςiν − (ςiν · ν)ν

)
.

This condition is automatically satisfied for Von Mises since a(αi)/b(αi) ≤ 1. We
refer the reader to [5, 82, 81] for more details.
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3. Damage yield criteria in the bulk: Taking v = 0 and q = 0 thus J(v) = ∅ in
the optimality condition (5.9), such that Eti(ui, αi + hβ, pi) ≥ Eti(ui, αi, pi), then
dividing by h and passing to the limit, we get, after integrating by parts the∇α·∇β
term over Ω \ J(ζi),

∫

Ω\J(ζi)

[
1

2

a′(αi)

a(αi)
σi : (e(ui)− pi) +

σ2
c

2kE

[
w′(αi)− 2`2∆αi

]
+ b′(αi)Di(pi)

]
βdx

+
σ2
c

2kE

∫

∂Ω
2`2(∇αi · ν)β dHn−1

+

∫

J(ζi)

[
b′(α)Di(JuiK� ν)− σ2

c `
2

kE
J∇αiK · ν

]
β dHn−1 ≥ 0

(5.18)

The above equation holds for any β ≥ 0, hence, all contributions must be positive,
such that in Ω \ J(ζi), we have,

[
1

2

a′(αi)

a(αi)
σi : (e(ui)− pi) +

σ2
c

2kE

[
w′(αi)− 2`2∆αi

]
+ b′(αi)Di(pi)

]
≥ 0 (5.19)

The damage yield criterion is composed of the classical part from gradient damage
models and a coupling part in b′(α). When the material remains undamaged and
plasticity occurs, the cumulation of dissipated plastic energy combined with the
property that b′(α) < 0 leads to decrease the left hand side which becomes an
equality up to a critical plastic dissipation. At this moment the damage is triggered.

4. Damage yield criteria in the jump set: From (5.18) we have,

[
b′(αi)Di(JuiK� ν)− σ2

c `
2

kE
J∇αiK · ν

]
≥ 0 (5.20)

The gradient damage is discontinuous across the jump set J(ζi) due to plastic strain
concentration and vice versa.

5. Damage boundary condition: From (5.18) we have,

(∇αi · ν) ≥ 0 (5.21)

6. Plastic yield criteria in the bulk: Take v = 0 and β = 0 thus J(v) = ∅ in the
optimality condition (5.9) such that Eti(ui, αi, pi +hq) ≥ Eti(ui, αi, pi) which gives,

ψ(ui, αi, pi + hq) + b(αi)H(pi + hq − pi−1) ≥ ψ(ui, αi, pi) + b(αi)H(pi − pi−1)
(5.22)
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where

ψ(ui, αi, pi + hq) =
1

2
a(αi)A

(
e(ui)− (pi + hq)

)
:
(
e(ui)− (pi + hq)

)

Since ψ is differentiable by letting h → 0 and applying the subgradient definition
to (5.22), we get −∂ψ/∂pi ∈ b(αi)∂H(pi − pi−1).

We recover the stress admissible constraint provided by the plastic yield surface.

a(αi)A
(
e(ui)− pi

)
∈ b(αi)∂H(pi − pi−1) (5.23)

The damage state decreases the plastic yield surface leading to a stress softening
property.

7. Flow rule in the bulk: Applying the convex conjugate (Legendre-Fenchel) to the
above equation we get,

pi − pi−1 ∈ ∂Ib(αi)K (σi) (5.24)

which is the flow rule in a discrete settings, by letting max(ti − ti−1) → 0 we get
the time continuous one.

8. Damage consistency: The damage consistency is recovered using the energy balance
condition which is not fully exposed here. However the conditions obtained are:

[
1

2

a′(αi)

a(αi)
σi : (e(ui)− pi) +

σ2
c

2kE

[
w′(αi)− 2`2∆αi

]
+ b′(αi)Di(pi)

]
(αi − αi−1) = 0

(5.25)

[
b′(αi)Di(JuiK� ν)− σ2

c `
2

kE
J∇αiK · ν

]
(αi − αi−1) = 0 (5.26)

[∇αi · ν ] (αi − αi−1) = 0 (5.27)

9. Damage irreversibility in the domain: The damage irreversibility constraint is,

αi ≥ αi−1 (5.28)

All of this conditions are governing laws of the problem. The evolution of the yields
surfaces are given by the equations (5.19) and (5.23).
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5.1.3 Application to a 1d setting

The goal of this section is to apply the gradient damage model coupled with perfect
plasticity in 1d setting by considering a bar in traction. Relevant results are obtained
through this example such as, the evolutions of the two yields functions, the damage
localization process and the role of the gradient damage jump term which governs the
displacement jump set. We refer the reader to Alessi-Marigo [3, 5, 4, 6] for a complete
exposition of this 1d application.

In the sequel, we consider a one-dimensional evolution problem of an homogeneous
elasto-plastic-damageable bar Ω = [−L,L] stretched by a time controlled displacements
at boundaries where damage remains equal to zero. Assume that a unique displacement
jump may occur on the bar located at the coordinate x0, thus the admissible displace-
ment, damage and plastic strain sets are respectively,

Ct : = {u ∈ SBD(Ω,R) : u(−L) = −tL, u(L) = tL}
D : = {α ∈ H1(Ω,R) : 0 ≤ α ≤ 1}
Q : = {p ∈M(Ω,R)}

(5.29)

such that,
p = JuK on x0 = J(u).

The state variables of the sound material is at the initial condition (u0, α0, p0) =
(0, 0, 0). In one dimensional setting the plastic yield criteria is |τ | ≤ σp, thus the plastic
potential power is given by,

H(ṗ) = sup
|τ |≤σp

{τ ṗ} =

{
0 if ṗ = 0
σp|ṗ| if ṗ > 0

By integrating over the process, the dissipated plastic energy density is σpp̄ where
the cumulated plastic strain is p̄ =

∫ t
0 |ṗs|ds. Since no external force is applied, the total

energy of the bar is given by,

Et(u, α, p, p̄) =

∫

Ω\{x0}

1

2
a(α)E(u′ − p)2 dx+

σ2
c

2kE

∫

Ω\{x0}
w(α) + `2|α′|2 dx

+b(α)

∫

Ω
σpp̄ dx

(5.30)

where E is the Young’s modulus and (•)′ = ∂(•)/∂x. The quadruple state variables
(ut, αt, pt, p̄t) ∈ Ct×D×Q×M(Ω,R) is solution of the evolution problem, if the following
conditions holds:

1. The equilibrium,

σ′t(x) = 0, σt(x) = a(αt(x))E(u′t(x)− pt(x)), ut(−L) = −tL and ut(L) = tL

The stress is constant along the bar hence it is only function of time.
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2. The damage yield criteria in the bulk,

fD(σt, αt(x), p̄t(x)) :=− 1

2

c′(αt(x))

E
σ2
t +

σ2
c

2kE

(
w′(αt(x))− 2`2α′′t (x)

)

+ b′(αt(x))σpp̄t(x) ≥ 0

(5.31)

3. The damage yield criteria on x0,

b′(αt(x0)) Ju(x0)Kσp −
`2σ2

c

kE

q
α′t(x0)

y
≥ 0 (5.32)

4. The damage yield criteria on ±L,

α′t(−L) ≥ 0, α′t(L) ≤ 0 (5.33)

5. The plastic yield criteria in the bulk and on the jump,

fY (σt, αt(x)) := |σt| − b(αt(x))σp ≤ 0 (5.34)

6. Plastic flow rule in the bulk,

b(αt(x))σp|ṗt(x)| − σtṗt(x) = 0 (5.35)

7. The damage consistency in the bulk, jump and boundary,

fD(αt(x), pt(x), p̄t(x))α̇t(x) = 0

[
b′(αt(x0)) Ju(x0)Kσp −

`2σ2
c

kE

q
α′t(x0)

y ]
α̇t(x) = 0

α′t(±L)α̇t(±L) = 0

(5.36)

8. The energy balance at the boundary,

α′t(±L)α̇t(±L) = 0 (5.37)

9. The irreversibility which applies everywhere in Ω,

0 ≤ αt(x) ≤ 1, α̇t(x) ≥ 0 (5.38)

We restrict our study to rY = σc/σp > 1, meaning that the plastic yield surface is
below the damage one. Consequently after the elastic stage, the bar will behave plasti-
cally. During the plastic stage, the cumulation of plastic strain decreases fD until the
damage yield criteria is reached. On the third stage both damage and plasticity evolves
simultaneously such that fD = 0 and fY = 0 on the jumps x0. Of course there is no
displacement jump on the bar before the third stage. Let expose the solution (u, α, p)
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for the elastic, plastic and plastic damage stages.

The elastic response of the bar ends once the tension reached u′t = σp/E. During this
regime the damage and plastic strain remain equal to zero. After this loading point, the
plasticity stage begins and we have a uniform p = p̄ = u′t − σp/E and α = 0 in Ω. Since
b′(α) < 0 and p̄ increases during the plastic stage, the damage yield criteria fD decreases
until the inequality (5.31) becomes an equality. At this loading time both criterion are
satisfied, such that, fY = 0 and fD = 0. Hence, plugging the equation (5.34) into (5.31),
we get,

− b′(αt(x))p̄t(x) =
σp
E

(
−1

2
c′(αt(x))b2(αt(x)) +

r2
Y

2k

(
w′(αt(x))− 2`2α′′t (x)

))
(5.39)

By taking αt(x) = 0 in the above equation, we get the condition when the plastic
stage ends, for a uniform plastic strain,

p̄ = u′t −
σp
E

=
σp

(−b′(0))E

[
r2
Y

2k
w′(0)− 1

2
c′(0)b2(0)

]
(5.40)

The last stage is characterized by the evolution of the damage. For a given x0 take L
long enough to avoid any damage perturbation at the boundary such that, the damage
remains equal to zero at the extremities of the bar α(±L) = 0 and assume being maximum
at x0, α(x0) = β. Let α′ ≥ 0 over [−L, x0) with α′(−L) = 0, multiplying the equation
(5.31) by 2α′ and integrate over [−L, x0), we get,

− 2E

σp

∫ x0

−L
b′(αt(x))α′t(x)p̄t(x) dx =

(
c(β)− c(0)

)σ2
t

σ2
p

+
r2
Y

k

(
w(β)− `2β′2

)
(5.41)

A priori, the cumulated plastic strain evolves along the part of the bar [−L, x0), but
since the maximum damage value β is reached on x0 and the stress is uniform in the bar
we have σt(x) ≤ b(β)σp. In other words the plasticity does not evolve anymore in the
bar except on x0, and p̄ is equal to (5.40). We obtain a first integral of the form of,

`2β′2 =
k

r2
Y

(
c(β)− c(0)

)
b2(β) + w(β) + 2

(
b(β)− b(0)

)
p̄
Ek

σpr2
Y

(5.42)

We know that on the jump set, we have,

b′(β) Ju(x0)Kσp −
`2σ2

c

kE

q
β′

y
= 0 (5.43)

Since β is known, the stress on the bar and the displacement jump on x0 can be
computed. We define the energy release rate as the energy dissipated by the damage
process,
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Gt :=

∫

Ω\{x0}

σc
2kE

(
w(αt(x)) + `2α′2t (x)

)
+ b(αt(x))σpp̄ dx+ b(αt(x0))σp Ju(x0)K

and the critical value is given for complete damage localization once σ = 0.

Let us recall some fundamental properties for a(α), b(α) and w(α) to satisfy. Natu-
rally the stiffness function must satisfy a′(α) < 0, a(0) = 1 and a(1) = 0, and the damage
potential function w′(α) > 0, w(0) = 0 and up to a rescaling w(1) = 1. The required
elastic phase is obtained for α 7→ −a2(α)w′(α)/a′(α) is strictly increasing. The coupling
function b′(α) < 0 ensure that the damage yield surface decreases with the cumulated
plastic strain and b(0) = 1. For numerical reason (a, b, w) must be convex with respect to
α which is not the case for the provided closed from solution in [4] for ATk see Table 5.1.
Consequently, we prefer the model named AT1 where a 1d computed solution example
(dark lines) is compared with the numerical simulation (colored lines) see Figure 5.3.
The numerical implementation is detailed in the following section 5.2. For this 1d ex-
ample, we see the three phases described below in the stress-displacement plot, precisely
the stress softening leads to a localization of the damage in which a cohesive response is
obtained at the center.

Name a(α) w(α) b(α)

AT1 (1− α)2 α a(α) + ηb

ATk
1− w(α)

1 + (c1 − 1)w(α)
1− (1− α)2 (1− w(α))c2

Table 5.1: Variety of possible models, where c1, c2 are constants.

5.2 Numerical implementation of the gradient damage mod-
els coupled with perfect plasticity

In the view to numerically implement the gradient damage model coupled with perfect
plasticity it is common to discretized in time and space. For the time discretization evolu-
tion we refer to the Definition 8. However in the numerical implantation we do not enforce
energy balance condition justified by following the spirit of [31, 35]. Functions space are
discretized through standards finite elements methods over the domain. Both damage
and displacement fields are projected over linear Lagrange elements. Whereas the plastic
strain tensor is approximated by piecewise constant element. By doing so we probably
use the simplest finite element to approximate the evolution problem. Conversely, the
chosen finite element space cannot describe the jumps set of u and the localization of
p, however it might be possible to account such effects by using instead discontinuous
Galerkin methods. Nevertheless, as you will see on numerical simulations performed, the
plasticity concentrates in a strip of few elements once the damage localizes. Numerically
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Figure 5.3: Comparisons of the computed solution (dark lines) for AT1 see Table 5.1 with
the numerical simulation (colored lines) for parameters E = 1, σp = 1, ` = 0.15, σc =
1.58, L = .5 and ηb = 0. The (top-left) picture shows the stress-displacement evolu-
tion, the (top-right) plot is the displacement jump vs. the stress during the softening
behavior. The (bottom-left) figure shows the damage profile during the localization for
three different loadings. The (bottom-right) is the evolution of the energy release vs. the
displacement jump also known as the cohesive law (Barenblatt).
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we are not restricted to Von Mises plastic criterion only but any associated plasticity.
Since a(α), b(α) and w(α) are convex the total energy is separately convex with respect
to all variables (u, α, p) but that is not convex. A proposed algorithm to solve the evolu-
tion is alternate minimization which guarantees a path decreasing of the energy, but the
solution might not be unique. At each time step ti, the minimization for each variables
are performed as follows:

i. For a given (α, p) the minimization of E with respect to u is an elastic problem
with the prescribed boundary condition. To solve this we employed preconditioned
conjugate gradient methods solvers.

ii. The minimization of E with respect to α for fixed (u, p) and subject to irreversibility
(α ≤ αi−1) is solved using variational inequality solvers provided by PETCs [17,
15, 16].

iii. For a fixed (u, α) the minimization of E with respect to p is not straight forward the
raw formulation however reformulated as a constraint optimization problem turns
being a plastic strain projection onto a convex set which is solved using SNLP
solvers provided by the open source snlp1. Boundaries of the stress elastic domain
is constrained by a series of yields functions describing the convex set without
dealing with none differentiability issues typically corners.

The retained strategy to solve the evolution problem is to use nested loops. The
inner loop solves the elasto-plastic problem by alternate i. and iii. until convergence.
Then, the outer loop is composed of the previous procedure and ii., the exit is triggered
once the damage has converged. This leads to the following Algorithm 4, where δα and
δp are fixed tolerances. Argument in favor of this strategy is the elasto-plastic is a fast
minimization problem, whereas compute ii. is slow, but changing loops orders haven’t
be tested. All computations were performed using the open source mef902.

Verifications of the numerical implementation have been performed on the elasto-
damage problem and elasto-plasticity problem separately considering three and two di-
mensions cases. The plasticity is verified with the existence and uniqueness of the bi
axial test for elasto-plasticity in [81]. The implementation of the damage have been
checked with propagation of fracture in Griffith regime, the optimal damage profile in 2d
and many years of development by Bourdin. The verification of the coupling is done by
comparison with the one dimensional setting solution in section 5.1.3.

1available at http://abs-5.me.washington.edu/snlp/ and at https://bitbucket.org/bourdin/
snlp

2available at https://www.bitbucket.org/bourdin/mef90-sieve
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Algorithm 4 Alternate minimization algorithm at the step i
1: Let, j = 0 and α0 := αi−1, p0 := pi−1

2: repeat
3: Let, k = 0 and p0 := pj

4: repeat
5: Solve the equilibrium,

uk+1 := argmin
u∈Ci

Eti(u, αj , pk)

6: Solve the plastic strain projection on each cells,

pk+1 := argmin
p∈Mn

s

a(αj)A(e(uk+1)−p)∈b(αj)K

1

2
A(p− pi−1) : (p− pi−1)

7: k := k + 1
8: until

∣∣pk − pk−1
∣∣
L∞
≤ δp

9: Set, uj+1 := uk and pj+1 := pk

10: Compute the damage,

αj+1 := argmin
α∈Di
α≥αi−1

Eti(uj+1, α, pj+1)

11: j := j + 1
12: until

∣∣αj − αj−1
∣∣
L∞
≤ δα

13: Set, ui := uj , αi := αj and pi := pj

5.3 Numerical simulations of ductile fractures

5.3.1 Plane-strain ductility effects on fracture path in rectangular spec-
imens

The model offer a large variety of possible behaviors depending on the choice of func-
tions a(α), b(α), w(α) and the plastic yield function fY (τ) considered. From now, the
presentation is limited to AT1 in Table 5.1 and Von Mises plasticity such that,

fY (σ) = ||σ||eq − σp

where ||σ||eq =
√

n
n−1dev(σ) : dev(σ) and dev(σ) denotes the deviatoric stresses.

Considering an isotropic material, the set of parameters to calibrate is (E, ν, σp, σc, `)
where the Young’s modulus E, the Poisson ratio ν and the plastic yield stress σp can be
easily characterized by experiments. However, σc and ` are still not clear but in brittle
fracture nucleation they are estimated by performing experiments on notched specimen
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see [177]. Hence, a parameter analysis for our model is to study influences of the ratio
rY = σc/σp and ` independently.

Consider a rectangular specimen of length (L = 2) and width (H = 1) in plane strain
setting, made of a sound material with the set up E = 1, ν = .3 and σp = 1, fixed on the
left and stretched on the right extremity by a time loading displacement with rollers at
interfaces illustrated on the Figure 5.4.

L

H
U

Figure 5.4: Rectangular specimen in tensile with rollers boundary condition on the left-
right extremities and stress free on the remainder. The characteristic mesh size is h = `/5.

Let first performed numerical simulations by varying the stress ratio of initial yields
surfaces rY ∈ [.5, 6] with an internal length equal to ` = .02 smaller than the geometric
parameters (L,H) and let others parameter unchanged.

The damage fields obtained after failure of samples are summarized on the Figure 5.5.
A transition from a straight to a slant fracture for an increasing rY is observed similarly
to the Ti glass alloy in the Figure 5.1. A higher initial yields stress ratio induces a larger
plastic strain accumulation leading to a thicker damage localization strip. The measure
of the fracture angle reported in Figure 5.5 does not take into account the turning crack
path profile around free surfaces caused by the damage condition ∇α ·ν = 0. Clearly, for
the case σc < σp the fracture is straight and there is mostly no accumulation of plastic
strain. However due to plasticity, damage is triggered along one of shears bands, resulting
of a slant fracture observation in both directions but never two at the same time.

Now, let us pick up one of this stress ratio rY = 5 for instance and vary the internal
length ` ∈ [0.02, 0.2]. The stress vs. displacement is plotted in Figure 5.6 and shows
various stress jumps amplitude during the damage localization due to the snap-back
intensity. This effect is well known in phase-field models to brittle fracture and pointed
out by [3, 6, 4, 147, 148]. A consequence of this brutal damage localization is a sudden
drop of the stress, when this happens the energy balance is not satisfied. Continuous and
discontinuous energies evolution is observed for respectively ` = 0.2 and ` = 0.02 plotted
on Figure 5.7.

The attentive reader may notice that the plastic energy decreases during the damage
localization which contradicts the irreversibility hypothesis of the accumulation of dissi-
pated plastic energy. Actually the plotted curve is not accurately representative of the
dissipated plasticity energy but it is a combination of damage and plasticity such that a
part of this energy is transformed into a surface energy contribution. Hence, those dis-
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Figure 5.5: Shows fracture path angle vs. the initial yields stress ratio rY . Transition
form straight to slant crack characteristic of a brittle - ductile fracture transition.
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Figure 5.6: Stress vs. displacement plot for σc/σp = 5, shows the influence of the internal
length on the stress jump amplitude signature of the snap back intensity. Letters on the
curve ` = .1 referees to loading times when snap-shots of α and p̄ are illustrated in Figure
5.9.
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sipation potentials are not the proper one to consider because there are coupled, correct
potentials are φp and φd plotted in the Figure 5.8.
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Figure 5.7: Smooth energies evolution for ` = .2 which verify the energy balance (left),
conversely to ` = .02 on the right due to the brutal damage evolution. Dissipations
potentials refer to (5.4).
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Figure 5.8: Smooth energies evolution for ` = .2 which verify the energy balance (left),
conversely to ` = .02 on the right due to the brutal damage evolution. Dissipations
potentials refers to (5.2) and (5.1).

Snap-shots of damage, accumulated plastic strain and damage in a deformed configu-
ration fields are illustrated in Figure 5.9 for different loading time (a, b, c, d) shown in the
Figure 5.6. The cumulated plastic strain is concentrated in few mesh elements across the
surface of discontinuity (fracture center). Because damage and plasticity evolve together
along this strip it is not possible to dissociate mechanism coming from pure plasticity
or damage independently. It can be interpreted as a mixture of permanent deformation
and voids growing with mutual cause and effects relationship.
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Figure 5.9: Rectangular stretched specimen with rollers boundary displacement for pa-
rameters σc/σp = 5 and ` = .1, showing snap-shots of damage, cumulated plastic strain
and damage in deformed configuration (the displacement magnitude is 1%) at different
loading time refereed to the plot 5.6 for (a, b, c, d). The cumulated plastic strain defined
as p̄ =

∫ t
0 ||ṗ(s)||ds has a piecewise linear color table with two pieces, [0, 14] for the ho-

mogeneous state and [14, 600] for visibility during the localization process. Moreover the
maximum value is saturated.
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5.3.2 Plane-strain simulations on two-dimensional mild notched spec-
imens

In the sequel we restrict our scope to study fractures nucleation and propagation in
ductile regime (rY = σc/σp large enough) for a mild notched specimen. Experimentally
this design shape samples favor fractures around the smallest cross section size. Necking
is a well known instability phenomena during large deformations of a ductile material.
A consequence of the necking on a specimen is a cross sectional reductions which implies
a curved profile to the deformed sample. Since we are in small deformations setting,
necking cannot be recovered, thus we artificially pre-notch the geometry (sketched in
Figure 5.10 with the associated Table 5.2) to recover a plastic strain concentrations. For
more realistic numerical simulations and comparisons with pictures of the experiments
on Aluminum alloy AA5754Al–Mg in Figure 5.2, we set material properties (see Table
5.3) such that the internal length ` is in the range of grain size, σc is chosen to recover
7% elongation and (E, ν, σp) are given. We assume that the material follows Von Mises
perfect plasticity criteria and the elastic stress domain shrinks from σp to the lower limit
of 15% of σp. The experiments are built such that displacements are controlled at the
extremities of the plate and observations are in the sheet thickness direction. Hence,
the 2d plane strain theory is adopted for numerical simulations. Also we have studied
two types of boundaries conditions, clamped and rollers boundary condition respectively
named set-up A and set-up B.

H

L

lr

W

d

parabola shape notch

D

h, refined  
mesh size

Figure 5.10: Specimen geometry with nominal dimensions, typical mesh are ten times
smaller that the one illustrated above. Note that meshes in the center area of the geom-
etry are refined with a constant size h. Also a linear growing characteristic mesh size is
employed from the refined area to a coarsen mesh at the boundary.

L H W r D d l h ρ

6 2.2 1.3 .5 1.2 1.09 1.1 `/3 1

Table 5.2: Specimen dimensions. All measures are in [mm]. The internal length ` is
specified in Table 5.3.

We observed two patterns of ductile fractures depending on the boundary condition
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E ν σp σc `
[GPa] [MPa] [GPa] [µm]

70 .33 100 2 400

Table 5.3: Material parameters used for AA5754Al–Mg.

considered, such that, the set-up B provides a slant fracture shear dominating with nu-
cleation at the center and propagation along one of the shear band, and for the set-up A,
the fracture nucleates at the center, propagates along the specimen section and bifurcate
following shear bands. Final crack patterns are pure shear configuration and a slant-flat-
slant path. Again some snap shots of damage, cumulated plastic strain and damage in
deformed configuration are presented in Figure 5.12 and Figure 5.13 for respectively the
set-up A and B. Time loadings highlighted by letter are reported in the stress vs. strain
plot in Figure 5.11. Main phenomenon are: (a) during the pure plastic phase there is
no damage and the cumulated plastic strain is the sum of two large shear bands where
the maximum value is located at the center, (b) the damage is triggered on the middle
and develops following shear bands as a “X” shape, (c) a macro fracture nucleates at the
center but stiffness remained and the material is not broken, (d) failure of the specimen
with the final crack pattern.
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(d)

Set−up A

Set−up B

Figure 5.11: Plot of the stress vs. strain (tensile axis component) for the mild notch
specimen with clamped and rollers interfaces conditions respectively set-up A and set-up
B

Close similarities between pictures of ductile fracture nucleations from simulations
and experimental observations can be drawn. However, we were not able to capture
cup-cones fractures. To recover the desired effect we introduced a perturbation in the
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α

0 .5 1

p̄

0 .35 2.5

α def. config.

0 .5 1

(a)

(b)

(c)

(d)

Figure 5.12: Zoom in the center of mild notched stretched specimen with clamped bound-
ary displacement (set-up A) showing snap-shots of damage, cumulated plastic strain and
damage in deformed configuration (the displacement magnitude is 1) at different loading
time refers to Figure 5.11 for (a, b, c, d). The cumulated plastic strain color table is piece-
wise linear with two pieces, [0, .35] for the homogeneous state and [.35, 2.5] for visibility
during the localization process. Moreover the maximum value is saturated. The pseudo
color turns white when (α ≥ 0.995) for the damage on the deformed configuration figure.
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α

0 .5 1

p̄

0 .35 2.5

α def. config.

0 .5 1

(a)

(b)

(c)

(d)

Figure 5.13: Zoom in the center of mild notched stretched specimen with rollers boundary
displacement (set-up B) showing snap-shots of damage, cumulated plastic strain and
damage in deformed configuration (the displacement magnitude is 1) at different loading
time refers to Figure 5.11 for (a, b, c, d). The cumulated plastic strain color table is
piecewise linear with two pieces, [0, .35] for the homogeneous state and [.35, 2.5] for
visibility during the localization process. Moreover the maximum value is saturated. The
pseudo color turns white when (α ≥ 0.995) for the damage on the deformed configuration
figure.
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α

0 .5 1

p̄

0 .35 2.5

α def. config.

0 .5 1

(A)

(B)

Figure 5.14: Zoom in the center of eccentric mild notched stretched specimen (ρ = .9)
showing snap-shots of damage, cumulated plastic strain and damage in deformed con-
figuration (the displacement magnitude is 1) at the failure loading time, for the set-up
A and B. The cumulated plastic strain color table is piecewise linear with two pieces,
[0, .35] for the homogeneous state and [.35, 2.5] for visibility during the localization pro-
cess. Moreover the maximum value is saturated. The pseudo color turns white when
(α ≥ 0.995) for the damage on the deformed configuration figure.

geometry such that the parabola shape notch is no more symmetric along the shortest
cross section axis, i.e. an eccentricity is introduced by taking ρ < 1 see the Figure 5.10. In
a sense there is no reason that necking induces a perfectly symmetric mild notch specimen.
Leaving all parameters unchanged and taking ρ = .9 we observed two cracks patterns:
a shear dominating and cup-cones for respectively set-up B and set-up A illustrated in
Figure 5.14. This type of non-symmetric profile with respect to the shortest cross section
axis implies a different stress concentration between the right and the left side of the
sample which consequently leads to unbalance the plastic strain concentrations intensity
on both parts. Since damage is guided by the dissipated plastic energy we have recovered
this cup cones fracture with again a macro fracture has nucleated at the center. Also the
set-up B with ρ = .9 is not significantly perturbed to get a new crack path but still in
the shear dominating mode.

5.3.3 Ductile fracture in a round notched bar

A strength of the variational approach is that it will require no modification to perform
numerical simulations in three dimensions. Also this part is devoted to recover common
observations made on ductile fracture in a round notched bar such as cup-cones and
shear dominating fractures shapes. The ductile fracture phenomenology for low triaxility
(defined as the ratio of the hydrostatic over deviatoric stresses) have been investigated
by Benzerga [23], relevant pictures of cracks nucleation and propagation into a round bar
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with none destructive techniques is summarized in the Figure 5.19 .
Since we focus on the fracture phenomenology we do not attribute physical values

to material parameter but give attentions to the yield stress ratio rY and the internal
length `. The internal length governs the thickness of the localization which has to be
small enough compared to the specimen radius to observe a distinct fracture. In the
other sides, ` drives the characteristics mesh size, typically ` ∼ 3h which constraint the
numerical cost. For clarity the cumulated plastic strain will not be shown anymore since
it does not provide further information on the fracture path than the damage. Based
on the above results, boundary conditions play a fundamental role in our simulations so
we will consider two cases: an eccentric mild notched shape (ρ = .7) specimens in the
set-up A and B respectively associated to clamped and rollers boundary conditions. Both
geometries are solids of revolution (tensile axis revolution) based on the sketch Figure
5.10 and Table 5.4. The smallest damageable plastic yield surface is given for 5% of σp.

L H W r D d l h

4.5 2.2 1.05 .5 1.09 0.98 0.82 `/2.5

Table 5.4: Specimen dimensions. For the internal length ` refer to the Table 5.5.

E ν σp rY `

1 .3 1 12 .03

Table 5.5: Parameters used for 3d simulations.

Those simulations were performed with 48 cpus during 48 hours on a 370 000 mesh
nodes for 100 time steps with the provided resources of high performance computing of
Louisiana State University3. Results of numerical simulations are shown on the Figures
5.17 and 5.18 were fractures patterns are similar to one observed in the literature see
pictures 5.15 and 5.16. An overview of the fracture evolution in round bar are exposed
in the Figures 5.19.

The ductile fracture phenomenology is presented by Benzerga-Leblond [23], and shows
the voids growing and coalescence during the early stage of stress softening, then a macro
fracture nucleates at the center end propagates following shear lips formations. Numerical
simulations at the loading time (a) for the set-up A and B show a diffuse damage in the
middle of the specimen which is exactly a loss of stiffness in the material. This can
be interpreted as an homogenization of voids density. A sudden macro crack appears
around the loading time (b) which corresponds to the observation made. From (b) to (c)
the crack follows shear lips formation in a shear dominating or cup-cones crack patterns
depending on the prescribed boundary conditions clamped (set-up A) or rollered (set-up
B).

3http://www.hpc.lsu.edu
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5.3. Numerical simulations of ductile fractures

Figure 5.15: Photo produced by [107] show-
ing cup cones fracture in a post mortem
rounded bar.

Figure 5.16: Photo produced by [107] show-
ing shear dominating fracture in a post
mortem rounded bar.

Figure 5.17: Snap-shot of the damage in de-
formed configuration for the set-up A after
failure, two pieces next to each other.

Figure 5.18: Snap-shot of the damage in de-
formed configuration for the set-up B after
failure, two pieces next to each other.

These numerical examples suggest that variational phase-field models of ductile frac-
ture are capable of predicting crack nucleation and propagation in low triaxiality speci-
men for the 2d plane strain specimen and round bar for a simple model considered.

Conclusion

In contrast with most of literature on ductile fracture we proposed a variational model
by coupling gradient damage models and perfect plasticity following seminal papers of
[3, 4, 5, 6]. In this chapter, we have investigated crack nucleation and propagation in
multiple geometries in simple case of functions under Von Mises perfect plasticity. We
confirmed observations reported elsewhere in the literature that fracture nucleates at the
center of the specimen and propagates following shear bands before reaching free surfaces
for low triaxiality configuration in ductile materials. Our numerical simulations also
highlight that crack patterns observed is strongly dependent of the prescribed boundary
conditions and geometry which leads to a plastic dissipated energy concentrations path.
The strength of the proposed phase-field model is the ability to handle with both ductile
and brittle fractures which mostly have been separated like oil and water. The key
parameter to capture this transition is the ratio of initial yields surfaces of damage
over plastic one. We show that variational phase-field models are capable of qualitative
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(a)

(b)

(c)

(a)

(b)

(c)

U

σ

set−up A set−up B

Figure 5.19: Picture in Benzerga-Leblond [23] shows the phenomenology of ductile frac-
ture in round notched bars of high strength steel: damage accumulation, initiation of
macroscopic crack, crack growth and shear lip formation. Numerical simulations shows
the overlapped stress vs. displacement blue and orange curves for respectively set-up A
and setup B, and snap shots of damage slices in the deformed round bar. The hot color
table illustrates the damage, the red color turns white for α ≥ 0.95 which correspond to
less than 0.25% of stiffness.
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predictions of crack nucleation and propagation in a mild notch range of geometries
including two and three dimensions, hence, this model is a good candidate to address the
aforementioned issues. Also, the energy balance is preserved since the fracture evolution
is smooth driven by and internal length.

Of course, there are still many investigations to performed before claiming the su-
periority of the model such that, fracture nucleation at a notch of a specimen (high
triaxiality) which due to the unbounded hydrostatics pressure for the plasticity criteria
(Von Mises for instance) leads to hit the damage yield surface first, consequently a brittle
response is attended. To get a cohesive response a possible choice of plastic yield surface
is to consider a cap model closing the hydrostatic pressure in the stress space domain.
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Chapter 6

Concluding, remarks and
recommended future work

In this dissertation, we studied the phenomena of fracture in various structures using
phase-field models.

The phase-field models have been derived from Francfort Marigo’s variational models
to fracture which have been conceived as an approximation of Griffith’s theory. In Chap-
ter 1 we exposed a complete overview and main properties of the model. In Chapter 2,
we applied the phase-field models to study fracture nucleation in a V- and U- notches
geometries. Supported by numerous validation we have demonstrated the ability of the
model to make quantitative prediction of crack nucleation in mode I. The model is based
on general energy minimization principle and does not require any ad-hoc criteria, just
to adjust the internal length. Moreover the model properly accounts for size effects that
cannot be recovered from Griffith-based theory. In Chapter 3 we have shown that the
extended model to hydraulic fracturing satisfies Griffith’s propagation criterion and there
is no issues to handle with multi-fracking scenario. The fracture path is dictated by the
minimization principle of the total energy. A loss of crack symmetry is observed in the
case of a pressurized network of parallel fractures. In Chapter 4, we solely focused on the
perfect elasto-plasticity models and we started by the classical approach to its variational
formulation. A verification of the alternated algorithm technique is exposed. The last
chapter was devoted to combine models exposed in the first and the fourth chapter to
perform cohesive and ductile fractures. Our numerical simulations have shown the capa-
bility of the model to retrieve main features of ductile fractures in a mild notch specimen,
precisely nucleation and propagation phenomenon. Also, we have observed that crack
paths are sensitive to the geometry and boundary conditions applied on it.

In short, we have demonstrated that variational phase-field models address some of
vexing issues associated with brittle fractures: scale effects, nucleation, existence of a
critical stress and path prediction. By a simple coupling with the well known perfect
plasticity theory, we recovered phenomenology of ductile fractures patterns.
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Of course, there are still remaining issues that need to be addressed. Our numerical
simulations do not enforce energy balance as indicated by a drop of the total energy upon
crack nucleation without string singularities illustrated in Chapter 2. Perhaps extensions
into phase field models of dynamic fracture will address this issue.

Also fracture in compression remains an issue in variational phase-field models. It is
not clear of either of this models is capable of simultaneously accounting for nucleation
under compression and self-contact.

A recommended future work is to study ductile fractures following the spirit of Chap-
ter 2. The idea is by varying the yields stress ratio recover first the brittle initiation
criterion and then study the ductile fracture for different notch angles.
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Titre : Modèles variationnels à champ de phase pour la rupture de type fragile et ductile: nucléa-
tion et propagation
Mots clefs : Modèles à champ de phase pour la rupture, nucléation de fissure, effet d’échelle dans les matériaux
fragiles, modèles d’endommagement à gradient, fracturation hydraulique, stabilité des fissures, modèles de plastic-
ités, approche variationnelle, rupture ductile.
Résumé :
Les simulations numériques des fissures de type fragile par les modèles d’endommagement à gradient deviennent
maintenant très répandues. Les résultats théoriques et numériques montrent que dans le cadre de l’existence d’une
pré-fissure la propagation suit le critère de Griffith. Alors que pour le problème à une dimension la nucléation de la
fissure se fait à la contrainte critique, cette dernière propriété dimensionne le paramètre de longueur interne.

Dans ce travail, on s’attarde sur le phénomène de nucléation de fissures pour les géométries communément
rencontrées et qui ne présentent pas de solutions analytiques. On montre que pour une entaille en U- et V-
l’initiation de la fissure varie continument entre la solution prédite par la contrainte critique et celle par la ténacité
du matériau. Une série de vérifications et de validations sur différents matériaux est réalisée pour les deux géométries
considérées. On s’intéresse ensuite à un défaut elliptique dans un domaine infini ou très élancé pour illustrer la
capacité du modèle à prendre en compte les effets d’échelles des matériaux et des structures.

Dans un deuxième temps, ce modèle est étendu à la fracturation hydraulique. Une première phase de vérification
du modèle est effectuée en stimulant une pré-fissure seule par l’injection d’une quantité donnée de fluide. Ensuite
on étudie la simulation d’un réseau parallèle de fissures. Les résultats obtenus montrent qu’une seule fissure est
activée dans ce réseau et que ce type de configuration vérifie le principe de moindre énergie. Le dernier exemple se
concentre sur la stabilité des fissures dans le cadre d’une expérience d’éclatement à pression imposée pour l’industrie
pétrolière. Cette expérience d’éclatement de la roche est réalisée en laboratoire afin de simuler les conditions de
confinement retrouvées lors des forages.

La dernière partie de ce travail se concentre sur la rupture ductile en couplant le modèle à champ de phase avec les
modèles de plasticité parfaite. Grâce à la structure variationnelle du problème on décrit l’implémentation numérique
retenue pour le calcul parallèle. Les simulations réalisées montrent que pour une géométrie légèrement entaillée la
phénoménologie des fissures ductiles comme par exemple la nucléation et la propagation sont en concordances avec
ceux reportées dans la littérature.

Title : Variational phase-field models from brittle to ductile fracture: nucleation and propagation
Keywords: Phase-field models of fracture, crack nucleation, size effects in brittle materials, validation & verifica-
tion, gradient damage models, hydraulic fracturing, crack stability, plasticity model, variational approach, ductile
fracture
Abstract : Phase-field models, sometimes referred to as gradient damage, are widely used methods for the nu-
merical simulation of crack propagation in brittle materials. Theoretical results and numerical evidences show that
they can predict the propagation of a pre-existing crack according to Griffith’s criterion. For a one-dimensional
problem, it has been shown that they can predict nucleation upon a critical stress, provided that the regularization
parameter is identified with the material’s internal characteristic length.

In this work, we draw on numerical simulations to study crack nucleation in commonly encountered geometries
for which closed-form solutions are not available. We use U- and V-notches to show that the nucleation load varies
smoothly from the one predicted by a strength criterion to the one of a toughness criterion when the strength of
the stress concentration or singularity varies. We present validation and verification of numerical simulations for
both types of geometries. We consider the problem of an elliptic cavity in an infinite or elongated domain to show
that variational phase field models properly account for structural and material size effects.

In a second movement, this model is extended to hydraulic fracturing. We present a validation of the model
by simulating a single fracture in a large domain subject to a control amount of fluid. Then we study an infinite
network of pressurized parallel cracks. Results show that the stimulation of a single fracture is the best energy
minimizer compared to multi-fracking case. The last example focuses on fracturing stability regimes using linear
elastic fracture mechanics for pressure driven fractures in an experimental geometry used in petroleum industry
which replicates a situation encountered downhole with a borehole called burst experiment.

The last part of this work focuses on ductile fracture by coupling phase-field models with perfect plasticity.
Based on the variational structure of the problem we give a numerical implementation of the coupled model for
parallel computing. Simulation results of a mild notch specimens are in agreement with the phenomenology of
ductile fracture such that nucleation and propagation commonly reported in the literature.
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