C. Li and B. G. Thomas, Maximum casting speed for continuous cast billets based on sub-mould bulging computation, 85 th Steelmaking Conf. Proc, pp.109-130, 2012.

C. Li and B. Thomas, Maximum casting speed for continuous cast steel billets based on sub-mold bulging computation, 85th Steelmaking conf. proc., ISS, pp.109-130, 2002.

J. P. Gu and C. Beckermann, Simulation of convection and macrosegregation in a large steel ingot. Metallurgical and materials transactions A, pp.1357-1366, 1998.

H. Yang, L. Zhao, X. Zhang, K. Deng, W. Li et al., Mathematical simulation on coupled flow, heat, and solute transport in slab continuous casting process, Metallurgical and Materials Transactions B, vol.15, issue.9, pp.1345-1356, 1998.
DOI : 10.1007/BF02646405

M. H. Bina, Homogenization heat treatment to reduce the failure of heat resistant steel castings, Metallurgy -Advances in Materials and Processes. InTech

B. Zhang, J. Cui, and G. Lu, Effects of low-frequency electromagnetic field on microstructures and macrosegregation of continuous casting 7075 aluminum alloy, Materials Science and Engineering: A, vol.355, issue.1-2, pp.325-330, 2003.
DOI : 10.1016/S0921-5093(03)00105-9

L. Zhang and B. G. Thomas, Inclusions in continuous casting of steel, XXIV National Steelmaking Symposium, pp.138-183, 2003.

C. Jungwook, S. Hiroyuki, E. Toshihiko, and S. Mikio, Thermal resistance at the interface between mold flux film and mold for continuous casting of steels, ISIJ International, vol.38, issue.5, pp.440-446, 1998.

]. K. Bibliography9, E. C. Yoshiaki, W. C. Carlos, and . Alan, An investigation of the crystallization of a continuous casting mold slag using the single hot thermocouple technique, ISIJ International, vol.38, issue.4, pp.357-365, 1998.

H. Todoroki, T. Ishii, K. Mizuno, and A. Hongo, Effect of crystallization behavior of mold flux on slab surface quality of a Ti-bearing Fe???Cr???Ni super alloy cast by means of continuous casting process, Materials Science and Engineering: A, vol.413, issue.414, pp.121-128, 2005.
DOI : 10.1016/j.msea.2005.08.181

I. Steinbach, M. Apel, T. Rettelbach, and D. Franke, Numerical simulations for silicon crystallization processes???examples from ingot and ribbon casting, Solar Energy Materials and Solar Cells, vol.72, issue.1-4, pp.59-68, 2002.
DOI : 10.1016/S0927-0248(01)00150-7

A. V. Reddy and N. C. Beckermann, Modeling of macrosegregation due to thermosolutal convection and contraction-driven flow in direct chill continuous casting of an Al-Cu round ingot, Metallurgical and Materials Transactions B, vol.26, issue.9, pp.479-489, 1997.
DOI : 10.1016/0921-5093(93)90407-6

C. F. Merton, Our understanding of macrosegregation: Past and present, ISIJ International, vol.40, issue.9, pp.833-841, 2000.

S. O. Kyung and W. C. Young, Macrosegregation behavior in continuously cast high carbon steel blooms and billets at the final stage of solidification in combination stirring, ISIJ International, vol.35, issue.7, pp.866-875, 1995.

M. R. Aboutalebi, M. Hasan, and R. I. Guthrie, Coupled turbulent flow, heat, and solute transport in continuous casting processes, Metallurgical and Materials Transactions B, vol.2, issue.4, pp.731-744, 1995.
DOI : 10.1179/000844391795575472

Z. Q. Liu, F. S. Qi, B. K. Li, and S. C. Cheung, Modeling of bubble behaviors and size distribution in a slab continuous casting mold, International Journal of Multiphase Flow, vol.79, pp.190-201, 2016.
DOI : 10.1016/j.ijmultiphaseflow.2015.07.009

L. Zhang, J. Aoki, and B. G. Thomas, Inclusion removal by bubble flotation in a continuous casting mold, Metallurgical and Materials Transactions B, vol.56, issue.3, pp.361-379, 2006.
DOI : 10.1007/BF02654242

B. Nagayasu, Y. Ryoji, Y. Hisao, F. Tetsuya, N. Tsutomu et al., Numerical analysis of fluid flow in continuous casting mold by bubble dispersion model, ISIJ International, vol.31, issue.1, pp.40-45, 1991.

B. G. Thomas, A. Dennisov, and H. Bai, Behavior of Argon Bubbles during Continuous Casting of Steel, ISS 80th Steelmaking conference, pp.375-384, 1997.

B. G. Thomas, Q. Yuan, B. Zhao, and S. P. Vanka, Transient Fluid-Flow Phenomena in the Continuous Steel-Slab Casting Mold and Defect Formation, Journal of Metals ? electronic edition, 2006.

L. C. Hibbeler and B. G. Thomas, Mold slag entrainment mechanisms in continuous casting molds, Iron and Steel Technology Conference, pp.121-136, 2013.

J. Nakashima and T. Toh, Improvement of continuously cast slabs by decreasing nonmetallic inclusions, 2013.

Q. T. Fang and M. J. Kinosz, Fine grain casting by mechanical stirring, US Patent, vol.4960, p.163, 1990.

P. Lucien, Continuous-casting method of melting metals in a slag medium by using consumable electrodes, US Patent, vol.3234, p.608, 1966.

X. Jian, H. Xu, T. T. Meek, and Q. Han, Effect of power ultrasound on solidification of aluminum A356 alloy, Materials Letters, vol.59, issue.2-3, pp.190-193, 2005.
DOI : 10.1016/j.matlet.2004.09.027

Z. Shao, Q. Le, Z. Zhang, and J. Cui, A new method of semi-continuous casting of AZ80 Mg alloy billets by a combination of electromagnetic and ultrasonic fields, Materials & Design, vol.32, issue.8-9, pp.4216-4224, 2011.
DOI : 10.1016/j.matdes.2011.04.035

R. Singh, B. G. Thomas, and S. P. Vanka, Effect of electromagnetic braking (embr) on turbulent flow in continuous casting, AISTech 2013 -Proceedings of the Iron and Steel Technology Conference, pp.1323-1336, 2013.

R. Chaudhary, B. G. Thomas, and S. P. Vanka, Effect of Electromagnetic Ruler Braking (EMBr) on Transient Turbulent Flow in Continuous Slab Casting using Large Eddy Simulations, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, pp.532-553, 2012.
DOI : 10.1007/s11663-008-9192-0

K. Cukierski and B. G. Thomas, Flow Control with Local Electromagnetic Braking in Continuous Casting of Steel Slabs, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, pp.94-107, 2008.
DOI : 10.1007/978-94-015-7883-7_4

. Bibliography, Numerical simulation of the effects of electromagnetic brake and argon gas injection on the three-dimensional multiphase flow and heat transfer in slab continuous casting mold, ISIJ International, vol.48, issue.5, pp.584-591, 2008.

Y. Wang and L. Zhang, Fluid Flow-Related Transport Phenomena in Steel Slab Continuous Casting Strands under Electromagnetic Brake, Metallurgical and Materials Transactions B, vol.227, issue.4, pp.1319-1351, 2011.
DOI : 10.2355/isijinternational.29.1063

B. Rietow and B. G. Thomas, Using nail board experiments to quantify surface velocity in the cc mold, AISTech conference, pp.1-11, 2008.

R. Liu, D. Crosbie, S. Chung, M. Trinh, and B. G. Thomas, Measurement of Molten Steel Surface Velocity with SVC and Nail Dipping during Continuous Casting Process, Sensors, Sampling, and Simulation for Process Control, pp.1-11, 2011.
DOI : 10.1007/BF02915666

K. Timmel, M. Roder, S. Eckert, and G. Gerbeth, Flow measurements in a continuous casting model using a low temperature liquid metal, 8th International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering, pp.71-75, 2012.

A. Pedcenko, A. Bojarevics, J. Priede, G. Gerbeth, and R. Hermann, Velocity measurements in the liquid metal flow driven by a two-phase inductor, Experiments in Fluids, vol.32, issue.6, p.2013
DOI : 10.1007/s003480100296

D. Jian and C. Karcher, Electromagnetic flow measurements in liquid metals using time-of-flight Lorentz force velocimetry, Measurement Science and Technology, vol.23, issue.7, p.74021, 2012.
DOI : 10.1088/0957-0233/23/7/074021

A. Thess, E. Votyakov, B. Knaepen, and O. Zikanov, Theory of the Lorentz force flowmeter, New Journal of Physics, vol.9, issue.8, p.299, 2007.
DOI : 10.1088/1367-2630/9/8/299

C. Heinicke, Local Lorentz Force Velocimetry for liquid metal duct flows, 2013.

Q. Yuan, S. Sivaramakrishnan, S. P. Vanka, and B. G. Thomas, Computational and experimental study of turbulent flow in a 0.4-scale water model of a continuous steel caster, Metallurgical and Materials Transactions B, vol.37, issue.7, pp.967-982, 2004.
DOI : 10.2355/isijinternational.37.654

H. Yang, M. Seden, N. Jacobson, and J. E. Eriksson, Technical review on the development of EMBR and FC Mold application in slab continuous casting at iv Bibliography

B. Zhao, B. G. Thomas, S. P. Vanka, and R. J. Malley, Transient fluid flow and superheat transport in continuous casting of steel slabs, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, pp.801-823, 2005.
DOI : 10.1007/BF02651721

P. Ramírez-lópez, R. D. Morales, R. Sánchez-pérez, L. G. Demedices, and O. Dávila, Structure of turbulent flow in a slab mold, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, pp.787-800, 2005.
DOI : 10.1017/CBO9780511840531.009

B. G. Thomas, R. Singh, R. Chaudhary, and P. Vanka, Flow Control with Ruler Electromagnetic Braking ( EMBr ) in Continuous Casting of Steel Slabs, Fifth Baosteel Biennial Academic Conference, pp.1-10, 2013.

Y. Haiqi, W. Baofeng, L. Huiqin, and L. Jianchao, Influence of electromagnetic brake on flow field of liquid steel in the slab continuous casting mold, Journal of Materials Processing Technology, vol.202, issue.1-3, pp.179-187, 2008.
DOI : 10.1016/j.jmatprotec.2007.08.054

O. Sjoden and M. Venini, Use of Electromagnetic Equipment for Slab and Thin Slab Steel Continuous Caster. Association of Metallurgical Engineers of Serbia, pp.11-20, 2007.

R. Singh, B. G. Thomas, and S. P. Vanka, Large Eddy Simulations of Double-Ruler Electromagnetic Field Effect on Transient Flow During Continuous Casting, Metallurgical and Materials Transactions B, vol.35, issue.2, pp.1098-1115, 2014.
DOI : 10.1007/s11663-004-0009-5

S. Kunstreich, T. Gautreau, J. Y. Ren, A. Codutti, F. Guastini et al., Development and validation of multi-mode R emb, a new electromagnetic brake for thin slab casters, pp.86-92, 2015.

S. Kunstreich, J. Y. Gautreau, . Ren, . Codutti, . Guastini et al., Experimental approach to develop Multi-Mode R EMB, an advanced electromagnetic brake for thin slab casters, 8th International Conference on Electromagnetic Processing of Materials, 2015.

S. Kunstreich, T. Gautreau, J. Y. Ren, A. Codutti, F. Guastini et al., Development and Validation of Multi-Mode EMB, a New Electromagnetic v Bibliography Brake for Thin Slab Casters, 8th European Continuous Casting Conference, pp.550-558, 2014.

B. G. Thomas and R. Chaudhary, State of the art in electromagnetic flow control in continuous casting of steel slabs: modeling and plant validation, 6th International conference electromagnetic processing of materials, pp.19-24, 2009.

D. Musaeva, V. K. Ilin, and V. Geza, Numerical simulation of the melt flow in an induction crucible furnace driven by a lorentz force pulse at low frequency, Magnetohydrodynamics, vol.51, issue.4 2, pp.771-783, 2015.

S. Yanqing, X. Yanjin, Z. Lei, Z. Tiejun, W. Shiping et al., Study on traveling magnetic field casting of sheet component, China foundary, vol.7, issue.3, pp.259-264, 2010.

K. Yokota and K. Fujisaki, Electromagnetic Coil Designed by Magneto-Hydro- Dynamic-Simulation, 2004.

Y. Q. Su, Y. J. Xu, L. Zhao, J. J. Guo, and H. Z. Fu, Effect of electromagnetic force on melt induced by traveling magnetic field. Transactions of Nonferrous Metals Society of China, pp.662-667, 2010.

S. Milind, Linear Electromagnetic Stirrer, Indian Institute of Science, 2005.

K. H. Spitzer, M. Dubke, and K. Schwerdtfeger, Rotational electromagnetic stirring in continuous casting of round strands, Metallurgical Transactions B, vol.99, issue.no. 1, pp.119-131, 1986.
DOI : 10.1007/BF02670825

J. Stiller, K. Koal, K. Frana, and R. Grundmann, Stirring of melts using rotating and travelling magnetic fields, Fifth International Conference on CFD in the Process Industries, pp.1-5, 2006.

S. Satou and K. Fujisaki, Evaluation of the influence of the time-varying electromagnetic component in M-EMS on flow at the free surface, Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi), pp.62-68, 2011.

K. Fujisaki, In-mold electromagnetic stirring in continuous casting, IEEE Transactions on Industry Applications, vol.37, issue.4, pp.1098-1104, 2001.
DOI : 10.1109/28.936402

M. Barna, B. Willers, M. Javurek, J. Reiter, and S. Eckert, Investigations of the liquid steel flow in slab casters with electromagnetic brakes and round bloom casters with electromagnetic stirring, 8th European Continuous Casting Conference 2014, p.10, 2014.

C. Stelian and D. Vizman, Numerical modeling of frequency influence on the electromagnetic stirring of semiconductor melts, Crystal Research and Technology, vol.85, issue.199, pp.645-652, 2006.
DOI : 10.1002/crat.200510643

A. Cramer, V. Galindo, and M. Zennaro, Frequency dependence of an alternating magnetic field driven flow, Magnetohydrodynamics, vol.51, issue.1, pp.133-147, 2015.

F. Santara, Y. Delannoy, and A. Autruffe, Electromagnetic stirring and retention to improve segregation in silicon for photovoltaics, Journal of Crystal Growth, vol.340, issue.1, pp.41-46, 2012.
DOI : 10.1016/j.jcrysgro.2011.11.074

URL : https://hal.archives-ouvertes.fr/hal-00794277

J. Meyer, F. Durand, R. Ricou, and C. Vives, Steady flow of liquid aluminum in a rectangular-vertical ingot mold, thermally or electromagnetically activated, Metallurgical Transactions B, vol.3, issue.3, pp.471-478, 1984.
DOI : 10.1007/BF02657377

G. Zhu, J. Xu, Z. Zhang, Y. Bai, and L. Shi, Annular electromagnetic stirring???a new method for the production of semi-solid A357 aluminum alloy slurry, Acta Metallurgica Sinica (English Letters), vol.22, issue.6, pp.408-414, 2009.
DOI : 10.1016/S1006-7191(08)60116-7

B. I. Jung, C. H. Jung, T. K. Han, and Y. H. Kim, Electromagnetic stirring and Sr modification in A356 alloy, Journal of Materials Processing Technology, vol.111, issue.1-3, pp.5-9, 2001.
DOI : 10.1016/S0924-0136(01)00514-3

V. Fireteanu, E. Rousset, E. Chauvin, and N. Chouard, Simultaneous Induction Heating and Electromagnetic Stirring of a Molten Glass Bath, 8th International Conference on Electromagnetic Processing of Materials, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01335037

M. Dubke, K. H. Tacke, K. H. Spitzer, and K. Schwerdtfeger, Flow fields in electromagnetic stirring of rectangular strands with linear inductors: Part II. computation of flow fields in billets, blooms, and slabs of steel, Metallurgical Transactions B, vol.22, issue.4, pp.595-602, 1988.
DOI : 10.1115/1.3184512

M. Dubke, K. H. Tacke, K. H. Spitzer, and K. Schwerdtfeger, Flow fields in electromagnetic stirring of rectangular strands with linear inductors: Part I. theory and experiments with cold models, Metallurgical Transactions B, vol.15, issue.4, pp.581-593, 1988.
DOI : 10.1115/1.3184512

H. K. Vii-bibliography and . Moffatt, Electromagnetic stirring, Physics Fluids A, vol.3, issue.5, pp.1336-1343, 1991.

K. Ayata, T. Mori, T. Fujimoto, T. Ohnishi, and I. Wakasugi, Improvement of macrosegregation in continuously cast bloom and billet by electromagnetic stirring., Transactions of the Iron and Steel Institute of Japan, vol.24, issue.11, 1984.
DOI : 10.2355/isijinternational1966.24.931

W. D. Griffiths and D. G. Mccartney, The effect of electromagnetic stirring on macrostructure and macrosegregation in the aluminium alloy 7150, Materials Science and Engineering: A, vol.222, issue.2, pp.140-148, 1997.
DOI : 10.1016/S0921-5093(96)10527-X

C. Vivès, Effects of forced electromagnetic vibrations during the solidification of aluminum alloys: Part I. solidification in the presence of crossed alternating electric fields and stationary magnetic fields, Metallurgical and Materials Transactions B, vol.47, issue.12, pp.445-455, 1996.
DOI : 10.1016/B978-0-12-341832-6.50008-6

D. Musaeva, E. Baake, and V. K. Ilin, Experimental Investigation of Al-Alloy Directional Solidification in Pulsed Electromagnetic Field, Materials Science Forum, vol.870, pp.471-476, 2016.
DOI : 10.4028/www.scientific.net/MSF.870.471

K. Brunelli, F. Dughiero, M. Forzan, I. Lombardi, A. Marconi et al., Directional solidification experiments on g2.5 i-dss furnace demonstrator of sikelor project, Internatiolnal conference on Heating by Electromagnetic Sources, pp.633-639, 2016.

F. Dughiero, M. Forzan, C. Pozza, and A. Tolomio, Experimental results in industrial environment of the i-DSS furnace, International Scientific Colloquium Modelling for Electromagnetic Processing, pp.73-78, 2014.

R. Hirayama, K. Fujisaki, and T. Yamada, Dual In-Mold Electromagnetic Stirring in Continuous Casting, IEEE Transactions on Magnetics, vol.40, issue.4, pp.2095-2097, 2004.
DOI : 10.1109/TMAG.2004.832131

M. Javurek, M. Barna, P. Gittler, K. Rockenschaub, and M. Lechner, Flow Modelling in Continuous Casting of Round Bloom Strands with Electromagnetic Stirring, steel research international, vol.16, issue.4, pp.617-626, 2008.
DOI : 10.1002/srin.199301009

Y. Miki, S. Ogura, and T. Fujii, Separation of inclusions from molten steel in a tundish by use of rotating electromagnetic field, steel technical report, 1996.

V. Dubodelov, O. Smirnov, M. Goryuk, V. Pogorsky, V. Seredenko et al., Features of functioning of magnetodynamic tundish at continuous viii Bibliography casting of stee, 8th International Conference on Electromagnetic Processing of Materials, 2015.

M. Pal, Modeling of Induction Stirred Ladles, Royal Institute of Technology, 2012.

A. Einstein, On the electrodynamics of moving objects, 1905.

C. Christov, Hidden in plan view: the material invariance of Maxwell-Hertz- Lorentz electrodynamics, Apeiron, vol.13, issue.2, pp.129-161, 2004.

J. R. Zapata and A. , Magnetic pulse forming processes: computational modelling and experimental validation, pp.21-39, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01417196

N. El-kaddah and T. T. Natarajan, Electromagnetic stirring of steel: Effect of stirrer design on mixing in horizontal electromagnetic stirring of steel slabs, Second International Conference on CFD in the Minerals and Process Industries, pp.339-344, 1999.

J. F. Schenck, The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds, Medical Physics, vol.23, issue.6, pp.815-850, 1996.
DOI : 10.1118/1.597854

Q. Tang, Z. Wang, P. I. Anderson, P. Jarman, and A. J. Moses, Approximation and Prediction of AC Magnetization Curves for Power Transformer Core Analysis, IEEE Transactions on Magnetics, vol.51, issue.5, pp.1-8, 2015.
DOI : 10.1109/TMAG.2014.2372672

P. , D. Barba, M. E. Mognaschi, D. A. Lowther, and F. Dughiero, A benchmark problems of induction heating analysis, HES 16 -Heating by Electromagnetic Sources, pp.233-240, 2016.

J. Jin, The finite element method in electromagnetics, p.36, 2002.

J. C. Nedelec, Mixed finite elements in ?3, Numerische Mathematik, vol.12, issue.3, pp.315-341, 1980.
DOI : 10.1007/BF01396415

J. P. Webb, Edge elements and what they can do for you Solving Maxwell equations in a closed cavity, and the question of spurious modes, IEEE transactions on magnetics IEEE transactions on magnetics, issue.22, pp.291460-1465, 1990.

A. Bossavit and A. Mayergoyz, Edge elements for scattering problemss, IEEE transactions on magnetics, issue.4, pp.252816-2821, 1989.

J. S. Wang and N. Ida, Eigenvalue analysis in electromagnetic cavities using divergence free finite elements, IEEE Transactions on Magnetics, vol.27, issue.5, pp.273978-3981, 1991.
DOI : 10.1109/20.104973

G. Mur, Compatibility relations and the finite-element formulation of electromagnetic field problems, IEEE Transactions on Magnetics, vol.30, issue.5, pp.2972-2975, 1994.
DOI : 10.1109/20.312561

G. Mur and A. T. De-hopp, A finite element method for computing threedimensional electromagnetic fields in inhomogeneous media, IEEE transactions on magnetics, issue.216, pp.2188-2191, 1985.

G. Mur, Edge elements, their advantages and their disadvantages, IEEE Transactions on Magnetics, vol.30, issue.5, pp.3552-3557, 1994.
DOI : 10.1109/20.312706

URL : https://repository.tudelft.nl/islandora/object/uuid%3A95fb5e92-90c7-4ec5-9acc-5aa5d9bfb3d1/datastream/OBJ/download

P. Monk, An analysis of N??d??lec's method for the spatial discretization of Maxwell's equations, Journal of Computational and Applied Mathematics, vol.47, issue.1, pp.101-121, 1993.
DOI : 10.1016/0377-0427(93)90093-Q

C. M. Pinciuc, A. Konrad, and J. D. Lavers, Basis functions with divergence constraints for the finite element method, IEEE transactions on magnetics, vol.50, issue.4, p.7200113, 2014.

O. Biro and K. Preis, On the use of the magnetic vector potential in the finite-element analysis of three-dimensional eddy currents, IEEE Transactions on Magnetics, vol.25, issue.4, pp.3145-3159, 1989.
DOI : 10.1109/20.34388

J. Alves and F. Bay, Modelling and analysis of the electromagnetism in magnetic forming process, IEEE Transactions on Magnetics, vol.52, issue.49, pp.7004011-7004053, 2015.

S. J. Salon, L. Ovacik, and J. F. Balley, Finite element calculation of harmonic losses in AC machine windings, IEEE Transactions on Magnetics, vol.29, issue.2, pp.1442-1445, 1993.
DOI : 10.1109/20.250674

V. Hill, O. Farle, and R. Dyczij-edlinger, A stabilized multilevel vector finite-element solver for time-harmonic electromagnetic waves, IEEE Transactions on Magnetics, vol.39, issue.3, pp.1203-1206, 2003.
DOI : 10.1109/TMAG.2003.810379

R. U. Börner, O. G. Ernst, and K. Spitzer, Fast 3-D simulation of transient electromagnetic fields by model reduction in the frequency domain using Krylov subspace projection, Geophysical Journal International, vol.14, issue.9, pp.766-780, 2008.
DOI : 10.5636/jgg.45.873

J. Chen, Z. Chen, T. Cui, and L. B. Zhang, An Adaptive Finite Element Method for the Eddy Current Model with Circuit/Field Couplings, SIAM Journal on Scientific Computing, vol.32, issue.2, pp.1020-1042, 2010.
DOI : 10.1137/080713112

A. Grayver and T. Kolev, Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method, GEOPHYSICS, vol.80, issue.6, pp.277-291, 2015.
DOI : 10.1090/S0025-5718-2011-02544-5

URL : https://www.research-collection.ethz.ch/bitstream/20.500.11850/103394/2/geo2015-0013.1.pdf

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune et al., PETSc users manual, 2015.

R. S. Tuminaro, M. A. Heroux, S. A. Hutchinson, and J. N. Shadid, Aztecoo user guide, 2007.

D. Day and M. Heroux, Solving Complex-Valued Linear Systems via Equivalent Real Formulations, SIAM Journal on Scientific Computing, vol.23, issue.2, pp.480-498, 2006.
DOI : 10.1137/S1064827500372262

URL : https://digital.library.unt.edu/ark:/67531/metadc710032/m2/1/high_res_d/756121.pdf

A. Munankarmy and M. Heroux, A comparison of two equivalent real formulations for complex-valued linear systems part 1: Introduction and method, American Journal of Undergraduate Research, vol.1, issue.3, pp.17-26, 2002.

O. Axelsson, M. Neytcheva, and B. Ahmad, A comparison of iterative methods to solve complex valued linear algebraic systems, Numerical Algorithms, vol.34, issue.4, pp.811-841, 2014.
DOI : 10.1137/110835347

M. Benzi and D. Bertaccini, Block preconditioning of real-valued iterative algorithms for complex linear systems, IMA Journal of Numerical Analysis, vol.28, issue.3, pp.598-618, 2008.
DOI : 10.1093/imanum/drm039

O. Axelsson and A. Kucherov, Real valued iterative methods for solving complex symmetric linear systems, Numerical Linear Algebra with Applications, vol.35, issue.156, pp.197-218, 2000.
DOI : 10.1016/0021-9991(80)90089-3

Z. Z. Bai, M. Benzi, and F. Chen, On preconditioned MHSS iteration methods for complex symmetric linear systems, Numerical Algorithms, vol.18, issue.2, pp.297-317, 2010.
DOI : 10.1017/CBO9780511543258

Z. Z. Bai, M. Benzi, and F. Chen, Modified HSS iteration methods for a class of complex symmetric linear systems, Computing, vol.75, issue.3-4, pp.93-111, 2010.
DOI : 10.1103/PhysRevE.75.036707

L. Marioni, J. R. Alves, Z. , E. Hachem, and F. Bay, A new approach to solve complex valued systems arising from the solution of Maxwell equations in the frequency domain through real-equivalent formulations, Numerical Linear Algebra with Applications, vol.190, issue.3, pp.2079-2124, 2017.
DOI : 10.1016/S0045-7825(00)00187-0

URL : https://hal.archives-ouvertes.fr/hal-01443398

R. W. Freund, Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices, SIAM Journal on Scientific and Statistical Computing, vol.13, issue.1, pp.425-448, 1992.
DOI : 10.1137/0913023

Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.856-869, 1986.
DOI : 10.1137/0907058

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers, Revue fran??aise d'automatique, informatique, recherche op??rationnelle. Analyse num??rique, vol.8, issue.R2, pp.129-151, 1974.
DOI : 10.1016/0029-5493(73)90006-X

D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the stokes equations, Calcolo, vol.21, issue.4, pp.337-344, 1984.
DOI : 10.1007/BF02576171

L. P. Franca and C. Farhat, Bubble functions prompt unusual stabilized finite element methods, Computer Methods in Applied Mechanics and Engineering, vol.123, issue.1-4, pp.299-308, 1995.
DOI : 10.1016/0045-7825(94)00721-X

URL : http://www-math.cudenver.edu/ccmreports/rep24.ps.gz

T. E. Tezduyar, S. Mittal, S. E. Ray, and R. Shih, Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements, Computer Methods in Applied Mechanics and Engineering, vol.95, issue.2, pp.221-242, 1992.
DOI : 10.1016/0045-7825(92)90141-6

E. Hachem, Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces. Theses, 2009.
DOI : 10.1016/j.simpat.2012.07.013

URL : https://hal.archives-ouvertes.fr/tel-00443532

T. Hughes, Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Computer Methods in Applied Mechanics and Engineering, vol.127, issue.1-4, pp.387-401, 1995.
DOI : 10.1016/0045-7825(95)00844-9

T. Hughes, G. R. Feijóo, L. Mazzei, and J. B. Quincy, The variational multiscale method???a paradigm for computational mechanics, Computer Methods in Applied Mechanics and Engineering, vol.166, issue.1-2, pp.3-24, 1998.
DOI : 10.1016/S0045-7825(98)00079-6

E. Hachem, B. Rivaux, T. Kloczko, H. Digonnet, and T. Coupez, Stabilized finite element method for incompressible flows with high Reynolds number, Journal of Computational Physics, vol.229, issue.23, pp.8643-8665, 2010.
DOI : 10.1016/j.jcp.2010.07.030

URL : https://hal.archives-ouvertes.fr/hal-00521881

O. Colomés, S. Badia, R. Codina, and J. Principe, Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.285, issue.2, pp.32-63, 2015.
DOI : 10.1016/j.cma.2014.10.041

T. Coupez and E. Hachem, Solution of high-Reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing, Computer Methods in Applied Mechanics and Engineering, vol.267, pp.65-85, 2013.
DOI : 10.1016/j.cma.2013.08.004

URL : https://hal.archives-ouvertes.fr/hal-00866734

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

Y. C. Chang, T. Y. Hou, B. Merriman, and S. Osher, A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows, Journal of Computational Physics, vol.124, issue.2, pp.449-464, 1996.
DOI : 10.1006/jcph.1996.0072

E. Hachem, R. Valette, and M. Khalloufi, High fidelity anisotropic adaptive fem towards physical couplings occurring in turbulent boiling, Numerical Modeling of Liquid-Vapor Interfaces in Fluid Flows, p.68, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01487257

E. Hachem, M. Khalloufi, J. Bruchon, R. Valette, and Y. Mesri, Unified adaptive Variational MultiScale method for two phase compressible???incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.308, pp.238-255, 2016.
DOI : 10.1016/j.cma.2016.05.022

URL : https://hal.archives-ouvertes.fr/hal-01353998

F. Gibou and R. Fedkiw, A fast hybrid k-means level set algorithm for segmentation, 4th Annual Hawaii International Conference on Statistics, Mathematics and Related Fields, pp.281-291, 2005.

C. Li, C. Xu, C. Gui, and M. D. Fox, Distance regularized level set evolution and its application to image segmentation, IEEE Transactions on Image Processing, vol.19, issue.12, pp.3243-3254, 2010.

L. Vese and T. Chan, A multiphase level-set framework for image segmentation using the Mumford and Shah model, International Journal of Computer Vision, vol.50, issue.3, pp.271-279, 2002.
DOI : 10.1023/A:1020874308076

G. Cottet and E. Maitre, A semi-implicit level set method for multiphase flows and fluid???structure interaction problems, Journal of Computational Physics, vol.314, pp.80-92, 2016.
DOI : 10.1016/j.jcp.2016.03.004

URL : https://hal.archives-ouvertes.fr/hal-01188443

D. Enright, S. Marschner, and R. Fedkiw, Animation and rendering of complex water surfaces, ACM Trans. Graph, vol.21, issue.3, pp.736-744, 2002.

M. Sussman, P. Smereka, and S. Osher, A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, Journal of Computational Physics, vol.114, issue.1, pp.146-159, 1994.
DOI : 10.1006/jcph.1994.1155

D. Polychronopoulou, N. Bozzolo, D. P. Munoz, J. Bruchon, M. Shakoor et al., Introduction to the level-set full eld modeling of laths spheroidization phenomenon in alpha/beta titanium alloys, NUMIFORM, pp.2003-68, 2016.

M. Shakoor, B. Scholtes, P. Bouchard, and M. Bernacki, An efficient and parallel level set reinitialization method ??? Application to micromechanics and microstructural evolutions, Applied Mathematical Modelling, vol.39, issue.23-24, pp.7291-7302, 2015.
DOI : 10.1016/j.apm.2015.03.014

URL : https://hal.archives-ouvertes.fr/hal-01139858

F. Gibou, R. Fedkiw, R. Caflisch, S. Osher, and G. Kreiss, A level set approach for the numerical simulation of dendritic growth A conservative level set method for two phase flow, Journal of Scientific Computing, vol.19, issue.1/3, pp.183-199225, 2003.
DOI : 10.1023/A:1025399807998

E. Olsson, G. Kreiss, and S. Zahedi, A conservative level set method for two phase flow II, Journal of Computational Physics, vol.225, issue.1, pp.785-807, 2007.
DOI : 10.1016/j.jcp.2006.12.027

O. Desjardins, V. Moureau, and H. Pitsch, An accurate conservative level set/ghost fluid method for simulating turbulent atomization, Journal of Computational Physics, vol.227, issue.18, pp.8395-8416, 2008.
DOI : 10.1016/j.jcp.2008.05.027

URL : https://hal.archives-ouvertes.fr/hal-01655351

D. H. Pino and . Munoz, High-performance computing of sintering process at particle scale, Ecole Nationale Superieure des Mines, p.73, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00855907

L. Ville, L. Silva, and T. Coupez, Convected level set method for the numerical simulation of fluid buckling, International Journal for Numerical Methods in Fluids, vol.4, issue.3, pp.324-344
DOI : 10.1142/S0218202594000327

URL : https://hal.archives-ouvertes.fr/hal-00595325

M. Sanchez, O. Fryazinov, P. Fayolle, and A. Pasko, Convolution Filtering of Continuous Signed Distance Fields for Polygonal Meshes, Computer Graphics Forum, vol.32, issue.4, pp.277-288, 2015.
DOI : 10.1109/TVCG.2002.1044520

T. Coupez, Convection Of Local Level Set Function For Moving Surfaces And Interfaces In Forming Flow, AIP Conference Proceedings, pp.61-66, 2007.
DOI : 10.1063/1.2740790

URL : https://hal.archives-ouvertes.fr/hal-00510556

L. Zhao, X. Bai, T. Li, and J. J. Williams, Improved conservative level set method, International Journal for Numerical Methods in Fluids, vol.54, issue.8, pp.575-590
DOI : 10.1002/fld.1475

M. Sussman and E. G. Puckett, A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows, Journal of Computational Physics, vol.162, issue.2, pp.301-337, 2000.
DOI : 10.1006/jcph.2000.6537

D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, A Hybrid Particle Level Set Method for Improved Interface Capturing, Journal of Computational Physics, vol.183, issue.1, pp.83-116, 2002.
DOI : 10.1006/jcph.2002.7166

L. F. Betancourt, Modeling of High Performance SMC Behavior Applications to 3D Compression Molding Simulation, 2017.

J. Baiges, R. Codina, A. Pont, and E. Castillo, An adaptive Fixed-Mesh ALE method for free surface flows, Computer Methods in Applied Mechanics and Engineering, vol.313, pp.159-188, 2017.
DOI : 10.1016/j.cma.2016.09.041

T. Coupez, Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, Journal of Computational Physics, vol.230, issue.7, pp.2391-2405, 2011.
DOI : 10.1016/j.jcp.2010.11.041

URL : https://hal.archives-ouvertes.fr/hal-00579536

M. Barna, M. Javurek, J. Reiter, J. Watzinger, B. Kaufmann et al., Numerical Simulations of the Continuous Casting of Steel with Electromagnetic Braking and Stirring, International Journal of Multiphysics, vol.2, pp.231-238, 2010.

J. Barglik, A. Doo, and . Smagór, Coupled temperature-electromagnetic? flow fields in electro-magnetic stirrer with rotating magnetic field. Modelling for material processing, pp.299-304, 2010.

H. Zhang, H. Nagaumi, Y. Zuo, and J. Cui, Coupled modeling of electromagnetic field, fluid flow, heat transfer and solidification during low frequency electromagnetic casting of 7XXX aluminum alloys, Materials Science and Engineering: A, vol.448, issue.1-2, pp.189-203, 2007.
DOI : 10.1016/j.msea.2006.10.062

H. D. Wang, M. Y. Zhu, and H. Q. Yu, Numerical Analysis of Electromagnetic Field and Flow Field in High Casting Speed Slab Continuous Casting Mold With Traveling Magnetic Field, Journal of Iron and Steel Research, International, vol.46, issue.12, pp.25-30, 2010.
DOI : 10.2355/isijinternational.46.1833

Y. Haiqi and Z. Miaoyong, Three-Dimensional Magnetohydrodynamic Calculation for Coupling Multiphase Flow in Round Billet Continuous Casting Mold With Electromagnetic Stirring, IEEE Transactions on Magnetics, vol.46, issue.1, pp.82-86, 2010.
DOI : 10.1109/TMAG.2009.2029910

T. T. Natarajan and N. El-kaddah, Finite element analysis of electromagnetic and fluid flow phenomena in rotary electromagnetic stirring of steel, Applied Mathematical Modelling, vol.28, issue.1, pp.47-61, 2004.
DOI : 10.1016/S0307-904X(03)00114-8

G. Haijun, L. Xinzhong, F. Xueyi, Q. Juhong, X. Daming et al., Numerical simulation of flow and heat transfer of continous cast steel slab under traveling magnetic field, pp.91-94, 2013.

K. Fujisaki, K. Wajima, and M. Ohki, 3D magnetohydrodynamics analysis method for free surface molten metal, IEEE Transactions on Magnetics, vol.36, issue.4, pp.1325-1328, 2000.

J. Vencels, A. Jakovics, V. Geza, and M. Scepanskis, EOF library: opensource Elmer and OpenFOAM coupler for simulation of MHD with free surface, XVIII International UIE Congress: Electrotechnologies for Material Processing, pp.312-318, 2017.

J. D. Lavers, State of the Art of Numerical Modelling for Electromagnetic Processing of Metallic Material, International Scientific Colloquium Modelling for Electromagnetic Processing, pp.5-10, 2008.

M. Barna, M. Javurek, J. Reiter, and M. Lechner, Numerische Simulation des Kokillenr??hrens beim Rundstranggie??en, Bhm, pp.518-522, 2009.
DOI : 10.1007/s00501-009-0509-3

F. Felten, Y. Fautrelle, Y. D. Terrail, and O. Metais, Numerical modelling of electromagnetically-driven turbulent flows using LES methods, Applied Mathematical Modelling, vol.28, issue.1, pp.15-27, 2004.
DOI : 10.1016/S0307-904X(03)00116-1

URL : https://hal.archives-ouvertes.fr/hal-00265148

J. L. Lumley and H. Tennekes, A first course in Turbulence, p.95, 1972.

L. Marioni, F. Bay, and E. Hachem, Numerical stability analysis and flow simulation of lid-driven cavity subjected to high magnetic field, Physics of Fluids, vol.15, issue.3, p.57102, 2016.
DOI : 10.1016/j.jcp.2010.11.041

URL : https://hal.archives-ouvertes.fr/hal-01311179

L. Marioni, F. Bay, and E. Hachem, Lid-driven cavity highly turbulent flow subjected to high magentic field: Determination of critical time-step for explicit MHD schemes, 10th PAMIR International Conference -Fundamental and Applied MHD, 2016.

U. Ghia, K. N. Ghia, and C. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computational Physics, vol.48, issue.3, pp.387-411, 1982.
DOI : 10.1016/0021-9991(82)90058-4

M. Sahin and N. G. Owens, A novel fully implicit finite volume method applied to the lid-driven cavity problem?Part I: High Reynolds number flow calculations, International Journal for Numerical Methods in Fluids, vol.19, issue.1, pp.57-77, 2003.
DOI : 10.1137/S1064827596304034

J. Zhang, Numerical simulation of 2D square driven cavity using fourth-order compact finite difference schemes, Computers & Mathematics with Applications, vol.45, issue.1-3, pp.43-52, 2003.
DOI : 10.1016/S0898-1221(03)80006-8

O. Botella and R. Peyret, Benchmark spectral results on the lid-driven cavity flow, Computers & Fluids, vol.27, issue.4, pp.421-433, 1998.
DOI : 10.1016/S0045-7930(98)00002-4

C. H. Bruneau and M. Saad, The behaviour of high reynolds flows in a driven cavity. ColdFusion Developer's, Journal (CFDJ), vol.15, issue.3, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00282014

V. Gravemeier, W. A. Wall, and E. Ramm, A three-level finite element method for the instationary incompressible Navier???Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.15-16, pp.15-161323, 2004.
DOI : 10.1016/j.cma.2003.12.027

A. Masud and R. A. Khurram, A multiscale finite element method for the incompressible Navier???Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.13-16, pp.1750-1777, 2006.
DOI : 10.1016/j.cma.2005.05.048

Y. F. Peng, Y. H. Shiau, and R. R. Hwang, Transition in a 2-D lid-driven cavity flow, Computers & Fluids, vol.32, issue.3, pp.337-352, 2003.
DOI : 10.1016/S0045-7930(01)00053-6

Y. Yu, B. W. Li, and A. Thess, The effect of a uniform magnetic field on vortex breakdown in a cylinder with rotating upper lid, Computers & Fluids, vol.88, pp.510-523, 2013.
DOI : 10.1016/j.compfluid.2013.10.006

E. E. Tzirtzilakis and M. A. Xenos, Biomagnetic fluid flow in a driven cavity, Meccanica, vol.9, issue.1, pp.187-200, 2013.
DOI : 10.1088/0031-9155/41/11/003

G. R. Kefayati, Lattice boltzmann simulation of natural convection in nanofluid-filled 2d long enclosures at presence of magnetic field. Theoretical and Computational Fluid Dynamics, pp.865-883, 2013.

V. Shatrov, G. Mutschke, and G. Gerbeth, Three-dimensional linear stability analysis of lid-driven magnetohydrodynamic cavity flow, Physics of Fluids, vol.4, issue.8, pp.2141-2151, 2003.
DOI : 10.1063/1.1456512

S. Sivasankaran, A. Malleswaran, J. Lee, and P. Sundar, Hydro-magnetic combined convection in a lid-driven cavity with sinusoidal boundary conditions on both sidewalls, International Journal of Heat and Mass Transfer, vol.54, issue.1-3, pp.512-525, 2011.
DOI : 10.1016/j.ijheatmasstransfer.2010.09.018

A. Yu, P. Z. Gelfgat, and . Bar-yoseph, The effect of an external magnetic field on oscillatory instability of convective flows in a rectangular cavity, Physics of Fluids, vol.13, issue.8, pp.2269-2278, 2001.

F. Hakan, . Oztop, I. Salem, and . Pop, Mhd mixed convection in a lid-driven cavity with corner heater, International Journal of Heat and Mass Transfer, vol.54, pp.15-163494, 2011.

J. P. Garandet, T. Alboissiere, and R. Moreau, Buoyancy driven convection in a rectangular enclosure with a transverse magnetic field, International Journal of Heat and Mass Transfer, vol.35, issue.4, pp.741-748, 1992.
DOI : 10.1016/0017-9310(92)90242-K

H. Ozoe and K. Okada, The effect of the direction of the external magnetic field on the three-dimensional natural convection in a cubical enclosure, International Journal of Heat and Mass Transfer, vol.32, issue.10, pp.1075-1084, 1989.
DOI : 10.1016/0017-9310(89)90163-4

P. X. Yu, J. X. Qiu, Q. Qin, and Z. F. Tian, Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field, International Journal of Heat and Mass Transfer, vol.67, pp.1131-1144, 2013.
DOI : 10.1016/j.ijheatmasstransfer.2013.08.087

L. Davoust, M. D. Cowley, R. Moreau, and R. Bolcato, Buoyancy-driven convection with a uniform magnetic field. part 2. experimental investiga-tion, Journal of Fluid Mechanics, issue.59, p.400, 1999.

L. Marioni, M. Khalloufi, F. Bay, and E. Hachem, Two-fluid flow under the constraint of external magentic field: revisiting the dam-break benchmark, International Journal of Numerical Methods for Heat and Fluid Flow, issue.11, pp.27-2017

N. B. Salah, A. Soulaimani, and W. G. Habashi, A finite element method for magnetohydrodynamics, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.43-44, pp.5867-5892, 2001.
DOI : 10.1016/S0045-7825(01)00196-7

J. C. Martin and W. J. Moyce, Part IV. An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.244, issue.882, pp.312-324, 1952.
DOI : 10.1098/rsta.1952.0006

URL : https://hal.archives-ouvertes.fr/hal-00518739

S. Koshizuka and Y. Oka, Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid, Nuclear Science and Engineering, vol.98, issue.3, pp.421-434, 1996.
DOI : 10.13182/NT92-A34648

J. Wang, Z. Ruizhi, and D. Wan, Numerical simulation of 3d dam-break flow by fem-level set method, Twenty-second International Offshore and Polar Engineering Conference, pp.1080-1087, 2012.

K. Abdolmaleki, K. P. Thiagarajan, and M. T. Morris-thomas, Simulation of The Dam Break Problem and Impact Flows Using a Navier-Stokes Solver, 15th Australasian Fluid Mechanics Conference, 2004.

E. F. Lins, R. N. Elias, F. A. Rochinha, and A. Coutinho, Residual-based variational multiscale simulation of free surface flows, Computational Mechanics, vol.206, issue.6, pp.545-557, 2010.
DOI : 10.1007/s00466-010-0495-z

A. Shakibaeinia and Y. C. Jin, A mesh-free particle model for simulation of mobile-bed dam break, Advances in Water Resources, vol.34, issue.6, pp.794-807, 2011.
DOI : 10.1016/j.advwatres.2011.04.011

C. B. Liao, M. S. Wu, and S. J. Liang, Numerical simulation of a dam break for an actual river terrain environment. Hydrological processes, pp.447-460, 2007.

T. J. Chang, H. M. Kao, K. H. Chang, and M. H. Hsu, Numerical simulation of shallow-water dam break flows in open channels using smoothed particle hydrodynamics, Journal of Hydrology, vol.408, issue.1-2, pp.78-90, 2011.
DOI : 10.1016/j.jhydrol.2011.07.023

A. Murrone and H. Guillard, A five equation reduced model for compressible two phase flow problems, Journal of Computational Physics, vol.202, issue.2, pp.664-698, 2005.
DOI : 10.1016/j.jcp.2004.07.019

URL : https://hal.archives-ouvertes.fr/inria-00071808

D. M. Greaves, Simulation of viscous water column collapse using adapting hierarchical grids, International Journal for Numerical Methods in Fluids, vol.113, issue.1, pp.693-711, 2010.
DOI : 10.1007/978-3-642-97651-3

Y. Zhang, Z. Zeng, and J. Chen, The improved space-time conservation element and solution element scheme for two-dimensional dam-break flow simulation, International Journal for Numerical Methods in Fluids, vol.38, issue.2, pp.605-624, 2012.
DOI : 10.1002/fld.243

P. A. Caron, M. A. Cruchaga, and A. Larreteguy, Sensitivity analysis of finite volume simulations of a breaking dam problem, International Journal of Numerical Methods for Heat & Fluid Flow, vol.25, issue.7, pp.1718-1745, 2015.
DOI : 10.1016/j.compfluid.2011.11.003

T. Fondelli, A. Andreini, and B. Facchini, Numerical Simulation of Dam-Break Problem Using an Adaptive Meshing Approach, Energy Procedia, pp.309-315, 2015.
DOI : 10.1016/j.egypro.2015.12.038

M. L. Garcia, ADAPTIVE MESH REFINEMENT IN THE DAM-BREAK PROBLEMS, Proceedings of 10th World Congress on Computational Mechanics, 2014.
DOI : 10.5151/meceng-wccm2012-19753

E. Marchandise and J. F. Remacle, A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows, Journal of Computational Physics, vol.219, issue.2, pp.780-800, 2006.
DOI : 10.1016/j.jcp.2006.04.015

A. G. Mowat, W. J. Van-den-bergh, A. G. Malan, and D. Wilke, An AMG strategy for efficient solution of free-surface flows, International Journal of Numerical Methods for Heat & Fluid Flow, vol.26, issue.3/4, pp.1172-1186, 2016.
DOI : 10.1137/0913035

E. Jahanbakhsh, R. Panahi, and M. S. Seif, Numerical simulation of three???dimensional interfacial flows, International Journal of Numerical Methods for Heat & Fluid Flow, vol.17, issue.4, pp.384-404, 2007.
DOI : 10.1006/jcph.1994.1146

R. N. Elias and A. Coutinho, Stabilized edge-based finite element simulation of free-surface flows, International Journal for Numerical Methods in Fluids, vol.47, issue.6-8, pp.965-993, 2007.
DOI : 10.1002/fld.1475

L. Marioni, E. Hachem, and F. Bay, Numerical simulation of electromagnetic stirring, XVIII UIE-Congress -Electrotechnologies for material forming, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01649660

L. Marioni, E. Hachem, and F. Bay, Numerical coupling strategy for the simulation of electromagnetic stirring, Magnetohydrodynamics, vol.53, issue.3, pp.547-557, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01649660

D. Musaeva, V. K. Ilyin, V. Ge?a, and E. Baake, Experimental investigation of low-frequency pulsed Lorentz force influence on the motion of Galinstan melt, Physics and Mathematics, vol.2, issue.132, pp.193-200, 2016.

L. Marioni, J. Alves, F. Bay, and E. Hachem, Effect of M-EMS on in-mould transient flow during continuous casting, International Journal of Applied Electromagnetics and Mechanics, vol.76, issue.1, 2016.
DOI : 10.1002/srin.200505970

URL : https://hal.archives-ouvertes.fr/hal-01311019

L. Marioni, J. Alves, F. Bay, and E. Hachem, Effect of M-EMS on in-mould transient flow during continuous casting, International Conference on Heating by Electromagnetic sources, pp.3-10, 2016.
DOI : 10.1002/srin.200505970

URL : https://hal.archives-ouvertes.fr/hal-01311019

Q. Yuan, B. Zhao, S. P. Vanka, and B. G. Thomas, Study of computational issues in simulation of transient flow in continuous casting Steel Research International, Special Issue: Simulation of Fluid Flow in Metallurgy, pp.33-43, 2005.