P. Wheeler, Technology for the more and all electric aircraft of the future, 2016 IEEE International Conference on Automatica (ICA-ACCA), pp.1-5
DOI : 10.1109/ICA-ACCA.2016.7778519

J. A. Rosero, J. A. Ortega, E. Aldabas, and L. , Moving towards a more electric aircraft, IEEE Aerospace and Electronic Systems Magazine, vol.22, issue.3, pp.3-9, 2007.
DOI : 10.1109/MAES.2007.340500

X. Roboam, B. Sareni, and A. Andrade, More Electricity in the Air: Toward Optimized Electrical Networks Embedded in More-Electrical Aircraft, IEEE Industrial Electronics Magazine, vol.6, issue.4, pp.6-17
DOI : 10.1109/MIE.2012.2221355

H. Ounis, B. Sareni, and X. Roboam, Multi-level integrated optimal design for power systems of more electric aircraft, Mathematics and Computers in Simulation, vol.130, pp.223-235, 2016.
DOI : 10.1016/j.matcom.2015.08.016

URL : https://hal.archives-ouvertes.fr/hal-01409149

C. R. Spitzer, The All-Electric Aircraft: A Systems View and Proposed NASA Research Programs, IEEE Transactions on Aerospace and Electronic Systems, vol.20, issue.3, pp.261-266, 1984.
DOI : 10.1109/TAES.1984.310509

. Moir, The all-electric aircraft - major challenges, IEE Colloquium on All Electric Aircraft, pp.1-2, 1998.
DOI : 10.1049/ic:19980340

M. Howse, All-electric aircraft, Power Engineer, vol.17, issue.4, pp.35-37, 2003.
DOI : 10.1049/pe:20030410

F. Couillac, Environnemental Control Systems for the All-Electric Aircraft, Thèse de doctorat, 2007.

J. A. Weimer, The role of electric machines and drives in the more electric aircraft, IEEE International Electric Machines and Drives Conference, 2003. IEMDC'03., pp.11-15, 2003.
DOI : 10.1109/IEMDC.2003.1211236

J. Mavier, Convertisseurs génériques à tolérance de panne Applications pour le domaine aéronautique Thèse de doctorat, pp.22-2007

A. Moir and . Seabridge, Aircraft Systems: Mechanical, electrical, and avionics systems integration, Third Edition, 2008.
DOI : 10.2514/4.479526

J. Garcia, J. A. Cusido, J. A. Rosero, and L. Ortega, Reliable electro-mechanical actuators in aircraft, IEEE Aerospace and Electronic Systems Magazine, vol.23, issue.8, pp.19-25, 2008.
DOI : 10.1109/MAES.2008.4607895

A. Boglietti, A. Cavagnino, S. Tenconi, P. Vaschetto, and . Di-torino, The safety critical electric machines and drives in the more electric aircraft: A survey, 2009 35th Annual Conference of IEEE Industrial Electronics, pp.2587-2594, 2009.
DOI : 10.1109/IECON.2009.5415238

J. W. Bennett, Fault Tolerant Electromechanical Actuators for Aircraft, Thèse de Doctorat, 2010.

O. Ndong, Onduleurs de tension pour actionneurs électriques: fiabilisation par la séparation des cellules de commutation et reconfiguration, Thèse de Doctorat, pp.22-2010

W. Cao, B. C. Mecrow, G. J. Atkinson, J. W. Bennett, and D. J. Atkinson, Overview of Electric Motor Technologies Used for More Electric Aircraft (MEA), IEEE Transactions on Industrial Electronics, vol.59, issue.9, pp.3523-3531

T. Yang, Development of Dynamic Phasors for the Modelling of Aircraft Electrical Power Systems, Thèse de doctorat, 2013.

P. Wheeler and S. Bozhko, The More Electric Aircraft: Technology and challenges., IEEE Electrification Magazine, vol.2, issue.4, pp.6-12
DOI : 10.1109/MELE.2014.2360720

, En ligne] Disponible sur: https, ADI Applied Dynamics International, pp.30-2017

«. Cleansky and ». , Disponible sur, pp.30-2017

, Disponible sur: http://www.solarimpulse.com/fra, Consulté le, pp.30-2017

, Disponible sur : https://www.siemens.com/press, 2016.

, Disponible sur : https://www.siemens.com/press/en/pressrelease, « Flying with Siemens Integrated Drive System, 2013.

M. Galea, Z. Xu, C. Tighe, T. Hamiti, C. Gerada et al., Development of an aircraft wheel actuator for green taxiing, 2014 International Conference on Electrical Machines (ICEM), pp.2492-2498, 2014.
DOI : 10.1109/ICELMACH.2014.6960537

«. Wheeltug and ». , Disponible sur, pp.15-2017

T. Nelson, Disponible sur: http://myhres.com/Boeing-787-Systems-and-Performance.pdf, 787 Systems and Performance », 2005. [En ligne]Consulté le, pp.30-2017

, A380 Family - Innovatioin ». [En ligne] Disponible sur: http://www.airbus.com/aircraftfamilies, Consulté le, pp.30-2017

D. Van-den-bossche, More Electric Control Surface Actuation -A Standard for the Next Generation of Transport Aircraft, European Conference on Power Electronics and Applications, 2003.

W. Li and J. P. Fielding, Preliminary Study of EMA landing Gear Actuation, International Congress of the Aeronautical Sciences, 2012.

C. Gerada, K. Bradley, X. Huang, A. Goodman, C. Whitley et al., A 5-Phase Fault-Tolerant Brushless Permanent Magnet Motor Drive for an Aircraft Thin Wing Surface Actuator, 2007 IEEE International Electric Machines & Drives Conference, pp.1643-1648, 2007.
DOI : 10.1109/IEMDC.2007.383676

D. Mami, Définition, conception et expérimentation de structures d'actionneurs électromécaniques innovants incluant par conception des fonctionnalités de sûreté et de sécurité de fonctionnement, Thèse de dostorat, p.2010

E. D. Fankem, Etude de différentes structures d'actionneurs de positionnement pour l'aéronautique, Thèse de doctorat, pp.26-2012

S. Zaïm, Contribution à la commande sans capteur mécanique d'actionneurs électriques motorisés par des machines synchrones à aimant permanents, Thèse de doctorat, 2013.

S. E. Lyshevski, Electromechanical flight actuators for advanced flight vehicles, IEEE Transactions on Aerospace and Electronic Systems, vol.35, issue.2, pp.511-518, 1999.
DOI : 10.1109/7.766933

B. Nystrom, L. Austrin, N. Ankarback, and E. E. Nilsson, Fault Tree Analysis of an Aircraft Electric Power Supply System to Electrical Actuators, 2006 International Conference on Probabilistic Methods Applied to Power Systems, pp.1-7, 2006.
DOI : 10.1109/PMAPS.2006.360325

D. S. Bodden, N. S. Clements, B. Schley, and E. G. Jenney, Seeded Failure Testing and Analysis of an Electro-Mechanical Actuator, 2007 IEEE Aerospace Conference, pp.1-8, 2007.
DOI : 10.1109/AERO.2007.352880

J. Liscouët, Conception préliminaire des actionneurs électromécaniques-Approche hybride, directe/inverse, Thèse de doctorat, 2010.

J. W. Bennett, B. C. Mecrow, D. J. Atkinson, C. Maxwell, and E. M. Benarous, Fault-tolerant electric drive for an aircraft nose wheel steering actuator, IET Electrical Systems in Transportation, vol.1, issue.3, pp.117-125, 2011.
DOI : 10.1049/iet-est.2010.0054

I. Hill, S. Bozhko, T. Yang, P. Giangrande, and C. Gerada, More Electric Aircraft Electro-Mechanical Actuator Regenerated Power Management, 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), pp.337-342, 2015.
DOI : 10.1109/ISIE.2015.7281491

G. Rini, Analysis and Design of High Performance Multiphase Electric Drives for Vehicle and Aircraft Applications, Thèse de doctorat, 2015.

L. Prisse, D. Ferer, H. Foch, and A. Lacoste, New power centre and power electronics sharing in aircraft, European Conference on Power Electronics and Applications, pp.1-9, 2009.

T. Bensalah, M. Py, and E. P. Thalin, PRISCA Modular Electrical Power Management PoweR Integrated and SCAlable, More Electric Aircraft, 2012.

X. Giraud, H. Piquet, M. Budinger, X. Roboam, M. Sartor et al., Knowledge-based system for aircraft electrical power system reconfiguration, 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion, pp.1-6, 2012.
DOI : 10.1109/ESARS.2012.6387377

T. Bensalah and P. Thalin, Integrated Modular power Electronics: Achievements and Challenges, More Electric Aircraft, 2015.

A. M. Etayo, J. Bourdon, L. Prisse, T. Meynard, and E. H. Piquet, Optimization of parallelized power inverters using a direct modelling approach for More Electrical Aircraft, 2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), pp.1-5, 2015.
DOI : 10.1109/ESARS.2015.7101483

A. Wechsler, Improving Fault Tolerant Drives for Aerospace Applications, Thèse de doctorat, 2013.

C. Gerada and K. J. Bradley, Integrated PM Machine Design for an Aircraft EMA, IEEE Transactions on Industrial Electronics, vol.55, issue.9, pp.3300-3306, 2008.
DOI : 10.1109/TIE.2008.927970

W. Li, Risk Assessment of Power Systems: Models, Methods, and Applications, 2005.
DOI : 10.1002/0471707724

F. Meinguet, Fault detection and isolation, control reconfiguration and design considerations, Thèse de doctorat, 2012.

E. Chiodo and D. Lauria, Some Basic Properties of the Failure Rate of Redundant Reliability Systems in Industrial Electronics Applications, IEEE Transactions on Industrial Electronics, vol.62, issue.8, pp.5055-5062, 2015.
DOI : 10.1109/TIE.2015.2404306

M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J. Minarick et al., Fault Tree Handbook with Aerospace Applications, Version 1.1, 2002.

I. B. Shubinsky and H. Schäbe, « On the Definition of Functional Reliability », Reliability: Theory & Application, pp.8-18

R. N. Argile, B. C. Mecrow, D. J. Atkinson, A. G. Jack, and P. Sangha, Reliability analysis of fault tolerant drive topologies, 4th IET International Conference on Power Electronics, Machines and Drives (PEMD 2008), pp.11-15, 2008.
DOI : 10.1049/cp:20080474

G. E. Murr, A. Griffo, J. Wang, Z. Q. Zhu, and E. B. Mecrow, Reliability assessment of fault tolerant permanent magnet AC drives, IECON 2015, 41st Annual Conference of the IEEE Industrial Electronics Society, pp.2777-2782, 2015.
DOI : 10.1109/IECON.2015.7392522

C. Olmi, F. Scuiller, and J. Charpentier, Reliability assessment of an autonomous underwater vehicle propulsion by using electrical multi-phase drive, IECON 2015, 41st Annual Conference of the IEEE Industrial Electronics Society, pp.965-970, 2015.
DOI : 10.1109/IECON.2015.7392224

C. Olmi, F. Scuiller, and J. Charpentier, Evaluation de la Fiabilité de la propulsion électrique d'un véhicule autonome sous-marin intégrant un ensemble convertisseur statique/machine polyphasé, Symposium de Génie Electrique, pp.7-9, 2016.

C. Yuyan, W. Jian, X. Rong, and E. W. Xinmin, Fault tree analysis of electro-mechanical actuators, 2015 34th Chinese Control Conference (CCC), pp.6392-6396, 2015.
DOI : 10.1109/ChiCC.2015.7260646

J. Windsor, M. Deredempt, and R. De-ferluc, Integrated modular avionics for spacecraft -User requirements, architecture and role definition, Digital Avionics Systems Conference, pp.8-14, 2011.
DOI : 10.1109/dasc.2011.6096141

M. Blanke, M. Kinnaert, J. Lunze, and E. M. Staroswiecki, Diagnosis and Fault-Tolerant Control, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01789124

G. Vachtsevanos, F. Lewis, M. Roemer, A. Hess, and E. W. Biqing, Intelligent Fault Diagnosis and Prognosis for Engineering Systems, 2006.
DOI : 10.1002/9780470117842

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470117842.fmatter

M. Shamsi-nejad, Architectures d'alimentation et de Commande d'Actionneurs Tolérants aux Défauts -Régulateur de Courant Non Linéaire à Large Bande Passante, Thèse de doctorat, 2007.

F. Meinguet, X. Kestelynx, E. Semailx, and E. J. Gyselinck, Fault detection, isolation and control reconfiguration of three-phase PMSM drives, 2011 IEEE International Symposium on Industrial Electronics, pp.2091-209627, 2011.
DOI : 10.1109/ISIE.2011.5984483

URL : https://hal.archives-ouvertes.fr/hal-00794388

F. Meinguet, P. Sandulescu, X. Kestelyn, and E. E. Semail, A Method for Fault Detection and Isolation Based on the Processing of Multiple Diagnostic Indices: Application to Inverter Faults in AC Drives, IEEE Transactions on Vehicular Technology, vol.62, issue.3, pp.995-1009, 2013.
DOI : 10.1109/TVT.2012.2234157

URL : https://hal.archives-ouvertes.fr/hal-00783424

M. Trabelsi, E. Semail, N. K. Nguyen, and E. F. Meinguet, Open-switch and open-phase real time FDI process for multiphase PM Synchronous Motors, 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pp.179-185, 2016.
DOI : 10.1109/ISIE.2016.7744886

URL : http://sam.ensam.eu/bitstream/10985/11201/1/L2EP_ISIE_2016_NGUYEN

M. Trabelsi, N. Nguyen, and E. E. Semail, Real-Time Switches Fault Diagnosis Based on Typical Operating Characteristics of Five-Phase Permanent Magnetic Synchronous Machines, IEEE Transactions on Industrial Electronics, vol.63, issue.8, pp.4683-4694, 2016.
DOI : 10.1109/TIE.2016.2554540

URL : https://hal.archives-ouvertes.fr/hal-01314309

M. Trabelsi, E. Semail, N. K. Nguyen, and E. F. Meinguet, Open Switch Fault effects analysis in fivephase PMSM designed for aerospace application, International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp.14-21, 2016.

Y. Wang, T. A. Lipo, and E. D. Pan, Robust operation of double-output AC machine drive, 8th International Conference on Power Electronics, ECCE Asia, pp.140-144, 2011.
DOI : 10.1109/ICPE.2011.5944562

Z. Dou, Sûreté de fonctionnement des convertisseurs Nouvelles structures de redondances pour onduleurs sécurisés à tolérance de pannes, Thèse de doctorat, 2011.

T. J. , S. Moraes, N. K. Nguyen, F. Meinguet, and E. E. Semail, A comparative study of two faulttolerant dual-motor drive topologies under short-circuit inverter switch fault, IEEE 24 th International Symposium on Industrial Electronics, pp.1490-1495, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01357945

N. K. Nguyen, F. Meinguet, E. Semail, and E. X. Kestelyn, Fault-Tolerant Operation of an Open-End Winding Five-Phase PMSM Drive With Short-Circuit Inverter Fault, IEEE Transactions on Industrial Electronics, vol.63, issue.1, pp.595-605, 2016.
DOI : 10.1109/TIE.2014.2386299

URL : https://hal.archives-ouvertes.fr/hal-01107887

T. J. and S. Moraes, Commande en mode dégradé d'un entrainement comportant deux machines 6 phases en série, Symposium de Génie Electrique, pp.7-9, 2016.

B. A. Welchko, T. A. Lipo, T. M. Jahns, and S. E. Schulz, Fault Tolerant Three-Phase AC Motor Drive Topologies: A Comparison of Features, Cost, and Limitations, IEEE Transactions on Power Electronics, vol.19, issue.4, pp.1108-1116, 2004.
DOI : 10.1109/TPEL.2004.830074

N. Bianchi and S. Bolognani, Fault??? Tolerant PM Motors in Automotive Applications, 2005 IEEE Vehicle Power and Propulsion Conference, pp.747-755, 2005.
DOI : 10.1109/VPPC.2005.1554642

M. Shamsi-nejad, B. Nahid-mobarakeh, and S. Pierfederici, Meibody-Tabar, « Control strategies for fault tolerant PM drives using series architecture », présenté à Vehicle Power and Propulsion Conference, pp.1-6, 2010.

J. R. Figueroa, J. Cros, and E. P. Viarouge, Torque speed characteristic of polyphase permanent magnet motors with one phase fault, 2014 International Conference on Electrical Machines (ICEM), pp.2133-2142, 2014.
DOI : 10.1109/ICELMACH.2014.6960479

W. Zhang, D. Xu, P. N. Enjeti, H. Li, J. T. Hawke et al., Survey on Fault-Tolerant Techniques for Power Electronic Converters, IEEE Transactions on Power Electronics, vol.29, issue.12, pp.6319-6331, 2014.
DOI : 10.1109/TPEL.2014.2304561

F. Betin, Trends in Electrical Machines Control: Samples for Classical, Sensorless, and Fault-Tolerant Techniques, IEEE Industrial Electronics Magazine, vol.8, issue.2, pp.43-55, 2014.
DOI : 10.1109/MIE.2014.2313752

G. R. Catuogno, G. O. Garcia, and E. R. Leidhold, Fault tolerant control in six-phase PMSM under four open-circuits fault conditions, IECON 2016, 42nd Annual Conference of the IEEE Industrial Electronics Society, pp.5754-5759, 2016.
DOI : 10.1109/IECON.2016.7793390

H. Zahr, Machine Pentaphasée A Double Polarité Pour Electrification Du Domaine Des Transports Par Effet Boite De Vitesse Electromagnétique, Thèse de doctorat, l'École Nationale Supérieure d'Arts et Métiers, pp.12-2016

K. Wang, J. Zhang, Z. Gu, H. Sun, and Z. Q. Zhu, Torque Improvement of Dual Three-Phase Permanent Magnet Machine Using Zero Sequence Components, IEEE Transactions on Magnetics, vol.53, issue.11, 2017.
DOI : 10.1109/TMAG.2017.2699323

C. Zhou, G. Yang, and E. J. Su, PWM Strategy With Minimum Harmonic Distortion for Dual Three-Phase Permanent-Magnet Synchronous Motor Drives Operating in the Overmodulation Region, IEEE Transactions on Power Electronics, vol.31, issue.2, pp.1367-1380, 2016.
DOI : 10.1109/TPEL.2015.2414437

L. Parsa and T. Kim, Reducing Torque Pulsation of Multi-Phase Interior Permanent Magnet Machines », Inductry Application Conference, 1978.

F. Scuiller, E. Semail, J. Charpentier, and E. P. Letellier, Multi-criteria-based design approach of multiphase permanent magnet low-speed synchronous machines, IET Electric Power Applications, p.102, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00817710

M. Chomat, L. Schreier, and E. J. Bendl, Torque-pulsation reduction in five-phase induction-machine drive, 2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe), pp.1-10, 2015.
DOI : 10.1109/EPE.2015.7311682

E. Levi, S. N. Vukosavic, and E. M. Jones, Vector control schemes for series-connected six-phase twomotor drive systems, IEE Proceedings -Electric Power Applications, p.226, 2005.

M. Shamsi-nejad, B. Nahid-mobarakeh, and S. Pierfederici, Fault Tolerant and Minimum Loss Control of Double-Star Synchronous Machines Under Open Phase Conditions, IEEE Transactions on Industrial Electronics, vol.55, issue.5, pp.1956-1965, 2008.
DOI : 10.1109/TIE.2008.918485

I. Zoric, M. Jones, and E. E. Levi, Phase voltage harmonic imbalance in asymmetrical multiphase machines with single neutral point, IECON 2016, 42nd Annual Conference of the IEEE Industrial Electronics Society, pp.4343-4348, 2016.
DOI : 10.1109/IECON.2016.7793473

E. Semail, X. Kestelyn, and E. F. Locment, Fault tolerant multiphase electrical drives: the impact of design, IET Colloquium on Reliability in Electromagnetic Systems, pp.1-5, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00819009

F. Baudart, F. Labrique, E. Matagne, D. Telteu, and E. P. Alexandre, Control under normal and fault tolerant operation of multiphase SMPM synchronous machines with mechanically and magnetically decoupled phases, 2009 International Conference on Power Engineering, Energy and Electrical Drives, pp.461-466, 2009.
DOI : 10.1109/POWERENG.2009.4915200

C. Martis, C. Oprea, I. A. Viorel, and E. J. Gyselinck, Design of a fault-tolerant 6-phase switched reluctance motor for electric power-assisted steering systems », présenté à International Electric Machines and Drives Conference, pp.993-998, 2009.

S. Dwari and L. Parsa, Fault-Tolerant Control of Five-Phase Permanent-Magnet Motors With Trapezoidal Back EMF, IEEE Transactions on Industrial Electronics, vol.58, issue.2, pp.476-485, 2011.
DOI : 10.1109/TIE.2010.2045322

X. Kestelyn and E. Semail, A Vectorial Approach for Generation of Optimal Current References for Multiphase Permanent-Magnet Synchronous Machines in Real Time, IEEE Transactions on Industrial Electronics, vol.58, issue.11, pp.5057-5065, 2011.
DOI : 10.1109/TIE.2011.2119454

URL : https://hal.archives-ouvertes.fr/hal-00785154

A. Mohammadpour, A. Gandhi, and E. L. Parsa, Design and control of fault-tolerant permanent magnet machines, 2013 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), pp.108-116, 2013.
DOI : 10.1109/WEMDCD.2013.6525171

N. K. Nguyen, D. Flieller, X. Kestelyn, T. J. , S. Moraes et al., Analytical optimal currents for multiphase PMSMs under fault conditions and saturation, IECON 2014, 40th Annual Conference of the IEEE Industrial Electronics Society, pp.3197-3203
DOI : 10.1109/IECON.2014.7048968

URL : https://hal.archives-ouvertes.fr/hal-01059050

A. Mohammadpour, S. Mishra, and E. L. Parsa, Fault-Tolerant Operation of Multiphase Permanent-Magnet Machines Using Iterative Learning Control, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol.2, issue.2, pp.201-211, 2014.
DOI : 10.1109/JESTPE.2013.2295537

M. J. Duran and F. Barrero, Recent Advances in the Design, Modeling, and Control of Multiphase Machines???Part II, IEEE Transactions on Industrial Electronics, vol.63, issue.1, pp.459-468, 2016.
DOI : 10.1109/TIE.2015.2448211

A. Mohammadpour and L. Parsa, Global Fault-Tolerant Control Technique for Multiphase Permanent-Magnet Machines, IEEE Transactions on Industry Applications, vol.51, issue.1, pp.178-186, 2015.
DOI : 10.1109/TIA.2014.2326084

F. Wu, P. Zheng, and T. M. Jahns, Six-phase fault-tolerant permanent magnet motor drives with reduced switch counts: Topology comparisons and hardware demonstration, 2015 IEEE Transportation Electrification Conference and Expo (ITEC), pp.1-6, 2015.
DOI : 10.1109/ITEC.2015.7165785

A. Rosen, M. Groninger, and E. A. Mertens, Modeling and optimized control of fault-tolerant H-bridge fed multiphase drives, 2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe), pp.1-6, 2015.
DOI : 10.1109/EPE.2015.7311681

]. P. Delarue, A. Bouscayrol, B. Francois101-]-p, A. Delarue, E. Bouscayrol et al., Generic control method of multileg voltage-sourceconverters for fast practical implementation Reduced Switch Count DC-Link AC-AC Five-Leg Converter A Novel Five-leg Inverter PWM Technique for Two-Motor Centre-Driven Winders 3-5 may A two-motor centre-driven winder drive fed by a five-leg voltage source inverter A performance comparison of PWM techniques for five-leg VSIs supplying two-motor drives Annual Conference of the IEEE Industrial Electronics Society An improved PWM method for a five-leg inverter supplying two three-phase motors A General PWM Method for a " (2n + 1) " -Leg Inverter Supplying " n " Three-Phase Machines Independent vector control of two induction motors fed by a five-leg inverter with space vector modulation Model Predictive Control of a Two-Motor Drive With Five-Leg-Inverter Supply A Comparative Study of Synchronous Current Control Schemes Based on FCS-MPC and PI-PWM for a Two-Motor Three- Phase Drive A Fault-Tolerant Permanent-Magnet Traction Module for Subway Applications Weighted Control of Traction Drives With Parallel-Connected AC Machines, IEEE International Electric Machines and Drives Conference IEEE International Electrical Machines & Drives Conference European Conference on Power Electronics and Applications Industry Applications Conference, Industry Application Conference, pp.517-526, 1909.

M. Levi, S. N. Jones, and . Vukosavic, Even-phase multi-motor vector controlled drive with single inverter supply and series connection of stator windings, IEE Proceedings -Electric Power Applications, pp.580-590, 2003.
DOI : 10.1049/ip-epa:20030424

M. Levi, S. N. Jones, H. A. Vukosavic, E. Toliyat, A. Levi et al., Multimotor Vector Controlled Drive System Supplied From a Single Voltage Source Inverter Multi-machine modelling of two series connected 5-phase synchronous machines: effect of harmonics on control [117] A. Iqbal, « Modelling and Control of Series-Connected Five-Phase and Six-Phase Two-Motor Drives Multiphase induction motor drives ? a technology status review Analytical Determination of DC-Bus Utilization Limits in Multiphase VSI Supplied AC Drives, European Conference on Power Electronis and Applications Thèse de doctorat IET Electric Power Applications, pp.320-335, 2004.

J. Mekri, E. Charpentier, J. Semail, and . Malvar, An efficient control of a series connected twosynchronous motor 5-phase with non sinusoidal EMF supplied by a single 5-leg VSI: Experimental and theoretical investigations Graphical Diagram for Subspace and Sequence Identification of Time Harmonics in Symmetrical Multiphase Machines Position Control of a Multi-Motor Drive Based on Series-Connected Five-Phase Tubular PM Actuators Fault tolerant dual-motor drives: Sizing of power electronic, European Conference on Power Electronics and Applications, pp.11-19

D. Dujic, M. Jones, E. Levi, O. Lopez, M. Jones et al., Parallel-Connected Multiphase Multidrive Systems With Single Inverter Supply A novel six-phase series-connected twomotor drive with decoupled dynamic control A Six-Phase Series-Connected Two-Motor Drive With Decoupled Dynamic Control Active disturbance rejection control strategy for symmetrical six-phase and three-phase PMSM two-motor series-connected systemHigh Phase Order Induction Motors -Part I. Description and Theoretical Considerations Device for controlling two multiphase motors Vectorial formalism for analysis and design of polyphase synchronous machines Right harmonic spectrum for the backelectromotive force of an n-phase synchronous motor Machines polyphasées : de la modélisation multimachine à la commande Vectorial Approach-Based Control of a Seven-Phase Axial Flux Machine Designed for Fault Operation Modélisation et commande d'un système à trois phases indépendantes à double fonctionnalité : Traction Electrique et Chargeur Forte puissance pour application Automobile Inversion-Based Control of a Highly Redundant Military HEV Comparison of Different Models and Simulation Approaches for the Energetic Study of a Subway Continuous Carrier-Based vs Space Vector PWM for, Multiphase Motor Drives for Fault-Tolerant Applications: Power Electronic Structures and Control Strategies Industrical Application Conference juill. 2005. [129] Modélisation Vectorielle Multimachines pour la Commande des Ensembles Convertisseurs-Machines Polyphasés Thèse de doctorat Thèse de Doctorat, Ecole Nationale Supérieure d'Arts et Métiers, pp.1-1, 1983.

V. Phase, Computer as a Tool Control structures for multi-machine multi-converter systems with several couplings by criteria merging, Inernational Conference on European Conference on Power Electronis and Applications, pp.1772-1779, 2005.

, Arbre de défaillance La méthode utilisée est composée de trois étapes : l'analyse fonctionnelle, la FFMEA (Functional Failure Mode & Effects Analysis) et l'arbre de défaillance

, Le système étudié est un entrainement avec un onduleur et deux machines électriques. Les frontières du système sont les sources de tension (Bus-DC) qui alimentent le système, Premièrement, la définition des frontières du système étudié est indispensable pour la RIMM et 1 pour les HIMM et Pont-H) au niveau électrique les 2 MSAP à 6 phases. D'autres éléments composent le système : ? Des bras d'onduleur (12 pour les HIMM et RIMM et 24 pour la Pont-H)

, ? Un calculateur

, ? Des capteurs de courant (6 pour les HIMM et RIMM et 12 pour la Pont

, ? 2 capteurs de position

, arbre de défaillance est généré en utilisant les deux étapes précédentes, qui ont déjà été présentées dans la section 2.4.1. L'enchainement des pertes de fonctions respecte la hiérarchie de l'analyse fonctionnelle. Le taux de défaillance des modes de défaut de base sont ceux mentionnés dans la FFMEA, Pour toutes les autres pertes de fonctionnalité, le calcul est fait en sommant ou en multipliant les modes défauts qui génèrent une perte de la fonctionnalité

, Pour la topologie RIMM, il faut perdre le contrôle de deux phases pour que le système s'arrête. Puisque le système à 6 phases, on peut les grouper en 30 combinaisons de deux phases dont le contrôle a été perdu, l'ordre dont les phases tombent en panne est pris en compte. Donc

, Combinaisons de défauts pour perdre le contrôle de deux phases, Figure, vol.177

, Pour les calculer il faut prendre en compte les défauts qui peuvent survenir à une phase auxquels le système est tolérant. Dans cette analyse, la topologie RIMM est la seule topologie qui est tolérante à un défaut de court-circuit de transistor. Pour cela, la partie de l'arbre