V. Figure, Submatrices of the Kernel norm matrix G corresponding to the eect of Bund (L) events on Bobl (M) events (left) and vice-versa (right)

. M. Bibliography, A. Abadi, P. Agarwal, E. Barham, Z. Brevdo et al., TensorØow: Large-scale machine learning on heterogeneous distributed systems, 2016.

E. M. Achab, S. Bacry, I. Gaïas, J. Mastromatteo, and . Muzy, Uncovering causality from multivariate hawkes integrated cumulants, Proceedings of the International Conference on Machine Learning, 2017.

O. [. Andersen, R. D. Borgan, N. Gill, and . Keiding, Statistical models based on counting processes, 2012.
DOI : 10.1007/978-1-4612-4348-9

A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos et al., Distinct types of diffuse large b-cell lymphoma identiAEed by gene expression proAEling, Nature, issue.6769, pp.403503-511, 2000.

G. [. Atchadé, E. Fort, and . Moulines, On perturbed proximal gradient algorithms, Journal of Machine Learning Research, vol.18, issue.10, pp.1-33, 2017.

J. [. Aït-sahalia, R. J. Cacho-diaz, and . Laeven, Modeling AEnancial contagion using mutually exciting jump processes, National Bureau of Economic Research, 2010.

. [. Bubeck, Convex Optimization: Algorithms and Complexity, Machine Learning, pp.231-357, 2015.
DOI : 10.1561/2200000050

URL : http://www.nowpublishers.com/article/DownloadSummary/MAL-050

J. [. Blundell, K. A. Beck, and . Heller, Modelling reciprocating relationships with hawkes processes, Advances in Neural Information Processing Systems, pp.2600-2608, 2012.

F. [. Bottou, J. Curtis, and . Nocedal, Optimization methods for large-scale machine learning, 2016.

. Bct-+-15-]-g, L. Bormetti, M. Calcagnile, F. Treccani, S. Corsi et al., Modelling systemic price cojumps with Hawkes factor models, Quantitative Finance, vol.15, issue.7, pp.1137-1156, 2015.

S. [. Bacry, M. Delattre, J. Homann, and . Muzy, Modelling microstructure noise with mutually exciting point processes, Quantitative Finance, vol.472, issue.7, pp.65-77, 2013.
DOI : 10.1198/016214505000000169

URL : https://hal.archives-ouvertes.fr/hal-01313995

]. D. Ber14 and . Bertsekas, Constrained optimization and Lagrange multiplier methods Academic press, 2014.

P. [. Broadie and . Glasserman, Estimating Security Price Derivatives Using Simulation, Management Science, vol.42, issue.2, pp.269-285, 1996.
DOI : 10.1287/mnsc.42.2.269

URL : http://www.columbia.edu/~mnb2/broadie/Assets/bg-ms-1996.pdf

S. [. Bacry, J. Gaïas, and . Muzy, A generalization error bound for sparse and low-rank multivariate hawkes processes. arXiv preprint, 2015.

A. [. Blatt, H. Hero, and . Gauchman, A Convergent Incremental Gradient Method with a Constant Step Size, SIAM Journal on Optimization, vol.18, issue.1, pp.29-51, 2007.
DOI : 10.1137/040615961

URL : http://www.eecs.umich.edu/~hero/Preprints/AveragedGradientVer5.pdf

A. [. Bacry, M. Iuga, C. Lasnier, and . Lehalle, Market impacts and the life cycle of investors orders, Market Microstructure and Liquidity, issue.02, p.11550009, 2015.

T. [. Bacry, J. Jaisson, and . Muzy, Estimation of slowly decreasing Hawkes kernels: application to high-frequency order book dynamics, Quantitative Finance, vol.33, issue.3, pp.1179-1201, 2016.
DOI : 10.1088/1469-7688/3/6/307

URL : https://hal.archives-ouvertes.fr/hal-01313833

L. [. Brémaud and . Massoulié, Stability of nonlinear hawkes processes. The Annals of Probability, pp.1563-1588, 1996.

E. [. Bach and . Moulines, Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n), Advances in neural information processing systems, pp.773-781, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00831977

]. E. Bm14a, J. Bacry, and . Muzy, Hawkes model for price and trades high-frequency dynamics, Quantitative Finance, vol.14, issue.7, pp.1147-1166, 2014.

]. E. Bm14b, J. Bacry, and . Muzy, Second order statistics characterization of hawkes processes and non-parametric estimation. arXiv preprint, 2014.

J. [. Bacry and . Muzy, First- and Second-Order Statistics Characterization of Hawkes Processes and Non-Parametric Estimation, IEEE Transactions on Information Theory, vol.62, issue.4, pp.2184-2202, 2016.
DOI : 10.1109/TIT.2016.2533397

URL : https://hal.archives-ouvertes.fr/hal-01313834

I. [. Bacry, J. Mastromatteo, and . Muzy, Hawkes processes in AEnance, ):1550005, 2015. Bibliography [Bot98] L. Bottou. Online learning and stochastic approximations. On-line learning in neural networks, p.142, 1998.
DOI : 10.1142/s2382626615500057

URL : http://arxiv.org/pdf/1502.04592

]. L. Bot10 and . Bottou, Large-scale machine learning with stochastic gradient descent, Proceedings of COMPSTAT'2010, pp.177-186, 2010.

]. C. Bow07 and . Bowsher, Modelling security market events in continuous time: Intensity based, multivariate point process models, Journal of Econometrics, vol.141, issue.2, pp.876-912, 2007.

]. S. Bpc-+-11, N. Boyd, E. Parikh, B. Chu, J. Peleato et al., Distributed optimization and statistical learning via the alternating direction method of multipliers A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM journal on imaging sciences, pp.1-122183, 2009.

L. [. Boyd and . Vandenberghe, Convex optimization, 2004.

+. Bvdbs, ]. M. Bogdan, E. Van-den-berg, C. Sabatti, W. Su et al., Slope?adaptive variable selection via convex optimization, The annals of applied statistics, vol.9, issue.3, p.1103, 2015.

]. A. Cau47 and . Cauchy, Méthode générale pour la résolution des systemes d'équations simultanées, Comp. Rend. Sci. Paris, vol.25, pp.536-538, 1847.

R. [. Chen, V. C. Chiang, and . Storey, Business intelligence and analytics: From big data to big impact, MIS quarterly, vol.36, issue.4, p.2012

M. A. Choromanska, M. Hena, G. B. Mathieu, Y. Arous, and . Lecun, The loss surfaces of multilayer networks, AISTATS, 2015.

]. D. Cox75 and . Cox, Partial likelihood, Biometrika, vol.62, issue.2, pp.269-276, 1975.
DOI : 10.1093/biomet/62.2.269

G. [. Carreira-perpinan and . Hinton, On contrastive divergence learning, Aistats, pp.33-40, 2005.

D. [. Crane and . Sornette, Robust dynamic classes revealed by measuring the response function of a social system, Proceedings of the National Academy of Sciences, vol.26, issue.2, 2008.
DOI : 10.3758/BF03201143

]. C. Dav72 and . David, Regression models and life tables (with discussion), Journal of the Royal Statistical Society, vol.34, pp.187-220, 1972.

F. [. Defazio, S. Bach, and . Lacoste-julien, Saga: A fast incremental gradient method with support for non-strongly convex composite objectives, Advances in Neural Information Processing Systems, pp.1646-1654, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01016843

[. Fonseca and R. Zaatour, Hawkes Process: Fast Calibration, Application to Trade Clustering and Diffusive Limit, SSRN Electronic Journal, vol.34, issue.6, pp.548-579, 2014.
DOI : 10.2139/ssrn.2294112

[. Fonseca and R. Zaatour, Correlation and Lead-Lag Relationships in a Hawkes Microstructure Model, Journal of Futures Markets, vol.27, issue.3, pp.260-285, 2017.
DOI : 10.1007/978-3-662-06400-9

E. [. Duchi, Y. Hazan, and . Singer, Adaptive subgradient methods for online learning and stochastic optimization, Journal of Machine Learning Research, vol.12, pp.2121-2159, 2011.

]. D. Don06 and . Donoho, Compressed sensing, IEEE Transactions on information theory, vol.52, issue.4, pp.1289-1306, 2006.

M. [. Dayri and . Rosenbaum, Large Tick Assets: Implicit Spread and Optimal Tick Size, Market Microstructure and Liquidity, vol.3, issue.01, p.1550003, 2015.
DOI : 10.1198/016214505000000169

URL : https://hal.archives-ouvertes.fr/hal-01263181

Y. [. Duchi and . Singer, Ecient online and batch learning using forward backward splitting, Journal of Machine Learning Research, vol.10, pp.2899-2934, 2009.

]. E. Dur97 and . Durkheim, Le suicide: étude de sociologie. F. Alcan, p.1897

D. [. Daley and -. Vere, An introduction to the theory of point processes: volume II: general theory and structure, 2007.

]. B. Dxh-+-14, B. Dai, N. Xie, Y. He, A. Liang et al., Scalable kernel methods via doubly stochastic gradients, Advances in Neural Information Processing Systems, pp.3041-3049, 2014.

J. [. Eisler, J. Bouchaud, and . Kockelkoren, The price impact of order book events: market orders, limit orders and cancellations, Quantitative Finance, vol.8, issue.9, pp.1395-1419, 2012.
DOI : 10.1080/14697680500244411

R. [. Eichler, J. Dahlhaus, and . Dueck, Graphical Modeling for Multivariate Hawkes Processes with Nonparametric Link Functions, Journal of Time Series Analysis, vol.34, issue.3, pp.225-242, 2017.
DOI : 10.1007/BF02481022

URL : http://arxiv.org/pdf/1605.06759

J. [. Einav and . Levin, Economics in the age of big data, Science, vol.12, issue.5915, p.1243089, 2014.
DOI : 10.1007/s11129-014-9146-6

G. [. Feigelson and . Babu, Big data in astronomy, Significance, vol.2, issue.2, pp.22-25, 2012.
DOI : 10.1111/j.1365-2966.2009.15576.x

T. [. Friedman, R. Hastie, and . Tibshirani, Sparse inverse covariance estimation with the graphical lasso, Biostatistics, vol.94, issue.1, pp.432-441, 2008.
DOI : 10.1093/biomet/asm018

URL : https://academic.oup.com/biostatistics/article-pdf/9/3/432/17742149/kxm045.pdf

R. [. Fan and . Li, Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties, Journal of the American Statistical Association, vol.96, issue.456, pp.1348-1360, 2001.
DOI : 10.1198/016214501753382273

URL : http://www.stat.psu.edu/~rli/research/penlike.pdf

]. G. Fm-+-03, E. Fort, and . Moulines, Convergence of the monte carlo expectation maximization for curved exponential families. The Annals of Statistics, pp.1220-1259, 2003.

D. [. Filimonov and . Sornette, Quantifying reØexivity in AEnancial markets: Toward a prediction of Øash crashes, Fu. Gradient estimation. Handbooks in operations research and management science, pp.56108575-616, 2006.

. Fwr-+-15-]-m, Y. Farajtabar, M. G. Wang, S. Rodriguez, H. Li et al., Coevolve: A joint point process model for information diusion and network co-evolution, Advances in Neural Information Processing Systems, pp.1954-1962, 2015.

Y. [. Goodfellow, A. Bengio, and . Courville, Deep Learning, 2016.

[. Giorgi, A. Guerraggio, and J. Thierfelder, Mathematics of optimization: smooth and nonsmooth case, 2004.

]. P. Gla13 and . Glasserman, Monte Carlo methods in AEnancial engineering, 2013.

A. [. Glowinski and . Marroco, Sur l'approximation, par éléments AEnis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires. Revue française d'automatique, informatique, recherche opérationnelle, Analyse numérique, pp.41-76, 1975.

B. [. Gabay and . Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Computers & Mathematics with Applications, vol.2, issue.1, pp.17-40, 1976.
DOI : 10.1016/0898-1221(76)90003-1

X. [. Gelman and . Meng, Simulating normalizing constants: from importance sampling to bridge sampling to path sampling, Statistical Science, vol.13, issue.2, pp.163-185, 1998.
DOI : 10.1214/ss/1028905934

URL : http://www.cis.upenn.edu/~taskar/courses/cis700-sp08/papers/gelman-meng.pdf

]. J. Bibliography-[-goe10 and . Goeman, L1 penalized estimation in the cox proportional hazards model, Biometrical journal, vol.52, issue.1, pp.70-84, 2010.

]. C. Gra69 and . Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica: Journal of the Econometric Society, pp.424-438, 1969.

J. [. Gomez-rodriguez, B. Leskovec, and . Schölkopf, Modeling information propagation with survival theory, International Conference on Machine Learning, pp.666-674, 2013.

T. [. Gopakumar, D. Tran, S. Phung, and . Venkatesh, Stabilizing sparse cox model using clinical structures in electronic medical records. arXiv preprint, 2014.

]. A. Hal05 and . Hall, Generalized method of moments, 2005.

]. L. Han82 and . Hansen, Large sample properties of generalized method of moments estimators, Econometrica: Journal of the Econometric Society, pp.1029-1054, 1982.

R. Harikandeh, M. O. Ahmed, A. Virani, M. Schmidt, J. Kone?nkone?n-`-kone?n-`-y et al., Stopwasting my gradients: Practical svrg, Advances in Neural Information Processing Systems, pp.2251-2259, 2015.

]. A. Haw71a and . Hawkes, Point spectra of some mutually exciting point processes, Journal of the Royal Statistical Society. Series B (Methodological), pp.438-443, 1971.

]. A. Haw71b and . Hawkes, Spectra of some self-exciting and mutually exciting point processes, Biometrika, pp.83-90, 1971.

J. [. Hardiman and . Bouchaud, Branching-ratio approximation for the self-exciting Hawkes process, Physical Review E, vol.107, issue.6, p.62807, 2014.
DOI : 10.1239/jap/996986648

S. J. Hardiman, . Bercot, . Nicolas, . Bouchaud, and . Jean-philippe, Critical reØexivity in AEnancial markets: a hawkes process analysis, Eur. Phys. J. B, issue.10, p.86442, 2013.

]. M. Hes69 and . Hestenes, Multiplier and gradient methods, Journal of optimization theory and applications, vol.4, issue.5, pp.303-320, 1969.

]. G. Hin02 and . Hinton, Training products of experts by minimizing contrastive divergence, Neural computation, vol.14, issue.8, pp.1771-1800, 2002.

D. [. Hawkes and . Oakes, A cluster process representation of a self-exciting process, Journal of Applied Probability, vol.33, issue.03, pp.493-503, 1974.
DOI : 10.1017/S0021900200032873

W. [. Hu, J. T. Pan, and . Kwok, Accelerated gradient methods for stochastic optimization and online learning, Advances in Neural Information Processing Systems, pp.781-789, 2009.

. R. Hrbr-+-15-]-n, P. Hansen, V. Reynaud-bouret, and . Rivoirard, Lasso and probabilistic inequalities for multivariate point processes Reducing the dimensionality of data with neural networks, Bernoulli science, vol.21, issue.15786, pp.83-143, 2006.

R. [. Hastie and . Tibshirani, Generalized additive models, 1990.

R. [. Hastie, J. Tibshirani, and . Friedman, Overview of supervised learning, The elements of statistical learning, pp.9-41, 2009.
DOI : 10.1007/978-0-387-21606-5_2

N. T. Hayashi and . Yoshida, On covariance estimation of non-synchronously observed diffusion processes, Bernoulli, vol.11, issue.2, pp.359-379, 2005.
DOI : 10.3150/bj/1116340299

A. [. Iwata, Z. Shah, and . Ghahramani, Discovering latent inØuence in online social activities via shared cascade poisson processes, Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.266-274, 2013.

F. [. Jedidi and . Abergel, On the stability and price scaling limit of a Hawkes process-based order book model. Available at SSRN: https://ssrn.com, 2013.

J. [. Jovanovi´cjovanovi´c, S. Hertz, and . Rotter, Cumulants of Hawkes point processes, Physical Review E, vol.21, issue.4, p.42802, 2015.
DOI : 10.1007/s10827-009-0204-0

]. A. Jn-+-11, A. Juditsky, and . Nemirovski, First order methods for nonsmooth convex large-scale optimization, ii: utilizing problems structure. Optimization for Machine Learning, pp.149-183, 2011.

T. [. Johnson and . Zhang, Accelerating stochastic gradient descent using predictive variance reduction, Advances in Neural Information Processing Systems, pp.315-323, 2013.

]. N. Kal57 and . Kaldor, A model of economic growth. The economic journal, pp.591-624, 1957.

J. Kone?nkone?n-`-kone?n-`-y, J. Liu, P. Richtárik, and M. Taká?, Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting, IEEE Journal of Selected Topics in Signal Processing, vol.10, issue.2, pp.242-255, 2016.
DOI : 10.1109/JSTSP.2015.2505682

P. [. Konecn-`-ykonecn-`-konecn-`-y and . Richtárik, Semi-stochastic gradient descent methods. arXiv preprint arXiv:1312, p.3, 2013.

]. J. Kw-+-52, J. Kiefer, and . Wolfowitz, Stochastic estimation of the maximum of a regression function, The Annals of Mathematical Statistics, vol.23, issue.3, pp.462-466, 1952.

]. G. Lan12 and . Lan, An optimal method for stochastic composite optimization, Mathematical Programming, pp.365-397, 2012.
DOI : 10.1023/A:1021814225969

]. J. Lar07 and . Large, Measuring the resiliency of an electronic limit order book, Journal of Financial Markets, vol.10, issue.1, pp.1-25, 2007.

S. Loi, B. Haibe-kains, C. Desmedt, F. Lallemand, A. M. Tutt et al., Definition of Clinically Distinct Molecular Subtypes in Estrogen Receptor???Positive Breast Carcinomas Through Genomic Grade, LJ17] L. Lei and M. Jordan. Less than a single pass: Stochastically controlled stochastic gradient ArtiAEcial Intelligence and Statistics, pp.1239-1246, 2007.
DOI : 10.1200/JCO.2006.07.1522

G. [. Lewis and . Mohler, A nonparametric em algorithm for multiscale hawkes processes, Journal of Nonparametric Statistics, 2011.

J. [. Lin, Z. Mairal, and . Harchaoui, A universal catalyst for AErst-order optimization, Advances in Neural Information Processing Systems, pp.3384-3392, 2015.

]. J. Lmp-+-01, A. Laerty, F. Mccallum, and . Pereira, Conditional random AEelds: Probabilistic models for segmenting and labeling sequence data, 2001.

J. [. Liu and . Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical Programming, vol.32, issue.2, pp.503-528, 1989.
DOI : 10.1007/BF01589116

N. [. Lemonnier and . Vayatis, Nonparametric Markovian Learning of Triggering Kernels for Mutually Exciting and Mutually Inhibiting Multivariate Hawkes Processes, Machine Learning and Knowledge Discovery in Databases, pp.161-176, 2014.
DOI : 10.1007/978-3-662-44851-9_11

]. A. Mb-+-12, E. Mcafee, and . Brynjolfsson, Big data: the management revolution, Harvard business review, vol.90, issue.10, pp.60-68, 2012.

A. [. Murdoch and . Detsky, The Inevitable Application of Big Data to Health Care, JAMA, vol.309, issue.13, pp.1351-1352, 2013.
DOI : 10.1001/jama.2013.393

D. [. Mittal, J. Q. Madigan, R. S. Cheng, and . Burd, Large-scale parametric survival analysis, Statistics in Medicine, vol.23, issue.1, pp.3955-3971, 2013.
DOI : 10.1145/2414416.2414791

URL : http://europepmc.org/articles/pmc3796130?pdf=render

. Bibliography, . O. Msb-+-11-]-g, M. B. Mohler, P. J. Short, F. P. Brantingham et al., Self-exciting point process modeling of crime, Journal of the American Statistical Association, 2011.

]. K. Mur12 and . Murphy, Machine learning: a probabilistic perspective Stochastic proximal gradient descent with acceleration techniques, Nit14] A. Nitanda Advances in Neural Information Processing Systems, pp.1574-1582, 2012.

A. [. Nemirovski, G. Juditsky, A. Lan, and . Shapiro, Robust Stochastic Approximation Approach to Stochastic Programming, SIAM Journal on Optimization, vol.19, issue.4, pp.1574-1609, 2009.
DOI : 10.1137/070704277

URL : https://hal.archives-ouvertes.fr/hal-00976649

D. [. Newey and . Mcfadden, Large sample estimation and hypothesis testing. Handbook of econometrics, pp.2111-2245, 1994.
DOI : 10.1016/s1573-4412(05)80005-4

A. [. Nesterov and . Nemirovskii, Interior-point polynomial algorithms in convex programming, SIAM, 1994.
DOI : 10.1137/1.9781611970791

]. Y. Oga81 and . Ogata, On lewis' simulation method for point processes, IEEE Transactions on Information Theory, vol.27, issue.1, pp.23-31, 1981.

J. [. Peters, Policy gradient methods, Encyclopedia of Machine Learning, pp.774-776, 2011.
DOI : 10.4249/scholarpedia.3698

URL : https://doi.org/10.4249/scholarpedia.3698

F. [. Podosinnikova, S. Bach, and . Lacoste-julien, Rethinking lda: moment matching for discrete ica, Advances in Neural Information Processing Systems, pp.514-522, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01225271

T. [. Park and . Hastie, -regularization path algorithm for generalized linear models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.67, issue.4, pp.659-677, 2007.
DOI : 10.1073/pnas.082099299

URL : http://www-stat.stanford.edu/~hastie/Papers/JRSSB.69.4%20(2007)%20659-677%20Park.pdf

]. M. Pow67 and . Powell, A method for non-linear constraints in minimization problems, 1967.

B. [. Pernice, S. Staude, S. Cardanobile, and . Rotter, How Structure Determines Correlations in Neuronal Networks, PLoS Computational Biology, vol.52, issue.5, p.1002059, 2011.
DOI : 10.1371/journal.pcbi.1002059.s001

URL : http://doi.org/10.1371/journal.pcbi.1002059

E. [. Rambaldi, F. Bacry, and . Lillo, The role of volume in order book dynamics: a multivariate Hawkes process analysis, Quantitative Finance, vol.17, issue.7, pp.999-1020, 2017.
DOI : 10.1137/130912980

V. [. Reynaud-bouret, F. Rivoirard, C. Grammont, and . Tuleau-malot, Goodness-of-Fit Tests and Nonparametric Adaptive Estimation for Spike Train Analysis, The Journal of Mathematical Neuroscience, vol.4, issue.1, p.3, 2014.
DOI : 10.1109/TIT.1981.1056305

URL : https://hal.archives-ouvertes.fr/hal-00789127

S. [. Reynaud-bouret and . Schbath, Adaptive estimation for hawkes processes; application to genome analysis. The Annals of Statistics, pp.2781-2822, 2010.
DOI : 10.1214/10-aos806

URL : https://hal.archives-ouvertes.fr/hal-00863958

]. S. Ric12 and . Richards, A handbook of parametric survival models for actuarial use, Scandinavian Actuarial Journal, vol.2012, issue.4, pp.233-257, 2012.

S. [. Robbins and . Monro, A stochastic approximation method. The annals of mathematical statistics, pp.400-407, 1951.

S. [. Rezende, D. Mohamed, and . Wierstra, Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401, 2014.

]. C. Rob04 and . Robert, Monte carlo methods, 2004.

]. M. Rod13 and . Rodriguez, Structure and Dynamics of Diusion Networks, 2013.

S. [. Rudin, E. F. Osher, M. Robert, and . Rosenbaum, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.259-268344, 1992.
DOI : 10.1016/0167-2789(92)90242-F

M. [. Roux, F. R. Schmidt, and . Bach, A stochastic gradient method with an exponential convergence _rate for AEnite training sets, Advances in Neural Information Processing Systems, pp.2663-2671, 2012.

[. Ren and M. Zhou, Full likelihood inferences in the Cox model: an empirical likelihood approach, Annals of the Institute of Statistical Mathematics, vol.9, issue.5, pp.1005-1018, 2011.
DOI : 10.1214/aos/1176345335

. Sad-+-16-]-v, A. Subrahmanian, S. Azaria, V. Durst, A. Kagan et al., The darpa twitter bot challenge, Computer, issue.6, pp.4938-4984, 2016.

. Bibliography, ]. M. Sba-+-15, R. Schmidt, M. Babanezhad, A. Ahmed et al., Non-uniform stochastic average gradient method for training conditional random AEelds, ArtiAEcial Intelligence and Statistics, pp.819-828, 2015.

J. [. Simon, T. Friedman, R. Hastie, and . Tibshirani, Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent, Journal of Statistical Software, vol.39, issue.5, 2011.
DOI : 10.18637/jss.v039.i05

URL : https://doi.org/10.18637/jss.v039.i05

]. She15 and . Shen, Full likelihood inference in the cox model with ltrc data when covariates are discrete, Statistics, vol.49, issue.3, pp.602-613, 2015.

J. [. Sohn, S. Kim, C. Jung, and . Park, Gradient lasso for Cox proportional hazards model, Bioinformatics, vol.95, issue.1, pp.251775-1781, 2009.
DOI : 10.1093/biomet/asm083

URL : https://academic.oup.com/bioinformatics/article-pdf/25/14/1775/604748/btp322.pdf

N. [. Schmidt, F. Roux, . Bachssz12-]-s, T. Shalev-shwartz, and . Zhang, Minimizing AEnite sums with the stochastic average gradient, Mathematical Programming Proximal stochastic dual coordinate ascent. arXiv preprint, pp.83-112, 2012.

T. [. Shalev-shwartz and . Zhang, Stochastic dual coordinate ascent methods for regularized loss minimization, Journal of Machine Learning Research, vol.14, issue.Feb, pp.567-599, 2013.

. [. Tibshirani, THE LASSO METHOD FOR VARIABLE SELECTION IN THE COX MODEL, Statistics in Medicine, vol.16, issue.4, pp.385-395, 1997.
DOI : 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3

E. [. Toulis and . Airoldi, Implicit stochastic gradient descent for principled estimation with large datasets. ArXiv e-prints, 2014.

]. R. Tib96, . M. Tibshiranitok11-]-i, and . Toke, Regression shrinkage and selection via the lasso Market making " in an order book model and its impact on the spread, Econophysics of Order-driven Markets The nature of statistical learning theory. Springer science & business media, pp.267-288, 1996.

M. J. Van-de-vijver, Y. D. He, L. J. Van-'t-veer, H. Dai, A. A. Hart et al., A geneexpression signature as a predictor of survival in breast cancer, New England Journal of Medicine, issue.25, pp.3471999-2009, 2002.

B. [. Van-noorden, R. Maher, and . Nuzzo, The top 100 papers, Nature, vol.514, issue.7524, p.550, 2014.
DOI : 10.1038/514550a

R. [. Witten and . Tibshirani, Survival analysis with high-dimensional covariates. Statistical methods in medical research, 2009.
DOI : 10.1177/0962280209105024

URL : http://europepmc.org/articles/pmc4806549?pdf=render

M. [. Xu, H. Farajtabar, and . Zha, Learning granger causality for hawkes processes, Proceedings of The 33rd International Conference on Machine Learning, pp.1717-1726, 2016.

]. L. Xia10 and . Xiao, Dual averaging methods for regularized stochastic learning and online optimization, Journal of Machine Learning Research, vol.11, pp.2543-2596, 2010.

[. Xiao and T. Zhang, A Proximal Stochastic Gradient Method with Progressive Variance Reduction, SIAM Journal on Optimization, vol.24, issue.4, pp.2057-2075, 2014.
DOI : 10.1137/140961791

URL : http://arxiv.org/pdf/1403.4699

H. [. Yang and . Zou, A cocktail algorithm for solving the elastic net penalized Cox???s regression in high dimensions, Statistics and Its Interface, vol.6, issue.2, pp.167-173, 2012.
DOI : 10.4310/SII.2013.v6.n2.a1

[. Yang and H. Zha, Mixture of mutually exciting processes for viral diusion, Proceedings of the International Conference on Machine Learning, 2013.

F. [. Zhang and . Oles, The value of unlabeled data for classiAEcation problems, Proceedings of the Seventeenth International Conference on Machine Learning, pp.1191-1198, 2000.

]. H. Zou06 and . Zou, The adaptive lasso and its oracle properties, Journal of the American statistical association, vol.101, issue.476, pp.1418-1429, 2006.

H. [. Zhou, L. Zha, and . Song, Learning social infectivity in sparse low-rank networks using multi-dimensional hawkes processes, AISTATS, pp.641-649, 2013.

V. Le-chapitre, estimation des intégrales des noyaux de Hawkes sur des données AEnancières, à l'aide de la méthode d'estimation introduite dans le chapitre III. Cela nous a permis d'avoir une image très précise de la dynamique du carnet d'ordres à haute fréquence, Nous avons utilisé les événements du carnet de commandes associés à 4 actifs très liquides de la bourse EUREX, à savoir DAX, EURO STOXX, Bund et les contrats à terme Bobl