G. Lagrené, Fonderie et moulage des alliages de magnésium, p.27, 2000.

G. Hénon, C. Mascré, and G. Blanc, Recherche de la qualité des pièces de fonderie. Editions techniques des industries de la fonderie, p.18, 1971.

G. Bellanger, Remplissage des pièces moulées en sable. Système d'attaque, 2006.

C. Collectif and . Masselotage-en-moulage-sable, Editions techniques des industries de la fonderie, p.10, 1994.

N. Chvorinov, Theory of solidification of castings, pp.177-225, 1940.

M. Tiryakioglu, E. Tiryakioglu, and D. R. Askeland, Statistical investigation of the effects of the shape, size and superheat on solidification times of castings Transaction of the American Foundrymen's society, pp.907-913, 1997.

F. Havlicek and T. Elbel, Geometrical modulus of a casting and its influence on solidification process, pp.170-176, 2011.

E. S. Almaghariz, B. P. Conner, L. Lenner, R. Gullapalli, G. P. Manogharan et al., Quantifying the Role of Part Design Complexity in Using 3D Sand Printing for Molds and Cores, International Journal of Metalcasting, vol.7, issue.5, pp.240-252, 2016.
DOI : 10.3722/cadaps.2010.685-700

R. Singh, Three Dimensional Printing for Casting Applications: A State of Art Review and Future Perspectives, Advanced Materials Research, vol.83, issue.86, pp.342-349, 2009.
DOI : 10.4028/www.scientific.net/AMR.83-86.342

G. Budzik, Possibilities of utilizing 3DP technology for foundry mould making, Archives of Foundry Engineering, vol.7, issue.2, pp.65-68, 2007.

D. Snelling, Q. Li, N. Meisel, C. B. Williams, R. C. Batra et al., Lightweight Metal Cellular Structures Fabricated via 3D Printing of Sand Cast Molds, Advanced Engineering Materials, vol.49, issue.7, pp.923-932, 2015.
DOI : 10.1016/S0022-5096(01)00010-2

A. V. Koltygin and V. E. Bazhenov, Development of a substitute for Z cast molding sand used on installations of 3D printing for obtaining aluminum, magnesium, and iron casting, Russian Journal of Non-Ferrous Metals, vol.28, issue.1, pp.38-41, 2012.
DOI : 10.1007/s00170-004-2291-4

D. Brabazon, D. Kennedy, and M. Tyrell, Development of technique for 3D printed mould intricate rapid casting, Solid Freeform Fabrication Symposium, pp.800-808, 2010.

S. S. Bobby, A Preliminary Investigation of Gypsum Bonded Moulds By Three Dimensional Printing, IJRET : International Journal of Research in Engineering and Technology, vol.03, issue.06 11, pp.501-507, 2014.

D. Snelling, H. Blount, C. Forman, K. Ramsburg, A. Wentzel et al., The effects of 3D pritned molds on metal castings Solid Freeform Fabrication Symposium, pp.827-845, 2013.

K. Nyembwe, M. Mashila, P. J. Van-tonder, D. J. De-beer, and E. Gonya, PHYSICAL PROPERTIES OF SAND PARTS PRODUCED USING A VOXELJET VX1000 THREE- DIMENSIONAL PRINTER, South African Journal of Industrial Engineering, vol.27, issue.3, pp.110-121, 2016.
DOI : 10.7166/27-3-1661

J. A. Dantzig and J. W. Wiese, Modeling of heat flow in sand castings: Part II. Applications of the boundary curvature method, Metallurgical Transactions B, vol.59, issue.2, pp.203-209, 1985.
DOI : 10.1007/BF02679712

G. Dour, Fonderie : alliages, procédés, propriétés d'usage, défauts. Aide-mémoire de l'ingénieur, Dunod, p.18, 2009.

K. Nyembwe, D. De-beer, J. Van-der-walt, and S. Bhero, ASSESSMENT OF SURFACE FINISH AND DIMENSIONAL ACCURACY OF TOOLS MANUFACTURED BY METAL CASTING IN RAPID PROTOTYPING SAND MOULDS, The South African Journal of Industrial Engineering, vol.23, issue.3, pp.130-143, 2012.
DOI : 10.7166/23-3-516

F. J. Edler, G. Lagrené, and R. Siepe, Thin-walled Mg Structural Parts by a Low-pressure Sand Casting Process, Magnesium Alloys and their Applications, pp.553-557, 2006.
DOI : 10.1002/3527607552.ch87

J. Hogg, H. Westengen, and D. Albright, Low pressure sand casting of magnesium alloys, Proceedings of the International Symposium on Extraction, Refining and Fabrication of Light Metals, p.14, 1991.
DOI : 10.1016/B978-0-08-041444-7.50012-3

M. Colombié, Matériaux Métalliques -2ème édition, p.24, 2008.

H. E. Friedrich and B. L. Mordike, Magnesium Technology : Metallurgy, Design Data, Applications, pp.24-27, 2006.

M. S. Dargusch, G. Dour, N. Schauer, C. M. Dinnis, and G. Savage, The influence of pressure during solidification of high pressure die cast aluminium telecommunications components, Journal of Materials Processing Technology, vol.180, issue.1-3, pp.37-43, 2006.
DOI : 10.1016/j.jmatprotec.2006.05.001

A. Luo, Magnesium casting technology for structural applications, Journal of Magnesium and Alloys, vol.1, issue.1, pp.2-22, 2013.
DOI : 10.1016/j.jma.2013.02.002

F. Bonollo, J. Urban, B. Bonatto, and M. Botter, Gravity and low pressure die casting of aluminium alloys : a technical and economical benchmark, pp.23-32, 2005.

M. Sadayappan, J. P. Thomson, and M. Sahoo, Casting Fluidity of Magnesium Alloy AZ91 in Gravity and Low Pressure Casting, AFS transactions, vol.12, issue.18, pp.747-753, 2006.

J. Thomson, S. Xu, M. Sadayappan, P. Newcombe, L. Millette et al., Low Pressure Casting of Magnesium Alloys AZ91 and AM50, p.12, 2004.

P. Fu, A. Luo, H. Jiang, L. Peng, Y. Yu et al., Low-pressure die casting of magnesium alloy AM50: Response to process parameters, Journal of Materials Processing Technology, vol.205, issue.1-3, pp.224-234, 2008.
DOI : 10.1016/j.jmatprotec.2007.11.111

J. Duan, D. Maijer, S. Cockcroft, and C. Reilly, Development of a 3D Filling Model of Low-Pressure Die-Cast Aluminum Alloy Wheels, Metallurgical and Materials Transactions A, vol.10, issue.12, pp.5304-5315, 2013.
DOI : 10.1016/j.msea.2006.07.052

Q. Yan, H. Yu, Z. Xu, B. Xiong, and C. Cai, Effect of holding pressure on the microstructure of vacuum counter-pressure casting aluminum alloy, Journal of Alloys and Compounds, vol.501, issue.2, pp.352-357, 2010.
DOI : 10.1016/j.jallcom.2010.04.103

A. Sanitas, N. Coniglio, M. Bedel, and M. Mansori, Investigating surface roughness of ZE41 magnesium alloy cast by low-pressure sand casting process, The International Journal of Advanced Manufacturing Technology, vol.45, issue.5-8, p.18, 2017.
DOI : 10.1016/S1359-6454(96)00203-0

URL : https://hal.archives-ouvertes.fr/hal-01579860

S. Liu, F. Cao, X. Zhao, Y. Jia, Z. Ning et al., Characteristics of mold filling and entrainment of oxide film in low pressure casting of A356 alloy, Materials Science and Engineering: A, vol.626, issue.15, pp.159-164, 2015.
DOI : 10.1016/j.msea.2014.12.058

Z. Fan and S. Ji, Low pressure lost foam process for casting magnesium alloys, Materials Science and Technology, vol.16, issue.112, pp.727-734, 2005.
DOI : 10.1007/s11663-003-0090-1

J. Zeng, P. Gu, Y. Zou, and Z. Xu, Simulation of mold filling under counter gravity for A356 alloy and A356/SiCp composite, Materials Science and Engineering: A, vol.499, issue.1-2, pp.130-133, 2009.
DOI : 10.1016/j.msea.2007.11.147

H. Puga, J. Barbosa, T. Azevedo, S. Ribeiro, and J. Alves, Low pressure sand casting of ultrasonically degassed AlSi7Mg0.3 alloy: Modelling and experimental validation of mould filling, Materials & Design, vol.94, issue.14, pp.384-391, 2016.
DOI : 10.1016/j.matdes.2016.01.059

A. Viswanath, M. V. Manu, S. Savithri, and U. T. Pillai, Numerical simulation and experimental validation of free surface flows during low pressure casting process, Journal of Materials Processing Technology, vol.244, pp.320-330, 2017.
DOI : 10.1016/j.jmatprotec.2017.02.003

J. Kuo, F. Hsu, and W. Hwang, Development of an interactive simulation system for the determination of the pressure-time relationship during the filling in a low pressure casting process, Science and Technology of Advanced Materials, vol.1983, issue.1, pp.131-148, 2001.
DOI : 10.1007/BF03338386

E. S. Duff, Fluid Flow Aspects of Solidification Modelling : Simulation of Low Pressure Die Casting, p.21, 1995.

J. Campbell, Sixty Years of Casting Research, Metallurgical and Materials Transactions A : Physical Metallurgy and Materials Science, pp.4848-4853, 2015.
DOI : 10.1179/0267083612Z.000000000203

L. Wang, H. Rhee, and S. Felicelli, Oxide film and porosity defects in magnesium alloy AZ91, Shape Casting : The 3rd International Symposium, pp.123-130, 2009.

X. Dai, M. Jolly, X. Yang, and J. Campbell, Modelling of liquid metal flow and oxide film defects in filling of aluminium alloy castings, IOP Conference Series : Materials Science and Engineering, pp.12073-12089, 2012.
DOI : 10.1088/1757-899X/33/1/012073

X. Yang, X. Huang, X. Dai, J. Campbell, and J. Tatler, Numerical modelling of entrainment of oxide film defects in filling of aluminium alloy castings, International Journal of Cast Metals Research, vol.38, issue.6, pp.321-331, 2004.
DOI : 10.1179/026708304225012387

F. Bahreinian, S. M. Boutorabi, and J. Campbell, Critical gate velocity for magnesium casting alloy (ZK51A), International Journal of Cast Metals Research, vol.100, issue.1, pp.45-51, 2006.
DOI : 10.1179/136404606225023264

J. Runyoro, S. M. Boutorabi, and J. Campbell, Critical gate velocities for film-forming casting alloys : a basis for process specification, AFS Transactions, vol.100, issue.16, pp.225-234, 1992.

J. J. Hernandez-ortega, R. Zamora, J. Palacios, J. Lopez, and F. Faura, An Experimental and Numerical Study of Flow Patterns and Air Entrapment Phenomena During the Filling of a Vertical Die Cavity, Journal of Manufacturing Science and Engineering, vol.42, issue.5, pp.51011-51028, 2010.
DOI : 10.1115/1.2815344

R. Cuesta, A. Delgado, A. Maroto, and D. Mozo, Numerically modeling oxide entrainment in the filling of castings: The effect of the webber number, JOM, vol.100, issue.11, pp.62-65, 2006.
DOI : 10.1007/s11837-006-0229-z

C. Reilly, N. R. Green, and M. R. Jolly, The present state of modeling entrainment defects in the shape casting process, Applied Mathematical Modelling, vol.37, issue.3, pp.611-628, 2013.
DOI : 10.1016/j.apm.2012.04.032

D. M. Stefanescu, Science and Engineering of Casting Solidification, p.18, 2015.

B. Garda, Essais de coulabilité en fonderie : Aspects thermiques , hydrodynamiques et structures de solidification, p.22, 1993.

M. Flemings, Fluidity of metals -techniques for producing ultra-thin section castings The British Foundryman, pp.312-325, 1964.

M. Flemings, E. Niiyama, and H. Taylor, Fluidity of aluminium alloys : An experimental and quantitative evaluation, 1920.

J. E. Niesse, M. Flemings, and H. Taylor, Application of theory in understanding fluidity of metals Transactions of the american foundrymen's Society, pp.685-697, 1959.

M. D. Sabatino, L. Arnberg, and F. Bonollo, Simulation of Fluidity in Al-Si Alloys, Metallurgical Science and Technology, vol.18, pp.3-10, 2013.

B. A. Dewhirst, Castability Control in Metal Casting via Fluidity Measures : Application of Error Analysis to Variations in Fluidity Testing, p.21, 2008.

Z. Konopka, A. Zyska, M. ?a¸giewka?a¸giewka, and M. Nadolski, Abstract, Archives of Foundry Engineering, vol.15, issue.1, pp.29-34, 2015.
DOI : 10.1515/afe-2015-0007

K. J. Laws, B. Gun, and M. Ferry, Effect of die-casting parameters on the production of high quality bulk metallic glass samples, Materials Science and Engineering: A, vol.425, issue.1-2, pp.114-120, 2006.
DOI : 10.1016/j.msea.2006.03.037

S. L. Sin and D. Dubé, Influence of process parameters on fluidity of investment-cast AZ91D magnesium alloy, Materials Science and Engineering A, vol.386, issue.1-2, pp.34-42, 2004.
DOI : 10.1016/S0921-5093(04)00940-2

G. Timelli and F. Bonollo, Fluidity of aluminium die castings alloy, International Journal of Cast Metals Research, vol.20, issue.6, pp.304-311, 2007.
DOI : 10.1179/136404608X286110

H. Luk and B. Darvell, Casting system effectiveness??? measurement and theory, Dental Materials, vol.8, issue.2, pp.89-99, 1992.
DOI : 10.1016/0109-5641(92)90062-H

M. D. Sabatino, F. Syvertsen, L. Arnberg, and A. Nordmark, An improved method for fluidity measurement by gravity casting of spirals in sand moulds, International Journal of Cast Metals Research, vol.18, issue.1, pp.59-62, 1921.
DOI : 10.1007/BF02651885

M. Górny, Structure of ductile iron in thin walled castings Archives of foundry engineering, pp.73-78, 2007.

W. Qudong, L. Yizhen, Z. Xiaoqin, D. Wenjiang, Z. Yanping et al., Study on the fluidity of AZ91+xRE magnesium alloy, Materials Science and Engineering: A, vol.271, issue.1-2, pp.109-115, 1999.
DOI : 10.1016/S0921-5093(99)00185-9

K. Laws, B. Gun, and M. Ferry, Large-scale production of Ca65Mg15Zn20 bulk metallic glass samples by low-pressure die-casting, Materials Science and Engineering: A, vol.475, issue.1-2, pp.348-354, 2008.
DOI : 10.1016/j.msea.2007.04.059

M. M. Avedesian and H. Baker, ASM Specialty Handbook : Magnesium and Magnesium Alloys. ASM Specialty Handbook, p.26, 1999.

E. F. Emley, Principles of Magnesium Technology, p.27, 1966.

Z. Hildebrand, M. Qian, D. Stjohn, and M. Frost, Influence of zinc on the soluble zirconium content in magnesium and the subsequent grain refinement by zirconium, Magnesium Technology, pp.4-8, 2004.

Y. Wang, G. Wu, W. Liu, S. Pang, and Y. Zhang, Effects of chemical composition on the microstructure and mechanical properties of gravity cast Mg???xZn???yRE???Zr alloy, Materials Science and Engineering: A, vol.594, issue.24, pp.52-61, 2014.
DOI : 10.1016/j.msea.2013.11.040

Y. Ali, D. Qiu, B. Jiang, F. Pan, and M. Zhang, Current research progress in grain refinement of cast magnesium alloys: A review article, Journal of Alloys and Compounds, vol.619, pp.639-651, 2015.
DOI : 10.1016/j.jallcom.2014.09.061

M. Qian, D. H. Stjohn, and M. T. Frost, Effect of Soluble and Insoluble Zirconium on the Grain Refinement of Magnesium Alloys, Materials Science Forum, vol.419, issue.422, pp.419-422, 2003.
DOI : 10.4028/www.scientific.net/MSF.419-422.593

D. H. Stjohn, M. Qian, M. A. Easton, P. Cao, and Z. Hildebrand, Grain refinement of magnesium alloys, Metallurgical and Materials Transactions A, vol.30, issue.11, pp.1669-1679, 2005.
DOI : 10.1016/0956-7151(90)90119-2

M. Sun, M. A. Easton, D. H. Stjohn, G. Wu, T. B. Abbott et al., Grain Refinement of Magnesium Alloys by Mg-Zr Master Alloys: The Role of Alloy Chemistry and Zr Particle Number Density, Advanced Engineering Materials, vol.486, issue.422, pp.373-378, 2013.
DOI : 10.1016/j.msea.2007.11.009

Y. C. Lee, A. K. Dahle, and D. H. Stjohn, The role of solute in grain refinement of magnesium, Metallurgical and Materials Transactions A, vol.30, issue.11, pp.2895-2906, 1924.
DOI : 10.1007/BF02830349

P. Sasha and S. Viswanathan, Grain Refinement of Magnesium by Zirconium : Characterization and Analysis, Transactions of American Foundry Society, pp.469-480, 2011.

M. Hämäläinen, Thermodynamic evaluation of the Mg-Zr system, Journal of Alloys and Compounds, vol.422, issue.12, pp.173-177, 1998.

H. Okamoto, Mg-Zr (Magnesium-Zirconium), Journal of Phase Equilibria, vol.22, issue.3, pp.198-199, 2002.
DOI : 10.1361/1054971023603991

M. Qian, D. H. Stjohn, and M. T. Frost, Characteristic zirconium-rich coring structures in Mg???Zr alloys, Scripta Materialia, vol.46, issue.9, pp.649-654, 2002.
DOI : 10.1016/S1359-6462(02)00046-5

M. Qian, Heterogeneous nucleation on potent spherical substrates during solidification, Acta Materialia, vol.55, issue.3, pp.943-953, 2007.
DOI : 10.1016/j.actamat.2006.09.016

M. Qian, Heterogeneous nuclei size in magnesium???zirconium alloys, Scripta Materialia, vol.50, issue.8, pp.1115-1119, 2004.
DOI : 10.1016/j.scriptamat.2004.01.026

M. Qian, D. St-john, M. Frost, and M. Barnett, Grain refinement of pure magnesium using rolled Zirmax® master alloy (MG-33.3ZR), Minerals, Metals and Materials Society. Meeting TMS, p.24, 2003.

P. Saha, An analysis of the grain refinment of magnesium by zirconium, p.24, 2010.

W. C. Neil, M. Forsyth, P. C. Howlett, C. R. Hutchinson, and B. R. Hinton, Corrosion of magnesium alloy ZE41 ??? The role of microstructural features, Corrosion Science, vol.51, issue.2, pp.387-394, 2009.
DOI : 10.1016/j.corsci.2008.11.005

M. Qian, D. H. Stjohn, and M. T. Frost, Zirconium Alloying and Grain Refinement of Magnesium alloys, Magnesium Technology, vol.24, pp.209-214, 2003.

W. Xiao, S. Jia, J. Wang, Y. Wu, and L. Wang, Effects of cerium on the microstructure and mechanical properties of Mg???20Zn???8Al alloy, Materials Science and Engineering: A, vol.474, issue.1-2, pp.317-322, 1925.
DOI : 10.1016/j.msea.2007.04.008

B. Dybowski, R. Jarosz, A. Kie?bus, and J. Cwajna, Influence of Pouring Temperature on Castability and Microstructure of QE22 and RZ5 Magnesium Casting Alloys, Solid State Phenomena, vol.191, pp.137-144, 2012.
DOI : 10.4028/www.scientific.net/SSP.191.137

M. Qian, L. Zheng, D. Graham, M. Frost, and D. Stjohn, Settling of undissolved zirconium particles in pure magnesium melts, Journal of Light Metals, vol.1, issue.3, pp.157-165, 2001.
DOI : 10.1016/S1471-5317(01)00009-8

F. Bazile, Données numériques sur le magnésium et ses alliages, p.26, 2001.

B. D. Lee, U. H. Beak, K. W. Lee, G. S. Han, and J. W. Han, Protective Properties of SF<sub>6</sub> under Various Carrier Gases for the Protection of Molten Mg, MATERIALS TRANSACTIONS, vol.54, issue.1, pp.66-73, 2013.
DOI : 10.2320/matertrans.M2012057

B. Palmer, Sf6 Emissions From Magnesium, p.26

M. Qian, Z. C. Hildebrand, D. H. St, and . John, The Loss of Dissolved Zirconium in Zirconium-Refined Magnesium Alloys after Remelting, Metallurgical and Materials Transactions A, vol.49, issue.422, pp.2470-2479, 2009.
DOI : 10.1007/s11661-009-9928-8

Y. Tamura, N. Kono, T. Motegi, and E. Sato, Grain refining mechanism and casting structure of Mg-Zr alloy., Journal of Japan Institute of Light Metals, vol.48, issue.4, p.27, 1998.
DOI : 10.2464/jilm.48.185

M. Qian and D. H. Stjohn, Grain nucleation and formation in Mg???Zr alloys, International Journal of Cast Metals Research, vol.11, issue.630, pp.256-259, 2009.
DOI : 10.1063/1.1702607

L. Hsueh-shang, J. Yaokawa, and K. Anzai, Effect of Die-Surface Treatment on Magnesium Alloys Fluidity, MATERIALS TRANSACTIONS, vol.47, issue.3, pp.883-888, 2006.
DOI : 10.2320/matertrans.47.883

S. S. Bobby, A Preliminary Investigation of Gypsum Bonded Moulds By Three Dimensional Printing, IJRET : International Journal of Research in Engineering and Technology, vol.03, issue.06, pp.501-507, 2014.

K. Nyembwe, D. De-beer, J. Van-der-walt, and S. Bhero, ASSESSMENT OF SURFACE FINISH AND DIMENSIONAL ACCURACY OF TOOLS MANUFACTURED BY METAL CASTING IN RAPID PROTOTYPING SAND MOULDS, The South African Journal of Industrial Engineering, vol.23, issue.3, pp.130-143, 2012.
DOI : 10.7166/23-3-516

G. Lagrené, Fonderie et moulage des alliages de magnésium, Techniques de l'Ingenieur, p.38, 2000.

E. F. Emley, Principles of Magnesium Technology, p.41, 1966.

H. E. Friedrich and B. L. Mordike, Magnesium Technology : Metallurgy, Design Data, Applications, p.45, 2006.

R. Meilland, Spectrométrie d'émission optique à source étincelle (partie 1), p.44, 2005.

J. Grenet and B. Legendre, Analyse calorimétrique différentielle à balayage ( DSC ), p.48, 2010.

A. Shimkin, Optimization of DSC calibration procedure, Thermochimica Acta, vol.566, pp.71-76, 2013.
DOI : 10.1016/j.tca.2013.04.039

E. Gmelin and S. M. Sarge, Calibration of differential scanning calorimeters, Pure and Applied Chemistry, vol.21, issue.11, pp.1789-1800, 1995.
DOI : 10.1351/pac199567111789

C. I. Braga, M. C. Rezende, and M. L. Costa, Methodology for DSC calibration i nhigh heating rates, Journal of Aerospace Technology and Management, vol.3, issue.2, pp.179-192, 2011.
DOI : 10.5028/jatm.2011.03021911

. Setaram, SETSYS Evolution State of Art, p.48, 2010.

N. Kund and P. Dutta, Numerical study of influence of oblique plate length and cooling rate on solidification and macrosegregation of A356 aluminum alloy melt with experimental comparison, Journal of Alloys and Compounds, vol.678, pp.159-170, 2015.
DOI : 10.1016/j.jallcom.2016.02.152

M. Qian, L. Zheng, D. Graham, M. Frost, and D. Stjohn, Settling of undissolved zirconium particles in pure magnesium melts, Journal of Light Metals, vol.1, issue.3, pp.157-165, 2001.
DOI : 10.1016/S1471-5317(01)00009-8

A. Inc, Ansys Fluent Theory Guide, p.51, 2013.

M. Lesieur, Turbulence in Fluids of Fluid Mechanics and its Applications, p.51, 2008.

J. Duan, D. Maijer, S. Cockcroft, and C. Reilly, Development of a 3D Filling Model of Low-Pressure Die-Cast Aluminum Alloy Wheels, Metallurgical and Materials Transactions A, vol.10, issue.12, pp.5304-5315, 2013.
DOI : 10.1016/j.msea.2006.07.052

H. Puga, J. Barbosa, T. Azevedo, S. Ribeiro, and J. Alves, Low pressure sand casting of ultrasonically degassed AlSi7Mg0.3 alloy: Modelling and experimental validation of mould filling, Materials & Design, vol.94, pp.384-391, 2016.
DOI : 10.1016/j.matdes.2016.01.059

J. P. Barrand and J. F. Sacadura, Initiation aux transferts thermiques, p.52, 1993.

E. , E. Calcom, C. Beckermann, W. Boettinger, H. Combeau et al., Solidification Course 2016, p.53, 2016.

. Thermo-calc, Thermo-Calc Software, 2017.

G. Dour, Fonderie : alliages, procédés, propriétés d'usage, défauts. Aide-mémoire de l'ingénieur, Dunod, p.52, 2009.

.. Définition-de-la-masse-des-particules-de-zr-dans-le-zirmax, 71 3.4.3 Développement d'un modèle liant recette et composition résultante, p.73

.. Géométrie-considérée, 76 3.5.2 Simulation du remplissage, p.77

Z. Hildebrand, M. Qian, D. Stjohn, and M. Frost, Influence of zinc on the soluble zirconium content in magnesium and the subsequent grain refinement by zirconium, Magnesium Technology, vol.63, pp.4-8, 2004.

W. C. Neil, M. Forsyth, P. C. Howlett, C. R. Hutchinson, and B. R. Hinton, Corrosion of magnesium alloy ZE41 ??? The role of microstructural features, Corrosion Science, vol.51, issue.2, pp.387-394, 2009.
DOI : 10.1016/j.corsci.2008.11.005

F. Bazile, Données numériques sur le magnésium et ses alliages, p.70, 2001.

H. E. Friedrich and B. L. Mordike, Magnesium Technology : Metallurgy, Design Data, Applications, p.69, 2006.

E. F. Emley, Principles of Magnesium Technology, p.69, 1966.

P. Sasha and S. Viswanathan, Grain Refinement of Magnesium by Zirconium : Characterization and Analysis, Transactions of American Foundry Society, pp.469-480, 2011.

M. Qian and D. H. Stjohn, Grain nucleation and formation in Mg???Zr alloys, International Journal of Cast Metals Research, vol.11, issue.630, pp.256-259, 2009.
DOI : 10.1063/1.1702607

M. Qian, D. H. Stjohn, and M. T. Frost, Zirconium Alloying and Grain Refinement of Magnesium alloys, Magnesium Technology, pp.209-214, 2003.

S. K. Saha, A study of grain refinement of AZ91E and Mg-9 wt.% Al alloys using Zinc Oxide, tech. rep, 2015.

M. Qian, L. Zheng, D. Graham, M. Frost, and D. Stjohn, Settling of undissolved zirconium particles in pure magnesium melts, Journal of Light Metals, vol.1, issue.3, pp.157-165, 2001.
DOI : 10.1016/S1471-5317(01)00009-8

M. Sun, M. A. Easton, D. H. Stjohn, G. Wu, T. B. Abbott et al., Grain Refinement of Magnesium Alloys by Mg-Zr Master Alloys: The Role of Alloy Chemistry and Zr Particle Number Density, Advanced Engineering Materials, vol.486, issue.422, pp.373-378, 2013.
DOI : 10.1016/j.msea.2007.11.009

N. Kund and P. Dutta, Numerical study of influence of oblique plate length and cooling rate on solidification and macrosegregation of A356 aluminum alloy melt with experimental comparison, Journal of Alloys and Compounds, vol.678, pp.159-170, 2015.
DOI : 10.1016/j.jallcom.2016.02.152

M. Qian, L. Zheng, D. Graham, M. Frost, and D. Stjohn, Settling of undissolved zirconium particles in pure magnesium melts, Journal of Light Metals, vol.1, issue.3, pp.157-165, 2001.
DOI : 10.1016/S1471-5317(01)00009-8

A. Viswanath, M. V. Manu, S. Savithri, and U. T. Pillai, Numerical simulation and experimental validation of free surface flows during low pressure casting process, Journal of Materials Processing Technology, vol.244, pp.320-330, 2017.
DOI : 10.1016/j.jmatprotec.2017.02.003

J. Hogg, H. Westengen, and D. Albright, Low pressure sand casting of magnesium alloys, Proceedings of the International Symposium on Extraction, Refining and Fabrication of Light Metals, 1991.
DOI : 10.1016/B978-0-08-041444-7.50012-3

S. Liu, F. Cao, X. Zhao, Y. Jia, Z. Ning et al., Characteristics of mold filling and entrainment of oxide film in low pressure casting of A356 alloy, Materials Science and Engineering: A, vol.626, issue.87, pp.159-164, 2015.
DOI : 10.1016/j.msea.2014.12.058

B. Dybowski, R. Jarosz, A. Kie?bus, and J. Cwajna, Influence of Pouring Temperature on Castability and Microstructure of QE22 and RZ5 Magnesium Casting Alloys, Solid State Phenomena, vol.191, pp.137-144, 2012.
DOI : 10.4028/www.scientific.net/SSP.191.137

B. D. Lee, U. H. Beak, K. W. Lee, G. S. Han, and J. W. Han, Protective Properties of SF<sub>6</sub> under Various Carrier Gases for the Protection of Molten Mg, MATERIALS TRANSACTIONS, vol.54, issue.1, pp.66-73, 2013.
DOI : 10.2320/matertrans.M2012057

J. Duan, D. Maijer, S. Cockcroft, and C. Reilly, Development of a 3D Filling Model of Low-Pressure Die-Cast Aluminum Alloy Wheels, Metallurgical and Materials Transactions A, vol.10, issue.12, pp.5304-5315, 0102.
DOI : 10.1016/j.msea.2006.07.052

J. P. Pérez and O. Pujol, Mécanique : fondements et applications -7e èdition : Avec 320 exercices et problémes résolus, p.104, 2014.

C. Gignoux and B. Silvestre-brac, Problèmes corrigés de mécanique et résumés de cours : de Lagrange à Hamilton, Collection Grenoble Sciences, EDP Sciences, p.104, 2004.

A. Viswanath, M. V. Manu, S. Savithri, and U. T. Pillai, Numerical simulation and experimental validation of free surface flows during low pressure casting process, Journal of Materials Processing Technology, vol.244, pp.320-330, 2017.
DOI : 10.1016/j.jmatprotec.2017.02.003

M. D. Sabatino, L. Arnberg, and F. Bonollo, Simulation of Fluidity in Al-Si Alloys, Metallurgical Science and Technology, pp.3-10

M. Flemings, E. Niiyama, and H. Taylor, Fluidity of aluminium alloys : An experimental and quantitative evaluation, pp.124-131, 1961.

J. Zeng, P. Gu, Y. Zou, and Z. Xu, Simulation of mold filling under counter gravity for A356 alloy and A356/SiCp composite, Materials Science and Engineering: A, vol.499, issue.1-2, pp.130-133, 0120.
DOI : 10.1016/j.msea.2007.11.147

H. Luk and B. Darvell, Casting system effectiveness??? measurement and theory, Dental Materials, vol.8, issue.2, pp.89-99, 1992.
DOI : 10.1016/0109-5641(92)90062-H

M. Qian, L. Zheng, D. Graham, M. Frost, and D. Stjohn, Settling of undissolved zirconium particles in pure magnesium melts, Journal of Light Metals, vol.1, issue.3, pp.157-165, 2001.
DOI : 10.1016/S1471-5317(01)00009-8

F. Bazile, Données numériques sur le magnésium et ses alliages, p.125, 2001.

Y. Motoyama, Y. Inoue, G. Saito, and M. Yoshida, A verification of the thermal stress analysis, including the furan sand mold, used to predict the thermal stress in castings, Journal of Materials Processing Technology, vol.213, issue.12, pp.2270-2277, 2013.
DOI : 10.1016/j.jmatprotec.2013.06.024

L. Chen, Y. Wang, L. Peng, P. Fu, and H. Jiang, Study on the interfacial heat transfer coefficient between AZ91D magnesium alloy and silica sand, Experimental Thermal and Fluid Science, vol.54, pp.196-203, 2014.
DOI : 10.1016/j.expthermflusci.2013.12.010

M. and D. Sabatino, Fluidity of aluminium foundry alloys, pp.161-131, 2005.

H. E. Friedrich and B. L. Mordike, Magnesium Technology : Metallurgy, Design Data, Applications, p.134, 2006.

A. Sanitas, N. Coniglio, M. Bedel, and M. Mansori, Investigating surface roughness of ZE41 magnesium alloy cast by low-pressure sand casting process, The International Journal of Advanced Manufacturing Technology, vol.45, issue.5-8, p.133, 2017.
DOI : 10.1016/S1359-6454(96)00203-0

URL : https://hal.archives-ouvertes.fr/hal-01579860

X. Liste and R. , 23 Comparaison des prédictions du modèle Lagrangien aux résultats numériques de l'écart de hauteur pour

.. Taille-de-grain-moyenne-mesurée-au-bord-des-carottes, .. Et-de-scheil, . Xiii, . Liste, and . Figures, III A.3 Schéma d'illustration de la méthode d'extraction de la hauteur simulée du niveau de métal IV A.4 Observation d'inclusions de gaz dans le métal après un changement de section . . . . . V A.5 Programme Mathematica de résolution de l'équation des oscillations du modèle La- grangien V A.6 Comparaison des prédictions du modèle Lagrangien aux résultats expérimentaux et numériques de l VII A.8 Comparaison des prédictions du modèle Lagrangien aux résultats expérimentaux et numériques de l, II A.2 Courbes d'enthalpies fonction de la température simulées sur les échantillons S1 et S2 pour les modèles de bras de levier VI A.7 Comparaison des prédictions du modèle lagrangien aux résultats expérimentaux et numériques de l VIII A.9 Comparaison des prédictions du modèle Lagrangien aux résultats expérimentaux et numériques de l'écart de hauteur en fonction des propriétés matériaux . . . . . . . . . . . IX A.10 Comparaison des prédictions du modèle Lagrangien aux résultats expérimentaux et numériques de l'écart de hauteur en fonction de la longeur sous la restriction . . . . . . . . X A.11 Comparaison des prédictions du modèle Lagrangien aux résultats expérimentaux et numériques de l'écart de hauteur pour R>1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI A.12 Composition moyenne mesurée sur les essais de coulabilité

?. Constantes-du-modèle-? and .. , 51 3.1 Composition nominale des lingots et composition résultante moyenne de l'alliage, p.59