A. Albertini, F. D-'alessandro, and D. , Notions of controllability for bilinear multilevel quantum systems, IEEE Transactions on Automatic Control, vol.48, issue.8, pp.1399-1403, 2003.
DOI : 10.1109/TAC.2003.815027

R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Application, Lecture Notes in Physics, vol.717, 2007.
DOI : 10.1016/b0-12-512666-2/00384-9

C. Altafini, Controllability properties for finite dimensional quantum Markovian master equations, Journal of Mathematical Physics, vol.103, issue.6, pp.2357-2372, 2003.
DOI : 10.1021/jp992544x

URL : http://arxiv.org/pdf/quant-ph/0211194

M. Amniat-talab, S. Guérin, and H. R. Jauslin, Quantum averaging and resonances: Two-level atom in a one-mode quantized field, Journal of Mathematical Physics, vol.1, issue.4, 2005.
DOI : 10.1103/PhysRevA.50.1725

J. E. Avfg-]-avron, M. Fraas, G. M. Graf, and P. Grech, Adiabatic Theorems for Generators of Contracting Evolutions, Communications in Mathematical Physics, vol.58, issue.3, pp.163-191, 2012.
DOI : 10.1023/A:1014556511004

. Be and K. Beauchard, Local controllability of a 1D Schrödinger equation, J. Math. Pures Appl, vol.84, issue.7, pp.851-956, 2005.

. Bec, K. Beauchard, and J. Coron, Controllability of a quantum particle in a moving potential well, J. Funct. Anal, vol.232, issue.2, pp.328-389, 2006.

. Bel, K. Beauchard, and C. Laurent, Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl, vol.94, issue.5, pp.520-554, 2010.

K. Bts-]-bergmann, H. Theuer, and B. W. Shore, Coherent population transfer among quantum states of atoms and molecules, Reviews of Modern Physics, vol.76, issue.3, 1998.
DOI : 10.1063/1.442948

U. Bcs-]-boscain, . Chambrion, and M. Sigalotti, On some open questions in bilinear quantum control, European Control Conference (ECC), 2013.

U. Bccs-]-boscain, M. Caponigro, T. Chambrion, and M. Sigalotti, A Weak Spectral Condition for the Controllability of the Bilinear Schr??dinger Equation with Application to the Control of a Rotating Planar Molecule, Communications in Mathematical Physics, vol.75, issue.4, pp.423-455, 2012.
DOI : 10.1103/RevModPhys.75.543

U. Bgrs-]-boscain, J. Gauthier, F. Rossi, and M. Sigalotti, Approximate Controllability, Exact Controllability, and Conical Eigenvalue Intersections for Quantum Mechanical Systems, Communications in Mathematical Physics, vol.30, issue.4, pp.1225-1239, 2014.
DOI : 10.1007/978-3-642-57237-1_4

U. Bcms-]-boscain, F. Chittaro, P. Mason, and M. Sigalotti, Adiabatic Control of the Schr??dinger Equation via Conical Intersections of the Eigenvalues, IEEE Transactions on Automatic Control, vol.57, issue.8, pp.1970-1983, 2012.
DOI : 10.1109/TAC.2012.2195862

U. Bmps-]-boscain, P. Mason, G. Panati, and M. Sigalotti, On the control of spin-boson systems, Journal of Mathematical Physics, vol.9, issue.9, 2015.
DOI : 10.1103/PhysRevA.75.052331

. Bms, J. M. Ball, J. E. Marsden, and M. Slemrod, Controllability for distributed bilinear systems, SIAM J. Control Optim, vol.20, issue.4, pp.575-597, 1982.

M. Brh-]-brune, S. Haroche, and J. M. Raimond, Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys, vol.73, pp.565-582, 2001.

. Da and E. B. Davies, Quantum Theory of Open Systems, 1976.

D. [-d-'al-]-d-'alessandro, Introduction to Quantum Control and Dynamics, CRC Applied Mathematics and Nonlinear Science Series, 2007.

J. H. Ebla-]-eberly and C. K. Law, Arbitrary control of a quantum electromagnetic field, Phys. Rev. Lett, vol.76, issue.7, pp.1055-1058, 1996.

. Erpu, S. Ervedoza, and J. P. Puel, Approximate controllability for a system of Schrödinger equation modeling a single trapped ion, Ann. Inst. H. Poincaré Anal. Non Linéair, vol.26, issue.6, pp.2111-2136, 2008.

V. Gorini, A. Kossakowski, and E. C. Sudarshan, Completely positive dynamical semigroups of N-level systems, Journal of Mathematical Physics, vol.17, issue.5, pp.821-825, 1976.
DOI : 10.1063/1.522979

R. Graham and M. Höhnerbach, Two-state system coupled to a boson mode: Quantum dynamics and classical approximations, Zeitschrift f???r Physik B Condensed Matter, vol.51, issue.3, pp.233-248, 1984.
DOI : 10.1007/BF01318416

S. Hara-]-haroche and J. M. Raimond, Exploring the Quantum. Atoms, Cavities and Photons, Oxford Graduate Texts, 2006.

R. Ilt-]-illner, H. Lange, and H. Teismann, Limitations on the control of Schr??dinger equations, ESAIM: Control, Optimisation and Calculus of Variations, vol.33, issue.4, pp.615-635, 2006.
DOI : 10.1088/0305-4470/11/9/011

. Jacu, E. T. Jaynes, and F. W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proceedings of the IEEE, vol.51, issue.1, pp.89-109, 1963.

. Jur and V. Jurdjevic, Geometric Control Theory, 1997.

. Ka and T. Kato, Perturbation Theory for Linear Operator, Die Grundlehren der mathematischen Wissenschaften, 1966.

. Li and G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys, vol.48, issue.2, pp.119-130, 1976.

D. Lidar, T. Albash, S. Boixo, and P. Zanardi, Quantum Adiabatic Markovian Master Equations, New J. of Physics, vol.14, 2012.

D. Lidar, T. Albash, L. C. Venuti, and P. Zanardi, Adiabaticity in open quantum systems, Phys. Rev. A, vol.93, issue.2, 2016.

. Miro, M. Mirrahimi, and P. Rouchon, Controllability of Quantum Harmonic Oscillators, IEEE Trans Automatic Control, vol.49, issue.5, pp.745-747, 2004.

. Mor and V. Moretti, Teoria Spettrale e Meccanica Quantistica, 2010.

G. Nen-]-nenciu and G. Rasche, On the adiabatic theorem for nonself-adjoint Hamiltonians, Journal of Physics A: Mathematical and General, vol.25, issue.21, pp.5741-5751, 1992.
DOI : 10.1088/0305-4470/25/21/027

. Pa and K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, 1992.

G. Pp-]-panati, Pinna, L: Approximate controllability of the Jaynes-Cummings dynamics, eprint arXiv, pp.1712-05666

. Pspt, G. Panati, C. Sparber, and S. Teufel, Geometric currents in piezoelectricity, Arch. Rat. Mech. Analysis, vol.191, issue.3, pp.387-422, 2009.

G. Panati, H. Spohn, and S. Teufel, Motion of Electrons in Adiabatically Perturbed Periodic Structures, Analysis, Modeling and Simulation of Multiscale Problems, 2006.
DOI : 10.1007/3-540-35657-6_22

G. Panati, H. Spohn, and S. Teufel, The time-dependent Born-Oppenheimer approximation, ESAIM: Mathematical Modelling and Numerical Analysis, vol.100, issue.2, pp.297-314, 2007.
DOI : 10.1063/1.466806

URL : http://www.esaim-m2an.org/articles/m2an/pdf/2007/02/m2an0597.pdf

I. I. Rabi, On the Process of Space Quantization, Physical Review, vol.47, issue.4, p.324, 1936.
DOI : 10.1103/PhysRev.47.739

I. I. Rabi, Space Quantization in a Gyrating Magnetic Field, Physical Review, vol.50, issue.8, p.652, 1937.
DOI : 10.1103/PhysRev.50.348

B. Simon, Methods of modern mathematical physics. I: Functional analysis, self-adjointness, 1975.

B. Simon, Methods of modern mathematical physics. II: Fourier analysis, self-adjointness, 1975.

B. Simon, Methods of modern mathematical physics. IV: Analysis of operators, 1978.

P. Ro-]-rouchon, Quantum system and control, ARIMA Rev, Afr. Rech. Inform. Math Appl, vol.9, pp.325-357, 2008.

. Spi and M. Spivak, A Comprehensive Introduction to Differential Geometry, 1999.

. Sp and H. Spohn, Dynamics of charged particles and their radiation field, 2004.

H. J. Sus-]-sussman, A General Theorem on Local Controllability, SIAM Journal on Control and Optimization, vol.25, issue.1, pp.158-194, 1987.
DOI : 10.1137/0325011

. Teu and S. Teufel, Adiabatic Perturbation Theory in Quantum Dynamics, 2003.

. Tur and G. Turinici, On the controllability of bilinear quantum systems, Mathematical models and methods for ab initio Quantum Chemistry, 2000.