J. Bear and Y. Bachmat, Introduction to modeling of transport phenomena in porous media, Springer science & business media, 2012.
DOI : 10.1007/978-94-009-1926-6

F. A. Coutelieris and J. Delgado, Transport processes in porous media, Advanced structured materials, 2012.
DOI : 10.1007/978-3-642-27910-2

G. Qiu, X. J. Zhu, and J. , Research history, classification and applications of metal porous material, pp.1-11, 2016.

H. Yang and P. Jiang, Large-Scale Colloidal Self-Assembly by Doctor Blade Coating, Langmuir, vol.26, issue.16, pp.13173-13182, 2010.
DOI : 10.1021/la101721v

D. Wu, F. Xu, and B. Sun, Design and Preparation of Porous Polymers, Chemical Reviews, vol.112, issue.7, pp.3959-4015, 2012.
DOI : 10.1021/cr200440z

A. Scozzari and B. Mansouri, Water security in the Mediterranean region: an international evaluation of management, control, and governance approaches, Springer science & business media, 2011.
DOI : 10.1007/978-94-007-1623-0

M. Y. Corapcioglu and S. Jiang, Colloid-facilitated groundwater contaminant transport, Water resources research, pp.2215-2226, 1993.
DOI : 10.1021/es60058a005

J. P. Herzig, D. M. Leclerc, and P. Goff, Flow of suspensions through porous media-application to deep filtration [J]. Industrial & engineering chemistry, pp.8-35, 1970.

T. K. Stevik, K. Aa, and G. Ausland, Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review, Water Research, vol.38, issue.6, pp.1355-1367, 2004.
DOI : 10.1016/j.watres.2003.12.024

J. J. Behnke, Clogging in Surface Spreading Operations for Artificial Ground-Water Recharge, Water resources research, pp.870-876, 1969.
DOI : 10.2136/sssaj1962.03615995002600010001x

K. Kanov and R. Burns, Particle tracking in open simulation laboratories [C]. High performance computing, networking, storage and analysis, SC-International Conference for, pp.1-11, 2015.

C. Scott, Particle Tracking Simulation of Pollutant Discharges, Journal of Environmental Engineering, vol.123, issue.9, pp.919-927, 1997.
DOI : 10.1061/(ASCE)0733-9372(1997)123:9(919)

K. M. Yao, M. T. Habibian, O. Melia, and C. , Water and waste water filtration. Concepts and applications [J]. Environmental science & technology, pp.1105-1112, 1971.

R. Rajagopalan and C. Tien, Trajectory analysis of deep-bed filtration with the sphere-in-cell porous media model, AIChE Journal, vol.22, issue.3, pp.523-533, 1976.
DOI : 10.1002/aic.690220316

A. Salama, A. Negara, and M. Amin, Numerical investigation of nanoparticles transport in anisotropic porous media, Journal of Contaminant Hydrology, vol.181, pp.114-130, 2015.
DOI : 10.1016/j.jconhyd.2015.06.010

C. Bianco, T. Tosco, and R. Sethi, A 3-dimensional micro- and nanoparticle transport and filtration model (MNM3D) applied to the migration of carbon-based nanomaterials in porous media, Journal of Contaminant Hydrology, vol.193, pp.10-20, 2016.
DOI : 10.1016/j.jconhyd.2016.08.006

P. Lopez, A. Omari, and G. Chauveteau, Simulation of surface deposition of colloidal spheres under flow [J]. Colloids and surfaces A: physicochemical and engineering aspects, pp.1-3, 2004.

K. Ishizaki, S. Komarneni, and M. Nanko, Porous materials process technology and applications, Springer science & business media, 2013.

C. J. Doonan, D. J. Tranchemontagne, and T. G. Glover, Exceptional ammonia uptake by a covalent organic framework, Nature Chemistry, vol.54, issue.3, pp.235-238, 2010.
DOI : 10.1038/nchem.548

J. Rzayev and M. A. Hillmyer, Nanochannel Array Plastics with Tailored Surface Chemistry, Journal of the American Chemical Society, vol.127, issue.38, pp.13373-13379, 2005.
DOI : 10.1021/ja053731d

D. Schaefer, Engineered Porous Materials, MRS Bulletin, vol.21, issue.04, pp.14-19, 1994.
DOI : 10.1080/10667857.1993.11784987

K. Ishizu, N. Kobayakawa, and S. Uchida, Ordered Microporous Surface Films Formed by Core-Shell-Type Nanospheres, Macromolecular rapid communications, pp.961-965, 2006.
DOI : 10.1021/cen-v073n011.p042

Q. Sun, Z. Dai, and X. Meng, Porous polymer catalysts with hierarchical structures, Chemical Society Reviews, vol.10, issue.17, pp.6018-6034, 2015.
DOI : 10.1021/nl904082k

H. M. El-kaderi, J. R. Hunt, and J. L. Mendoza-corté-s, Designed Synthesis of 3D Covalent Organic Frameworks, Science, vol.316, issue.5822, pp.268-272, 2007.
DOI : 10.1126/science.1139915

J. K. Kim, S. Y. Yang, and Y. Lee, Functional nanomaterials based on block copolymer self-assembly, Progress in polymer science, pp.1325-1349, 2010.
DOI : 10.1016/j.progpolymsci.2010.06.002

J. X. Jiang, A. Trewin, and F. Su, Microporous Poly(tri(4-ethynylphenyl)amine) Networks: Synthesis, Properties, and Atomistic Simulation, Macromolecules, vol.42, issue.7, pp.2658-2666, 2009.
DOI : 10.1021/ma802625d

A. P. Cote, A. I. Benin, and N. W. Ockwig, Porous, Crystalline, Covalent Organic Frameworks, Science, vol.310, issue.5751, pp.1166-1170, 2005.
DOI : 10.1126/science.1120411

P. Kaur, J. T. Hupp, and S. Nguyen, Porous Organic Polymers in Catalysis: Opportunities and Challenges, ACS Catalysis, vol.1, issue.7, pp.819-835, 2011.
DOI : 10.1021/cs200131g

A. I. Cooper and J. Desimone, Polymer synthesis and characterization in liquid/supercritical carbon dioxide [J]. Current opinion in solid state and materials science, pp.761-768, 1996.

J. Sa-nguanruksa, R. Rujiravanit, and P. Supaphol, Porous polyethylene membranes by template-leaching technique: preparation and characterization, Polymer testing, pp.91-99, 2004.
DOI : 10.1016/S0142-9418(03)00066-7

S. A. Johnson, P. J. Ollivier, and T. Mallouk, Ordered Mesoporous Polymers of Tunable Pore Size from Colloidal Silica Templates, Science, vol.113, issue.5193, pp.963-965, 1999.
DOI : 10.1021/ja00019a046

P. Jiang, K. S. Hwang, and D. M. Mittleman, Template-Directed Preparation of Macroporous Polymers with Oriented and Crystalline Arrays of Voids, Journal of the American Chemical Society, vol.121, issue.50, pp.11630-11637, 1999.
DOI : 10.1021/ja9903476

S. Chakraborty, Y. J. Colón, and R. Q. Snurr, Hierarchically porous organic polymers: highly enhanced gas uptake and transport through templated synthesis, Chemical Science, vol.43, issue.1, pp.384-389, 2015.
DOI : 10.1021/ar1000617

D. Wang and F. Caruso, Fabrication of Polyaniline Inverse Opals via Templating Ordered Colloidal Assemblies, Advanced Materials, vol.13, issue.5, pp.350-354, 2001.
DOI : 10.1002/1521-4095(200103)13:5<350::AID-ADMA350>3.0.CO;2-X

F. C. Pavia, L. Carrubba, V. Brucato, and V. , Morphology and thermal properties of foams prepared via thermally induced phase separation based on polylactic acid blends, Journal of Cellular Plastics, vol.48, issue.5, pp.399-407, 2012.
DOI : 10.1002/jbm.a.31621

E. Aram and S. Mehdipour-ataei, A review on the micro- and nanoporous polymeric foams: Preparation and properties, International Journal of Polymeric Materials and Polymeric Biomaterials, vol.62, issue.7, pp.358-375, 2015.
DOI : 10.1016/j.supflu.2006.09.007

J. Zhao, G. Luo, and J. Wu, Preparation of Microporous Silicone Rubber Membrane with Tunable Pore Size via Solvent Evaporation-Induced Phase Separation, ACS Applied Materials & Interfaces, vol.5, issue.6, pp.2040-2046, 2013.
DOI : 10.1021/am302929c

H. Strathmann, Production of Microporous Media by Phase Inversion Processes, pp.165-195, 1985.
DOI : 10.1021/bk-1985-0269.ch008

W. Yave, R. Quijada, and M. Ulbricht, Syndiotactic polypropylene as potential material for the preparation of porous membranes via thermally induced phase separation (TIPS) process, Polymer, vol.46, issue.25, pp.11582-11590, 2005.
DOI : 10.1016/j.polymer.2005.10.012

?. Stropnik, V. Musil, and M. Brumen, Polymeric membrane formation by wet-phase separation; turbidity and shrinkage phenomena as evidence for the elementary processes, Polymer, vol.41, issue.26, pp.9227-9237, 2000.
DOI : 10.1016/S0032-3861(00)00309-8

M. Bikel, I. G. Punt, and R. G. Lammertink, Micropatterned Polymer Films by Vapor-Induced Phase Separation Using Permeable Molds, ACS Applied Materials & Interfaces, vol.1, issue.12, pp.2856-2861, 2009.
DOI : 10.1021/am900594p

J. K. Kim, K. Taki, and M. Ohshima, Preparation of a Unique Microporous Structure via Two Step Phase Separation in the Course of Drying a Ternary Polymer Solution, Langmuir, vol.23, issue.24, pp.12397-12405, 2007.
DOI : 10.1021/la7013896

D. R. Lloyd, K. E. Kinzer, and H. Tseng, Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation, Journal of Membrane Science, vol.52, issue.3, pp.239-261, 1990.
DOI : 10.1016/S0376-7388(00)85130-3

S. Ramaswamy, A. R. Greenberg, and W. Krantz, Fabrication of poly (ECTFE) membranes via thermally induced phase separation, Journal of Membrane Science, vol.210, issue.1, pp.175-180, 2002.
DOI : 10.1016/S0376-7388(02)00383-6

H. Matsuyama, M. Yuasa, and Y. Kitamura, Structure control of anisotropic and asymmetric polypropylene membrane prepared by thermally induced phase separation, Journal of Membrane Science, vol.179, issue.1-2, pp.91-100, 2000.
DOI : 10.1016/S0376-7388(00)00506-8

C. A. Martí-nez-pé-rez, I. Olivas-armendariz, and J. S. Castro-carmona, Scaffolds for tissue engineering via thermally induced phase separation, Advances in regenerative medicine InTech, 2011.

P. Vandeweerdt, H. Berghmans, and Y. Tervoort, Temperature-concentration behavior of solutions of polydisperse, atactic poly(methyl methacrylate) and its influence on the formation of amorphous, microporous membranes, Macromolecules, vol.24, issue.12, pp.3547-3552, 1991.
DOI : 10.1021/ma00012a014

M. Zhang, C. F. Zhang, and Z. K. Yao, Preparation of high density polyethylene/polyethylene-block-poly(ethylene glycol) copolymer blend porous membranes via thermally induced phase separation process and their properties, Chinese journal of polymer science, pp.337-346, 2010.
DOI : 10.1016/j.memsci.2005.04.043

Z. Yang, P. Li, and L. Xie, Preparation of iPP hollow-fiber microporous membranes via thermally induced phase separation with co-solvents of DBP and DOP, Desalination, vol.192, issue.1-3, pp.1-3, 2006.
DOI : 10.1016/j.desal.2005.10.016

H. Matsuyama, K. Ohga, and T. Maki, Porous cellulose acetate membrane prepared by thermally induced phase separation, Journal of Applied Polymer Science, vol.26, issue.14, pp.3951-3955, 2003.
DOI : 10.1016/0032-3861(96)81620-X

B. J. Cha and J. Yang, Preparation of poly(vinylidene fluoride) hollow fiber membranes for microfiltration using modified TIPS process, Journal of Membrane Science, vol.291, issue.1-2, pp.191-198, 2007.
DOI : 10.1016/j.memsci.2007.01.008

X. Fu, T. Maruyama, and T. Sotani, Effect of surface morphology on membrane fouling by humic acid with the use of cellulose acetate butyrate hollow fiber membranes, Journal of Membrane Science, vol.320, issue.1-2, pp.483-491, 2008.
DOI : 10.1016/j.memsci.2008.04.027

H. Jang, D. H. Song, and H. J. Lee, Preparation of dual-layer acetylated methyl cellulose hollow fiber membranes via co-extrusion using thermally induced phase separation and non-solvent induced phase separation methods, Journal of Applied Polymer Science, vol.421, issue.43, p.42715, 2015.
DOI : 10.1016/j.memsci.2012.07.020

Q. Cheng, Z. Cui, and J. Li, Preparation and performance of polymer electrolyte based on poly(vinylidene fluoride)/polysulfone blend membrane via thermally induced phase separation process for lithium ion battery, Journal of Power Sources, vol.266, pp.401-413, 2014.
DOI : 10.1016/j.jpowsour.2014.05.056

X. Y. Fu, T. Sotani, and H. Matsuyama, Effect of membrane preparation method on the outer surface roughness of cellulose acetate butyrate hollow fiber membrane, Desalination, vol.233, issue.1-3, pp.1-3, 2008.
DOI : 10.1016/j.desal.2007.09.022

Z. Cui, Y. Xu, and L. Zhu, Preparation of PVDF/PEO-PPO-PEO blend microporous membranes for lithium ion batteries via thermally induced phase separation process, Journal of Membrane Science, vol.325, issue.2, pp.957-963, 2008.
DOI : 10.1016/j.memsci.2008.09.022

N. Zhou, F. S. Bates, and T. Lodge, Mesoporous Membrane Templated by a Polymeric Bicontinuous Microemulsion, Nano Letters, vol.6, issue.10, pp.2354-2357, 2006.
DOI : 10.1021/nl061765t

M. S. Barrow, R. L. Jones, and J. O. Park, Physical characterisation of microporous and nanoporous polymer films by atomic force microscopy, scanning electron microscopy and high speed video microphotography, Spectroscopy, vol.18, issue.4, pp.577-585, 2004.
DOI : 10.1155/2004/526415

J. S. Park, S. H. Lee, and T. H. Han, Hierarchically ordered polymer films by templated organization of aqueous droplets Advanced functional materials, pp.2315-2320, 2007.

O. Pitois and B. Francois, Crystallization of condensation droplets on a liquid surface, Colloid & polymer science, pp.574-578, 1999.
DOI : 10.1007/s003960050427

S. R. Armstrong, J. Du, and E. Baer, Co-extruded multilayer shape memory materials: Nano-scale phenomena, Polymer, vol.55, issue.2, pp.626-631, 2014.
DOI : 10.1016/j.polymer.2013.11.044

P. Arora and Z. Zhang, Battery Separators, Chemical Reviews, vol.104, issue.10, pp.4419-4462, 2004.
DOI : 10.1021/cr020738u

W. Lu, Z. Yuan, and Y. Zhao, Porous membranes in secondary battery technologies, Chemical Society Reviews, vol.5, issue.404, pp.2199-2236, 2017.
DOI : 10.1039/C6TA08404D

W. Ye, J. Zhu, and X. Liao, Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators, Journal of Power Sources, vol.299, pp.417-424, 2015.
DOI : 10.1016/j.jpowsour.2015.09.037

W. Chen, Y. Liu, and Y. Ma, Improved performance of PVdF-HFP/PI nanofiber membrane for lithium ion battery separator prepared by a bicomponent cross-electrospinning method, Materials Letters, vol.133, pp.67-70, 2014.
DOI : 10.1016/j.matlet.2014.06.163

H. L. Chen, X. N. Jiao, and J. Zhou, The research progress of Li-ion battery separators with inorganic oxide nanoparticles by electrospinning: A mini review [J]. Functional materials letters, p.1630003, 2016.

D. Li, D. Shi, and K. Feng, Poly (ether ether??ketone) (PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries, Journal of Membrane Science, vol.530, pp.125-131, 2017.
DOI : 10.1016/j.memsci.2017.02.027

G. Venugopal, J. Moore, and J. Howard, Characterization of microporous separators for lithium-ion batteries, Journal of Power Sources, vol.77, issue.1, pp.34-41, 1999.
DOI : 10.1016/S0378-7753(98)00168-2

V. Deimede and C. Elmasides, Separators for Lithium-Ion Batteries: A Review on the Production Processes and Recent Developments, Energy Technology, vol.49, issue.400, pp.453-468, 2015.
DOI : 10.1007/s10853-014-8341-x

M. Baginska, B. J. Blaiszik, and R. J. Merriman, Autonomic shutdown of lithium-ion batteries using thermoresponsive microspheres Advanced energy materials, pp.583-590, 2012.

H. S. Jeong and S. Lee, Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries, Journal of Power Sources, vol.196, issue.16, pp.6716-6722, 2011.
DOI : 10.1016/j.jpowsour.2010.11.037

J. Y. Lee, Y. M. Lee, and B. Bhattacharya, Separator grafted with siloxane by electron beam irradiation for lithium secondary batteries, Electrochimica Acta, vol.54, issue.18, pp.4312-4315, 2009.
DOI : 10.1016/j.electacta.2009.02.088

C. Zhang, Y. Xia, and K. Zuo, The effect of silica addition on the microstructure and properties of polyethylene separators prepared by thermally induced phase separation, Jounal of applied polymer science, pp.40724-40729, 2014.
DOI : 10.1016/j.polymer.2007.12.035

S. R. Armstrong, G. T. Offord, and D. R. Paul, Co-extruded polymeric films for gas separation membranes, Journal of Applied Polymer Science, vol.42, issue.188, pp.218-224, 2013.
DOI : 10.1021/ma9001269

L. Zhou, C. Gao, and W. Xu, Magnetic Dendritic Materials for Highly Efficient Adsorption of Dyes and Drugs, ACS Applied Materials & Interfaces, vol.2, issue.5, pp.1483-1491, 2010.
DOI : 10.1021/am100114f

E. I. Osagie and C. Owabor, Adsorption of naphthalene on clay and sandy soil from aqueous solution [J] Advances in chemical engineering and science, pp.345-351, 2015.

S. Wang, K. Wang, and Y. Pang, Open-cell polypropylene/polyolefin elastomer blend foams fabricated for reusable oil-sorption materials, Journal of Applied Polymer Science, vol.63, issue.33, p.43812, 2016.
DOI : 10.1177/004051759306300404

A. Awoyemi, Understanding the adsorption of polycyclic aromatic hydrocarbons from aqueous phase onto activated carbon, 2011.

Y. Hu, Y. He, and X. Wang, Efficient adsorption of phenanthrene by simply synthesized hydrophobic MCM-41 molecular sieves [J] Applied surface science Pyrene and phenanthrene sorption to model and natural geosorbents in single-and binary-solute systems, J]. Environmental science & technology, vol.31144, issue.21, pp.825-830, 2010.

C. An and G. Huang, Stepwise Adsorption of Phenanthrene at the Fly Ash???Water Interface as Affected by Solution Chemistry: Experimental and Modeling Studies, Environmental Science & Technology, vol.46, issue.22, pp.12742-12750, 2012.
DOI : 10.1021/es3035158

X. Tang, Y. Zhou, and Y. Xu, Sorption of polycyclic aromatic hydrocarbons from aqueous solution by hexadecyltrimethylammonium bromide modified fibric peat, Journal of Chemical Technology & Biotechnology, vol.18, issue.8, pp.1084-1091, 2010.
DOI : 10.1016/S0923-0467(98)00076-1

S. Hall, R. Tang, and J. Baeyens, REMOVING POLYCYCLIC AROMATIC HYDROCARBONS FROM WATER BY ADSORPTION ON SILICAGEL, Polycyclic Aromatic Compounds, vol.1047, issue.3, pp.160-183, 2009.
DOI : 10.1016/j.dyepig.2006.07.023

H. T. Pu and Y. Li, A porous styrenic material for the adsorption of polycyclic aromatic hydrocarbons, Chinese patent 2015108125669, 2016.

S. L. Simkevitz and H. Naguib, Fabrication and Analysis of Porous Shape Memory Polymer and Nanocomposites, High Performance Polymers, vol.24, issue.2, pp.159-183, 2009.
DOI : 10.1007/978-1-84628-372-7

Y. S. Luo, K. C. Cheng, and N. D. Huang, Preparation of porous crosslinked polymers with different surface morphologies via chemically induced phase separation, Journal of Polymer Science Part B: Polymer Physics, vol.50, issue.14, pp.1022-1030, 2011.
DOI : 10.1016/j.polymer.2009.01.049

Y. Li, F. Yang, and J. Yu, Hydrophobic Fibrous Membranes with Tunable Porous Structure for Equilibrium of Breathable and Waterproof Performance, Advanced materials interfaces, p.1600516, 2016.
DOI : 10.1002/admi.201300026

S. Singamaneni, K. Bertoldi, and S. Chang, Instabilities and Pattern Transformation in Periodic, Porous Elastoplastic Solid Coatings, ACS Applied Materials & Interfaces, vol.1, issue.1, pp.42-47, 2009.
DOI : 10.1021/am800078f

M. Srinivasarao, D. Collings, and A. Philips, Three-Dimensionally Ordered Array of Air Bubbles in a Polymer Film, Science, vol.292, issue.5514, pp.79-83, 2001.
DOI : 10.1126/science.1057887

S. Bonyadi and T. S. Chung, Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach, Journal of Membrane Science, vol.331, issue.1-2, pp.66-74, 2009.
DOI : 10.1016/j.memsci.2009.01.014

C. Jin, C. L. Ren, and M. Emelko, Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions, Environmental Science & Technology, vol.50, issue.8, pp.4401-4412, 2016.
DOI : 10.1021/acs.est.6b00218

R. Kretzschmar, K. Barmettler, and D. Grolimund, Experimental determination of colloid deposition rates and collision efficiencies in natural porous media, Water resources research, pp.1129-1137, 1997.
DOI : 10.1021/es60058a005

P. Wero?ski, Y. Walz, and M. Elimelech, Effect of depletion interactions on transport of colloidal particles in porous media, Journal of Colloid and Interface Science, vol.262, issue.2, pp.372-383, 2003.
DOI : 10.1016/S0021-9797(03)00174-7

J. S. Yoon, J. T. Germaine, and P. J. Culligan, Visualization of particle behavior within a porous medium: Mechanisms for particle filtration and retardation during downward transport, Water resources research, pp.1-16, 2006.
DOI : 10.1006/jcis.1993.1205

G. Boccardo, D. L. Marchisio, and R. Sethi, Microscale simulation of particle deposition in porous media, Journal of Colloid and Interface Science, vol.417, pp.227-237, 2014.
DOI : 10.1016/j.jcis.2013.11.007

W. Long, H. Huang, and J. Serlemitsos, Pore-scale study of the collector efficiency of nanoparticles in packings of nonspherical collectors [J]. Colloids and surfaces A: physicochemical and engineering aspects, pp.1-3, 2010.

W. Long and M. Hilpert, A Correlation for the Collector Efficiency of Brownian Particles in Clean-Bed Filtration in Sphere Packings by a Lattice-Boltzmann Method, Environmental Science & Technology, vol.43, issue.12, pp.4419-4424, 2009.
DOI : 10.1021/es8024275

A. Zamani and B. Maini, Flow of dispersed particles through porous media ??? Deep bed filtration, Journal of Petroleum Science and Engineering, vol.69, issue.1-2, pp.71-88, 2009.
DOI : 10.1016/j.petrol.2009.06.016

M. Elimelech, J. Gregory, and X. Jia, Particle deposition and aggregation. measurement, modelling and simulation, 1995.

J. M. Ghidaglia and J. Saut, Nonexistence of travelling wave solutions to nonelliptic nonlinear schr??dinger equations, Journal of Nonlinear Science, vol.1, issue.2, pp.139-145, 1996.
DOI : 10.1017/CBO9780511623998

J. Wan, T. K. Tokunaga, and C. F. Tsang, Improved Glass Micromodel Methods for Studies of Flow and Transport in Fractured Porous Media, Water resources research, pp.1955-1964, 1996.
DOI : 10.1029/95GL01496

L. M. Lanning and R. Ford, Glass micromodel study of bacterial dispersion in spatially periodic porous networks, Biotechnology and Bioengineering, vol.60, issue.5, pp.556-566, 2002.
DOI : 10.1002/bit.10236

S. B. Adamczyk and K. , Deposition of latex particles at heterogeneous surfaces [J]. Colloids and surfaces A: physicochemical and engineering aspects, pp.1-3, 2004.

T. Areepitak and J. Ren, Model simulations of particle aggregation effect on colloid exchange between streams and streambeds [J]. Environmental science & technology, pp.5614-5621, 2011.

H. N. Unni and C. Yang, Brownian dynamics simulation and experimental study of colloidal particle deposition in a microchannel flow, Journal of Colloid and Interface Science, vol.291, issue.1, pp.28-36, 2005.
DOI : 10.1016/j.jcis.2005.04.104

V. Canseco, A. Djehiche, and H. Bertin, Deposition and re-entrainment of model colloids in saturated consolidated porous media: Experimental study [J]. Colloids and surfaces A: physicochemical and engineering aspects, pp.1-3, 2009.

S. Sasidharan, S. Torkzaban, and S. A. Bradford, Coupled effects of hydrodynamic and solution chemistry on long-term nanoparticle transport and deposition in saturated porous media [J]. Colloids and surfaces A: physicochemical and engineering aspects, pp.169-179, 2014.

S. R. Risbud and G. Drazer, Trajectory and distribution of suspended non-Brownian particles moving past a fixed spherical or cylindrical obstacle, Journal of Fluid Mechanics, vol.460, issue.150, pp.213-237, 2013.
DOI : 10.1017/S0022112072002435

Y. I. Chang, S. C. Chen, and E. Lee, Prediction of Brownian particle deposition in porous media using the constricted tube model, Journal of Colloid and Interface Science, vol.266, issue.1, pp.48-59, 2003.
DOI : 10.1016/S0021-9797(03)00636-2

F. Xiao, Pore-scale simulation frameworks for flow and transport in complex porous media [D]. Colorado school of Mines, 2013.

P. Meakin and A. Tartakovsky, Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media, Reviews of Geophysics, vol.23, issue.8, pp.1-47, 2009.
DOI : 10.2118/71310-PA

F. A. Coutelieris, M. E. Kainourgiakis, and A. Stubos, Low Peclet mass transport in assemblages of spherical particles for two different adsorption mechanisms, Journal of Colloid and Interface Science, vol.264, issue.1, pp.20-29, 2003.
DOI : 10.1016/S0021-9797(03)00309-6

N. Sefrioui, A. Ahmadi, and A. Omari, Numerical simulation of retention and release of colloids in porous media at the pore scale [J]. Colloids and surfaces A: physicochemical and engineering aspects, pp.33-40, 2013.

S. Sirivithayapakorn and A. Keller, Transport of colloids in saturated porous media: A pore-scale observation of the size exclusion effect and colloid acceleration, Water Resources Research, vol.58, issue.4, p.1109, 2003.
DOI : 10.1029/93WR02403

S. A. Bradford and S. Torkzaban, Determining Parameters and Mechanisms of Colloid Retention and Release in Porous Media, Langmuir, vol.31, issue.44, pp.12096-12105, 2015.
DOI : 10.1021/acs.langmuir.5b03080

C. Reeshav, Transport and deposition of particles onto homogeneous and chemically heterogeneous porous media geometries, 2011.

M. Elimelech, O. Melia, and C. , Kinetics of deposition of colloidal particles in porous media, Environmental Science & Technology, vol.24, issue.10, pp.1528-1536, 1990.
DOI : 10.1021/es00080a012

J. Tan, Numerical simulation of Nanoparticle delivery in microcirculation, 2012.

P. R. Johnson and M. Elimelech, Dynamics of Colloid Deposition in Porous Media: Blocking Based on Random Sequential Adsorption, Langmuir, vol.11, issue.3, pp.801-812, 1995.
DOI : 10.1021/la00003a023

J. A. Kemps and S. Bhattacharjee, Particle Tracking Model for Colloid Transport near Planar Surfaces Covered with Spherical Asperities, Langmuir, vol.25, issue.12, pp.6887-6897, 2009.
DOI : 10.1021/la9001835

N. Nazemifard, J. H. Masliyah, and S. Bhattacharjee, Particle deposition onto micropatterned charge heterogeneous substrates: Trajectory analysis, Journal of Colloid and Interface Science, vol.293, issue.1, pp.1-15, 2006.
DOI : 10.1016/j.jcis.2005.06.033

I. C. Yeh and G. Hummer, System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations with Periodic Boundary Conditions, The Journal of Physical Chemistry B, vol.108, issue.40, pp.15873-15879, 2004.
DOI : 10.1021/jp0477147

R. F. Probstein, Physicochemical hydrodynamics: An introduction, 2005.
DOI : 10.1002/0471725137

P. Liu, Experimental and numerical investigations into fundamental mechanisms controlling particle transport in saturated porous media [D] Doctoral dissertation of Columbia University, 2016.

H. Tang, T. Cao, and X. Liang, Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of Staphylococcus epidermidis, Journal of biomedical materials research Part A, vol.88, issue.2, pp.454-463, 2009.

J. Happel, Viscous flow in multiparticle systems: Slow motion of fluids relative to beds of spherical particles, AIChE Journal, vol.4, issue.2, pp.197-201, 1958.
DOI : 10.1002/aic.690040214

K. E. Nelson and T. R. Ginn, Colloid Filtration Theory and the Happel Sphere-in-Cell Model Revisited with Direct Numerical Simulation of Colloids, Langmuir, vol.21, issue.6, pp.2173-2184, 2005.
DOI : 10.1021/la048404i

R. S. Cushing and D. Lawler, Depth filtration: fundamental investigation through three-dimensional trajectory analysis[J]. Environmental science & technology, pp.3793-3801, 1998.

M. Elimelech, O. Melia, and C. , Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers, Langmuir, vol.6, issue.6, pp.1153-1163, 1990.
DOI : 10.1021/la00096a023

Y. Tan, J. T. Gannon, and P. Baveye, Transport of bacteria in an aquifer sand: Experiments and model simulations, Water resources research, pp.3243-3252, 1994.
DOI : 10.1080/10643388809388339

L. M. Mcdowell-boyer, J. R. Hunt, and N. Sitar, Particle transport through porous media, Water resources research, pp.1901-1921, 1986.
DOI : 10.1021/es60058a005

M. Van-loenhout, E. S. Kooij, and H. Wormeester, Hydrodynamic flow induced anisotropy in colloid adsorption [J]. Colloids and surfaces A: physicochemical and engineering aspects, pp.1-3, 2009.

J. Happel, Viscous flow in multiparticle systems: Slow motion of fluids relative to beds of spherical particles, AIChE Journal, vol.4, issue.2, pp.197-201, 1958.
DOI : 10.1002/aic.690040214

H. Khan, M. Mirabolghasemi, and H. Yang, Comparative Study of Formation Damage due to Straining and Surface Deposition in Porous Media, SPE International Conference and Exhibition on Formation Damage Control, 2016.
DOI : 10.2118/178930-MS

W. P. Johnson, X. Li, and G. Yal, Colloid Retention in Porous Media:?? Mechanistic Confirmation of Wedging and Retention in Zones of Flow Stagnation, Environmental Science & Technology, vol.41, issue.4, pp.1279-1287, 2007.
DOI : 10.1021/es061301x

F. Civan, Modified formulations of particle deposition and removal kinetics in saturated porous media [J]. Transport in porous media, pp.381-410, 2015.

T. Zhang, M. Murphy, and H. Yu, Mechanistic model for nanoparticle retention in porous media [J]. Transport in porous media, pp.387-406, 2016.

N. D. Ahfir, A. Hammadi, and A. Alem, Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles, Journal of Environmental Sciences, vol.53, pp.161-172, 2017.
DOI : 10.1016/j.jes.2016.01.032

Y. J. Lin, P. He, and M. Tavakkoli, Examining Asphaltene Solubility on Deposition in Model Porous Media, Langmuir, vol.32, issue.34, pp.8729-8734, 2016.
DOI : 10.1021/acs.langmuir.6b02376

P. G. Koullapis, S. C. Kassinos, and M. P. Bivolarova, Particle deposition in a realistic geometry of the human conducting airways: Effects of inlet velocity profile, inhalation flowrate and electrostatic charge, Journal of Biomechanics, vol.49, issue.11, pp.2201-2212, 2016.
DOI : 10.1016/j.jbiomech.2015.11.029

M. D. Becker, Y. Wang, and J. L. Paulsen, In situ measurement and simulation of nano-magnetite mobility in porous media subject to transient salinity, Nanoscale, vol.9, issue.137, pp.1047-1057, 2015.
DOI : 10.3390/s91008130

C. M. Park, K. H. Chu, and J. Heo, Environmental behavior of engineered nanomaterials in porous media: a review, Journal of Hazardous Materials, vol.309, pp.133-150, 2016.
DOI : 10.1016/j.jhazmat.2016.02.006

M. Wang, B. Gao, and D. Tang, Review of key factors controlling engineered nanoparticle transport in porous media, Journal of Hazardous Materials, vol.318, pp.233-246, 2016.
DOI : 10.1016/j.jhazmat.2016.06.065

X. Li, C. L. Lin, and J. D. Miller, Pore-scale Observation of Microsphere Deposition at Grain-to-Grain Contacts over Assemblage-scale Porous Media Domains Using X-ray Microtomography, Environmental Science & Technology, vol.40, issue.12, pp.3762-3768, 2006.
DOI : 10.1021/es0525004

S. Buret, L. Nabzar, and J. A. , Water Quality and Well Injectivity: Do Residual Oil-in-Water Emulsions Matter?, SPE Journal, vol.15, issue.02, pp.557-568, 2010.
DOI : 10.2118/122060-PA

X. Li, C. L. Lin, and J. D. Miller, Role of Grain-to-Grain Contacts on Profiles of Retained Colloids in Porous Media in the Presence of an Energy Barrier to Deposition, Environmental Science & Technology, vol.40, issue.12, pp.3769-3774, 2006.
DOI : 10.1021/es052501w

A. Ahmadi-sé-nichault, V. Canseco, and N. Sefrioui-chaibainou, Displacement of colloidal dispersions in Porous Media experimental & numerical approaches [C]. Diffusion foundations, pp.53-68, 2016.

A. Taghavy, K. D. Pennell, and L. Abriola, Modeling coupled nanoparticle aggregation and transport in porous media: A Lagrangian approach, Journal of Contaminant Hydrology, vol.172, pp.48-60, 2015.
DOI : 10.1016/j.jconhyd.2014.10.012

T. Tosco and R. Sethi, MNM1D: a numerical code for colloid transport in porous media: implementation and validation, American journal of environmental sciences, vol.5, issue.4, pp.516-524, 2009.

V. E. Katzourakis and C. Chrysikopoulos, Mathematical modeling of colloid and virus cotransport in porous media: Application to experimental data, Advances in water resources, pp.62-73, 2014.
DOI : 10.1016/j.advwatres.2014.03.001

V. I. Syngouna and C. Chrysikopoulos, Cotransport of clay colloids and viruses in water saturated porous media [J]. Colloids and surfaces A: Physicochemical and engineering aspects, pp.56-65, 2013.

M. P. Hoepfner, V. Limsakoune, and V. Chuenmeechao, A Fundamental Study of Asphaltene Deposition, Energy & Fuels, vol.27, issue.2, pp.725-735, 2013.
DOI : 10.1021/ef3017392

J. Su, Z. Gu, and X. Xu, Discrete element simulation of particle flow in arbitrarily complex geometries, Chemical Engineering Science, vol.66, issue.23, pp.6069-6088, 2011.
DOI : 10.1016/j.ces.2011.08.025

Á. Brand, K. Häu?inger, and T. Meyer, Intrapulmonary Distribution of Deposited Particles, Journal of Aerosol Medicine, vol.12, issue.4, pp.275-284, 1999.
DOI : 10.1089/jam.1999.12.275

Y. Kusaka, J. Duval, and Y. Adachi, Morphology and Breaking of Latex Particle Deposits at a Cylindrical Collector in a Microfluidic Chamber, Environmental Science & Technology, vol.44, issue.24, pp.9413-9418, 2010.
DOI : 10.1021/es1026689

Q. Li, C. S. Dai, and W. J. Jiao, Fine particle dispersion and deposition in three different square pore flow structures Applied mechanics and materials, pp.91-95, 2011.

R. Duffadar, S. Kalasin, and J. M. Davis, The impact of nanoscale chemical features on micron-scale adhesion: Crossover from heterogeneity-dominated to mean-field behavior, Journal of Colloid and Interface Science, vol.337, issue.2, pp.396-407, 2009.
DOI : 10.1016/j.jcis.2009.05.046

M. Bendersky, M. M. Santore, and J. Davis, Statistically-based DLVO approach to the dynamic interaction of colloidal microparticles with topographically and chemically heterogeneous collectors, Journal of Colloid and Interface Science, vol.449, pp.443-451, 2015.
DOI : 10.1016/j.jcis.2015.02.031

J. Y. Chen, C. H. Ko, B. S. Elimelech, and M. , Role of spatial distribution of porous medium surface charge heterogeneity in colloid transport [J]. Colloids and surfaces A: physicochemical and engineering aspects, pp.3-15, 2001.

T. Rizwan and S. Bhattacharjee, Particle Deposition onto Charge-Heterogeneous Substrates, Langmuir, vol.25, issue.9
DOI : 10.1021/la804075g

R. D. Duffadar and J. Davis, Interaction of micrometer-scale particles with nanotextured surfaces in shear flow, Journal of Colloid and Interface Science, vol.308, issue.1, pp.20-29, 2007.
DOI : 10.1016/j.jcis.2006.12.068

L. Suresh and J. Walz, Effect of Surface Roughness on the Interaction Energy between a Colloidal Sphere and a Flat Plate, Journal of Colloid and Interface Science, vol.183, issue.1, pp.199-213, 1996.
DOI : 10.1006/jcis.1996.0535

K. Zhao and T. Mason, Suppressing and enhancing depletion attractions between surfaces roughened by asperities [J]. Physical review letters, p.148301, 2008.
DOI : 10.1103/physrevlett.101.148301

X. L. Wang, Z. Y. Lu, and Z. S. Li, Molecular Dynamics Simulation Study on Controlling the Adsorption Behavior of Polyethylene by Fine Tuning the Surface Nanodecoration of Graphite, Langmuir, vol.23, issue.2, pp.802-808, 2007.
DOI : 10.1021/la061492h

T. Phenrat, A. Cihan, and H. J. Kim, Content, and Coatings, Environmental Science & Technology, vol.44, issue.23, pp.9086-9093, 2010.
DOI : 10.1021/es102398e

M. Bendersky and J. Davis, DLVO interaction of colloidal particles with topographically and chemically heterogeneous surfaces, Journal of Colloid and Interface Science, vol.353, issue.1, pp.87-97, 2011.
DOI : 10.1016/j.jcis.2010.09.058

M. Elimelech, J. Y. Chen, and Z. A. Kuznar, Particle Deposition onto Solid Surfaces with Micropatterned Charge Heterogeneity:?? The ???Hydrodynamic Bump??? Effect, Langmuir, vol.19, issue.17, pp.6594-6597, 2003.
DOI : 10.1021/la034516i

S. A. Bradford and S. Torkzaban, Colloid Interaction Energies for Physically and Chemically Heterogeneous Porous Media, Langmuir, vol.29, issue.11, pp.3668-3676, 2013.
DOI : 10.1021/la400229f

R. D. Duffadar and J. Davis, Dynamic adhesion behavior of micrometer-scale particles flowing over patchy surfaces with nanoscale electrostatic heterogeneity, Journal of Colloid and Interface Science, vol.326, issue.1, pp.18-27, 2008.
DOI : 10.1016/j.jcis.2008.07.004

R. Chatterjee, S. K. Mitra, and S. Bhattacharjee, Particle Deposition onto Janus and Patchy Spherical Collectors, Langmuir, vol.27, issue.14, pp.8787-8797, 2011.
DOI : 10.1021/la201421n

M. Zhang, S. A. Bradford, and J. Simunek, Do Goethite Surfaces Really Control the Transport and Retention of Multi-Walled Carbon Nanotubes in Chemically Heterogeneous Porous Media?, Environmental Science & Technology, vol.50, issue.23, pp.12713-12721, 2016.
DOI : 10.1021/acs.est.6b03285

S. Lin, Y. Cheng, and Y. Bobcombe, Deposition of Silver Nanoparticles in Geochemically Heterogeneous Porous Media: Predicting Affinity from Surface Composition Analysis, Environmental Science & Technology, vol.45, issue.12, pp.5209-5215, 2011.
DOI : 10.1021/es2002327

P. R. Johnson, S. Ning, and M. Elimelech, Colloid transport in geochemically heterogeneous porous media: Modeling and measurements [J]. Environmental science & technology, pp.3284-3293, 1996.

N. H. Pham and D. Papavassiliou, Nanoparticle transport in heterogeneous porous media with particle tracking numerical methods [J]. Computational particle mechanics, pp.87-100, 2016.

N. H. Pham and D. Papavassiliou, Effect of spatial distribution of porous matrix surface charge heterogeneity on nanoparticle attachment in a packed bed, Physics of Fluids, vol.60, issue.9, p.82007, 2017.
DOI : 10.1080/02772248.2012.723482

D. Erickson and D. Li, Three-Dimensional Structure of Electroosmotic Flow over Heterogeneous Surfaces, The Journal of Physical Chemistry B, vol.107, issue.44, pp.12212-12220, 2003.
DOI : 10.1021/jp027724c

Y. Liu, C. Zhang, and D. Hu, Oocysts in a Patchwise Charged Heterogeneous Micromodel, Environmental Science & Technology, vol.47, issue.6, pp.2670-2678, 2013.
DOI : 10.1021/es304075j

S. A. Bradford and S. Torkzaban, Colloid Adhesive Parameters for Chemically Heterogeneous Porous Media, Langmuir, vol.28, issue.38, pp.13643-13651, 2012.
DOI : 10.1021/la3029929

C. Shen, V. Lazouskaya, and H. Zhang, Influence of surface chemical heterogeneity on attachment and detachment of microparticles [J]. Colloids and surfaces A: physicochemical and engineering aspects, pp.14-29, 2013.

Z. Adamczyk and T. Van-de-ven, Deposition of particles under external forces in laminar flow through parallel-plate and cylindrical channels, Journal of Colloid and Interface Science, vol.80, issue.2, pp.340-356, 1981.
DOI : 10.1016/0021-9797(81)90193-4

P. R. Waghmare and S. Mitra, Finite reservoir effect on capillary flow of microbead suspension in rectangular microchannels, Journal of Colloid and Interface Science, vol.351, issue.2, pp.561-569, 2010.
DOI : 10.1016/j.jcis.2010.08.039

E. O. Fridjonsson, J. D. Seymour, and G. R. Cokelet, Dynamic NMR microscopy measurement of the dynamics and flow partitioning of colloidal particles in a bifurcation, Experiments in Fluids, vol.6, issue.5, pp.1335-1347, 2010.
DOI : 10.1039/B516401J

P. R. Waghmare and S. Mitra, Mechanism of cell transport in a microchannel with binding between cell surface and immobilized biomolecules [C]. ASME 2009 International mechanical engineering congress and exposition. American society of mechanical engineers, pp.779-784, 2009.

M. Saadatmand, T. Ishikawa, and N. Matsuki, Fluid particle diffusion through high-hematocrit blood flow within a capillary tube, Journal of Biomechanics, vol.44, issue.1, pp.170-175, 2011.
DOI : 10.1016/j.jbiomech.2010.09.004

R. Chein and P. Dutta, Effect of charged membrane on the particle motion through a nanopore Colloids and surfaces A: Physicochemical and engineering aspects, pp.1-3, 2009.

T. Gudipaty, M. T. Stamm, and L. Cheung, Cluster formation and growth in microchannel flow of dilute particle suspensions, Microfluidics and Nanofluidics, vol.16, issue.1, pp.661-669, 2010.
DOI : 10.1088/0960-1317/16/1/009

R. Chatterjee, S. Bhattacharjee, and S. Mitra, Particle transport in patterned cylindrical microchannels, Microfluidics and nanofluidics, pp.1-4, 2012.
DOI : 10.1007/s10404-008-0309-1

J. M. Tarascon and A. M. , Issues and challenges facing rechargeable lithium batteries, Nature, vol.81, issue.8, pp.359-367, 2001.
DOI : 10.1016/S0378-7753(98)00241-9

V. Etacheri, R. Marom, and R. Elazari, Challenges in the development of advanced Li-ion batteries: a review [J]. Energy & environmental science): 3243. [191] oho F, Nov k P, Spahr M E. Safety aspects of graphite negative electrode materials for lithium-ion batteries, Journal of the electrochemical society, vol.4149, issue.98, p.1020, 2002.

Q. Wang, P. Ping, and X. Zhao, Thermal runaway caused fire and explosion of lithium ion battery, Journal of Power Sources, vol.208, pp.210-224, 2012.
DOI : 10.1016/j.jpowsour.2012.02.038

M. Baginska, B. J. Blaiszik, and T. Rajh, Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres, Journal of Power Sources, vol.269, pp.735-739, 2014.
DOI : 10.1016/j.jpowsour.2014.07.048

W. Ji, B. Jiang, and F. Ai, Temperature-responsive microspheres-coated separator for thermal shutdown protection of lithium ion batteries, RSC Advances, vol.101, issue.1, pp.172-176, 2015.
DOI : 10.1016/j.electacta.2012.09.097

C. Shi, P. Zhang, and S. Huang, Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries, Journal of Power Sources, vol.298, pp.158-165, 2015.
DOI : 10.1016/j.jpowsour.2015.08.008

S. H. Tabatabaei, P. J. Carreau, and A. Ajji, Microporous membranes obtained from PP/HDPE multilayer films by stretching, Journal of Membrane Science, vol.345, issue.1-2, pp.148-159, 2009.
DOI : 10.1016/j.memsci.2009.08.038

S. S. Zhang, A review on the separators of liquid electrolyte Li-ion batteries, Journal of Power Sources, vol.164, issue.1, pp.351-364, 2007.
DOI : 10.1016/j.jpowsour.2006.10.065

J. H. Park, W. Park, and J. H. Kim, Close-packed poly(methyl methacrylate) nanoparticle arrays-coated polyethylene separators for high-power lithium-ion polymer batteries, Journal of Power Sources, vol.196, issue.16, pp.7035-7038, 2011.
DOI : 10.1016/j.jpowsour.2010.09.102

X. Huang and J. Hitt, Lithium ion battery separators: Development and performance characterization of a composite membrane, Journal of Membrane Science, vol.425, issue.426, pp.425-426163, 2013.
DOI : 10.1016/j.memsci.2012.09.027

J. Zhang, Z. Liu, and Q. Kong, Renewable and Superior Thermal-Resistant Cellulose-Based Composite Nonwoven as Lithium-Ion Battery Separator, ACS Applied Materials & Interfaces, vol.5, issue.1, pp.128-134, 2013.
DOI : 10.1021/am302290n

J. Shi, Y. Xia, and Z. Yuan, Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery, Scientific reports, p.82521, 2015.
DOI : 10.1021/nl403860k

Q. Wang, Z. Jian, and W. L. Song, Facile fabrication of safe and robust polyimide fibrous membrane based on triethylene glycol diacetate-2-propenoic acid butyl ester gel electrolytes for lithium-ion batteries, Electrochimica Acta, vol.149, pp.176-185, 2014.
DOI : 10.1016/j.electacta.2014.10.087

J. Cheng, H. Pu, and J. Du, A processing method with high efficiency for low density polyethylene nanofibers reinforced by aligned carbon nanotubes via nanolayer coextrusion, Polymer, vol.111, pp.222-228, 2017.
DOI : 10.1016/j.polymer.2017.01.026

K. Obata, S. Tamesue, and K. Hashimoto, Preparation of Porous Poly(pyrrole) Utilizing Agar Particles as Soft Template and Evaluation of Its Actuation Property, Macromolecular materials and engineering, pp.766-771, 2015.
DOI : 10.1021/jp7101463

Y. Zhu, S. Xiao, and Y. Shi, A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries, Journal of Materials Chemistry A, vol.133, issue.26, pp.7790-7797, 2013.
DOI : 10.1021/ja1110464

H. Liao, H. Zhang, and H. Hong, Novel cellulose aerogel coated on polypropylene separators as gel polymer electrolyte with high ionic conductivity for lithium-ion batteries, Journal of Membrane Science, vol.514, pp.332-339, 2016.
DOI : 10.1016/j.memsci.2016.05.009

Q. Liu, M. Xia, and J. Chen, High performance hybrid Al2O3/poly(vinyl alcohol-co-ethylene) nanofibrous membrane for lithium-ion battery separator, Electrochimica Acta, vol.176, pp.949-955, 2015.
DOI : 10.1016/j.electacta.2015.07.104

H. Wen, J. Zhang, and J. Chai, /Li Batteries Operated at 55 ??C, ACS Applied Materials & Interfaces, vol.9, issue.4, pp.3694-3701, 2017.
DOI : 10.1021/acsami.6b14352

K. Prasanna and C. W. Lee, Physical, thermal, and electrochemical characterization of stretched polyethylene separators for application in lithium-ion batteries, Journal of Solid State Electrochemistry, vol.139, issue.5, pp.1377-1382, 2013.
DOI : 10.1016/j.jpowsour.2004.06.055

M. Y. An, H. T. Kim, and D. Chang, Multilayered separator based on porous polyethylene layer, Al2O3 layer, and electro-spun PVdF nanofiber layer for lithium batteries, Journal of Solid State Electrochemistry, vol.378, issue.426, pp.1807-1814, 2014.
DOI : 10.1016/j.memsci.2011.06.005

M. X. Li, X. W. Wang, and Y. Q. Yang, A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries, Journal of Membrane Science, vol.476, pp.112-118, 2015.
DOI : 10.1016/j.memsci.2014.10.056

A. J. Blake, R. R. Kohlmeyer, and J. O. Hardin, 3D Printable Ceramic-Polymer Electrolytes for Flexible High-Performance Li-Ion Batteries with Enhanced Thermal Stability, Advanced energy materials, p.1602920, 2017.
DOI : 10.1039/C6CS00012F

J. Zhang, S. Chen, and X. Xie, Porous poly(vinylidene fluoride-co-hexafluoropropylene) polymer membrane with sandwich-like architecture for highly safe lithium ion batteries, Journal of Membrane Science, vol.472, pp.133-140, 2014.
DOI : 10.1016/j.memsci.2014.08.049

W. Zheng, Y. Zhu, and B. Na, Hybrid silica membranes with a polymer nanofiber skeleton and their application as lithium-ion battery separators, Composites Science and Technology, vol.144, pp.178-184, 2017.
DOI : 10.1016/j.compscitech.2017.03.022

H. Zhang, M. Y. Zhou, and C. E. Lin, Progress in polymeric separators for lithium ion batteries, RSC Advances, vol.132, issue.416, pp.89848-89860, 2015.
DOI : 10.1016/j.matlet.2014.06.117

K. K. Fu, Y. Gong, and J. Dai, Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries, Proceedings of the national academy of sciences of the united states of America, pp.7094-7099, 2016.
DOI : 10.1016/j.ssi.2011.10.022

X. Tang, Q. Cao, and X. Wang, Study of the effect of a novel high-performance gel polymer electrolyte based on thermoplastic polyurethane/poly(vinylidene fluoride)/polystyrene and formed using an electrospinning technique, RSC Advances, vol.196, issue.250, pp.58655-58662, 2015.
DOI : 10.1016/j.jpowsour.2011.07.079

A. Yamada, H. Koizumi, and S. Nishimura, Room-temperature miscibility gap in Li x FePO4, Nature Materials, vol.18, issue.30, pp.357-360, 2006.
DOI : 10.1021/cm051861f

J. Nunes-pereira, M. Kundu, and A. Gören, Optimization of filler type within poly(vinylidene fluoride-co-trifluoroethylene) composite separator membranes for improved lithium-ion battery performance, Composites Part B: Engineering, vol.96, pp.94-102, 2016.
DOI : 10.1016/j.compositesb.2016.04.041

V. A. Agubra, D. Garza, D. Gallegos, and L. , ForceSpinning of polyacrylonitrile formassproduction of lithiumionbattery separators, Journal of applied polymer science, vol.131, issue.1, pp.42847-42854, 2015.

H. S. Jeong, J. H. Kim, and S. Lee, A novel poly(vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separator with phase inversion-controlled microporous structure for a lithium-ion battery, Journal of Materials Chemistry, vol.272, issue.41, pp.9180-9186, 2010.
DOI : 10.1039/c0jm01086c

M. Chi, L. Shi, and Z. Wang, Excellent rate capability and cycle life of Li metal batteries with ZrO 2 /POSS multilayer-assembled PE separators, Nano Energy, vol.28, pp.1-11, 2016.
DOI : 10.1016/j.nanoen.2016.07.037

Z. Wang, F. Guo, and C. Chen, on Polyethylene Separators for Li-Ion Batteries with Enhanced Rate Capability, ACS Applied Materials & Interfaces, vol.7, issue.5, pp.3314-3322, 2015.
DOI : 10.1021/am508149n

M. Liu, P. Zhang, and L. Gou, Enhancement on the thermostability and wettability of lithium-ion batteries separator via surface chemical modification, Materials Letters, vol.208, pp.98-101, 2017.
DOI : 10.1016/j.matlet.2017.05.031

J. Shi, H. Li, and L. Fang, Improving the properties of HDPE based separators for lithium ion batteries by blending block with copolymer PE-b-PEG[J]. Chinese journal of polymer science, pp.309-317, 2013.

J. F. Kim, J. T. Jung, and H. H. Wang, Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching methods, Journal of Membrane Science, vol.509, pp.94-104, 2016.
DOI : 10.1016/j.memsci.2016.02.050

R. Akbarzadeh and A. Yousefi, Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.100, issue.410, pp.1304-1315, 2014.
DOI : 10.1002/jbm.a.34191

N. Barroca, A. L. Daniel-da-silva, and P. M. Vilarinho, Tailoring the morphology of high molecular weight PLLA scaffolds through bioglass addition, Acta Biomaterialia, vol.6, issue.9, pp.3611-3620, 2010.
DOI : 10.1016/j.actbio.2010.03.032

A. Laxminarayan, K. S. Mcguire, and S. S. Kim, Effect of initial composition, phase separation temperature and polymer crystallization on the formation of microcellular structures via thermally induced phase separation, Polymer, vol.35, issue.14, pp.3060-3068, 1994.
DOI : 10.1016/0032-3861(94)90420-0

G. L. Ji, B. K. Zhu, and Z. Y. Cui, PVDF porous matrix with controlled microstructure prepared by TIPS process as polymer electrolyte for lithium ion battery, Polymer, vol.48, issue.21, pp.6415-6425, 2007.
DOI : 10.1016/j.polymer.2007.08.049

Q. Y. Wu, H. Q. Liang, and L. Gu, PVDF/PAN blend separators via thermally induced phase separation for lithium ion batteries, Polymer, vol.107, pp.54-60, 2016.
DOI : 10.1016/j.polymer.2016.11.008

J. Chai, J. Zhang, and P. Hu, A high-voltage poly(methylethyl ??-cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries, Journal of Materials Chemistry A, vol.8, issue.246, pp.5191-5197, 2016.
DOI : 10.1016/j.elecom.2005.12.002

A. Rubio-clemente, R. A. Torres-palma, and G. A. Penuela, Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review [J]. The science of the total environment, pp.201-225, 2014.

K. L. Shih and J. Lederberg, Chloramine mutagenesis in Bacillus subtilis, Science, vol.192, issue.4244, pp.1141-1143, 1976.
DOI : 10.1126/science.818709

. Lemi?, M. Toma?evi?-?anovi?, and M. Adamovi?, Competitive adsorption of polycyclic aromatic hydrocarbons on organo-zeolites [J]. Microporous and mesoporous materials, pp.317-323, 2007.

Z. Xi and C. B. , Removal of polycyclic aromatic hydrocarbons from aqueous solution by raw and modified plant residue materials as biosorbents, Journal of Environmental Sciences, vol.26, issue.4, pp.737-748, 2014.
DOI : 10.1016/S1001-0742(13)60501-X

X. Ge, F. Tian, and Z. Wu, Adsorption of naphthalene from aqueous solution on coal-based activated carbon modified by microwave induction: Microwave power effects [J]. Chemical engineering and processing: Process intensification, pp.67-77, 2015.

D. Wan, G. Wang, and H. Pu, Can Nonspecific Host???Guest Interaction Lead to Highly Specific Encapsulation by a Supramolecular Nanocapsule?, Macromolecules, vol.42, issue.17, pp.6448-6456, 2009.
DOI : 10.1021/ma900952e

Y. Zhou, L. Wang, and Z. Ye, Mango core inner shell membrane template-directed synthesis of porous ZnO films and their application for enzymatic glucose biosensor, Applied Surface Science, vol.285, pp.344-349, 2013.
DOI : 10.1016/j.apsusc.2013.08.058

L. Zhao, C. Wu, and Z. Liu, Highly porous PVDF hollow fiber membranes for VMD application by applying a simultaneous co-extrusion spinning process, Journal of Membrane Science, vol.505, pp.82-91, 2016.
DOI : 10.1016/j.memsci.2016.01.014

Y. Ye, D. Wan, and J. Du, Dendritic amphiphile mediated porous monolith for eliminating organic micropollutants from water, Journal of Materials Chemistry A, vol.4, issue.12, pp.6297-6300, 2015.
DOI : 10.1021/la00081a027

A. Srinivasan and T. Viraraghavan, Decolorization of dye wastewaters by biosorbents: A review, Journal of Environmental Management, vol.91, issue.10, pp.1915-1929, 2010.
DOI : 10.1016/j.jenvman.2010.05.003

M. Zawadzki and J. Wrzyszcz, Hydrothermal synthesis of nanoporous zinc aluminate with high surface area, Materials Research Bulletin, vol.35, issue.1, pp.109-114, 2000.
DOI : 10.1016/S0025-5408(00)00185-9

Y. J. Li, X. Y. Ni, and J. Shen, Nitric acid activated carbon aerogels for supercapacitors Applied mechanics and materials, pp.158-164, 2013.

F. Messina, M. Icardi, and D. Marchisio, Microscale simulation of nanoparticles transport in porous media for groundwater remediation [C]. The COMSOL conference in Milan, 2012.

J. Talbot, G. Tarjus, V. Tassel, and P. R. , From car parking to protein adsorption an overview of sequential adsorption processes [J]. Colloids and surfaces A: Physicochemical and engineering aspects, pp.287-324, 2000.

G. Chauveteau, L. Nabzar, and J. Coste, Physics and modeling of permeability damage induced by particle deposition [C]. SPE formation damage control conference, SPE, vol.39463, pp.409-419, 1998.

L. Nabzar, G. Chauveteau, and C. Roque, A new model for formation damage by particle retention [C]. SPE formation damage control symposium society of petroleum engineers, 1996.

T. Tosco, J. Bosch, and R. U. Meckenstock, Transport of Ferrihydrite Nanoparticles in Saturated Porous Media: Role of Ionic Strength and Flow Rate, Environmental Science & Technology, vol.46, issue.7, pp.4008-4015, 2012.
DOI : 10.1021/es202643c

I. S. Ngene, R. Lammertink, and M. Wessling, A microfluidic membrane chip for in situ fouling characterization, Journal of Membrane Science, vol.346, issue.1, pp.202-207, 2010.
DOI : 10.1016/j.memsci.2009.09.035

B. Asgharian, O. T. Price, and W. Hofmann, Prediction of particle deposition in the human lung using realistic models of lung ventilation, Journal of Aerosol Science, vol.37, issue.10, pp.1209-1221, 2006.
DOI : 10.1016/j.jaerosci.2006.01.002

S. Bensaid, D. L. Marchisio, and D. Fino, Numerical simulation of soot filtration and combustion within diesel particulate filters, Chemical Engineering Science, vol.65, issue.1, pp.357-363, 2010.
DOI : 10.1016/j.ces.2009.06.051

S. A. Bradford, J. Simunek, and M. Bettahar, Modeling Colloid Attachment, Straining, and Exclusion in Saturated Porous Media, Environmental Science & Technology, vol.37, issue.10, pp.2242-2250, 2003.
DOI : 10.1021/es025899u

R. Chatterjee, Transport and deposition of particles onto homogeneous and chemically heterogeneous porous media geometries, 2011.

J. Feder, Random sequential adsorption, Journal of Theoretical Biology, vol.87, issue.2, pp.237-254, 1980.
DOI : 10.1016/0022-5193(80)90358-6

Z. Adamczyk, M. Nattich, and J. Barbasz, Deposition of colloid particles at heterogeneous and patterned surfaces [J] Advances in colloid and interface science, pp.2-17, 2009.

A. Djehiche, M. Gafsi, and V. Canseco, Effet de la force ionique et hydrodynamique sur le dé pôt de particules colloï dales dans un milieu poreux consolidé [J]. The Canadian journal of chemical engineering, pp.781-787, 2015.

D. Gharbi, H. Bertin, and A. Omari, Use of a gamma ray attenuation technique to study colloid deposition in porous media, Experiments in Fluids, vol.37, issue.5, pp.665-672, 2004.
DOI : 10.1016/0043-1354(89)90010-9

T. Baumann and C. Werth, Visualization of colloid transport through heterogeneous porous media using magnetic resonance imaging Colloids and surfaces A: Physicochemical and engineering aspects, pp.1-3, 2005.

R. May and Y. Li, The effects of particle size on the deposition of fluorescent nanoparticles in porous media: Direct observation using laser scanning cytometry [J]. Colloids and surfaces A: Physicochemical and engineering aspects, pp.84-91, 2013.

P. Klauth, R. Bauer, and C. Ralfs, Fluorescence macrophotography as a tool to visualise and quantify spatial distribution of deposited colloid tracers in porous media [J]. Colloids and surfaces A: Physicochemical and engineering aspects, pp.1-3, 2007.

W. P. Johnson, E. Pazmino, and H. Ma, Direct observations of colloid retention in granular media in the presence of energy barriers, and implications for inferred mechanisms from indirect observations, Water Research, vol.44, issue.4, pp.1158-1169, 2010.
DOI : 10.1016/j.watres.2009.12.014

H. Gao, C. Q. Qiu, and D. Fan, Three-dimensional microscale flow simulation and colloid transport modeling in saturated soil porous media, Computers & Mathematics with Applications, vol.59, issue.7, pp.2271-2289, 2010.
DOI : 10.1016/j.camwa.2009.08.057

G. Malvault, A. Omari, and A. Ahmadi, Numerical Simulation of Yield Stress Fluid Flow in Capillary Bundles: Influence of the Form and the Axial Variation in the Cross Section, Transport in Porous Media, vol.19, issue.2, 2016.
DOI : 10.1016/S1001-6058(07)60055-9

URL : https://hal.archives-ouvertes.fr/hal-01650916

J. J. Dí-az, P. Nieto, and D. Castro-fresno, Steady state numerical simulation of the particle collection efficiency of a new urban sustainable gravity settler using design of experiments by FVM, Applied mathematics and computation, vol.217, issue.21, pp.8166-8178, 2011.

F. Wirner, Flow and transport of colloidal suspensions in porous media, Physikalisches Institut der Universi at

U. Dieter, Pseudo-random numbers: The exact distribution of Pairs, Mathematics of computation, pp.855-883, 1971.

Z. Adamczyk, B. Siwek, and L. Szyk, Flow-Induced Surface Blocking Effects in Adsorption of Colloid Particles, Journal of Colloid and Interface Science, vol.174, issue.1, pp.130-141, 1995.
DOI : 10.1006/jcis.1995.1374

C. H. Ko, S. Bhattacharjee, and M. Elimelech, Coupled Influence of Colloidal and Hydrodynamic Interactions on the RSA Dynamic Blocking Function for Particle Deposition onto Packed Spherical Collectors, Journal of Colloid and Interface Science, vol.229, issue.2, pp.554-567, 2000.
DOI : 10.1006/jcis.2000.7062

J. Talbot, G. Tarjus, V. Tassel, and P. R. , From car parking to protein adsorption an overview of sequential adsorption processes Colloids and surfaces A: Physicochemical and engineering aspects, Étude expé rimentale du dé pôt de particules colloï dales en milieu poreux : Influence de l'hydrodynamique et de la salinité [J]. Comptes rendus mé canique, pp.287-3249, 2000.

C. H. Ko and M. Elimelech, The ???Shadow Effect??? in Colloid Transport and Deposition Dynamics in Granular Porous Media:?? Measurements and Mechanisms, Environmental Science & Technology, vol.34, issue.17, pp.3681-3689, 2000.
DOI : 10.1021/es0009323

J. P. Veerapen, B. Nicot, and G. A. Chauveteau, In-Depth Permeability Damage by Particle Deposition at High Flow Rates, SPE European Formation Damage Conference, 2001.
DOI : 10.2118/68962-MS

V. Levich, Physicochemical hydrodynamics, 1962.

Y. J. Li, O. Sarishvili, and A. Omari, Colloidal particle deposition in porous media under flow: A numerical approach, International journal of modeling and optimization, vol.7, issue.1, pp.43-47, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01650787

N. Salehi, Mecanismes de retention hydrodynamique de suspension colloidales en milieux poreux modeles Doctoral dissertation, 1996.

. Adamczyk, P. Wero?ski, and E. Musia?, Irreversible adsorption of hard spheres at random site (heterogeneous) surfaces [J]. The journal of chemical physics, pp.4665-4672, 2002.

. Adamczyk, P. Wero?ski, and E. Musia?, Colloid Particle Adsorption at Random Site (Heterogeneous) Surfaces, Journal of Colloid and Interface Science, vol.248, issue.1, pp.67-75, 2002.
DOI : 10.1006/jcis.2001.8170

N. Nazemifard, J. H. Masliyah, and S. Bhattacharjee, Particle Deposition onto Charge Heterogeneous Surfaces:?? Convection???Diffusion???Migration Model, Langmuir, vol.22, issue.24, pp.9879-9893, 2006.
DOI : 10.1021/la061702q