W. Rivera, «Experimental evaluation of a single-stage heat transformer used to increase solar pond's temperature. » Solar Energy 69, pp.369-76, 2000.

C. Zhuo and C. Machielsen, Performance of high-temperature absorption heat transformers using Alkitrate as the working pair, Applied Thermal Engineering, vol.16, issue.3, pp.3-255, 1996.
DOI : 10.1016/1359-4311(95)00069-0

R. M. Barragán, C. L. Heard, V. M. Arellano, R. Best, and F. Holland, Experimental performance of the water/calcium chloride system in a heat transformer, International Journal of Energy Research, vol.20, issue.8, pp.651-61, 1996.
DOI : 10.1002/(SICI)1099-114X(199608)20:8<651::AID-ER180>3.0.CO;2-U

R. M. Barragán, V. M. Arellano, C. L. Heard, R. Best, and F. Holland, EXPERIMENTAL PERFORMANCE OF THE SYSTEM WATER/MAGNESIUM CHLORIDE IN A HEAT TRANSFORMER, International Journal of Energy Research, vol.21, issue.2, pp.139-51, 1997.
DOI : 10.1002/(SICI)1099-114X(199702)21:2<139::AID-ER226>3.0.CO;2-1

A. Sözen, «Effect of irreversibilities on performance of an absorption heat transformer used to increase solar pond's temperature.» Renewable energy 29, pp.501-515, 2004.

W. Rivera, J. Siqueiros, H. Martínez, and A. Huicochea, Exergy analysis of a heat transformer for water purification increasing heat source temperature, Applied Thermal Engineering, vol.30, issue.14-15, pp.14-15, 2010.
DOI : 10.1016/j.applthermaleng.2010.05.017

P. Guo, J. Sui, W. Hana, J. Zheng, and H. Jina, Energy and exergy analyses on the off-design performance of an absorption heat??transformer, Applied Thermal Engineering, vol.48, pp.506-514, 2012.
DOI : 10.1016/j.applthermaleng.2012.04.018

A. Huicochea, W. Rivera, H. Martínez, J. Siqueiros, and E. Cadenas, Analysis of the behavior of an experimental absorption heat transformer for water purification for different mass flux rates in the generator, Applied Thermal Engineering, vol.52, issue.1, pp.38-45, 2013.
DOI : 10.1016/j.applthermaleng.2012.11.003

W. Rivera, A. Huicochea, H. Martínez, J. Siqueiros, D. Juárez et al., Exergy analysis of an experimental heat transformer for water purification, Energy, vol.36, issue.1, pp.320-327, 2011.
DOI : 10.1016/j.energy.2010.10.036

R. Gomri, Energy and exergy analyses of seawater desalination system integrated in a solar heat transformer, Desalination, vol.249, issue.1, pp.188-196, 2009.
DOI : 10.1016/j.desal.2009.01.021

D. Zebbar, S. Kherrisa, S. Zebbar, and K. Mostefa, Thermodynamic optimization of an absorption heat transformer, International Journal of Refrigeration, vol.35, issue.5, pp.1393-1401, 2012.
DOI : 10.1016/j.ijrefrig.2012.04.007

K. Abrahamsson, A. Gidner, and Ã. Jernqvist, «Design and experimental performance evaluation of an absorption heat transformer with self-circulation.» Heat Recovery Systems and CHP 15, pp.257-72, 1995.

C. Mostofizadeh and C. Kulick, Use of a new type of heat transformer in process industry, Applied Thermal Engineering, vol.18, issue.9-10, pp.9-10, 1998.
DOI : 10.1016/S1359-4311(97)00115-4

X. Ma, J. Chen, S. Li, Q. Sha, A. Liang et al., Application of absorption heat transformer to recover waste heat from a synthetic rubber plant, Applied Thermal Engineering, vol.23, issue.7, pp.797-806, 2003.
DOI : 10.1016/S1359-4311(03)00011-5

A. Huicochea, J. Siqueiros, and R. J. Romero, Portable water purification system integrated to a heat transformer, Desalination, vol.165, pp.385-391, 2004.
DOI : 10.1016/j.desal.2004.06.044

J. Romero, Rodríguez-Martínez A. «Optimal water purification using low grade waste heat in an absorption heat transformer, » Desalination, vol.220, pp.1-3, 2008.

J. Siqueiros and R. J. Romero, Increase of COP for heat transformer in water purification systems. Part I ??? Increasing heat source temperature, Applied Thermal Engineering, vol.27, issue.5-6, pp.5-6, 2007.
DOI : 10.1016/j.applthermaleng.2006.07.042

R. J. Romero, J. Siqueiros, and A. Huicochea, Increase of COP for heat transformer in water purification systems. Part II ??? Without increasing heat source temperature, Applied Thermal Engineering, vol.27, issue.5-6, pp.5-6, 2007.
DOI : 10.1016/j.applthermaleng.2006.07.041

E. Cortés and W. Rivera, Exergetic and exergoeconomic optimization of a cogeneration pulp and paper mill plant including the use of a heat transformer, Energy, vol.35, issue.3, pp.1289-99, 2010.
DOI : 10.1016/j.energy.2009.11.011

S. Sekar and R. Saravanan, Exergetic performance of eco friendly absorption heat transformer for seawater desalination, International Journal of Exergy, vol.8, issue.1, pp.51-67, 2011.
DOI : 10.1504/IJEX.2011.037214

S. Sekar and R. Saravanan, Experimental studies on absorption heat transformer coupled distillation system, Desalination, vol.274, issue.1-3, pp.1-3, 2011.
DOI : 10.1016/j.desal.2011.01.064

V. Zare, M. Yarib, and S. M. Mahmoudi, Proposal and analysis of a new combined cogeneration system based on the GT-MHR cycle, Desalination, vol.286, issue.1, pp.417-428, 2012.
DOI : 10.1016/j.desal.2011.12.001

M. Yari, A novel cogeneration cycle based on a recompression supercritical carbon dioxide cycle for waste heat recovery in nuclear power plants, International Journal of Exergy, vol.10, issue.3, pp.346-364, 2012.
DOI : 10.1504/IJEX.2012.046815

M. Yari, V. Zare, and S. M. Mahmoudi, Parametric study and optimization of an ejector-expansion TRCC cycle integrated with a water purification system, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol.36, issue.3, pp.383-398, 2013.
DOI : 10.1002/er.943

A. Huicochea, R. J. Romero, W. Rivera, G. Gutierrez-urueta, J. Siqueiros et al., A novel cogeneration system: A proton exchange membrane fuel cell coupled to a heat transformer, Applied Thermal Engineering, vol.50, issue.2, pp.1530-1535, 2013.
DOI : 10.1016/j.applthermaleng.2011.10.064

K. Zhang, Z. Liu, Y. Li, Q. Li, J. Zhang et al., The improved CO2 capture system with heat recovery based on absorption heat transformer and flash evaporator, Applied Thermal Engineering, vol.62, issue.2, pp.500-506, 2014.
DOI : 10.1016/j.applthermaleng.2013.10.007

J. Ibarra-bahena, R. Romero, L. Velazquez-avelar, C. Valdez-morales, and Y. Galindo-luna, Evaluation of the thermodynamic effectiveness of a plate heat exchanger integrated into an experimental single stage heat transformer operating with Water/Carrol mixture, Experimental Thermal and Fluid Science, vol.51, pp.257-63, 2013.
DOI : 10.1016/j.expthermflusci.2013.08.006

J. Yin, L. Shi, M. S. Zhu, and L. Han, Performance analysis of an absorption heat transformer with different working fluid combinations, Applied Energy, vol.67, issue.3, pp.281-92, 2000.
DOI : 10.1016/S0306-2619(00)00024-6

W. Rivera and J. Cerezo, Experimental study of the use of additives in the performance of a single-stage heat transformer operating with water-lithium bromide, International Journal of Energy Research, vol.19, issue.2, pp.121-151, 2005.
DOI : 10.1016/S0360-5442(98)00097-8

E. Kurem and I. Horuz, A comparison between ammonia-water and water-lithium bromide solutions in absorption heat transformers, International Communications in Heat and Mass Transfer, vol.28, issue.3, pp.28-427, 2001.
DOI : 10.1016/S0735-1933(01)00247-0

A. Sözen, E. Arcaklio, M. Ozalp, and S. Yücesu, Performance parameters of an ejector-absorption heat transformer, Applied Energy, vol.80, issue.3, pp.273-289, 2005.
DOI : 10.1016/j.apenergy.2004.04.004

D. Colorado, J. Hernández, Y. E. Hamzaoui, A. Bassam, J. Siqueiros et al., Error propagation on COP prediction by artificial neural network in a water purification system integrated to an absorption heat transformer, Renewable Energy, vol.36, issue.5, pp.36-1315, 2011.
DOI : 10.1016/j.renene.2010.10.018

A. Sözen and E. Arcaklio, Exergy analysis of an ejector-absorption heat transformer using artificial neural network approach, Applied Thermal Engineering, vol.27, issue.2-3, pp.481-491, 2007.
DOI : 10.1016/j.applthermaleng.2006.06.012

D. Colorado, J. Hernández, W. Rivera, H. Martínez, and D. Juárez, «Optimal operation conditions for a singlestage heat transformer by means of an artificial neural network inverse, » Applied Energy, vol.4, pp.88-1281, 2011.

A. Genssle and K. Stephan, Analysis of the process characteristics of an absorption heat transformer with compact heat exchangers and the mixture TFE???E181, International Journal of Thermal Sciences, vol.39, issue.1, pp.30-38, 2000.
DOI : 10.1016/S1290-0729(00)00197-5

X. Zhang and D. Hu, Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water, Applied Thermal Engineering, vol.37, pp.129-164, 2012.
DOI : 10.1016/j.applthermaleng.2011.11.006

X. Wang, L. Shi, J. Yin, and M. S. Zhu, «A two-stage heat transformer with H2O/LiBr for the first stage and 2, pyrrolidone (NMP) for the second stage.» Applied Energy 71, pp.2-235, 2002.

W. Rivera, M. Cardoso, and R. Romero, Single-stage and advanced absorption heat transformers operating with lithium bromide mixtures used to increase solar pond's temperature, Solar Energy Materials and Solar Cells, vol.70, issue.3, pp.321-354, 2001.
DOI : 10.1016/S0927-0248(01)00074-5

W. Rivera, R. Romero, R. Best, and C. Heard, Experimental evaluation of a single-stage heat transformer operating with the water/Carrol??? mixture, Energy, vol.24, issue.4, pp.317-340, 1999.
DOI : 10.1016/S0360-5442(98)00097-8

R. M. Reyes and V. M. Gómez, García-Gutiérrez A. «Performance modelling of single and double absorption heat transformers, » Current Applied Physics, vol.10, issue.2, pp.5244-5252, 2010.

R. M. Barragán, V. M. Arellano, C. L. Heard, and R. Best, Experimental performance of ternary solutions in an absorption heat transformer, International Journal of Energy Research, vol.22, issue.1, pp.73-83, 1998.
DOI : 10.1002/(SICI)1099-114X(199801)22:1<73::AID-ER362>3.0.CO;2-R

M. Bourouisa, A. Coronas, R. J. Romero, and J. Siqueiros, «Purification of sea water using absorption heat transformers with water?(LiBr+LiI+LiNO3+LiCl) and low temperature heat sources, » Desalination, pp.166-209, 2004.

W. Rivera and R. J. Romero, «Thermodynamic design data for absorption heat transformers. PartVII. Operating on an aqueous ternary hydroxide, » Applied Thermal Engineering, vol.18, pp.3-4, 1998.

R. J. Romero, W. Rivera, I. Pilatowsky, and R. Best, Comparison of the modeling of a solar absorption system for simultaneous cooling and heating operating with an aqueous ternary hydroxide and with water/lithium bromide, Solar Energy Materials and Solar Cells, vol.70, issue.3, pp.301-309, 2000.
DOI : 10.1016/S0927-0248(01)00072-1

W. Rivera, H. Martínez, J. Cerezo, R. Romero, and M. Cardoso, «Exergy analysis of an experimental single-stage heat transformer operating with single water/ lithium bromide and using additives (1-octanoland2-ethyl-1- hexanol), » Applied Thermal Engineering, vol.31, pp.16-3526, 2001.

S. Alizadeh, F. Bahar, and F. Geoola, Design and optimisation of an absorption refrigeration system operated by solar energy, Solar Energy, vol.22, issue.2, pp.149-154, 1997.
DOI : 10.1016/0038-092X(79)90099-9

K. P. Tyagi, «Design parameters of an aqua-ammonia vapour absorption refrigeration system.» Heat recovery systems & CHP 8, pp.375-377, 1988.

A. Sencan, K. A. Yakut, and S. Kalogirou, Exergy analysis of lithium bromide/water absorption systems, Renewable Energy, vol.30, issue.5, pp.645-657, 2005.
DOI : 10.1016/j.renene.2004.07.006

L. Zhu and J. Gu, Second law-based thermodynamic analysis of ammonia/sodium thiocyanate absorption system, Renewable Energy, vol.35, issue.9, pp.1940-1946, 2010.
DOI : 10.1016/j.renene.2010.01.022

A. O. Ercan and Y. Gogus, Comparative study of irreversibilities in an aqua-ammonia absorption refrigeration system, International Journal of Refrigeration, vol.14, issue.2, pp.86-92, 1991.
DOI : 10.1016/0140-7007(91)90080-Z

S. Aphornratana and I. W. Eames, Thermodynamic analysis of absorption refrigeration cycles using the second law of thermodynamics method, International Journal of Refrigeration, vol.18, issue.4, pp.244-252, 1995.
DOI : 10.1016/0140-7007(95)00007-X

M. M. Talbi and B. Agnew, Exergy analysis: an absorption refrigerator using lithium bromide and water as the working fluids, Applied Thermal Engineering, vol.20, issue.7, pp.619-630, 2000.
DOI : 10.1016/S1359-4311(99)00052-6

A. Sözen, Effect of heat exchangers on performance of absorption refrigeration systems, Energy Conversion and Management, vol.42, issue.14, pp.1699-1716, 2001.
DOI : 10.1016/S0196-8904(00)00151-5

M. Kilic and O. Kaynakli, «Theoretical study on the effect of operating conditions on performance of absorption refrigeration system, » Energy Conversion and Management, vol.48, pp.599-607, 2007.

O. Kaynakli and R. Yamankaradeniz, «Thermodynamic analysis of absorption refrigeration system based on entropy generation, Current Science, vol.92, issue.4, pp.472-479, 2007.

I. A. Bell, A. J. Daini, H. Al-ali, and R. G. Abdel-gayed, Duckers l. «The design of an evaporator/absorber and thermodynamic analysis of a vapour absorption chiller driven by solar energy.» World Renewable Energy Congress, pp.657-660, 1996.

D. Francisco, A. Illanes, R. Torres, J. L. Castillo, M. De-blas et al., «Development and testing of a prototype of low-power water ammonia absorption equipment for solar energy applications, » Renewable Energy, vol.25, p.53, 2002.

J. Castro, L. Leal, P. Pozo, P. Segarra, and C. D. , Oliet C. «Development and Performance of an Air Cooled Water Lithium Bromide Absorption Cooling Machine, » International Forum on Renewable Energies, pp.9-65, 2002.

I. Horuz and T. M. Callander, Experimental investigation of a vapor absorption refrigeration system, International Journal of Refrigeration, vol.27, issue.1, pp.10-16, 2004.
DOI : 10.1016/S0140-7007(03)00119-1

S. Xu, Y. Liu, and L. Zhang, «Performance Research of Self Regenerated Absorption Heat Transformer Cycle using TFE-NMP as Working Fluids, International Journal of Refrigeration, vol.24, issue.6, pp.510-518, 2001.

I. «. Horuz, A comparison between ammonia-water and water-lithium bromide solutions in vapor absorption refrigeration systems, International Communications in Heat and Mass Transfer, vol.25, issue.5, pp.711-721, 1998.
DOI : 10.1016/S0735-1933(98)00058-X

S. Ajib and A. Karno, Thermo physical properties of acetone???zinc bromide for using in a low temperature driven absorption refrigeration machine, Heat and Mass Transfer, vol.12, issue.S, pp.61-70, 2008.
DOI : 10.1007/s00231-008-0409-1

A. Karno and S. Ajib, Thermodynamic analysis of an absorption refrigeration machine with new working fluid for solar applications, Heat and Mass Transfer, vol.VII, issue.4, pp.71-81, 2008.
DOI : 10.1007/s00231-008-0408-2

I. Pilatowsky, W. Rivera, and R. J. Romero, Thermodynamic analysis of monomethylamine???water solutions in a single-stage solar absorption refrigeration cycle at low generator temperatures, Solar Energy Materials and Solar Cells, vol.70, issue.3, pp.287-300, 2001.
DOI : 10.1016/S0927-0248(01)00071-X

I. Pilatowsky, W. Rivera, and R. J. Romero, Performance evaluation of a monomethylamine???water solar absorption refrigeration system for milk cooling purposes, Applied Thermal Engineering, vol.24, issue.7, pp.1103-1118, 2004.
DOI : 10.1016/S1359-4311(03)00087-5

R. J. Romero and L. Guillen, Monomethylamine???water vapour absorption refrigeration system, Applied Thermal Engineering, vol.25, issue.5-6, pp.867-76, 2005.
DOI : 10.1016/j.applthermaleng.2004.08.007

D. Lucas, A. Donate, C. Villasenor, J. Rodriguez, and J. F. , Performance evaluation and simulation of a new absorbent for an absorption refrigeration system, International Journal of Refrigeration, vol.27, issue.4, pp.324-354, 2004.
DOI : 10.1016/j.ijrefrig.2003.12.008

D. Lucas, A. Donate, M. Rodriguez, and J. F. , Applying surfactants to improve the absorption capacity of mixtures of lithium bromide and formates in absorption refrigeration coolers, International Journal of Refrigeration, vol.31, issue.6, pp.1073-80, 2008.
DOI : 10.1016/j.ijrefrig.2007.12.005

S. B. Riffat, S. E. James, and C. W. Wong, Experimental analysis of the absorption and desorption rates of HCOOK/H2O and LiBr/H2O, International Journal of Energy Research, vol.22, issue.12, pp.1099-103, 1998.
DOI : 10.1002/(SICI)1099-114X(19981010)22:12<1099::AID-ER450>3.0.CO;2-K

C. A. Ferreira, Thermodynamic and physical property data equations for ammonia-lithium nitrate and ammonia-sodium thiocyanate solutions, Solar Energy, vol.32, issue.2, pp.231-237, 1984.
DOI : 10.1016/S0038-092X(84)80040-7

D. W. Sun, «Comparison of the performance ofNH3?H2O, NH3?LiNO3 and NH3? NaSCN absorption refrigeration systems.» Energy Conversion and Management 39, pp.357-68, 1998.

J. M. Abdulateef, K. Sopian, M. A. Alghoul, M. Y. Sulaiman, and A. Zaharim, Ahmad I. «Solar absorption refrigeration system using new working fluid pairs, International Journal of Energy, vol.1, issue.3, pp.82-89, 2007.

L. Zhu and J. Gu, «Thermodynamic analysis of a novel thermal driven refrigeration system, » World Academy of Science, Engineering and Technology, vol.56, pp.351-356, 2009.

J. T. Safarov, The investigation of the (p,??,T) and (ps,??s,Ts) properties of {(1???x)CH3OH+xLiBr} for the application in absorption refrigeration machines and heat pumps, The Journal of Chemical Thermodynamics, vol.35, issue.12, pp.1929-1966, 2003.
DOI : 10.1016/j.jct.2003.08.015

J. T. Safarov, Study of thermodynamic properties of binary solutions of lithium bromide or lithium chloride with methanol, Fluid Phase Equilibria, vol.236, issue.1-2, pp.87-95, 2005.
DOI : 10.1016/j.fluid.2005.07.002

V. Muthu, R. Saravanan, and S. Renganarayanan, Experimental studies on R134a-DMAC hot water based vapour absorption refrigeration systems, International Journal of Thermal Sciences, vol.47, issue.2, pp.175-81, 2008.
DOI : 10.1016/j.ijthermalsci.2007.02.004

A. T. Bulgan, «Use of low temperature energy sources in aqua-ammonia absorption refrigeration systems.» Energy Conversion and Management 38, pp.14-1431, 1997.

A. T. Bulgan, A. Koc, and N. Ozturk, Investigation of thermodynamic properties of alternative fluid couples for absorption thermal systems, Energy Conversion and Management, vol.41, issue.10, pp.1029-1071, 2000.
DOI : 10.1016/S0196-8904(99)00146-6

Z. Zhao, X. Zhang, and X. Ma, Thermodynamic performance of a double-effect absorption heat-transformer using TFE/E181 as the working fluid, Applied Energy, vol.82, issue.2, pp.107-116, 2005.
DOI : 10.1016/j.apenergy.2004.10.012

R. Gomri, Thermal seawater desalination: Possibilities of using single effect and double effect absorption heat transformer systems, Desalination, vol.253, issue.1-3, pp.1-3, 2010.
DOI : 10.1016/j.desal.2009.11.023

K. Parham, M. Khamooshi, D. B. Tematio, and M. Yari, Absorption heat transformers ??? A comprehensive review, Renewable and Sustainable Energy Reviews, vol.34, pp.430-452, 2014.
DOI : 10.1016/j.rser.2014.03.036

W. Rivera, R. Best, J. Hernández, C. L. Heard, and F. Holland, Thermodynamic study of advanced absorption heat transformers???I. Single and two stage configurations with heat exchangers, Heat Recovery Systems and CHP, vol.14, issue.2, pp.173-183, 1994.
DOI : 10.1016/0890-4332(94)90008-6

P. Ciambelli and V. Tufano, «On the performance of advanced absorption heat transformers-I. The two stage configuration.» Heat Recovery Systems and CHP 8, pp.445-450, 1988.

P. Ciambelli and V. Tufano, «Coupling a two-stage absorption heat transformer with finite heat sources and sinks.» Heat Recovery Systems and CHP 12, pp.235-240, 1992.

W. Rivera, R. Best, J. Hernández, C. L. Heard, and F. Holland, Thermodynamic study of advanced absorption heat transformers???I. Single and two stage configurations with heat exchangers, Heat Recovery Systems and CHP, vol.14, issue.2, pp.173-183, 1994.
DOI : 10.1016/0890-4332(94)90008-6

W. Rivera, R. Best, J. Hernández, C. L. Heard, and F. A. Holland, Thermodynamic study of advanced absorption heat transformers???II. Double absorption configurations, Heat Recovery Systems and CHP, vol.14, issue.2, pp.185-193, 1994.
DOI : 10.1016/0890-4332(94)90009-4

Z. Zhao, Y. Ma, and J. Chen, Thermodynamic performance of a new type of double absorption heat transformer, Applied Thermal Engineering, vol.23, issue.18, pp.2407-2421, 2003.
DOI : 10.1016/j.applthermaleng.2003.08.006

Z. Zhao, F. Zhou, X. Zhang, and S. Li, The thermodynamic performance of a new solution cycle in double absorption heat transformer using water/lithium bromide as the working fluids, International Journal of Refrigeration, vol.26, issue.3, pp.315-320, 2003.
DOI : 10.1016/S0140-7007(02)00114-7

H. Martínez and W. Rivera, Energy and exergy analysis of a double absorption heat transformer operating with water/lithium bromide, International Journal of Energy Research, vol.24, issue.5, pp.662-74, 2009.
DOI : 10.1002/er.1502

R. Best, W. Rivera, M. J. Cardoso, R. J. Romero, and F. Holland, Modelling of single-stage and advanced absorption heat transformers operating with the water/carrol mixture, Applied Thermal Engineering, vol.17, issue.11, pp.11-1111, 1997.
DOI : 10.1016/S1359-4311(96)00090-7

R. J. Romero, A. Rodriguez, S. Silva, J. Cerezo, and W. Rivera, «Comparison of double stage heat transformer with double absorption heat transformer operating with water-Carrol for industrial waste heat recovery, » Chemical Engineering Transaction, vol.25, pp.129-134, 2011.

R. M. Barragan, V. M. Arellano, and C. L. Heard, Performance study of a double-absorption water/calcium chloride heat transformer, International Journal of Energy Research, vol.22, issue.9, pp.791-803, 1998.
DOI : 10.1002/(SICI)1099-114X(199807)22:9<791::AID-ER393>3.0.CO;2-W

W. Rivera, M. J. Cardoso, and R. J. Romero, Theoretical comparison of single stage and advanced absorption heat transformers operating with water/lithium bromide and water/Carrol mixtures, International Journal of Energy Research, vol.22, issue.5, pp.427-442, 1998.
DOI : 10.1002/(SICI)1099-114X(199804)22:5<427::AID-ER376>3.0.CO;2-J

A. Sözen and H. Serdar-yücesu, Performance improvement of absorption heat transformer, Renewable Energy, vol.32, issue.2, pp.267-284, 2007.
DOI : 10.1016/j.renene.2006.01.017

A. Sözen, E. Arcaklioglu, M. Özalp, and S. Yücesu, Performance parameters of an ejector-absorption heat transformer, Applied Energy, vol.80, issue.3, pp.273-89, 2005.
DOI : 10.1016/j.apenergy.2004.04.004

L. Shi, J. Yin, X. Wang, and M. Zhu, Study on a new ejection???absorption heat transformer, Applied Energy, vol.68, issue.2, pp.161-171, 2001.
DOI : 10.1016/S0306-2619(00)00056-8

G. C. Vliet, M. B. Lawson, and R. A. Lithgow, «Water-lithium bromide double-effect absorption cooling cycleanalysis, ASHRAE Transactions, vol.88, pp.811-833, 1982.
DOI : 10.2172/6727822

D. S. Kim, «Solar Absorption Cooling.» PhD Thesis, 2007.

S. C. Kaushik and S. Chandra, «Computer modeling and parametric study of a double-effect generation absorption refrigeration cycle.» Energy Conversion and Management 25, pp.9-14, 1985.

S. Garimella and R. N. Christensen, «Cycle description and performance simulation of a gas-fired hydronically coupled double-effect absorption heat pump system, » ASE, vol.28, pp.7-14, 1992.

R. C. Devault and J. Marsala, «Ammonia-water triple-effect absorption cycle, ASHRAE Transactions, vol.96, pp.676-82, 1990.

G. Grossman, A. Zaltash, P. W. Adcock, and R. C. Devault, «Simulating a 4-effect absorption chiller, ASHRAE Journal, pp.45-53, 1995.

F. Ziegler, R. Kahn, F. Summerer, and G. Alefeld, Multi-effect absorption chillers, International Journal of Refrigeration, vol.16, issue.5, pp.301-311, 1993.
DOI : 10.1016/0140-7007(93)90002-P

. D. Kuhlenschmidt, «Absorption Refrigeration System with Multiple Generator Stages, 1973.

H. Chung, M. H. Huor, M. Prevost, and R. Bugarel, «Domestic Heating Application of an Absorption Heat Pump.» Directly Fired Heat Pumps, Procs. Int. Conf., Uni. of Bristol, issue.22, 1984.

L. T. Chen, A new ejector-absorber cycle to improve the COP of an absorption refrigeration system, Applied Energy, vol.30, issue.1, pp.37-51, 1988.
DOI : 10.1016/0306-2619(88)90053-0

S. Aphornratana and I. W. Eames, Experimental investigation of a combined ejector-absorption refrigerator, International Journal of Energy Research, vol.22, issue.3, pp.195-207, 1998.
DOI : 10.1002/(SICI)1099-114X(19980310)22:3<195::AID-ER346>3.0.CO;2-A

C. Kiezer, «Absorption refrigeration machines.» Lab. of Refrigeration and Indoor Climate Technology (Netherlands), pp.61-76, 1982.

X. Hu and A. M. Jacobi, The Intertube Falling Film: Part 1???Flow Characteristics, Mode Transitions, and Hysteresis, Journal of Heat Transfer, vol.102, issue.3, pp.616-633, 1996.
DOI : 10.1115/1.3680468

T. Nomura, N. Nishimura, S. Wei, and S. Yamaguchi, «Heat and Mass Transfer Mechanism in the Absorber of Water/LiBr Conventional Absorption Refrigerator:Experimental Examination by Visualized Model, International Absorption Heat Pump Conference AES, pp.203-208, 1993.

E. Blass, «Leistungssteigerung von NH3-H2O-Absorptions kälteuntelagen durch Rektifizier mass nahmen, » DKV-Tagungsbericht, pp.145-160, 1974.

G. G. Haselden and S. A. Malaty, «Heat and mass transfer accompanying the absorption of ammonia in water, » Transactions of the Institution of Chemical Engineers, vol.37, pp.137-146, 1959.

M. R. Islam, N. E. Wijeysundera, and J. C. Ho, Simplified models for coupled heat and mass transfer in falling-film absorbers, International Journal of Heat and Mass Transfer, vol.47, issue.2, pp.395-406, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2003.07.001

M. R. Islam, N. E. Wijeysundera, and J. C. Ho, Performance study of a falling-film absorber with a film-inverting configuration, International Journal of Refrigeration, vol.26, issue.8, pp.909-917, 2003.
DOI : 10.1016/S0140-7007(03)00078-1

M. R. Islam, N. E. Wijeysundera, and J. Ho, Evaluation of heat and mass transfer coefficients for falling-films on tubular absorbers, International Journal of Refrigeration, vol.26, issue.2, pp.197-204, 2003.
DOI : 10.1016/S0140-7007(02)00076-2

R. H. Wassenaar, Measured and predicted effect of flowrate and tube spacing on horizontal tube absorber performance, International Journal of Refrigeration, vol.19, issue.5, pp.347-355, 1996.
DOI : 10.1016/S0140-7007(96)00036-9

S. Jani, «Simulation of Heat and Mass Transfer Process in Falling Film Single Tube Absorption Generator, International Journal of Science and Engineering Investigations, vol.1, p.3, 2012.

P. Sultana, «Study of thermal performance of falling film absorbers with and without film inversion, pp.59-81, 2006.

M. R. Islam, «Performance Evaluation of Absorbers for Vapor Absorption Cooling Systems, 2002.

I. Fujita and E. Hihara, Heat and mass transfer coefficients of falling-film absorption process, International Journal of Heat and Mass Transfer, vol.48, issue.13, pp.2779-2786, 2005.
DOI : 10.1016/j.ijheatmasstransfer.2004.11.028

P. Trambouze and J. P. Euzen, «Les réacteurs chimiques: de la conception à la mise en oeuvre,.» Chapitre 4, pp.267-279

J. I. Yoon, T. T. Phan, C. G. Moon, H. O. Lee, and S. K. Jeong, Heat and mass transfer characteristics of a horizontal tube falling film absorber with small diameter tubes, Heat and Mass Transfer, vol.2, issue.3, pp.437-444, 2008.
DOI : 10.1007/s00231-007-0261-8

X. Fang, R. Shi, and Z. Zhou, «Correlations of Flow Boiling Heat Transfer of R-134a in Minichannels: Comparative Study, » Energy Science and Technology, vol.1, pp.1-15, 2011.

A. Levy, M. Jelinek, and I. Borde, Numerical study on the design parameters of a jet ejector for absorption systems, Applied Energy, vol.72, issue.2, pp.467-478, 2002.
DOI : 10.1016/S0306-2619(02)00023-5

A. Levy, M. Jelinek, and I. Borde, «Numerical study on the design parameters of a jet ejector for absorption systems.» The 20th international congress of refrigeration, 1999.

P. H. Schweitzer, Mechanism of Disintegration of Liquid Jets, Journal of Applied Physics, vol.2, issue.8, p.513, 1937.
DOI : 10.1243/PIME_PROC_1926_111_018_02

W. Bergwerk, Flow Pattern in Diesel Nozzle Spray Holes, Proceedings of the Institution of Mechanical Engineers, p.655, 1959.
DOI : 10.1243/PIME_PROC_1959_173_054_02

A. Haenlein, «On the Disruption of a Liquid Jet.» National Advisory Committee Aeronautics Technical Memorandum, p.659, 1932.

M. J. Mccarthy and N. Molloy, Review of stability of liquid jets and the influence of nozzle design, The Chemical Engineering Journal, vol.7, issue.1, p.1, 1974.
DOI : 10.1016/0300-9467(74)80021-3

R. D. Reitz, «Atomization and Other Breakup Regimes of a Liquid Jet, 1978.

D. W. Lee and R. C. Spencer, «Photomicrographic Studies of Fuel Sprays.» National Advisory Committee for Aeronautics, p.454, 1933.

E. Giffen and A. Muraszew, «The Atomization of Liquid Fuels, 1953.

M. M. Elktob, Fuel atomization for spray modelling, Progress in Energy and Combustion Science, vol.8, issue.1, pp.61-91, 1982.
DOI : 10.1016/0360-1285(82)90009-0

H. Hiroyasu, M. Arai, and M. Tabata, «Empirical equations for the sauter mean diameter of a diesel spray.» Society of Automotive Engineers Technical Paper, 1989.

R. D. Reitz, «Modelling atomization processes in high pressure vaporizing sprays.» Atomization and Spray Technology 3, pp.309-337, 1987.

B. T. Helenbrook and C. F. Edwards, Quasi-steady deformation and drag of uncontaminated liquid drops, International Journal of Multiphase Flow, vol.28, issue.10, pp.1631-1657, 2002.
DOI : 10.1016/S0301-9322(02)00073-3

C. Aalburg, B. Van-leer, and G. Faeth, M. «Deformation and Drag Properties of Round Drops Subjected to Shock Wave Disturbances.» The American Institute of, Aeronautics and Astronautics Journal, vol.42, p.12, 2003.

L. Hsiang and G. Faeth, Near-limit drop deformation and secondary breakup, International Journal of Multiphase Flow, vol.18, issue.5, pp.635-652, 1992.
DOI : 10.1016/0301-9322(92)90036-G

O. J. Hinze, Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE Journal, vol.1, issue.3, pp.289-295, 1955.
DOI : 10.1002/aic.690010303

A. Ranger and J. Nichols, «Aerodynamic Shattering of Liquid Drops.» The American Institute of, Aeronautics and Astronautics Journal, vol.7, pp.285-290, 1969.

S. Krzeczkowski and . «measurement, Measurement of liquid droplet disintegration mechanisms, International Journal of Multiphase Flow, vol.6, issue.3, pp.227-239, 1980.
DOI : 10.1016/0301-9322(80)90013-0

G. Gelfand and . «droplet, Droplet breakup phenomena in flows with velocity lag, Progress in Energy and Combustion Science, pp.201-265, 1996.
DOI : 10.1016/S0360-1285(96)00005-6

G. Faeth, L. Hsiang, and P. Wu, Structure and breakup properties of sprays, International Journal of Multiphase Flow, vol.21, pp.99-127, 1995.
DOI : 10.1016/0301-9322(95)00059-7

C. Chryssakis and D. N. Assanis, «A unified fuel spray breakup model for internal combustion chamber applications, » Atomization and Sprays, vol.18, pp.1-52, 2008.

M. Pilch and C. Erdman, Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop, International Journal of Multiphase Flow, vol.13, issue.6, pp.741-757, 1987.
DOI : 10.1016/0301-9322(87)90063-2

L. Hsiang and G. Faeth, Drop properties after secondary breakup, International Journal of Multiphase Flow, vol.19, issue.5, pp.721-735, 1993.
DOI : 10.1016/0301-9322(93)90039-W

W. Chou and G. Faeth, Temporal properties of secondary drop breakup in the bag breakup regime, International Journal of Multiphase Flow, vol.24, issue.6, pp.889-912, 1998.
DOI : 10.1016/S0301-9322(98)00015-9

W. Chou, L. Hsiang, and G. Faeth, Temporal properties of drop breakup in the shear breakup regime, International Journal of Multiphase Flow, vol.23, issue.4, pp.651-669, 1997.
DOI : 10.1016/S0301-9322(97)00006-2

B. Fishburn, Boundary layer stripping of liquid drops fragmented by Taylor instability, Acta Astronautica, vol.1, issue.9-10, pp.1267-1284, 1974.
DOI : 10.1016/0094-5765(74)90051-4

G. Taylor, The Instability of Liquid Surfaces when Accelerated in a Direction Perpendicular to their Planes. I, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.201, issue.1065, pp.192-196, 1950.
DOI : 10.1098/rspa.1950.0052

A. Shabani, S. Tavoosi, and H. Shahraki-bahram, Calculation of Effective Interfacial Area in a Turbulent Contact Absorber, International Journal of Chemical Engineering and Applications, 2010.
DOI : 10.7763/IJCEA.2010.V1.20

P. V. Danckwerts, Gas-absorption accompanied by first-order reaction: Concentration of product, temperature-rise and depletion of reactant, Chemical Engineering Science, vol.22, issue.3, pp.472-473, 1967.
DOI : 10.1016/0009-2509(67)80136-2

A. Laurent, C. Fonteix, G. Besson, and . Charpentierj, «Pilot -scale study of absorption with chemical reaction in a venturi-jet scrubber, atmospheric pollution, Proceedings of the 13th International Colloquium, Pans, pp.251-254, 1978.

M. Kulmala, T. Vesala, J. Schwartz, and J. Smolik, Mass transfer from a drop???II. Theoretical analysis of temperature dependent mass flux correlation, International Journal of Heat and Mass Transfer, vol.38, issue.9, pp.1705-1708, 1995.
DOI : 10.1016/0017-9310(94)00302-C

F. M. Marques, «Study of a Liquid-Vapour Ejector in the context of an advanced TPL ejector-absorption cycle working with a low temperature heat source and an ammonia-water mixture.» Instituto Superior Técnico, 2009.

B. E. Launder, «The prediction of laminarization with a two-equation model of turbulence, » International Journal of Heat and Mass Transfer, vol.15, pp.301-314, 1972.

H. D. Kim, T. Setoguchi, S. Yu, and S. Raghunathan, Navier-Stokes computations of the supersonic ejector-diffuser system with a second throat, Journal of Thermal Science, vol.35, issue.1, 1999.
DOI : 10.1299/jsme1958.25.1898

A. E. Kroll, «The Design of Jet Pumps, » Chemical Engineering Progress, vol.1, issue.2, 1947.

R. B. Engdahl and W. C. Holton, «A General Method of Designing Gas and Gas-Liquid Injectors Using Laws of Turbulent Jet Mixing, » Journal of Applied Mechanics, vol.65, 1943.

D. M. Vishwannathappa, «High-Efficiency Jet Ejector, 2001.

K. R. Hedges and P. G. Hill, Compressible Flow Ejectors: Part II???Flow Field Measurements and Analysis, Journal of Fluids Engineering, vol.96, issue.3, 1974.
DOI : 10.1115/1.3447153

F. D. Berkeley, «Ejectors Give Any Suction Pressure, » Chemical Engineering Journal, vol.64, issue.4, 1957.

D. R. Croft and D. G. Lilley, Jet pump design and performance analysis, 14th Aerospace Sciences Meeting, 1976.
DOI : 10.2514/6.1976-183

B. Reinke, M. Neal, and S. K. Gupta, «Flow Inside A Jet-Ejector Pump for Vacuum Applications, » Indian Institute of Chemical Engineers, vol.44, issue.3, 2002.

C. Liao, «Gas ejector modeling for design and analysis. » Office of Graduate Studies of, Texas A&M University, 2008.

J. H. Keenan and E. P. Neumann, «An Investigation of Ejector Design by Analysis and Experiment, Journal of Applied Mechanics, vol.72, pp.299-309, 1950.

E. Rusly, L. Aye, W. Charters, A. Ooi, and K. Pianthong, «Ejector CFD modeling with real gas model.» King Mongkut's University of Technology, Proceedings of the 16th conference of the Mechanical Engineering Network of Thailand, 2002.

E. Rusly, L. Aye, W. Charters, and A. Ooi, CFD analysis of ejector in a combined ejector cooling system, International Journal of Refrigeration, vol.28, issue.7, pp.7-1092, 2005.
DOI : 10.1016/j.ijrefrig.2005.02.005

T. Sriveerakul, S. Aphornratana, and K. Chunnanond, Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD results, International Journal of Thermal Sciences, vol.46, issue.8, pp.812-822, 2007.
DOI : 10.1016/j.ijthermalsci.2006.10.014

T. Sriveerakul, S. Aphornratana, and K. Chunnanond, Performance prediction of steam ejector using computational fluid dynamics: Part 2. Flow structure of a steam ejector influenced by operating pressures and geometries, International Journal of Thermal Sciences, vol.46, issue.8, pp.823-833, 2007.
DOI : 10.1016/j.ijthermalsci.2006.10.012

J. Hart and . «supersonic, Ejector Simulation and Optimisation.» The University of Sheffield, Department of Mechanical Engineering For the Degree of Doctor of Philosophy (PhD) in Mechanical Engineering, 2002.

K. Aldas and F. ?en, Ozkul I. «The Investigation of Gas Ejector Performance using CFD Modelling, » TEM Journal, vol.2, issue.2, 2013.

T. W. Shih, W. W. Liou, A. Shabbir, and J. Zhu, A new k-?? eddy viscosity model for high reynolds number turbulent flows, Computers & Fluids, vol.24, issue.3, pp.227-238, 1995.
DOI : 10.1016/0045-7930(94)00032-T

N. Sharifi and M. Sharifi, «Exprimental improvement of ejetor performance through numerical optimization of nozzle geometry, Proceedings of the ASME 2013 International Mechanical Engineering Congress & Exposition (IMECE), 2013.

K. Ariafar, «Performance evaluation of a model thermocompressor using computational fluid dynamics, » International Journal of Mechanics, vol.1, pp.35-42, 2012.

N. Ruangtrakoon, T. Thongtip, S. Aphornratana, and T. Sriveerakul, CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle, International Journal of Thermal Sciences, vol.63, pp.133-145, 2013.
DOI : 10.1016/j.ijthermalsci.2012.07.009

K. Pianthong, W. Seehanama, M. Behnia, T. Sriveerakul, and S. Aphornratana, «Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique. » Energy Conversion and Management 48, pp.2556-2564, 2007.