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Introduction  

The 2011/2012 sovereign crisis in Europe has raised considerable uncertainties on the sustainability 

of the monetary union. This ultimately led to a partial default of Greece in 2012 which in effect, 

helped restrain the visible confidence crisis in financial markets. While the peak is now behind us, 

troubled economies in Europe are still facing some headwinds, partly because persistently low 

inflation and limited growth, on the back of still excessive debt levels, have made the environment 

somewhat challenging as to implement meaningful structural reforms. While austerity has been 

promoted as a logical curative to curtail unsustainably high indebtedness, an effort towards further 

European integration in the past years also helped make risk-sharing among sovereign entities more 

efficient. This led to the creation of the Banking Union (for instance) and the introduction of tougher 

regulations on financial institutions.  

Although the prudential aspect of regulatory supervisions has undoubtedly become more efficient as 

a result, this made little as to curb other potent sources of financial distress. Italian banks for 

instance still have to deal with a substantial amount of non-performing-loans (although we saw 

notable progress in 2017). And as the detention of domestic sovereign debt by banks has increased 

in peripheral countries throughout the recent crises, the risk of contagion from banks into sovereign 

securities remains a meaningful threat. Still on the negative side, risk-sharing also creates obvious 

moral hazards, and while austerity is market-friendly, it is much less appreciated by tax payers. As a 

consequence, all this translated into a rising appeal for Euro-sceptic political parties in many 

jurisdictions, even in countries where default is not a palpable threat (like France, the Netherlands 

and the UK).  

Unconventional monetary policy has been a mantra in Japan/US and UK during years of abnormally 

low inflation. In Europe though, the ECB has been ‘historically’ more reluctant to go beyond its 

original mandate of just jugulating high inflation. But this changed in 1Q 2015, when Mr. Draghi 

launched an ambitious Quantitative Easing (QE) program. ECB QE effectively pushed interest rates in 

sovereign and credit spaces to extremely low levels, much below fundamentals-based fair values. 

While this decoupling between extraordinarily low interest rates and recovering fundamentals has 

proved a bargain for debt issuers, this exceptional support from the central bank will not last forever. 

Sovereign risk reflects the probability that a sovereign entity does not meet its future debt 

repayment. While there is no exclusive quantification of this risk, its perception is primarily 

influenced by fundamental indicators like debt levels, growth and inflation. Sovereign interest rates 

(or more commonly sovereign ‘bond yields’) are the more natural illustration of how sovereign risk is 

appreciated: the risk-premium incorporated in bond yields is supposed to be a fair reflection of 

whether default is more or less likely in the future. Interest rates however, are not driven by 

sovereign risk exclusively, and other drivers tend to interfere on bond valuations; sometimes causing 

notable distortions in risk-premia. Central bank policy, and expectations of future policies in 

particular, are potent drivers of bond prices in general. These forces have been especially powerful 

during the past decade as central banks (including the ECB) embraced aggressively non-conventional 

policies. And since bond yields were reaching new lows in the process, sovereign risk has been 

perceived as having massively fallen. But in the end, stretched valuations due to substantial QE have 

just been hiding persistent structural concerns at the political/economic level, with the actual credit 

worthiness in sovereigns being possibly less robust than suggested by marked-to-market valuations.  
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As debt restructuring induces considerable losses, getting a reliable estimate of sovereign risk is of 

crucial importance from a risk management perspective. And even before default effectively occurs, 

the behaviour of financial securities tends to be sharply impacted by the underlying deterioration of 

credit worthiness as empirical observations show that correlations usually inflate as a result of 

mounting risk aversion. This in turn, tends to exacerbate risk propagation between financial 

securities, and ultimately leads to a wide-spread sell-off in every asset class. Financial contagion 

characterises cross-asset risk propagation. While empirical correlation is a fair estimator of bilateral 

connections in ‘standard’ market conditions, it gives very little information on the expected 

contagion when financial markets are subject to abnormally large price variations. This is because 

empirical methods usually do not allow for the presence of fat tails in the data and this flaw usually 

leads to a visble underestimate of the joint price deterioration in extreme scenarios. On the other 

side, overestimating contagion and maximising prudence in investments is at the cost of curtailing 

returns – something that portfolio managers try to avoid as well.  

As the behaviour of financial securities under heavy contagion is not naturally observable, there is a 

case for further exploration of contagion. A comprehensive quantification of this phenomenon via 

appropriate and sophisticated statistical models should also deliver sensible information for portfolio 

managers, although we are mindful that complex calculations can prove a drag for high-frequency 

manipulations of the model. In this dissertation, we explore the joint behaviour of sovereign 

securities and we develop a novel approach to financial contagion. We also put an emphasis on 

simplicity, e.g. in the different ways the model is manipulated. This could help disseminate our 

methodology to traders and investors, especially to those with limited quant resources. As the main 

innovation, we offer a comprehensive view on the expected market reaction to shocks in general, 

and we design new risk management procedures as to apprehend periods of financial distress.  

In Chapter I, we explore a probabilistic approach to the distribution of sovereign CDS price variations 

since January 2008. We consider Generalized Hyperbolic distributions and a time-varying volatility. 

While the calibration offers an outstanding fit, the distributions we get are conditional on historical 

realisations. This tends to make any manipulation of the model a bit cumbersome. We thus consider 

a more convenient formulation of the model, as an alternative. Finally, we explore the calibration of 

multivariate distributions. These are supposed to reflect bivariate correlations, taking into account 

fat tails in the data. We also calculate a preliminary estimator of cross-asset contagion, which offers 

an interesting view on the non-linear aspect of the market reaction to shocks.  

In Chapter II, we use our probabilistic model to derive new procedures for risk management 

purposes. We undertake VaR-based stress tests that deliver a generalised view on the expected 

market reaction to shocks. We also explore the forecast-aptitude of our time varying volatility 

estimator and we consider the relevance of incorporating this forecast in popular portfolio 

optimisation procedures. Finally, we design a novel approach to portfolio optimisation, based on our 

indicators of expected contagion. Our allocation strategy shows outstanding results, and seems to 

offer efficient protection in times of crisis, and interesting returns when risk appetite is prevailing. 

In Chapter III, we consider that risk aversion favours the emergence of sizeable discontinuities in 

market prices. We explore the relevance of stochastic models with jumps as a means to apprehend 

these periods of pronounced volatility, and we focus in particular on Hawkes processes. This 

category of models incorporates a self-exciting loop which helps replicate the observed persistence 
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of jumps, in terms of both amplitude and frequency, during prolonged periods of risk aversion. 

Finally, we investigate the pricing of zero coupon bond options, and we compare the implied 

volatility resulting from univariate versus multivariate jump models. 

Sovereign Risk: State of the Art and Context 
 

Sovereign risk is supposed to reflect the repayment capability of a borrowing sovereign entity. To a 

large extent, sovereign risk is therefore an appreciation of the underlying macroeconomic situation. 

Debt ratios for instance, in light of GDP growth and inflation, may be a reliable illustration of the 

credit worthiness. But this is not enough information to get a robust opinion: Japan for instance 

shows a remarkably high level of gross debt, at about 240% of GDP. Since interest rates have reached 

unprecedented lows in this jurisdiction of late, sovereign risk looks still very muted in Japan. In 

practice, sovereign risk is also driven by factors exogenous to the sovereign entity. General demand 

for sovereign debt, liquidity conditions in Fixed Income securities or the access to funding via 

repurchase agreements (repo); all this also has major implications on bond valuations. Plus, 

monetary policy is recognised as having encouraged stretched valuations in bonds since the 

introduction of negative interest rates and the implementation of large quantitative easing programs 

over the past decade. In the end, estimating sovereign risk has proved a challenging exercise for 

portfolio managers, partly due to the diversity of these drivers that are responsible for the price-

formation in bonds.  

 

The appetite for Fixed Income securities is primarily driven by how debt products position 

themselves in the global picture of all asset classes. Higher growth and inflation in particular tend to 

favour higher interest rates, partly as investors want to be rewarded for greater inflation risks. Rising 

interest rates in this context mean that bond prices are on a decline. This usually results into 

substantial outflows, from bonds into equities. The greater appetite for equities is then bolstered by 

the view that risk-premia are protected by supportive fundamentals (e.g. better growth favours 

stronger earnings). After Mr. Trump’s election in end-2016 for instance, a generalised increase in 

expectations that further growth-friendly policies in the US would boost global inflation led to a 

pronounced sell-off in US Treasuries. Aside from this dynamics, flows indicators over this period also 

helped identify a rising interest to reallocate from bonds and into equities (although inflation, ex-

post, remained very low). In contrast to this momentum that tends to describe periods of improving 

fundamentals; a recession is marked by disappointing economic growth and declining inflation (in 

the early stage of the recession at least). As a result, central banks are keen to deliver more 

inflationarist policies, e.g. by lowering key interest rates. As a consequence of a reduced reward on 

deposits at the central bank, investment banks are left with bigger liquidity, and this is supposed to 

make the credit channels to corporates more efficient. In this context, market sentiment is turning 

more favourable for Fixed Income securities, in comparison to equities. First and foremost, because 

equities are meant to perform poorly when the macroeconomic picture is deteriorating. But also 

because falling interest rates (resulting from lower key rates) imply a gain in marked to market 

valuations for bond holders; a momentum that portfolio managers seek to take advantage of. 

Tracking global investment flows helps understand the underlying appetite/reluctance for sovereign 

debt in comparison to other asset classes (like equities or credit). These flows effectively, have been 
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frequently involved in the context of sovereign debt exploration. Longstaff and Singleton (2007) for 

instance consider the net flows (inflow minus outflow) to mutual funds, principally invested in 

international bonds and equity (data obtained from the Investment Company Institute). The authors 

in particular show that global-bond-flow and equity-flow variables are relevant explanatory variables 

for credit risk. Capital flows can also be used to explore the effect of a shift in investors’ confidence 

and their willingness to supply capital, like in Sinyagina-Woodruff (2003). They explore in particular 

the dynamics led by the ‘herd behaviour’ of market participants. Gapen, Gray et al. (2008) also 

design an interesting framework that tends to quantify the degree of positive/negative implications 

that result from massive inflows/outflows, expressed as a function of the accommodative response 

from policymakers. The analysis focuses on emerging economies and conclusions highlight a tight 

connection between capital flows and the sovereign’s default probability. Sensitivity measures 

between market valuations and capital flows also markedly increase when outflows become more 

and more intense. 

When periods of depressed fundamentals tend to endure over a prolonged period of time (‘secular 

stagnation’ in Summers (2014a), (2014b), (2016)), central banks may be prompt to deploy non-

conventional measures as an additional means to curb the downward spiral. Regardless of the form 

it takes, the goal is to push sovereign and corporate interest rates at lower levels. In developed 

economies, Quantitative Easing (QE) is one of the most common initiative, whereby the central bank 

becomes a buyer of financial securities (in effect mostly Fixed Income securities), usually for a 

substantial amount. By creating ‘synthetic’ demand on adequate securities like bonds, QE tends to 

boost the appetite for rates products, and consequently this helps decrease interest rates. Another 

tool, specific to the ECB is LTRO/TLTRO1 operations. These consist of providing ample and long term 

liquidity to banks at a very competitive cost, all in the hopes that it will be re-invested in the 

economy via loans to corporate, or via larger demand (from banks) for high-yield debt. Such an 

approach helped push Euro-denominated interest rates to extremely low levels in the last five years. 

Negative interest rates in stronger economies also raised the opportunity for national Treasuries 

(and corporate debt issuers) to get their annual funding programme achieved at a substantially 

cheaper level than usual. This overall favoured a large recovery in equities: overall the non-

conventional initiatives, launched by the ECB since 2012, significantly contributed to restore 

investors’ confidence in Europe. By and large, stretched valuations in rates market have been the 

engine of recovering financial markets. A bit less enticing, liquidity in bonds is still significantly 

smaller than in the pre-crisis environment. To some extent, this could leave financial markets more 

exposed to risk aversion than it used to be. 

A recession is also marked by recurring periods of intense uncertainties. These overall favour larger 

risk-premia, ie. higher interest rates in general. So while accommodative central banks favour lower 

interest rates, persistent uncertainties at the macro/political levels tend to push interest rates 

higher. The reaction in rates is all the more pronounced that higher levels are supposed to 

compensate investors for the greater risk of default in a context of persistently troubled 

fundamentals. While the loss of confidence remained relatively contained for core and soft-core 

economies in 2011-2012, it caused a substantial rise in peripheral interest rates (Spain, Italy, 

Portugal, Greece). Reasoning in terms of interest rate differential, the spread composed of 10Y 

Spanish versus German interest rates (ie. SPGB versus Bund spread) reached a high of 640bp (ie. 

                                                           
1
 https://www.ecb.europa.eu/mopo/implement/omo/html/index.en.html   https://www.ecb.europa.eu/mopo/implement/omo/tltro/html/index.en.html    

https://www.ecb.europa.eu/explainers/tell-me/html/tltro.en.html  

https://www.ecb.europa.eu/mopo/implement/omo/html/index.en.html
https://www.ecb.europa.eu/mopo/implement/omo/tltro/html/index.en.html
https://www.ecb.europa.eu/explainers/tell-me/html/tltro.en.html
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6.4%) in July 2012. In comparison, it was trading at just 180bp in March 2011. Risk aversion largely 

encouraged this sharp differentiation between safer German bonds and the more exposed 

peripheral debt. The 10Y SPGB/Bund spread then moved back to a very reasonable 120bp by end-

2016; this is another sign that accommodative policies from the ECB have had a wide-scale impact on 

bond valuations since end-2012. Interestingly, the notion of spread is already an indicator of 

sovereign risk, as the higher premium paid by the Spanish Treasury – in comparison to Germany – is 

meant to compensate investors for the greater risk of default. Sovereign risk is definitely a 

meaningful driver of the ‘spread complex’ in Europe (ie. the relative picture of interest rates). As a 

result, understanding sovereign crisis is critical for those who want to invest in European sovereign 

debt outside of safe haven, ie. in soft-core and non-core credits as any emergence of risk aversion, in 

this case, will logically induce a loss. German bonds in contrast tend to rally in risk averse markets 

because of their safe-haven nature. Considering the spread complex in Europe, risk aversion logically 

translates into wider spreads (implicitly against German Bunds). In contrast, risk appetite will favour 

convergence and therefore some spread tightening.   

Aside from the risk-aversion/risk-appetite paradigm, contagion is a key feature as well. Contagion 

qualifies the joint price depreciation that ensues from the emergence of risk aversion. In a world of 

reasonable volatility, risk aversion will favour a sell-off in riskier assets (more or less pronounced 

depending on the credit quality), accompanied by a rally in the safest securities (like German Bunds). 

And while there might be just one epicentre of risk aversion (e.g. emanating from a domestic ‘bad 

news’), risk propagation will hit all entities that could potentially be affected by the corresponding 

piece of news, via a joint price depreciation. In the case of Greece for instance, risk aversion from 

expectations of a potential default also caused substantial losses in Portugal given its similarity with 

Greece in terms of macroeconomic fundamentals (at the fore of the crisis). But contagion is not 

always rational: beyond a certain level of stress, empirical observations indicate that cross-asset 

connections are stronger. In this case, risk aversion leads to hefty losses, spread out on a broader 

range of financial securities, for instance impacting sovereign securities that are still ‘rationally’ 

beyond the scope of the situation. Even before the advent of the GFC, Longstaff, Singleton (2007) 

noted that: “shifts in the relative liquidity of markets over time as shocks induce investors to 

reallocate capital across different asset classes [...] could create correlations between asset class 

prices even in the absence of correlated fundamentals”. More recently, at the peak of the sovereign 

crisis, and as a default in Greece turned to be more and more certain, a confidence crisis emerged in 

H2 2011 and caused a major and generalised rise in European sovereign interest rates, even in 

countries regarded as relatively sound in terms of their credit quality (e.g. France, Belgium, the 

Netherlands, see Apostolakisa and Papadopoulos (2014) and Tsai (2014)). As a result of contagion, 

correlations between the main asset classes became exceptionally large, causing wide-spread losses. 

Many studies (e.g. Arghyrou and Kontonikas (2011), Bernoth and Erdogan, (2012)) have also 

emphasized that financial markets are more sensitive to the fiscal situation during episodes of 

intense contagion, with the price action systematically penalizing bad fiscal positions. This illustrates 

already the notable transformation led by risk aversion, as well as its dramatic implications at the 

State level: fire sales in bonds ultimately make bond issuance a very uncertain process, thereby rising 

risks on the achievement of the annual funding programme. In the end, there is a certain threshold 

beyond which financial distress leads to a harsh amplification of the joint market reaction to 

shocks. This threshold is barely observable with empirical methods: first because contagion relates 

to ‘tail events’, which are uncommon by definition. Plus the ‘global’ dimension of contagion makes 
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these thresholds difficult to estimate as they are potentially impacted by a wide range of 

parameters. In this analysis, we develop a novel way to quantify contagion risk. This is based on 

observations of CDS price variations during the sovereign crisis, and shows a threshold, common to 

each sovereign, beyond which contagion is seen as causing major damages – namely below the     

and beyond the     percentiles on the distribution.  

The European spread complex is probably one of the most basic illustrations of any financial stress in 

financial markets (Allen, Moessner (2013)). While there was little differentiation of sovereign bond 

yields just following the creation of the Euro Area (Spanish and German 10Y rates were trading at 

similar levels until mid-2007), the emergence of the sovereign crisis led to a major desynchronisation 

in sovereign interest rates. Risk aversion on one side, favoured the more resilient countries like 

Germany, Finland and the Netherlands. And in contrast, intense selling-off pressures propelled 

interest rates to remarkably high levels in the periphery. As Kilponen, Laakkonen, Vilmunen (2012) 

note, this occasioned a noticeable thematic rotation in the literature, from exploring the former 

convergence in rates towards explaining the more recent decoupling. At SocGen, we have developed 

an empirical approach to estimating sovereign risk. Essentially, we calculate a score for each liquid 

and tradable country, based on several macroeconomic indicators. For a given country, each 

indicator is given a score from 1 to 10 (1 is best, 10 is worst), that reflects the percentile position of 

the measured value relative to the range admissible between the minimum and maximum 

measurements. Then we take the average score as the final rating. We consider 12 variables, 

exclusively domestic. We categorize them into three groups:  

*** 1) Debt criteria. Budget deficits, gross debt, the ratio of government interest payments to 

revenue (supplied by Moody’s), and Current Account positions.  

*** 2). Economic criteria. Change in unemployment (2016-2017), GNP per capita, impact of 

demographics on net government debt (% GDP, S&P2, 2030 forecast), along with a competitiveness 

indicator “ULC in total economy deflated” (OECD3) as well as Household consumption per capita ($k) 

and Government effectiveness (World Bank).  

*** 3). Bank criteria. Contingent financial liabilities (Eurostat)and Banking Industry Country Risk 

Assessment (BICRA, from S&P).  

Table 1. 12 variables compose SG’s proprietary Sovereign Scoring 

  

 

 

                                                           
2 http://www.nact.org/resources/2013_NACT_Global_Aging.pdf from Table 8, page 43 
3 http://stats.oecd.org/Index.aspx?DataSetCode=ULC_EEQ 

Debt Economy BankFact 1 Fact 2 Fact 3 Fact 5 Fact 6 Fact 7 Fact 8 Fact 9 Fact 10 Fact 11

Denomination

Public Deficit    

(% GDP)  

Gross 

debt (% of 

GDP)

Gen.Gov. 

Int.Pymt    

/

Gen.Gov.

Revenue

Current 

Account 

(% GDP) 

% Change in 

Unemploym

ent Rates 

(2016-2017)

GNP per 

capita ($k)

Impact of 

demographics 

on net 

governemnt 

debt - No 

Policy Change

Real harmonised 

competitiveness 

indicator ULC in 

total economy 

deflated

Household 

consumption 

per capita 

($k)

Government 

effectiveness BICRA*

Government 

Contingent 

Liabilities 

(% GDP)

Germany 2 1 2 1 2 2 1 1 1 2 1 1

France 10 4 3 10 7 3 5 6 3 3 2 1

Netherlands 3 1 1 1 2 1 2 5 3 1 2 1

Finland 8 1 1 9 5 1 1 5 1 1 1 4

Austria 5 2 4 5 10 1 2 4 1 3 2 4

Spain 10 4 7 7 2 8 3 9 8 3 4 6

Ireland 4 2 9 1 3 1 1 5 3 2 6 6

Belgium 9 5 4 8 6 2 6 5 3 3 1 4

Portugal 9 7 10 7 1 10 5 8 10 5 7 2

Italy 9 7 8 6 8 6 5 8 5 9 6 1

Greece 1 10 8 8 1 10 10 10 9 10 10 10
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Results show that Germany is well ensconced at the top end of the ranking; its score has continued 

to improve from 2.67 to 1.42 since the last update of the model in 2016. Then we see the 

Netherlands at 1.92, still improving from 2.92 on encouraging prospects in terms of public deficit and 

on the back of lower unemployment. Finland is in third place (still), with a better score of 3.17, from 

3.75. But the country is still struggling to boost growth, with the significant exposure to Russia 

proving a drag for the economy. Austria remains in fifth place, with a slightly better score of 3.58 by 

end-2016, compared to 4.67 one year ago. A better outlook on demographic indicators and 

apparently lower contingent liabilities justify the better score. The exposure to Eastern Europe 

remains a long-term concern though. Spain continues to outperform Italy, with a score consistently 

improving compared to the last updates of the model. Italy is still in ninth place with an unchanged 

score of 6.50. And ahead of Greece, Portugal is at 6.92, relatively unchanged to 2015 numbers (6.75). 

Employment forecasts have improved, but wealth criteria are still weak compared to other 

countries. Greece, finally, has seen no particular progress in our model since last year, with an 

unchanged score of 8.08, and it remains last in the ranking. That said, the model identifies some 

improvements in terms of public deficit, partly offset by tough numbers in terms of competitiveness. 

Overall, the score reflects a challenging environment for implementing reforms in Greece, with 

limited upside in the near term. Then we match the results to asset swaps spreads (ASW) and CDS 

prices (Graph 1, Graph 2). Overall, a higher country’s score is associated with wider ASW or CDS 

levels. This looks coherent with the fact that troubled countries have to face higher risk-premia 

compared to more robust economies. Interestingly, a second order interpolation function provides a 

decent fit against market valuations, suggesting overall that the premium effectively sees a non-

linear acceleration when the score is large (ie. for Spain, Italy, Portugal, Greece).  

Graph 1. SG Scoring vs 10-year ASW  Graph 2. SG Scoring vs 5y CDS 

   

 

 

 

   

 

Table 2.SG sovereign Scoring, results by 

country 

 Graph 3. National GDP contribution to the EA 

GDP(or ‘capital key’) 

   

 

 

 
  https://www.ecb.europa.eu/ecb/orga/capital/html/index.en.html  
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Overall this categorisation reflects the general understanding of sovereign risk in Europe: 

Germany, Finland and the Netherlands, usually denominated as ‘core’, are the most resilient EU 

countries. Then Austria, France, Belgium are seen as ‘semi-core’ or ‘soft-core’ economies; while 

Ireland, Spain, Italy, Portugal and Greece constitute the category of ‘peripheral’ (or ‘non-core’) 

countries. ‘Peripheral countries’ is a bigger category but the distribution by category is more equally 

spread when we look at the GDP contribution of each country to the whole Euro Area (EA) GDP:  

34% is core, 27% is made of soft-core economies and peripheral countries amount to 37% of the 

total EA GDP (Graph 3). It is also worth noting that the model does not take political risk into account 

(e.g. uncertainties surrounding elections and risks surrounding the formation of governments). This 

is a notable caveat; Savona and Vezzoli (2011) for instance identifies political risk as a meaningful 

subcomponent of sovereign risk. 

Contingent claims are another domestic indicator that can be explored for the purpose of credit risk 

estimation. This variable has been extensively involved to evaluate credit risk in corporates, for 

example in Black and Scholes (1973), Merton (1973 and 1998), McQuown (1993), Sobehart and Stein 

(2000), as well as in Crouhy, Galai, and Mark (2000), and Cossin and Pirotte(2001); or to estimate risk 

in the financial sector like in Merton (1977), Kupiec (2002), and Chan-Lau, Jobert, and Kong (2004). 

Contingent claims specifically applied to sovereign debt exploration is less recurrent in the literature, 

but Gapen, Gray et al. (2008) for instance offer interesting insight on that matter, on the basis of a 

ground-breaking framework. They note in particular that contingent claims offer insightful 

information for risk management as it helps identify existing balance sheet mismatches, while 

reflecting uncertainties inherent to balance sheet components. In the end, conclusions suggest that 

contingent claims analysis can offer sensible guidelines in two promising areas for sovereign risk 

mitigation: reserve management and debt sustainability. The framework can be used to derive an 

appropriate target for reserve adequacy, where the respect of the acceptance level for reserves is 

supposed to keep credit risk indicators above a specified threshold (or below, in the case of default 

probability). Hayri (2000), Gibson and Sundaresan (2001), Westphalen (2002), and Andrade (2009) 

extend this framework and draw fair values on sovereign interest rates in the context of contingent 

claims exploration. This approach looks valuable as to understand ‘when’ default is meant to 

happen.   

Ratings provided by official agencies like Moody’s, S&P, Fitch and DBRS are also highly-regarded 

information, as they are supposed to illustrate credit quality (Table 3). As publicly available 

estimations of the credit worthiness, a change of rating can have meaningful implications on 

financial markets. At the central bank level for instance, the ECB estimates the probability of default 

inherent to debt securities as a function of its credit rating. As a consequence, a bond involved as 

collateral in monetary policy operations will face a greater haircut if its rating does not fall in the best 

category4. Institutional investors also usually face strict limitations in terms of the credit quality of 

the bonds they are allowed to detain. As a consequence, investors will be forced to clear long 

positions on sovereign bonds if a downgrade puts the sovereign entity under the authorised level of 

rating. This obviously tends to magnify the market reaction surrounding rating downgrades. As 

ratings agencies are potent drivers of market sentiment, the acceleration of rating downgrades in 

Europe during the sovereign crisis has been an effective source of risk aversion. The downgrade of 

                                                           
4
 https://www.ecb.europa.eu/paym/coll/risk/ecaf/html/index.en.html  

https://www.ecb.europa.eu/paym/coll/risk/liquidity/html/index.en.html  

https://www.ecb.europa.eu/paym/coll/risk/ecaf/html/index.en.html
https://www.ecb.europa.eu/paym/coll/risk/liquidity/html/index.en.html
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the United States by S&P on 5 August 2011 (ie. at the fore of the sovereign crisis) also led to sizeable 

volatility in many asset classes. On that ground, rating agencies cannot be regarded just as providing 

an illustration of sovereign risk, as admittedly they contribute to shape the general sentiment in 

financial markets. The methodology surrounding the assessment by rating organisations is primarily 

based on the observations of macro/financial/debt variables. The market access to funding, 

sustainability of debt, and investors’ confidence are also key variables. All this makes ratings rather 

relevant in the context of sovereign risk exploration (Manganelli and Wolswijk, 2009). But while this 

input is valuable to understand the present-state of credit risk, rating agencies have proved 

relatively unable to predict credit crunch. As an example, Moody’s, S&P, and Fitch all maintained at 

least an A rating on AIG and Lehman Brothers up until mid-September 2008: Lehman Brothers 

declared bankruptcy on 15 September, while the federal government provided AIG with its first 

multibillion dollar bailouts (out of four) on the following day. And as ratings are supposed to reflect 

domestic risk exclusively, they have also proven to be relatively unable to reflect potential contagion. 

These little forecasting skills surely did not help apprehend recent financial crises.  

 

Table 3. Current ratings; European countries 

  

 
 

While endogenous variables deliver insightful information on the repayment capability, exogenous 

factors too, have meaningful implications on the determination of risk premia. In a confidence crisis 

for instance, evaporating demand on the primary markets tends to make debt issuance more and 

more challenging. This ultimately can raise substantial threats on debt rollover and future debt 

repayment, and so regardless of the underlying fundamentals. In this case, investors’ behaviour is 

key. Variables linked to the distribution of debt holdings may give interesting insights too. Arslanap 

and Tsuda (2012) in particular have explored the change in portfolio allocation strategies during the 

sovereign crisis out of a comprehensive database of debt holdings by investors’ type. Their analysis 

tends to discriminate the behaviour of investors, depending on their geographical location (domestic 

versus foreign) and the type of institution they work for (central bank, investment banks, nonbanks, 

official sector). They highlight key trends through and post crisis, and oppose two estimators: 

‘government refinancing’ risk on one side, which is supposed to reflect selling pressure in bonds. This 

obviously becomes a powerful driver on the emergence of a confidence crisis. On the other side, the 

Moody's Markit S&P Markit Fitch Markit

Scale Scale Scale

USA Aaa 1 Sta 7-13 AA+ 2 Sta 6-13 AAA 1 Sta

Japan A1 5 Sta 12-14 A+ 5 Sta 9-15 A 6.0 Sta

UK Aa2 3.0 Sta AA 3.3 Neg 12-15 AA 3.3 Neg 

Germany Aaa 1 Sta AAA 1 Sta 1-14 AAA 1 Sta

Netherlands Aaa 1 Sta AAA 1 Sta 11-15 AAA 1 Sta

Austria Aa1 2 Sta 11-15 AA+ 2 Sta AA+ 2 Sta

Finland Aa1 2 Sta  '6-15 AA+ 2 Sta 2-15 AA+ 2 Sta

France Aa2 3 Sta 9-15 AA 3.0 Sta 12-15 AA 3 Sta

Belgium Aa3 4 Sta AA 3 Sta AA- 4 Sta

Ireland A2 6.0 Sta 9-15 A+ 5 Sta 6-15 A 6 Sta

Slovakia A2 6 Pos A+ 5 Sta A+ 5 Sta

Slovenia Baa1 8 Sta A+ 5 Pos 6-15 A- 7 Sta

Spain Baa2 9 Sta 5-15 BBB+ 8 Pos 10-15 BBB+ 8 Pos

Italy Baa2 9 Neg BBB 10 Sta 5-15 BBB 9 Sta

Portugal Ba1 11 Pos BBB- 10 Sta 9-15 BB+ 11 Pos

Cyprus Ba3 13 Pos 11-15 BB+ 10.7 Pos BB- 12.7 Pos

Greece Caa2 18 Pos 7-15 B- 16 Pos 9-15 B- 16 Pos
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authors quantify risks to the ‘domestic financial stability’, which is meant to illustrate the resilience 

of domestic investors as to offset a rise in sovereign rates. An observation is that the share of foreign 

investors has consistently risen for most European sovereigns over the years preceding the crisis, 

though this was less pronounced for higher yielding credits like Portugal, Ireland and Spain. Then 

exploring the consequences of funding shocks and sudden outflows, the analysis reveals a notable 

differentiation as to how foreign investors changed their holdings during the GFC (2008-2009) and 

during the euro area debt crisis (starting in 2010): during the euro area sovereign crisis, foreign 

investors operated a reallocation of their holdings (in the benefit of safer credits) much faster than in 

2008. As the authors note, this was the effect of a transition from interest rates risk to credit risk 

combined with large-scale sovereign downgrades. The unusually high volatility in yields also 

contributed to fan the selling-off trend in peripheral markets. Results also show significant macro-

financial risks emanating from holdings of sovereign debt held by banks. Effectively, the 

bank/sovereign nexus is prompt to exacerbate contagion when sovereign debt held by domestic 

banks is not properly diversified (Erce (2015)). The close relationship between the perceived solvency 

of governments and the solvency of domestic banks is also stressed in Allen, Moessner (2013). More 

generally, sovereign debt composition has also been investigated by Ali Abbas, Blattner, de Broeck 

(2014). Their dataset delivered insightful observations on investors’ behaviour from a broader 

historical perspective, since 1900.  

 
Liquidity is another exogenous key component, which has notable consequences on the perception 

of credit risk in general (Calomiris, Heider, Hoerova (2015), Arghyrou and Kontonikas (2011), Attinasi 

et al. (2009), Barrios et al. (2009), Favero et al. (2010), Gerlach et al. (2010), Gómez-Puig (2009); 

Manganelli and Wolswijk, (2009), Sgherri and Zoli, (2009), Schwartz, 2009). But this is a vast subject 

and liquidity operates at different levels. Foucault, Pagano, and Röell (2013) in particular see three 

different definitions of liquidity: First, market liquidity refers to the ease with which financial assets 

can be traded close to their fundamental price. Second, the closely related concept of funding 

liquidity refers to the ready availability of cash and the ease with which financial intermediaries can 

obtain funding. The third liquidity dimension is central bank liquidity, which refers to banknotes, 

coins and reserves held with the central bank. In investment banks, ‘market makers’ are ‘liquidity 

providers’ and as such they are meant to nurture market liquidity by serving investors at fair price. 

Their role has become more and more challenging over the past decade. First the sovereign crisis has 

raised sizeable threats on the solvency of banks in general, partly because of palpable consanguinity 

with sovereigns. Plus the emergence of tough regulations in the most recent years has also made any 

balance sheet expansion much more expensive than before. In the end, while helping financial 

stability in general, recent regulations have also contributed to reduce the amount of liquidity that 

trading desks in banks are able to provide. Allen, Moessner (2013) explore the distortion in terms of 

liquidity that resulted from the sovereign crisis. As the authors note, Libor versus OIS spreads and 

bank CDS are relevant illustrations of financial stress in the banking sector. Wider levels in 2011-2012 

(Graph 4) and the major decoupling with US bank CDS (Graph 5) suggest that financial distress was 

quite intense during the sovereign crisis. As Panetta (2011) explains, sovereign securities are used 

extensively by banks as collateral to secure wholesale funding from central banks, private repo 

markets, and the issuance of covered bonds, as well as in order to back over-the-counter (OTC) 

derivative positions. Inflating sovereign risk therefore naturally reduces the availability or eligibility 
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of collateral, and hence banks’ funding capacity. Effectively, while liquidity risk and funding risks are 

given two different definitions5, these risks are closely interrelated.  

Graph 4. Three-month Libor-OIS spreads (bp)  Graph 5. Bank CDS spreads (bp) 

   

 

 

 
  Five-year on-the-run credit default swap spreads. Simple average across 

leading banks 

 

Graph 6. Net euro-denominated claims by banks in Germany vis-à-vis banks abroad (Loans and advances 

minus liabilities to foreign banks) - Amount outstanding, in billions of euros 

 

 
Source: Deutsche Bundesbank, BIS calculations. 

Allen, Moessner (2013) delivers interesting insight too. The authors examine the balance sheet of 

European banks from 2008 to 2012 (from ECB’s statistics and BIS databases). First they note that 

from mid-2010 to mid-2011 inter-commercial bank loans fell by €487bn. In comparison, this trend 

was less pronounced during the GFC, therefore suggesting that the mutual loss of confidence among 

euro area commercial banks was more serious than in 2008. Plus, external assets contracted by a 

large €283bn during this period, while in proportion, the more liquid assets also sharply increased 

(within the set of external assets). And as external liabilities fell by even more, it clearly appears that 

the deleveraging of euro area banks fell disproportionately on external rather than domestic assets 

(Graph 6). Another interesting point is that banks had a substantial amount of debt maturing in 2012. 

And in contrast to this trend, gross issuance saw a sharp decline in 2011, and fell below the level of 

bond redemptions. Overall this reflected deteriorating funding conditions. Commercial banks also 

experienced a slowdown in the growth of deposits from non-MFIs6 in H2 2011 (Graph 7), suggesting 

that depositors began to share concerns that were afflicting financial markets. In the end, the launch 

of non-conventional measures in end-2011/early 2012 by the ECB via Long Term Refinancing 

                                                           
5
 Liquidity risk is the “ability to finance cash outflows at any given point in time”, while funding risk “refers to a bank’s ability to raise funds 

in the desired amount on an ongoing basis” (King, 2013b, p. 4145). 
6 Monetary Financial Institutions 
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Operations7 (LTRO) helped ease this liquidity problem quite significantly by providing successively 

€489bn and €529bn loans to banks for a three-year horizon, on 22 December 2011 and 1 March 

2012. 
 

Graph 7. Deposits of domestic residents with depository corporations 

 

 
Demand deposits and other deposits; rebased to 2007 average = 100; excluding central banks. 

 

 

 

 

 

 

 

Graph 8. Bid-ask spread on a selected Portuguese 

bond 

 Graph 9. Cross-currency basis against the US dollar (bp), 

EURUSD basis (red), JPYUSD basis (blue) 

   

 

 

 
  The vertical lines indicate 15 September 2008 (Lehman Brothers file for Chapter 11 

bankruptcy protection) and 26 October 2011 (euro area authorities agree on debt 

relief for Greece, leveraging of the European Financial Stability Facility and the 

recapitalisation of banks). 

Bank funding was reportedly contracting during the sovereign crisis. And as a consequence, market 

makers were left with limited room to hedge their positions. This naturally amplified the 

supply/demand imbalance when portfolio managers were rushing to diversify their risk. An 

illustration of reduced liquidity overall is the substantial widening in bid-ask spreads in sovereign 

debt markets. 10Y Portuguese bonds (PGB) for instance showed a massive widening in bid-ask 

spreads, from 2.5bp on average before 2010 up to 450bp in Q1 2012 (Graph 8). Needless to say, no-

one was trading at these abnormally large levels. Portfolio managers exposed to Portugal had 

consequently no choice but to keep their positions as the gridlock on Greece intensified. In the 

literature, bid-ask spreads are effectively seen as a relevant picture of liquidity risk (Aßmann and 

Boysen-Hogrefe (2011), Fontana and Scheicher (2010), Abad, Chuliá, Gómez-Puig (2010)). Other 

approaches also consider the size of the government bond markets (Arghyrou and Kontonikas 

(2011), Bernoth et al. (2012), Abad, Chuliá, Gómez-Puig (2010), Haugh et al. (2009), Attinasi et al. 

                                                           
7 https://www.ecb.europa.eu/mopo/implement/omo/html/index.en.html 
https://www.ecb.europa.eu/explainers/tell-me/html/tltro.en.html  
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(2009)), or other measures like interest rate differentials against a specific benchmark: Schwartz 

(2009) for instance gauge liquidity risk as the interest rate differential between by bonds issued by 

KfW and by Germany (Bunds). 

A key objective of banking regulation is to make individual banks (micro-prudential) and the banking 

sector as a whole (macro-prudential) more resilient to sudden changes in economic and financial 

conditions. The first two rounds of concerted international banking regulation, Basel I and II, which 

came into effect in 1988 and 2007 respectively, largely centred on capital regulation with a focus on 

credit risk and the solvency of banks. Before that, liquidity risk and liquidity crises, it was believed, 

could be addressed by a combination of banks’ individual liquidity management, deposit insurance 

schemes and access to central bank funding. However, following the GFC and the sovereign crisis, 

the common idea that a well capitalized bank would always be able to raise funds became weak: 

banks, despite meeting the regulatory capital requirements, experienced serious funding difficulties 

owing to their excessive reliance on unstable, low quality sources of funding, erroneous asset-liability 

management and risky off-balance sheet positions (ECB (2013), Simion, Rogoni (2016), Santos and 

Elliot (2012), Calomiris, Heider, Hoerova (2015)). In response to this observation, the Basel 

Committee on Banking Supervision (BCBS) designed a new framework for banking regulation, known 

as Basel III (full implementation scheduled for 2019). For the first time since the inception of global 

banking regulation in 1988, Basel III introduced explicit mandatory rules for liquidity regulation. 

The cornerstone of this new framework is the introduction of two balance sheet ratios: the Liquidity 

Coverage Ratio (LCR) and the Net Stable Funding Ratio (NFSR), intended to regulate bank’s liquidity 

risk. These changes significantly broaden the scope of global banking regulations. First, the liquidity 

coverage ratio (LCR) requires banks to hold a buffer of sufficient high-quality liquid assets (HQLA) to 

cover their total net cash outflows over a 30-day stress scenario. Second, the net stable funding ratio 

(NSFR) requires banks’ amount of stable funding to exceed a required minimum amount. In the end, 

the LCR and NSFR seek to lower liquidity risk by forcing banks to reduce their maturity mismatch, 

thereby making it easier for them to meet their liabilities in due time. As Koenig, Pothier (2016) 

explain, a key challenge in the design of the LCR was determining what constitutes HQLA. The 

required feature of these assets is that they can be converted into cash at little or no loss of value. 

Regulators see four essential specifications: (1) low risk, (2) easy to valuate, (3) have a low 

correlation with other risky assets, and (4) the asset has to be listed on a recognized exchange (BCBS 

(2013)). Importantly, high quality liquid assets used as collateral to secure lending from the central 

bank do not count towards the LCR. Setting an appropriate level of requirements is critical: set too 

low, the liquidity requirements may fail to provide the desired level of insurance; set too high, the 

banking sector may reduce its lending and investment power. While the plus-value in terms of how 

this framework makes banks more resilient is indisputable, some investigations reveal notable 

caveats in the way Basel III is implemented. Koenig, Pothier (2016) first, tend to question whether 

the respect of both ratios, LCR and NSFR, is an absolute necessity, or if being compliant on just one 

could be sufficient. In particular, the authors raise the point that high quality liquid assets should not 

be considered to be liquid when LCR requirement is binding. Another limitation, identified in 

Malherbe (2014) is the fact that liquidity requirement is an incentive for banks to hoard liquidity 

during times of financial distress. This accumulation and retention may paradoxically lead to a 

substantial reduction in market liquidity. Another possible threat is that LCR may increase demand 

for central bank money, thereby pushing short-term interest rates down towards the floor of the 

central bank’s corridor. This could ultimately affect monetary policy implementation (Keister, Todd, 
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and Morten L. Bech (2012)). In addition to limiting the ability of the central bank to steer overnight 

rates, the new liquidity ratios may also affect the composition of assets used as collateral in central 

bank operations. Since these assets cannot qualify for the LCR, the share of non-HQLA collateral 

posted at the central bank may increase as banks will want to freeze the use of HQLA assets. This 

could squeeze demand for non-HQLA collateral securities; something that would occasion notable 

price distortions. Bucalossi et. al. (2016) in particular observes that for banks with more than 70% 

non-HQLA in their asset pools effectively, the share of non-HQLA assets pledged as collateral to the 

ECB increased significantly between 2011 and 2015. Capital regulations emanating from the Basel III 

framework are in fact already regarded as being responsible for some price exuberance in liquid 

and tradable markets. The persistent deviation from Covered Interest Parity (CIP) for instance is 

usually presented as an illustration of the greater cost of balance sheet expansion for banks now 

(Caruana (2016), Shin (2016), Borio et al. (2016), Du et al. (2016)). CIP states that the interest rate 

differential between two currencies in the cash market should equal the differential between 

forward and spot rates in FX. This relationship broke down for the US dollar during the GFC, and the 

gap between these two measures consistently widened since mid-2014, overall encouraging a 

deviation of cross currency basis swaps towards more negative levels (Graph 9). The ensuing 

violation of CIP means that an investor could borrow at a low interest rate and lend out at a higher 

interest rate (either via FX or cross currency basis swaps). This arbitrage was not possible before 

2008, as cross currency bases were consistently trading at zero. Essentially, any deviation from zero 

was systematically faded by trading desks in banks (amongst other). And while valuations have 

notably recovered in bonds and CDS prices since end-2012, CIP in contrast is set to remain ‘open’ for 

a prolonged period of time (see Du, Tepper and Verdelhan (2016)). The persistence of the gap in 

particular suggests that banks cannot exploit opportunities raised from the violation of CIP. As 

Caruana (2016) argues, they are putting such a high price on the use of their balance sheet that the 

trade becomes uneconomical. This is an illustration that the greater cost of balance sheet expansion 

for banks resulting from tighter regulations tends to impact market valuations and to some extent 

the overall market liquidity. In terms of reputation, the promotion of tighter regulations is also an 

incentive for banks to demonstrate their greater robustness, as market participants are now 

prompter to penalize the more troubled institutions. Caruana (2016) notes that consequently the 

cushion of capital that banks ‘feel they have to hold’ is in practice much above the minimum Basel III 

requirements, at around 5% points above the required 7% capital ratio. This presumably helps secure 

stress test results while keeping risks of rating downgrades or future supervisory constraints at bay. 

But this also tends to magnify the cost of balance sheet expansion, and thus supports further 

regulation-led price distortions. This undergoing transformation at the bank level, incentivised by the 

need for tighter regulations is meaningful information when exploring sovereign risk: on one side the 

more recent upgrades in regulations undoubtedly contribute to make banks more robust in the 

sense that the regulatory framework is more demanding. This can help relax the level of 

consanguinity between banks and sovereigns, which is a positive. But this is a double-hedged sword 

too, as there is tangible evidence that the cost of capital for banks is occasioning the emergence of 

market failures. And these discrepancies could possibly feed the propagation of financial distress 

in an environment marked by mounting risk aversion, thereby exacerbating fire sales on sovereign 

securities. Simion, Rigoni et al. (2016) look at how the market reacted to the regulatory 

announcements surrounding the implementation of Basel III. The authors note that investors’ 

reaction was mixed, suggesting that new liquidity rules were regarded as increasing the banks’ 
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probability of default. This overall corroborates the risk that this new framework eventually 

demonstrates only limited effectiveness as to reduce contagion from banks. 

More global variables may also be added to the list of exogenous factors that are relevant to the 

exploration of sovereign risk in Europe. Longstaff et al. (2011) and Remolona et al. (2008) for 

instance show that a significant portion of the variations in European sovereign securities is 

attributable to the momentum from other jurisdictions like the United States. The authors tend to 

quantify implications on sovereign credit spreads from four different set of drivers: local economic 

variables, global financial market variables, global risk premia measures, and net investment flows 

into global funds. In the end, they note that “Sovereign credit spreads are generally more related to 

the U.S. stock and high-yield bond markets, global risk premia, and capital flows than they are to 

their own local economic measures”. And coincidently they also conclude that: “country-specific 

variation represents only a minority fraction of the total variation in sovereign credit spreads”. A 

principal component analysis also highlights that 30% of the variations in sovereign CDS spreads is 

explained by a single factor that is common to all countries in the sample. And this factor is fairly 

correlated to US stocks and the VIX index. In the end, the authors provide clear evidences that risk-

premia in general, and therefore the perception of sovereign risk, are influenced by global 

considerations to a greater extent than by idiosyncratic developments. Other analyses like Kamin 

and von Kleist (1999), Eichengreen and Mody (2000), Geyer, Kossmeier, and Pichler (2004), Rozada 

and Yeyati (2005), and Remolona, Scatigna, and Wu (2007) lead to similar conclusions. However, it is 

worth to note that this literature mostly focuses on periods preceding the GFC (and the sovereign 

crisis): Longstaff et al. (2011) for instance focuses on the period 2000 to 2007. Their conclusions look 

therefore much valuable as to understand the dynamics of financial markets in the context of a 

standard volatility regime. Following the recent financial crises, the more recent literature has 

switched to a different verdict on the influence of international/global drivers on sovereign 

securities. Jeanneret (2012) for instance explores the fundamental drivers of sovereign credit 

spreads during the crisis. The authors incorporate market-related factors in their approach to 

explaining sovereign credit spreads. In particular they consider variations in the VIX index, S&P 500’s 

returns, the 5-year US Treasury (UST) interest rate, and the slope of the US term structure calculated 

as the interest rate differential between the 30-year and the 3-month UST rates. As local variables, 

the model explores the connection between sovereign credit spreads and the soundness of the local 

stock market. The authors also include additional descriptive variables like 10Y German interest rate 

(in the same vein, Fontana and Scheicher (2010), Oliveira et al. (2012) involve ‘risk-free’ interest 

rates), government indebtedness and an indicator of macroeconomic risk. In contrast to what we 

mention above, conclusions this time point to a reduced influence from international market-wide 

indicators. Consequently, sovereign risk looks as primarily driven by country-specific information. As 

an explanation for this divergence of opinion, Jeanneret (2012) notes that Longstaff et al. (2011) 

includes small and illiquid countries in its sample. And valuations in those countries effectively may 

be more sensitive to global considerations. In our view, this also reflects the fact that economic and 

political developments within the euro area moved to the front stage in newswires during the 

sovereign crisis. This subsequently led to a greater attention from investors than before the crisis; 

hence justifying the bigger role played by domestic drivers on the price formation of sovereign 

securities during this period. In the end, the authors note that “forward-looking information on firm 

income in a country, as embedded in local stock market prices, helps explain an important part of 

the time-variation in sovereign credit spreads; in particular for large sovereign debt issuers with 
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liquid credit and equity markets.” On our side, we have explored sovereign risk on the basis of 

sovereign CDS prices and asset swap spreads exclusively. We agree on the fact the global factors 

tend to become less relevant when the overall volatility is originating from domestic developments. 

This was admittedly the case during the sovereign crisis. Plus the data we explore is made of price 

variations of relatively liquid assets. A consequence of decent liquidity is that any contagion from 

other jurisdictions is quickly integrated in prices. This mostly motivates our choice to focus on Euro-

based securities exclusively.  

Although there are a multitude of factors that contribute to the price discovery in bonds, there is a 

common factor that reflects investors’ changing attitude as risk sentiment sharply deteriorates: risk 

aversion systematically leads to a decline in the appetite for risk exposure in portfolios, while it 

enhances demand for safer assets. This obviously translates into a notable outperformance of safe-

havens in general, ie. a richening of these securities that relate to ‘core’ European countries in the 

context of this report. Securities referring to peripheral countries, in contrast, will experience a price 

deterioration in the process, as a result of the ensuing flight to quality (Arghyrou and Kontonikas 

(2011), Barrios et al. (2009), Favero et al. (2010), Manganelli and Wolswijk (2009), Pozzi and 

Woslwijk (2012), Sgrerri and Zoli (2009)). As we noted in the previous paragraphs, the basket of 

descriptive variables that refer to sovereign risk is virtually boundless. And for any selected variable, 

models indicate that there are always some caveats attached to it: the degree of relevance may vary 

as time goes by (e.g. valid only for specific periods like pre-EMU, pre-GFC or post-crises), or may 

depend on market sentiment (some variables are less influential in risk averse market conditions), or 

on the country itself (small economies/illiquid securities versus more liquid assets). Barbosa and 

Costa (2010), Caceres et al. (2010) even suggest that there were two or three apparent regime shifts 

in correlations/market drivers during the GFC. Eventually, this makes the selection of a relevant set 

of descriptive variables for sovereign risk exploration a challenging process. Plus, redundancy 

between the selected variables is a risk to face an extra cost in terms of complexity/computational 

burden for very limited gains. For better clarity, the literature identifies three main ‘core’ risk factors 

as the main determinants surrounding the price formation in sovereign bonds (and CDS spreads): 

credit risk, liquidity risk and the general risk appetite. This interpretation can be found in Bettendorf 

(2016), ECB Banking Supervision (2016), Das, Oliva, and Tsuda (2012), Arghyrou and Kontonikas 

(2011). We already described the estimation of credit risk and liquidity risk in the paragraphs above 

(macro variables, ratings, regulations...). And while it is well accepted that the general risk attitude 

(or risk appetite) of portfolio managers has meaningful implications on market valuations, this risk 

factor is a bit more difficult to estimate. This is because investors’ risk appetite/aversion mostly 

comes from the assessment of the two other risk factors (credit risk and liquidity risk) and this 

interconnection makes the isolation of a proper descriptor of risk appetite relatively complex. While 

macroeconomic and fiscal variables give little information on general risk appetite, market-based 

data like bond yields or CDS spreads presumably incorporate it as a core determinant (Kilponen, 

Laakkonen, Vilmunen (2012), Arghyrou and Kontonikas (2011)). This is a strong incentive to prefer 

market-based information as the main input for the exploration of sovereign risk and contagion in 

Europe. Plus, CDS spreads and bond yields offer high frequency data as they are continuously quoted 

for developed economies. This makes the implementation of sophisticated econometric models 

particularly convenient. Investment flows are another descriptor of the general risk attitude (see 

Gapen, Gray et al. (2008), Arslanap and Tsuda (2012)). But these indicators are usually released with 

a lag of several months, and at a low frequency, which, if anything, makes them less suitable for a 
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day-to-day re-assessment of sovereign risk. Volatility indicators like the VIX can also be regarded as 

an illustration of risk appetite: Bekaert et al. (2010) in particular offers a decomposition of the VIX 

into risk appetite and uncertainty factors. That said, liquid sovereign securities are also meant to 

reflect the general market volatility, so there is a risk of redundancy when adding the VIX to a sample 

of sovereign bond yields or CDS prices. Our analysis is founded on market-based data exclusively, 

namely 5Y sovereign CDS spreads and 10Y asset swap spreads – and so for the reasons we just 

mentioned - plus the fact that CDS spreads are admittedly allowing for cross border financial linkages 

(Kallestrup et al. (2012)). 

By definition, sovereign risk is not a multivariate quantity. Rating agencies for instance focus on 

domestic risk, estimated on the basis of local variables. While this delivers a sound fair value of the 

credit worthiness in normal market conditions, the approach does not allow for the potentially sharp 

deterioration in credit quality that would result from an external shock. In this report we focus on 

the dynamics of financial markets in periods marked by mounting risk aversion. And we explore in 

particular the acceleration of the joint price depreciation – and the abnormally large volatility – that 

usually ensues from contagion (Diebold et al. (2012), Yilmaz et al. (2010), Zhou et al. (2012)). Since 

contagion relates to risk propagation through risk assets, there is a multivariate angle that is 

naturally attached to it. And this multivariate aspect needs to be addressed properly; in particular 

there is a wide acceptation that the dynamics of contagion is mostly non-linear (Ahnert and Bertsch 

(2013), Forbes and Rigobon (2002), Bekaert et al. (2014), Favero and Giavazzi (2012)). Plus there is 

the complication that episodes of intense contagion are relatively infrequent. Observed contagion is 

consequently just a small portion of all available market observations, and this makes the 

generalisation of its behaviour and future predictions somewhat challenging. Looking at the 

structural approach to sovereign exploration, we see mostly two kind of approaches: on one side 

those who seek to quantify the underlying robustness of sovereign entities and possibly to track it as 

time goes by; and on the other side those who try to understand the impact of contagion in terms of 

price variation and potential losses in portfolios. Both purposes are quite different. In the first 

category there is an implicit goal of drawing macro-prudential guidelines on how to avoid or how to 

detect a situation where deteriorated fundamentals could justify the emergence of severe contagion 

(Lane (2010), Angelini, Grande, Panetta (2014), Gros (2013), Acharya and Steffen (2013), Battistini, 

Pagano and Simonelli (2013), ESRB (2015)). The other way round, in the second approach, contagion 

is assumed as a given fact and the analysis tends to derive the expected shortfall in portfolios, and 

usually explores ways to hedge the resulting volatility (Angelini, Grande, Panetta (2014), Angeloni 

and Wolff (2012), Gapen, Gray et al. (2008)). While in theory both approaches could be based on 

similar dataset and explanatory models, there are notable divergences in practice. First, those who 

want to gauge sovereign credit quality are more inclined to consider a dataset of fundamental 

domestic data; mostly macroeconomic (e.g. Yue (2010)). Market prices in contrast are generally a 

less preferred option for the dataset. The analytical approach then seeks to illustrate the negative 

feedback loop between deteriorated fundamentals and the emergence of contagion. Conclusions 

may reveal a quantification of the dynamics that would relate credit worthiness to macroeconomic 

fundamentals – sometimes by focusing on the probably of default (Ratovomirija, 2015, Gapen, Gray 

et al. (2008), Lagi, Bar-Yam (2012)). Macro prudential guidelines are then drawn from these 

observations, with the authors usually emphasizing either a greater impact from certain variables, or 

some relevant thresholds beyond which sovereign risk is supposed to become a serious concern. In 

terms of calculations, these papers usually involve slightly less sophisticated models than the second 
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approach does: linear regressions/correlations or basic interpolation methods are generally 

sufficient to deliver sensible results. In fact, the argumentation is usually oriented as to stress the 

special upside resulting from the dataset itself rather than from the exploration of convoluted 

analytical models: the authors usually pride themselves on considering a sensible set of variables 

that offers exhaustive and sufficiently diversified information to conclude on the robustness of the 

sovereign entity. We reckon that picking up appropriate descriptive variables is a tough challenge 

indeed given the breadth of the topic. To illustrate this first category of papers, Arslanap and Tsuda 

(2012) seeks to distinguish the different components of sovereign risk. The authors in particular 

break it down into three specific indices: the Sovereign Funding Shock Scenario (FSS), the Investor 

Base risk Index (IRI) and the Foreign investor position index (FIPI). FSS is a framework to simulate 

forward-looking sovereign funding shock scenarios to assess the vulnerability of a country to sudden 

foreign outflows. This index highlights the ability of a sovereign entity to rely on its domestic 

institutional investors and banking sector as alternative investors. The analysis also examines 

implications of a withdrawal of foreign investors from the sovereign debt market on the domestic 

financial stability. Three parameters describe investment decisions of foreign private investors, 

namely: (i) their contribution to funding of the global fiscal deficit over the next year. (ii) The rollover 

of short-term government debt that will be redeemed next year. (iii) The fire sale of long-term 

government debt. The model envisages three shock scenarios. In each scenario, foreign investors 

strategies are varying, thereby affecting demand for debt. Results are measured in terms of foreign 

outflows on the balance sheet of domestic banks. The IRI is meant to illustrate the likelihood of 

sudden outflows by different types of investor in the sovereign investor base. The index takes a value 

from 0 to 100 with a higher score suggesting that the country is prompt to face a sudden investor 

outflow. The index can be seen as complementary to the FSS. While the FSS aims to assess the 

vulnerability of a country in a hypothetical sudden investor outflow scenario, the IRI seeks to reflect 

the likelihood of such an event materializing. The index is mostly built on the basis of historical 

correlations between log-variations in investor holdings against log-variations in sovereign bond 

yields. Finally, the authors assign an aggregate risk score to each country. And accordingly, a country 

whose debt is fully held by its domestic central bank would have a score of 0, while another country 

whose debt is fully owned by foreign nonbanks would have 100. Finally, the FIPI aims to qualify the 

share of foreign investors compared to other investors, with respect to the outstanding debt 

portfolio of each country. The goal is to explore to which extent foreign investors may initiate a 

sharp rise in interest rates or may exacerbate market volatility through a huge sell-off of sovereign 

bonds if risk conditions deteriorate. This time again the procedure is based on simple data 

aggregation procedures as the authors mostly look at the dynamics of the portion of foreign 

investors, expressed as a share of the total debt outstanding. The quantitative framework is 

relatively basic and this helps make the results very comprehensible. Overall it is relatively clear that 

the data itself - based on investment flows - is already priceless information, as in essence it is a very 

difficult exercise to find neat and reliable information on these flows. In contrast to this approach, 

models in the second category are extensively based on market valuations (Duffie, Pedersen, and 

Singleton (2003), Pan and Singleton (2008), Bodie, Gray and Merton (2007), Gapen, Gray et al (2008), 

Doshi et al. (2011), Brutti, Sauré (2012), Erce (2015)). This is mainly because asset prices reflect the 

switch in market sentiment that is usually attributable to the emergence of contagion. Beyond a 

certain point in particular, a confidence crisis coming up would lead to a disproportionate sell-off, 

through fire sales. The resulting price action, in turn, usually proves very much de-synchronised with 

underlying fundamentals that would call for a more contained market reaction (Jones et al. (1984), 
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Eom et al. (2004)). This is a sound reason to prefer market-based information to more fundamental 

indicators in this context of contagion exploration. Aside from this difference, analyses in the second 

category of models usually rely on relatively more sophisticated frameworks. The notion of 

multivariate dependence in particular is a key component when apprehending the joint price 

depreciation arising from contagion. And since contagion occurs on extreme occasions, a proper 

review of this phenomenon is virtually not possible by empirical means. As we already mentioned, 

contagion is usually seen as causing a non-linear acceleration of the joint price depreciation (Zhang 

et al. (2009)). And because the dataset is supposed to encompass periods of palpable contagion (the 

algorithm is supposed to ‘learn’ from these episodes), contagion is usually regarded as being 

responsible for the fat tails in the data. A common challenge is therefore to capture multivariate 

dependence within the tails, with the ‘fat’ aspect making things slightly more complex as it tends to 

disqualify a lot of common probabilistic approaches (Harvey, Luati (2014), Harvey (2013), Janus, 

Koopman, Lucas (2014), Zhang, Creal, Koopman, Lucas (2012a)). The erratic aspect of the volatility is 

another meaningful concern when seizing the cost of mounting contagion. In this case though, 

volatility models applied to time series exploration like GARCH (Harvey, Luati (2014), Harvey (2013)) 

and its variations could provide much satisfactory results. This is all the more interesting as there is 

notable autocorrelation within the volatility (Creal, Koopman, Lucas (2009), Zhang, Schwaab, Lucas 

(2012)). This feature is worth to focus on as it helps understand the persistence of momentums in 

the volatility. Periods of very low volatility for instance, usually prove somewhat resilient to shocks as 

they show only a gradual deterioration when risk aversion is hitting the market. And in contrast, very 

volatile periods will remain turbulent for a while, even after we observe a stabilisation of the 

newsflow - thereby illustrating the persistence of momentums in the volatility and presumably some 

autocorrelation. In these papers, we also note a recurrent usage of copulas (Bernardi, Catania 

(2015), Fei Fei, Fuertesy, Kalotychou (2013), Dalla Valle, De Giuli et al. (2014), Armstrong, Galli 

(2002), Totouom Tangho, Armstrong (2007a), and Totouom Tangho, Armstrong (2007b)). These are 

versatile multivariate statistical models that offer great flexibility, especially in the context of 

estimating non-linear multivariate correlations and fat tails (Embrechts et al. (2001)). The higher 

frequency of market prices (compared to more fundamentals variables like macroeconomic 

indicators) is also rather convenient for the implementation of more sophisticated statistical 

frameworks. Arellano (2008) and Yue (2010) for instance consider dynamic stochastic equilibrium 

models, while Longstaff et al. (2011) is based on a principal component analysis. In the same vein, 

Hilscher and Nosbusch (2010) promotes a panel-based approach. From a probabilistic point of view, 

many analysis also promote Generalized Hyperbolic distributions as a relevant choice to address 

heavy tails in the data (like Zhang, Schwaab, Lucas (2012), Creal, Koopman, Lucas (2011), Creal, 

Koopman, Lucas (2013), Creal, Koopman, Lucas, Zamojski (2016)). These distributions can also be 

combined with Markov switching regime techniques like in (Fei Fei, Fuertesy, Kalotychou (2013), 

Eyigungor (2006)). Vector Autoregressive Models (VAR) also tend to provide sensible results when 

applied to sovereign risk exploration (Brutti, Sauré (2012)). In these papers, the prudential aspect 

moves to the level of portfolio managers: the quantification of the expected losses when contagion 

arises is supposed to improve risk diversification in portfolios during periods of risk aversion. Finally, 

we note that a decent part of the literature also tends to make a bridge between these two main 

approaches. Diebold and Yilmaz (2014) in particular design an interesting dependence estimator that 

helps differentiate ‘fundamentals-based’ periods from other periods marked by ‘pure contagion’. 

Other papers have implemented different variations to this framework like Awartania et al. (2013), 
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Lee and Chang (2013), Chau and Deesomsak (2014) and Cronin (2014), Narayan et al. (2014), Duncan 

and Kabundi (2013).   

 

In this report, we explore sovereign risk from the perspective of risk management. In the first 

chapter, we consider European sovereign CDS spreads from January 2008 to December 2016 as the 

only input of the model, and we implement a somewhat sophisticated multivariate statistical 

framework, inspired by the foundational works of Creal, Koopman, Lucas (2009), Zhang, Schwaab, 

Lucas (2012). Essentially, we combine the use of heavy-tailed probability distributions with the 

implementation a versatile volatility model, the Generalised Autoregressive Score model (GAS), 

derived from the GARCH theory (Zhang, Creal, Koopman, Lucas (2012a), Zhang, Creal, Koopman, 

Lucas (2012b), Creal, Koopman, Lucas (2011), Creal, Koopman, Lucas (2013), Creal, Koopman, Lucas, 

Zamojski (2016)). Overall this proves a successful combination as to address the sharp variations in 

market sentiment, and the resulting modifications to the market structure that occurred during the 

period we explore. Episodes of large risk aversion in particular, are marked by an erratic price action 

and abnormally large volatilities. This overall tends to make the calibration of probabilistic models 

fairly complicated. While our model is inspired to a large extent by the available literature, we also 

implement noticeable variations to existing models. In the end, our multivariate framework 

highlights ‘hidden’ market dependencies between CDS spreads, especially these supposed to 

materialise when contagion is looming. Based on the aforementioned categorisation of models, and 

because we seek to quantify ‘the cost of contagion’ in a portfolio of sovereign CDS spreads, our 

approach belongs to the second category of sovereign risk models. Our conclusions are 

complementary to the available literature from many angles. First we offer a comprehensive 

understanding of the dynamics of contagion when risk aversion gradually increases. The high degree 

of granularity in the scenarios we explore enables us to establish an accurate profile of different 

regimes in the market reaction to shocks. Overall, the quantification of these different phases is 

insightful information from a risk management perspective, as it helps drawing guidelines on the 

expected volatility in the case of a sudden deterioration in market sentiment. Our results, from that 

perspective, also contribute to enlarge the existing literature on financial contagion. While our 

model delivers a temporal (and conditional) exploration of market prices in a first instance, we also 

explore another formulation which helps generalising the market reaction to shocks. Our generalised 

model makes sense from a statistical point of view and offers great ease-of-use for a high-frequency 

manipulation of the framework. A benefit of using the temporal model in contrast, is its embedded 

forecasting capability. We explore this feature (amongst others) in Chapter II.  
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Copula: the framework 
The model we explore in the first chapter is largely inspired from the theory of copulas introduced in 

Sklar (1959). Copula is a statistical framework that is supposed to unveil multivariate non-linear 

dependencies. This approach is based on the foundational work of Sklar (1959), where the author 

demonstrates the existence of copulas for every set of univariate marginals           attached to a 

sample of multivariate random variables          . Sklar’s theorem (eq. (1)) also qualifies the 

multivariate joint dynamics   as a function of the univariate marginals   : the formulation shows 

that copulas undertake a transformation of the initial data    into a new frame where it is more 

manageable to capture the multivariate dependencies (ie. where the calibration of the multivariate 

distribution  , and its cumulative version  , is feasible). Using the cumulative distributions    in this 

transformation (as indicated in eq. (1)), makes the conversion into the new frame very much 

convenient. This transformation is sometimes denominated as an anamorphosis (Amezcua, van 

Leeuwen (2014)).  

Sklar’s theorem. Let              be an n-dimensional distribution function with marginals 

       . Then there exists a copula              with uniform marginals such that  

                              (1) 

The common approach to copulas involves a two-step calibration of the model. First the algorithm 

estimates the univariate density of the variables (      for instance). Then the data is transformed 

into uniformly distributed variables         on       using the corresponding cumulative density 

function   . The second stage involves calibrating the multivariate distribution         , such that  

             
        

        
      , where   denotes the copula. An interesting feature of 

this multivariate distribution is the covariance matrix as it illustrates the multivariate dependencies. 

In our analysis, we explore a relatively similar framework, which also involves time-varying 

volatility parameters. This proves a tractable approach as to capture the dynamics of historical 

volatilities, though obviously at a certain cost of greater computational complexity.  

Graph 10. 3-dimensional dataset with different empirical distributions 

  

 
 

 

A meaningful benefit when working with copulas is that the dataset can be composed of time series 

with much dissimilar densities (ie. different standard deviations, kurtosis or skewness like in Graph 

10). This dissimilarity usually is a drag as common correlation measures prove unable to reflect 
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underlying non-linear linkages between each series. Copulas in contrast offer interesting insight on 

that front, and help overcome this limitation: assuming that the copula is properly calibrated, it 

becomes a powerful tool to assess the links that tie series altogether. While there are no theoretical 

boundaries on the dimension of the sample, a problem of higher dimension leads to a non-linear 

expansion of the calculation time – ultimately this could turn to be an obstacle to frequent 

recalibrations of the model.  

The various stages for copula calibration are listed below; the steps are detailed in the following 

paragraphs: 

1) Choice of the model for the marginal distribution 

2) Calibration of the univariate distributions 

3) Assess the quality of the calibrated marginals 

4) Standardization of the data into uniformly distributed variables 

5) The multivariate analysis. 

6) Assess the quality of the calibrated multidimensional distribution 

7) How to use the copula: an event oriented tool. 

As to improve clarity, let us consider a basket of three random variables      . Our aim is to 

understand the joint behaviour of these three series as time   goes by: 

  

      
      
 
  

 
  

 
  

        (         in this example) 

1) Choice of a distribution function for the marginals. The first step in copula estimation is to look at 

each time series separately, and to calibrate the corresponding univariate probability density 

functions (denoted   , with the cumulative version   ). In practice, one has to find the most 

appropriate analytic expression of the density for every time series, so that the selected distribution 

function offers a satisfactory calibration against the empirical observations. Classical densities like 

the Gaussian, t-Student, mixed Gaussians, exponentials... are usual candidates that may fit the data 

sufficiently well. However, one may have to fulfil specific needs like the presence of a large skewness 

or a peculiar shape at some places of the distribution. Observing the empirical distribution of the 

sample in this context can help make an appropriate choice, which sometimes necessitates more 

complex formulations than common distributions. In this paper we compare various candidates for 

the univariate probability function. Better results have been obtained with Generalized Hyperbolic 

t-Student functions that proved particularly efficient to capture fat tails in the dataset.  

2) Calibration of the univariate distributions. Once the potential candidates for the univariate 

probability distribution function have been chosen, the calibration of each distribution will deliver 

the set of optimal parameters (variance, skewness, average value...). But before that, another crucial 

choice must be done: do we assume fixed or time varying parameters? Both methods have their own 

benefits and limitations, that we explore below.  
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Graph 11. Fixed parameter univariate distributions   

  

 
 

The first scenario assumes fixed parameters. In this case the calibration is more straightforward; 

overall this is an easy way to estimate the dynamics of the data. And since the parameters are valid 

descriptors for the whole dataset, we are usually left with a limited number of unknowns to 

calibrate. That ensures lighter computational needs and therefore a faster calibration. Moreover, 

fixed parameters reduce the complexity of the algorithm, by the use of adequate approximations 

e.g. relative to the calculation of statistical moments. This may also allow us to use higher 

dimensional copulas. Less engaging, fixed parameters are much less flexible than a time-varying 

approach: the data must follow the assumed dynamics, with very limited room for any deviation 

from the expected shape. This can be seen also in the fact that the parameters within the 

distribution remain unchanged regardless of the period under consideration in the sample. In other 

words, the microstructure of the input has to be relatively stable regardless of time and 

independently of the sample size. This assumption may be a challenge, especially when exploring the 

price action in financial markets through the recent episodes of crises. This scenario implies 

considering every point in the sample as belonging to the same distribution (Graph 11). 

In comparison, allowing for time varying parameters offers greater flexibility. Adaptive parameters 

have proved an interesting way to capture the changing dynamics as time goes by. For instance 

periods with jumps in the volatility are more effectively captured when the variance parameter is 

time-varying. But the complexity of the calibration also rises meanwhile, as the dynamics of the 

volatility (in this case) needs to be modelled, for instance via a GARCH/ARCH or a VAR model. This 

usually adds a few unknowns to the problem, with the risk of making convergence more difficult to 

reach during the calibration. The overall benefit all the same is that a properly calibrated volatility 

model must be able to fit periods of very dissimilar volatility in the sample, hence the greater 

flexibility than before (Totouom Tangho, Armstrong (2007a), and Totouom Tangho, Armstrong 

(2007b).  
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Graph 12. Conditional distributions with time varying parameter  

  

 
 

Other kind of volatility models may also be chosen, like kernels, regime switching models, filtering 

techniques (Javaheri, Lautier, Galli (2003)), or probabilistic distributions (e.g. one can assume the 

distribution of the parameter in the sample). Under varying parameters, every point in the data is 

seen as belonging to its own and particular distribution, based on the respective value of each 

parameter, only valid at this specific place in the sample (Graph 12). While calibrating time-varying 

parameters, the calibration algorithm also looks at the global fit that the assumed marginal offers, 

and obviously tends to minimize the error. In this scenario, the higher computational burden may 

restrict the dimension of the copula as the calibration is much more demanding in terms of 

calculations compared to fixed parameter models. The probabilistic model we explore in this report 

belongs to this category of models as we assume a time-varying volatility. And because our 

volatility estimator involves an autogressive coefficient, the probability distribution function we 

obtain is actually conditional on the immediate realisation in the past. We thus denote is 

         .  

3) Assess the quality of the calibrated marginals. The calibration of the univariate marginals is 

supposed to deliver the optimal combination of parameters, ie. those that provide the best fit to the 

empirical observations. In practice, there is a significant risk for the calibrated parameters to be just 

a “local” optimum, instead of a “global” solution to the minimisation problem. In this case, there 

may be other combinations for these parameters that would deliver a smaller error. To avoid being 

stuck in such a local extremum we ran the calibration 20 times with different initial values, and this 

increased the chance of getting a global solution. Out of the resulting 20 combinations of optimal 

parameters, we then selected the distribution that offers the best fit. Our decision relies on three 

estimators of the goodness of fit: first we consider two statistical tests, the Anderson Darling 

criterion (ADC) and the Probability Integral Transform (PIT). Finally we take a look at the deviation 

between the calibrated variance and the rolling standard deviation of the data.  

PIT and ADC which are relatively similar tests. These estimators look at the values of the calibrated 

cumulative distribution function   (see eq. (1)) evaluated on the sample points (       ). If the 

calibrated distribution properly fits the data, the set composed of                        must 
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be uniformly distributed (eq.(2) and eq. (3)). The PIT and the ADC tend to observe and quantify the 

deviation from this assumption. In the case of conditional distributions, the PIT test is known as CPIT 

(Conditional Probability Integral Transform).  

Non conditional case – Univariate marginal:                
  
  

   

Conditional case – Univariate marginal:                                   
  
  

    

(2) 

(3) 

Graph 13. Understanding the PIT and CPIT histogram test 

  

 

 

The PIT or CPIT is a bar chart exhibiting the distribution of                       . As we 

mentioned above, the points – if properly calibrated - should be uniformly distributed. So any 

deviation in the bar chart from the expected uniform distribution (red dashed line in Graph 13) 

illustrates some error in the calibration of the univariate distribution. This is a powerful and refined 

assessment of the goodness of fit as the user can precisely identify the areas where the error is more 

substantial. In particular the PIT (or CPIT) are very convenient to understand whether the error tends 

to be concentrated more in the centre of the distribution or, in a worst case given the context of this 

analysis, in the tails of the distribution. An interesting point too is that the PIT/CPIT reveals if the 

error consists of an underestimate or an overestimate of the density in the concerned areas - Graph 

13 shows the related methodology. Singular errors could also be rapidly identified via this approach, 

like an asymmetric error that could be spread on just one side of the distribution. In this case the PIT 

could suggest that some skewness in the dataset has not been captured by the calibration (Graph 

13). In comparison, most of statistical tests supposed to measure the goodness of fit are usually not 

able to deliver such accurate information on the fit.  

In addition to this graphical assessment, we consider the Anderson-Darling criterion (ADC). This 

statistical test involves                        too, and the resulting p-value is a quantification of 

the deviation from the (expected) uniform distribution. The special benefit of using the ADC resides 

in the fact that the test gives a much bigger weight to the tail regions in comparison to the centre of 

the distribution. The higher sensitivity in the tails is a notable upside in the context of sovereign risk 

exploration given that contagion is essentially at work in the tails of the distribution. The equation 
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(4) displays the calculation of the ADC (Anderson and Darling (1952), Press et al. (1991), and Elliott 

(1998)): 

         
  

 
                          

 

   

 (4) 

where      is the sorted version of        , in ascending order. The hypothesis that the marginal is 

uniformly distributed must then be rejected if this resulting p-value is too high. So far, we considered 

a criterion of     as an acceptable threshold for rejection. This corresponds to a significance level of 

about    and thus looks reasonable (Table 34).  

Table 4. Significance level with respect to the p-value 

resulting from the Anderson-Darling test 

  

 

 

We also consider an additional test based on the variance of the resulting marginal. Intuitively, we 

consider the two-week rolling standard deviation as a benchmark for the expected volatility 

coefficient. We thus take the distance between both indicators as a measure of the volatility error. 

This proved helpful to establish how much the estimated marginal effectively captures the dynamics 

of the empirical volatility. Using these three observations of the goodness of fit, we can select the 

best marginal function out of the 20 calibrations. 

 

4) Standardization of the data into uniformly distributed variables.  

The success of copula is largely attributable to its capacity to seize non-linear multivariate 

dependencies. These dependencies are said to be ‘non linear’ because the procedure involves a non-

linear ‘change of frame’ of the original data into a new frame where it is assumed that it is more 

convenient to capture the multivariate dependencies. Usually, the transformation is made such that 

each time series is distributed according to the same distribution   in the new frame, as indicated in 

eq. (5). In this case   is the cumulative distribution function of the density  . In this analysis 

specifically, the whole transformation is just a standardisation of the dataset, as   is the standard 

(and centred) version of Generalised Hyperbolic t-Student distributions.  

              
(5) 

Table 5 summarizes the different steps of the calibration procedure, including the aforementioned 

‘change of frame’ (standardisation in our case). This step completes the univariate analysis. In what 

follows we consider the new dataset         that results from this transformation(see Table 5).  
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Table 5. Summary of the standardization process that transforms the original dataset into a standard frame 

  

 
 

5) The multivariate analysis. Since the data was standardized in the last step of the univariate 

analysis, the resulting series are distributed according to a standard distribution, which is known. 

This is helpful information obviously as the multivariate distribution that is supposed to describe the 

joint behaviour, is assumed to be of the same kind. We now seek to calibrate the multivariate 

distribution. The main purpose of the multivariate calibration is to provide an adequate estimation 

of the multivariate dependencies. And in particular a parameter that requires extensive care is the 

covariance matrix. Once again, the covariance matrix can be formulated either as a fixed or time-

varying parameter (Graph 14).  

Graph 14. Multivariate calibration with varying parameters – example based on a 2-dimensional copula 

  

 
 
 

Although our approach assumes a time-varying covariance matrix, we will meet both cases in the 

following analysis. For better clarity, Graph 14 summarizes the steps of the multivariate calibration 

under time-varying parameters for a bivariate copula. Since the data has been previously 

standardised, we can write that                       . So in this specific case, the 

covariance matrix is in fact a measure of multivariate correlations.  
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6) Assess the quality of the calibrated multivariate distribution. Like in step 3) we ran the 

calibration procedure 20 times to avoid selecting parameters that only refer to a local optimum. In 

order to identify the best combination, we consider the PIT and ADC again as relevant measures of 

the goodness of fit. Based on the same rules as in the univariate analysis, the two tests indicate 

which combination provides the best fit. In the end, a copula is entirely characterized by both 

univariate marginals and the corresponding multivariate distribution. 
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Generalized Hyperbolic distributions 
Our analysis relies to a great extent on Generalized Hyperbolic t-Student distributions. These are 

extensively investigated in Rachev (2003), Bibby, Sorensen (2003), Eberlein & Keller (1995), Bibby & 

Sorensen (1997), Hurst (1997), Eberlein, Keller & Prause (1998), Rydberg (1999), Kuchler et al. 

(1999), Jiang (2000), and Barndor-Nielsen & Shephard (2001). In this report we explore a multivariate 

model on 5-year European sovereign CDS spreads. At both univariate and multivariate levels, we 

assume that our variables are distributed according to Generalized Hyperbolic (GH) t-Student 

distributions. We explore their formulation in the next paragraphs. 

Generalized Hyperbolic (Skewed) t-Student  

Definition. Generalized Hyperbolic distributions were introduced in Barndorff-Nielsen (1977) as a 

novel means to illustrate empirical findings in geology. As the tail behaviour of the whole class of GH 

distributions spans a large range, from Gaussian tails via exponential tails to the power tails of the t-

distributions, these distributions became increasingly popular, especially in finance due to their 

ability to capture tail events. In our analysis, we will focus on t-Student GH distribution which is a 

subset of all GH distributions, regarded as an appropriate choice for credit risk exploration (see 

Zhang, Schwaab, Lucas (2012a), Zhang, Schwaab, Lucas (2012b), Creal, Koopman, Lucas (2009)).  

A multivariate vector   of   random variables  is said to follow a multivariate GH distribution if: 

               (6) 

Where:                   with          referring to the  -dimensional standard Gaussian.  

                             

                          

                  is a scalar-valued random variable which is independent of   and  , which admits a 

Generalized Inverse Gaussian distribution           . Based on Breymann, Luthi (2013), there are 

at least five other alternative definitions of the GH distributions. 

Parameters describing a GH distribution have the following statistical meaning: 

       determine the shape of the distribution. These parameters determine the weight 

assigned to the tails and to the central part. The larger these numbers the closer the 

distribution is to the normal distribution. 

   is the location (or mean) parameter. 

        is the dispersion matrix. 

   is the skewness parameter. If     then the distribution is symmetric around  .  

It is also worth noting that the conditional distribution of        is normal: 

                    with           

 

Descriptive statistics. The expected value and the variance are given by: 

              

                                                     (7) 
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Density. The GH density function is derived on the fact that the conditional distribution of   given   

is Gaussian with mean         and variance    : 

                          
 

 

   
      

     

    
 
    

 
  

 
 

     
    

  
 
      

 
 

        
 

 

 

  

  
 
 
 

 

          
 
 
  

     
 
    

 
         

 

 
  

 
 
                            

     

                     

 
 
  

 

Where    is the modified Bessel function of the third kind and      denotes the Mahalanobis 

distance. 

                     

 

Special cases of the GH distributions. The properties of GH distributions tend to vary depending on 

the value of each parameter. A few particular cases are worth to mention:  

 If   
   

 
 the probability function loses its generalized characteristics to become only 

“hyperbolic” distributions. That said, the univariate margins are still GH distributed. 

Conversely, when     we get a multivariate GH distribution with hyperbolic margins.  

 If    
 

 
 the distribution simplifies into a Normal Inverse Gaussian (NIG). 

     and     is a particular parametrization of the GH distributions, known as Variance 

Gamma (VG) distribution. 

 If     and     one obtains a Generalized Hyperbolic Student-t distribution, possibly 

skewed. Our copula model merely relies on this particular expression. Let us now take a look 

at the parameterization of this specific sub-category of distributions. 

Generalized Hyperbolic Student-t distributions. Based on the properties of the third order Bessel 

function, it can be shown that when     and     the density of a GH distribution is: 

      
           

 
 
  

     
 
    

 
            

 

 
  

 
 
                        

     

                   

 
 
  

 

When     we obtain the symmetric multivariate Student-t density: 

      
         

 
 
 

 
 
    

 
      

         
  

 
  

We then switch to the Student-t parameterization (CITA.) and set the degree of freedom       . 

Because      the transformation of   to   and   reduces to: 
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Plugging in the values for   and  , one finally obtains the formulation of the skewed version of 

Generalized Hyperbolic Student-t distributions (that we shorten as ‘GHST’):  

      
     

 
         

   
 

     
 
    

 
   

 
 
   

 
 
  
 

    
 
                          

     

                     

   
 

 (8) 

And for the symmetric case, which does not allow for the skewness        we obtain: 

      
     

 
    

   
 

 

 
 
    

 
   

 
 
           

   
 

 (9) 

In this case we denote it ‘GHT’. 

It is worth to note that the variance of GHT and GHST distributions exists only if the degrees of 

freedom parameter is higher than 4. In what follows we set    . 

 

Both distributions in eq. (8) and eq. (9) are those we explored in depth in this dissertation. We 

describe in particular the calibration of the required parameters, and we observe the benefits of 

using such distributions in the context of sovereign risk exploration.  
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Chapter I.  

Joint dependencies within 

European sovereign CDS spreads 

 

Résumé du Chapitre I 
 

Le Chapitre I est dédié à la compréhension de la dynamique générale des obligations souveraines 

Européennes. Notre approche implique un échantillon incorporant à la fois des épisodes de crises et 

donc d’aversion au risque intense, ainsi que de périodes marquées par un fort appétit pour le risque.  

Nous considérons un modèle probabiliste impliquant des distributions à queues lourdes comme les 

distributions généralisées hyperboliques, de type t-Student. Afin de capturer la dynamique 

temporelle de la volatilité, notre modèle se base sur la méthode du score généralisé autorégressif 

(GAS) introduit par Creal, Koopman, Lucas (2011). Cette approche découle de la théorie des modèles 

GARCH et implique un terme d’ajustement supplémentaire qui rend le modèle particulièrement 

flexible.  

L’ajustement obtenu avec les distributions Hyperboliques Généralisées est robuste, et les résultats 

laissent penser que notre approche est particulièrement efficace durant les périodes marquées par 

une volatilité erratique. Dans un but de simplification, nous décrivons la mise en place d’un 

estimateur de volatilité intemporel, sensé refléter la volatilité intrinsèque de chaque obligation. Cet 

estimateur suggère que la volatilité croît de manière quadratique lorsque celle-ci est exprimée en 

fonction de la fonction de répartition des variations de rendements. Dans un second temps nous 

explorons une version bivariée du modèle. La calibration, robuste, met en valeur les corrélations 

entre chaque obligation. En guise d’observation générale, notre analyse confirme que les 

distributions à queues épaisses sont tout à fait appropriées pour l’exploration des prix de marché en 

période de crise financière.    
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Introduction 

Risk aversion, by nature, translates into both a depreciation of risky assets and a richening of  

these securities, perceived as safer. However, empirical observations indicate that this general 

behaviour does not hold when financial distress exceeds a certain degree of intensity: in this case, 

the flight to safety is so high that it tends to alters investors’ perception quite significantly. This 

usually leads to a disproportionate loss of confidence, which translates into a generalised liquidation 

of long positions in portfolios, including on assets that look logically disconnected from shocks that 

gave rise to the crisis. Herd behaviour amongst investors is also extremely fierce under such 

circumstances, and this reinforces the global nature of the liquidation, thus favouring a general 

squeeze of the market liquidity. In the end, the global dimension of the observed price deterioration 

indicates that correlations during the sell-off are remarkably stronger than in more normal market 

conditions. The natural resilience of safe-haven securities in particular, is usually questioned during 

these periods, as financial contagion, beyond a certain level, tends to propagate into all marketable 

asset classes.  

In this chapter, we describe the calibration of a multivariate statistical framework dedicated to the 

exploration of financial contagion during the European sovereign crisis. The model involves 

Generalised Hyperbolic distributions, on the basis that these distributions are able to capture fat tails 

in the data. Plus we consider an adjusted version of the Generalised Autoregressive Score (GAS) 

method to model the dynamics of the volatility. Our goodness-of-fit estimator puts a special 

emphasis on the tail regions of the distribution; this helps ensure that the specific behaviour of 

financial securities under heavy contagion is properly addressed in our methodology.  

While the GAS method proves sufficiently flexible to capture the sharp variations in the volatility 

throughout the period, the resulting coefficient is conditional on immediate realisations in the past. 

This makes a high-frequency manipulation of the model relatively cumbersome; so we design a non-

temporal volatility estimator that simplifies the calculations. The resulting non-conditional 

distributions make sense from a statistical point of view, and we show that intrinsic volatilities 

accelerate in a parabolic fashion when risk aversion intensifies.  

Finally, we explore the market response to financial shocks. The high degree of granularity helps us 

identify a threshold – common to all sovereigns - beyond which the price reaction is sharply non-

linear. This illustrates the confidence crisis taking over, and the price deterioration one can expect in 

such a configuration. 
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Univariate analysis: calibration of the marginals 

Our dataset is made of daily price variations of 5-year European sovereign CDS spreads for the period 

from 1 January 2008 to 31 December 2016 (2230 points, Graph 15). This includes Germany, Finland, 

the Netherlands, Austria, France, Belgium, Italy, Spain, Ireland, Portugal and the UK. Because of no 

CDS prices around the default in 2012, as well as between March and May 2013, Greece is not 

involved in the first part of the analysis. The very low liquidity on Greek CDS during the period also 

makes the data very challenging to exploit; another reason to exclude Greece in this first chapter. 

That said, Greece is a very interesting candidate for sovereign risk exploration, so we introduce it in 

the second chapter, where we consider asset swaps spreads (instead of CDS spreads). 

Graph 15. Our dataset of 5Y sovereign European CDS spreads 

 

 
 

Empirical analysis of the data 

Table 6 shows the descriptive statistics of the sample. The standard deviation first, consistently 

increases as the credit quality deteriorates, ie. from Germany to Portugal, with the UK very 

comparable to core countries. The sample mean is also very small (less than 1% of standard dev), 

and it looks reasonable to assume that our series are centred on zero.  

The third and fourth order moments, in Table 6, show that the excess kurtosis is larger for non-core 

countries. This suggests that the tails of the distribution are bigger for these more volatile countries. 

The skewness parameter highlights just very little asymmetry in general, slightly positive for most 

of the countries. If anything, this points to a slightly higher concentration of points on the lower part 

of the distribution, ie. for         

Table 6. Descriptive Statistics of the data (CDS daily changes from Jan-2008 to Dec-2016) 
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As to observe these dissimilarities in terms of skewness and kurtosis, we plot a standardised version 

of the empirical densities in Graph 16 and Graph 17. Graph 16 shows that effectively core CDS are 

very similar in terms of probability distribution functions. Then in Graph 17, the larger kurtosis in 

soft-and non-core countries translates into a larger density at the centre of the distribution, and in 

the tails as well. We also compute a series of Kolmogorov tests, supposed to reflect the degree of 

similarity between empirical distributions and the more common distribution functions: Uniform, 

Normal, Poisson, t-Student, Exponential, Gamma, Beta, Cauchy, Chi-2, Weibull, Lognormale, and 

Logistic laws. As Table 7 shows, we got significant p-values for t-Student and Cauchy distributions 

only.  

Table 7. p-values of the Kolmogorov tests relative to common distributions 

  

 

 

As a means to gauge stationarity, we compute the acf and pacf for each country. We see a fast 

convergence towards zero in the bars, which is a sign that the data is stationary. Bars are all below 

0.15, except at the lag 1, for which we get a peak at 0.2 in Graph 18 and Graph 19.  This suggests 

that there is potentially a first order autocorrelation (    ), overall illustrating the persistence of 

momentums in the volatility. The augmented Dickey-Fuller (DF) test also confirms the rejection of 

the unit-root hypothesis, and so for every country (Table 8).  

Table 8. Augmented Dickey-Fuller statistics are largely negative, confirming no unit root 

  

 

 

Germany Netherlands Austria France Belgium Italy Spain Portugal Ireland

Student 0.27 0.03 3.65 0.01 0.11 0.60 0.58 0.13 0.04

Cauchy 0.17 0.33 0.66 0.31 0.13 0.08 0.06 0.47 0.50

Germany Netherlands Austria France Belgium Italy Spain Portugal Ireland UK

DF Statistics -7.17 -7.87 -7.18 -7.71 -6.46 -7.51 -7.85 -6.06 -6.06 -6.22

Graph 16. Similar kurtosis within the core countries.   Graph 17. Soft core and non core data 
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Graph 18. Autocorrelogram (acf) of Germany   Graph 19. Partial autocorrelogram (pacf) of Germany  

     

 

 

 

   

To get a basic understanding of the multivariate interdependencies, we also calculate the sample 

correlation matrix (Pearson Product-moment) defined as: 

                                          (10) 

Where   is the sample mean.  

Table 9. Empirical correlation      
  

 
 

Table 24 shows the resulting coefficient. A first observation is that the correlation is more important 

for core and soft-core than peripherals countries and the UK. Portugal in particular exhibits just 0.51 

correlation with other countries, on average, while this amounts to 0.65 and 0.67 for Germany and 

France in comparison.  

As we argue in the literature review, the empirical correlation coefficient      experience some 

limitations. First, the correlation coefficient      is constrained if the data does not have a normal 

distribution (see Hsu (2012)). This is a recurring caveat when working with financial returns given the 

presence of fat tails that make the data non-Gaussian (Ang and Chen (2002); Boyer et al. (1999); 

Kolari et al. (2008)). In this case,      tends to undermine the actual level of correlation. Drawing 

correlation estimators out of Generalized Hyperbolic distributions is a possible means to address this 

limitation; something that we explore in great details in this report.  

Another drawback of the sample correlation is relative to the volatility: the coefficient is no longer 

reliable when the volatility undertakes tough regime changes; and in particular when the variance 
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approaches infinity (McNeil, Frey, Embrechts (2005)). This can prove a serious burden as hedging 

these periods of very high volatility is critical for portfolio managers.  

Rank correlations can prove an interesting alternative to the Pearson coefficient. These coefficients 

involve the order (or the “rank”) of the points, as obtained once the sample is sorted (McNeil, Frey, 

Embrechts (2005)). Rank correlation also has the property of invariance under monotonic 

transformations as any transformation of that kind (including an anamorphosis) keep the rank of the 

points unchanged. Kendal Tau      and Spearman Rho      are the most common indicators of rank 

correlations.  

Kendall Tau, is a correlation estimator which measures the degree of concordance between two 

random variables    and    . Two pairs of observations in   , denoted by    
    

 
  and     

     
 
 , are 

said to be concordant if    
    

      
 
    

 
   , and to be disconcordant if    

    
      

 
    

 
   . 

In the end we just compare the observed probability of concordance to the probability of 

discordance: 

  
   
   

    
 
       

     
     

 
    

 
          

     
     

 
    

 
        (11) 

 

This can also be expressed as an expectation: 

  
   
   

    
 
            

     
     

 
    

 
       (12) 

Spearman Rho is another useful estimator, based on rank correlation as well. This estimator 

involves the rank of the data, as provided by its cumulative distribution function: 

     
      

   (13) 

Then the Spearman Rho is defined as the empirical correlation of the Ranks: 

  
   
   

    
 
            

        
 
           

       
 
      (14) 

Both measures have many properties in common (Schmidt (2006)): obviously they take values in the 

range       ; both are equal to zero for independent variables. They return a value of   for the 

comonotonic case and    for the countermonotonic case.  

We calculated Kendall’s Tau and Spearman’s Rho (eq. (11) and eq. (14)) on the sample; Table 10 

and Table 11 show the results, with larger correlation in red, smaller in green and mild correlation in 

yellow. Both estimators return quite different values in absolute terms, with a significantly higher 

Spearman’s Rho overall. Arguably, authors like in (Xu et al. (2010)) acknowledge that the three 

estimators            are not equivalent in absolute terms. In particular they demonstrate that the 

following inequalities hold when the sample size becomes large (both are verified here):  
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Table 10. Kendall’s Tau resulting from GHT distributions  Table 11. Spearman’s Rho as another estimate of 

dependencies 

     

 

 

 

   

Essentially, both Kendall Tau and Spearman Rho highlight greater correlations for pairs of peripheral 

countries. “Spain and Italy” in particular exhibits the largest Kendall Tau and Spearman Rho 

estimators, slightly above pairs involving Portugal with Italy or Spain. The Spearman Rho is also quite 

large for pairs of soft-core countries, but this is less pronounced for the Kendall Tau (Table 10). We 

also note that pairs involving countries of a more or less similar credit quality exhibit the largest 

correlations, something consistent with our observations of the market dynamics. The pair “France 

and Germany” also displays a large correlation in terms of Spearman Rho. This looks like an outlier as 

neighbouring pairs in Table 11 are less correlated.  

Non-linear correlations are also much smaller for pairs that exhibit very disparate credit quality on 

each component. Non-core countries for instance are less correlated to core countries than they are 

with soft-core. This probably illustrates a reduced risk of contagion into core countries.  

Liquidity may also be a potential driver of correlations. Finnish CDS for instance experience much 

tighter liquidity than Germany or the Netherlands. As Table 10 and Table 11 show, pairs involving 

Finnish CDS and another core country, show fewer correlations than other pairs involving core 

economies.  

 The empirical exploration of the data already reveals the presence of sizeable linear and non-

linear correlations in the sample.  

 

The GAS framework  

Assumptions of the univariate model 

We consider the Generalized Autoregressive Score (GAS) method as a means to model the course of 

the volatility. This is a recent and innovative volatility model, that was introduced in (Zhang, Creal, 

Koopman, Lucas (2012a), Zhang, Creal, Koopman, Lucas (2012b), Creal, Koopman, Lucas (2013), 

Creal, Koopman, Lucas (2011), Creal, Koopman, Lucas, Zamojski (2016)). We explore the 

implementation of the GAS model in the following paragraphs, and the respective adjustments that 

we have made to fit the context of our analysis.  

  

GE FI NL AT FR BE IT SP IR PT UK

GE 0.27 0.38 0.30 0.40 0.40 0.19 0.23 0.26 0.21 0.33

FI 0.27 0.29 0.28 0.28 0.32 0.29 0.24 0.30 0.17 0.23

NL 0.38 0.29 0.39 0.42 0.40 0.32 0.33 0.42 0.27 0.30

AT 0.30 0.28 0.39 0.37 0.50 0.37 0.37 0.37 0.30 0.26

FR 0.40 0.28 0.42 0.37 0.50 0.39 0.39 0.42 0.30 0.31

BE 0.40 0.32 0.40 0.50 0.50 0.36 0.35 0.40 0.25 0.30

IT 0.19 0.29 0.32 0.37 0.39 0.36 0.75 0.52 0.63 0.27

SP 0.23 0.24 0.33 0.37 0.39 0.35 0.75 0.50 0.63 0.25

IR 0.26 0.30 0.42 0.37 0.42 0.40 0.52 0.50 0.47 0.24

PT 0.21 0.17 0.27 0.30 0.30 0.25 0.63 0.63 0.47 0.25

UK 0.33 0.23 0.30 0.26 0.31 0.30 0.27 0.25 0.24 0.25

COUNTRY 1

C
O

U
N

T
R

Y
 2

 𝜏
𝑖, 

 
GE FI NL AT FR BE IT SP IR PT UK

GE 0.69 0.71 0.73 0.81 0.71 0.64 0.62 0.56 0.51 0.67

FI 0.69 0.65 0.7 0.68 0.66 0.63 0.62 0.58 0.53 0.65

NL 0.71 0.65 0.71 0.71 0.69 0.62 0.59 0.56 0.51 0.6

AT 0.73 0.7 0.71 0.77 0.79 0.7 0.68 0.62 0.57 0.66

FR 0.81 0.68 0.71 0.77 0.79 0.7 0.68 0.63 0.59 0.64

BE 0.71 0.66 0.69 0.79 0.79 0.72 0.73 0.64 0.59 0.64

IT 0.64 0.63 0.62 0.7 0.7 0.72 0.89 0.7 0.72 0.58

SP 0.62 0.62 0.59 0.68 0.68 0.73 0.89 0.7 0.74 0.57

IR 0.56 0.58 0.56 0.62 0.63 0.64 0.7 0.7 0.69 0.51

PT 0.51 0.53 0.51 0.57 0.59 0.59 0.72 0.74 0.69 0.47

UK 0.67 0.65 0.6 0.66 0.64 0.64 0.58 0.57 0.51 0.47

C
O

U
N

T
R

Y
 2

COUNTRY 1
 𝑆
𝑖, 
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The Generalized Autoregressive Score dynamics for time varying volatility 

The GAS method is based on the computation of a score   , which is a transformation of the volatility 

𝜎 . Like in Creal, Koopman, Lucas (2012), we first explore the effectiveness of two different 

formulations for   : 

        𝜎 
    and     𝜎 

   

The relationship that relates the score    to the volatility 𝜎  is then defined as: 

 
                       
      𝑆                            

           with            
      

                  

      
     

 

     

                      
  

  
(17) 

Where:        are constant parameters that we need to estimate, and            is the probability 

density function of the dataset, conditional on   . Finally, 𝑆    is the Fisher information matrix (FIM).  

Since the calculation of the volatility at time   involves values obtained at time    , (ie. 𝜎    and 

              ), the estimation of the volatility is path-dependent. This is the reason for the 

conditionality embedded in  .  

Calibrating the GAS model requires the estimation of three unknown parameters:       . The 

calculation also involves the Fisher Information matrix, which can be regarded as an “average” 

illustration of the available information in the market. This coefficient proves useful when it comes 

to characterising long term trends, but the “average” aspect may also make the FIM rather 

insensitive to abrupt changes in market sentiment. And this could lead to an underestimate of the 

volatility in the tails when financial stress tends to sharply accelerate. As this coefficient could prove 

an obstacle in the context of our analysis, we prefer removing it. This is in line with Creal, Koopman, 

Lucas (2012) who argues that the 𝑆     is an acceptable assumption.  

As a result, we use an adjusted formulation of the GAS model: 

 
                     

      𝑆                                
           with            

      
                  

      
     

 

     

       

  
(18) 

Based on eq. (18), the volatility estimator is designed as: 

- A constant intercept  . 

- A coefficient   , which indicates to what extent the derivatives of the marginal distribution with 

respect to the score     , evaluated at time    , is involved. 

- An autoregressive coefficient   attached to the score     .   is fully dedicated to quantifying 

persistence in the volatility.   

 The GAS volatility estimator relies upon three unknowns: 𝜽         .  

Since the value of    depends on the realisation at    , 𝜎 is conditional on     . This means that 

the probability distribution function   that involves 𝜎  will hold this conditionality. As a result, we 

denote it             . We also use the Levenberg-Marquardt optimisation procedure to achieve 

the maximisation of the likelihood function. This eventually delivers the calibrated values of       . 

The optimisation algorithm is beyond the scope of this report; for those looking for deeper insight, 

please refer to a detailed description here8. 

                                                           
8
 http://users.ics.forth.gr/~lourakis/levmar/  

http://users.ics.forth.gr/~lourakis/levmar/
http://users.ics.forth.gr/~lourakis/levmar/
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Estimating the conditional Marginals 

In this section we describe the calibration of the univariate marginals with different assumptions on 

 . We then highlight the formulation that looks the most appropriate, and we take a look at the 

calibrated parameters. These are the different steps of the procedure: 

1) First we choose/assume an analytic expression for            𝜽 . This goes from the basic 

Gaussian up to more sophisticated Generalised Hyperbolic t-Student skewed distributions. In 

the end we show that Generalised Hyperbolic distributions outperform other 

formulations. The presence of heavy tails in particularly makes this class of distributions 

especially adequate to describe the price action of CDS spreads.  

2) We focus on the score    and we show that the calibration procedure is more effective when 

we consider         𝜎 
   rather than    𝜎 

 .  We retain           
   as the best 

formulation. 

3) We apply the GAS formula and we build the corresponding log likelihood equation   as: 

                    (19) 

        with     
              

    
   

 

   
  

                

    
   

 

   
 

From which we derive the log-likelihood function:   

                    

 

                  

 

  

with the convention that                     

4) Calibration step. We maximize the likelihood equation, using the Levenberg-Marquardt 

algorithm. As a result we obtain the optimal value of the three parameters        plus 

additional variables when required (like the skewness  ). This step delivers an estimate of 

the conditional marginal             . As we already mentioned, we run the procedure 20 

times to avoid being stuck in a local extremum.  

5) Ascertain the relevance of the estimators. Then we need to select the best estimator, out of 

the 20 calibrations. We consider the Anderson-Darling criterion, and the RMSE of the GAS 

volatility against the empirical two-week rolling standard deviation as measures of the 

goodness of fit. We also look at the Conditional Probability Integral Transform (CPIT) as a 

graphical illustration of the error, that helps identify how the error positions itself on the 

distribution. We highlighted the approach in the section dedicated to the Copula framework, 

and emphasized that the best estimator is chosen as the one which provides the smallest 

ADC and volatility error. This completes the univariate analysis.  

While we will later decide which distribution looks the best candidate to explore the dynamics of our 

dataset, we first have to decide which formulation of the score is the most relevant: 

        𝜎 
   or    𝜎 

  ? 
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What is the best expression for    ? 

We investigate the appropriateness of each formulation of the score synthetic data. Our tests are 

very similar to the approach of Lucas, Schwaab and Zhang (2012) that explores different variations of 

the GAS method. The authors in particular focus on these two formulations:         𝜎 
   and 

   𝜎 
 .  

Our synthetic data was generated as a series    of 2500 points following a standardised normal 

distribution (mean     ; sample standard deviation at  ). This is a summary of the procedure: 

- Data: synthetic sample with           . 

- We assume that the marginal   is a Gaussian distribution. We set     (mean) and we keep 

the standard deviation 𝜎  as a time varying unknown that needs to be estimated. The 

purpose of this simulation is to gauge to what extent the GAS algorithm is able to calibrate 

the volatility parameter 𝜎  around the targeted value of  . 

- We define the score: First case          𝜎 
  . 

- We calculate the score functions based on Creal, Koopman and Lucas (2012): 

    
  
 

        
 
 
 
 

 
 

             
 
  
     

           
  
 

       
        

𝜎   
             

  
 

𝜎 
     𝜎 

   

- We derive the corresponding log-likelihood equation:  

                     
 

 
        

 

 
    𝜎 

   
 

 

  
 

𝜎 
  

After running the calibration procedure, we obtain a fairly constant volatility as time goes by,  

centred on  .  This is coherent, and confirms the ability of the model           
   to approach 

the real value of   . 

Then we applied the same procedure to the second formulation     𝜎 
 . This time we get the 

following formulas (as in Creal, Koopman and Lucas (2012)):  

    
  
 

   
 
  

 

  
 

 

             
 
  
      

  

             
          

The log-likelihood function remains unchanged. After the calibration, it appears that the estimated 

volatility is significantly larger than in the first case, with an average volatility at around 1.75, which is 

far from the true value.  Results are much less compelling this time, which suggest that     𝜎 
  

is not appropriate. In what follows we will thus exclusively focus on         𝜎 
  . 

We applied the GAS framework to our dataset of CDS price variations. We ran the calibration for 

several distribution functions: Gaussian, Student-t, GHT and GHST.  
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Technical aspects of the optimisation procedure. 𝜎  is initialised on its empirical value 𝜎   (ie. the 2-

week rolling standard deviation). We then run the calibration 20 times for each distribution, with 

varying initial values for        . Then we calculate the corresponding ADC, VOL error and we plot 

the CPIT. Based on this information we select the best set of parameters. 

Empirical tests help us narrow the range of initial values for each coefficient. In the end we decide to 

take random values between             for  ,            for  ,           for  , and          for 

the skewness   (when applicable). For coherence we use identical initial values for each 

distribution.  

Inference and Results.  

Here we compare the results obtained for each probability distribution function. For clarity, we only 

consider German CDS spreads – in fact most of the conclusions can be generalised to other 

countries. We conduct a more general review in the subsequent section.  

First case: normal Gaussian marginals. First we consider the normal distribution. We get the 

following formulation: 

 

 

 

 

 

 

 

 

The final ADC is rather disappointing at 2.8. Graph 20 shows that the error hit both, the centre and 

the tail regions of the distribution. In the same vein, the VOL error is huge at 0.8bp/day. In particular, 

Graph 21 shows that periods of very low volatility, ie. after Jan 2013, are not properly captured.  

 Gaussian distributions are not able to capture the actual behaviour in the tails, we reject them. 

 

 

Graph 20. CPIT with Gaussian marginals – ADC = 2.8  Graph 21. Poor volatility estimate with Gaussian 

marginals 
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Log-likelihood:  

Results: 

ADC:               3.8 

VOL error:    0.307 
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Second case: the t-Student distribution 

Next we explore Student-t marginals. We follow the methodology of Creal, Koopman and Lucas 

(2012) (  is the degrees of freedom, we set    ):  

 

 

 

 

 

 

 

 

 

 

 

 

 

Results are even weaker than before. The ADC criterion is unacceptably poor at 8.4. Graph 22 also 

shows a very weak CPIT too, with nothing below 0.2 and above 0.75 in terms of percentile. Looking 

at the volatility, Graph 23 shows that the estimate of the variance is very much diverging from the 

actual value (5bp/day on average in 2012 vs. a benchmark at 1.5bp/day).  The Student-t law is 

definitely not an adequate distribution.  

 

Third case: the Generalized Hyperbolic t-Student distribution(GHT)  

We carried out the same calculation with GHT marginals: 

Pdf:             
     

      

     
   

 
 

  
 

 
      

  

  
  
   
 

   with              

    
      

       
  
  

 

 
 

       

        
  

  
  
  and we used: 𝑆    

Graph 22. CPIT with Student-t marginals – ADC = 8.4  Graph 23. Volatility is poorly estimated with Student-t 

marginals 
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Results: 

ADC:               8.4 

VOL error:    6.06 

Results: 

ADC:               1.51 

VOL error:    0.11 
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Graph 24. CPIT with GHT distribution – ADC = 1. 51  Graph 25. Better estimate with GHT distributions 

     

 

 

 
   

Results are much better than before. The ADC criterion shows a robust 1.51, which is much more 

satisfactory than what we had before. Graph 24 also shows a very good CPIT, where both the tails 

and the belly look fairly well calibrated, while the estimated volatility in Graph 25 is really close to 

the empirical value. That said, we note that the model tends to moderately overestimate the 

volatility during periods of very low volatility. We conclude that GHT distribution functions offer a 

very good fit to the empirical data.  GHT distributions are good candidates to model the 

univariate conditional distribution  .  

Fourth case: the Generalized Hyperbolic Skewed Student-t distribution (GHST): 

We consider the same distribution as just before, but with the addition of a skewness coefficient   - 

which is supposed to reflect a possible asymmetry in the data. We got the following equations: 

           

     
 
   

  

𝜎 
  

   
 

    
 
  𝜎    

 
 
   

 
 
  

    
 
       

      

𝜎 
   

  

𝜎 
   

      
      

𝜎 
   

  

𝜎 
  

   
 

 
      

  
  

     
      

     𝜎  
           

 𝜎 

     𝜎  
 

With :  

  

      

 

       
      

𝜎 
   

  

𝜎 
    

        
      

𝜎 
   

  

𝜎 
   

   

𝜎 
              

  

𝜎 
 

       
      

𝜎 
   

  

𝜎 
  

 

    

 

       
      

𝜎 
   

  

𝜎 
   

 

  
      

 𝜎 
              

 
  

  
       

  
       

  
  

       
      

  
   

  

  
   

     

 
           

       

  
 

     

Where     

 

   is the modified Bessel function of the second kind. So 

     
 
  

      
 is the first derivative 

of the Bessel function of the second kind.  
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Results: 

ADC:               1.27 

VOL error:    0.11 
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Graph 26. CPIT with GHST distribution – ADC = 1.27  Graph 27. Better estimate with GHST distributions 

     

 

 

 

   

 

GHST distributions give results similar to the GHT. The ADC criterion is a bit smaller than with the 

GHT distribution and delivers an excellent score of 1.27. The CPIT in Graph 26 shows that the error 

mostly lies in the left tail (this is specific to Germany), and remains quite small. The VOL error is in 

line with GHT distributions (at 0.11, Graph 27).  Both GHT and GHST distributions are interesting 

ways to define the probability distribution function   of CDS returns.  

Table 12 shows the evolution of the VOL and ADC errors for each try. Here again, GHT and GHST 
distributions clearly outperform other distribution. For these two distributions, ADC are much 
satisfactory in almost all cases.  The optimisation algorithm is robust. 

Table 12. Volatility error and ADC for each type of distribution 

  

 
 

Final parameters 

We now look at the resulting coefficients for        . Table 13 shows the coefficients of the 5 best 

calibrations, and the average value calculated out of the 20 calibrations. The autoregressive 

component   in particular is around 0.9 on average (for GH distributions), which is massive as it 

suggests that the calculation of 𝜎  is influenced by     of the market realisation at    . This 

confirms the high-level of persistence in the volatility. Interestingly, Gaussian and t-Student 

distributions deliver a much smaller coefficient   (average at 0.11, 0.54).  Gaussian and t-Student 
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1 2 3 4 5 6 7 8 9 10

Gaussian: 3.73E+06 3.62E+06 2.90E+06 3.69E+06 3.12E+06 2.99E+06 2.94E+06 4.59E+06 4.10E+06 3.99E+06

t-Student: 1.17E+02 7.63E+01 6.24E+02 2.11E+01 7.01E+81 2.02E+29 1.31E+04 2.79E+01 1.04E+02 9.01E+03

GHT: 0.14 0.30 0.12 0.14 0.19 0.30 0.15 0.16 0.13 0.14

GHST: 0.12 0.14 0.65 0.11 0.13 0.18 0.13 0.11 0.13 0.13

Gaussian: 6.11 6.11 6.09 6.11 6.10 6.09 6.09 6.12 6.11 6.12

t-Student: 8.98 8.99 8.76 9.00 213.54 123.92 8.19 9.05 8.95 8.23

GHT: 1.75 1.67 1.50 1.59 1.75 1.90 1.88 1.46 1.87 1.47

GHST: 1.27 1.35 3.33 1.55 1.61 1.79 1.41 1.40 1.92 1.80

11 12 13 14 15 16 17 18 19 20 AVERAGE

Gaussian: 3.06E+06 3.24E+06 2.93E+06 3.35E+06 4.65E+06 4.44E+06 3.15E+06 3.77E+06 4.46E+06 3.41E+06 3.61E+06

t-Student: 3.32E+02 4.73E+01 1.18E+20 6.06E+00 5.86E+02 1.95E+01 3.35E+248 3.40E+54 5.29E+01 8.85E+02 1.67E+247

GHT: 0.13 0.12 0.12 0.16 0.12 0.11 0.12 0.12 0.18 0.16 0.16

GHST: 0.14 0.20 0.15 0.12 0.13 0.13 0.15 0.18 0.14 0.24 0.17

Gaussian: 6.09 6.10 6.08 6.10 6.12 6.12 6.10 6.11 6.13 6.11 6.11

t-Student: 8.93 8.99 100.10 8.37 8.79 8.93 376.23 164.34 9.03 8.70 55.50

GHT: 1.60 1.74 1.79 2.22 1.46 1.52 1.53 1.77 2.31 2.61 1.77

GHST: 1.94 2.71 1.45 1.52 1.63 1.43 1.54 1.66 1.49 1.37 1.71

ADC

Test number:

VOL

ADC

Test number:

VOL
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distributions are unable to capture autocorrelations in the volatility. This partly explains the poor 

results out of these two distributions.  

 

The coefficient   takes a value around 0.45 – and this is regardless of the assumed distributions. The 

skewness parameter is also very small with an average value at around      , and this is the case 

for all countries.  Overall, there is no need to consider the skewness coefficient as an additional 

unknown. We consider therefore the more parsimonious GHT distribution (compared to GHST) as 

the best descriptor of the data’s behaviour.  

Table 13. Best estimators for each distribution 

  

 
 

 

Dispersion of the likelihood values  

It is interesting to gauge the potential connection between the parameter values and the quality of 

the calibration. This helps understand the degree of complexity attached to each unknown as to 

reach a proper level of calibration, and the influence of each parameter on the overall quality of the 

calibration.  

For this purpose, we conduct 200 calibrations with only one parameter left as a free variable, and we 

fix the two other unknowns at a level close to their optimum. Then we look at the dispersion of the 

estimated values, that we plot against the resulting ADC (Graph 28 to Graph 30). The graphs 

indicate that for each variable there is a wide range of (estimated) values that leads to satisfactory 

ADCs. Yet we also note that the very best ADC is reached in a much tighter range of values, thus 

suggesting that there is effectively a relationship between the optimum ADC and the parameters. In 

relative terms, Graph 29 shows that the parameters   are less sensitive to the quality of the 

calibration than the parameters   and   (Graph 28, Graph 30). As a result, the “scope of validity” for 

  and   is narrower compared to the dispersion of the points.  

Validity scope of  :             Validity scope of A:             Validity scope of B:            

 B has a bigger effect on the goodness of fit than   and  . As we will see below, the “validity 

scopes” of   and   are very similar for all countries but we cannot generalise the behaviour of   to 

other countries as this parameters is bigger for the more volatile credits. 

AVERAGE

ω 1.04 1.02 1.05 0.98 1.10 1.04

A 0.62 0.68 0.73 0.73 0.26 0.68

B 0.86 0.86 0.88 0.75 0.94 0.86

ω 1.08 1.07 1.08 1.09 1.11 1.05

A 0.55 0.65 0.38 0.80 0.31 0.62

B 0.89 0.85 0.92 0.89 0.95 0.85

Skewness 0.07 0.06 0.08 0.08 0.06 0.07

ω -0.001

A 0.40

B 0.11

ω 0.005

A 0.64

B 0.54

Five best calibrations

Gaussian

Coefficients

GHT

Student

GHST
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Graph 28. ADC versus estimated ω   Graph 29. ADC versus estimated   
     

 

 

 
   

Graph 30. ADC versus estimated    Graph 31. ADC vs. initial values of   

     

 

 

 
   

 

Have initial values a huge influence on the results? 

Initial values may also have significant implications on the quality of the calibration. To get an idea 

on that, we explore the influence of initial values against the final ADC in Graph 31, Graph 32 and 

Graph 33.  

Graph 32. Final ADC vs. the initial value of A   Graph 33. Final ADC vs. the initial value of B 

     

 

 

 
   

  first, shows no particular pattern against the final ADC (Graph 31), suggesting that the success of 

the calibration is somewhat independent of initial values there. For   and   (Graph 32 and Graph 

33), there is a relationship as initial values have to lie within a specific range, otherwise the 

calibration will is systematically not successful. As a consequence, we estimate the “validity scope” 
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for initial values as           for  , and            for  . These ranges are larger than the “validity 

scopes” we just calculated before.  

 These observations help refine the range of generations for initial values. This time again, this 

range tends to vary from one country to another for  , while it remains relatively unchanged for   

and  .  

How do parameters evolve around their best estimator? 

When looking at the evolution of every parameter around their best estimator (Graph 34– Graph 36 

below), the curve looks continuous and differentiable with a unique peak, at the best value for each 

parameter. This confirms that the estimation is tractable and straightforward.  

Graph 34. Final likelihood as a function of ω  Graph 35. Final likelihood as a function of A  

      

 

 

 

 

    

 

Graph 36. Final likelihood as a function of B 

  

 
 

Cross country analysis 

We conducted the same analysis on other CDS spreads, still involving both GHT and GHST 

distributions. Table 14 shows the value of the best estimators for each distribution, and indicates 

that both approaches deliver excellent ADC while the VOL error remains very much contained. And 

coefficients overall show that   and   are relatively stable for all countries, while   moves in sync 

with the underlying standard deviation of the data – and thus reaches a peaks for Portugal at 5.8.  

Graph 37 and Graph 38 display the corresponding CPIT for French and Spanish CDS as examples: the 

points are uniformly distributed. This confirms that GHT/GHST distributions are much appropriate to 

describe the behaviour of the data, and thus relevant choices for  . Even the large kurtosis of non-

core countries does not cause particular deterioration.  
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Table 14. Cross country results for GHT and GHST conditional marginals 

  

 
 

 

Graph 37. Strong CPIT for France (GHT)  Graph 38. Strong CPIT for Spain (GHT)  

      

 

 

 

 

    
 

 

 

 

 

Graph 39. Good CPIT for Austria too (GHT) 

  

 
 

We look at Austria in Graph 40 as empirical indicators show a remarkably high kurtosis there too. 

Overall, the estimated volatility is very close to its empirical value. In the same vein, the CPIT of 

Austria in Graph 39 highlights only     of ‘misplaced’ points that diverge from the uniform 

distribution (mostly in the belly).  Results overall comfort our first observations that GHT/GHST 

distributions are relevant formulations to model the distribution of the data. These probability 

distribution functions are particularly flexible, and provide an outstanding fit, even to times series 

that exhibit a large kurtosis (and thus bigger tails).  

Other illustrations in Graph 41 and Graph 42 show the calibrated GHT volatility for France and 

Spain. The calibrated volatility provides an outstanding fit to the benchmark, even during periods of 

large volatility.  We see no particular distortion in our volatility estimator when market 
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sentiment turns sharply risk averse. Our estimator is able to adjust itself to tough changes in the 

underlying volatility without bearish a loss of consistency. This is another sign of robustness in the 

whole procedure.  

Other countries exhibit results as good as for Germany, with the quality of the GAS volatility 

remaining unaffected by the intrinsic credit worthiness in general (ie. no visible deterioration for 

peripheral countries). Overall, the GAS estimator remains fairly resilient to any turn in market 

sentiment. In conclusion, it is correct to assume that our dataset is distributed according to GHT or 

GHST distributions. We prefer GHT distributions as there is no clear gain in adding skewness as an 

additional parameter.  The GAS method looks a relevant choice to estimate the time-varying 

volatility. Overall, results suggests that the model is remarkably agile - this will certainly prove much 

helpful to explore periods of erratic volatility.  

Graph 43 also shows that the GHT volatility for Spanish CDS is correlated to the 10-year SPGB versus 

Bund yield spread (ie. Spanish sovereign spread against Germany). Part of this spread reflects the risk 

premium attached to Spanish interest rates, and therefore can be seen as a proxy for financial 

distress in Spain (a wider spread means greater differentiation between Germany and Spain in terms 

of credit quality). In the graph, periods of a wider SPGB/Bund spread are coincident with periods of 

larger volatility. This correlation between sovereign risk and the volatility suggests that any deviation 

in our GAS estimator against the true volatility could have dramatic implications when it comes to 

estimating sovereign risk (and more generally for risk management purposes).  In this context, the 

observed robustness of the GAS estimator is all the more valuable.  

Graph 40. Austria’s volatility has been well calibrated   Graph 41. France’s GHT volatility close to benchmark 

     

 

 

 
   

 

Graph 42. Spain’s estimated volatility (GHT) close to 

benchmark 

 Graph 43. Volatility is a basic indicator of market stress   
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The un-temporal Marginals 

The GAS method has provided a relevant descriptor of the conditional probability distributions 

function            that characterises the behaviour of European sovereign CDS price variations. 

Let   be a series of real numbers that takes the actual historical realisations of             as recorded 

in the dataset:  

For                        as measured in the data  

Based on this definition,   is not a random variable - in contrast to  . 

   (20) 

At a given time  ,             is conditional on previous realisations      ,       . And this is 

because the calculation of the volatility coefficient 𝜎  involves parameters evaluated at     

(namely      and      in eq.(18)). While this helps seize the persistence of the volatility 

momentums, the conditionality also makes a high frequency manipulation of the model relatively 

cumbersome. At any time   in particular, evaluating the GAS estimator 𝜎  requires calculating all the 

series  𝜎    𝜎    . The time varying aspect of 𝜎  also means that                        : the 

model delivers a specific probability distribution function for every market realisation in the data. 

This tends to make any extrapolation outside the history more complicated (like the exploration of 

synthetic case studies). This sophistication could prove a drag for non-quantitative market 

participants, or in the context of a day to day use of the model, as in both cases the 

computational/mathematical burden can prove complex and time-consuming. The extension of the 

model on a broader set of time series could similarly be somewhat a heavy task, so it could be 

beneficial to consider a simpler version of the model instead.  

A possible way to reduce complexity is to design a new volatility estimator, independent of the 

historical path of market prices. In this respect, removing the time conditionality in            may 

be helpful.  The new version of   has to be designed on the basis that the current-day price 

realisation    is enough information as to characterise the corresponding distribution function of  . 

As a result we denote this new probability distribution function      .  

We want to make       conditional on      instead of     . And to do so, we now have to establish 

a new volatility estimator that has to be calculated out of  . We denote this novel volatility 

estimator as     , and we describe an empirical estimation of this coefficient in the next paragraphs. 

We also explore the soundness of this new indicator via the ADC and PIT applied to the resulting   . 

Finally we take a look at the potential ease of use that comes from this new model.  

 

 

Grounds, assumptions and approximations relative to the volatility parameter   

For a given price realisation     , we denote the novel volatility indicator as     . And as in 

preceding paragraphs, 𝜎  refers to the conditional volatility obtained from the GAS model. One 

assumption that we want to keep unchanged is that CDS changes are still distributed according to 

a GHT density. We thus define    as a GHT density, whereby the volatility parameter 𝜎 has been 

replaced with its new version     .  
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Since our calculation of      may jeopardize the normality constraint associated to probability 

density functions, we also add the required normalisation coefficient:  

       
     

 
 
     

     
   
  

  
 
 
      

  

     
 
   
 

 
 

        
  

  

 
   (21) 

Where   is the degree of freedom that we set at    .  

 

The benefit of considering the cumulative distribution function 

There is apparently no obvious connection between the GAS volatility 𝜎  and  , as plotting one 

against the other yields a very fuzzy scatterplot (Graph 44). The intense concentration of the points 

in the interval          in particular makes the exploration of any pattern pointless. Plus   spans 

over different intervals for each country (CDS daily price changes span over          for France for 

instance, and          for Italy). This makes cross-country comparisons in the frame of   

particularly challenging.  

Because of these limitations, we prefer exploring the behaviour of 𝜎  as a function of the cumulative 

probability function of   , that we denote             
 

  
  . Since we do not have an analytical 

expression of     , we just consider its empirical version, calculated on the dataset (ie. for     ). 

We denote this empirical indicator      , and we assume that    is a reliable descriptor of   , ie. 

          .  

The bijective relationship between    and   (Graph 45) is an important feature, as it suggests that we 

could potentially express the volatility   as a function of      . This may be an interesting alternative 

to considering   as a function of  . A consequence however, is that   is estimated via empirical 

estimators in this case, and therefore needs to be adjusted to   . In the end we get: 

                       

Graph 46 is an illustration of the volatility’s dynamics where we plot the conditional volatility 𝜎  

against the empirical cumulative function       (for Germany). 

Graph 44. The vol 𝜎 is not a straightforward function of    Graph 45.       is the empirical cumulative function of    

     

 

 

 
   

Considering   as           also makes the calculation of probabilities relatively straightforward: 

Assuming two different events in terms of price realisations:        and       , with    

and    be the respective probability that each event materialises (as per eq. (22)). The knowledge of 

         is sufficient to calculate    and   : 
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(22) 

We already showed that the data is centred (      ). We also assume that   admits a GHT 

distribution, and since this distribution is symmetrical, the average value    is concordant with its 

median, so we can note that                 . As a result,        refers to a negative CDS price 

variation (   ), while        relates to an increase in CDS prices (   ). This will prove 

particularly straightforward to explore the implications of tail events. In particular when considering 

a limit     on the price variation   (this could be the maximum tolerated volatility), we derive the 

probability that   effectively exceeds this threshold as           The other way round, if     the 

probability of   moving below this threshold is given by      .  

Graph 46. 𝜎  as a function of    is a more tractable approach  

   

 

 

  

Calculating      

In this chapter we describe the calculation of a new un-temporal volatility estimator     , computed 

out of the cumulative distribution   . We also gauge the soundness of this new estimator, by 

exploring the shape of the resulting probability distribution function      

As an intuitive understanding of the un-temporal volatility,    can be regarded as an estimator of the 

average value of 𝜎, given that    , at any time  . In other words, we think that it is sensible to 

understand    as an estimator of the expectation of 𝜎, conditional on    :  

         𝜎        
 

(23) 

We now describe an empirical procedure to estimate    𝜎       . As shown in Graph 46, we first 

divide the values of    into    buckets; and we consider the points in every bucket as a measure of 

the volatility 𝜎 , conditional on                          .  

Then we look at the distribution of 𝜎 in each bucket. As expected, the variance of 𝜎 is larger in the 

tails. In the upper tail for instance (Graph 47) the frequency of 𝜎 is larger, reaching          . In 

comparison, 𝜎 is much smaller in the centre of the distribution (ie.       ), where it takes values in 

the           according to Graph 48.  
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Graph 47. Empirical distribution of 𝜎 in the tails          Graph 48. Empirical distribution of 𝜎 in the centre of the 

distribution, ie.           

     

 

 

 
   

After having identified the probability distribution function of 𝜎  in each bucket, we now need to 

determine an empirical estimator of the corresponding average value (ie.    𝜎  in each bucket). 

Every bucket is composed of around     points, which is relatively small from a statistical point of 

view. As a consequence, the usual ‘sample mean’ coefficient may experience a significantly bias from 

the true value, perhaps a bigger bias than the ‘sample median’ does.  

Reis, Botelho (2013) show that the sample median is generally a more robust statistical estimator 

than the sample mean. This becomes especially obvious when the sample size is reduced, in which 

case outliers in the sample can cause a substantial distortion on the sample mean – while this is less 

pronounced on the median estimator. The greater robustness of the median makes it a preferred 

estimator when there is only little data available. On that basis, we will explore both approaches 

separately (sample mean/median).  

Graph 49. Median vs. Mean estimator for a given bucket 

located in the right tail 

 Graph 50. Median vs. Mean estimator for a given bucket 

located in the belly 

     

 

 

 
   

As an illustration of this difference, in terms of bias, between the median and the mean, we 

compared both estimators in the centre (       in Graph 50) and in the tail regions of    (    , in 

Graph 49). There it appears that the sample mean (denoted      𝜎 ) is relatively far from areas 

where the density of 𝜎  is particularly intense. And in contrast, the median estimator (ie. 

       𝜎 ), is much more in line with these areas where the density of 𝜎 reaches a peak (red line 

in Graph 49 and Graph 50).  

 The median is potentially a better estimator to model the “expected value” of   than the more 

typical sample mean. We estimate two versions of   , based on either the MEDIAN or the MEAN. 

This will help identify the best approach.  
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First we highlight results relative to the        estimator, in Graph 51 to Graph 54 (for different 

countries). Then we look at those relative to the      estimator in Graph 55 and Graph 56. For 

better clarity we denote          and        the two different operators, and    ,    , the resulting 

volatility: 

 
                𝜎       

              𝜎           
  

We plot     against    in Graph 51 and Graph 52, and against   in Graph 53 and Graph 54. Then we do 

the same with     in Graph 55 and Graph 56.  

Graph 51.          𝜎        as a function of    for core   Graph 52.          𝜎        versus    in non-core  

     

 

 

 
   

 

Graph 53.          𝜎        as a function of   for core   Graph 54.          𝜎        as function of   for non core  

     

 

 

 
   

 

Graph 55.        𝜎        as a function of     Graph 56.        𝜎        as a function of    
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    and    : from discrete to continuous variables 

Because    was segmented into 10 buckets, we are now left with 10 values for     and    . This 

already gives interesting insight, but we need to generalise these observations to other values of   . 

Ideally, we would like to obtain a continuous expression of the volatility so that    could be evaluated 

for any      , as suggested in eq. (21). In this section, we explore how to extrapolate these 

preliminary results to all values of         , and we consider three different approaches: 

- In a first attempt, we calculate     𝑭      and      𝑭      as a linear interpolation out of the two 

nearest neighbours, ie. the two closest centres of buckets (‘nearest neighbour’ type interpolation, 

that we denote NN). This is a very basic interpolation method, where the volatility    for every point 

is a linear combination of what we got for the two nearest buckets, using the Euclidean distance 

between the points. As the new points are derived from the “nearest information” only, this method 

usually provides a very nice fit to the dataset (with risks of overfitting in some circumstances). But 

this approach also fails to provide an analytical expression of the general behaviour of          , and 

there is no way to extrapolate    outside of the measured range. This lack of tractability is a good 

reason for not retaining this interpolation method, but we will consider the resulting fit – supposed 

to be compelling - as a benchmark to gauge the quality of other interpolation methods. We denote 

the resulting series as        and         

- Secondly we explore a second order polynomial interpolation (noted PI). The second order 

polynomial behaviour implies calibrating three unknowns          , and we assume the following 

expression for the volatility   :                                       We calibrate these three 

unknowns using the classical OLS approach. We denote the resulting series as        and         

- Thirdly, we consider a logarithmic interpolation (noted LI), on the basis that the logarithmic 

curvature may be more appropriate than the polynomial model to describe the acceleration of the 

volatility in the tails. We prefer calibrating this model directly on the full set of  𝜎          instead of 

involving     and     separately.  

First let us consider    a sorted version of    (increasing order). We then calibrate the logarithmic 

interpolation as per the following formula: 

 
               

 

 
                 𝑖       

                
 

 
               𝑖       

            where     is the sample size. 

This means that we have to calibrate two unknowns in each subarea (    ,     , and     ,      

respectively). We denote the resulting volatility as     . 

In the end we are left with 5 volatility estimators for each country:       ,       ,       ,       , and     . 

Then for these five potential candidates, we consider the corresponding probability distribution 

function   , as defined in eq. (21): 
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And we also consider the corresponding cumulative distribution function  : 

                
 

  

  
     

 
 
          

     
   
 

 

  
 
 
      

  

         
  

   
 

   
 

          
  

  

 

  

 
   

(24) 

Using the same notation as for    before, we calculate   
       ,   

       ,   
       ,   

       , and 

  
       We also calculate the corresponding cumulative distribution functions   

       ,   
       , 

  
       ,   

        and   
     .  

In order to assess the robustness of each version of   , we consider the Anderson-Darling criterion, 

that we apply to the corresponding    . Assuming a perfect calibration of    , the series        must be 

uniformly distributed. The ADC test quantifies the actual deviation against the uniform distribution. 

As a reminder, the smaller the ADC, the better the fit.  

Table 15. Goodness of fit of the un-temporal cumulative distribution functions   
      

  

 
 

 

Table 15 shows the resulting ADC; and helps conclude on the most appropriate volatility estimator: 

- Logarithmic interpolation: worst results. As Graph 57 shows (for Germany),      offers an 

acceptable fit against the volatility 𝜎. The fit at least does not look particularly bad. However, ADCs 

relative to   
   are much bigger than for other methodologies, suggesting that this probability 

distribution is not able to capture the actual dynamics of  . As a consequence, the algorithmic 

interpolation cannot be regarded as an appropriate choice - we reject this option.  

Graph 57. Logarithmic volatility against 𝜎 The logarithmic model has a too large error in the 

belly of the distribution 
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- Mean versus Median? Table 15 shows that ADCs are much better for distributions based on the 

median rather than on the mean, which is in line with our intuition. As a consequence,   
     and 

  
     are not acceptable descriptors of  , and so we disregard        and       .  

Graph 58. Nearest Neighbours volatility        vs.   for Germany (left) and Spain (right) 

  

         
 

- Nearest Neighbour interpolation: Though        provides a decent fit against the 10 measures of     

in Graph 58, the ADC is relatively large, and in particular as big as 3.2 and 2.6 for Austria and Finland 

– thus beyond the acceptance level. As a consequence,   
     is not compelling and we reject        

as a fair estimator of the non-temporal volatility.  

- Polynomial Interpolation: results are very good overall.   
     in particular exhibits an average 

criterion at just 1.6, which is small enough to consider that       is properly calibrated. As a result, 

       can be seen as an adequate estimator of the un-temporal volatility of  . Arguably, the ADC is 

also smaller for peripheral countries, and a bit higher for core and soft-core countries. This suggests 

that the polynomial method is particularly appropriate to estimate the volatility of riskier assets – ie. 

of those who are the more subject to contagion. Graph 59 shows the dynamics of        against the 

conditional volatility 𝜎: we note that the acceleration of the volatility in the tail regions is a non-

linear function of   . This already hints at a remarkable acceleration of the market deterioration 

when financial distress tends to escalate. 

Graph 59. Polynomial volatility        against 𝜎  for Germany (left) and Italy (right) 
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In conclusion, the polynomial model assorted with the sample median provides the best estimator 

of the un-temporal volatility      . Statistical tests confirm that the resulting un-temporal 

probability distribution function    offers an acceptable fit to the empirical data for every country. 

That said, we note that the Shapiro-Wilk normality test applied to the polynomial interpolation 

shows that residuals are not normally distributed, with the resulting statistics well below   .  

 

The dynamics of the volatility indicator   

Considering the median estimator and the second order polynomial interpolation method, we finally 

obtained the following expression for the un-temporal volatility   : 

                                 
 

(25) 

With the following values for         : 

Table 16. Estimated coefficients of the second order polynomial interpolation 

  

 
 

 

 

In the end, we obtain the following non conditional univariate probability function       : 

 
 
 
 
 

 
 
 
 
      

        

    
 

  
   
 

 

  
 
 
       

  

      
 

   
 

                               

               
 

  

  

Graph 60 to Graph 70 display the shape of       for all countries, ie. evaluated on values taken in 

the sample. We compare this against the empirical distribution of  ; globally the fit is satisfying, 

therefore confirming the compelling ADC in Table 15.  

Graph 60. Univariate density; GE  Graph 61. Univariate density; FI  Graph 62. Univariate density; NE 
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Graph 63. Univariate density; AT  Graph 64. Univariate density; FR  Graph 65. Univariate density; BE 

        

 

 

 

 

 
     

 

Graph 66. Univariate density; IT  Graph 67. Univariate density; SP  Graph 68. Univariate density; IR 
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Graph 69. Univariate density; PT  Graph 70. Univariate density; UK 

     

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

-140 -70 0 70 140

density

(bp)

Empirical distribution

PORTUGAL

  

  ( ) 

0

0.2

0.4

0.6

0.8

1

-16 -6 4 14

density

(bp)

Empirical distribution

UK

  

  ( ) 



64 
 

Graph 71. Volatility    in bp/day as a function of the empirical cumulative distribution    
  

 
 

 

The volatility profile 

Graph 71 shows the resulting volatility as a function of   . Because of the polynomial interpolation, 

the volatility curves look like parabolas, which emphasizes the nonlinear increase in the volatility as 

we near the tail regions. Core countries overall exhibit little volatility, slightly less than soft-core 

countries do. In contrast, the volatility is much larger in peripheral countries. This is in line with 

empirical observations. 

At the centre of the distribution, the market is very stable. This corresponds to a regime of very low 

volatility, whereby core and soft core countries show a comparable     at around        .    is much 

bigger in non-core countries, with e.g. Portugal showing the largest volatility in the sample, at 

        just above Spain and Italy at          , and Ireland at          .  

We also note that the parabola shape tends to magnify the differentiation between core/soft-

core/non-core countries in the tail regions. The volatility in peripheral countries in particular rises 

much faster. Portugal and Ireland for instance are still the most exposed countries to a shock, with 

the idiosyncratic volatility rising to          and          respectively under extreme scenarios. 

 In a low volatility environment, Ireland is definitely more stable than other peripheral 

countries. But this does not hold when volatility is larger as the deterioration incurred by risk 

aversion leads to greater entropy in Ireland than in Spain or Italy. In essence, Ireland’s recovery 

since the sovereign crisis has favoured some convergence with soft-core economies. This is 

apparently more visible market conditions are more stable (ie. when volatility is muted). In more 

troubled situations though, the greater volatility in Ireland (compared to Spain and Italy) reflects still 

the marks of the sovereign crisis still.  

Italy and Spain prove rather similar overall, except in the tails where Spanish CDS have a 2   

    higher volatility than Italian CDS.  

Soft-core countries prove much more resilient overall. Belgian CDS spreads for instance experience a 

volatility of         in the tails, while the volatility on French and Austrian CDS is lower, around 

       . With no surprise, core countries are the more resilient, with a volatility of         in the 

tails for Germany, the Netherlands and Finland. 
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Let us now explore the distribution of    within the dataset. Graph 72 shows the empirical 

distribution of the volatility    for Germany, France and Italy. These distributions give an idea of the 

risks relative to an unexpected surge in the volatility. We define in particular the “volatility risk” (  ) 

as the probability that    be equal to or higher than a given threshold     . We then define our 

criterion    as:  

                                  where     is the empirical cumulative distribution function 

of   . 

Graph 73 displays          based on the same data as in Graph 72. This chart shows the probability 

that the volatility    tends to exceed the threshold      as indicated on the x-axis. For instance, it 

appears that there is a     risk that the volatility exceeds the threshold of            in Germany, 

          in France and            in Italy. We generalize this approach to all countries in Table 

17.   

Graph 72. Empirical distribution of the volatility   Graph 73. Empirical cumulative distribution of the 

volatility 

     

 

 

 
   

 

Table 17. Volatility Risk for EMU countries in bp/day 

  

 
 

 

We also express the volatility    as a function of the CDS daily price variations   (in basis points), in 

Graph 74. The picture is hard to exploit in this frame. In particular it is no longer possible to 

understand the risks associated to a given level of volatility. But there is additional insight though. 

We note for instance that Irish CDS are less volatile than equivalent Spanish or Italian CDS when the 

price variation on the  -axis is smaller or equal to    . This dynamics, however, does not hold 

beyond this threshold as Italian CDS are the more stable at the periphery, when the daily CDS price 

variation is larger than    . More generally, Graph 74 illustrate the structural differences between 

each security. In particular the contrast between and core/soft-core and non-core CDS spreads in 

terms of intrinsic volatility is fierce. 
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Graph 74. Polynomial volatility as a function of CDS price variations 

  

 
 

 

 

Conclusion to the univariate calibration  

In this section we explored the calculation of an empirical estimator of the un-temporal volatility    of 

 .    is computed as an empirical extrapolation of the GAS volatility 𝜎 , from which we derived an 

expression of the un-temporal probability distribution function    of  .  

In the end,    and    bring innovation in the sense that these parameters do not depend on the past 

realisations of   . This is therefore a time-independent extrapolation of the results obtained in the 

previous section.    and    are now more straightforward to calculate than 𝜎  and           . This 

makes a high-frequency use of the model more tractable, and more generally, this is a valuable 

innovation for market practitioners with limited quantitative tools at hand.  

Because of the generalising nature of the conditional mean in eq. (23), our un-temporal estimator    

may be less sensitive to short term variations in historical volatilities than the conditional estimators 

𝜎 .  
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Multivariate calibration of the model  

In this section we conduct a multivariate exploration of the dataset, which eventually highlights 

the strength of pair-wise connections between each asset. Our approach to the multivariate 

problem requires calibrating bivariate GHT distributions. We achieve this by using an adequate 

formulation of the GAS model, adjusted to the higher dimension now. Though preliminary results 

were disappointing, we consider additional tweaks to the method that deliver compelling results. 

Our approach is largely inspired by the methodology of copula estimations. The flexibility of 

copulas is valuable in risk management (Bernardi, Catania (2015), Fei Fei, Fuertesy, Kalotychou 

(2013), Dalla Valle, De Giuli et al. (2014)); this is something we take advantage of. In particular we 

conduct a standardised version of the dataset based on the GAS volatility estimator we previously 

estimated. On that basis, we now consider standardized bivariate GHT distributions as adequate 

functions to describe the multivariate distribution of the dataset at hand.  

We conduct the standardisation by normalising the volatility, ie. by dividing the original dataset 

by the GAS volatility 𝜎 . We denote the resulting points as   
 , such that:  

  
  

  
 

𝜎 
 

Where 𝑖 refers to the corresponding country, and 𝜎  is the GAS estimator previously 
calculated. 

(26) 

As a result of the standardisation,   
  can be seen as distributed according to standard GHT 

distributions. We denote the standard GHT probability density function as     
   and the 

corresponding cumulative distribution as     
  . 

One of the challenges raised by the multivariate calibrations is to deliver a reliable picture of the 

linear dependencies. In other words, the covariance matrix of the multivariate distribution needs 

to be properly estimated. Given two countries 𝑖 and  , let   be the covariance matrix of the 

bivariate distribution related to the pair (𝑖  ). Then isolating the non diagonal coefficient     , we 

have            
    

 
 . As the variance of   

  is now standardized at   (ie. 𝜎    𝜎     ), the 

covariance matrix      (as per eq. (27)(29)) can be seen as a measure of the correlations 

between   
  and   

 
:  

           
    

 
  

       
    

 
 

𝜎    𝜎   
        

    
 
  

(27) 

The multivariate GHT model: 

Since the data follows a standard univariate GHT distribution, we consider this formulation as a 

relevant candidate to describe the multivariate dynamics. And we consider the multivariate 

version of the GAS method as to estimate the corresponding correlation matrix  . As detailed 

earlier, the GAS method assumes that the covariance matrix is a time-varying parameter. As a 

consequence we rename the correlation matrix      as   
   

. 
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We also denote the probability distribution function of the standard bivariate GHT distribution as 

  : 

       
     

 
    

   
  

 
 
     

 
    

 
 
               

            
                          (28) 

                                                                     

            of the problem = number of countries we consider simultaneously 

By analogy with   , the vector    is centred on zero, so we intuitively constrain      In sum, 

there is thus only one variable left to be estimated: the covariance matrix   . We also denote 

       the corresponding cumulative distribution function:  

            
         

  
    

 

     

 

The multivariate formulation of the GAS method involves an adjusted version of the vector   . 

Based on the methodology developed in (Zhang, Creal, Koopman, Lucas (2012a), Zhang, Creal, 

Koopman, Lucas (2012b)),    is now made of the correlation coefficients extracted from   , and 

expressed as hyperspherical coordinates. In comparison, we had         𝜎   in the univariate 

analysis.  

Calculation of the hyperspherical coordinates  

The multivariate model assumes that    and    are made of hyperspherical coordinates, ie. 

angles. In order to calibrate these two parameters, we first introduce    as the Cholesky 

decomposition of the correlation matrix   : 

  
        

Then we assume:  

   

 

 
 
 
 
 
 
 

 
 
 
 
 

      
      
 
 
 

      
             
             

 
 
 

      
             

                    
                             
                                                 

                        
   

   

                              
   

    

 
 
 
 
 
 
 

 (29) 

With   
                   

                  
  , and we obtain:    

 

 
 
 
 

    
    
    
    
   

       

 
 
 
 

   Components of    are angles. 

Plus we keep the same definition of     as in the univariate case: 

             
              

   
        (30) 
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Calculation of 
              

   
, formulas : 

Using matrix derivation, we introduce the half-vectorization operator      such that: 

If    

         
         
         

   then          

 

  
 

   
   
   
   
   
    

  
 

  

So we obtain:  

              

   
  

          
 

    
  

              

           
         with     the matrix product.  

Replacing with eq. (28):   

               

   
    

 

 

              

           
  

   

 
 
                 

        

          
    

Then 

1)   
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   (this one is tractable) 

2)    
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Where   is the kronecker product,   is the identity matrix and   is the dimension of the problem.  

 

Table 18. ADC for “Italy and another country” copula (µ=0) 

Pink = poor calibration, Green = better results  
 
Graph 75. The estimated correlation is too much erratic 
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Results – Quality of the multivariate distribution 

Similarly to the univariate analysis, the calculation of the correlation matrix involves three 

unknown scalars     and   that we calibrate with the Levenberg-Marquard algorithm. For the 

sake of clarity, we first concentrate on pairs composed of Italian CDS as a fixed leg, and another 

European CDS, as a floating leg. In terms of terminology, we denote the selected pairs as e.g. “Italian 

and German CDS”, “Italian and French CDS”, etc... In a second stage we will extend the analysis to all 

the available pairs in the sample. 

Every time, and in line with what we did in the univariate analysis, we ran the calibration    times. 

This helps reduce the risks to consider a faulty estimator, obtained on a local optimum only. Then we 

gauge the quality of the calibration via the same tools as before: the PIT and the ADC test.  

Overall, results proved weak. An examination of the resulting distributions reveals two major issues: 

Anderson Darling criterions are unacceptably high; and correlation coefficients are greatly instable.  

First, Anderson Darling criterions are not in the range of acceptable values. Table 18 shows that the 

ADC are much higher than before, with most of the values above    . This is not acceptable and 

suggests that the multivariate calibration is not successful in most cases. Some empirical tests and 

generally a deeper investigation also shows that the constraint     is the main culprit for the 

disappointing results. We expected the mean vector to be fixed at      , but in fact this assumption 

turns to be too restrictive. As a consequence, we relaxed this condition, and we left the mean 

coefficient   as a free unknown variable. Given the multivariate structure,   is defined as a vector of 

two unknown (constant) values [     ]. A few tests on initial conditions unveiled that   is usually 

slightly negative, so    and    were initiated from random values taken within         .  

The calibrated correlation coefficients  𝒊   (within the correlation matrix) also proved remarkably 

volatile, probably too erratic to have a sensible meaning. As Graph 75 shows, the correlation 

coefficients look very unstable. This is a meaningful caveat we believe, as the erratic aspect of these 

estimators tends to make correlation regimes within the dataset very unpredictable. Plus correlation 

metrics are usually regarded as long-term descriptors of the joint dynamics; which is in contrast to 

our instable estimator.  

 Results so far are not acceptable, and our estimate of the correlations is not a relevant picture 

of the actual dependencies. We now explore some adjustments to the initial formulation of the 

multivariate GAS method that helped address these limitations. 

 

An examination of each component in eq. (30) shows that the coefficient   
              

   
 is 

responsible for most of the variance attached to the correlation coefficients. As a consequence, we 

decided to remove the coefficient   and we adjusted the formulation of the score    as:  

                 (31) 

Obviously the model now takes less information into account. However, deleting A also helps offset 

the higher computational burden that resulted from the introduction of the unknowns    and   . 

Keeping the mean vector   as a free variable and removing the parameter  , we are left with four 

unknowns:   (2 coefficients)        
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Repeating the calibration, this new formulation delivered much better results this time. Table 19 

highlights the ADC of the multivariate distributions for pairs involving Italian CDS: we see a lot of 

compelling values now, around or below    , for many combinations. The pairs “Italy and Spain”, 

“Italy and Belgium” and “Italy and France” yield a lot of green cells, a sign that the calibration was 

consistently successful among the 20 trials. In contrast, the pair “Italy and Portugal” was more 

difficult to calibrate, but the best ADC, all the same, is at a much acceptable    . For every pair, we 

took the calibration with the smallest ADC as the best estimator.  

With no surprise, the PIT is very strong as well; we plot a few examples in Graph 77, Graph 78 and 

Graph 79.  Results confirm the relevance and the tractability of the adjusted formulation of the 

GAS model that we consider here.  

On the front of correlation coefficients, Graph 76 shows that our estimators are now constant values 

– and so for all the combinations of countries. This is obviously a surprise, and so far we see no 

obvious reason for this unexpected time-independence.  

The correlation coefficients, on average, are somewhat large (between     and    ). This suggests 

that cross-country linkages between Italian CDS spreads and the rest of Europe are intense. Still 

based on Graph 76, both pairs “Italian and Finland” and “Italy and France” exhibit the smallest 

correlation coefficients, illustrating possibly greater resilience in Finland and France to a shock in 

Italy. In sharp contrast, Dutch and Irish CDS spreads show large correlation coefficients with Italian 

CDS.  

Since the correlation estimators   
   

 do not depend on time, the resulting multivariate distributions 

do not depend on previous realisations. The time-independence in effect makes the exploration of 

these distributions relatively straightforward. In particular, it allows us to consider the points in the 

dataset regardless of their order of appearance – ie. similarly to our approach of the un-temporal 

volatility estimator. We take advantage of this feature in the following paragraphs; in particular 

this will help us conclude on the strength of inter-dependencies between CDS spreads.  

Table 19. ADC of the distribution “Italy and another 

country” Pink = poor calibration, Green = better results 
 Graph 76.   
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Graph 77. PIT of the IT_GE distribution  Graph 78. PIT of the IT_FR distribution  

      

 

 

 

 

    

 

Graph 79. PIT of the IT_SP distribution 

  

 
 

Enlarging the calibration to other pairs of European countries, results remain as compelling as 

before: the ADC is staying below 1.5 for most of the calibrations (Table 20). Arguably, the worst ADC 

is 2.2 for “Dutch and Finnish CDS” and 2.0 for “Belgian and Dutch CDS”; both are still acceptable yet. 

Table 20. Multivariate ADC proved much satisfactory 

  

 
 

 Sound ADC and PIT tests, and a stable correlation profile are evidence that multivariate 

distributions have been successfully calibrated, and therefore provide a robust fit to the empirical 

data. 

In the next section we examine the mean and correlation parameters, and we look at the tails of the 

distributions as a baseline to quantify the expected joint price action when a shock materialises. 

Since our multivariate distributions are not conditional on past realisations, we can ignore the 

temporal aspect and thus we remove the index  . In particular, we replace   
   
     

    
 
  by 

             , as well as    by   and    by  . 
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GE FI NL AT FR BE IT SP IR PT UK

GE 1.8 1.5 1.2 1.3 1.5 1.3 1.3 1.6 1.5 1.5

FI 2.2 1.4 1.8 1.6 1.4 1.3 1.9 1.4 1.6

NL 1.5 1.8 2.0 1.6 1.5 1.7 1.5 1.7

AT 1.4 1.1 1.4 1.1 1.3 1.2 1.5

FR 1.2 1.0 1.0 1.4 1.2 1.3

BE 1.0 1.0 1.5 1.3 1.6

IT 0.8 1.4 1.3 1.1

SP 1.5 1.3 1.2

IR 1.4 1.4

PT 1.3
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An estimator of the joint reaction to shocks 

A deeper look at the multivariate distribution 

As we mention above, we consider non-zero mean parameters          , with    referring to  

Country 1 (denoted    thereafter), and    to Country 2 (  ). Table 21 shows the calibrated   

coefficients.  

For any pair        , the vector   indicates the average value of each series, from a multivariate 

point of view. As Table 21 shows, this value tends to vary from one pair to another. For instance, 

Italian CDS display a negative mean of        when coupled with Germany, while this coefficient 

is closer to zero, at just     , when Italy is combined with Finland or with the Netherlands.  

Table 21. The mean vector   highlight the asymmetric behaviour between core and non-core 

  

 
 

By definition, the mean vector   indicates the area where the occurrence of the returns is higher. In 

other words, Italian CDS returns will be more negative “on average” when selected with German or 

with Austrian CDS (   is more negative in Table 21). In contrast, CDS returns in Italy are less negative 

on average when selected with Finnish or Dutch CDS (   is closer to zero).  

A strong negative mean value on    CDS (ie.     ) means that the multivariate framework 

identifies an asymmetry: negative prices variations have a greater occurrence than positive price 

variations. In this case, risk appetite (ie. lower CDS prices) is more frequent than risk aversion (higher 

CDS prices).  

When comparing    and   , Table 21 shows that for a selected pair, the more resilient credit usually 

gets a more negative mean coefficient than the other member of the pair. This difference is more 

palpable for pairs composed of very dissimilar assets in terms of credit quality: for “Italy and Finland” 

and “Ireland and Germany” for instance    is much more negative than   . In contrast to this 

dynamics, pairs of securities that are relatively comparable in terms of credit quality exhibit closer    

and   . This is the case for the pairs “Belgium and France” or “Austria and the Netherlands” for 

instance.  

 This pattern suggests that a decline in core/soft-core CDS prices is an especially more likely 

outcome when taken as a pair against a peripheral country. This highlights greater resilience in 

core/soft-core sovereigns to financial distress emanating from peripheral countries.  

Let us now take a look at the shape of the multivariate distribution. As the general presentation in 

Graph 80 shows, we plot          as a function of the cumulative distribution function       and 

     . This makes the results more convenient to exploit than looking at   against    and   .  

µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2

GE -0.2 -0.5 -0.2 -0.5 -0.4 -0.4 -0.2 -0.5 -0.2 -0.5 -0.5 -0.3 -0.2 -0.5 -0.2 -0.5 -0.2 -0.5 -0.2 -0.5

FI -0.2 -0.5 -0.2 -0.4 -0.3 -0.3 -0.2 -0.4 -0.2 -0.4 -0.5 -0.3 -0.2 -0.4 -0.5 -0.2 -0.2 -0.4

NL -0.4 -0.3 -0.2 -0.5 -0.2 -0.5 -0.2 -0.5 -0.2 -0.5 -0.2 -0.5 -0.4 -0.3 -0.4 -0.3

AT -0.4 -0.2 -0.3 -0.4 -0.4 -0.2 -0.5 -0.3 -0.3 -0.4 -0.5 -0.3 -0.4 -0.3

FR -0.3 -0.4 -0.3 -0.4 -0.5 -0.3 -0.5 -0.3 -0.5 -0.3 -0.5 -0.3

BE -0.3 -0.4 -0.3 -0.4 -0.3 -0.4 -0.3 -0.5 -0.3 -0.5

IT -0.2 -0.3 -0.2 -0.3 -0.4 -0.1 -0.4 -0.1

SP -0.2 -0.5 -0.3 -0.4 -0.3 -0.3

IR -0.4 -0.3 -0.4 -0.3

PT -0.4 -0.5
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FI NL AT FR BE IT SP IR PT UK
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On top of that, and since the data is centred, we can deduce the sign of    directly from    

     for           and      for           (see Graph 80) - something also true for Country 

 . These graphical boundaries where    and 

   are either positive or negative makes the 

identification of risk-on (   ) and risk-off 

(    ) environments rather 

straightforward in Graph 80.  

As examples, Graph 81 and Graph 82 

highlight the values of   for “Italian and 

Belgian   ” and “Italian and Dutch   ”. 

Colours in these Graphs evolve between 

green, yellow and pink. Green qualifies 

areas of a larger density, while pink refers 

to the lower values of the density and 

yellow is in the middle. Arguably, these two 

pairs have much different average values: 

              for “Italian and Belgian   ” while               for “Italian and Dutch   ”.  

As exposed above, the average coefficient   has significant implications on the distribution of the 

points. In Graph 82 for instance, the very negative mean value         for the Netherlands causes 

a greater occurrence of the points in the domain           (equivalent to     ). This is rather 

clear as most of the green points, ie. with the highest density, lie in the lower diagonal of the square, 

suggesting that there is a sizeable asymmetry in the joint behaviour of the data. In comparison,    

and    are relatively similar for the pair “Belgian and Italian   ” as                 As a result, the 

distribution in Graph 81 looks much more balanced on each side of the diagonal, reflecting a more 

symmetric joint behaviour.  

Graph 81. Multivariate density   with 𝑖: SP and  : IT 

Green cells: large density, salmon colored cells: small density 

 Graph 82. Multivariate density   with 𝑖: IT,  : NL 

Green cells: large density, salmon cells: small density 

     

 

 

 
   

We also plot the parameters   and   in Table 22 and Table 23. The dynamics is now quite different 

compared to the univariate analysis. As we mention above, the correlation coefficient is a constant 

value as time goes by. And since the score    is now time-independent:          .  

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

 ( 𝑖, ) 

 ( 𝑖) 

 (  ) 
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 (  ) 

 ( 𝑖 , ) 
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

 ( 𝑖) 

 (  ) 

 ( 𝑖, ) 

 ( 𝑖) 

  

  

Graph 80. Plot of the multivariate density for countries 𝑖 and   
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Then from eq. (32) we can deduce that: 

    
 

   
 (32) 

Using the hyperspherical coordinates, we also have: 

                  
 

   
     (33) 

Given the periodic aspect of the       function in eq. (33), it is difficult to detect any relationship 

between  ,   and the correlation     . We just note that the correlation tends to increase when the 

ratio 
 

   
 approaches zero. This is a change with the univariate analysis where a larger    used to be 

responsible for a larger volatility coefficient 𝜎 .  

Table 22 shows that   remains rather small on average (around 0.1), with pairs involving France, 

Belgium, Spain and Italy showing slightly larger values, and thus bigger autocorrelations (see darker 

cells). Globally,   remains within a tight range of              , with an average at      . 

Interestingly, pairs involving “Belgium or Italy and the UK”, and “Spain and Portugal” display the 

smallest  . And because these pairs also show a small   coefficient, overall we can deduce that the 

correlation      there is quite high (cf. eq. (33)). 

Table 22. Calibrated parameter B  Table 23. Calibrated parameter ω 

     

 

 

 

   

A closer look at the correlation coefficient  𝒊   

The covariance matrix of the multivariate distribution is a picture of the bivariate interdependencies. 

As we already argued, the correlation we obtained from the calibration is time-invariant (Graph 76); 

and this is true for all pairs of CDS spreads.  

Table 24. Correlation coefficients obtained out of the calibration  

   

 

 

  

Table 24 shows the calibrated values. Colour spans from red for large correlations to green for the 

smallest values. The first observation is that most of the combinations are intensively correlated, 

FI NL AT FR BE IT SP IR PT UK

GE 0.1 0.1 -0.5 0.1 0.1 -0.4 0.1 0.1 0.1 0.1

FI 0.0 0.1 0.0 0.1 0.1 -0.1 0.1 0.0 0.1

NL 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1

AT 0.0 -0.4 0.0 -0.2 -0.1 -0.1 0.0

FR -0.5 -0.8 -0.3 -0.3 -0.2 -0.1

BE -0.6 -0.6 -0.6 0.1 0.1

IT -0.7 0.0 0.0 0.0

SP 0.1 0.1 -0.5

IR 0.0 0.0

PT 0.0

B
COUNTRY 1

C
O

U
N

T
R

Y
 2

FI NL AT FR BE IT SP IR PT UK

GE -0.4 -0.4 -0.9 -0.4 -0.4 -0.9 -0.4 -0.4 -0.4 -0.4

FI -0.4 -0.4 -0.5 -0.4 -0.4 -0.7 -0.4 -0.7 -0.4

NL -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4

AT -0.4 -0.7 -0.4 -0.7 -0.5 -0.7 -0.7

FR -0.8 -0.8 -0.8 -0.8 -0.8 -0.8

BE -0.9 -0.9 -0.9 -0.3 -0.3

IT -0.6 -0.4 -0.3 -0.3

SP -0.4 -0.3 -0.8

IR -0.4 -0.4

PT -0.6

C
O

U
N

T
R

Y
 2

ω COUNTRY 1

GE FI NL AT FR BE IT SP IR PT UK

GE 0.78 0.66 0.80 0.85 0.69 0.91 0.93 0.53 0.76 0.64

FI 0.78 0.82 0.80 0.85 0.61 0.91 0.93 0.87 0.87 0.64

NL 0.66 0.82 0.80 0.85 0.76 0.91 0.93 0.53 0.87 0.64

AT 0.80 0.80 0.80 0.85 0.78 0.91 0.93 0.68 0.87 0.64

FR 0.85 0.85 0.85 0.85 0.71 0.68 0.93 0.59 0.87 0.64

BE 0.69 0.61 0.76 0.78 0.71 0.70 0.93 0.57 0.87 0.64

IT 0.91 0.91 0.91 0.91 0.68 0.70 0.87 0.87 0.79 0.64

SP 0.93 0.93 0.93 0.93 0.93 0.93 0.87 0.79 0.74 0.58

IR 0.53 0.87 0.53 0.68 0.59 0.57 0.87 0.79 0.87 0.92

PT 0.76 0.87 0.87 0.87 0.87 0.87 0.79 0.74 0.87 0.64

UK 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.58 0.92 0.64
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 2

COUNTRY 1
 𝑖 ,  
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with an average value at     . Globally, there is no obvious pattern that could bind the credit quality 

to the level of correlation. We just note that France, Italy, Spain and Portugal exhibit larger 

correlations than other countries. Pairs involving the UK proved also less correlated, with an average 

correlation at just 0.64 (excluding UK/Ireland at 0.92). 

We understand that time-independent correlation coefficients may be perceived as a caveat. The 

non-liner aspect of contagion in particular, as explored in (Ahnert and Bertsch (2013), Forbes and 

Rigobon (2002), Bekaert et al. (2014), Favero and Giavazzi (2012)) can be a reasonable justification to 

consider that contagion needs a reassessment of market correlations, that tends to yield much 

stronger numbers than in the normal course of financial markets. On that basis, our fixed estimator 

     may look a bit too simplistic. However, we demonstrate later in this report that dependencies in 

fact tend to vary as we near the tail regions, regardless of the time-invariant dimension of the 

covariance matrix. Plus our correlation estimators are already large, and close to   in many cases. 

This is a sign that a decent part of the tails may already be taken into account.  

With an average value of 0.77, the calibrated correlation  𝒊   looks large in comparison to the 

empirical sample correlation      (0.66 on average in Table 9). Plus we see significant divergence 

between      and     . The GAS correlation      in particular is larger for peripheral countries than for 

core/soft-core sovereigns (e.g. 0.81 for Portugal versus 0.75 for Germany and 0.78 for France in 

Table 24). In contrast,      detects much smaller correlations in non-core sovereigns (Table 9).  

 Overall, all this confirms that the empirical metric      is greatly constrained. For time series 

that exhibit larger tails, like non-core CDS, the divergence between      and      is more 

pronounced: the much smaller      indicates that empirical methods are not suitable to capture 

the actual cross-asset connections.  

A deeper look at multivariate dependencies 

Risk propagation during periods of intense risk aversion can prove unexpectedly harmful for portfolio 

managers. This is because larger volatility regimes tend to amplify multivariate connections between 

financial securities. And while this is not observable with our time-independent correlation estimator 

    , the aforementioned acceleration of joint connections can be estimated via the coefficients of 

tail dependence    and   . 

The shape of the calibrated distribution   delivers insightful information on the behaviour of 

financial securities. This is especially obvious in the tail regions. Fat or thin tails mean that the 

multivariate distribution is more or less prominent in both the upper-left and lower-right corners in 

Graph 81 and Graph 82. The coefficients of tail dependence, as described in Schmidt (2006), offer 

insightful information on the joint behaviour of financial securities when the price action reaches the 

tail regions of the distribution. As such, they are an illustration of the risk of a full ‘joint’ propagation 

of financial distress during periods of intense risk aversion. These coefficients can prove particularly 

useful when it comes to estimating the shortfall in portfolios, ensuing from a sharp reversal in 

market sentiment.  

The upper-left corner of the distribution (Graph 81, Graph 82) refers to the domain of negative price 

variations, dependence there is thus denominated as ‘lower tail dependence’. The lower-right corner 

in contrast refers to the domain of positive price variations . Any dependence here will be seen as 

‘upper tail dependence’.  
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Intuitively, the presence of some upper tail dependence means that there is a connection between 

both univariate cumulative distributions    and    in the sense that if    takes large values (ie. 

    ), then    is likely to move in the same direction as well. In the same vein, some lower tail 

dependence means that the event      will encourage the emergence of a similar price action on 

  .  Bigger tail dependence tends to exacerbate the joint reaction to shocks, and thus makes 

contagion a bigger risk in general. 

Coefficients of tail dependence are usually defined as the risk that 𝑮  exceeds a certain threshold   

given that 𝑮𝒊 has already exceeded  . And as McNeil, Frey, Embrechts (2005) indicate, the limiting 

case when     or     is of particular interest as these highlight the specific behaviour of the 

tails (upper and lower tail respectively). McNeil, Frey, Embrechts (2005) also stress that this limit 

exists for hyperbolic and NIG distributions, thus including GHT distributions. In the end, the 

coefficients    and    of upper-and lower-tail dependence are defined as: 
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   (35) 

Eq. (34) and eq. (35) show that    and    essentially look at the slope of the cumulative bivariate 

distribution, along the diagonal (drawn in Graph 81 and Graph 82), in the region approaching       

and      . The greater the slope is, the larger the tail dependence. 

The tail dependence is a measure of probability, so    and    are bounded in the range      . In 

general terms, a non-zero value for    or    means that if Country 𝑖 faces a shock of amplitude  , 

then there is a non-zero probability that Country   will face a shock of a similar or more severe 

amplitude. In this case, we consider that the initial shock on Country 𝑖 has, at least partially, 

propagated onto Country  , and therefore there is some tail dependence. Otherwise,      and 

     indicate that Country   is relatively immune to developments on Country 𝑖, and therefore 
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there is no tail dependence (these series are said to be asymptotically independent). As (McNeil, 

Frey, Embrechts (2005)) explains, this is the case for Gaussian copulas.  

Since   ,    is a ratio of multivariate over univariate probabilities, these metrics can also be seen as a 

comparison between multivariate and univariate risks. A large tail dependence (         ) in 

particular indicates that shocks at the univariate level are systematically transmitted via the 

multivariate structure. In this case a shock on one security within a portfolio can have dramatic 

implications onto the other members, hence reducing the efficiency of the sought after risk 

diversification. We would avoid holding these two securities at the same time when risk aversion 

becomes a palpable threat. 

In contrast, fewer tail dependence (         ) indicates that multivariate connections are less 

active. In this case, both securities prove relatively independent one from each other. From an 

investor perspective, holding this kind of securities helps achieve a more effective diversification of 

the risks, with limited danger that a shock will propagate from one member to another.  

We calculated the coefficients    and    for all available pairs (Table 25 and    Table 26). Larger 

values are displayed in red, and the smaller in green, with yellow cells in the middle. First, results 

highlight some asymmetry: upper tail dependence is higher than lower tail dependence, by around 

    (average dependence at 0.38 versus 0.31). Overall this makes sense: the upper tail dependence 

refers to risk averse market conditions (CDS prices rising), which are usually marked by mounting 

contagion. In contrast, the lower tail dependence qualifies an environment where risk appetite is 

prevailing, ie. where contagion is presumably less harmful.  The stronger contagion in the upper 

tail reflects larger multivariate connections in risk averse market conditions. This mostly justifies 

the general observation that      .  

As Table 25 and    Table 26 show, tail dependences vary greatly from one sovereign to another. Pairs 

involving France, Italy, Spain and Portugal for instance exhibit the largest tail dependence. In 

contrast, pairs involving Ireland or the UK, along with some specific combinations like “Belgium and 

Germany or Finland”, ”Italy and France”, and “Italy and Belgium” show very little tail dependence, 

with a lower coefficient    around 0.20. The UK also proves particularly disconnected from the rest of 

the sample, with very little tail coefficients overall. This probably relates to the fact that this is the 

only non-Euro country in the sample. 

Looking at soft-and non-core countries, we note that France and Belgium are less exposed to a shock 

emanating from Italy than from Spain; there is also only less dependence between Ireland and 

Portugal than between Spain and Italy. Interestingly, Italy and Spain appear as the most connected 

sovereigns to the rest of the sample. This suggests that these two countries are material drivers of 

global market sentiment in Europe, especially in Fixed Income markets. Empirical observations of 

the market dynamics in recent years corroborate this pattern, as episodes of sizeable contagion into 

soft-core and core countries were mostly driven by Spain or Italy. Contagion into core and soft-core, 

from risk-off developments in Ireland and Portugal was less palpable in comparison.  
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Table 25. Lower tail dependence (average: 0.31)     Table 26. Upper tail dependence (average: 0.38) 

     

 

 

 

   

 Our analysis highlights sizeable tail dependence in many cases. And while GHT distributions have 

proved particularly relevant to capture fat tails in the context of our analysis; McNeil, Frey, 

Embrechts (2005) paradoxically note that these multivariate distributions usually show less tail 

dependence than Student-t copulas. This can be seen in particular when looking at the upper and 

lower tail dependence coefficients associated to t-Student copulas: 

                     
          

   
   

   (36) 

Where   is the sample correlation of the data and     is the degree of freedom.  

Table 27. t-Student tail dependence    (average at 0.51)  

   

 

 

  

Effectively, considering that        leads to higher values for    (Table 27) than what we got in 

Table 25 and    Table 26. That said, t-Student bivariate distributions would prove unable to capture 

the fat tails in our dataset.  

From a more general perspective, and in order to broaden our understanding of the multivariate 

dependencies, we can generalize the calculation of    and    to any level of  . This time, we express 

the dependence coefficient as a function of  , ie. it is seen as a function of the strength of the initial 

shock on Country 𝑖: 
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GE FI NL AT FR BE IT SP IR PT UK

GE 0.29 0.21 0.31 0.36 0.23 0.46 0.49 0.15 0.27 0.20

FI 0.29 0.32 0.31 0.36 0.18 0.46 0.49 0.39 0.38 0.20

NL 0.21 0.32 0.31 0.36 0.27 0.46 0.49 0.15 0.38 0.20

AT 0.31 0.31 0.31 0.36 0.29 0.46 0.49 0.22 0.38 0.20

FR 0.36 0.36 0.36 0.36 0.31 0.22 0.49 0.18 0.38 0.20

BE 0.23 0.18 0.27 0.29 0.31 0.23 0.49 0.17 0.38 0.20

IT 0.46 0.46 0.46 0.46 0.22 0.23 0.38 0.39 0.29 0.20

SP 0.49 0.49 0.49 0.49 0.49 0.49 0.38 0.30 0.25 0.17

IR 0.15 0.39 0.15 0.22 0.18 0.17 0.39 0.30 0.38 0.48

PT 0.27 0.38 0.38 0.38 0.38 0.38 0.29 0.25 0.38 0.20

UK 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.17 0.48 0.20
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COUNTRY 1   GE FI NL AT FR BE IT SP IR PT UK

GE 0.35 0.27 0.38 0.42 0.29 0.54 0.55 0.20 0.35 0.26

FI 0.35 0.38 0.38 0.42 0.23 0.54 0.55 0.47 0.46 0.25

NL 0.27 0.38 0.38 0.42 0.33 0.54 0.55 0.20 0.46 0.26

AT 0.38 0.38 0.38 0.42 0.35 0.54 0.55 0.28 0.46 0.25

FR 0.42 0.42 0.42 0.42 0.38 0.28 0.55 0.24 0.46 0.26

BE 0.29 0.23 0.33 0.35 0.38 0.29 0.55 0.22 0.46 0.25

IT 0.54 0.54 0.54 0.54 0.28 0.29 0.44 0.47 0.36 0.26

SP 0.55 0.55 0.55 0.55 0.55 0.55 0.44 0.37 0.32 0.22

IR 0.20 0.47 0.20 0.28 0.24 0.22 0.47 0.37 0.46 0.56

PT 0.35 0.46 0.46 0.46 0.46 0.46 0.36 0.32 0.46 0.26

UK 0.26 0.25 0.26 0.25 0.25 0.25 0.26 0.22 0.56 0.26

COUNTRY 1
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GE FI NL AT FR BE IT SP IR PT UK

GE 0.50 0.39 0.52 0.58 0.41 0.64 0.67 0.30 0.47 0.38

FI 0.50 0.54 0.52 0.58 0.35 0.64 0.67 0.60 0.59 0.37

NL 0.39 0.54 0.52 0.58 0.48 0.64 0.67 0.29 0.59 0.38

AT 0.52 0.52 0.52 0.58 0.50 0.64 0.67 0.41 0.59 0.37

FR 0.58 0.58 0.58 0.58 0.43 0.41 0.67 0.34 0.59 0.38

BE 0.41 0.35 0.48 0.50 0.43 0.43 0.67 0.32 0.59 0.38

IT 0.64 0.64 0.64 0.64 0.41 0.43 0.60 0.60 0.51 0.38

SP 0.67 0.67 0.67 0.67 0.67 0.67 0.60 0.52 0.46 0.33

IR 0.30 0.60 0.29 0.41 0.34 0.32 0.60 0.52 0.60 0.66

PT 0.47 0.59 0.59 0.59 0.59 0.59 0.51 0.46 0.60 0.38

UK 0.38 0.37 0.38 0.37 0.38 0.38 0.38 0.33 0.66 0.38

COUNTRY 1
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As detailed in Venter (2002), the condition      or        is an indicator of the presence of 

some multivariate dependence. In this case effectively, there is an amplification of the risks   raised 

by the upfront shock           , which is partly attributable to the propagation of financial 

distress from   𝑆  to   𝑆 . In this case, the accrued risks on   𝑆  reflects contagion at work, hence 

the presence of some cross-asset dependence.  

Otherwise,      or        indicates that there is no amplification of the upfront shock. This 

suggests little dependence, and thus relatively contained bivariate connections.  

We plot       and       for pairs involving soft-core countries in Graph 83, and for those involving 

non-core countries in Graph 84. Since   and     are the discriminating factors, we also add these 

variables in the respective region of the graph (black dashed line).  

First and foremost,       (resp.      ) is always greater than   (resp.    ) in both graphs.  

 There is some dependence in all market conditions, not just in the tails. In absolute term, 

dependence coefficients are bigger at the centre of the distribution, and then consistently decrease 

as we near the tail regions. On that basis, the tail coefficients    and    that we previously calculated 

for     and     correspond to the point where the dependence is the smallest on each side of 

the distribution.  

Graph 83. Dependence coefficients       and       for pairs involving soft-core countries  
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Graph 84. Dependence coefficients       and       for pairs involving non-core countries 

 

 
 

We see two main regimes for the dependence in Graph 83 and Graph 84: first, the coefficients 

decrease in a linear fashion, from their highest values at the centre. This linear regime is prevailing in 

the domain            and           . The slope of the decay is apparently greater for 

pairs that display fewer dependencies in general. Secondly, we see an acceleration of the decline, 

with the dependence falling faster as we approach the tail regions (       and       ).  The 

linear regime is prevailing over a substantial portion of the distribution (in the range        

    ).  

An interesting boundary is the    threshold in each tail, as it is the frontier between both regimes 

(see dashed lines in Graph 83 and Graph 84). This is also the point where the difference      and 

         reach a peak (see red arrows in Graph 83): risk propagation is therefore more intense 

at this specific location, ie. at the 5% and 95% percentiles.  

We thus consider the dependence coefficients at the 5% and 95% level as additional indicators, that 

we denote as: 

               and                   (39) 

Results in Table 28 and Table 29 show a distribution of dependencies relatively similar to what we 

had with the tail dependence coefficients (Table 25,    Table 26). More interestingly, the gap between 

the upper and the lower coefficients is now smaller than previously: there is now just 5% asymmetry 

between       and       on average, while in contrast    is 18% bigger than    in the tails. Since the 

linear regime is prevailing on most of the distribution, this observation is illustrative of the normal 

course of financial markets (ie. outside of the tails), which sees little asymmetry between the upper 

and the lower part of the distribution.  

 The more pronounced differentiation between    and    in the tail regions is not verified in 

other areas of the distribution. This illustrates the asymmetric impact of contagion, which is a 

specific component of the tail behaviour.  
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 𝒊   gives little indication on the variations in correlations when we move along the distribution.    

and    offer greater clarity on that front as both variables discriminate the strength of multivariate 

connections as a function of the percentile  . As a result, it appears that the risk of contagion 

reaches a peak at the    and     level.  

Table 28. lower tail dependence at 5% level       
(average at 0.51) 

 Table 29. Upper tail dependence at 5% level       
(average at 0.53) 

     

 

 

 

   

   and    have delivered some insight on the inter-connections between financial securities. In the 

next paragraph we derive an estimate of the joint market reaction to financial shocks based on these 

criterions, combined with our estimator of un-temporal volatility   .  

An estimate of the market reactions to shocks 

Though larger tail dependence highlights a greater risk of simultaneous losses,    and    give little 

information on the magnitude of the resulting losses in portfolios. Covariance estimators in fact, 

could prove particularly interesting to explore this dimension, especially when it comes to identifying 

securities that are prompt to bear substantial losses. This is mostly because covariance reflects not 

just the binding forces of correlations, but also the idiosyncratic volatility of each entity.  Looking 

at    and    in light of the idiosyncratic univariate volatility could deliver insightful observations.  

For coherence, and because   ,    are un-temporal estimators, the un-temporal coefficient    is a 

more adequate descriptor of the univariate voaltility than its temporal GAS version 𝜎 . As described 

in the dedicated section, the un-temporal volatility    is calculated as: 

                               

We seek to estimate the amplitude of the reaction to a shock, from a multivariate perspective. For 

a given pair of random variable         of two different CDS spreads    𝑆    𝑆   that refer to the 

sovereign entities  𝑖   , we denote: 

-       
   

 the amplitude of the market reaction on   𝑆  after a shock of amplitude       
  has 

materialised on   𝑆 . (read “given that” a shock happened on   𝑆 ). 

 

-       
   

 the amplitude of the market reaction on   𝑆  after a shock of amplitude       
 

 has 

materialised on   𝑆  (respectively “given that” a shock happened on   𝑆 ). 

      
   

 and       
   

 describe two different scenarios. The first scenario assumes that   𝑆  is originally 

subject to a shock of magnitude       
 . This situation can be expressed in terms of percentile, via 

GE FI NL AT FR BE IT SP IR PT UK

GE 0.50 0.39 0.52 0.58 0.42 0.67 0.70 0.30 0.47 0.38

FI 0.50 0.54 0.52 0.58 0.35 0.67 0.70 0.61 0.60 0.38

NL 0.39 0.54 0.52 0.58 0.48 0.67 0.70 0.31 0.60 0.38

AT 0.52 0.52 0.52 0.58 0.50 0.67 0.70 0.41 0.60 0.38

FR 0.58 0.58 0.58 0.58 0.52 0.41 0.70 0.34 0.60 0.38

BE 0.42 0.35 0.48 0.50 0.52 0.42 0.70 0.33 0.60 0.37

IT 0.67 0.67 0.67 0.67 0.41 0.42 0.60 0.61 0.50 0.38

SP 0.70 0.70 0.70 0.70 0.70 0.70 0.60 0.51 0.45 0.33

IR 0.30 0.61 0.31 0.41 0.34 0.33 0.61 0.51 0.60 0.68

PT 0.47 0.60 0.60 0.60 0.60 0.60 0.50 0.45 0.60 0.38

UK 0.38 0.38 0.38 0.38 0.37 0.37 0.38 0.33 0.68 0.38
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  ,5% 
GE FI NL AT FR BE IT SP IR PT UK

GE 0.51 0.40 0.53 0.59 0.43 0.68 0.71 0.31 0.49 0.39

FI 0.51 0.55 0.53 0.59 0.37 0.68 0.71 0.62 0.61 0.39

NL 0.40 0.55 0.53 0.59 0.49 0.68 0.71 0.32 0.61 0.39

AT 0.53 0.53 0.53 0.59 0.51 0.68 0.71 0.42 0.61 0.39

FR 0.59 0.59 0.59 0.59 0.54 0.42 0.71 0.36 0.61 0.39

BE 0.43 0.37 0.49 0.51 0.54 0.43 0.71 0.34 0.61 0.39

IT 0.68 0.68 0.68 0.68 0.42 0.43 0.61 0.62 0.51 0.39

SP 0.71 0.71 0.71 0.71 0.71 0.71 0.61 0.52 0.47 0.35

IR 0.31 0.62 0.32 0.42 0.36 0.34 0.62 0.52 0.61 0.70

PT 0.49 0.61 0.61 0.61 0.61 0.61 0.51 0.47 0.61 0.39

UK 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.35 0.70 0.39
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the empirical cumulative distribution           
  . We calculate the volatility        

  that describes 

the entropy surrounding this shock as: 

       
       

            
  

 
   

            
      

  

In the end, 
      
 

       
  appears to be a standardized measure of the intensity of the shock.   

      
   

 denotes the price action on   𝑆  in the immediate aftermath of the upfront shock       
  on 

  𝑆 . Assuming that there is a propagation of financial distress from   𝑆  onto   𝑆  (at least 

partially), part of       
   

 can be attributable to the contagion phenomenon.  

We denote the market entropy on   𝑆  surrounding the market reaction       
   

 as the volatility 

estimator        
   

. In a worst case scenario, we assume that the shock is entirely transmitted, which 

means that   𝑆  is hurt by a shock of a similar amplitude to the shock on   𝑆 . This implies that  

          
   

            
  , and as a result we derive        

   
 as: 

       
   

     
            

   
 
 
   

            
   

     
    

            
  

 
   

            
      

  

Assuming that the whole shock propagates onto   𝑆 , the product of the volatility        
   

 by the 

standardized percentile 
      
 

       
  , ie. 

      
 

       
         

  𝑖
, can be regarded as an estimate of the market 

reaction       
   

. But this holds only if the shock propagates in full.  

     
        

    and      
        

    reflect the probability that the shock       
  leads to the 

emergence of another shock, of similar or more severe amplitude, onto   𝑆 . Said differently, these 

two coefficients can be seen as illustrating the probability that the upfront shock propagates in full: 

in essence they reflect the risk that the worst case scenario comes true. 

We prefer defining       
   

 as a positive coefficient, though this is not vital. This will just help make 

      
   

 easier to compare on each side of the distribution. As a result, we consider           
   

instead of       
 . 

In the end, we calculate the market reaction       
   

, that is supposed to arise from the shock   , as 

its expected value in the worst case scenario, ie. 
          

  

       
         

  𝑖
, moderated by its probability 

     
        

    or      
        

    that the assumed worst case scenario effectively turns up: 

      
   

 
          

𝑖  

       
𝑖         

   
      

        
     for           

       

      
   

 
          

𝑖  

       
𝑖        

   
      

        
    for           

       

   (40) 

Based on this definition, both a larger idiosyncratic volatility        
   

 and larger dependence 

coefficients encourage a bigger market reaction to the upfront shock. And the other way round, a 

lower idiosyncratic volatility and less tail dependence favour less contagion.  

Since the problem is symmetrical, we reciprocally define       
   

 as: 
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   for           
 

      

With:  
       
 

     
            

 
 
 
   

            
 

     
 

       
   

     
            

 
 
 
   

            
 

     
 

  

   (41) 

We calculated       
   

 for       
 

    
  
    where   takes all possible values in the range      . Graph 

85 and Graph 86 show the results relative to Spain and Italy. Obviously, larger values of       
   

 reflect 

a larger exposure to   𝑆 , with a greater transmission of the shock.  

Graph 85. Expected reaction to an upfront shock stemming from Spain and Italy, in basis points 

  

 
 

Graph 85 first, highlights the exposure of soft- and non-core countries to a shock coming from Spain 

and Italy. The y-axis describes the intensity of the expected market reaction       
   

 in basis points.  

This time again we see the emergence of two regimes:  

1) For shocks in the range               
 

      first (ie. small/moderate shocks overall);       
   

 

remains relatively contained, below a maximum of     . This is not a radical outcome per se, as for 

non-core sovereigns a variation of        corresponds to a percentile of           on the 

cumulative distribution, which is not so high. The rolling standard deviation for Spain in Graph 42 

also shows that volatility can amount to more than          during periods of risk aversion;      

market reaction looks relatively small in comparison.  In this first regime, the market reaction is 

not cataclysmic, and remains acceptably contained.  

2) For           
 

      and           
 

     , ie. as we near the tails of the distribution, we now 

see a pronounced acceleration in the market reaction       
 

. This escalation illustrates that financial 

shocks become significantly more harmful beyond a certain level of severity. The non linear aspect of 
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the market response is noteworthy, as it suggests a fierce amplification of contagion into the tails. 

This overall corroborates the general observations of the contagion phenomenon in the literature 

(more in the literature review). In this domain,       
 

 is much larger and reach values as high as 

     for the pair PT|IT; more than      for PT|SP or IR|IT; and more than      for SP|IT or IR|IT.  

As a general observation,       
   

 is seemingly reaching a peak around           
 

       in the upper 

tail, and           
 

       in the lower tail. Then       
   

 tends to decrease as we go farther in the 

tail. This reversal mostly reflects the decline observed in    and    at the very end of each tail: 

contagion is thus less stringent contagion in this area. To some extent, this may also be due to some 

numerical limitations in our calculations. Except in the tails, we see little differentiation on each side 

of the distribution.  

The profile of       
   

 is in line with the general literature as authors usually distinguish a phase of 

mild contagion, followed by a non-linear acceleration of the market response to shocks. Here we 

offer a comprehensive quantification of this behaviour and the continuous aspect of the plot makes 

the identification of the transition between these two regimes relatively straightforward: the regime 

of mild contagion tends to reach saturation around           
 

      and           
 

     , and 

then the non-linear acceleration comes into force.   

The contagion effect becomes undoubtedly a bigger concern under larger shocks. Not surprisingly, 

Portugal and Ireland are the more exposed countries to shocks around, as we see the biggest market 

reactions on the pairs PT|IT, PT|SP, and IR|IT (        reaction in the tails). IR|SP, SP|IT and 

IT|SP in comparison are a bit more resilient, with a maximal reaction at around        . This 

illustrates that for Ireland, Italy is a bigger source of contagion than Spain is. And in contrast to this 

dynamics, France and Belgium are less exposed to Italy than Spain, as BE|IT and FR|IT exhibit around 

       reaction in the upper tail, while BE|SP and FR|SP reach         reaction.  

 Italy is a more stringent source of contagion than Spain for other peripheral countries. In 

contrast, Spain is a bigger source of contagion than Italy for France and Belgium. Comparing Italy 

and Spain one to each other, we note that SP|IT is slightly bigger than IT|SP though both countries 

are relatively equivalent in terms of credit quality (     versus      in the upper tail). This comforts 

the view that peripheral countries are hit by greater contagion when the upfront shock happens in 

Italy than in Spain. 
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Graph 86. Expected reaction to a shock on core- and soft-core countries from Italy and Spain, in basis points 

  

 
 
 

Graph 86 displays the market reaction       
𝒊  

 in soft-core and core countries as a response to a 

shock materialising in Spain and Italy. Overall, the general shape of the market reaction is very 

similar to Graph 85, with still a clear demarcation between the regime of mild contagion and the 

non-linear expansion in the tails, roughly at the same place of the distribution as before (ie. 

          
 

      and           
 

     ). A minor change however, is that the reversal at the very 

end of the distribution is now less pronounced than before. 

We mentioned that France and Belgium are more exposed to Spain than to Italy. In comparison, 

Austria now looks to be equally exposed to both (see AT|SP and AT|IT in Graph 86). FR|IT is also 

much smaller than numbers relative to Austria and Belgium, though still above the bundle of curves 

relative to core countries. This suggests that French assets offer more protection against 

developments in Italy than Belgian and Austrian securities do.  

In line with market observations, core countries are the most resilient sovereigns. Finland in 

particular shows the smallest reaction, at just       in the tails. Then Germany and the 

Netherlands display very close results, with the market reaction remaining much contained in these 

countries too, at      .  

 Table 30. Market reaction in the upper tail at 2% level (bp) 
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The 2% level in the upper tail (ie. for           
 

      ) is an interesting threshold as this is usually 

the point of maximum market reaction in the upper tail, when risk aversion is close to its climax. As a 

result we extract these values as to summarise the whole dynamics. We denote this indicator 

         
   

, in Table 30.  

Table 30 is a straightforward illustration of       
 

 that involves all the combinations of sovereigns 

 𝑖   . As we previously noted, peripheral countries are more subject to contagion than other credits. 

Portugal in particular sees a notable acceleration of the market reaction, with more than     bigger 

price variations than in Italy/Spain/Ireland. In other non-core countries, the average market reaction 

is at      in Italy, and      in both Spain and Ireland. This overall suggests that Italian securities are 

slightly more resilient to contagion risk.  

Soft-core countries look much more stable, with just     ,      and      average reaction in 

Austria, France and Belgium; while core countries confirm their pole position and prove remarkably 

less impacted by shocks in general.  

Now looking at the origin of the shock, we note that France and Ireland are causing slightly less 

contagion than comparable credits do. More generally, we see little evidence of any pattern that 

would suggest that some sovereigns are systematically a bigger source of contagion than others.  

Still we extract additional information from Table 30, that we display in Table 31 and Table 32: Table 

31 shows the average market reaction from selected countries onto each asset category (core / soft-

core / non-core). Then Table 32 exhibits the average market reaction stemming from each asset 

category onto selected countries.  

Table 31. Average market reaction for 

selected countries in each category (bp) 

 Table 32. Average value of the market reaction from soft-core and non-

core countries (bp) 

     

 

 

 

   

Table 31 indicates how big the market reaction is supposed to be on each of the three main 

categories: core, soft-core and non-core countries. Essentially, an upfront shock in Italy leads to 

greater market reaction in core countries (average response at      ) than other shocks do. 

However, the greater exposure to Italy is not replicated in soft-core countries which look more 

exposed to Portugal and Spain than Italy and Ireland.  

Numbers also show that non-core countries would be hit by contagion harder when the initial shock 

is coming from Austria than from France or Belgium. The differentiation this time is sizeable as a 

shock from Austria leads to a reaction almost twice as big as when the upfront shock is materialising 

on French CDS.   
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Table 32 gives a bit more details by comparing soft-core and non-core countries as a source of 

contagion. Peripheral countries first, look almost equally exposed to each asset category, with an 

average reaction at      (non-core) and      (soft-core), while in a few cases a shock in soft-core 

countries lead to greater market reaction than a shock in non-core countries. This is true for Spain, 

Portugal, and France; all other countries are more impacted by peripheral countries. We also note 

that Ireland is significantly more exposed to non-core countries, with an average reaction at      

versus just      when contagion is stemming from soft-core countries.  

Aside from this general understanding of contagion, let us gauge to what extent contagion 

effectively materialised in the past. We mentioned earlier that Spain and Italy are meaningful 

sources of contagion as both countries display sizeable dependence with other sovereigns. As a 

result, and for better clarity we will focus on these two countries in the following analysis.  

Contagion or idiosyncratic factors: which was prevailing during the crisis? 

We now reintroduce the temporal aspect of time series   . While we assumed the realisation of an 

upfront shock in the latter version of       
   

, we now seek to quantify the theoretical contagion that 

should have arisen from the actual price variation   
 
 (drawn from the dataset). We therefore adjust 

the notation of the market reaction to    
   

, and its formula as well:  

  
   
 

      
 
 

   
     

   
      

    
 
    for       

 
      

  
   
 

      
 
 

   
    

   
      

    
 
   for       

 
      

With:  
   
 
     

        
 
 
 
   

        
 
     

 

   
   
     

        
 
 
 
   

        
 
     

 

  

   (42) 

Since we replace the upfront shock       
 

 by   
 

, we remove the       denomination in all 

parameters. In the end,   
   

 illustrates the expected market reaction on   𝑆  that is supposed to 

arise from the price action   
 
 on   𝑆 , at time  .    

 
 and    

   
 this time are also time-dependent. We 

calculate these indicators on Spain (  
    

 in Graph 87) and Italy (  
    

 in Graph 88).  

Graph 87. Expected market reaction (bp) from   
  

 
 

Graph 88. Expected market reaction (bp) from   
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These two graphs are not very much convenient to use; we just note that contagion is more intense 

during periods of risk aversion, ie. when there was significant widening in SPGB/Bund and BTP/Bund 

spreads (e.g. 2010, 2011, 2012 in Graph 89).  

Looking at France, the series   
     

 and   
     

 indicate by how much French CDS spreads are 

supposed to rise just ‘by pure contagion’ from the performance of Spanish (  
  ) and Italian CDS 

(  
  ).  It looks sensible to evaluate how big this contagion is, in comparison to the actual price 

action on French CDS.  

In Graph 90 and Graph 91 in particular, we compare   
     

 and   
     

 to the available data   
  . In 

these two graphs we focus on the period from January 2010 to end-2012, as contagion into soft-core 

countries is less of a driver outside of this range. And while   
   

  ,   
   in contrast can be negative. 

However, we only focus on   
     which reflects an actual increase of the CDS price, and thus an 

increase in the underlying risk aversion.  

We see several interesting periods in Graph 90. Between July 2010 and July 2011 first, the actual 

price variation     
   is smaller than its expected value   

     
. This suggests that there was very little 

contagion operating from Spain during this period.  

In contrast to this dynamics,   
   is bigger than   

     
 between July 2011 and April 2012. This 

suggests that contagion into French CDS spreads materialised in full. And since   
     

     
, there 

were presumably additional drivers behind the sharp volatility in French CDS spreads, including a few 

idiosyncratic factors given the generalised confidence crisis during this period.  

Finally,   
   looks relatively comparable to   

     
 between April 2012 and until January 2013. This 

illustrates the fact that any price increase in French CDS was mostly driven by peripheral countries 

during this period (and this is generally true for the whole spread complex), with very little influence 

from idiosyncratic factors in general. This period is coincident with the emergence of a stronger 

commitment from the ECB to stabilise financial markets; and this mostly justifies the 

disappearance of idiosyncratic factors as a main driver of French CDS spreads. 

Graph 89. Contagion is bigger in Graph 88 when 10Y 

SPGB/Bund and BTP/Bund spreads are on the rise 

 Graph 90. Contagion from Spain into France, in 

comparison to the actual price action – focus on the 

sovereign crisis 

     

 

 

 
   

In line with our previous observations, Graph 91 indicates that contagion from Italian securities is 

smaller than from Spanish CDS. From that point of view, Graph 90 is a more relevant benchmark of 

the potential contagion into French CDS.  
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Looking at Germany in Graph 92, it is striking to see that   
     

 is very close to   
   during the full 

period, even at the fore of the sovereign crisis. From July 2011 to April 2012 in particular, the limited 

differentiation between   
   and   

     
 indicates that there was no particular erosion of confidence 

in Germany: the price action on German CDS was just reflecting risk aversion at the periphery and 

the ensuing risk propagation; nothing more. This is in contrast to French CDS during the same 

period as the bigger price increase there, beyond the levels of contagion, reflects the emergence of 

a confidence crisis (reflecting sizeable idiosyncratic concerns).  
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Another interesting point we think, is that in terms of volatility, the induced contagion is relatively 

similar to the realised volatility. Graph 90 in particular shows that   
     

    
   in terms of volatility. 

On that basis, it would probably be a non-sense to consider that the actual contagion is the sum of 

all the potential contagion. As an example,   
     

   
     

   
     

 is more than twice as big as 

  
   in absolute terms, so clearly this cannot be seen as ‘the potential contagion stemming from non-

core countries’. A more adequate approach would be just to take the mean value:  

  
           

  
  
     

   
     

   
     

 
 

This is similarly to our calculation in Table 31, where we discriminate contagion by asset category.  
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Conclusion  

In this first chapter, we have explored the calibration of a multivariate model that helps understand 

the strength of contagion within European CDS spreads. Generalised Hyperbolic distributions proved 

particularly adequate to capture fat tails, which are commonly attributable to periods of financial 

distress. The second major tool our exploration relies on, is the ‘GAS method’ that revealed itself as a 

particularly convenient approach to reproduce the erratic aspect of the historical volatilities, in 

particular when risk aversion is intense.  

We also derived an un-temporal definition of the univariate distribution of the data via an adequate 

‘fair-value’ estimator    of the underlying volatility.    is no longer conditional on immediate 

realisations in the past, and this is an interesting upgrade to the GAS estimator 𝜎 . 

We then conducted a pair-wise analysis of the bivariate connections within the dataset and we 

calibrated the corresponding multivariate distribution functions using an adjusted formulation of the 

GAS method. While the resulting correlation coefficients proved time-invariant, the dependence 

coefficients associated to each distribution indicates that the propagation of risks is not constant: it 

reaches a peak at the 5% level in each tail.  

Combining the dependence coefficients    and    with our un-temporal volatility estimator   , we 

designed some novel estimators of the resulting market reaction to shocks. This helped understand 

the potential losses within portfolios when risk aversion tends to surge. We also compared the 

impact of contagion during the sovereign crisis, in comparison to the domestic deterioration that hit 

most of the countries. This illustrates the greater resilience in German CDS, in comparison to French 

CDS, with the difference reflecting a more palpable confidence crisis on French CDS.  

Our model explores bivariate connections. While we got insightful information on the joint 

behaviour of CDS spreads, an obvious limitation all the same is that the approach does not allow for 

a propagation of contagion from multiple epicentres at the same time. In fact, we have briefly 

explored the calibration in dimension 3. Results are conclusive in the sense that the resulting 

calibrations are properly calibrated (based on ADC). Though this gives a more accurate correlation 

matrix, this is also at the cost of a substantially bigger calibration time; something that can prove a 

drag if the model has to be recalibrated frequently.  
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Chapter II.  

Deriving contagion from stress tests 
 

 

Résumé du Chapitre II 

Le Chapitre II explore différentes manières d’exploiter notre modèle probabiliste. Afin d’identifier la 

dynamique de la contagion entre les obligations souveraines, nous proposons de quantifier la 

réaction de marché résultant de chocs financiers. Nous considérons une série de chocs, univariés et 

multivariés, avec un niveau de sévérité croissant, et nous définissons un indicateur de vulnérabilité 

qui illustre l’accélération de la réaction de marché attendue, à mesure que l’intensité du choc 

augmente. Le degré important de granularité dans les résultats nous permet d’identifier des lois 

empiriques supposées généraliser le comportement de la réaction de marché lorsque l’aversion au 

risque s’intensifie. En particulier, les résultats indiquent que la réaction de marché suit un 

comportement quadratique sur le plan univarié, et un comportement logarithmique sur le plan 

multivarié à mesure que l’intensité du choc augmente. Il apparaît aussi qu’il existe une relation 

linéaire qui relie l’intensité maximum du coefficient de vulnérabilité en fonction de la réaction de 

marché correspondante, et ce entre tous les pays. Cette relation est inattendue et suggère qu’il 

existe bien un dénominateur commun qui relie tous les pays entre eux lorsque l’on s’intéresse à la 

dynamique de la détérioration de la qualité du crédit en période d’aversion au risque. 

Dans un second temps, nous explorons la validité de nos résultats dans un contexte de gestion 

obligataire. Nous incorporons nos estimateurs de volatilité et de réaction de marché à certaines 

approches reconnues d’optimisation de portefeuille, et nous notons une amélioration de la 

résistance des portefeuilles, dans cette nouvelle version. Finalement, nous développons une 

nouvelle méthodologie d’optimisation de portefeuille basée sur le principe de mean-reversion. Les 

portefeuilles que nous obtenons avec nos propres estimateurs sont plus robustes que ceux obtenus 

avec une définition empirique de la covariance entre les souverains. Comme la méthode GAS permet 

de calculer une prédiction de volatilité sur la période à venir, nous nous intéressons aussi à la 

robustesse de cet indicateur. Les résultats suggèrent que la composante prévisionnelle du modèle 

est intéressante pour la plupart des pays considérés. 
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“One of the most important functions of Stress-testing is to identify hidden vulnerabilities, often the result of hidden assumptions, and make 

clear to trading managers and senior management the consequences of being wrong in their assumptions.” President of NY Fed 

commission bank. 

Introduction.  

The Global Financial Crisis has been a powerful incentive for regulatory authorities to consider 

developing and strengthening the framework surrounding the assessment of banks’ robustness. 

Regulators, in this respect, have stressed the need for a better centralisation of the methodology 

amongst concerned institutions. They have also emphasized the benefit of combining both the 

micro-and macro-approach into their prudential approach.  

Improving stress tests methodologies has been identified as a sensible strategy at the regulatory 

level, especially as these models help understand the detrimental consequences of targeted risk 

events. The appetite for developing stress tests favoured the publication of an abundant literature, 

and encouraged the emergence of new approaches in recent years.  

By and large, the success of stress test models comes from an interesting combination of versatility, 

straightforwardness, and a wide range of utilisation. Versatility reflects the fact that different kind of 

scenarios can be implemented, with most of the time the ability to track the deterioration resulting 

from different levels of financial distress. Stress tests are particularly straightforward in the sense 

that the framework involves well chosen simplifying assumptions. The degree of simplification can 

be adjusted to the desired complexity of the model, with even basic approaches showing interesting 

conclusions (like the Eisenberg-Noe framework developed in the literature review). Finally, the range 

of utilisation is particularly wide, from purely academic thoughts, up to formalised macro-or micro-

prudential recommendations at the level of bank management or politics. 

First we explore popular approaches to stress testing in the literature review. Then, we design a 

specific methodology, adjusted for sovereign risk exploration. In particular, we differentiate 

univariate from multivariate implications from shocks. The univariate angle offers a view on the 

expected credit deterioration, while the multivariate analysis illustrates the pure contagion effect.  

Our analysis gives extensive details on the dynamics of both the market reaction to shocks and the 

resulting contagion with regards to the degree of volatility; our calculations are based on the price 

dynamics of recent years including the GFC and the sovereign crises. We also explore a 

generalisation of these behaviours, with the resulting model providing meaningful flexibility and ease 

of use to explore synthetic case studies.  

Finally, we consider these estimators and more generally the statistical model developed in Chapter 

1 in the context of risk management. First we explore the robustness of the volatility forecast 

delivered by the GAS method, and we demonstrate the benefit of using this indicator instead of 

more conventional volatility estimator in risk management procedures. We also develop a novel 

asset allocation procedure based on our own contagion estimators. This approach outperforms more 

conventional methodologies. 
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Literature review 

Introduction 

Stress tests are specific quantitative models, used to understand the potential vulnerabilities caused 

by systemic risk, and to visualise implications of financial shocks on the banking system. This kind of 

simulation requires modelling a dedicated framework, based on a basket of relevant variables and 

involving adequate quantitative tools. As capturing and replicating financial linkages in a convenient 

manner is a meaningful purpose of the simulation, the quantitative approach is a key feature.  

Stress tests have been used for a wide variety of purposes. The diversity of these applications has 

grown over the past decade, evolving from pure risk-management considerations towards 

regulatory-based decision taking. The rising enthusiasm from governing authorities (central bankers, 

regulators…) to consider stress tests as an engaging macro-prudential tool in recent years is an 

evidence of the ongoing interest in developing new methodologies or improving established 

approaches to systemic risk evaluation. This has encouraged the publication of an abundant 

literature on the subject, in the past decade.  

Systemic risk characterises the possible collapse of a given financial entity in the event of a sudden 

and massive rise in financial distress. As banks are meaningful pillars of the financial system, most of 

the literature available on systemic risk focuses on modelling the resilience or exposure of the 

banking sector to particular scenarios. Regulatory capital ratios and interbank flows resulting from 

the funding requirements of financial institutions are examples of relevant variables that are 

carefully scrutinised in stress tests scenarios. One of the limitations though, of the bank-level focus is 

the numerous data that need to be integrated. Studies centred on the United States for instance 

need to absorb a massive amount of information because of the size of the banking sector there. 

Another common caveat is that the required information is not always publicly available, and this is 

amplified by the fact that regulatory constraints in terms of disclosures can differ from one 

jurisdiction to another. From that perspective, it is relatively challenging to conduct cross-country 

comparisons out of bank-level investigations of systemic risk. A possible way to overcome this issue 

is to consider market data exclusively. Models based on CDS spreads or bond valuations have gained 

considerable traction in recent years as the debt crisis in Europe has been an incentive to move the 

exploration of systemic risk to the level of sovereigns (and not just to banks), in particular by 

exploring implications of a confidence crisis on the sovereign credit robustness. The approach can 

take the form of probabilistic models that integrate a dataset of fundamental or market-based time 

series. And such analyses usually offer a broader understanding of systemic risk (ie. over a wider 

scope of geographical areas) than bank-related models. This greater flexibility however, may be at 

the cost of a certain loss of precision as market-based information sometimes does not reflect the 

complexity of intrinsic linkages between sovereign Treasuries and banks. Finally, another category of 

Stress test models seek to illustrate systemic risk, but from an investor point of view. This means 

estimating the potential market reaction to mounting financial distress, in order to apprehend the 

ensuing losses in portfolios: for portfolio managers, “stress tests provide a useful check on VaR 

analysis by carefully working out the consequence of a particular, intuitively appealing scenario for 

the value of an asset portfolio” (Hirtle, Lehnert (2014)). The goal of systemic risk exploration in this 

context is to take decisions on the optimal asset allocation as to minimise the exposure of the 

portfolio to shocks. This approach is largely depending on the nature of the assets: e.g. a credit 
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portfolio would prefer micro-based analyses of systemic risk, eventually helping to draw conclusions 

on the credit worthiness of a given firm, in a stressed environment. A macro portfolio in contrast, 

involving sovereign securities for instance, would take advice from more general macro-based 

models. As portfolios may be limited to very specific assets (like a particular sector in equities), it is 

tempting to use simplifying assumptions. Too stringent simplification though is a risk to ignore 

significant aspects of the global macroeconomic picture that could prove much influent on the price 

action when risk aversion is on the rise.  

Conducting a stress test exercise also implies designing a model that understands the origin of risk 

aversion, and how risk propagation translates into price deterioration. The capability to interpret the 

shock is thus a key feature of stress tests models. First, this requires considering a set of relevant 

variables, supposed to reflect the dynamics of mounting risk aversion: these variables usually take 

extreme values in the stressed environment. The procedure to design the shock takes various forms 

in the literature. Bank-level approaches usually consider shocking cash flows on particular entities. A 

failure to repay its debt obligations, a significant rise in bank’s liabilities or severe losses on mark-to-

market valuations are examples among others of common scenarios implemented to simulate an 

unanticipated shock on individual banks. Other approaches can also involve data at the 

macroeconomic level: e.g. by simulating a sharp rise in unemployment, depleting growth or a largely 

disadvantageous current account, as all this would cause significant contagion into financial 

institutions. As investors’ confidence erodes, this scenario naturally pushes interest rates to new 

highs. Funding, in turn, becomes abnormally expensive, and this feeds further depletion of the credit 

quality. Shock scenarios may also involve a specific assumption on the ex-post situation in financial 

markets. As an example, one can assume that a given CDS or sovereign spread may widen beyond 

pre-determined thresholds. In this case it would be interesting to estimate the resulting contagion 

on different asset classes. The methodology behind the assumed scenario is a fundamental feature 

in stress tests modelling. We explore this feature more in depth in the following paragraphs, 

illustrating the available literature. Another meaningful feature in the literature is how contagion is 

defined and quantified. For a given scenario, it is crucial to set up an appropriate framework that 

reflects how risk aversion translates into contagion and ultimately into a price variation on the 

securities affected by the shock. This component within stress test models is usually called a 

“satellite model”; and there is a large variety of satellite models in the literature. A widespread 

methodology is to build a synthetic banking network that is supposed to replicate the actual 

interbank linkages. The network may also allow for some counterparty risk while incorporating 

interesting models to derive future incomes, losses and capital ratios. Conclusions in this case 

depend largely on the network structure, ie. the concentration of nodes and bilateral links. More 

sophisticated approaches on the quantitative side may involve complex econometric tools; this is 

another way to derive the outcome of the shock. These statistical tools dedicated to systemic risk 

exploration usually rely on correlation measures and estimators of causal relationships. More 

intuitive methodologies can also be based on empirical observations of the spillover effect, for 

instance during periods marked by fire sales, or by an extremely low liquidity, or a notable loss of 

confidence in the past. These models are prompt to consider original indicators (e.g. ‘bankruptcy 

costs’). We explore satellite models further in a dedicated paragraph below. Assessing contagion 

and taking decisions accordingly is the last stage of stress testing from a very general point of view. 

The resulting predictions that illustrate the resilience or exposure of a given entity actually need to 

be seen in light of the purpose of the exercise. A goal at the regulatory level is to provide a macro-
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prudential feedback to member participants: banks seen as insolvent in a risk-averse environment 

are required to recapitalise themselves. Comparing the predicted capital ratios with the regulatory 

requirements (Basel, Solvency) helps identify the level of recapitalisation. Results can also lead to 

broader recommendations like structural reforms at the national level. For risk management 

purposes, stress tests results can reveal a difference between the observed robustness in the 

simulation and the corresponding ratings (from official agencies). Results may also highlight more 

important divergences, emphasizing unexpected resilience or exposure that is worth to highlight to 

investors. In some cases, stress tests can also reveal an ongoing depreciation or strengthening of the 

credit quality. This kind of conclusions is an invitation for investors to reallocate accordingly, allowing 

them to reduce the global exposure of portfolios in a risk-averse environment. From a more 

academic point of view, stress test models may be conducted to promote novel methodologies to 

quantify contagion, advertising thereby new features of financial inter-connectivity. This kind of 

approach has the significant advantage of being independent from any banking, governing or 

supervising authority. This confers greater autonomy in investigating the topic. 

The general description of the framework around stress testing highlights the numerous approaches 

to address the question of systemic risk exploration. We conduct a literature review in the following 

pages, based on research papers that look relevant in the context of this analysis.  

The framework 

The heart of stress testing methodologies is the specific framework they rely upon. This framework 

has to understand the magnitude of risk-aversion, while reflecting the channels of risk propagation. 

This is a key feature to get a sensible picture of the shock implications in the distressed environment. 

The literature reflects mostly two main approaches as to define the framework. First of all, one has 

to pick-up some input variables that will be under pressure when the stress test scenario comes into 

force. These variables play a major role in the simulation. Another meaningful challenge is to provide 

a relevant structure that will properly integrate the propagation of financial stress. This structure can 

take various forms. First, a lot of papers focus on modelling a virtual network of financial entities, 

which is meant to replicate the actual linkages between the participants via adequate quantitative 

models. Eisenberg, Noe (2001) in particular is seen as the precursor of network-based models. The 

authors design a multi-firm network (each firm is a node) that takes revenues and payments from 

each entity as an input to the simulation. In the end, the model computes a “clearing payment 

vector” that illustrates bilateral liabilities. This vector provides a consistent way of valuing the nodes. 

It also gives a picture of the risks that each entity may not fulfil its future payment, highlighting 

thereby the relative soundness of the whole financial system. In this framework, each participant is 

described via three main variables, which look sufficient information to test the viability of the 

entity. As a variable of prime importance, the model looks at nominal liabilities. These flows 

illustrate promised payments due to other firms (ie. to other nodes). Since these obligations 

constitute a burden for the firm, excessive liabilities raise some risk of insolvency (De Groen, Gros 

(2015)). The second feature of interest is nominal claims, which reflect payments due by other 

nodes. Thirdly, the model also takes exogenous operating cash flows into account. These flows 

correspond to cash infusion to the node from sources outside the network; they prevent too much 

simplification of the actual inter-firm linkages. Then, nominal obligations and operating cash flows 

define what the authors call a “financial system”. Similar frameworks have explicitly taken inspiration 

from Eisenberg, Noe (2001) like Anand, Kartike et al. (2014), Acemoglu, Daron et al. (2014), 
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Glasserman, Paul and Young, Peyton (2013), Houy, Jouneau-Sion (2016), Visentin, Battiston, D’Errico 

(2016), Feinstein, Rudloff, (2015) – every time implementing their own variations. Acemoglu, Daron 

et al. (2014) for instance considers interbank lending and borrowing as the main sources of risk 

propagation too, but they also assume the presence of contingency covenants in every debt 

contract. This allows the lender to charge different interest rates depending on the risk-taking 

behaviour of their borrowers. Adding this variable helps ensure that the extent of counterparty risk 

is (at least partially) reflected in the interbank contracts: banks with higher risk of default face higher 

risk-premia. Overall, this is a relevant way to estimate how counterparty risk may drive financial 

distress and lead to contagion over the entire banking structure. In those models where risk 

propagation is largely dependent on the form of the banking network, the connections between 

participating entities are particularly straightforward to plot. By symbolizing participating banks by 

circles (or nodes), the bilateral connections usually appear as arrows. Each arrow is attached to two 

nodes, with the origin being the lending entity while the targeted circle is the borrowing bank (Graph 

93, Graph 94).  

Graph 93. The three-chain financial network  Graph 94. The ring financial network 

     

 

 

 

Source: Acemoglu, Daron et al. (2014)  Source: Acemoglu, Daron et al. (2014) 

This graphical approach offers a genuine interpretation of how financial stress propagates into the 

network. It also provides a singular flexibility to explore various structures by modifying the 

distribution of the arrows. Acemoglu, Daron et al. (2014) and Glasserman, Paul and Young, Peyton 

(2013) in particular investigate different kinds of connections, and evaluate how the distribution of 

the arrows impacts the behaviour of the banks. Graph 95 and Graph 96 are extracted from their 

analyses; these graphs highlight two different networks where the disposition allows for more or less 

complexity in bilateral connections. Anand, Kartike et al. (2014) offers another interesting network-

based approach to systemic risk exploration. Like in previous examples, connections between the 

nodes (ie. participating banks) illustrate the total lending and borrowing amount observed on 

balance sheets; this interpretation is largely based on the Eisenberg-Noe framework (Eisenberg, Noe 

(2001)). The difference in this case is that Anand, Kartike et al. (2014) also involves empirical 

observations of the dynamic of bilateral connections. In particular, the authors acknowledge that 

interbank linkages are typically disassortative: “small banks seek to match their lending and 

borrowing needs through relationships with larger banks that are well placed to satisfy those needs”. 

This behaviour is then interpreted as the main driver of risk propagation in their own model as it 

induces a higher concentration of borrowing requirements on safer banks during periods of stress 

from the more troubled institutions. The authors also explore a novel approach to designing the 

channel of risk propagation: they incorporate the probability that banks may fail to borrow/lend one 

to each other as an additional criterion. Arguably, quantifying empirical observations also presents 

some risks. In particular one needs to verify that the aforementioned assumption of disassortativity 
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remains valid, regardless of the level of financial distress. Interestingly, Glasserman, Paul and Young, 

Peyton (2013) also explores additional variables like node size, leverage, bankruptcy costs and the 

impact of the loss of confidence in financial entities. The node size is seen as the exposure at default 

(EAD), which measures the total claim on all other banks; while leverage is seen as the ratio of the 

net worth of the bank over the outstanding of its outside assets. Finally, bankruptcy costs are 

introduced via a dedicated factor (γ) that follows the theory of Elliott et al. (2013). The decline in 

confidence is evaluated by marked-to-market potential losses for a lender well before the point of 

default. Glasserman, Paul and Young, Peyton (2013) ultimately demonstrates that those additional 

factors favour a faster deterioration of the network.  

Graph 95. The interlinked rings financial network   Graph 96. Network example 

     

 

 

 

Source: Acemoglu, Daron et al. (2014) 
 

Source: Glasserman, Paul and Young, Peyton (2013) 

In contrast to these approaches, other frameworks involve a minimal knowledge of the network 

topology. These models usually involve variables not taken at the balance sheet level, but consider 

instead more general information like financial market data or macroeconomic indicators as the 

main source of financial risk. Hirtle, Lehnert (2014), Kok (2013), ECB (2013), Angeloni (2015), 

Angeloni (2016), review the main approaches to stress tests from a regulatory perspective. These 

papers introduce ‘macro’ models and ‘financial shock’ models as alternative ways to the more 

traditional “funding shock” models that we describe above. Macro models in general consider 

market-based information as much appropriate information to quantify systemic risk. Hesse, Salman, 

Schmieder (2014) in particular implements a sophisticated framework where a combination of 

market data and macroeconomic variables are seen as relevant variables to design a shock. And 

since the model largely focuses on the Euro Area, peripheral sovereign yield spreads are part of the 

inputs. In addition, the model also incorporates macroeconomic variables at the national level like 

the GDP trajectory, inflation rates, current accounts and the level of public debt. These variables are 

then computed to determine the resilience/exposure of each country. Interestingly, Hesse, Salman, 

Schmieder (2014) explores multiple channels of risk transmission: aside from macro data and 

financial variables, the authors also take information at the micro level, namely incorporating cash 

flows and asset values as indicated by the balance sheets of the selected banks. As a consequence, 

the resulting framework is one of the most complex approaches that we have seen. Market-based 

information effectively adds some value to network-based frameworks. Glasserman, Paul and Young, 

Peyton (2013) for instance tends to model the impact of a loss of confidence, that would occur 

ahead of default. Losses in this context are evaluated via different shock scenarios on the price 

dynamics of debt and equities. Market-based information like in Glasserman, Paul and Young, Peyton 
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(2013) or Hesse, Salman, Schmieder (2014), is used as one of the main sources of contagion. In 

Hesse, Salman, Schmieder (2014) for instance, introducing market-based time series allows the 

authors to quantify how interest rates would react following a fire sale on peripheral sovereign 

bonds. In other approaches like in Darolles, Gagliardini, Gourieroux (2014), stress tests are even 

exclusively based on market prices: the authors consider the distribution of liquidation counts of 

hedge funds using the Lipper TASS database. This database offers a discrimination of the dynamics of 

the liquidations throughout 9 management styles: Long/Short Equity, Event driven, managed futures, 

equity market neutral, fixed income arbitrage, global macro, emerging markets, multi strategy and 

convertible arbitrage. Aside from the input itself, Darolles, Gagliardini, Gourieroux (2014) are also 

creative in the sense that they consider statistical estimators as relevant descriptors of risk 

propagation. In particular they involve two main criteria: 1) A “contagion matrix”, which is a 

correlation-like estimator that highlights dependencies between financial entities. 2) A “common 

factor”, seen as a proxy for the access to funding liquidity. Then stress tests are conducted as a shock 

on these two variables: on one side they reset the contagion matrix with much larger coefficients 

than in normal market conditions. By doing so, they track the consequences of financial stress on the 

joint dynamics: this scenario is a shock on exogenous factors. On the other side, a second type of 

scenarios tends to stress the “common factor”. In this case the authors analyse how risk aversion 

tends to impact the access to funding and liquidity. This is seen as a shock on endogenous factors. 

Hirtle, Lehnert (2014) consider that this kind of approaches, largely based on historical correlations, 

offer insightful information on the expected decline in equity prices in the aftermath of shocks. This 

approach has notable benefits: transparent, straightforward to manipulate and it involves only 

publicly available data. And since market sentiment is largely incorporated, these models tend to 

capture investors’ interpretation of underlying risks to a large extent. Market-based time series are 

also very convenient to implement thorough quantitative models (like Bayesian models) given the 

higher frequency of the available data in comparison to more fundamental indicators. Quite the 

opposite, the lack of uniformity between firms, possible variations in the frequency of the releases, 

and the fact that the required information is not always publically available make stress tests at the 

balance sheet levels rather inappropriate for a probabilistic exploration of systemic risk. 

Stress scenarios 

Designing the stress test scenario is another important feature of the simulation. The scenario plays 

a major role as it has to reflect both the rationale of the shock, and the risk (or the probability) 

attached to it. Consequently, it has to be a reliable illustration of how risk-aversion is supposed to 

emerge. Given the complexity of financial linkages, and the large amount of variables potentially 

affected by financial distress, designing stress scenarios is not a straightforward exercise. As Hirtle, 

Lehnert (2014) argues, scenarios are typically drawn, either out of particular episodes in the available 

history, or based on the ex-post situation, for instance a specific (and extreme) price variation on 

certain securities. The scenario may be defined by its probability to happen, which is relatively 

convenient when the model involves probabilistic tools. An interesting approach is also to consider 

not just one scenario, but a set of different shocks instead, with different levels of severity. 

Schmieder et al. (2012) for instance, explore four different scenarios that provide an interesting 

granularity in the results. Camara, Pessarossi, Philippon (2016), Board of Governors of the Fed 

(2016), De Groen (2016) also propose similar methodologies that explore a bunch of scenarios. We 

note above that Hesse, Salman, Schmieder (2014) explores a sophisticated network-based model, 

which involves a combination of macro-indicators assorted with information taken at the balance 
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sheet level. The diversity of the dataset enables the authors to consider a variety of different 

scenarios. In particular, the analysis differentiates shocks affecting liquidity conditions from those 

impacting solvency. Stress tests on liquidity, follow the methodology described in Schmieder et al. 

(2012). In this approach, four scenarios are designed; all of them focus on banks’ liabilities and 

assets. Banks’ liabilities are also broken down into customer deposits, short-term wholesale funding 

and contingent liabilities (mostly derivatives’ funding and long term funding like senior debt and 

subordinated debt). These variables are subject to a specific level of deterioration ex-ante, in each 

scenario. On the asset side, the different scenarios assume a particular level of haircut on four 

variables: cash, government securities (1% to 10% haircut), trading assets (3% to 100%), and other 

securities (10% to 100%). The ECB is promoting a similar approach to designing scenarios that are 

meant to test banks’ liquidity, like in ECB (2013). The authors emphasize in particular that the duality 

between funding constraints and haircuts on the asset side has the advantage to allow for the impact 

of potential ‘fire sale’-related losses and loan supply restrictions. Another interesting point in ECB 

(2013) is that the severity of each scenario is described as a ratio against a ‘Lehman-type’ 

benchmark. The ‘Lehman-type’ scenario corresponds to the situation encountered by large banks in 

OECD countries that were hit severely during the month after the Lehman collapse. As a 

consequence, the ‘moderate scenario’ is designed as being a quarter the intensity of the Lehman 

crisis conditions (ratio of 0.25), while the medium, severe and very severe scenarios respectively see 

a factor of     ,    and    the Lehman’s crisis. Darolles, Gagliardini, Gourieroux (2014) also gives 

extensive details on funding liquidity risks. They differentiate three types of measures to analyse the 

funding liquidity risk and to model its evolution:  

1) Refinancing costs; a notion also used in Schmieder et al. (2012). The methodology is 

based on the frequent interpretation of the TED spread9 in the literature like in Gupta, 

Subrahmaniam (2000), Boyson, Stahel, Stulz (2010) and Teo (2011).  

2) A direct measure of market liquidity such as the size of the bid-ask spread. The chosen 

methodology is similar to Brunnermeir, Pederson (2009) and Goyenko, Subrahmaniam, 

Ukhov (2011).  

3) Thirdly, liquidity is regarded from its impact on asset prices. In this respect, Vayanos 

(2004) models the liquidity premium by comparing the market response of different assets 

with similar characteristics but a different level of liquidity (for instance comparing on-the-

run versus off-the-run bonds).  

The second category of shocks in Hesse, Salman, Schmieder (2014) focuses on solvency, ie. on 

projections of capital ratios with regards to liabilities imposed by the scenario. From a general 

perspective, ECB (2013) defines this direct approach to banks’ solvency as a supervisory tool to 

calculate the capital shortfall ensuing from shocks. In Hesse, Salman, Schmieder (2014), the 

methodology is based on the approach of Hardy, Schmieder (2013), where credit losses, pre-

impairment income and the trajectories of risk-weighted assets (RWA) for a 2-year horizon are 

computed out of GDP trajectories, and assuming some contagion on peripheral sovereign spreads 

(from       to       spread widening). Five different scenarios with gradual levels of severity are 

implemented: normal conditions, moderate stress, medium stress, severe stress, extreme stress. 

Each scenario corresponds to a particular percentile of credit losses, extracted from the empirical 

distribution (     for moderate stress,        for severe stress). The authors then derive the 

                                                           
9
 The Treasury-Eurodollar (TED) spread, equal to the difference between the 3-month Eurodollar LIBOR rate and the 3-month Treasury bill 

rate 



107 
 

expected values of pre-impairment income and RWA, using relevant assumptions. The shock in the 

end involves micro-variables only (at the balance-sheet level). This helps understand the implications 

of a shock emerging from within the banking sector itself. While such a parameterisation is highly 

relevant from a macro-prudential perspective, an obvious limitation is that this scenario does not 

take any macroeconomic development or any reversal in market sentiment into account. As a means 

to address this limitation, Glasserman, Nouri (2012) for instance, seeks to capture investors’ 

perception of the surrounding risks by adding assumptions on the risk free rate. An essential feature 

common to these simulations is that stress tests do not assume the materialisation of a proper 

default: the variety of the dataset is an incentive to explore the implications of a gradual 

deterioration in fundamental variables, instead of the impact of a full-blown default. As a 

consequence, results are ‘capital ratios-oriented’, ie. they do not highlight at which point exactly a 

default is supposed to occur; in contrast they provide a picture of how capital requirements are 

expected to surge under extreme scenarios. Another benefit of exploring gradual levels of severity is 

the refined granularity of the results, which makes possible to track closely how systemic risk 

propagates into the whole financial system.  

In contrast to this approach, scenarios built around the Eisenberg and Noe framework put a 

considerable emphasis on the default itself. In their original paper (Eisenberg, Noe (2001)), the 

scenario is composed of a set of more or less abundant defaults hitting selected firms at the same 

time. These firms under default are no longer able to satisfy their obligations, and this impairment 

has significant implications on the ‘clearing vector’. As the authors explain, the iterative algorithm 

provides a (unique) clearing vector that resolves financial liabilities in the network every time the 

routine is called. If the clearing vector identifies additional defaulting firms, these entities are added 

to the initial set and the routine is compiled again. The procedure stops once equilibrium is found. 

The final clearing vector highlights the resulting firms that are supposed to default, conditional on 

the initial set of defaulting firms. This approach shows the notable benefit of involving 

straightforward calculations, and results are very understandable by the general public. But we also 

see some caveats: a particular weakness, according to Glasserman, Paul and Young, Peyton (2013), is 

that the Eisenberg-Noe framework does not model the dynamics by which financial institutions enter 

into obligations to one another. Papers like Glasserman, Paul and Young, Peyton (2013), Acemoglu, 

Daron et al. (2014) and Anand, Kartike et al. (2014) seek to improve the original methodology. 

Glasserman, Paul and Young, Peyton (2013) for instance implement two modifications to the initial 

framework: First they consider the probability distribution of the shock as an additional and relevant 

variable, and for this purpose they explore a variety of distribution functions like the beta, 

exponential, normal distributions. Secondly, they build two separate networks with and without 

interbank connections, computing every time the clearing vector on both frameworks separately. 

This comparison delivers valuable insight on the overreaction that comes from interbank 

relationships. Similarly, Acemoglu, Daron et al. (2014) implements an “Eisenberg-Noe”-type model 

that also takes control on the probability that the shock tends to materialise. A difference though, is 

that the shock in this paper is no longer defined as a set of defaulting firms, but it is designed as a 

shortfall imposed to banks on expected investment returns. This definition delivers comprehensive 

insight on how the shock propagates within the network. The authors in particular identify a 

threshold for the amplitude of the shock under which no contagion occurs. Still in an attempt to 

improve the Eisenberg-Noe framework, Anand, Kartike et al. (2014) investigates other adjustments. 

First, the authors observe that even if interbank bilateral positions can be obtained from regulatory 
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filings or credit registers, most of the banks do not report their bilateral exposures. In this context, 

the leading method is to consider the available information on each bank’s total interbank lending 

(Upper 2011, Elsinger et al. 2013). This approach, known as maximum entropy (ME), assumes that 

banks diversify their exposure by spreading their lending and borrowing across all other active banks. 

But this can prove misleading as ME tends to maximise interbank connections, and this to some 

point can obscure the true structure of linkages in the original network. As a consequence, Anand, 

Kartike et al. (2014) explores an alternative benchmark - the minimum density (MD) method – which 

is based on the rationale that interbank linkages are costly to add and maintain. The procedure 

determines a pattern of linkages for allocating interbank positions that is efficient in the sense of 

minimizing these costs. The approach identifies the most probable links and loads them with the 

largest possible exposures consistent with the total lending and borrowing observed for each bank 

that could be obtained from the bank balance sheet. The trigger event is a combination of a single 

failure (ie. the default of an individual bank), and an across-the-board decline of regulatory capital of 

  . Banks go into default when their regulatory capital falls under a common regulatory 

requirement of   . Solving the clearing vector delivers 1) the number and identity of banks that 

default as a result of contagion and 2) the total assets and interbank liabilities of defaulting banks ex-

post. Comparing the results obtained with MD and ME models, it appears that the traditional ME 

approach underestimates systemic risk substantially, while MD tends to slightly overestimate the 

true extent of contagion. In the end, modifying the early version of the Eisenberg-Noe framework, 

and re-designing the shock helped obtain a more reliable picture of potential contagion. We also 

note that other approaches like Jaeck, Lautier (2012) manage to implement an adaptive design of the 

topology of the nodes via the Minimum Spanning Trees (MST) approach. This helps identify the most 

relevant distribution of the financial interconnectedness within the network. 

Stress test models based on market data exclusively, are usually based on a different understanding 

of the shock. As we noted above, the dataset itself makes a statistical exploration of systemic risk 

relatively convenient. This is for instance the case in Darolles, Gagliardini, Gourieroux (2014), where 

the shock is based on the probability distribution function of the stressed variables, seen as potential 

sources of financial distress. By and large, the most important variable is the frailty coefficient, 

which illustrates the deterioration ensuing from shocks. A first series of scenarios assumes that this 

parameter will surge up to its         percentile. The calibration of their probabilistic model is 

based on different filtering techniques. Ultimately, this helps understand the distribution of the 

frailty coefficient. The authors also consider other kind of shocks, like scenarios assuming a 

disruption of the dependence structure between the assets. These shocks take the form of a sharp 

increase in the contagion matrix: larger correlation coefficients are supposed to reflect greater 

multivariate linkages in risk averse market conditions. Another round of shocks is also implemented 

on the frailty persistence parameter. This stress scenario is seen as simulating heightened risks of 

hedge fund liquidations throughout an amplification of the contagion stemming from exogenous 

shocks. The shocks we design in this report are largely inspired from this methodology, developed in 

Darolles, Gagliardini, Gourieroux (2014). Finally, “reverse stress tests” constitute another interesting 

way to investigate stress testing. In this approach, one goal is to identify the least severe scenario 

that is going to cause a pre-determined outcome. This outcome can take various forms like the 

failure of a firm or a sudden surge in peripheral sovereign spreads (Grigat, Caccioli (2017), Grundke, 

Pliszka (2015)). In contrast to traditional stress tests where the shock is defined ex-ante, “reverse 

stress tests” simulations assume an ex-post definition of the shock.  
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Modelling contagion 

Contagion is the intriguing force that stress tests are supposed to capture and illustrate. The notion 

of contagion refers to the generalised amplification of multivariate linkages that occurs under tough 

risk aversion. Contagion usually leads to massive price deteriorations within the financial system, and 

the cascade effect can be seen as a consequence of latent dependencies that take over in 

deteriorated market conditions. Crises in the past show that financial securities have a tendency to 

conjointly sell-off when the degree of risk aversion exceeds a particular threshold. This specific price 

action is in sharp contrast with established correlations in the normal course of financial markets. 

Against this backdrop, stress tests are regarded as an interesting procedure to identify how financial 

distress tends to spill-over. But drawing a reliable forecast of the market reaction to shocks – via 

appropriate satellite models - is a tough challenge: in most cases, conclusions are drawn from the 

experience of crises in the past, which (thankfully) are relatively infrequent. And while quantitative 

models offer a wide panel of different tools, risk propagation is much complex and requires making 

the right assumptions, at the risk of too much simplification. Another drawback is that every period 

has its own special features; thus it would be naive to expect the replication of past observations ‘as 

is’. Contagion in essence, is depending on numerous parameters and it can take different shapes. 

Kok (2013) for instance identifies three potential types of contagion: the one stemming from 

financial frictions (e.g. in a macro shock), then the spillover-effect that results from financial 

interconnectedness, and thirdly contagion related to financial imbalances. Allowing for different 

kinds of contagion within a single model requires a sophisticated framework. In Glasserman, Nouri, 

(2012) for instance, the satellite model explores both the dynamics of capital requirements and 

credit yield spreads for banks, in light of several variables: the volatility of the firm’s assets, the level 

of the available tranche of convertible debt (into equities) and the recovery rate in the event that the 

firm breaches its minimum capital requirement and is seized by regulators (Graph 97, Graph 98). 

Other – more original - approaches to contagion also explore the analogy between medical and 

financial contagion. Darolles, Gagliardini, Gourieroux (2014) in this sense found inspiration in the 

literature on epidemiology to quantify financial contagion, adjusting the “baseline intensity” model 

of Anderson, Britton (2000) to financial data. 

Graph 97. Sensitivity of senior debt to volatility and 

minimum capital ratio when 10% of debt is replaced 

with convertible debt  

 Graph 98. Coupon rates for convertible debt  

     

 

 

 

Source: Glasserman, Nouri, (2012)  Source: Glasserman, Nouri, (2012) 
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The Eisenberg-Noe framework also provides a singular framework to understand contagion. In 

contrast to models that account for a multitude of stressed variables, Eisenberg, Noe (2001) only 

looks at the set of firms that are supposed to default in the early stage of the simulation. In this case, 

contagion emerges from the firm’s incapacity to satisfy its obligations, causing therefore a chain 

reaction directed towards other firms. Assuming numerous connections in the framework, the 

upfront impairment is transmitted to other firms, and this ends up with a sequence of payment 

shortfalls along the chain. The set of additional firms in default at the end of the simulation indicates 

the amplitude of contagion. In this case, contagion is seen as the consequence of the shock as a 

whole. This stands in contrast to other interpretations: contagion for instance, can be also 

understood as the portion of the market reaction ‘in excess’ to what is expected in normal market 

conditions, like in Hesse, Salman, Schmieder (2014). We already mentioned that Eisenberg, Noe 

(2001) does not allow for any contagion stemming from market sentiment since the input is made of 

information taken at the balance-sheet level exclusively. And as result, Anand, Kartike et al. (2014) 

considers that the Eisenberg-Noe methodology is ‘internally inconsistent’: in determining the 

system’s loss given default (LGD) endogenously, the Eisenberg-Noe framework assumes that all 

assets can be liquidated at book value to meet the liabilities of defaulting banks. The authors also 

note: “the more contagion, the less tenable this assumption becomes”. This remark brings to light 

the fact that factors external to the Eisenberg-Noe framework can exacerbate the deterioration 

within the network and this dimension of contagion is disregarded in Eisenberg, Noe (2001). In order 

to address this issue, Anand, Kartike et al. (2014) include an additional criterion that reflects the 

missing shortfall imposed on asset valuations at default times. More sophisticated approaches, also 

based on the Eisenberg-Noe network, have explored other ways to address this limitation. 

Acemoglu, Daron et al. (2014) in particular proposes to revise the definition of the shock: they design 

it as a failure in investment returns, characterised by its probability to happen. This enables the 

authors to track the dynamics of the market reaction as the shock becomes more and more 

stringent. Contagion is then estimated as the gradual acceleration of the deterioration incurred by 

extreme scenarios. Essentially, the authors identify a threshold from which contagion is seen as 

emerging. This adds to the initial conclusions of Eisenberg, Noe (2001). From a more general point of 

view, Darolles, Gagliardini, Gourieroux (2014) identifies some requirements a stress test model has 

to fulfil in order to differentiate the effects of a common shock, from contagion itself: “(i) the model 

has to include lagged endogenous variables to represent the propagation mechanism of contagion, 

(ii) the specification has to allow for two different sets of factors, namely common factors (or 

systemic factors) representing un-diversifiable risk, and idiosyncratic factors representing 

diversifiable risks”. Finally, Darolles, Gagliardini, Gourieroux (2014) note that when the observable 

variables are not exogenous at all, the estimated contagion matrix (that captures the dependencies) 

is biased. As a consequence it is necessary to estimate not just the market reaction to the shock but 

also the dynamics of ‘the common factors’ in order to predict future risks. This has become a 

requirement in modern financial regulations as to capture uncertainties on the sources of risk 

correlation.   

As Acemoglu, Daron et al. (2014) argues, the satellite model has to indicate how financial distress 

translates into price deterioration; and this requires appropriate assumptions. The literature 

highlights various types of satellite models based on different interpretations of the channels of 

contagion. Assuming an Eisenberg-Noe type network for instance, Anand, Kartike et al. (2014) 

questions the relevance of the original ‘maximum entropy’ (ME) - developed in Eisenberg L., Noe T. 



111 
 

(2001) - for stress testing purposes. Some evidence in particular shows that the ME tends to 

underestimate contagion, and as a consequence the authors develop an alternative approach, the 

‘minimum density’ (MD). MD relies upon the rationale that interbank linkages are costly to add and 

maintain. The procedure determines therefore a pattern of linkages which is efficient in the sense of 

minimizing the costs, hence differentiating itself from the ‘maximum entropy’ approach where the 

number of interbank connections are maximised. As it looks credible that banks will tend to reduce 

their costs in periods of stress, the ‘minimum density’ assumes a contraction of interbank linkages in 

the sense of a cost reduction. This helps apprehend the sudden change of behaviour that is supposed 

to operate in financial institutions on mounting risk aversion. Models dedicated to the exploration of 

contagion may also investigate the question of ‘hidden’ dependencies within the financial system. 

Statistical estimators are powerful tools in this context. Empirical estimators of linear correlations 

like the Panel approach in Hesse, Salman, Schmieder (2014) or measures of ‘cross market 

correlations’ in Darolles, Gagliardini, Gourieroux (2014) are meant to reflect the strength of 

interconnections between financial assets. Those estimators may offer interesting insight on how 

asset prices are ‘theoretically’ supposed to evolve when financial distress is on the rise, but one 

needs to keep in mind that the correlation structure is largely affected when contagion is fierce. 

Non-linear procedures are usually more adequate than empirical estimators to capture this 

modification of the correlation structure. Hesse, Salman, Schmieder (2014) for instance implements 

a DCC GARCH model which captures the heteroskedasticity in the data, and provides a time-varying 

correlation parameter. This model helps the authors identify country-specific co-movements. This is 

an interesting approach to identify how much contagion is supposed to emerge from each European 

country separately. In the same vein, Kok (2013) introduce DSGE, GVAR and CCA-GVAR models as 

particularly adequate methodologies to model contagion from a regulatory point of view. In 

particular the fact that correlations are calculated only during periods of financial distress helps 

distinguish the excess market reaction due to the pure contagion effect, from the expected reaction 

in normal times. The quantitative approach may also involve statistical tests, like the Chow test in 

Darolles, Gagliardini, Gourieroux (2014). This estimator gives a range for the expected contagion 

(upper and lower bounds), while it also offers a view on the statistical robustness of contagion 

estimators. We already mentioned that models based on the Eisenberg-Noe framework explore the 

propagation of risks until equilibrium is reached. From an algorithmic point of view, this requires 

implementing an iterative algorithm, which necessarily has to converge towards a unique solution. 

Eisenberg L., Noe T. (2001) in fact gives evidence of the existence and uniqueness of the solution, 

and this comforts the relevance of their ‘fictitious default algorithm’. In statistical models involving 

an econometric exploration of systemic risk, results in contrast are obtained after just a one-off call 

of the routine. In sum, the higher computational burden ensuing from the more quantitative 

approach does not necessarily imply longer calculation times. From an empirical point of view, 

contagion can also be estimated as the overreaction of the market compared to a benchmark. In 

Hesse, Salman, Schmieder (2014) for instance, risk aversion is described by two variables: the level of 

high-yield credit spreads and the VIX index. Both indices are seen as a benchmark of credit risk and 

volatility that are supposed to illustrate ongoing financial distress. In the end, the gap between the 

observed market reaction and risk aversion benchmarks highlights contagion at work. 

One can also stick to the basic definition of financial contagion, ie. an overreaction of the financial 

system due magnified financial linkages. Acemoglu, Daron et al. (2014) for instance, investigate two 

specific questions: “First, to what extent is the default of a given entity more likely when contagion 

is emanating from other nodes in the framework, in comparison to a direct shock on its own assets 
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from sources outside of the financial system, like households and nonfinancial firms? And secondly, 

how much does the network increase the probability and magnitude of losses compared to a 

situation where there are no connections?” Considering interbank connections as the main source 

of contagion (like Eisenberg-Noe), Acemoglu, Daron et al. (2014) undertakes stress tests on two 

separate networks. First they compute the probability that a default at a given node (ex-ante) causes 

defaults at other nodes via risk propagation throughout the network (ex-post). Then they compare 

this with the probability that all these nodes default because of a direct shock on their ‘outside’ 

assets with no network transmission. The authors finally derive a general formula highlighting that 

contagion is weak when the latter probability is larger than the former. One will note that this 

approach to modelling contagion is quite different from the foundational work of Eisenberg, Noe 

(2001). And Acemoglu, Daron et al. (2014) dips further into the characteristics of the spillover effect, 

and differentiates two main regimes. First they argue that systemic risk can be decomposed into two 

components: (i) first the probability that a given set of nodes   effectively defaults, and (ii) the loss 

in value conditional on   -   being the default set. This decomposition emphasizes two main 

dimensions: pure contagion and amplification. Pure contagion occurs when defaults at some nodes 

trigger defaults by other nodes through a domino effect. Amplification occurs when contagion 

stops but the losses among defaulting nodes keep escalating because of their indebtedness to one 

another. The first effect is identified as a “widening” of the crisis, while the second fact refers to a 

“deepening” of the crisis. In Acemoglu, Daron et al. (2014), the original way to describe the dynamics 

of contagion is also improved by the addition of novel parameters like bankruptcy costs and the loss 

of confidence in financial market. This comprehensive understanding of contagion finally delivers 

new formulations for the probability that the spillover effect leads to the default of a given node. It 

also widens the scope of mathematical exploration of the contagion mechanism.  

Stress test results 

Stress tests models largely differ from one another when it comes to understanding the ‘results’. 

First, a lot of models seek to identify and then distinguish local losses in a given entity, from broader 

implications on the whole financial system (ie. LGD). Those models are usually based on the 

Eisenberg-Noe framework, which is seen as a relatively convenient approach to reach these two 

goals. This is in particular because the specific network of Eisenberg-Noe makes it possible to track 

how missing payments from the set of defaulting firms translate into a loss on the balance sheet of 

other entities. The foundational approach in Eisenberg, Noe (2001) however remains very general on 

how to calculate losses at the balance sheet level. Interestingly, this flexibility has largely contributed 

to the success of their approach as it has encouraged a profusion of interesting variations to the 

initial model in the literature. From a regulatory perspective in comparison, ECB (2013) provides 

meaningful insight on the estimation of the LGD. The post-shock P&L at the balance-sheet level is 

broken down into four sub-components: net income, loan losses and impairment, market risks and 

the final profit and loss calculation. The net interest income module focuses on loans, deposits and 

wholesale funding as sources of income, out of which expenses are subtracted. Then the calculation 

of loan losses and impairment combines conditional projections of country-level credit risk with 

bank-specific balance sheet evolutions; while the market risk module seeks to assess any profit and 

loss impact from the investment portfolios of participating institutions. In practice, a specific haircut 

is applied on the valuation of securities held on the trading book. In the final module, net interest 

income, loan loss impairments and the market risk impact for each entity are merged with other 

income components. In a similar approach, Schmieder et al. (2012) gives extensive details on the 



113 
 

effective capital requirements resulting from each scenario. Assuming a ‘substantial spillover stress 

regime’, one sees for instance that a shock of       (type 2b) on peripheral sovereign spreads will 

imply      capital needs in the European banking system (Graph 99). This amount sharply increases 

on a scenario that simulates       spread widening (type 2c) with capital requirements mounting to 

     . Considering similar levels of financial distress, liquidity stress tests indicate that       of the 

liquidity requirement amounts to       of the assets in the scenario 2b) while these requirements 

rise to    in a scenario-type 2c) (Graph 100). Considering both solvency and liquidity shocks, mild 

scenarios with lower intensity than in 2b) induce very limited losses. This, combined with the sharp 

increase in the deterioration between the scenarios 2b) and 2c), illustrate the non-linear aspect of 

contagion. Anand, Kartike et al. (2014) also provides practical results on the effect of contagion. Not 

surprisingly, larger LGD leads to a greater number of defaults, with also more harmful implications 

on the ex-post value of assets affected by the shock, and greater deadweight loss. Considering the 

German banking sector, results in Anand, Kartike et al. (2014) suggest that about just one bank 

would default (on average) as a result of the failure of an arbitrary single bank, and this rises to 2 to 3 

banks in default when LGD exceed a few percent (Graph 101). In contrast to this ‘still reasonable’ 

situation, the worst case scenario engenders more than      contagious defaults, in the end 

accounting for     of the whole banking sector. Interestingly, the number of banks failing because 

of pure contagion amounts to     banks on average for high LGDs. This time again, the authors try 

to gauge the cascade effect led by risk propagation, and they note that the severity of contagion 

jumps significantly when LGD exceeds    . This is in line with observations in Upper and Worm 

(2004). While these approaches to systemic risk, largely based on the Eisenberg-Noe framework, 

offer a thorough picture of the expected losses and capital requirements, they usually do not explore 

the trajectory of the deterioration at the balance sheet level when the shock becomes more and 

more intense. Other approaches – that we review below - provide a more granular understanding of 

contagion.  

Graph 99. Outcome of solvency stress tests  Graph 100. Outcome of liquidity tests in terms of 

assets 

     

 

 

 

Source: Schmieder et al. (2012)  Source: Schmieder et al. (2012) 
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Graph 101. Results of the first stress test using the 

sequential default algorithm 

 Graph 102. Liability value as a function of asset level in the 

presence of bankruptcy costs and credit quality (Fig 3 p12) 

     

 

 

 

Source: Anand, Kartike et al. (2014)  Source: Glasserman, Paul and Young, Peyton (2013) 

Analyses like Hesse, Salman, Schmieder (2014), Acemoglu, Daron et al. (2014), Glasserman, Paul and 

Young, Peyton (2013) offer a higher-level of granularity in the observed contagion than models 

based on the Eisenberg-Noe framework. The refined understanding of contagion this time, makes 

the drawing of recommendations on how to strengthen the network against the spillover effect 

more convenient. Glasserman, Paul and Young, Peyton (2013) for instance explores the relevance of 

several factors seen as potential catalysts for higher contagion. First the authors reassess the well 

admitted role of fire sales and the drying up liquidity as influential drivers of contagion. They also 

evaluate the negative impact of bankruptcy costs and losses of confidence on the resilience of the 

network. Bankruptcy costs are seen as having two main implications: they increase both the total 

shortfall and the ‘node depth’, ie. the degree of risk amplification on each entity. Interestingly, the 

dynamics of the shortfall led by bankruptcy costs highlights that the amplitude of the losses is 

dependent on how quickly systemic risk dissipates in the network: bankruptcy tends to be more and 

more stringent as the quality of the financial system deteriorates. Finally, Glasserman, Paul and 

Young, Peyton (2013) demonstrate that ‘losses of confidence’ is a meaningful driver of contagion 

too, which is in practice ignored in models like Eisenberg,Noe (2001). While bankruptcy costs refer to 

the acceleration of contagion once a failure is detected, the ‘losses of confidence’ coefficient is a 

descriptor of the contagion operating before default is certified. This distinction is valuable because 

uncertainties in anticipation of a default may be more harmful than default itself once it is agreed 

and implemented. Hesse, Salman, Schmieder (2014) also shows that contagion is more or less 

pronounced depending on the features of the emanating sovereign. In particular the authors show 

that a    shock on Euro peripheral spreads translates into a     percentage point increase in the 

risk premium of the    countries in most cases; but not for Spain and Italy whereby a shock of this 

amplitude leads to one full percentage point increase in risk premiums. Looking at the drivers of 

contagion, it appears that global risk aversion at the time of the shock, the size of the peripheral 

country (ie. GDP), and the slope of the US yield curve, are meaningful descriptors of systemic risk in 

periods of crisis. From a statistical point of view, the DCC GARCH model in Hesse, Salman, Schmieder 

(2014) indicates that the correlation between peripheral countries and Austria, Belgium, France, or 

the Netherlands was as high as         during periods of tough risk aversion. In contrast, the same 

correlation between non-core countries and Germany or the UK was much lower and oscillates 
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between   and    . Eisenberg, Noe (2001) also takes a look at the empirical drivers of contagion, 

emphasizing for instance that a larger volatility favours a greater deterioration of the financial 

system in place. Our analysis largely focuses on volatility, and we explore how the acceleration of the 

risk propagation takes place in regimes of higher volatility. An interesting approach in Acemoglu, 

Daron et al. (2014) considers that the behaviour of banks is a notable driver of contagion. The 

authors in particular note that banks are prompt to ‘overlend’ in equilibrium, thus creating channels 

over which shocks on individual entities will systemically cause financial contagion over the entire 

network. Acemoglu, Daron et al. (2014) also emphasizes that some banks may not sufficiently 

diversify their lending among the set of potential borrowers, and this creates new channels for the 

emergence of systemic risk. 

Focusing now on the more quantitative approaches, a recurring observation is the ‘non-linear’ aspect 

of contagion. And while this dimension is frequently mentioned, only a few papers seek to quantify 

the cascade effect in financial losses. Hesse, Salman, Schmieder (2014) for instance mentions the 

‘exponential’ surge in capital and liquidity requirements as the severity of the scenario increases, but 

there is in effect no particular exploration of how this increase is meant to materialise, e.g. as a 

function of the amplitude of the shock. An analytical formulation of that kind would probably be 

useful to apprehend financial contagion more effectively, and to improve the forecasting capability 

of stress testing procedures. Eisenberg, Noe (2001) for instance demonstrates that the clearing 

payment vector is a multidimensional concave function of both operating cash flows and the level of 

nominal payments, while the value of equity is generally a convex expression of operating cash 

flows. This already offers some insight in terms of how the behaviour of contagion can be quantified. 

Other approaches offer more details on the relationship between the magnitude of the spillover 

effects and the value of the underlying parameters. In Glasserman, Paul and Young, Peyton (2013) 

for instance, every recognised driver of contagion in the paper is expressed via an adequate 

analytical formulation of the resulting losses. The impact of bankruptcy costs, as an example, is 

estimated as a continuous function of the ‘size’ of the assets (as per Graph 102). Glasserman, Nouri 

(2012) involves another statistical framework that delivers a detailed view of the expected reaction 

in the network in the aftermath of the shock. In particular, the model describes how, for a given firm, 

the yield spread on the senior tranche of the debt is supposed to evolve as a function of the 

volatility: as Graph 103 indicates, the dynamics of the spread widening is almost linear. In a similar 

fashion, the model explores the dynamics of the coupon rate of convertible debt under different 

conditions of volatility. The authors also examine the dynamics of the reaction function in the 

network as time goes by, and in particular the amount of expected contingent capital converted to 

equity on a 2-year horizon, and so for different values of capital ratios and asset volatility. Results 

show a consistent and logarithmic-like increase of contingent capital, which overall reflects the huge 

amount to convert during the first six months following the shock. Darolles, Gagliardini, Gourieroux 

(2014) also analyses the dynamics of the liquidation risk in the hedge fund industry. For each 

management style, the model delivers an estimated term structure of liquidations assuming a 

funding liquidity shock. Overall, results indicate that the effect of the shock is fading relatively 

quickly, and disappears after 12 months on average (Graph 104). An interesting observation is that 

Long-Short equity hedge funds are hit by shocks more immediately than other management style 

like Fixed Income funds, for which there is a temporal lag between the shock and the perceived 

implications. The analysis also explores the channels of contagion, and suggests that contagion 

operates along the following directions: Multi Strategy  Equity Market Neutral  Event Driven  

Fixed income Arbitrage  Emerging Markets (Graph 105). Interestingly too, there is little evidence 
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that contagion could occur in the reverse direction. The Long-Short equity management style is the 

most represented management style in the dataset in terms of number of funds and total asset 

under management. But the lack of central role of Long-Short equity hedge funds in the contagion 

scheme confirms the idea that systemic relevance is not necessarily associated with size.   

Graph 103. Sensitivity of senior debt to volatility and 

minimum capital ratio alpha in the absence of convertible 

debt  

 Graph 104. Term structure of expected liquidation 

counts when stressing the current factor value 

(Figure 12) 

     

 

 

 

Source: Glasserman, Nouri (2012)  Source: Darolles, Gagliardini, Gourieroux (2014) 

Let us now explore the purposes of stress tests. The available literature as a whole is obviously an 

attempt to develop stress testing tools further, in one way or another. On one side for instance, 

many papers seek to contribute to the methodological aspect of stress testing. These papers usually 

emphasize the relevance of novel procedures or new ways to quantify systemic risk and therefore 

they are explicitly ‘research-oriented’. And while this approach proves very interesting from an 

academic point of view, in many cases it also ignores the prudential dimension naturally attached to 

stress tests. In this paragraph, we first focus on ‘research-oriented’ papers, then we review analyses 

that provide an insightful reflection on the macro-prudential vocation of stress testing. ‘Research-

oriented’ papers usually put a bigger emphasis on showing the coherence of the approach, rather 

than specifying what a large-scale industrialisation of the proposed methodology would require in 

terms of resources. As a result, ‘research-oriented’ analyses can afford exploring stress tests from a 

more theoretical point of view. This usually leads to very general and relevant observations about 

the contagion mechanism and the magnitude of systemic risk under tough risk aversion. Hesse, 

Salman, Schmieder (2014) for instance explores capital requirements and asset liquidity shortfalls, by 

comparing the amplitude of financial losses in different kind of scenarios. A caveat though, is the 

very limited granularity of the results, with for instance little differentiation in terms of which 

financial entity might be the more exposed or resilient to financial distress. Instead, the authors 

focus on illustrating the highly non-linear aspect of contagion; something which is effectively very 

neat in the results. In a similar fashion, Anand, Kartik et al. (2014) seeks to demonstrate the 

relevance of the minimum density (MD) as a new way to model risk propagation. Arguably, MD helps 

address some limitations of the more common maximum entropy (ME); this is the major benefit of 

the methodology. Acemoglu, Daron et al. (2014) also shows some innovation, but at the level of the 

network itself and the interpretation of the drivers of systemic risk. Among other things, the analysis 
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introduces new descriptive variables to the initial Eisenberg-Noe framework, like the ‘contingency 

covenant’ which is supposed to replicate counterparty risk in liquidity funding. This variable makes 

possible to stress liquidity conditions as an isolated dimension of the network, with the results 

ultimately reflecting its propensity to generate contagion.  

Graph 105. The contagion scheme for the model with contagion 

and frailty  (Fig 8 p51) 

 

   

 

 

Source: Darolles, Gagliardini, Gourieroux (2014)  

Acemoglu, Daron et al. (2014) also presents ‘overlending’ and ‘the lack of diversification’ in lending 

as meaningful drivers of contagion. This helps the authors differentiating themselves from the rest of 

the literature that usually does not explicitly distinguish these two dimensions of risk propagation. In 

a similar attempt to improve an already existing framework, Glasserman, Paul and Young, Peyton 

(2013) estimates the relative likelihood that a given node will cause other nodes to fail because of 

contagion. The calculation involves three variables: the net worth of the node, the outside leverage 

(ratio of a node’s asset outside the network over net worth) and the financial connectivity (bilateral 

connections). Glasserman, Paul and Young, Peyton (2013) offers a relevant sophistication of the 

quantitative approach of Eisenberg, Noe (2001), and the authors compute a contagion index that 

illustrates the soundness of the financial system via a set of default probabilities. In contrast, the 

foundational approach in Eisenberg, Noe (2001) delivers only a bilateral outcome with ‘default’ or 

‘non-default’.  

Aside from ‘research-oriented’ papers that concentrate innovation at the level of the methodology 

and the stress test theory, another category of analyses put a particular emphasis on the micro-or 

macro-prudential vocation of stress test models. Hirtle, Lehnert (2014) for instance highlights the 

role of stress tests in recent years as a supervisory tool, with an emphasis on how the methodology 

was chosen in light of the prudential dimension of the program. A coordinated supervisory stress 

test programme on large bank holding companies was first launched in the United States in February 

2009, during a period of extreme stress in the US banking industry, following the collapse of Lehman 

Brothers. The Supervisory Capital Assessment Program (SCAP) involved stress tests of the 19 largest 

US-owned bank holding companies (Board of Governors of the Federal Reserve System (2009a)), 

representing about two thirds of the assets of the US banking system. The goal of the SCAP was to 

ensure that the largest US bank holding companies had sufficient capital to withstand a worse-than-
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anticipated macroeconomic outcome and continue to lend. By requiring large bank holding 

companies to build a buffer of capital, presumably big enough to withstand potential stressed losses, 

the SCAP was intended to reduce uncertainty and promote confidence in individual banking 

companies and in the banking system (Board of Governors of the Federal Reserve System (2009b)). 

This proved very efficient for the SCAP to fulfil its prudential at both micro and macro levels (see 

Hirtle, Schuermann, Stiroh (2009)). By allowing for a macroeconomic understanding of the financial 

system, the procedure largely widens the universe of potential drivers of systemic risk. Regulatory 

stress tests, on that basis, have brought noticeable innovation in the way stress tests are conducted. 

On top of that, the high degree of granularity in the results this time offers a comprehensive 

illustration of the intrinsic exposure of each participating bank to systemic risks. We also note that 

the results of regulatory stress tests are generally made public, in contrast to micro-prudential 

assessments like the reports published by rating agencies (not available for free). Those two features 

give regulatory stress tests greater credibility, and this largely justifies the sizeable impact they have 

on the reputation of banks. Another benefit of the macro-prudential dimension, is that it helps avoid 

too stringent micro-prudential recommendations during periods that followed a crisis. In a context of 

muted growth and reasonably contained systemic risk, the macro-prudential supervision may want 

to bolster investment by increasing the amount of liquidity made available to banks (via e.g. TLTRO, 

QE or accommodative policies in general). In contrast, such a context may be too uncertain from a 

purely micro-prudential point of view, thus encouraging banks to tighten lending conditions 

(Angeloni (2015)). Assessing the soundness of the financial system via macro-prudential stress tests 

should thus help detect situations where too tight micro-prudential supervision can become a drag 

for the economy. Looking at the outcome of regulatory stress tests, the SCAP delivered an aggregate 

capital shortfall for the    participating companies of       . After taking into account asset sales 

and the restructuring of capital instruments, the net shortfall was      , largely concentrated on    

entities out of the   . Stress testing at the supervisory level has also become more authoritative in 

Europe as well: The European Banking Authority (EBA) conducted a series of stress tests10 in 2008, 

2009, 2010, 2011, 2014, 2016 (EBA (2014), EBA (2015), EBA (2016)). The relevance of this procedure 

to identify underlying weaknesses in the financial system is largely recognised and helps stress tests 

become increasingly integrated into the ongoing supervision of banks. For this purpose, the 

comprehensive capital analysis and review (CCAR) and the Dodd-Franck act stress testing (DFAST) 

were introduced in the US in 2011 and 2013. Hirtle, Lehnert (2014) gives extensive details on the 

purposes of each programme. CCAR is particularly innovative as the underlying quantitative model 

seeks to achieve a tilt from ‘discretion’ towards ‘rules’: institutions that see stressed capital ratios 

falling below the regulatory minimum levels face objection to their capital plans and specific 

constrains in their ability to distribute capital to shareholders. The public disclosure of the results 

reinforces the credibility of these ‘rules’. The major benefits of implementing regulatory stress tests 

are largely developed in Hirtle, Lehnert (2014): they contribute to strengthen the credibility of the 

supervisory authority, and they support better transparency and market discipline. In a fair way, 

Hirtle, Lehnert (2014) also explores the potential risks attached to the exercise of macro-prudential 

stress tests. First, the authors identify a risk of ‘model monoculture’ that could encourage too much 

uniformity in the understanding of systemic risk. In this case, all the banks have a tendency to show 

the same interpretation of the risks attached to each asset class, and this interpretation might be 

biased from actual risks. Secondly, the ranking of the banks, as indicated by stress test results, may 

                                                           
10

 http://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing  

http://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing
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also be a source of heightened contagion as it induces a ‘hierarchy’ in the network. This may 

strengthen interbank dependencies, causing an amplification of contagion should one of the ‘best’ 

banks collapse. This mostly justifies the introduction of a tougher regulation for systemically 

important financial institutions via the Dodd-Frank act in the US (Wan (2016)). In the end, 

‘regulatory-based’ analyses usually offer a discussion on the macro-prudential purpose of stress 

testing, while addressing interrogations surrounding the implementation and the manipulation of 

the chosen methodology. This focus on the practicality of the procedure is in sharp contrast with 

‘research-oriented’ models. 

Risk management-oriented stress test is another category of models largely represented in the 

available literature. By and large, a common approach is the exploration of the VaR (Value at Risk) as 

a meaningful indicator of the maximum loss on a particular time horizon and for specific levels of 

confidence (like in Hirtle, Lehnert (2014)). Although modern regulations like Basel accords provide 

rules to calculate market capital risk, internal risk managers may want to use their own approach 

(sometimes more sophisticated) to evaluate the risks attached to investments within the portfolio. 

For one thing, using its own stress test procedures allows them to simulate a broader range of co-

movements in both ex-ante and ex-post volatilities. And for another, an in-house approach to the 

determination of VaR helps focus on more realistic assumptions about the joint distribution of the 

portfolio’s risk factors (see Alexander (2001)). Since there is a clear evidence that correlations in 

financial markets are significantly altered by mounting risk aversion, estimating joint dependencies in 

distressed market conditions is a challenging exercise (Feria Dominguez, Oliver Alfonso (April 2004)). 

As Aragones and Blanco (2001) show, arbitrarily adjusting the correlation matrix in an attempt to 

replicate the dynamics under fierce contagion is vain as the resulting correlation matrix is usually no 

longer definite positive. Hence the need to develop, either models that are naturally able to 

understand and replicate the dynamics of financial linkages in distressed market conditions, or 

models that prove able to capture the behaviour of the dependencies ‘as a whole’, like 

methodologies involving heavy-tailed probability distribution functions. In the end, the resulting 

picture of potential losses emphasizes the resilience/exposure of each asset to shocks. Aside from 

presenting an update view on potential losses, stress tests also offer some guidelines on how to 

optimise risk-diversification during periods of risk-averse market conditions. In this case, portfolio 

managers will be prompt to underweight these securities that look excessively exposed to systemic 

risk, decreasing thereby the general exposure of the portfolio. Risk management-oriented stress 

tests can also unveil temporary or persistent discrepancy in market valuations, in particular on 

securities that are supposed to reflect the credit robustness of the underlying entity. This time again, 

an appropriate rebalancing of the portfolio should help take advantage of these market 

discrepancies either on the side of increased speculation (ie. being positioned as to benefit from a 

normalisation of these valuations) or on the side of prudence (ie. underweighting the concerned 

securities in order to avoid the larger volatility induced by a normalisation of the valuations). Koziol 

et al. (2015), Angeloni (2016) give additional insight on stress testing procedures from a risk 

management standpoint.  

 

In conclusion, the literature review has unveiled numerous aspects of the usual approaches to stress 

testing. In this paper we explore a few angles that prove very relevant in the context of sovereign risk 

exploration. For this purpose, we set up a network composed of pair-wise connections between the 

involved sovereign entities. The network in particular assumes that there is a unique epicentre of 
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contagion, ie. only one recognised source of financial distress in each simulation. Our model involves 

market-based information exclusively, namely daily price variations of both sovereign CDS spreads 

and sovereign asset swap spreads (Aussenegg, Götz, Jelic (2012)). Stress tests, in this report, are 

designed according to the methodology of VaR calculations, that we consider in the context of the 

model calibrated in Chapter 1. Our shock scenario assumes the materialization of an extreme price 

variation, like a sudden rise in CDS prices or a sharp spread widening in asset swap spreads. The 

assumed price variation is characterized by two criteria: either by the amplitude of the variation in 

absolute value, ie. expressed in basis points; or by the probability that the shock materialises (e.g. 

  ,   ,   ). Then we identify implications at both uni-and multivariate levels by exploring a 

gradual panel of severity, and varying degrees of volatility. We also define an estimator of the 

univariate frailty. In some aspects, our interpretation of the frailty is comparable to Darolles, 

Gagliardini, Gourieroux (2014). While univariate stress tests help us understand the dynamics of the 

frailty on each sovereign, the multivariate approach delivers a comprehensive view on how 

contagion is seen as propagating throughout the sample. In the end, we draw some 

recommendations on how to maximise risk diversification in sovereign investments. In the 

subsequent part of the report, we also explore some practical implementations of these 

recommendations in portfolio optimisation procedures. First we review the effectiveness of 

recognised approaches as to mitigate the portfolio’s exposure to systemic risk (e.g. Minimum 

Variance, Equal Risk Contribution, Maximum Diversification portfolios). Then, we design a new 

methodology which delivers outstanding results as to restrain the portfolio exposure while not 

conceding too much on total returns.  
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Deriving the probability of default out of CDS prices 

Fixed Income vanilla products - like bonds - usually involve some risk of default, because the bond 

issuer may become insolvent in a future date. In this case he will be unable to repay its debt, thus 

causing a credit event.  

In effect, most of credit events are “partial defaults”: there is a persistent portion of the debt that is 

still ‘alive’ after the restructuring. This is in opposition to “total defaults” where the full outstanding 

of the debt is erased. In partial defaults, the risk neutral recovery rate characterizes the portion of 

debt that is remaining. While advanced models explore the dynamics of time varying recovery rates 

(Jeanblanc et al. (2006), Altman, Resti, Sironi (2003)), the recovery rate is usually regarded as a fixed 

parameter. As Edwards (2015) shows, the average haircut on sovereign debt over the period 1978 to 

2010 was around 37%. The recovery rate plays a minor role in our analysis, so we adopt a relatively 

simple approach and we consider       as an acceptable value. In this case, the default is 

effective on     of the total debt outstanding.  

Bond holders, on a default, will obviously bear a significant loss on the face value of the bond. When 

this risk turns to be more palpable, investors may want to hedge themselves via appropriate 

protections, like Credit Derivatives Swaps (CDS). A CDS is a contract providing insurance against a 

credit event. These contracts bind the protection buyer and the protection seller to transfer the 

credit risk of an asset without the actual transfer of the asset.  

CDS have a lot in common with regular insurance contracts: the buyer must make regular payments 

to the seller until the end of the contract period, at least until no default materializes. This premium, 

paid in exchange for protection, is expressed in terms of “spread”: this is the CDS spread.  

If a default occurs, the buyer not longer has to pay the CDS premium, though he has to pay the 

accrued premium effective at this time. Both parties then proceed to the settlement of the swap, 

either physically or in cash. If the contract requires a physical delivery, the CDS buyer delivers the 

bond to the seller in exchange for its par value. When a cash settlement is required, the mid market 

price   of the bond some specified days after the credit event is used as a reference. The seller 

eventually provides the buyer          of the notional principal.  

As an insurance against a potential default, the value of the CDS spread has to reflect the default 

probability of the underlying entity, which means evaluating the risk that a credit event will 

materialize during the life 𝑇 of the contract. Logic dictates that the risk of default rises along with the 

time horizon 𝑇; as a result the CDS spread is larger for contracts with a longer maturity 𝑇. This 

characterisation of the CDS spread as a function of the time horizon 𝑇 defines the whole term 

structure of the CDS curve. The literature reports two main approaches to estimate the probability of 

default from a very general perspective (Delianedis, Geske (1999); Derbali, Hallara (2013); Schaefer 

(2012); Hull, Predescu, White (2005)): structural models and intensity models.  

Structural models first (Derbali, Hallara (2013)), assume that default is always consecutive to a sharp 

deterioration of the fundamental picture. Default in this case is effective when the deterioration on a 

basket of relevant fundamental variables exceeds some predefined thresholds. In this approach, the 

likelihood of a default is computed out of fundamental indicators, like the debt outstanding, the 

equity ratio for corporate, or some macroeconomic variables (GDP growth, inflation, current 

account). When these indicators experience a notable decline and move excessively, beyond some 
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pre-specified limits, then the firm is seen as defaulting on its future debt repayment. The first 

generation of structural models was introduced by Merton Merton (1974) and then, developed by 

Leland (1994), Leland and Toft (1996), Anderson and Sundaresan (1996) and Jarrow (2011). These 

models mostly rely upon the “physical” meaning of the debt and the corresponding financial assets, 

and they usually assume that the firm value follows a geometric Brownian motion. The equity of the 

firm is then interpreted as a call option on the underlying value with a strike price equal to the face 

value of the firm’s debt maturity. One of the limitations however, is that the framework is able to 

predict a default only at maturation of the debt. Black and Cox (1976) explore in some ways potential 

improvements to the methodology. Their updated version takes a time varying barrier into account, 

and the authors define the default as the first passage time across the barrier. Generally speaking, 

the probability of default is endogenous in structural models, ie. the likelihood of default is derivable 

from the price of a stock and balance sheet of a company. A more detailed review of structural 

models is available in Sundaresan (2013).  

On the other hand, intensity based credit risk models characterize defaults as exogenous events 

(Guillermo (2010), Yi Lan (2011)). The model now does not try to capture the reasons that justify a 

default, but it focuses on the pattern with which a default occurs. In intensity based models, the local 

implied probability of default over a small time interval is modelled as proportional to the length of 

the time interval. This gives such models a great deal of analytic tractability. The proportionality 

factor is known as the hazard rate of default over the infinitesimal time increment. The risk of 

default in an intensity model is defined via a counting process      which increases by jumps of one 

unit:  

                            
     𝑖               𝑖    𝑖          
       𝑖              𝑖    𝑖          

  

The default intensity      over the time interval          is then characterized as the frequency of 

credit events over this period. This parameter can be modelled through deterministic functions or 

stochastic terms. In practice, default is usually defined as the first jump of a Poisson process with 

intensity  . The default time is therefore distributed according to an exponential law from which we 

deduce: 

- The probability function of the default     𝜏           𝜏                      with 𝜏  default time 

- The default probability over the time interval       :      𝜏               𝜏  

- The survival probability over the time interval       :     𝜏             𝜏  

Let us now look at the relationship between the CDS spread (of maturity  ) and the intensity of 

default  . A CDS spread is usually seen as the sum of a risk-free interest rate swap OIS (IRS), plus a 

risky component relative to the default of the underlying asset.  

The duration of a risk free swap OIS with maturity 𝑇 is: 

           𝑇  𝑇    

    

      𝑇   

With 𝑇  the fixed rate payment dates and      the risk-free discount factor relative to this IRS. 
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In a simplified model, we can assume a flat swap curve, described by an interest rate   with 

continuous payments. We therefore obtain:  

                  

As previously mentioned, the buyer of the protection has to provide a fixed payment   over the life 

time of the contract, equal to the CDS spread (Graph 106). This is the fixed leg of the contract, which 

corresponds to a gain from the point of view of the seller.  

On the side of the seller, any payment is conditional to the realization of a default. This leg is known 

as the floating leg, which represents a loss from the seller’s perspective. 

Graph 106. Fixed rate payments by the buyer 

as time goes by 

 Graph 107. Payment by the seller in case of 

a default  

     

 

 

 
   

As the fixed payments are interrupted when the contract expires (at maturity or if a default occurs), 

we can define a “truncated duration” for the CDS spread: 

                𝑇         𝑇        
          𝑇   

    

 

Where         is the discount factor of a risk free zero coupon bond of maturity  . 

In a no-arbitrage model, the Net Present Value (NPV) of the fixed and floating legs should be the 

same:  

 

 

 

 

 

 

 

 

 

 

 

In an arbitrage-free world, both legs are supposed to be equal, so we obtain:          (43) 

 Eq. (43) shows that the CDS spread   linearly evolves with the default density  .  

 

In our analysis, we consider annual default probabilities with constant default intensity  . For a 5Y 

CDS spread we thus obtain: 

  𝜏                   
   

 
      (44) 

Eq. (43) shows that the CDS spread is a linear function of the corresponding default probability. This 

kind of intensity model suggests that the probability of default is independent of the maturity 𝑇 of 

LR = 1- ρ
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the contract. While this is a simplification of the actual situation, this approach is sufficiently 

accurate in the context of our analysis. 

 In the next paragraphs, we consider probabilities of default in sovereigns as a starting point for 

implementing stress tests.  

Considering 5Y and 10Y CDS spreads, we calculate the probabilities of default of European countries 

based on eq. (44). Graph 108 and Graph 109 show the results; we refer to these series in a later 

paragraph. 

Graph 108. 5Y default probabilities  Graph 109. 10Y default probabilities  

     

 

 

 

   

 

Table 33. Average probability of default over the period 2008-2016 
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5Y 0.007 0.006 0.008 0.012 0.013 0.017 0.032 0.033 0.046 0.062 0.117

10Y 0.010 0.008 0.011 0.015 0.016 0.020 0.035 0.035 0.044 0.058 0.107
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Implementing stress tests on European asset swap spreads 

In Chapter 1, we described the calibration of a probabilistic model that proved a successfully tool to 

illustrate the univariate and multivariate dynamics of European CDS spreads over the period from 

2008 to end-2016. We also designed an un-temporal estimator of the intrinsic volatility   , from what 

we established an un-conditional version of the distribution function   of the data. We also 

calculated some preliminary estimators of the volatility raised by contagion when market sentiment 

turns sharply risk averse.  

As we note in the literature review, stress tests are powerful tools to evaluate the influence of 

multivariate linkages between financial securities, and to identify their impact during periods marked 

by tough risk aversion. Calculations in Chapter 2 are largely based on the multivariate model 

described in Chapter 1, and are mostly inspired by the methodology of stress tests, in particular tests 

based on the determination of VaR (Value at Risk).  

In the following section, we explore the idiosyncratic and joint behaviour of sovereign securities 

further in-depth. First we look at the impact of a shock from a univariate point of view. We explore in 

particular the expected surge in intrinsic volatilities that would ensue from financial distress. Then, 

we investigate the multivariate implications, and we derive an estimate of the price variations that 

would result from the shocks. In both cases, we derive an analytical description of the general 

market dynamics. This makes the manipulation and further extrapolation of these observations 

particularly straightforward. 

 

How to define a shock/scenario 

We define a shock as a sudden and sharp increase in the CDS spread      between two time 

increments. On that basis, we see two main approaches as to control the severity of the shock: 

First we reason in terms of the effective price variation, in basis points. In this case a shock 

effectively happens when the price increase in the CDS spread exceeds a pre-defined level (in basis 

points). The scenario may consist, for instance, of a price variation of 10bp or more. For a given 

sovereign CDS referring to Country 𝑖, we thus define the shock via the magnitude of the price 

increase 𝑆 :    

             𝑆   that we can rewrite as       𝑆  based on Chapter 1’s notations   (45) 

In a second approach, stress test scenarios can be defined according to the probability that the 

shock effectively materialises. In this case the severity of the scenario is controlled by setting this 

probability to a desired level. We denote by     the probability of the shock. Combining both 

definitions,    illustrates the probability (or the risk) that the price increase 𝑆  exceeds a certain 

amplitude.  

Based on Chapter 1,    can be expressed as a function of 𝑆  via the univariate probability density 

function    of   , that involves the un-temporal volatility estimator           : 

         𝑆             
  

  
      𝑆     
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Since the coefficient    will play a major role in the following analysis, and because    is calculated out 

of   , we rename        as          and    𝑆   as   𝑆     . In this case we rewrite the expression of 

   as: 

         𝑆               
  

  
     𝑆       (46) 

Graph 110 and Graph 111 illustrate the relationship between   , the probability   , and the market 

reaction 𝑆  for      . In this synthetic example, a shock with a probability of    to materialize 

corresponds to an increase of the CDS price of at least      . Graph 111 describes how    relates to 

the upper    tail: the event 𝑆        corresponds to    of the distribution in the upper tail.  

Because of the shape of the cumulative distribution, the probability  𝒊 and the magnitude  𝒊 

move in opposite directions: when  𝒊 increases, the shock is more severe and its probability to 

happen is therefore smaller. This is visible in Graph 111: 𝑆        for      , while 

𝑆        at the    level.  

Based on the same reasoning, a larger probability  𝒊 describes a shock that is more likely to 

materialize. This is therefore a more indulgent risk scenario, thus characterised by smaller amplitude 

𝑆 . In Graph 110 and Graph 111 for instance, a shock of 𝑆        has a large probability 

       to happen.  

In terms of volatility this time, assuming that    is fixed, a larger volatility    would cause an increase 

of the amplitude 𝑆 . And in contrast, a more contained    leads to a contraction of 𝑆 . Overall, this 

corroborates the natural understanding that a shock, e.g. designed such that  𝒊    , will cause 

bigger variations in CDS prices on the more volatile countries.  

Graph 110. Shock with an amplitude 𝑆   Graph 111. Relationship between 𝑆  and     
     

 

 

 

   

We also derive a temporal version of the shock. We incorporate the temporal and conditional 

probability distribution function                calibrated in Chapter 1 into the denomination of the 

shock, as per eq. (47). This new version is a temporal definition, which takes the ‘sample path’ into 

account, and involves the GAS volatility estimator 𝜎 .  

             𝑆                         
  

    
  (47) 

As an example with        , Graph 112 shows the resulting price variation 𝑆    calculated on the 

conditional probability distributions   calibrated in Chapter 1.  
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Graph 112. Amplitude of the 1% Shock on European CDS 𝑆   
   

 

  

 

 

Lucas, Schwaab, Zhang (2012) seek derive the magnitude induced by default probabilities. And to 

do so, the authors implement VaR-based stress tests, by imposing that  𝒊    𝒊  
           

.  

In our opinion, it is not clear if such a stress test scenario can effectively be comparable to the advent 

of a proper default. However, we find this connection between the severity of the simulation and the 

market-implied probability of default very relevant to approach a situation of a ‘worst case 

scenario’. In this case, even if the simulation does not lead to a proper default, results should 

highlight a situation where a credit event is already substantially more likely.  This approach looks 

interesting in the context of our analysis given that we seek to understand the dynamics of risk 

aversion, not only in the vicinity of the default, but also very much upstream, ie. when 

expectations of a default in the market start to heighten.  

While we are keen to consider the parameterisation of Lucas, Schwaab, Zhang (2012), we note that 

the proposed methodology (ie.          
           

) looks incoherent in certain cases: for instance, if 

one considers a country with a probability of default set at   
           

    . Then        leads 

to 𝑆    if we assume that the distribution is centred (a fair assumption based on Chapter 1). 

However, 𝑆    means that no variation to CDS prices is required to approach a situation where 

default is a likely outcome. In sum, country 𝑖 is already in a state of default by the time we realise the 

shock. This is incoherent with   
           

     as we should have   
           

   instead. On 

the other hand, if we consider a country which is effectively in a situation of default by the start of 

the simulation, we can assume that   
           

   and so      according to the proposed 

parameterisation. This finally leads to a market reaction of 𝑆    . This is inconsistent as well 

given that a default is already priced in by the start of the simulation. As a consequence, 𝑆    is the 

expected value, instead of 𝑆    .  

In sum, these two examples highlight a contradiction in the formulation of Lucas, Schwaab, Zhang 

(2012):  

-          𝑆     instead of          𝑆      

-        𝑆     instead of        𝑆       
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Based on these observations, we propose to modify the initial formulation of the “credit event-like” 

shock into          
           

  ; instead of          
           

. This modification is justified by the 

fact that a deterioration of the credit quality necessarily implies a rise of the CDS price. Since a 

negative variation of the CDS price is not a possible outcome in the aftermath of the shock, the lower 

half of the distribution (which describes negative price variations) has to be ignored - in other words, 

 𝒊  
           

 has to be seen as conditional on a rise in CDS prices (ie. conditional on       ). Since 

       is centred and symmetric (see Chapter 1), the non-conditional probability of default is 

therefore     
           

  .  

We also note that the new parameterisation          
           

   respects the boundary 

constraints        𝑆     and          𝑆    .  

While we consider this approach in the following analysis as providing interesting results, we also 

keep in mind the uncertainties that surround the interpretation of this definition of the shock. In 

particular, stress tests based on  𝒊    𝒊  
           

   are just partially involved in the whole 

analysis. 

Graph 113. Amplitude of the Shock on European CDS when          
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A non-temporal approach to financial contagion 

In this section, we explore the market reaction to shocks. Our stress test methodology largely 

involves the probabilistic model described and calibrated in Chapter 1. We now take a different 

dataset to what we had in Chapter 1. As they are an interesting (and liquid) proxy for CDS spreads, 

we prefer exploring sovereign asset swap spreads (10Y maturity, see (Aussenegg, Götz, Jelic (2012))).  

 

Sovereign 10Y asset swap spreads 

Asset swap spreads (more conveniently ‘ASW’) qualifies the return of a position whereby an investor 

is holding a bond while paying an Interest Rate Swap (here the ‘EUR’ swap rate), both of the same 

maturity. An Interest Rate Swap (‘IRS’) is a contract in which two parties agree to exchange interest 

rate cash flows for a given period of time (the maturity of the contract), on a fixed-floating basis: the 

interest rate is fixed on one side of the contract (for instance, one of the participants is entitled to 

annual payments at a fixed rate of 4.5% like in Graph 114); while the rate remains floating on the 

other side of the contract (e.g. the other participant is entitled to semi annual payments at the 6-

month Euribor rate). The amount effectively exchanged is calculated on the basis of the notional of 

the trade. In essence, IRS are used as a means to convert fixed payments into floating cash flows. In 

an environment of rising interest rates in particular, bonds experience a price depreciation ensuing 

from higher yields. While fast money investors (like Hedge Funds) will take advantage of this bearish 

environment (on rates) by shorting bonds, institutional investors like pension funds and insurance 

companies are forced to hold bonds as a means to hedge future liabilities, and therefore they do not 

have much flexibility. IRS in this context, offer a meaningful hedge against the upward trend in rates: 

investors paying the fixed-rate leg and receiving the floating-rate leg in particular will experience a 

gain when the floating interest rate is on the rise (Euribor), as it offers bigger returns compared to 

the fixed rate (unchanged during the whole life of the contract). In this case investors are said to be 

‘payers’ of the IRS. 

Graph 114. Breakdown of cash flows involved in an IRS  

  

 

 

  

Back to sovereign bonds, an investor may want to pay the IRS as a means to hedge the fact that 

sovereign rates are expected to rise in the future. The resulting position is said to be an “asset swap” 

position. The corresponding yield of the position is then described as the asset swap spread (or 

 𝑆 ), which is relatively similar to the spread between the bond yield and the fixed rate of the IRS 

(Fabozzi (2003), Tuckman (2003), O’Kane (2001)):  

 𝑆       𝑇     𝑖                (48) 

Where  𝑇     𝑖    is the yield to maturity of the 10Y sovereign bond for a given country 𝑖 at time 

 , while           is the value of the 10Y Euro swap rate (fixed leg).  

Since credit risk is a prominent driver of sovereign interest rates when the credit quality deteriorates, 

the appetite for asset swap positions is relatively correlated to the perception of the credit 
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worthiness of the entity. To some extent, asset swap spreads can be seen as a proxy for CDS 

spreads (Aussenegg, Götz, Jelic (2012)).  

A concern however when manipulating ASW, lies in the fact that the sovereign bond under 

consideration does not have a constant maturity, since the remaining life of the bond decreases as 

time goes by. In contrast, the swap rate          has constant parameter, of 10 years. This 

intrinsic difference may induce some inaccuracy in the results, especially for smaller debt issuers that 

do not replace their benchmarks very often. In order to address this caveat, we replaced 

𝒀      𝒊    with the yield to maturity of a constant maturity synthetic 10-year bond. The pricing 

of this synthetic bond is deduced from the Nelson-Siegel-Svensson (NSS) model, calibrated on the 

whole term structure.  

The NSS model (eq. (49)) is highly regarded and largely employed in the industry. As eq. (49) shows, 

the model involves five unknowns:                 , that we calibrate via the appropriate routine 

(Gilli, Grosse, Schumann (2010)). Then we compute  𝑇      𝑖    and we calculate  𝑆  
  as per eq. 

(50). 

 𝑇   𝜏 𝑖          
        𝜏   

𝜏  
     

        𝜏    

𝜏   
       𝜏     

    
        𝜏    

𝜏   
       𝜏      

(49) 

 𝑆  
      𝑇      𝑖                (50) 

We consider daily variations of 10Y sovereign ASW for eleven countries (Germany, Finland, 

Netherlands, Austria, France, Belgium, Italy, Spain, Ireland, Portugal and Greece) from 1 January 

2008 to 31 December 2016.  

As Graph 116 shows, asset swap spreads show positive values in non-core countries, mostly because 

of the extra risk premium on these sovereign curves. In contrast, the data is negative in core and 

soft-core countries (Graph 115): the sovereign curve in these jurisdictions has been trading below 

the EUR swap curve in recent years. We follow the same methodology as in Chapter 1 considering 

the daily variations of  𝑆  
  (see eq. (51)) as the variable we will work on. In line with previous 

notations, we denote it   ; Graph 115 and Graph 116 show the dynamics of the data. 

       𝑆  
      𝑆  

         (51) 

Graph 115.  𝑆  
  for core and soft-core countries     Graph 116.  𝑆  

  for non-core countries 
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While there is more data available this time about Greece, there are still periods without any 

quotes. Around the debt restructuring that took place in Q1 2012 in particular, the 10Y sovereign 

bond (GGB) actually stopped being quoted for a couple of weeks in April. In order to maintain the 

same level of consistency for each country, we compensate this lack of data by collecting Greek ASW 

over a longer period, so that all time series are of the same size.  

We calibrated the model described in Chapter 1 onto this new dataset. First we estimated the 

coefficients of the univariate conditional GHT distributions using the GAS method: Graph 117 shows 

the resulting CPIT for Spain and the ADC criteria for all countries. The ADC for Germany and Greece 

are slightly less compelling than for other countries, but they remain much satisfactory (see e.g. the 

CPIT for Greece in Graph 118). We also show the resulting GAS volatility for Portugal as an example 

in Graph 119 against its empirical benchmark.  

Graph 117. CPIT for Spain and univariate ADC  Graph 118. CPIT for Greece 

     

 

 

 

   

 

Graph 119. Portugal GAS volatility versus empirical benchmark  

   

 

 

  

We then calculated the un-temporal GHT distributions, based on the volatility estimator   . The 

resulting distributions    delivered much satisfactory ADC as well. Graph 120 shows the resulting un-

temporal volatility   : for most of the countries, values are very close to what we obtained in Chapter 

1.  
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Graph 120. Volatility    in bp/day as a function of the empirical cumulative distribution  

   

 

 

  

In our approach, the methodology of stress tests has a lot in common with the calculation of VaR. In 

the usual methodology, one has to fix in advance the level   of tolerated losses. Then with this 

information at hand, the Value at Risk can be calculated. In the context of this analysis now, the 

degree of risk that needs to needs be identified upstream has to reflect the “worst case scenario”, 

ie. the most extreme expected scenario. In the worst case scenario, the asset is seen as experiencing 

the largest possible price deterioration during the considered period (ie. one day). We denote this 

level of stress as 𝑆     . 

In a first instance, we seek to calculate this estimator. Intuitively, estimating the largest expected 

price deterioration 𝑆      could be achieved by exploring the expected market reaction to temporal 

stress tests, all over the history. Then we should be able to draw conclusions from the observed 

market reaction 𝑆   . As mentioned above, temporal stress tests involve the GAS volatility 𝜎  which 

tends to capture the very short term momentums in the volatility (something we stress in Chapter 

1). We also mentioned that          
           

   looks an interesting parameterisation for 

temporal stress tests.  

In this context, we computed time varying stress tests on the series, as defined in eq. (47), and on 

the basis that          
           

   (as shown in Graph 109). We plotted some of the results in 

Graph 121, for the Netherlands, France and Italy as examples.  

Graph 121 shows the expected market reaction in case of a shock of magnitude     
           

   

throughout the selected period. A possibility as to derive 𝑆      could be just to consider the 

maximum value of these series, and to take it as the expected reaction in a “worst case scenario”. 

That said, we remain mindful that the volatility is sometimes spiking to an abnormally large level on 

the emergence of risk aversion, just because liquidity proves extremely scarce. This may favour the 

appearance of irrational market prices, and thus tends to make the dataset irrelevant at this date. 

Capturing this ‘noise’ is a risk when we move towards the very end of the tails of the distribution. 

As a result, and instead of taking the maximum value ‘as is’, we prefer defining our estimator of 

“maximum market reaction” 𝑆      to the Type I shock as the 99% percentile of the distribution of 

𝑆 . Table 34 shows the resulting values for each country. While these numbers look coherent, we 
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understand the ‘arbitrary’ dimension of the approach. For this reason, we will also consider the gross 

‘maximum value’ in a second instance. 

Graph 121. Market reaction 𝑆    to temporal shocks for selected ASW: Netherlands, France and Italy 

There stress tests were conducted on the basis that          
           

   

 

   

 

 

  

 

Table 34. 𝑆     , the worst case scenario in basis points 

  

 

 

As a general observation in Table 34, the expected maximum market reaction to shocks is bigger for 

the more exposed countries in general. For Portugal and Greece for instance 𝑆      is peaking at 

     and      , while the market reaction is much smaller for core and soft-core countries, at 

around        .  

In Graph 121, we also highlight some of the most extreme values for each country with coloured 

diamonds. Overall the periods that see the largest market reaction to shocks tend to differ 

depending on the asset category (core, soft-core, non-core). 

Italian ASW for instance (as an illustration for peripheral countries in general) exhibit a larger 

market reaction at the climax of the sovereign crisis, ie. during the years 2011-2012 (blue diamonds 

in Graph 121). Though Graph 116 shows that Italian CDS spreads were trading at their highest levels 

by this time,          
           

   also indicates that a higher CDS spread leads to a larger      and 

therefore to a smaller 𝑆   .  The larger  𝒊  
           

 cannot be seen as a tangible reason behind 

the surge in  𝒊   in 2011-2012.  

As Graph 122 shows, 𝜎  was also unusually large during the years 2011-2012, as it surged from 

roughly          in normal market conditions to more than          in e.g. November 2011. The 

larger GAS volatility 𝜎 , in contrast to the CDS level     , favours larger 𝑆    in eq. (47).  The GAS 

volatility    is a prevalent factor in peripheral countries during the periods of very large  𝒊   in 
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Graph 121. Even if not displayed in this graphs, other non-core countries follow the same 

dynamics. 

Looking at core countries now, Dutch CDS in Graph 121 exhibit much smaller market reaction than 

soft-and non-core countries during the sovereign crisis (see red line). This is understandable as the 

large risk aversion in 2011-2012 fanned the demand for safer bonds. As a result, core interest rates 

were trading at much lower levels than soft-core and non-core rates during the crisis, and the GAS 

volatility 𝜎  remained much contained on more resilient credits in general. This overall justifies the 

relatively small 𝑆    during this period in core countries. Based on Graph 121, the market reaction for 

Dutch CDS spreads (and for other core countries in general) in fact reaches a peak in October 2008. 

2008 is notorious for the global financial crisis (GFC), that hurt financial markets worldwide. In 

Europe, core CDS spreads were trading at a very low level just ahead of the crisis (Graph 123). Dutch 

CDS for instance were trading at just 12$ until end Q3 2008, close to French CDS (15$) but well below 

Italian CDS (50$). In this context,     
           

 (in eq. (44)) was at extremely low levels in core 

sovereigns. And as we just mentioned, a lower probability of default tends to encouraged a larger 

market reaction 𝑆   . In core countries specifically, this effect was largely offset by the volatility 𝜎 , 

which remained persistently small until end September 2008 (green area in Graph 124). But things 

changed when global risk aversion hit the market by the end of September 2008 as it pushed 

volatility in general to record highs (red area in Graph 124), even in core economies. This led to the 

combination of a very low     
           

 and a very large volatility 𝜎 , both supporting a bigger market 

reaction 𝑆   . This mostly justifies the large values in Graph 121 during the periods around H4 2008 

for France and the Netherlands.  Overall, this shows that  𝒊  
           

, along with CDS prices by 

analogy, were much too low in core countries, just by the wake of the global financial crisis. As a 

result, CDS prices in core countries experienced a remarkable correction in October-November 2008 

(e.g. Dutch CDS in Graph 123), with prices soaring from 12$ to 90$, in just two months.  

 These observations highlight the contrarian influence of both the probability of default and the 

GAS volatility on the market reaction  𝒊  .  

Graph 122. CDS peaking in 2011-2012  Graph 123. Core CDS at low levels in 2008  
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Graph 124. GAS Volatility regime in 2008 

  

 
 

French assets in Graph 121, offer interesting information as well. Arguably, soft-core CDS spreads 

were trading above core CDS spreads in 2008. The higher probability of default, thus led to a more 

contained market reaction than in core: this is observable in Graph 121. On top of that, the volatility 

in soft-core credits is significantly smaller than in peripheral countries. This justifies the smaller 

market reaction during the years 2011-2012 for French ASW in comparison to Italy in Graph 121. In 

the end, black diamonds that show extreme market reactions on French ASW take place at different 

periods in the sample, with some of the points during the years 2008-2009, and others during the 

sovereign crises in 2011-2012. 

 These observations already reveal some information on the influence of    and  𝒊  
           

. 

The sample size also appears to be an important factor as a shorter history – e.g. excluding the 2008 

crisis – would have led to much smaller estimations of the maximum market reaction 𝑆      for core 

countries. This would have caused an underestimation of potential risks in core credits.  

Influence of the univariate volatility  

In the literature, volatility is commonly seen as a major catalyst for contagion on financial markets 

(Darolles et al. (2013); Darolles et al. (2014); Glasserman, Nouri (2012)). In this section we explore 

this relationship between volatility and the market reaction to shocks. We achieve a series of shocks 

on each sovereign entity separately and under different volatility regimes, then we look at the 

resulting market reaction. In sum, we seek to understand the implications of a rising volatile, on 

the intrinsic exposure/resilience to financial shocks. In (Darolles et al. (2013) and Darolles et al. 

(2014)), the deterioration of the credit robustness to shocks, when the univariate volatility is 

mounting, is designated as a ‘frailty’ coefficient. This is the parameter that we seek to explore and 

quantify.  

Graph 120 shows the un-temporal volatility   . Looking at Italian ASW more specifically in Graph 125, 

we empirically segmented the plot into three main categories, all supposed to describe a particular 

volatility regime. First we identify a regime of “equilibrium volatility”, which qualifies very stable 

market conditions (green area at the centre of the distribution, ie. for          ). The volatility here 

reaches its lowest values, and ASW variations are very small as well (         ). Then we 

acknowledge a “mild volatility” regime (yellow areas), with slightly higher volatility this time. ASW 

variations on the x-axis are also bigger (                and                ). Intuitively, 

one would think that a shock will probably have a bigger impact under this regime than under the 

equilibrium volatility. Finally we consider the volatility in the tails as the “extreme volatility” regime 
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(red areas). This time, volatility reaches its largest values. As it is located in the wings (        and 

       ), this regime corresponds to very large variations in ASW. A shock under these conditions 

will probably lead to the most harmful market reaction, surely bigger than in the two other regimes.  

Graph 125. Volatility coefficient    in bp/day as a function of the empirical cumulative distribution 
  

 

 

Let us now consider our un-temporal definition of stress tests, that involves both the un-temporal 

volatility estimator   , and the univariate distribution function   : 

         𝑆               
  

  
     𝑆        

We seek to assess the consequences of stress tests under different volatility regimes separately. In 

Graph 125 we identified three different regimes only, but we generalise this approach and we 

consider each point on the curve as a particular volatility regime.  

We conduct a series of shocks with a gradual intensity. We denote        the probability of the most 

severe shock, and we compute it as the percentile on   that corresponds to the largest expected 

market reaction 𝑆     . Since the maximum market reaction is supposed to be reached under the 

most extreme volatility regime, we calculate        under the assumption that                  

       . Then we calculate        such that: 

                       

  

      

     𝑖 𝑆              (52) 

The resulting values are in Table 35:  

Table 35.       , ie. the probability attached to the most severe shocks 

  

 
 

Since 𝑆      in Table 34 is assumed to be reached for           specifically, we rename it as 

𝑆            .  

 

7

8

9

10

11

12

13

14

15

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bp/day

Italy

x = 0

x>0, swap spread wideningx<0, swap spread tightening

E
X

T
R

E
M

E
 

V
O

L
A

T
IL

IT
Y

MILD 
VOLATILITY

E
X

T
R

E
M

E
 

V
O

L
A

T
IL

IT
Y

MILD 
VOLATILITY

EQUILIBRIUM 
VOLATILITY

   

  ( ) 

GE FI NL AT FR BE IT SP IR PT GR

0.012 0.006 0.008 0.037 0.021 0.050 0.098 0.155 0.081 0.201 0.029

Max risk level  

(percentile, %)



137 
 

For each volatility regime   , we consider a series of shocks with gradually decreasing intensities. The 

most severe scenario is defined by          . And for the shock of least intensity,        will 

cause no market reaction at all given that   is centred:  

  
                                 

  

  
        𝑆        , so no market reaction (53) 

We also consider intermediate levels of risk. Those levels are set arbitrarily, they are meant to 

illustrate the behaviour of the market reaction with regards to shocks of mild severity, ie. between 

the maximum risk level           and the “equilibrium risk level” reached for       . Given 

the levels of        in Table 35, we consider two different sets for       : 

- First we note that             for every country except Portugal. As a consequence, we 

arbitrarily choose to explore the following   different levels of shocks (  indicates the risk 

level): 

  𝑖      𝑖                              (54) 

- Then for Portugal, we adjust it to: 

  𝑖      𝑖                           (55) 

As we will see later, this difference does not alter the quality of the final estimate of the frailty 

coefficient. 

As eq. (46) indicates, the stress test procedure consists of calculating the magnitude of the market 

reaction  𝒊, which illustrates the variation in the asset swap spread that is supposed to result from 

the shock. For a given volatility regime    and a country 𝑖, eq. (56) indicates 𝑆      is computed, 

assuming that we simulate a shock of amplitude     . This definition shows the relationship between 

the market reaction 𝑆  (expressed in basis points) and the intensity      of the shock. Comparing 𝑆  

for different values of    eventually offers a comprehensive picture of how the market reaction is 

supposed to increase when the volatility rises. 

          𝑖      𝑖
  

𝑆𝑖  

 (56) 

The V-shape of    in Graph 125 makes any exploration of 𝑆    as a function of    relatively 

inconvenient. Instead, we prefer looking at  𝒊   as a function of the empirical cumulative 

distribution function 𝑭 . This is more straightforward given that                   
     

            (see Chapter 1). We will then consider  𝒊 as a function of    in a second stage.  

Graph 126 and Graph 127 show the results for German and Italian ASW. For better clarity, we 

include just three different levels of intensity in these two graphs:     ,     ,       
  . With no 

surprise the market reaction tends to worsen when the shock becomes more and more severe. 

German ASW for instance, shows a market reaction of      under         (Graph 126) - by 

definition this is equal to 𝑆     . New information comes from the fact that the market reaction falls 

to respectively      and      for shocks with a risk level    of      and     . Italian ASW exhibit 

a similar dynamics overall, with the market reaction falling from      for         to      and      

for scenarios with a risk level of      and     .  
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Graph 126. Market reaction 𝑆  vs.    and    (Germany) 

                      

 Graph 127. Market reaction 𝑆  versus    and    (Italy) 

                      
     

 

 

 
   

We also added the volatility coefficient    in orange (right-hand side) in Graph 126 and Graph 127. 

This helps understand the dynamics of the market reaction when volatility is mounting: in both 

cases, the rise in the market reaction 𝑆  is coincident with a larger underlying volatility.  

 The bigger market reaction in volatile market conditions illustrates the ‘frailty’. This specifically 

describes the market reaction ‘in excess’, compared to the reaction  𝒊  at the belly of the 

distribution (ie. under the equilibrium volatility regime). We explore the market reaction and frailty 

further, in the following paragraphs, and we propose a quantification of their respective 

behaviour.  

The series  𝑆 
 𝑖     𝑆 

     𝑆 
     𝑆 

   𝑆 
   𝑆 

    𝑆 
     in eq. (54) or in eq. (55) can be seen as 

successive levels of the market reaction as the shock becomes increasingly more severe. On that 

basis, we adjusted the presentation of the results and we plotted the market reaction of all 

European ASW in Graph 128 to Graph 138. In these graphs, each band corresponds to a specific 

range for the expected market reaction as specified in the legend: the highest tranche for instance 

corresponds in general to               , except for Portuguese ASW where this is       

      . The reasoning is similar for other tranches, up to the lowest section that corresponds to  

          .  

Graph 139 also compares the market reaction in all countries for the most severe shock. This 

highlights the sharp differentiation in terms of credit robustness, between peripheral countries and 

other core/soft-core countries (especially in the tail regions), in the worst case scenario.  

Graph 128. Market reaction 𝑆  for various   (Germany)  Graph 129. Market reaction 𝑆  for various  (Finland) 
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Graph 130. Market reaction 𝑆  for various   (Nether)  Graph 131. Market reaction 𝑆  for various   (Austria) 

     

 

 

 
   

 

Graph 132. Market reaction 𝑆  for various   (France)  Graph 133. Market reaction 𝑆  for various   (Belgium) 

     

 

 

 
   

 

Graph 134. Market reaction 𝑆  for various   (Italy)  Graph 135. Market reaction 𝑆  for various   (Spain) 
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Graph 136. Market reaction 𝑆  for various   (Ireland)  Graph 137. Market reaction 𝑆  for various   (Portugal) 

     

 

 

 
   

 

Graph 138. Market reaction 𝑆  for various   (Greece)  Graph 139. Market reaction 𝑆  for           
     

 

 

 
   

A general observation is that the market reaction always reaches extreme values for         and 

        while 𝑆  is much smaller in the centre of the distribution (         ).  

For a given level of stress, the market reaction looks like a parabola. This is an illustration of the non-

linear acceleration of the price deterioration as we approach the tail regions. In other words, a shock 

will have much worst implications on the asset price when the underlying volatility is already large at 

the initial stage of the simulation. The parabolic shape is worth to note, we will exploit it further in 

a subsequent paragraph. 

Based on the definition of Darolles et al. (2013) and Darolles et al. (2014), the acceleration in 𝑆  is an 

illustration of the frailty phenomenon, which turns to be particularly damageable when the volatility 

rises. While our calculation of the frailty is different, our indicator is based on the same definition: 

for a given level  , we define the frailty coefficient   
         as the difference between the 

expected market reaction for a given level of volatility    and the expected market reaction when the 

volatility is in the equilibrium regime ie. for              , as per eq. (57): 

  
      𝑖   𝑆𝑖     𝑖   𝑆𝑖      (57) 
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Our definition implies that there is no frailty under the equilibrium volatility regime, which looks fair. 

In general terms, the frailty coefficient   
  reflects the portion of the market reaction 𝑆  that is in 

excess to the market reaction obtained under the equilibrium regime (so for 𝑆            ).  

Using this definition, we obtain a specific curve  𝒊
  for each level of stress  𝒊  : Graph 140 to 

Graph 152 show the results. Each tranche this time illustrates the frailty coefficient in the range 

     
         

   . The legend denotes the lower and upper limits of the corresponding range. The upper 

tranche in the plots for instance corresponds to the expected frailty for shocks in the range 

            
    (or           

    for Portugal).  

As to highlight the strength of the frailty, we collated the maximum frailty of each country in Table 

35. Germany and Austria exhibit the smallest frailty, at just     . In core countries, Finland and the 

Netherlands experience slightly more frailty at      and     . France exhibits a low maximum 

frailty of     , ie. very close to Germany, while Belgium yields a slightly higher frailty parameter, at 

    . Table 36 also shows that the maximum frailty is quite similar for Spanish and Italian ASW at 

     each. This means that out of      and      respectively in  𝒊     (see Table 34),      is 

attributable to the ‘frailty’ effect. As expected, the maximum frailty is bigger for other peripheral 

countries with namely      frailty in Ireland,      in Portugal and       in Greece.  

Table 36. Maximum frailty       , expressed in basis points and as a share of 𝑆      

  

 
 

We also added the ratio of        over 𝑆      in Table 36. This illustrates the maximum frailty 

(       ) as a share of the corresponding market reaction (𝑆     ). Arguably, the portion 

corresponding to the pure frailty effect within 𝑆      is smaller for core and soft-core countries, with 

a ratio at around         of 𝑆     . Then the ratio tends to rise for non-core countries, from 

    for Spain and Italy up to     for Greece.  Numbers highlight that the frailty plays a bigger 

role for countries with a less robust credit quality. 

Graph 140. Frailty    for various   (Germany)  Graph 141. Frailty    for various   (Finland) 
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Graph 142. Frailty    for various   (Netherlands)  Graph 143. Frailty    for various   (Austria) 

     

 

 

 
   

 

Graph 144. Frailty    for various   (France)  Graph 145. Frailty    for various   (Belgium) 

     

 

 

 
   

 

Graph 146. Frailty    for various   (Italy)  Graph 147. Frailty    for various   (Spain) 
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Graph 148. Frailty    for various   (Ireland)  Graph 149. Frailty    for various   (Portugal) 

     

 

 

 
   

 

Graph 150. Frailty    for various   (Greece) 
 
Graph 151. Maximum frailty for non-core  

     

 

 

 
   

 
Graph 152. Maximum frailty for core/soft-core  Table 37. Coefficients of the polynomial interpolation 

     

 

 

 

   

In line with its definition in eq. (57), the maximum frailty (reached for       ) looks like a parabola 

in Graph 140 to Graph 152. The non-linear aspect of the frailty is particularly pronounced when we 

near the tail regions of the distribution. We also extracted the frailty coefficients obtained for the 

most severe shock (      ) in Graph 151 and Graph 152, and this helps make some cross-country 

comparisons. Overall, we note that core and soft-core see somewhat similar frailty (Graph 151) while 

non-core countries are much more exposed to shocks (Graph 152).  
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An interesting aspect of 𝑆  and   
  is the parabolic shape of the results. A second order polynomial 

equations effectively provides an outstanding fit to the resulting series, and so for both coefficients 

(see Graph 139 and Graph 152).  This quantification of the market reaction and the frailty 

phenomenon is valuable as it makes any out-of-sample exploration of these results particularly 

easy.  

For the sake of clarity we focus on one level of financial stress: the worst case scenario (ie. 

         . We define the second order polynomial interpolation according to the 

parameterisation in eq. (58) and eq. (59). We then estimate the coefficients of the interpolation 

using the usual least squares method. We put the resulting coefficients in Table 37. 

𝑆             
              (58) 

             
              (59) 

Considering this polynomial model makes the determination of the market reaction and the 

corresponding frailty coefficient particularly straightforward, in particular for out-of-sample 

explorations. As an example, let us assume a daily price variation of          on a given peripheral 

ASW. Based on the dataset at hand, we can first deduce the value of the cumulative       : 

Table 38. Empirical cumulative distribution function        
associated to a rise in asset swap spreads of 25bp 

  

 
 

Then, assuming the worst case scenario, we apply eq. (58) and eq. (59) using the calibrated 

coefficients in Table 37 and the data in Table 38. This reveals the expected market reaction and the 

frailty coefficient expected on the materialisation of a shock of amplitude       : 

Table 39. Expected market reaction 𝑆    and contagion      in basis points 

  

 
 

Table 39 shows that a shock at the        level - assuming that asset swap spreads have risen by 

some      – will lead to a market reaction of      in Spain and Italy, of which      and      

respectively are due to the frailty effect. 𝑆  
  then rises to      for Ireland and      for Portugal, of 

which      and      relate to the frailty (ie.     and     of the reaction). With no surprise, 

Greece sees a more harmful reaction at      , with      frailty (    of the reaction).  

These estimators of the market reaction/frailty provide useful insight in absolute terms for risk 

management purposes as it helps apprehend the potential shortfall if a shock comes up in 

sovereigns. The methodology also makes cross country comparisons of underlying risks, e.g. 

between peripheral countries, relatively convenient. One for instance can get a clear idea of how 

much additional risk Portuguese assets adds to a given portfolio in comparison to Spanish or 

Italian assets.  

IT SP IR PT GR

0.989 0.989 0.980 0.969 0.917  ( 𝑖)  

IT SP IR PT GR

41 41 51 61 140

19 21 31 38 88

𝑆 𝑖   
  𝑖  
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Let us now explore the relationship between the market reaction to shocks and the volatility. 

Graph 153 shows the market reaction 𝑆  as a function of the volatility coefficient    for Germany. First 

it appears that the market reaction is a linear function of the volatility. The slope in particular tends 

to increase when the shock is more severe. We also see no particular differentiation between each 

side of the distribution (ie for           in comparison to        ).    

We generalize this analysis to other countries in Graph 154 (core and soft-core countries) and Graph 

155 (peripheral countries) considering the most severe shocks only (      ). Overall, most of 𝑆  

curves exhibit a linear dynamics. But this is not the case for Finnish and Dutch ASW, for which the 

reaction tends to accelerate beyond a certain level when the volatility nears its highest values. This 

distinction may be due to the lower        for Finland and the Netherlands in comparison to other 

countries (see Table 35). As a result, stress tests at the        level for Finnish and Dutch ASW go 

much farther in the tail of the distribution (        and         are both below      ). In these 

two cases, the relationship between 𝑆  and    is quadratic.  

Graph 153. Market reaction 𝑆  vs    (Germany)  Graph 154. Market reaction 𝑆  vs    (core, soft-core) 

     

 

 

 
   

 

Graph 155. Market reaction 𝑆  vs    (peripherals)  
Table 40. Interpolation of 𝑆   versus    

     

 

 

 
   

 

Graph 154 and Graph 155 also show that the relationship between the market reaction and the 

volatility can be successfully described by a second order polynomial function for Finland and the 

Netherlands and by a linear function for other countries: eq. (60) formalizes the corresponding 

parameterization and Table 40 shows the corresponding coefficients; we denote 𝑆   the estimated 
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variable.  For a given volatility   , we can now deduce the expected market reaction to a shock in 

the worst case scenario: 

𝑆            for all countries except Finland and the Netherlands (60) 

𝑆       
          for Finland and the Netherlands (61) 

Let us now look at the relationship between the univariate frailty  𝒊
  and the volatility   . Graph 

63 shows the frailty coefficient obtained for German ASW as a function of the volatility. This time 

again the expected frailty looks like a linear function of the volatility, with the slope rising along with 

the severity of the shock. Then extending this observation to other countries in Graph 157, we obtain 

a general picture very similar to Graph 154: most of the countries admit a linear relationship 

between the frailty and the volatility, except for Finnish and Dutch ASW which display a quadratic 

relationship. This is not surprising given that   
 is a linear transformation of 𝑆  in eq. (57). 

Based on the same approach as before, we model the expected frailty coefficient     as a polynomial 

function of the volatility for Finnish and Dutch ASW and as a linear function for other countries (see 

eq. (62)). We calculate the corresponding unknowns and we put the results in Table 41. 

        
          for all countries except Finland and the Netherlands (62) 

        
          for Finland and the Netherlands (63) 

 

Graph 156. Univariate frailty    vs    (Germany)  Graph 157. Univariate frailty    for core, soft-core 

     

 

 

 
   

 

Graph 158. Univariate frailty    for peripherals  Table 41. Coefficients of the interpolation (   vs   ) 
     

 

 

 
   

This model makes rather convenient the exploration of synthetic examples. If we assume for 

instance that peripheral countries see a volatility coefficient of            . Based on Graph 155 
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and Graph 158 this is a pretty large volatility regime. While this is outside of the range of the 

observed values for Spanish and Italian ASW, we can now derive the expected market reaction and 

frailty: 

Table 42. Expected market reaction 𝑆  
 

 and contagion    
 

 in basis points 

  

 
 

Results in Table 42 indicate that the frailty is smaller for Portuguese ASW than for Spanish and Italian 

assets. This is because we do not take the probability of the event             into account. We 

mentioned that             is a rare event for Italian and Spanish ASW (thus justifying the huge 

market reaction of      and     ), but this is not the case for Portuguese ASW since          is 

not that far from the “equilibrium regime” in Graph 120. This justifies the smaller reaction of     .  

 Our model in eq. (62) and eq. (63) offers insightful information on the behaviour of the market 

reaction/frailty, relative to the volatility. The relationship between these variables is mostly linear 

(except for Finnish and Dutch ASW), which means that these three coefficients tend to rise “in 

proportion” one compared to each other.  

We also take a look at the relationship between the market reaction  𝒊 and the shock intensity 

 𝒊  . In particular assuming a regime of maximum volatility for   , Graph 159 shows that 𝑆  is sharply 

rising when        In this case too, the acceleration of the market reaction is highly non-linear, 

though this time the acceleration takes (more or less) the shape of a logarithmic function.  

Graph 159. Market reaction 𝑆  as a function of the shock intensity   , 

and assuming a regime of extreme volatility for      

 

   

 

 

  

Let us now explore the dynamics of the market reaction and the frailty on a cross-country basis. 

Considering the worst case scenario, we now compare the coefficients  𝒊        ,  𝒊        , 

 𝒊         under a scenario of extreme volatility, ie. when          for the different countries (ie. 

when 𝑖 varies).  

In Graph 160 and Graph 161 first, we plot the maximum expected market reaction 𝑆             and 

the maximum expected frailty              , against the corresponding volatility      . As the 
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proposed interpolation shows, the worst expected market reaction and the biggest frailty follow a 

quadratic dynamics when the underlying volatility         rises. R-squared are very high, suggesting 

that the relationship makes sense. This time again, the polynomial dimension illustrates the non-

linear acceleration in  𝒊            and  𝒊           , which is particularly visible when the 

expected volatility       is larger than         . Irish, Portuguese and Greek ASW, on that basis, 

look particularly affected by this parabolic escalation of the risk propagation.  

In fact in practice, it appears that the polynomial interpolation also holds when the volatility is not at 

its climax. For any realisation      in the data for instance, the following interpolation is acceptable: 

𝑆              𝑖   
 
          𝑖         (64) 

Where 𝑖 refers to the country.  

Graph 162 for instance shows the interpolated line at the specific date of 1 December 2011. In this 

formulation, every day provides its own set of variables                 .  

For any point      in the sample we are now left with two different formulations of the expected 

market reaction 𝑆 : 

 
𝑆  
            

                            

𝑆    
           𝑖   

 
          𝑖        

  respectively taken from both eq. (58) and eq. (64)    

In terms of rationale, 𝑆  
  is very different from 𝑆    

 . On one side, 𝑆    
  is an estimate of the market 

reaction in light of the whole spread complex, which means that 𝑆    
  is based on the multivariate 

dynamics of the data, and this dynamics, illustrated by                 , is only valid at time  . In 

contrast to 𝑆    
 , 𝑆  

  is time-invariant (         are unchanged as time goes by) and involves only 

idiosyncratic information about country 𝑖: every country has its own set of parameters              

 We can therefore think of   𝒊
  as a long-term intrinsic estimate of the market reaction  𝒊. In 

contrast,   𝒊  
  is a short-term fair value of  𝒊, which largely depends on the market sentiment in 

place at time  . Since contagion is a temporary factor that may take investors by surprise, we can 

suppose that 𝑆    
  is faster to react to contagion. This is also reinforced by the fact that contagion is 

supposed to be more stringent in peripheral countries, something that 𝑆    
  should capture as its 

calculation involves the cross market dynamics. In the end,   𝒊  
  can be seen as a reference for 

detecting contagion. Persistent contagion in particular should encourage   𝒊
  to move towards the 

more reactive   𝒊  
 .    
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Graph 160. Max reaction 𝑆      vs max volatility         Graph 161. Max frailty        vs max volatility       

     

 

 

 
   

 

Graph 162. Quadratic relationship between 𝑆  and  , at 

a specific date    (1 Dec 2011) 

 Graph 163. Max frailty        vs max reaction 𝑆      

     

 

 

 
   

In Graph 163, we also plot the maximum frailty               against the maximum market reaction 

𝑆            . As the interpolation shows, there is apparently a linear relationship between 𝑆      

and       , that we formalize as: 

𝑆                  𝑆                   (65) 

 The relationship revealed in Graph 160, Graph 161, Graph 163 is a meaningful innovation. As 

we show in the next paragraph, there is no particular mathematical constraint in our methodology 

that could justify these observations. This suggests that the linear ordering reflects intrinsic 

features of sovereigns. The linear relationship between  𝒊            and  𝒊             is 

meaningful as it indicates that sovereigns altogether can be seen as following the same dynamics, 

when we look at the deterioration of the credit robustness implied by a shock in the worst case 

scenario.  

Considering a shock of maximal intensity ( 𝒊    ), the frailty  𝒊     is a linear function of the 

market reaction  𝒊     (see eq. (57):            𝑆      𝑆             ), with a slope 

coefficient equal to  . For all the countries               , we therefore have the following 

relationship - in its general form on the left, and in the specific case of an extreme volatility 

         on the right: 

 
 
 

 
             𝑆          

            𝑆          
   

            𝑆          

          

 
 
 

 
                𝑆                 

               𝑆                 
   

               𝑆                 

  
(66) 
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Graph 163 also shows that there is a linear relationship that relates               to 𝑆             

for all countries 𝑖; with a common intercept, equal to       . As a consequence we can write that: 

               𝑆                 with         for  𝑖                    

We see two possible meanings behind this linear relationship:  

- A) Either the linear behaviour between                and 𝑆              comes from some 

“mathematical constraints” implied by the analytical formulation of the problem. In this case 

the linear relationship is not a proper innovation, this is just a natural consequence of our 

assumptions. And in this case we should have: 

                                                   (67) 

- B) Or the linear relationship is a fortuitous conclusion with no mathematical foundation. In 

this case the linear behaviour is worth to highlight as it suggests that all sovereigns adhere to 

the same dynamics when we look at the detrimental effect of financial shocks in the worst 

case scenario. In this case, the linear behaviour in Graph 163 reveals an intrinsic feature of 

sovereigns. This would constitute a proper innovation for those who want to explore 

sovereign risk in general.  

In order to conclude on the relevance of the linear relationship between                and 

𝑆            , we plot            against 𝑆          in Graph 164 and Graph 165. We also add the 

points                𝑆              as blue diamonds, as well as the linear curve obtained in 

Graph 163 as a dark dashed line.  

Graph 164. Frailty        vs. the market reaction 𝑆       Graph 165. Frailty        vs. the market reaction 𝑆  
     

 

 

 
   

The first observation is that the linear relationship between            and 𝑆          is very much 

explicit now, with the corresponding curves parallel to each other. But they do not overlap, showing 

that the assumption in eq. (67) is not verified.  

Plus it is clear now that the linear relationship between                and 𝑆             is different 

and independent from the linear relationship that binds            to 𝑆         . As a result, the 

relationship between  𝒊             and  𝒊            is not due to a mathematical constraint. 

This is coherent with the fact that  𝑆              in Table 34 were arbitrarily calculated, 
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independently of one another.  The linear relationship between  𝒊             and 

 𝒊            appears therefore as a fortuitous fact.  

In conclusion, we showed that                      𝑆                   is a generalised 

description of the univariate frailty in the worst case scenario that holds for all countries in the 

sample (equation in Graph 163). This formula is very convenient to use as the only required variable 

is the expected market reaction 𝑆            , ie. the response of the asset to the shock in the 

“worst case scenario”. Assuming that  𝒊            is the largest tolerated loss in a given portfolio, 

one can now deduce the expected portion   𝒊            that is attributable to the frailty 

phenomenon. The relationship in Graph 160 also helps identify the intensity of the underlying 

volatility in these circumstances.  

Arguably, the deterioration               that occurs for peripheral countries in Graph 163 is a 

linear function of 𝑆            : Ireland, Portugal and Greece are almost perfectly aligned on the 

interpolation curve.  From a risk management perspective, the general behaviour of European 

sovereign ASW highlighted in Graph 160 to Graph 163 help understand the trajectory of the 

market response to stress tests  𝒊            and the corresponding frailty when the intrinsic 

credit robustness is facing a sharp deterioration. This can prove much interesting as to apprehend 

a slide in ratings for instance. 

This generalisation of the dynamics of the frailty to all countries also sheds some light on the 

influence of 𝑆            . This variable was arbitrarily set as the    biggest market reaction in 

temporal stress tests. There is still an open question on the relevance of such a definition. In 

particular, we would like to observe if our findings still hold under a slightly different 

parameterisation of  𝒊           .  

The linear relationship between               and 𝑆             makes possible to forecast the 

corresponding frailty should we decide to change the definition of 𝑆            . As an example, let 

us redefine it simply as the maximum value of the market reaction to temporal stress tests (Graph 

121). Table 43 shows the new values for 𝑆            . These are obviously higher than in the 

previous definition. 

Table 43. New values for 𝑆      defined as the maximum reaction to temporal 

stress tests – basis points 
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to Type I shock
36 59 57 31 36 40 52 56 72 117 256



152 
 

Then considering the linear relationships in Graph 164 and Graph 165 between 𝑆          and 

           we can deduce the expected frailty               :  

Table 44. Corresponding maximum frailty        in basis points 

  

 
 

Then comparing                                                  in Graph 166, it appears 

that the linear behaviour between all countries is still holding (though the coefficients have slightly 

changed compared to Graph 163).  

Graph 166. New profile between        and 𝑆       

   

 

 

  

In conclusion to this section, we have rationalised the dynamics of the deterioration, in terms of 

credit quality, that arises from the emergence of shocks. Our approach involves two different 

definitions of the shock: one, temporal, is based on the market-implied probability of default; this 

formulation involves the GAS volatility estimator. A second definition investigates the relevance of 

time-invariant stress tests and finally delivers an estimator of the expected market reaction, from a 

more general standpoint than the temporal approach. We considered a series of many shocks with 

gradual intensity. The analysis offers a high degree of granularity in the results, and this proved 

particularly helpful to extrapolate empirical rules on the general behaviour of 1) the intrinsic 

volatility, 2) the market response to shocks, 3) the expected frailty hitting the credit quality. 

 

On a cross country basis, our analysis also shows that there exists a linear trajectory amongst the 

different sovereigns (Graph 163), that relates the maximum market reaction to what we consider as 

a measure of the frailty induced by financial distress. This linear behaviour is insightful information, 

which was unexpected.  
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The multivariate contagion  

Let us now take a look at contagion, from a multivariate point of view. As we note in the literature 

review, empirical observations show that risk aversion tends to magnify multivariate linkages 

between financial securities. As a result of stronger correlations, any sell-off is systematically 

replicated among all assets classes, even those that look normally safer or just disconnected from 

the fundamental source of risk aversion. This obviously can have dramatic implications in portfolios, 

hence the interest to explore, investigate and quantify the behaviour of multivariate cross-asset 

connections under intense risk aversion.  

In this section we conduct a quantitative exploration of multivariate contagion between European 

sovereign ASW. Our approach largely involves the mulitvariate model we calibrated in Chapter 1. 

We consider the same dataset as in the previous paragraphs, ie. 10Y European sovereign ASW over a 

history from January 2008 to end-December 2016. Let us now calibrate the corresponding bivariate 

distributions as described in Chapter 1. The procedure is composed of three stages: 1) 

standardisation of the univariate data using the GAS volatility, 2) calibration of the multivariate GHT 

probability distribution functions, 3) calculation of the ADC (Anderson-Darling criterion) and display 

of the PIT as estimators of the goodness of fit.  

We conduct the calibration for each pair of ASW. As a result, ADC in Table 45 indicate that most of 

the calibrations are successful (ie.        ) - except for a few pairs involving Greece that prove 

more difficult to calibrate. The PIT also give additional insight on the quality of the calibration. For 

the pair “Greece-Spain” which displays a weak ADC of     for instance, the PIT in Graph 167 shows 

that the error essentially consists of a slight underestimate of the left wing, and an overestimate of 

the right wing, with just    of the points deviating from the expected uniform distribution. In a 

sense, this looks relatively acceptable. Graph 168 also shows the PIT relative to the combination 

“Greece-Finland” (ADC of     in Table 45). This time, the multivariate distribution is rather well 

calibrated, except in the upper tail which is a bit underestimated (     of the points misplaced). Let 

us now take a look at the parameters of each distribution. 

Table 45. Multivariate ADC prove outstanding, except for the pair “Greece-Ireland” 

  

 
 

 

As exposed in Chapter 1, the covariance matrix of the multivariate distributions is a correlation 
matrix. The corresponding coefficients, in Table 46, show that correlations are in the range 
           .  

Table 47 shows the mean vector          . The overall pattern is relatively similar to what we had 

in Chapter 1:   is more negative for countries of a lesser credit worthiness while it remains closer to 

FI NL AT FR BE IT SP IR PT GR

GE 1.7 0.9 1.4 1.8 2.4 1.6 1.8 1.9 1.6 1.8

FI 0.9 0.9 1.1 1.9 1.8 1.8 2.8 1.2 2.7

NL 0.8 1.7 1.6 0.9 1.3 1.4 1.4 2.6

AT 1.0 1.0 1.1 1.8 1.6 1.1 1.0

FR 1.3 0.9 1.0 1.2 1.2 2.3

BE 1.1 1.2 1.8 1.3 1.2

IT 1.1 0.4 1.1 1.2

SP 0.9 1.2 2.7

IR 1.7 1.6

PT 1.7

C
O

U
N

T
R

Y
 2

COUNTRY 1
ADC
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  for the more robust country. Pairs made of two countries with a comparable credit quality also 

show closer coefficients          like the pair      𝑖            in Table 47. 

Graph 167. PIT for the pair “GR-SP” (ADC=2.7)  Graph 168. PIT for the pair “GR_FI” (ADC=2.1) 

     

 

 

 

   

 
Table 46. Calibrated correlation coefficient   

   

 

 

  

 

Table 47. Mean coefficients           for all pairs under study 

  

 
 

Results show that the multivariate calibration was successful for most of the pairs. Let us now 

explore the design and the implementation of bivariate stress tests. For better clarity, this is a short 

description of the different probability distribution functions involved in the calculations. These 

definitions are similar to Chapter 1: 

-        and        are the univariate GHT distributions calibrated with the GAS method.  

-        and        are the standardised versions of        and       ;   is the cumulative 

distribution. 

-                is the bivariate GHT distribution that we obtained using the multivariate GAS 

method. This distribution is no longer centred, as                  .   is the cumulative. 
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FI NL AT FR BE IT SP IR PT GR

GE 0.97 0.78 0.63 0.85 0.82 0.81 0.53 0.89 0.81 0.53

FI 0.91 0.77 0.63 0.72 0.87 0.90 0.77 0.98 0.90

NL 0.76 0.95 0.89 0.94 0.69 0.85 0.94 0.69

AT 0.80 0.90 0.89 0.96 0.96 0.89 0.96

FR 0.81 0.79 0.81 0.85 0.79 0.98

BE 0.81 0.81 0.86 0.83 0.82

IT 0.87 0.82 0.97 0.91

SP 0.83 0.77 0.86

IR 0.81 0.80

PT 0.81

COUNTRY 1

C
O

U
N

T
R

Y
 2

 GH
𝑖 , 

   

µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2 µ1 µ2

GE -0.01 -0.96 -0.12 -0.67 -0.54 -0.34 -0.12 -0.55 -0.73 -0.29 -1.56 -0.07 -1.64 -0.13 -0.88 -0.32 -1.56 -0.07 -1.64 -0.13

FI -0.16 -0.37 -0.17 -0.61 -0.49 -0.32 -0.61 -0.19 -0.94 -0.14 -0.76 -0.24 -0.49 -0.35 -1.8 -0.03 -0.76 -0.24

NL -0.72 -0.14 -0.07 -0.69 -0.44 -0.28 -1.74 -0.06 -1.1 -0.14 -1.7 -0.1 -1.74 -0.06 -1.1 -0.14

AT -0.96 -0.02 -0.5 -0.16 -1.1 -0.11 -1.66 -0.08 -0.48 -0.3 -1.1 -0.11 -1.66 -0.08

FR -0.41 -0.23 -1.28 -0.08 -1.11 -0.1 -1.08 -0.1 -1.28 -0.08 -1.44 -0.14

BE -1.11 -0.1 -1.11 -0.1 -0.16 -0.95 -1.52 -0.09 -1.34 -0.12

IT -0.49 -0.23 -0.84 -0.05 -1.84 -0.05 -0.92 -0.11

SP -0.71 -0.04 -0.84 -0.15 -0.46 -0.39

IR -0.14 -0.69 -0.96 -0.12

PT -1.11 -0.1

PT GRFI NL AT FR BE IT

C
O

U
N

T
R

Y
 2

COUNTRY 1

SP IR



155 
 

The multivariate analysis in Chapter 1 explores the behaviour of a standardised version of the data 

denoted            . While our approach to stress testing largely involves the corresponding 

multivariate distribution  , any conclusion drawn from   is dimensionless, and therefore absolutely 

not convenient to exploit. As a result every result from stress tests, in the standardised frame, will 

be systematically converted in the (original) frame of  , ie. where the expected market reaction is 

expressed in basis points. The conversion from a price variation   into a coefficient   in basis points 

is based on the fact that the cumulative distribution function between both variables is supposed to 

be conserved (ie.          ):  

                         

Where 𝑖 relates to the country, and    is the un-temporal volatility coefficient of  . 

(68) 

As a first approach to multivariate stress tests, we seek to explore the market reaction on Country 

2 assuming that an upfront shock has materialised on Country 1. Like in the univariate analysis, the 

input of the simulation is the intensity of the upfront shock, this time denoted 𝑆 , on   . This time 

again, we explore a set of shocks, with a gradual level of severity. We adjust our definition of non-

temporal stress tests in eq. (46) to the standardised dataset    , and its corresponding distribution 

function  :  

               

  

   

     𝑆    
(69) 

We consider the following levels of severity: 

                                                (70) 

This is an arbitrary decision, and we will also consider shocks outside of this range at a later stage. 

Contagion on Country 2, caused by the upfront shock 𝑆  on Country 1, can actually be seen as the 

expected market reaction on Country 2, conditional on the realisation of 𝑆 . In other words, 

contagion can be seen as the expectation of the random variable    , conditional on the realisation 

of   . We denote this contagion coefficient as    
             

     , calculated such that:  

   
             

             𝑆   
(71) 

So by definition, we have: 

       𝑆              𝑆  

  

  

        
             

      (72) 

 

On top of that we can develop       𝑆   further: 

      𝑆   
      𝑆  

  𝑆  
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In the end we need to calculate    
             

 such that: 

     
              

   

  

   

    

  

  

            𝑆   (73) 

Graph 169. Illustration of how    
             

 is calculated, out of 

the bivariate distribution 

 

   

 

 

  

As a general interpretation, we assume that contagion is emanating from the less robust countries 

(in terms of credit quality), and is oriented towards credits of an equivalent or a more robust credit 

quality. We thus consider contagion stemming from peripheral countries towards soft-core and 

core countries, as well as contagion out of soft-core countries and into core countries. On that 

basis, we calculate    
             

 for the relevant pairs. We run the simulation for the different levels of 

stress intensity as listed in eq. (70). In the end, and as indicated in eq. (73),    
             

 is a quantile of  , 

drawn from     .    
             

, as a consequence, is a standardised measure of contagion, that we convert 

it into an estimator   
              in basis points using eq. (68).  

Table 48 to Table 55 exhibit the results: each number is the expected contagion out of an upfront 

shock on a given sovereign ASW (Country 1), and directed towards another specific sovereign ASW 

(relative to Country 2). In this configuration, every column corresponds to a specific shock intensity 

for the upfront shock on Country 1, while lines in general show the “path” of contagion on Country 2 

when the shock on Country 1 tends to intensify (when you read from right to left).   

With no surprise, the global pattern of   
              confirms that non-core countries are exposed to larger 

contagion than soft-core and core countries. Portugal in particular sees the biggest reaction to any 

shock in general, while Ireland, Spain and Italy are clearly more resilient.  

In terms of exposure/resilience, Spain, Italy and Ireland constitute an interesting pool. Spain and Italy 

for instance are usually perceived by market participants as credits of a relatively similar credit 

quality. An observation however from our results, is that Italian ASW should see a larger market 
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  𝑆1 =   1 

The threshold    
             

      in Graph 169 is 

calculated such that the area delimited by the red 

lines be equal to    
             

             𝑆  . This is 

a graphical interpretation of eq. (73). 
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reaction than Spanish assets when contagion comes from Greece and Portugal. In contrast, 

Spanish ASW are more exposed than Italian assets to contagion from Ireland.  

We mentioned earlier that Ireland shows a specific un-temporal volatility coefficient   : lower and 

thus more stable than Italy and Spain at the centre of the distribution, but much bigger in the tails 

(Graph 120). Against this backdrop, Table 52 shows that Irish ASW are more robust than Spanish 

ASW to contagion emanating from Italy. And in the same vein, Irish ASW are more resilient than 

Italian assets to an upfront shock in Spain (Table 51). And when the upfront shock happens in 

Portugal or Greece Table 48 and Table 49 indicate that Irish ASW see a market response comparable 

to Spain and Italy.  

In addition, Table 53 to Table 55 show contagion arising from soft-core countries and propagating 

into core.  

Table 48.   
             , expected contagion in basis points 

 
Table 49.   

             , expected contagion in basis points 

     

 

 

 
   

 

Table 50.   
             , expected contagion in basis points 

 
Table 51.   

             , expected contagion in basis points 

    

 

 

 
   

 

Table 52.   
             , expected contagion in basis points 

 
Table 53.   

             , expected contagion in basis points 

     

 

 

 

   

 

  

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

GE 7 5 4 3 3 2 2 2 1 1

FI 8 6 5 4 3 3 2 2 2 1

NL 8 6 4 4 3 3 2 2 2 1

AT 14 12 11 10 9 9 8 8 7 7

FR 13 11 10 9 8 7 7 7 6 5

BE 11 8 6 5 4 3 3 2 2 2

IT 25 20 16 13 12 10 9 8 7 6

SP 21 16 12 10 8 7 6 5 4 3

IR 22 17 12 10 8 6 5 5 4 3

PT 34 26 19 15 13 11 9 8 6 5

GREECE

C
O

U
N

T
R

Y
 2

  1 
2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

GE 7 5 4 3 3 2 2 2 1 1

FI 12 11 9 9 8 8 7 7 6 6

NL 12 10 9 8 8 7 7 6 6 6

AT 12 10 8 7 7 6 6 5 5 4

FR 12 10 9 8 7 7 6 6 5 5

BE 28 15 13 12 11 10 10 9 9 8

IT 32 27 24 22 20 19 18 17 16 15

SP 25 20 16 14 12 11 10 9 8 7

IR 31 25 20 17 15 13 12 11 10 8

GR 86 71 60 53 49 45 42 39 36 31

PORTUGAL

C
O

U
N

T
R

Y
 2

  1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

GE 8 7 5 5 4 4 3 3 3 2

FI 7 5 4 3 3 2 2 2 2 1

NL 12 10 9 8 7 7 7 6 6 5

AT 11 8 7 5 5 4 3 3 3 2

FR 12 10 8 7 6 6 5 5 5 4

BE 11 8 6 4 4 3 2 2 2 1

IT 29 25 21 19 18 17 16 15 14 12

SP 37 31 28 25 24 22 21 20 19 17

PT 27 17 10 7 5 3 2 1 1 -1

GR 65 48 36 29 24 20 17 14 12 8

IRELAND

C
O

U
N

T
R

Y
 2

  1 
2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

GE 7 6 5 5 4 4 4 4 3 3

FI 10 8 6 5 5 4 4 3 3 3

NL 8 7 6 5 5 4 4 4 3 3

AT 14 12 10 9 9 8 8 7 7 6

FR 12 10 8 7 7 6 6 5 5 4

BE 16 13 11 10 9 8 8 7 6 6

IT 19 14 11 9 8 7 6 5 5 3

IR 17 12 9 7 5 4 4 3 2 2

PT 19 10 5 3 2 1 0 0 -1 -2

GR 65 49 37 30 25 22 19 15 14 10

C
O

U
N

T
R

Y
 2

SPAIN  1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

GE 11 9 8 7 7 6 6 6 5 5

FI 9 8 6 6 5 5 4 4 4 3

NL 12 10 9 8 8 7 7 6 6 6

AT 12 10 8 7 7 6 6 5 5 4

FR 12 10 9 8 7 7 6 6 5 5

BE 16 13 11 10 9 8 8 7 6 6

SP 30 24 21 18 17 15 14 13 12 11

IR 27 21 17 15 13 12 10 9 8 7

PT 30 22 16 13 10 8 7 6 5 4

GR 51 34 22 15 11 8 6 4 3 1

C
O

U
N

T
R

Y
 2

ITALY  1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

GE 8 6 5 4 4 3 3 3 2 2

FI 7 6 5 4 3 3 3 2 2 2

NL 8 6 5 4 4 3 3 2 2 2

AT 11 8 7 6 5 4 4 3 3 2

FR 9 7 5 4 4 3 3 2 2 2C
O

U
N

T
R

Y
 2

BELGIUM  1 
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Table 54.   
             , expected contagion in basis points 

 
Table 55.   

             , expected contagion in basis points 

    

 

 

 

   

While results look interesting overall, we also make a few odd observations. Table 48 for instance 

shows that an upfront shock in Greece will cause a market reaction on Portuguese ASW of     when 

the severity of shock is set at        . But         suggests that       since      are 

standardised time series. In the same vein, contagion sometimes turned to be negative when we 

approach         (like in Table 51), and this obviously looks strange. Reviewing the procedure, it 

appears that this is a consequence of the non-zero mean coefficients           - which overall a pre-

requisit to get satisfactory PIT and the ADC criteria in Chapter 1. In contrast, imposing           

      makes the calibration irrelevant.  

 In sum we identify two consequences from having                :  

1)                 implies that   
                in the equilibrium volatility regime (ie. for 

        ). This value of contagion – reached in the equilibrium regime - can be seen as the lower 

bound of contagion, meant to materialise on stable market conditions.  

2) Contagion may be negative as we near the equilibrium volatility regime. This is the case 

for instance, for Portugal in Table 50 and Table 52. This time again, this is due to the structure of the 

multivariate distribution. We also need to keep in mind that contagion is meant to occur on 

“extreme”, and hence rare, events. Contagion is thus at work in the tails of the distribution and not 

at the centre, so          is not a sensible area to observe contagion anyway. Statistical tests 

(ADC, PIT) indicate that the tails and the centre are both properly calibrated, which means that 

negative values make sense from a statistical point of view.  

Looking now at the dynamics of contagion, results indicate that the market reaction    
             

 rises in 

a non-linear fashion when the severity of the shock on Country 1 increases. As an illustration, 

Graph 170 and Graph 171 focus on contagion emanating from Greece and Spain: contagion in these 

graphs follows a logarithmic dynamics. The acceleration due to the logarithmic behaviour is 

particularly neat when we near the tail of the distribution (ie. for      ); R-squared in the graph 

are compelling.  

 A deeper analysis shows that we can generalise this approach to the whole sample. As a result, 

we formalise the algorithmic behaviour of contagion in eq. (74): 

    
          

               
                       (74) 

 

  

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

GE 6 4 3 2 2 1 1 1 0 0

FI 5 4 3 3 2 2 2 1 1 1

NL 6 4 3 2 1 1 1 0 0 0

AT 12 10 8 7 6 6 5 5 5 4

BE 16 13 11 9 9 8 7 7 6 5C
O

U
N

T
R

Y
 2

FRANCE  1 
2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

GE 5 4 3 2 2 2 2 1 1 1

FI 5 3 2 2 1 1 1 0 0 0

NL 8 6 5 5 4 4 3 3 3 2

FR 8 6 4 4 3 2 2 2 1 1

BE 7 4 2 2 1 1 0 0 0 -1

AUSTRIA

C
O

U
N

T
R

Y
 2

  1 
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Graph 170. Multivariate contagion from Greece   Graph 171. Multivariate contagion from Spain 

     

 

 

 
   

 

We calculate the coefficients        and        for each pair and we put the resulting values in Table 

56 and Table 57:  

Table 56. Estimated        coefficients  Table 57. Estimated        coefficients 

     

 

 

 
   

Using eq. (74) we can now calculate the expected contagion   
              at any level of risk    . This is 

particularly straightforward to derive an upper-bound of contagion, assuming for instance that the 

intensity of the upfront shock 𝑆  is peaking (ie.      ). We already estimated the “maximum” risk 

intensity, denoted        in Table 35. We adjust this notation as         in Table 58, and we now 

consider a shock 𝑆  with this specific level of severity  We calculate the resulting contagion using eq. 

(75), that we denote         
                 

 in Table 59  

        
                 

                           (75) 

Table 58.         
(same as Table 35) 

 
Table 59. Maximum contagion         

                 
 derived from         

     

 

 

 

   

y  = -4.82ln(x) + 4.15
R² = 0.9984
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GR PT IR SP IT BE FR AT

GE -1.7 -1.7 -1.9 -1.3 -1.9 -1.9 -1.7 -1.4

FI -2.1 -2.0 -1.8 -2.2 -2.0 -1.7 -1.4 -1.6

NL -2.1 -2.0 -2.0 -1.7 -2.0 -2.1 -1.8 -1.8

AT -2.4 -2.4 -2.8 -2.4 -2.4 -2.6 -2.4

FR -2.3 -2.3 -2.3 -2.3 -2.3 -2.2 -2.3

BE -3.0 -5.4 -3.1 -3.3 -3.3 -3.2 -2.4

IT -5.9 -5.2 -5.2 -4.8

SP -5.6 -5.5 -5.8 -5.8

IR -6.1 -7.2 -4.9 -6.1

PT -9.3 -8.4 -6.2 -8.4

GR -16.6 -17.6 -17.1 -15.7

C
O

U
N

T
R

Y
 2

COUNTRY 1

GR PT IR SP IT BE FR AT

GE -0.2 -0.2 1.0 2.2 3.7 0.7 -1.2 -0.1

FI 0.0 4.7 -0.1 1.2 1.8 0.6 -0.2 -1.3

NL -0.2 4.4 4.1 1.8 4.4 0.1 -1.5 1.1

AT 5.2 2.7 0.1 4.8 2.7 0.7 2.6

FR 4.1 3.4 2.6 2.8 3.4 0.1 -0.8

BE -0.7 2.8 -1.3 3.6 3.6 3.2 -2.7

IT 2.1 11.8 9.3 0.2

SP -0.9 3.3 14.1 7.2

IR -1.9 3.1 -2.3 3.0

PT -2.2 -8.0 -7.5 -2.9

GR 21.2 -4.5 -2.1 -12.9

COUNTRY 1
C

O
U

N
T

R
Y

 2

GE 0.012

FI 0.006

NL 0.008

AT 0.037

FR 0.021

BE 0.050

IT 0.098

SP 0.155

IR 0.081

PT 0.201

GR 0.029

Max risk level  

(percentile, %) GR PT IR SP IT BE FR AT

GE 14 10 14 11 17 15 13 11

FI 17 17 13 15 15 14 12 11

NL 17 17 18 13 18 16 14 15

AT 25 17 20 20 19 21 23

FR 23 18 19 18 19 17 17

BE 23 36 21 25 26 31 16

IT 50 44 46 31

SP 45 38 56 47

IR 48 48 29 45

PT 73 52 33 55

GR 124 121 108 96

COUNTRY 1

C
O

U
N

T
R

Y
 2
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 in Table 59 gives interesting insight on the asymptotic behaviour of contagion. As a first 

observation, the differentiation between Greece, Portugal and the rest of peripheral countries is 

much more pronounced now. Contagion on Greek ASW for instance evolves in a range from      to 

     . In comparison, contagion operating on Portuguese assets is significantly smaller as it evolves 

between      and     . Then Italy, Spain and Ireland see relatively similar contagion, from      to 

    .  

Table 59 also highlights some idiosyncratic behaviours:  

- A shock in Greece produces fewer contagion on Spanish than Italian ASW (     versus 

    ). 

- Spanish ASW are more resilient to a shock in Portugal than Italian ASW are (     versus 

    ). 

- Spanish ASW are more exposed to Irish ASW than Italian and Portuguese ASW are (     vs. 

     and      respectively), and Irish ASW are surprisingly more resilient to contagion 

emanating from Spain (see the very low     ) than from Italy or Portugal (as high as      

and     ). 

- Spain causes larger contagion on Portugal and Greece than Italy does, and Spain looks more 

exposed to Italy, than Italy is exposed to Spain (     versus     ).  

These differences within peripheral countries largely emphasize the role of the two main parameters 

of the multivariate distribution. The correlation coefficient   first, has great influence on the size of 

the tails. Contagion out of Greece for instance is smaller into Germany than into Finland and the 

Netherlands. This largely reflects the lower correlation coefficient (in Table 46) for the pair “Greece-

Germany”.  

The second parameter is the average coefficients           which also have an influence on the 

shape of the tails. As Table 47 shows, a lot of combinations (especially those involving non-core 

countries) are quite unbalanced, with           and      . This is especially the case for the pair 

“Portugal-Germany”. In order to understand the effect of such a negative value for      we made a 

synthetic case study on this specific pair, and we re-calculated contagion assuming that      . As 

a result, contagion hitting German ASW from a shock in Portugal fell from      to     .  

 Variations in     in Table 47 have sizeable implications on the determination of contagion: a 

more pronounced gap between     and     tends to amplify the contagion phenomenon. This 

relationship between the mean coefficient           and the shape of the tails suggests that 

                offers meaningful flexibility for the calibration of the tails (and not just as to 

identify the location of the mean).     

Looking at core and soft-core countries, Table 59 shows that Germany, Finland and the Netherlands 

are significantly more resilient than Austria, France and Belgium. This distinction is an illustration of 

the structural difference between core and soft-core countries. We also make a few additional 

observations: 

- Germany and Finland are the most resilient countries. That said, Finnish ASW look more 

exposed to a shock from Greece than Germany and the Netherlands are. In contrast, Finnish 

assets are more resilient to a shock from Ireland than German and Dutch ASW are (     

versus      and     ). 
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- Germany is more exposed to Italy and Portugal rather than to other non-core countries. This 

contrasts with Finland which is more exposed to Greece and Portugal rather than to Spain 

and Italy. The pattern is slightly different in the Netherlands as Dutch ASW will widen more 

on a shock in Ireland or Italy than on a shock in Portugal or Greece. 

- In the soft-core space, Belgium is more exposed to peripheral countries than France and 

Austria are. Weakness is also illustrated by the large market reaction to a shock from France 

into Belgian ASW (    ). In contrast, a shock in Belgium leads to only      widening on 

French assets.  

- Austrian ASW look very similar to France. 

 

In order to understand the strength of the maximum multivariate contagion         
                 

, in light of the 

equivalent univariate contagion 𝑆        we also calculate the ratio of         
                 

 over 𝑆      , that 

we name        in the following equation. Table 60 shows the resulting values. 

       
        
                 

𝑆      
     

 

 Table 60. Multivariate over univariate reaction (      , %) 

   

 

 
  

       illustrates the amplitude of the multivariate contagion, in light of the underlying 

idiosyncratic risks. Table 60 in particular shows that a shock on Greek ASW will have more negative 

implications for Portugal, Italy, Spain and Austria than for other sovereigns. For these more exposed 

countries, the ratio        is higher than     : the multivariate contagion is larger than the 

market reaction resulting from a univariate shock of a similar intensity.  

            in essence is an illustration that contagion could have dramatic implications, 

sometimes even more harmful than a univariate shock. And as Table 60 shows, this is a major risk for 

peripheral countries. 

 The analysis we just conducted delivered some insight on the consequences of a sudden and 

negative shock on Country 1’s asset swap spreads, onto Country 2’s. In comparison, let us now 

explore the consequences of a positive shock. In particular would positive shocks incur as much 

(positive) contagion as a negative shock does?  

GR PT IR SP IT BE FR AT

GE 56 42 58 43 69 62 55 44

FI 51 51 38 45 46 41 36 34

NL 52 52 57 40 56 50 43 48

AT 103 73 83 85 80 86 95

FR 87 67 73 67 73 64 66

BE 72 112 64 76 81 95 51

IT 119 105 110 74

SP 107 90 133 113

IR 90 88 54 84

PT 112 79 50 84

GR 70 68 61 54

COUNTRY 1

C
O

U
N

T
R

Y
 2
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A positive shock is meant to reflect a surge in risk appetite, which naturally translates into an 

outperformance of the sovereign bond relative to the swap rate. In other words, a positive shock is 

comparable to a sharp tightening of the asset swap spread (ie.    ).  

In the following section, we explore the implications on Country 2 of a sudden tightening of the ASW 

in Country 1, ie. we calculate the expected market reaction on Country 2 that would result from a 

positive shock on Country 1’s ASW. Comparing “positive” against “negative” contagion may then 

deliver interesting insights.  

We consider the same methodology as before. The only difference is that shocks take place in the 

lower tail of the multivariate distribution                – ie. the       corner in Graph 172. In 

contrast, negative shocks were located in the upper tail of   (ie. the       corner in Graph 169).   

 

 

 

We adjust the definition of     such that:  

               

   

  

   𝑆    
(76) 

As a result we have:          . 

We explore the same set of shocks         as before (eq. (70)), and we calculate the corresponding 

“positive contagion”, denoted       
              

, on a similar rationale as well:  

      
              

          𝑆  𝑆    (77) 

By definition, we have: 

       𝑆              𝑆  

  

  

     (78) 

We also adjust the expression of       𝑆   as: 

      𝑆   
      𝑆  

  𝑆  
  

              

   

   

  

     

In the end, we calculate        
              

 such that: 

     
              

   

   

  

    

  

  

            𝑆          
              

 (79) 

Then we derive the final “positive” contagion denoted      
             

 in basis points, using the same 

procedure as before. 
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Graph 172. Illustration of how        
              

 is calculated from the 

bivariate distribution 

 

   

 

 

  

Table 61 to Table 68 show the resulting values for      
             

 (in basis points).  

Table 61.      
             

, expected positive contagion in bp 
 
Table 62.      

             
, expected positive contagion in bp 

     

 

 

 

   

 

Table 63.      
             

, expected positive contagion in bp 
 
Table 64.      

             
, expected positive contagion in bp 
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   1  

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

GE -3 -1 -1 -1 -1 0 0 0 0 0

FI -2 -1 -1 0 0 0 0 0 0 0

NL -2 -1 -1 -1 0 0 0 0 0 0

AT -5 -3 -2 -1 -1 -1 -1 -1 -1 -1

FR -5 -3 -2 -2 -1 -1 -1 -1 -1 -1

BE -5 -3 -2 -1 -1 -1 -1 -1 -1 -1

IT -17 -12 -8 -7 -5 -5 -4 -4 -3 -3

SP -11 -7 -4 -3 -3 -2 -2 -2 -2 -1

IR -19 -13 -9 -7 -5 -5 -4 -3 -3 -2

PT -14 -7 -4 -3 -2 -2 -2 -1 -1 -1

GREECE

C
O

U
N

T
R

Y
 2

  1 
2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

GE -3 -1 -1 -1 -1 0 0 0 0 0

FI -2 -1 -1 0 0 0 0 0 0 0

NL -2 -1 -1 -1 0 0 0 0 0 0

AT -5 -3 -2 -1 -1 -1 -1 -1 -1 -1

FR -4 -2 -2 -1 -1 -1 -1 -1 -1 0

BE -5 -3 -2 -1 -1 -1 -1 -1 -1 -1

IT -5 -2 -1 -1 -1 -1 -1 -1 -1 0

SP -11 -7 -4 -3 -3 -2 -2 -2 -2 -1

IR -17 -12 -8 -6 -5 -4 -3 -3 -3 -2

GR -21 -11 -6 -5 -4 -3 -2 -2 -2 -2

PORTUGAL

C
O

U
N

T
R

Y
 2

  1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

GE -5 -4 -3 -2 -2 -2 -1 -1 -1 -1

FI -6 -5 -4 -3 -3 -2 -2 -2 -2 -2

NL -11 -10 -8 -8 -7 -7 -6 -6 -6 -5

AT -4 -2 -2 -1 -1 -1 -1 -1 -1 0

FR -7 -4 -3 -2 -2 -2 -2 -1 -1 -1

BE -13 -10 -8 -7 -6 -5 -5 -4 -4 -4

IT -7 -4 -2 -2 -1 -1 -1 -1 -1 -1

SP -5 -2 -1 -1 -1 -1 -1 -1 0 0

PT -24 -16 -11 -8 -7 -5 -5 -4 -4 -3

GR -54 -42 -32 -26 -22 -19 -16 -14 -13 -10

IRELAND

C
O

U
N

T
R

Y
 2

  1 
2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

GE -2 -1 -1 -1 -1 0 0 0 0 0

FI -6 -4 -3 -2 -2 -2 -2 -1 -1 -1

NL -4 -2 -2 -1 -1 -1 -1 -1 -1 -1

AT -3 -2 -1 -1 -1 -1 0 0 0 0

FR -5 -3 -2 -1 -1 -1 -1 -1 -1 -1

BE -7 -4 -3 -2 -2 -1 -1 -1 -1 -1

IT -16 -11 -8 -7 -6 -5 -5 -4 -4 -3

IR -13 -9 -7 -6 -5 -5 -4 -4 -4 -3

PT -6 -3 -2 -1 -1 -1 -1 -1 -1 0

GR -16 -9 -5 -4 -3 -3 -3 -3 -3 -2

SPAIN

C
O

U
N

T
R

Y
 2

  1 

Graph 172 is a schematic interpretation of eq. 

(79): 

The threshold       
              

      in Graph 172 is 

calculated such that the volume delimited by the 

red lines is equal to       
              

             𝑆  .  
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Table 65.      
             

, expected positive contagion in bp 
 
Table 66.      

             
, expected positive contagion in bp 

     

 

 

 

   

 

Table 67.      
             

, expected positive contagion in bp 
 
Table 68.      

             
, expected positive contagion in bp 

     

 

 

 

   

 

This time again, we can describe the actual behaviour of contagion as a logarithmic function of     

(Graph 173 and Graph 174). We thus define a generalised estimator of positive contagion, that we 

denote         
                

: 

        
                

                                    (80) 

We calculate the unknowns            and            in eq. (80), that we show in Table 69 and 

Table 70. Then we derive the maximum expected positive contagion as             
                      

 

        
                

          using the same approach as in eq. (75), with         coming from Table 58. 

Graph 173. Positive contagion from a shock in Greece  Graph 174. Positive contagion from a shock in Spain 

     

 

 

 
   

 

  

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

GE -3 -1 -1 -1 -1 0 0 0 0 0

FI -4 -3 -2 -2 -1 -1 -1 -1 -1 -1

NL -2 -1 -1 -1 0 0 0 0 0 0

AT -5 -3 -2 -1 -1 -1 -1 -1 -1 -1

FR -4 -2 -2 -1 -1 -1 -1 -1 -1 0

BE -7 -4 -3 -2 -2 -1 -1 -1 -1 -1

SP -10 -6 -4 -3 -2 -2 -1 -1 -1 -1

IR -14 -9 -6 -5 -4 -3 -3 -2 -2 -2

PT -17 -10 -6 -4 -3 -3 -2 -2 -2 -2

GR -34 -33 -32 -31 -30 -29 -28 -27 -26 -25

C
O

U
N

T
R

Y
 2

ITALY  1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

GE -5 -4 -3 -2 -2 -2 -2 -1 -1 -1

FI -5 -4 -3 -2 -2 -2 -1 -1 -1 -1

NL -7 -5 -4 -3 -3 -3 -2 -2 -2 -2

AT -8 -6 -4 -3 -3 -2 -2 -2 -2 -1

FR -8 -6 -4 -4 -3 -3 -2 -2 -2 -2

BELGIUM

C
O

U
N

T
R

Y
 2

  1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

GE -8 -7 -5 -5 -4 -4 -4 -3 -3 -3

FI -5 -4 -3 -2 -2 -2 -2 -2 -2 -1

NL -7 -6 -4 -4 -3 -3 -2 -2 -2 -2

AT -5 -3 -2 -1 -1 -1 -1 -1 -1 0

FR -7 -4 -3 -2 -2 -1 -1 -1 -1 -1C
O

U
N

T
R

Y
 2

FRANCE  1 
2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

GE -5 -4 -3 -2 -2 -2 -2 -2 -2 -1

FI -8 -6 -5 -5 -4 -4 -4 -3 -3 -3

NL -5 -3 -2 -2 -2 -1 -1 -1 -1 -1

FR -10 -7 -6 -5 -4 -4 -4 -3 -3 -2

BE -14 -12 -9 -8 -7 -7 -6 -6 -5 -4

AUSTRIA

C
O

U
N

T
R

Y
 2

  1 

y  = -4.82ln(x) + 4.15
R² = 0.9984
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  1 

y  = 1.4511ln(x) + 0.2071
R² = 0.9854
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Table 69. Estimated            coefficients   Table 70. Estimated            coefficients 

     

 

 

 
   

Table 71 shows the expected maximum positive contagion             
                      

. First we recognise the 

same pattern as before, with a larger market reaction in peripheral countries (as Country 2), and a 

more contained reaction in core. We also note that the shock 𝑆  has bigger implications when it 

occurs on a core or soft-core country rather than a peripheral country.  

Table 71.             
                      

 - maximum positive contagion 

in basis points (red colour highlights the largest market 

reaction) 

 
Table 72.          - Positive over negative contagion 

in % 

    

 

 

 
   

In order to compare positive versus negative contagion, we also derive the ratio  

         
            
                        

        
                      .   On that basis, positive contagion is lower than negative contagion 

when             , and on the contrary, positive contagion is larger than negative contagion 

when             . Interestingly too, a very small or a very large          would illustrate 

significant asymmetry between positive and negative events. The colour code in Table 72 

differentiates areas where positive contagion is prevailing (green cells) from domains where negative 

contagion is predominating (red cells).  

Table 72 shows the ratio         . Essentially, we identify two main domains in Table 72. Cells with a 

red edge first, exhibit a very low positive contagion in comparison to the negative contagion. This 

dynamics for instance is prevailling for core and soft-core countries when a “positive” shock    

happens in Greece or Portugal. In contrast to that, cells with blue edges highlight a pattern where 

positive contagion is larger than negative contagion. This domain still focuses on pairs involving a 

core and a soft-core country at the same time, especially when the shock is emanating from a soft-

core country.  

AT FR BE IT SP IR PT GR

GE 1.1 1.7 1.3 0.7 0.4 1.2 0.7 0.7

FI 1.6 1.1 1.2 1.1 1.5 1.4 0.5 0.5

NL 1.3 1.8 1.7 0.6 0.9 1.8 0.6 0.6

AT 1.3 2.0 1.3 0.7 1.1 1.3 1.3

FR 2.2 1.9 1.1 1.2 1.7 1.1 1.2

BE 3.0 1.9 1.8 1.8 3.0 1.2 1.2

IT 3.9 1.8 1.3 4.4

SP 2.8 1.2 3.1 3.1

IR 3.8 3.0 4.7 5.2

PT 4.6 1.6 6.4 3.7

GR 2.8 4.1 13.9 5.8

COUNTRY 1

C
O

U
N

T
R

Y
 2

AT FR BE IT SP IR PT GR

GE -0.4 -1.5 0.0 0.4 0.0 -0.1 0.4 0.4

FI -1.7 -0.4 0.1 0.4 0.2 -0.4 0.4 0.4

NL 0.3 -0.3 -0.3 0.4 0.3 -4.3 0.4 0.4

AT 0.8 0.4 0.6 0.5 0.6 0.6 0.6

FR -0.9 -0.2 0.6 0.6 0.5 0.6 0.4

BE -2.4 1.2 1.0 1.0 -1.3 0.8 0.8

IT 0.2 1.3 0.9 1.2

SP 2.1 0.9 1.8 1.8

IR 1.7 -0.6 2.3 2.3

PT 3.1 1.3 3.0 2.9

GR -24.5 2.2 0.3 4.7

C
O

U
N

T
R

Y
 2

COUNTRY 1

GR PT IR SP IT BE FR AT

GE -5 -4 -9 -3 -4 -10 -16 -9

FI -4 -3 -10 -9 -8 -9 -10 -14

NL -4 -3 -17 -6 -4 -13 -15 -10

AT -10 -7 -7 -4 -8 -15 -11

FR -9 -6 -12 -7 -7 -14 -18

BE -9 -7 -23 -10 -11 -15 -26

IT -35 -7 -12 -25

SP -23 -17 -8 -18

IR -40 -27 -20 -24

PT -27 -43 -9 -29

GR -32 -99 -24 -44

COUNTRY 1

C
O

U
N

T
R

Y
 2

GR PT IR SP IT BE FR AT

GE 36 35 59 24 25 66 118 83

FI 23 17 83 61 49 68 85 124

NL 26 19 92 43 20 81 112 63

AT 39 41 37 22 42 73 47

FR 41 34 61 41 35 85 107

BE 39 19 109 42 43 49 159

IT 70 16 25 81

SP 52 46 14 37

IR 83 57 67 54

PT 37 82 28 52

GR 25 82 22 46

COUNTRY 1

C
O

U
N

T
R

Y
 2
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The difference between these two domains is an illustration of the risk aversion/risk appetite 

paradigm: in the red domain, the positive shock is emanating from Greece or Portugal. In this 

environment, investors are prompt to overweight peripheral securities as a means to take advantage 

of the positive momentum surrounding the positive shock. A natural consequence on financial 

markets is that non-core sovereign bonds tend to outperform core and soft-core securities in this 

environment. Since we measure the amplitude of contagion as the performance of the asset in the 

post-shock environment, “positive contagion” is meant to be smaller in core than in non-core, in 

the event of a shock on a peripheral country. Hence the lower values in the red domain.  

In contrast to these observations, the ratio          is larger in the green area (with blue edges). In 

this domain, a positive shock emanating from soft-core countries leads to a relatively high positive 

contagion compared to the equivalent contagion in the case of a negative shock. Part of that, in our 

opinion, reflects the greater resilience that characterises core and soft-core countries when risk 

aversion is mounting.  

Multivariate stress tests have delivered an estimate of how much of a shock on Country 1 is 

supposed to propagate onto Country 2. A key feature so far is that the simulation explores the 

“average” implication of the shock. This is apparent in the conditional mean        𝑆   in eq. (71).  

While results delivered interesting insight on the general exposure to shocks, these give little 

information on how the structural behaviour of the targeted country (ie. Country 2) is altered in the 

aftermath of the upfront shock 𝑆 .   

In order to address this limitation, we now investigate how the robustness of a given sovereign 

entity is affected by the materialisation of a shock in another jurisdiction. In the univariate section, 

we demonstrate that the idiosyncratic volatility is a catalyst of risk aversion. This time, we seek to 

evaluate to what extent the materialisation of a shock in another jurisdiction make other sovereigns 

around more vulnerable to financial distress, and thus tends to cause a notable deterioration of the 

idiosyncratic robustness to shocks. We update the simulation accordingly: we now explore the 

market reaction of Country 2’s ASW to a series of idiosyncratic shocks   , assuming that an 

upfront shock    already hit Country 1’s ASW upstream. Tracking the market reaction on Country 

2’s ASW under various shock intensities for    and    should deliver insightful information on the 

deterioration of the credit robustness caused by contagion.  

The simulation now consists of exploring the consequence of a shock 𝑆  on Country 2’s ASW given 

that a shock 𝑆  has previously materialised on a given Country 1’s ASW.  

First we need to define the shock 𝑆  simulated on Country 1’s ASW. As in the preceding paragraphs, 

we denote     the intensity of this shock. We previously considered shocks with a probability 

      to materialise from      to    . Then we formalised the general dynamics of contagion 

using common interpolation methods. This finally helped derive an upper-bound on the maximum 

expected contagion. We follow the same methodology this time again.  

We consider the same list of coefficients         as in eq. (70), and we define     according to eq. 

(69): 

               

  

   

     𝑆      𝑆   
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Given the shock   , we now simulate a shock    onto Country 2’s ASW. We denote        the 

intensity of this shock, and we consider the same set of intensities          } as for         (eq. (70)). 

We also denote        the corresponding market reaction that results from the shock   : this is 

the variable we are after as it reflects the contagion surging from the event      . By definition 

       is the probability that 𝑆  would materialize given that the shock 𝑆  already happened. We 

can therefore formalise the calculation of        as: 

         𝑆  𝑆   
  𝑆  𝑆  

  𝑆  
 
       𝑆          𝑆    

   
 
                  

     

           

   
 (81) 

With     and        fixed to some pre-defined levels. The only unknown to calculate in eq. (81) is 

𝑆     . In particular we calculate it using the following equality: 

                  

     

           

       
      

   (82) 

With       
      

   illustrating the probability that the whole scenario effectively materialises. 

We calculate 𝑆      for all the pairs in Table 72; we put the results in Table 73 to Table 137. The 

general dynamics in all the graphs indicates that the market reaction 𝑆      sharply accelerates along 

with the intensity of both shocks 𝑆  and 𝑆 .  

As one could expect, 𝑆      does not accelerate at the same pace for every pair. Considering a shock 

𝑆  at the    level on Portuguese ASW for instance, the market reaction seen on Irish ASW to a 

shock 𝑆  increases from      to      (Table 91). In comparison, the corresponding market reaction 

on Italian ASW rises faster, from      up to      (Table 89).  

Table 73. GE|GR – Multivariate contagion 𝑆      in bp  Table 74. FI|GR – Multivariate contagion 𝑆     in bp 

     

 

 

 
   

 

Table 75. NL|GR – Multivariate contagion 𝑆       in bp  Table 76. AT|GR – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 16 13 12 11 10 10 9 9 8 8

5% 13 11 9 8 8 7 7 7 6 6

10% 11 9 8 7 6 6 5 5 5 4

15% 10 8 7 6 5 5 5 4 4 4

20% 9 7 6 5 5 4 4 4 3 3

25% 8 6 5 5 4 4 3 3 3 3

30% 8 6 5 4 4 3 3 3 3 2

35% 8 6 5 4 3 3 3 2 2 2

40% 7 6 4 4 3 3 2 2 2 2

50% 7 5 4 3 3 2 2 2 1 1

GREECE

G
E

R
M

A
N

Y

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 17 14 12 11 11 10 10 9 9 8

5% 14 12 10 9 9 8 8 7 7 6

10% 12 10 9 8 7 6 6 6 5 5

15% 11 9 8 7 6 5 5 5 4 4

20% 10 8 7 6 5 5 4 4 4 3

25% 10 8 6 5 5 4 4 4 3 3

30% 9 7 6 5 4 4 4 3 3 2

35% 9 7 6 5 4 4 3 3 3 2

40% 9 7 5 4 4 3 3 3 2 2

50% 8 6 5 4 3 3 2 2 2 1

GREECE

F
IN

L
A

N
D

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 16 14 12 11 10 10 9 9 9 8

5% 14 12 10 9 8 8 7 7 7 6

10% 12 10 8 7 7 6 6 5 5 5

15% 11 9 7 6 6 5 5 5 4 4

20% 10 8 7 6 5 5 4 4 4 3

25% 9 8 6 5 5 4 4 3 3 3

30% 9 7 6 5 4 4 3 3 3 2

35% 9 7 5 4 4 3 3 3 2 2

40% 8 6 5 4 4 3 3 2 2 2

50% 8 6 4 4 3 3 2 2 2 1

GREECE

N
E

T
H

E
R

L
A

N
D

S

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 31 28 25 24 23 22 21 21 20 20

5% 27 24 21 20 19 18 18 17 17 16

10% 23 20 18 17 16 15 15 14 14 13

15% 21 18 16 15 14 14 13 13 12 12

20% 19 17 15 14 13 12 12 12 11 11

25% 18 16 14 13 12 11 11 11 10 10

30% 17 15 13 12 11 11 10 10 10 9

35% 16 14 12 11 11 10 10 9 9 8

40% 16 13 12 11 10 9 9 9 8 8

50% 14 12 11 10 9 9 8 8 7 7

GREECE

A
U

S
T

R
IA

  1 
  2| 1 
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Table 77. FR|GR – Multivariate contagion 𝑆      in bp  Table 78. BE|GR – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

Table 79. IT|GR – Multivariate contagion 𝑆      in bp  Table 80. SP|GR – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

Table 81. IR|GR – Multivariate contagion 𝑆      in bp  Table 82. PT|GR – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

Table 73 to Table 82 show the results for        assuming that a shock    happened in Greece. 

Results are in line with previous observations in Table 48: 𝑆      is larger for non-core countries. The 

only interesting deviation compared to what we had before is about Belgium, as the market reaction 

on Belgian ASW this time tends to increase faster than on French and Austrian assets (     reaction 

in Belgium in the worst case scenario compared to      and      in French and Austrian ASW). In 

the worst case scenario, we also note that Spain and Ireland (     and     ) prove more resilient 

than Italy and Portugal (     and     ).  

 

  

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 32 28 24 22 21 20 19 18 17 16

5% 27 23 20 18 17 16 15 15 14 13

10% 23 19 17 15 14 14 13 12 12 11

15% 20 17 15 14 13 12 11 11 10 10

20% 19 16 14 12 12 11 10 10 9 9

25% 17 15 13 11 11 10 9 9 9 8

30% 16 14 12 11 10 9 9 8 8 7

35% 15 13 11 10 9 9 8 8 8 7

40% 15 12 11 9 9 8 8 7 7 6

50% 13 11 9 9 8 7 7 7 6 6

GREECE

F
R

A
N

C
E

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 36 29 24 21 19 17 16 14 13 12

5% 29 23 19 16 14 13 12 11 10 9

10% 23 18 15 13 11 10 9 8 8 7

15% 20 15 12 11 9 8 8 7 6 5

20% 17 14 11 9 8 7 6 6 5 4

25% 15 12 9 8 7 6 5 5 4 4

30% 14 11 8 7 6 5 5 4 4 3

35% 13 10 8 6 5 5 4 4 3 3

40% 11 9 7 6 5 4 4 3 3 2

50% 11 8 6 5 4 3 3 2 2 2

GREECE

B
E

L
G

IU
M

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 65 54 45 40 36 33 31 29 27 25

5% 54 44 37 32 29 27 25 23 22 19

10% 46 37 30 27 24 22 20 19 17 15

15% 41 33 27 23 21 19 17 16 15 13

20% 37 30 24 21 19 17 15 14 13 11

25% 35 28 22 19 17 15 14 13 12 10

30% 32 26 21 18 16 14 13 11 10 9

35% 30 24 19 16 14 13 12 10 10 8

40% 29 23 18 15 13 12 11 10 9 7

50% 25 20 16 13 12 10 9 8 7 6

GREECE

IT
A

L
Y

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 47 40 35 32 30 28 26 25 24 23

5% 40 33 28 25 23 22 21 19 19 17

10% 34 28 23 21 19 17 16 15 14 13

15% 31 25 21 18 16 15 13 12 12 10

20% 29 23 19 16 14 13 12 11 10 8

25% 27 21 17 14 13 11 10 9 8 7

30% 26 20 16 13 11 10 9 8 7 6

35% 24 19 15 12 10 9 8 7 6 5

40% 23 18 14 11 10 8 7 6 5 4

50% 21 16 12 10 8 7 6 5 4 3

GREECE

S
P

A
IN

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 49 42 36 33 31 29 28 26 25 24

5% 41 35 29 26 24 23 21 20 19 17

10% 35 29 24 21 19 18 16 15 14 13

15% 32 26 21 18 16 15 14 13 12 10

20% 30 23 19 16 14 13 12 11 10 8

25% 28 22 17 14 13 11 10 9 8 7

30% 26 20 16 13 11 10 9 8 7 5

35% 25 19 15 12 10 9 8 7 6 4

40% 24 18 14 11 9 8 7 6 5 4

50% 22 17 12 10 8 6 5 5 4 3

GREECE

IR
E

L
A

N
D

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 76 65 56 51 48 45 43 42 40 37

5% 64 54 46 41 38 35 33 31 30 27

10% 55 45 38 33 30 28 26 24 23 20

15% 50 40 33 29 26 23 21 20 18 16

20% 46 37 30 26 23 20 18 17 15 13

25% 43 34 27 23 20 18 16 15 13 11

30% 41 32 25 21 18 16 14 13 11 9

35% 39 30 23 19 16 14 13 11 10 8

40% 37 28 22 18 15 13 11 10 9 7

50% 34 26 19 15 13 10 9 8 6 5

GREECE

P
O

R
T

U
G

A
L

  1 
  2| 1 
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Table 83. GE|PT – Multivariate contagion 𝑆      in bp  Table 84. FI|PT – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

Table 85. NL|PT – Multivariate contagion 𝑆      in bp  Table 86. AT|PT – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

 

Table 87. FR|PT – Multivariate contagion 𝑆      in bp  Table 88. BE|PT – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

 

Table 89. IT|PT – Multivariate contagion 𝑆      in bp  Table 90. SP|PT – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

  

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 26 22 19 18 17 16 15 14 14 13

5% 22 18 16 15 14 13 12 12 11 11

10% 18 16 14 12 11 11 10 10 9 9

15% 16 14 12 11 10 10 9 9 8 8

20% 15 13 11 10 9 9 8 8 7 7

25% 14 12 10 9 8 8 8 7 7 6

30% 13 11 9 9 8 7 7 7 6 6

35% 12 10 9 8 7 7 7 6 6 5

40% 12 10 8 8 7 7 6 6 6 5

50% 11 9 8 7 6 6 6 5 5 4

PORTUGAL

G
E

R
M

A
N

Y

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 30 26 23 21 20 19 18 17 17 16

5% 25 22 19 18 16 16 15 14 14 13

10% 21 18 16 15 14 13 13 12 12 11

15% 19 16 14 13 12 12 11 11 10 10

20% 18 15 13 12 11 11 10 10 9 9

25% 16 14 12 11 10 10 9 9 9 8

30% 15 13 11 10 10 9 9 8 8 8

35% 14 12 11 10 9 9 8 8 8 7

40% 14 12 10 9 9 8 8 8 7 7

50% 12 11 9 9 8 8 7 7 6 6

PORTUGAL

F
IN

L
A

N
D

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 35 31 27 25 23 22 21 20 19 18

5% 29 25 22 20 19 18 17 16 16 15

10% 24 20 18 16 15 14 14 13 13 12

15% 21 18 16 14 13 13 12 11 11 10

20% 19 16 14 13 12 11 11 10 10 9

25% 17 15 13 12 11 10 10 9 9 8

30% 16 14 12 11 10 9 9 9 8 8

35% 15 13 11 10 9 9 8 8 8 7

40% 14 12 10 9 9 8 8 7 7 6

50% 12 10 9 8 8 7 7 6 6 6

PORTUGAL

N
E

T
H

E
R

L
A

N
D

S

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 31 26 23 21 19 18 17 16 15 14

5% 26 22 19 17 15 14 14 13 12 11

10% 22 18 15 14 13 12 11 11 10 9

15% 19 16 14 12 11 10 10 9 9 8

20% 17 15 12 11 10 9 9 8 8 7

25% 16 13 11 10 9 9 8 8 7 6

30% 15 12 10 9 8 8 7 7 7 6

35% 14 12 10 9 8 7 7 6 6 5

40% 13 11 9 8 7 7 6 6 6 5

50% 12 10 8 7 7 6 6 5 5 4

PORTUGAL

A
U

S
T

R
IA

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 33 28 24 22 20 19 18 17 16 15

5% 27 23 20 18 16 15 15 14 13 12

10% 23 19 16 15 14 13 12 11 11 10

15% 20 17 14 13 12 11 11 10 10 9

20% 18 15 13 12 11 10 9 9 9 8

25% 17 14 12 11 10 9 9 8 8 7

30% 16 13 11 10 9 9 8 8 7 7

35% 15 12 10 9 9 8 7 7 7 6

40% 14 12 10 9 8 7 7 7 6 6

50% 12 10 9 8 7 7 6 6 5 5

PORTUGAL

F
R

A
N

C
E

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 38 36 34 33 32 31 31 30 30 29

5% 34 31 28 27 26 25 25 24 24 23

10% 31 27 24 23 22 21 20 19 19 18

15% 29 25 22 20 19 18 17 17 16 15

20% 28 24 21 19 17 16 15 15 14 13

25% 27 23 19 17 16 15 14 13 13 11

30% 26 22 18 16 15 14 13 12 11 10

35% 26 21 17 15 14 13 12 11 10 9

40% 25 20 17 14 13 12 11 10 9 8

50% 28 15 13 12 11 10 10 9 9 8

PORTUGAL

B
E

L
G

IU
M

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 97 81 68 61 56 52 49 46 44 40

5% 79 66 56 50 46 43 40 38 36 33

10% 65 54 46 41 38 35 33 32 30 27

15% 57 47 40 36 34 31 30 28 27 24

20% 51 43 36 33 30 28 27 25 24 22

25% 46 39 33 30 28 26 25 23 22 21

30% 43 36 31 28 26 24 23 22 21 19

35% 39 33 29 26 24 23 21 20 20 18

40% 37 31 27 24 23 21 20 19 18 17

50% 32 27 24 22 20 19 18 17 16 15

PORTUGAL

IT
L
A

Y

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 65 55 48 44 41 38 36 35 33 31

5% 53 44 38 35 32 30 29 27 26 23

10% 45 38 32 29 26 25 23 22 21 18

15% 40 33 28 25 23 21 20 19 18 16

20% 36 30 25 23 21 19 18 17 16 14

25% 34 28 23 20 19 17 16 15 14 12

30% 31 26 21 19 17 16 15 14 13 11

35% 30 24 20 17 16 15 13 12 11 10

40% 28 23 18 16 15 13 12 11 10 9

50% 25 20 16 14 12 11 10 9 8 7

PORTUGAL

S
P

A
IN

  1 
  2| 1 
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Table 91. IR|PT – Multivariate contagion 𝑆      in bp  Table 92. GR|PT – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

Table 83 to Table 92 show the dynamics of the exposure to a shock in Portugal. This time again, we 

can recognise roughly the same pattern as in Table 49, in terms of resilience/exposure to risk 

aversion. A few variations are of interest: while Table 49 suggests that contagion is more intense on 

Belgian ASW than in Spain, the market reaction this time rises much faster on Spanish ASW when 

       and           (Table 90). The market reaction on French ASW is also quite similar to 

Belgian assets in the worst case scenario (     versus     ). This was not the case in Table 49. 

Table 93. GE|IR – Multivariate contagion 𝑆      in bp  Table 94. FI|IR – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

 

 

 

Table 95. NL|IR – Multivariate contagion 𝑆      in bp  Table 96. AT|IR – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

  

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 77 64 54 48 44 41 38 36 34 31

5% 64 53 44 39 36 33 31 29 27 24

10% 54 44 37 32 29 27 25 23 22 19

15% 49 40 33 29 26 23 22 20 19 16

20% 45 36 30 26 23 21 19 18 16 14

25% 42 33 27 24 21 19 17 16 15 13

30% 39 31 25 22 19 17 16 14 13 11

35% 37 29 24 20 18 16 15 13 12 10

40% 35 28 22 19 17 15 13 12 11 9

50% 31 25 20 17 15 13 12 10 9 8

PORTUGAL

IR
E

L
A

N
D

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 295 240 198 174 157 143 133 123 115 102

5% 235 192 159 139 126 115 106 99 93 82

10% 190 155 129 113 102 94 87 81 76 67

15% 164 134 111 98 88 81 75 70 66 58

20% 145 119 99 87 79 72 67 62 59 52

25% 131 107 89 79 71 65 61 57 53 47

30% 119 98 81 72 65 60 55 52 49 43

35% 109 89 75 66 60 55 51 48 45 40

40% 100 82 69 61 55 51 47 44 41 37

50% 86 71 60 53 49 45 42 39 36 31

PORTUGAL

G
R

E
E

C
E

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 21 18 16 14 13 13 12 11 11 10

5% 17 14 13 11 11 10 9 9 8 8

10% 15 12 10 9 9 8 8 7 7 6

15% 13 11 9 8 8 7 6 6 6 5

20% 12 10 8 7 7 6 6 5 5 4

25% 11 9 8 7 6 6 5 5 4 4

30% 10 8 7 6 6 5 5 4 4 3

35% 10 8 7 6 5 5 4 4 4 3

40% 9 7 6 5 5 4 4 4 3 3

50% 8 7 5 5 4 4 3 3 3 2

IRELAND

G
E

R
M

A
N

Y

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 29 16 14 13 12 11 10 10 9 9

5% 22 13 11 10 9 8 8 7 7 6

10% 17 11 9 8 7 7 6 6 5 5

15% 14 9 8 7 6 6 5 5 4 4

20% 11 8 7 6 5 5 4 4 4 3

25% 10 8 6 5 5 4 4 4 3 3

30% 8 7 6 5 4 4 3 3 3 2

35% 7 7 5 4 4 3 3 3 2 2

40% 6 6 5 4 4 3 3 2 2 2

50% 7 5 4 3 3 2 2 2 2 1

IRELAND

F
IN

L
A

N
D

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 31 27 24 22 21 20 19 19 18 17

5% 25 22 20 18 17 16 16 15 15 14

10% 21 18 16 15 14 13 13 12 12 11

15% 19 16 14 13 12 12 11 11 10 10

20% 17 15 13 12 11 10 10 10 9 9

25% 16 14 12 11 10 10 9 9 8 8

30% 15 13 11 10 9 9 8 8 8 7

35% 14 12 10 9 9 8 8 7 7 7

40% 13 11 10 9 8 8 7 7 7 6

50% 12 10 9 8 7 7 7 6 6 5

IRELAND

N
E

T
H

E
R

L
A

N
D

S

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 21 18 16 15 14 13 12 12 11 10

5% 18 16 13 12 11 10 10 9 9 8

10% 16 13 11 10 9 8 8 7 7 6

15% 15 12 10 9 8 7 7 6 6 5

20% 14 11 9 8 7 6 6 5 5 4

25% 13 11 9 7 6 6 5 5 4 4

30% 13 10 8 7 6 5 5 4 4 3

35% 12 10 8 6 6 5 4 4 3 3

40% 12 9 7 6 5 4 4 3 3 2

50% 11 8 7 5 5 4 3 3 2 2

IRELAND

A
U

S
T

R
IA

  2| 1
   

  1 
  2| 1 
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Table 97. FR|IR – Multivariate contagion 𝑆      in bp  Table 98. BE|IR – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

Table 99. IT|IR – Multivariate contagion 𝑆      in bp  Table 100. SP|IR – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

Table 101. PT|IR – Multivariate contagion 𝑆      in bp  Table 102. GR|IR – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

Table 103. GE|SP – Multivariate contagion 𝑆      in bp  Table 104. FI|SP – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

  

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 29 25 22 19 18 17 17 16 15 14

5% 24 21 18 16 15 14 13 13 12 11

10% 21 17 15 13 12 12 11 10 10 9

15% 18 15 13 12 11 10 10 9 9 8

20% 17 14 12 11 10 9 9 8 8 7

25% 16 13 11 10 9 8 8 7 7 6

30% 15 12 10 9 8 8 7 7 6 6

35% 14 11 10 9 8 7 7 6 6 5

40% 13 11 9 8 7 7 6 6 6 5

50% 12 10 8 7 6 6 5 5 5 4

IRELAND

F
R

A
N

C
E

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 30 28 28 28 17 16 15 14 14 12

5% 27 28 16 14 13 12 11 11 10 9

10% 22 16 13 11 10 9 8 8 7 6

15% 19 14 11 10 9 8 7 6 6 5

20% 17 13 10 8 7 7 6 5 5 4

25% 15 12 9 7 6 6 5 4 4 3

30% 14 11 8 7 6 5 4 4 3 2

35% 13 10 7 6 5 4 4 3 3 2

40% 12 9 7 5 5 4 3 3 2 2

50% 11 8 6 4 4 3 2 2 2 1

IRELAND

B
E

L
G

IU
M

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 82 69 59 53 49 46 44 42 40 37

5% 67 56 48 44 40 38 36 34 32 30

10% 56 47 40 36 34 31 30 28 27 25

15% 49 41 35 32 30 28 26 25 24 22

20% 44 37 32 29 27 25 24 22 21 20

25% 41 34 29 27 24 23 22 21 20 18

30% 38 32 27 25 23 21 20 19 18 17

35% 35 30 25 23 21 20 19 18 17 16

40% 33 28 24 22 20 19 17 17 16 15

50% 29 25 21 19 18 17 16 15 14 12

IRELAND

IT
A

L
Y

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 90 78 69 64 60 57 55 53 51 48

5% 75 65 57 53 50 47 45 44 42 40

10% 63 55 48 44 42 40 38 37 35 33

15% 57 49 43 40 37 35 34 32 31 29

20% 52 45 39 36 34 32 31 30 28 27

25% 48 41 36 33 31 30 28 27 26 25

30% 45 39 34 31 29 28 26 25 24 23

35% 43 37 32 29 27 26 25 24 23 21

40% 40 35 30 28 26 25 23 22 22 20

50% 37 31 28 25 24 22 21 20 19 17

IRELAND

S
P

A
IN

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 73 62 51 45 41 38 35 33 31 28

5% 59 47 38 33 29 27 24 22 21 18

10% 49 38 29 25 21 19 17 15 13 11

15% 42 33 24 20 17 14 12 11 9 7

20% 38 29 21 17 14 11 9 8 7 5

25% 34 26 18 14 11 9 7 6 5 3

30% 32 23 16 12 9 7 6 5 4 2

35% 29 21 15 11 8 6 5 3 3 1

40% 27 19 13 9 7 5 4 3 2 1

50% 27 17 10 7 5 3 2 1 1 -1

IRELAND

P
O

R
T

U
G

A
L

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 149 125 106 96 88 84 79 75 71 65

5% 125 103 86 76 69 64 59 55 52 47

10% 107 86 71 62 54 51 45 42 39 34

15% 96 77 62 53 46 42 39 35 32 27

20% 89 70 56 47 42 37 33 30 27 22

25% 83 65 51 43 37 33 29 26 23 18

30% 78 60 47 39 33 29 26 23 20 16

35% 74 57 43 36 30 26 23 20 17 13

40% 70 53 41 33 28 23 21 18 15 11

50% 65 48 36 29 24 20 17 14 12 8

IRELAND

G
R

E
E

C
E

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 23 21 19 17 17 16 15 15 14 13

5% 19 17 15 14 13 13 12 12 11 10

10% 16 14 12 11 11 10 10 9 9 8

15% 14 12 11 10 9 9 8 8 8 7

20% 13 11 10 9 8 8 7 7 7 6

25% 11 10 9 8 7 7 7 6 6 5

30% 10 9 8 7 7 6 6 6 5 5

35% 10 8 7 6 6 6 5 5 5 4

40% 9 7 6 6 5 5 5 5 4 4

50% 7 6 5 5 4 4 4 4 3 3

SPAIN

G
E

R
M

A
N

Y

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 25 21 17 15 14 13 12 12 11 10

5% 21 17 14 13 11 11 10 9 9 8

10% 17 14 12 10 9 9 8 7 7 6

15% 15 13 10 9 8 7 7 6 6 5

20% 14 11 9 8 7 7 6 6 5 5

25% 13 10 9 7 7 6 6 5 5 4

30% 12 10 8 7 6 6 5 5 4 4

35% 11 9 7 6 6 5 5 4 4 3

40% 11 9 7 6 5 5 4 4 4 3

50% 10 8 6 5 5 4 4 3 3 3

SPAIN

F
IN

L
A

N
D

  2| 1
   

  1 
  2| 1 
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Table 105. NL|SP – Multivariate contagion 𝑆      in bp  Table 106. AT|SP – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

Table 107. FR|SP – Multivariate contagion 𝑆      in bp  Table 108. BE|SP – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

Table 109. IT|SP – Multivariate contagion 𝑆      in bp  Table 110. IR|SP – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

Table 111. PT|SP – Multivariate contagion 𝑆      in bp  Table 112. GR|SP – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

  

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 38 21 20 19 19 18 18 13 13 12

5% 36 19 18 13 12 11 11 10 10 9

10% 19 13 12 11 10 9 9 8 8 7

15% 17 12 10 9 9 8 8 7 7 6

20% 13 11 9 8 8 7 7 6 6 5

25% 13 10 9 8 7 7 6 6 6 5

30% 11 9 8 7 7 6 6 5 5 4

35% 10 9 7 7 6 6 5 5 5 4

40% 9 8 7 6 6 5 5 4 4 4

50% 8 7 6 5 5 4 4 4 3 3

SPAIN

N
E

T
H

E
R

L
A

N
D

S

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 36 31 27 25 23 22 21 20 19 18

5% 30 26 22 20 19 18 17 16 16 15

10% 25 22 19 17 16 15 14 14 13 12

15% 22 19 17 15 14 13 13 12 12 11

20% 20 17 15 14 13 12 11 11 10 10

25% 19 16 14 13 12 11 11 10 10 9

30% 18 15 13 12 11 10 10 9 9 8

35% 17 14 12 11 10 10 9 9 8 8

40% 16 13 11 10 10 9 9 8 8 7

50% 14 12 10 9 9 8 8 7 7 6

SPAIN

A
U

S
T

R
IA

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 29 25 21 20 18 18 17 16 15 14

5% 24 21 18 16 15 14 13 13 12 11

10% 20 17 15 13 12 12 11 11 10 9

15% 18 15 13 12 11 10 10 9 9 8

20% 17 14 12 11 10 9 9 8 8 7

25% 16 13 11 10 9 9 8 7 7 6

30% 15 12 10 9 8 8 7 7 7 6

35% 14 11 10 9 8 7 7 6 6 5

40% 13 11 9 8 7 7 6 6 6 5

50% 12 10 8 7 7 6 6 5 5 4

SPAIN

F
R

A
N

C
E

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 36 33 30 29 29 28 28 28 28 28

5% 31 28 25 24 23 22 22 21 17 15

10% 27 23 21 20 17 18 15 17 14 12

15% 24 21 18 17 15 15 13 14 12 11

20% 23 19 17 15 14 13 12 12 11 10

25% 21 18 15 14 13 12 11 10 10 9

30% 20 17 14 13 11 11 10 9 9 8

35% 19 16 13 12 10 10 9 8 8 7

40% 18 15 12 11 10 9 8 7 7 7

50% 16 13 11 10 9 8 8 7 6 6

SPAIN

B
E

L
G

IU
M

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 89 43 37 33 31 29 28 26 25 23

5% 67 51 29 26 24 22 21 20 19 17

10% 51 28 24 21 19 18 17 15 15 13

15% 41 32 21 18 17 15 14 13 12 11

20% 34 23 19 16 15 13 12 11 10 9

25% 29 23 17 15 13 12 11 10 9 8

30% 25 20 16 13 12 11 10 9 8 6

35% 23 17 14 12 11 10 9 8 7 6

40% 18 14 13 11 10 9 8 7 6 5

50% 19 14 11 9 8 7 6 5 5 3

SPAIN

IT
A

L
Y

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 58 43 37 33 31 29 27 26 25 23

5% 43 34 28 25 23 21 20 19 18 17

10% 35 28 22 20 18 16 15 14 13 12

15% 31 24 19 16 15 13 12 11 10 9

20% 27 21 17 14 12 11 10 9 8 7

25% 25 19 15 12 11 10 9 8 7 6

30% 24 18 13 11 9 8 7 6 6 5

35% 22 16 12 10 8 7 6 5 5 4

40% 20 15 11 9 7 6 5 4 4 3

50% 17 12 9 7 5 4 4 3 2 2

SPAIN

IR
E

L
A

N
D

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 74 59 48 43 39 36 33 31 29 26

5% 58 44 35 30 27 24 22 20 18 16

10% 46 34 26 22 18 16 14 12 11 9

15% 40 29 21 17 14 11 10 8 7 5

20% 35 25 17 13 10 8 7 6 5 3

25% 31 21 14 11 8 6 5 4 3 2

30% 28 19 12 8 6 5 4 3 2 1

35% 26 16 10 7 5 3 2 2 1 0

40% 23 14 8 5 4 2 2 1 0 -1

50% 19 10 5 3 2 1 0 0 -1 -2

SPAIN

P
O

R
T

U
G

A
L

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 136 116 101 92 86 81 79 75 72 67

5% 116 97 83 75 69 63 60 56 54 49

10% 100 83 69 61 56 51 48 44 41 37

15% 91 74 61 53 48 44 39 37 34 30

20% 85 68 55 48 42 38 35 32 29 25

25% 80 63 51 43 38 34 31 28 26 22

30% 76 60 47 40 35 31 28 25 22 18

35% 72 56 44 37 32 28 25 22 20 16

40% 69 53 41 34 29 25 22 20 18 14

50% 65 49 37 30 25 22 19 15 14 10

SPAIN

G
R

E
E

C
E

  1 
  2| 1 
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Table 113. GE|IT – Multivariate contagion 𝑆      in bp  Table 114. FI|IT – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

Table 115. NL|IT – Multivariate contagion 𝑆      in bp  Table 116. AT|IT – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

Table 117. FR|IT – Multivariate contagion 𝑆      in bp  Table 118. BE|IT – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

Table 119. SP|IT – Multivariate contagion 𝑆      in bp  Table 120. IR|IT – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

 

  

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 30 25 22 20 18 17 16 16 15 14

5% 25 21 18 16 15 14 13 13 12 11

10% 21 17 15 14 13 12 11 11 10 9

15% 18 15 13 12 11 10 10 9 9 8

20% 17 14 12 11 10 9 9 9 8 8

25% 15 13 11 10 9 9 8 8 7 7

30% 14 12 10 9 9 8 8 7 7 6

35% 13 11 10 9 8 8 7 7 6 6

40% 13 11 9 8 8 7 7 6 6 6

50% 11 9 8 7 7 6 6 6 5 5

ITALY

G
E

R
M

A
N

Y

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 23 20 17 16 15 14 13 13 12 11

5% 19 16 14 13 12 11 11 10 10 9

10% 16 14 12 11 10 9 9 8 8 7

15% 15 12 10 9 9 8 8 7 7 6

20% 13 11 9 8 8 7 7 6 6 5

25% 12 10 9 8 7 6 6 6 5 5

30% 12 10 8 7 6 6 6 5 5 4

35% 11 9 8 7 6 6 5 5 5 4

40% 10 9 7 6 6 5 5 5 4 4

50% 9 8 6 6 5 5 4 4 4 3

ITALY

F
IN

L
A

N
D

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 35 31 27 25 23 22 20 20 19 19

5% 29 25 22 20 19 18 17 18 16 15

10% 24 20 18 16 15 14 14 13 13 10

15% 21 18 16 14 13 13 12 11 11 10

20% 19 16 14 13 12 11 11 10 10 8

25% 17 15 13 12 11 10 10 9 9 8

30% 16 14 12 11 10 9 9 9 8 8

35% 15 13 11 10 9 9 8 8 8 7

40% 14 12 10 9 9 8 8 7 7 6

50% 12 10 9 8 8 7 7 6 6 6

ITALY

N
E

T
H

E
R

L
A

N
D

S

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 31 26 23 21 19 18 17 16 16 14

5% 26 22 19 17 15 14 14 13 12 11

10% 22 18 15 14 13 12 11 11 10 9

15% 19 16 14 12 11 10 10 9 9 8

20% 17 15 12 11 10 9 9 8 8 7

25% 16 13 11 10 9 9 8 8 7 6

30% 15 12 10 9 8 8 7 7 7 6

35% 14 12 10 9 8 7 7 6 6 5

40% 13 11 9 8 7 7 6 6 6 5

50% 12 10 8 7 7 6 6 5 5 4

ITALY

A
U

S
T

R
IA

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 33 28 24 22 20 19 18 17 16 15

5% 27 23 20 18 16 15 15 14 13 12

10% 23 19 16 15 14 13 12 11 11 10

15% 20 17 14 13 12 11 11 10 10 9

20% 18 15 13 12 11 10 10 9 9 8

25% 17 14 12 11 10 9 9 8 8 7

30% 16 13 11 10 9 9 8 8 7 7

35% 15 12 10 9 9 8 8 7 7 6

40% 14 12 10 9 8 7 7 7 6 6

50% 12 10 9 8 7 7 6 6 5 5

ITALY

F
R

A
N

C
E

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 36 33 30 29 29 28 28 28 28 28

5% 31 28 25 24 23 22 28 28 17 15

10% 27 23 21 20 17 18 15 17 14 12

15% 24 21 18 17 15 15 13 14 12 11

20% 23 19 17 15 14 13 12 12 11 10

25% 21 18 15 14 13 12 11 10 10 9

30% 20 17 14 13 11 11 10 9 9 8

35% 19 16 13 12 10 10 9 8 8 7

40% 18 15 12 11 10 9 8 7 7 7

50% 16 13 11 10 9 8 8 7 6 6

ITALY

B
E

L
G

IU
M

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 75 64 55 50 47 44 42 40 39 36

5% 62 53 45 41 38 35 34 32 31 28

10% 53 44 38 34 32 30 28 27 25 23

15% 47 39 34 30 28 26 24 23 22 20

20% 43 36 30 27 25 23 22 21 20 18

25% 40 33 28 25 23 21 20 19 18 16

30% 37 31 26 23 21 20 19 17 17 15

35% 35 29 24 22 20 18 17 16 15 14

40% 33 27 23 20 19 17 16 15 14 13

50% 30 24 21 18 17 15 14 13 12 11

ITALY

S
P

A
IN

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 69 58 51 46 43 41 39 37 35 33

5% 57 48 41 37 34 32 30 29 27 25

10% 48 40 34 31 28 26 24 23 22 19

15% 43 35 30 27 24 23 21 20 19 16

20% 39 32 27 24 22 20 19 17 16 14

25% 36 30 25 22 20 18 17 16 14 12

30% 34 27 23 20 18 17 15 14 13 11

35% 32 26 21 18 17 15 14 13 12 10

40% 30 24 20 17 15 14 13 12 11 9

50% 27 21 17 15 13 12 10 9 8 7

IR
E

L
A

N
D

ITALY

  2| 1
   

  1 
  2| 1 
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Table 121. PT|IT – Multivariate contagion 𝑆      in bp  Table 122. GR|IT – Multivariate contagion 𝑆      in bp 

     

 

 

 
   

Table 93 to Table 122 show the dynamics of       , assuming that a shock happened in Ireland, 

Spain and Italy. The big picture is relatively similar to Table 50, Table 51 and Table 52. Greek ASW in 

particular see the largest market reaction, with 𝑆      rising from      to       in Graph 160, 

when the upfront shock is hitting Spanish assets. In comparison, the same shock on Portuguese 

assets leads to a smaller reaction, between      to      (Graph 158). The worst case scenario on 

Greek assets (ie.          ) also leads to a relatively similar market reaction when financial stress 

is stemming from Ireland (      in Table 102), Spain (      in Table 112) or Italy (      inTable 

122). This illustrates some consistency in the global methodology as Spain and Italy are somewhat 

comparable in terms of credit quality, while Ireland was very much exposed to credit risk during the 

sovereign crisis.  

Considering a shock on Spanish ASW, results show that Italian, Irish and Portuguese ASW exhibit a 

similar market reaction 𝑆      on a mild shock (ie.           ) at     ,     , and      

respectively (see Table 109, Table 110, Table 111). However, the materialisation of a shock 𝑆  (ie. for 

          ) then leads to a sharp differentiation of the market reaction: contagion rises up to 

     on Portuguese ASW (Table 111),      on Irish assets (Table 110), and      on Italian ASW 

(Table 109). The market reaction to the shock is therefore more severe on Italian ASW.  

The pair Spain/Italy is interesting too. Italy and Spain do not exhibit the same dynamics. We already 

mentioned that the expected contagion on Spanish ASW, emanating from a shock on Italian ASW, is 

larger than the equivalent contagion onto Italian ASW in the aftermath of a shock in Spain (e.g.      

versus      in Table 52 and Table 51 for       ). In fact, this behaviour tends to reverse when 

the shock 𝑆  comes in force: in the worst case scenario in particular, 𝑆      resulting from a shock 𝑆  

on Spanish ASW in the aftermath of a shock 𝑆  on Italian assets rises to (just)      (Table 119). In 

comparison, a shock 𝑆  on Italian ASW in the aftermath of a shock 𝑆  on Spanish assets produces a 

greater market reaction of 89bp (Table 109). On that basis, the contagion induced by Spain turns to 

be particularly harmful to Italian ASW, when idiosyncratic market conditions tend to deteriorate in 

Italy.  

In core countries, 𝑆      tends to rise faster on Dutch ASW than on Austrian or French securities. 

This is especially true when the shock 𝑆  occurs in Spain (Table 105): the market reaction on Dutch 

ASW in this case is peaking at     , while in comparison Austrian or French ASW show a smaller 

     and     . We identify the same dynamics when the shock 𝑆  occurs on Italian ASW: Dutch 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 76 65 57 51 48 45 43 41 39 37

5% 63 53 44 40 36 34 32 30 29 27

10% 53 43 36 32 29 26 25 23 22 19

15% 47 38 31 27 24 22 20 19 17 15

20% 43 34 28 24 21 19 17 16 14 12

25% 40 32 25 21 18 16 15 13 12 10

30% 37 29 23 19 16 14 13 11 10 8

35% 35 27 21 17 15 13 11 10 9 7

40% 33 25 19 16 13 11 10 8 7 6

50% 30 22 16 13 10 8 7 6 5 4

ITALY

P
O

R
T

U
G

A
L

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 131 107 92 81 74 68 64 60 57 51

5% 107 86 70 60 53 48 44 41 38 33

10% 89 70 56 45 39 35 31 28 25 21

15% 78 60 47 37 32 27 24 21 19 14

20% 71 54 41 32 26 22 19 16 14 10

25% 65 49 36 28 23 19 15 13 11 7

30% 60 44 32 24 19 16 13 10 8 5

35% 56 41 29 22 17 13 10 8 6 4

40% 53 38 26 19 15 11 9 6 5 2

50% 51 34 22 15 11 8 6 4 3 1

ITALY

G
R

E
E

C
E

  2| 1
   

  1 
  2| 1 
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assets are set to endure a large      market reaction in the worst case scenario, which compares 

with only      and      for Austrian and French ASW.  

With no surprise German and Finnish ASW are the most resilient assets to any shock in the Euro 

area. Germany for instance sees just      reaction in the worst case scenario, on the back of a shock 

𝑆  on Italian ASW (Table 113).  

Table 123. GE|BE – Multivariate contagion        in bp  Table 124. FI|BE – Multivariate contagion        in bp 

     

 

 

 
   

 

Table 125. NL|BE – Multivariate contagion        in bp  Table 126. AT|BE – Multivariate contagion        in bp 

     

 

 

 
   

 

Table 127. FR|BE – Multivariate contagion        in bp  Table 128. GE|FR – Multivariate contagion        in bp 

     

 

 

 
   

 

  

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 21 17 15 14 13 12 11 11 10 9

5% 17 14 12 11 10 9 9 8 8 7

10% 14 12 10 9 8 8 7 7 6 6

15% 13 11 9 8 7 7 6 6 5 5

20% 12 10 8 7 6 6 5 5 5 4

25% 11 9 7 6 6 5 5 4 4 4

30% 10 8 7 6 5 5 4 4 4 3

35% 10 8 6 5 5 4 4 4 3 3

40% 9 7 6 5 5 4 4 3 3 2

50% 8 6 5 4 4 3 3 3 2 2

G
E

R
M

A
N

Y

BELGIUM

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 30 17 15 14 13 12 11 11 10 10

5% 16 14 12 11 10 9 9 8 8 7

10% 14 11 10 9 8 7 7 7 6 6

15% 12 10 8 8 7 6 6 6 5 5

20% 12 9 8 7 6 6 5 5 5 4

25% 10 8 7 6 6 5 5 4 4 3

30% 9 8 6 6 5 5 4 4 4 3

35% 9 7 6 5 5 4 4 3 3 3

40% 7 7 5 5 4 4 3 3 3 2

50% 7 6 5 4 3 3 3 2 2 2

BELGIUM

F
IN

L
A

N
D

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 20 16 14 13 12 11 10 10 9 9

5% 16 14 11 10 9 9 8 8 7 6

10% 14 11 9 8 8 7 6 6 6 5

15% 12 10 8 7 6 6 5 5 5 4

20% 11 9 8 6 6 5 5 4 4 3

25% 11 9 7 6 5 5 4 4 4 3

30% 10 8 6 5 5 4 4 4 3 3

35% 10 7 6 5 4 4 4 3 3 2

40% 9 7 6 5 4 4 3 3 3 2

50% 8 6 5 4 4 3 3 2 2 2

BELGIUM

N
E

T
H

E
R

L
A

N
D

S

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 24 21 18 16 15 14 13 13 12 11

5% 21 17 15 13 12 11 10 10 9 8

10% 18 15 12 11 10 9 8 8 7 7

15% 16 13 11 9 9 8 7 7 6 6

20% 15 12 10 9 8 7 6 6 6 5

25% 14 11 9 8 7 6 6 5 5 4

30% 13 10 8 7 6 6 5 5 4 4

35% 12 10 8 7 6 5 5 4 4 3

40% 12 9 7 6 6 5 4 4 4 3

50% 11 8 7 6 5 4 4 3 3 2

BELGIUM

A
U

S
T

R
IA

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 22 19 16 15 14 13 12 12 11 10

5% 18 15 13 12 11 10 9 9 8 8

10% 16 13 11 9 9 8 7 7 6 6

15% 14 11 9 8 7 7 6 6 5 5

20% 13 10 8 7 7 6 5 5 5 4

25% 12 9 8 7 6 5 5 4 4 3

30% 11 9 7 6 5 5 4 4 4 3

35% 10 8 6 6 5 4 4 3 3 3

40% 10 8 6 5 4 4 3 3 3 2

50% 9 7 5 4 4 3 3 2 2 2

BELGIUM

F
R

A
N

C
E

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 15 13 11 10 9 8 8 8 7 7

5% 13 10 8 7 7 6 6 5 5 5

10% 11 8 7 6 5 5 4 4 4 3

15% 9 7 6 5 4 4 3 3 3 2

20% 8 6 5 4 4 3 3 2 2 2

25% 8 6 4 4 3 3 2 2 2 1

30% 7 5 4 3 3 2 2 2 1 1

35% 7 5 4 3 2 2 2 1 1 1

40% 6 5 3 3 2 2 1 1 1 1

50% 6 4 3 2 2 1 1 1 0 0

FRANCE

G
E

R
M

A
N

Y

  2| 1
   

  1 
  2| 1 
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Table 129. FI|FR – Multivariate contagion        in bp  Table 130. NL|FR – Multivariate contagion        in bp 

     

 

 

 
   

 

Table 131. AT|FR – Multivariate contagion        in bp  Table 132. BE|FR – Multivariate contagion        in bp 

     

 

 

 
   

 

Table 133. GE|AT – Multivariate contagion        in bp  Table 134. FI|AT – Multivariate contagion        in bp 

     

 

 

 
   

 

Table 135. NL|AT – Multivariate contagion        in bp  Table 136. FR|AT – Multivariate contagion        in bp 

     

 

 

 
   

 

  

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 19 16 14 12 11 11 10 10 9 9

5% 15 12 10 9 9 8 8 7 7 6

10% 12 10 8 7 7 6 6 5 5 5

15% 11 9 7 6 6 5 5 4 4 4

20% 10 8 6 5 5 4 4 4 3 3

25% 9 7 6 5 4 4 4 3 3 2

30% 8 6 5 4 4 3 3 3 2 2

35% 7 6 4 4 3 3 3 2 2 2

40% 7 5 4 3 3 3 2 2 2 1

50% 5 4 3 3 2 2 2 1 1 1

FRANCE

F
IN

L
A

N
D

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 15 12 11 10 9 8 8 7 7 6

5% 12 10 8 7 6 6 5 5 5 4

10% 10 8 6 5 5 4 4 3 3 3

15% 9 7 5 4 4 3 3 3 2 2

20% 8 6 5 4 3 3 2 2 2 1

25% 7 6 4 3 3 2 2 2 1 1

30% 7 5 4 3 2 2 2 1 1 1

35% 6 5 3 3 2 2 1 1 1 0

40% 6 4 3 2 2 1 1 1 1 0

50% 5 4 3 2 1 1 1 0 0 0

FRANCE

N
E

T
H

E
R

L
A

N
D

S

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 29 25 22 20 18 17 16 16 15 14

5% 24 21 18 16 15 14 13 12 12 11

10% 21 17 15 13 12 11 11 10 10 9

15% 18 15 13 12 11 10 9 9 9 8

20% 17 14 12 11 10 9 9 8 8 7

25% 16 13 11 10 9 8 8 7 7 6

30% 15 12 10 9 8 8 7 7 6 6

35% 14 11 10 8 8 7 7 6 6 5

40% 13 11 9 8 7 7 6 6 5 5

50% 12 10 8 7 6 6 5 5 5 4

FRANCE

A
U

S
T

R
IA

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 35 32 29 29 27 28 28 28 28 28

5% 30 27 24 23 22 21 20 17 16 15

10% 26 23 20 19 16 15 16 16 13 12

15% 24 20 18 16 15 14 14 13 11 10

20% 22 18 16 14 13 13 12 11 10 9

25% 21 17 15 13 12 11 11 10 9 8

30% 20 16 14 12 11 10 9 9 9 7

35% 19 15 13 11 10 9 8 8 8 7

40% 18 14 12 10 9 9 8 7 7 6

50% 16 13 11 9 9 8 7 7 6 5

FRANCE

B
E

L
G

IU
M

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 18 15 13 12 11 11 10 9 9 8

5% 15 12 10 9 9 8 8 7 7 6

10% 12 10 8 7 7 6 6 5 5 5

15% 11 8 7 6 6 5 5 4 4 4

20% 9 8 6 5 5 4 4 4 3 3

25% 9 7 5 5 4 4 3 3 3 2

30% 8 6 5 4 4 3 3 3 2 2

35% 7 6 4 4 3 3 3 2 2 2

40% 7 5 4 3 3 2 2 2 2 1

50% 5 4 3 2 2 2 2 1 1 1

AUSTRIA

G
E

R
M

A
N

Y

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 17 14 11 10 9 9 8 8 7 7

5% 13 11 9 8 7 6 6 5 5 5

10% 11 8 7 6 5 5 4 4 4 3

15% 10 7 6 5 4 4 3 3 3 2

20% 9 6 5 4 3 3 3 2 2 2

25% 8 6 4 3 3 2 2 2 2 1

30% 7 5 4 3 2 2 2 1 1 1

35% 7 5 3 3 2 2 1 1 1 1

40% 6 4 3 2 2 1 1 1 1 0

50% 5 3 2 2 1 1 1 0 0 0

AUSTRIA

F
IN

L
A

N
D

  2| 1
   

  1 
  2| 1 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 33 20 19 18 13 13 12 12 11 10

5% 26 20 13 11 11 10 9 9 9 8

10% 20 12 10 9 9 8 8 7 7 6

15% 16 13 9 8 8 7 7 6 6 5

20% 14 10 8 7 7 6 6 5 5 5

25% 12 10 8 7 6 6 5 5 5 4

30% 11 9 7 6 6 5 5 4 4 4

35% 10 8 7 6 5 5 4 4 4 3

40% 8 7 6 5 5 4 4 4 3 3

50% 8 6 5 5 4 4 3 3 3 2

AUSTRIA

N
E

T
H

E
R

L
A

N
D

S

  2| 1
   

  1 
  2| 1 2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 19 16 14 13 12 11 11 10 10 9

5% 16 13 11 10 9 8 8 8 7 6

10% 14 11 9 8 7 7 6 6 5 5

15% 12 10 8 7 6 6 5 5 4 4

20% 11 9 7 6 5 5 4 4 4 3

25% 11 8 7 5 5 4 4 3 3 2

30% 10 8 6 5 4 4 3 3 3 2

35% 9 7 6 5 4 3 3 3 2 2

40% 9 7 5 4 3 3 3 2 2 1

50% 8 6 4 4 3 2 2 2 1 1

AUSTRIA

F
R

A
N

C
E

  2| 1
   

  1 
  2| 1 
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Table 137. BE|AT – Multivariate contagion        in bp  

    

 

 

  

Table 126 to Table 137 show the market reaction to a shock    materialising in soft-core countries. 

The dynamics of the market reaction is in line with the general understanding in financial markets: a 

shock 𝑆  in Belgium leads to a greater market reaction than a shock 𝑆  in Austria or France would. 

The market reaction induced by a shock 𝑆  on Belgium also tends to rise faster on Finnish ASW (from 

    to      in Table 124) than in another jurisdiction (e.g. just      on German ASW and      on 

Dutch assets, see Table 123 and Table 125). In the same vein, Dutch assets look more exposed to a 

shock 𝑆  in Austria (the market reaction rises from     to      in Table 135) than in France or 

Belgium (    to      in Table 137).  

Let us now formalize the general dynamics of       . Empirical observations show that 𝑆      still 

admits a logarithmic acceleration when the shocks 𝑆  and 𝑆  intensify. As a result, we consider the 

following formulation: 

𝑆     
                                                                                  (83) 

This model involves four unknowns:                               that we calibrate. We put the 

results in Table 138 to Table 141.  

R-squared in Table 142 also indicates that the chosen interpolation model provides an outstanding 

fit. Then Graph 176 to Graph 179 offer a view on the true value of 𝑆      (in red) against its 

estimated version 𝑆     
    (in green) that comes from the model.  

Graph 175. 𝑆      as a function of         Table 138. Estimated        coefficients 

     

 

 

 

   

 

2% 5% 10% 15% 20% 25% 30% 35% 40% 50%

2% 29 28 17 15 14 13 12 11 11 10

5% 28 16 13 11 10 9 8 7 7 6

10% 16 12 9 8 7 6 5 5 4 4

15% 14 10 8 6 5 4 4 3 3 2

20% 13 9 6 5 4 3 3 2 2 2

25% 11 8 6 4 3 3 2 2 1 1

30% 10 7 5 4 3 2 2 1 1 1

35% 10 6 4 3 2 2 1 1 1 0

40% 9 6 3 2 2 1 1 1 0 0

50% 7 4 2 2 1 1 0 0 0 -1

AUSTRIA

B
E

L
G

IU
M

  1 
  2| 1 

y  = -2.9ln(x) + 4.44
R² = 0.9981

y  = -2.7ln(x) + 2.94
R² = 0.9977

y  = -2.1ln(x) - 0.03
R² = 0.9998

y  = -2.1ln(x) - 0.37
R² = 0.9998

0

2

4

6

8

10

12

14

16

0% 10% 20% 30% 40% 50%

bp

2% 5% 10% 15% 20%

25% 30% 35% 40% 50%
  1 ∶ 

  2| 1 

GR PT IR SP IT BE FR AT

GE 0.2 0.6 0.5 0.5 1.0 0.5 0.3 0.5

FI 0.2 0.8 2.0 0.8 0.5 1.6 0.5 0.4

NL 0.1 1.0 0.6 1.9 1.0 0.4 0.3 2.1

AT 0.4 0.9 0.1 1.0 0.9 0.5 0.7

FR 0.8 1.1 0.7 0.7 1.1 0.5 0.3

BE 1.6 -0.8 1.2 -0.2 -0.2 -0.1 1.4

IT 2.0 4.0 2.7 6.5

SP 0.5 1.5 0.7 2.0

IR 0.6 2.0 1.5 1.6

PT 0.8 1.9 -0.1 1.3

GR 13.4 2.6 1.4 3.0

COUNTRY 1

C
O

U
N

T
R

Y
 2

  2| 1  
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Table 139. Estimated        coefficients  Table 140. Estimated        coefficients 

     

 

 

 
   

 

Table 141. Estimated        coefficients  Table 142. Corresponding R-squared 

     

 

 

 
   

 

Graph 176. FR|PT – Multivariate contagion as a function 

of both     and         
 Graph 177. GE|FR– Multivariate contagion as a function 

of both     and        

     

 

 

 

   

 

Graph 178. IR|SP– Multivariate contagion as a function of 

both     and         
 Graph 179. FI|IT– Multivariate contagion as a function of 

both     and         
     

 

 

 

   

GR PT IR SP IT BE FR AT

GE -1.5 -1.5 -1.6 -1.1 -1.3 -1.6 -1.5 -1.2

FI -1.9 -1.4 0.7 -1.7 -1.6 0.2 -1.2 -1.4

NL -1.9 -1.4 -1.7 0.2 -1.4 -1.8 -1.6 0.3

AT -2.1 -1.8 -2.8 -1.7 -1.8 -2.3 -1.9

FR -1.7 -1.6 -1.8 -1.9 -1.6 -1.9 -2.1

BE -1.5 -6.0 -2.1 -4.1 -4.1 -3.9 -1.4

IT -4.9 -2.5 -3.3 2.2

SP -5.5 -4.5 -5.4 -4.5

IR -5.7 -6.2 -3.9 -5.1

PT -8.8 -7.2 -10.3 -7.5

GR -7.4 -16.2 -16.1 -13.9

COUNTRY 1

C
O

U
N

T
R

Y
 2

  2| 1  
GR PT IR SP IT BE FR AT

GE -1.9 -2.2 -2.1 -2.9 -2.1 -2.0 -1.8 -2.0

FI -2.0 -2.5 0.1 -1.7 -2.1 -0.5 -2.0 -1.8

NL -2.0 -3.3 -3.3 -1.0 -3.3 -1.9 -1.8 -0.1

AT -3.7 -2.5 -2.6 -2.8 -2.5 -2.3 -2.5

FR -2.7 -2.4 -2.5 -2.6 -2.4 -2.3 -2.3

BE -2.2 -7.6 -2.8 -6.8 -6.8 -6.3 -1.9

IT -4.4 -4.7 -5.5 2.0

SP -5.9 -6.2 -9.3 -6.2

IR -6.3 -5.9 -5.5 -6.8

PT -9.7 -8.1 -16.8 -9.4

GR -12.3 -16.0 -16.6 -14.4

COUNTRY 1

C
O

U
N

T
R

Y
 2

c 2| 1  

GR PT IR SP IT BE FR AT

GE -1.4 1.6 -0.5 0.3 2.2 -0.6 -2.6 -1.5

FI -1.4 3.0 1.5 -0.2 0.3 1.4 -1.6 -2.7

NL -1.6 1.8 1.5 1.7 1.8 -1.3 -3.0 1.9

AT 2.7 0.9 -2.0 2.9 0.9 -1.0 0.8

FR 2.3 1.7 0.9 0.9 1.7 -1.5 -2.4

BE -1.9 -2.4 -3.4 -2.9 -2.9 -2.8 -4.3

IT -1.5 8.5 5.5 5.0

SP -5.4 -0.8 8.6 2.8

IR -6.6 -1.7 -6.2 -1.6

PT -9.3 -14.9 4.2 -9.5

GR 12.2 -17.0 -14.0 -25.2

COUNTRY 1  2| 1 
GR PT IR SP IT BE FR AT

GE 1.000 0.999 0.999 0.998 0.999 0.999 0.999 0.999

FI 0.999 0.999 0.841 0.999 0.999 0.866 0.999 0.999

NL 0.999 0.980 0.975 0.932 0.980 0.999 0.997 0.919

AT 0.999 0.999 0.998 0.998 0.999 0.999 0.999

FR 0.999 0.999 0.999 0.999 0.999 1.000 0.999

BE 0.946 0.917 0.958 0.939 0.939 0.957 0.975

IT 0.998 0.999 0.999 0.822

SP 0.999 0.999 0.999 0.999

IR 0.999 0.999 0.996 0.999

PT 0.999 0.995 0.978 1.000

GR 0.990 0.998 0.876 0.994

COUNTRY 1

C
O

U
N

T
R

Y
 2

 2 
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The generalisation of        in eq. (83) makes the exploration of out-of-sample cases very 

straightforward. The worst case scenario so far was arbitrary chosen as                   , 

as drawn from the list in eq. (70). In practice though, the maximum level of financial distress is 

different and was estimated as        in Table 35. Let us consider these values as an upper-bound 

for the intensity of the upfront shock   , that we denote        .  

We now need to calculate           . First we focus on the equivalent percentile 𝑆       that we 

calculate as the     percentile of the empirical conditional distribution           𝑆       ; with 

𝑆       taken out of Table 34.   

Once we have 𝑆      , we then deduce            using the same approach as in eq. (81):   

           
                  

     

                

       
 (84) 

Table 143 and Table 144 show the resulting values. 

 

Table 143. 𝑆      , the maximum amplitude of the 

conditional shock (basis points) 

 Table 144.           , the maximum risk level of the 

conditional shock 𝑆  𝑆  

     

 

 

 

   

We then calculate 𝑆     
                        𝑆     

        in Table 145: this is the maximum 

expected market reaction 𝑆     . From a practical point of view,       
        can be interpreted as an 

upper bound for       .  

Table 145. Upper bound 𝑆     
       

 in basis points  

   

 

 

  

𝑆     , by nature, is the market reaction to a shock 𝑆  on Country 2’s ASW, assuming that an upfront 

shock 𝑆  materialised upstream, in another jurisdiction. As a result, part of        is attributable to 

GR PT IR SP IT BE FR AT

GE 9.2 9.0 9.9 10.4 9.6 9.1 8.7 11.4

FI 6.7 9.7 10.4 10.9 9.4 6.7 6.8 11.4

NL 6.8 10.3 10.5 11.2 11.1 6.8 6.8 14.1

AT 8.9 9.4 10.2 10.3 9.4 8.7 8.7

FR 8.6 10.1 10.4 10.6 10.4 8.5 11.5

BE 8.9 11.1 11.6 11.5 11.4 9.2 12.2

IT 12.6 16.1 17.2 16.0

SP 12.4 16.5 17.2 15.9

IR 12.4 15.5 15.2 14.6

PT 11.9 19.5 17.2 15.6

GR 39.2 40.8 38.8 41.7

COUNTRY 1     

C
O

U
N

T
R

Y
 2

𝑆 2| 1,   
  𝑆 2| 1,    

GR PT IR SP IT BE FR AT

GE 0.2 0.3 0.3 0.3 0.3 0.2 0.3 0.3

FI 0.4 0.5 0.5 0.4 0.4 0.4 0.4 0.4

NL 0.3 0.5 0.5 0.5 0.5 0.3 0.3 0.4

AT 0.6 0.6 0.6 0.6 0.6 0.6 0.5

FR 0.2 0.3 0.2 0.3 0.2 0.2 0.2
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idiosyncratic factors, while another part is imputable to the multivariate contagion arising from 

  . And as generally understood, the multivariate contagion is supposed to amplify the idiosyncratic 

exposure, to the shock 𝑆  here.  

As a means to illustrate this phenomenon, we consider the market reaction 𝑆   to a shock 𝑆  in the 

univariate framework, ie. when 𝑆  is no longer supposed to happen. We already calculated this 

estimator, that we plotted in Graph 159. Then we compare 𝑆                        against 

𝑆          in Graph 180 to Graph 187: the difference between the red and blue lines in these 

graphs is an illustration of the multivariate contagion at work in the multivariate framework. These 

plots indicate that the multivariate contagion is effectively massive, and leads to a substantial 

deterioration of the idiosyncratic robustness to shocks. From an analytical point of view, eq. (83) 

suggests that the multivariate contagion operates at two levels, via the terms                and 

              .  

 

Graph 180. Multi-versus Uni-variate market reaction, 

Greece x-axis:       (univariate case);          

(multivariate) 

 Graph 181. Multi-versus Uni-variate market reaction, 

Portugal x-axis:       (univariate case);          

(multivariate) 

     

 

 

 
   

 

Graph 182. Multi-versus Uni-variate market reaction, 

Ireland x-axis:       (univariate case);          

(multivariate) 

 Graph 183. Multi-versus Uni-variate market reaction, Spain 

x-axis:       (univariate case);          (multivariate) 
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Graph 184. Multi-versus Uni-variate market reaction, 

Italy x-axis:       (univariate case);          (multivariate) 

 Graph 185. Multi-versus Uni-variate market reaction, 

Belgium x-axis:       (univariate case);          

(multivariate)  

     

 

 

 
   

 

Graph 186. Multi-versus Uni-variate market reaction, 

France x-axis:       (univariate case);          

(multivariate) 

 Graph 187. Multi-versus Uni-variate market reaction, 

Austria x-axis:       (univariate case);          

(multivariate) 

     

 

 

 

   

 

In conclusion to this section, we have explored the dynamics of the market reaction to shocks, from 

a multivariate perspective. Our analysis shows that the general acceleration of the market reaction 

admits a logarithmic behaviour, when expressed as a function of the shock intensity. Our 

multivariate framework also delivered interesting insight on how the idiosyncratic robustness is 

supposed to be affected by financial distress. 

   

0

50

100

150

200

250

300

350

400

450

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

bp

IT IT|SP IT|PT IT|IR IT|GR

0

20

40

60

80

100

120

140

160

180

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

bp

BE BE|GR BE|AT BE|IR

BE|FR BE|SP BE|IT BE|PT

0

20

40

60

80

100

120

140

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

bp

FR FR|GR FR|IT FR|PT

FR|IR FR|SP FR|BE FR|AT

0

20

40

60

80

100

120

140

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

bp

AT AT|GR AT|PT AT|IR

AT|SP AT|IT AT|BE AT|FR



182 
 

Practical applications of the model 
We now explore a few applications of our multivariate model. These involve both the calibrated 

parameters and some of the variables we previously obtained on frailty and contagion. Portfolio 

optimisation is a popular approach in risk management, which delivers recommendations in terms of 

asset allocations based on specific constrains. One of the main goals in particular, is to mitigate the 

portfolio’s exposure to systemic risk. The procedure is based on the minimization of an error 

function which ultimately delivers the optimal weight on each security. Then the portfolio is 

rebalanced according to the proposed ‘optimal’ weighting, and the weights are maintained 

unchanged for the whole investment period.  

In financial investments, risk minimisation and return maximisation are conflicting forces: the higher-

yielding products are usually facing substantially larger risks as well. An aggressive asset allocation 

for instance, based on an unconstrained return maximisation, will systematically favour securities 

with a larger intrinsic volatility. But this eventually could be at the cost of massive losses, especially 

when risk aversion is coming up. In contrast, a prudent asset allocation will seek to overweight the 

safest securities. But safe-haven offer meagre yields and tiny returns; so this is at the risk to miss the 

objective return at the end of the period.  Quantitative approaches to asset allocation, like 

portfolio optimisation, are supposed to offer an interesting trade-off between return maximisation 

and risk minimisation.  

An abundant literature has been dedicated to risk management procedures in the aftermath of the 

global financial crisis in 2008, leading to a profusion of new approaches. And while prudence in 

investment has turned to be a major goal following years of crises, interest rates in developed 

markets have also reached remarkably low levels of late, thereby narrowing the yield offered by 

Fixed Income securities dramatically (Gründl (2015), Bernardino (2016)).  Intense risk aversion 

during the years of crisis, and then now the ultra-low rates environment, both have contributed to 

make any deviation from the optimal risk-allocation particularly costly for portfolio managers.  

In this context, exploring new risk management-oriented procedures is a relevant exercise, with the 

purpose of designing more flexible tools able to offer both enhanced protection during periods of 

crisis, and compelling returns when risk appetite is prevailing.  Being able to detect swings in 

market sentiment is a key feature.  

Portfolio optimisation relies upon minimizing a dedicated risk measure (or risk metric). The optimal 

weighting is then deduced out of the minimised metric. In the following analysis, we explore the 

relevance of both the chosen risk metric and the optimisation procedure itself, separately – we 

consider several versions of each. Historical volatilities and rolling empirical correlations are already 

a basic example of risk metrics, that could potentially deliver relevant insight on underlying risks. But 

as we demonstrate below, this formulation is in fact relatively poor, partly because of the lack of any 

predicting power attached to these estimators. In practice, more sophisticated formulations of the 

risk measure are a better option, in particular as they offer a deeper understanding of the volatility 

risk (see Bronshtein, Fabozzi, Rachev et al. (2008)).  

Overall, the ideal risk measure is seen as being able to detect and hedge the appearance of ‘tail 

events’ like shocks, while forecasting any swing in underlying volatility regimes that would require an 
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adjustment in the allocation strategy. The forecasting capability for instance can prove very helpful 

to switch into a more cautious allocation in due time, ahead of the materialisation of the risks.  

From a general point of view, we see two main approaches in portfolio optimisation. On the one 

hand, ‘tactical allocation’ seeks to detect short term arbitrage opportunities: the resulting 

positioning assumes that market discrepancies are going to fade. In this approach, the risk-measure 

has to be reactive. The signal is seen as more or less robust depending on whether it is able to 

differentiate short term deviations, from long term momentums. Then the weighting is derived from 

the identified market discrepancies, on the basis that they are supposed to narrow in the future. As a 

consequence of the relatively small investment horizon, it is preferable to calculate the weights on a 

shorter version of the dataset, e.g. up to one year in the past. This helps focus on the most recent 

market trends at work. By contrast, taking too much history into consideration is a risk to hurt the 

performance because of a possible disconnection between the more distant history and the 

prevailing market dynamics at this moment. As a means to improve the responsiveness of the 

resulting allocation, asset managers may also be prompt to incorporate indicators based on the 

intraday volatility (Liu (2009), Ziegelmann, Borges (2015)).  

On the other hand, another challenge in optimisation-based risk management is to consider a 

consistent risk measure, effective in the sense that it has to reflect underlying risks in a proper 

manner. The potential implications of shocks for instance, and how the price deterioration is 

supposed to spill-over throughout the network are important features: any misguiding on the 

contagion mechanism can lead to dramatic losses in portfolios. In order to maximise the consistency 

of the risk measure, it is recommended to involve a sufficiently large amount of data, and preferably 

to incorporate episodes of crises in the past. The optimisation procedure can then deduce the 

expected dynamics of risk aversion out of these past events. And because shocks are rare in 

essence, the risk measure will be more effective when the available history is longer.  

In the end, asset managers need to find the appropriate compromise between consistency and 

responsiveness. In this analysis, we consider market prices since January 2008. This enables us to 

capture both the global financial crisis in H2 2008 and the more recent sovereign crisis of 2011-

2012 in Europe. Having these two episodes in the dataset should help improve the consistency of 

the risk measure. We also explore the relevance of other estimators, specific to our statistical 

framework. The GAS method developed in Chapter 1 fort instance is able to provide a volatility 

forecast for the     period. We take a look at this feature, and we investigate the benefit of 

involving the resulting volatility forecast instead of regular estimators of historical volatilities. 

Global Minimum Variance, Risk Budgeting, and Most Diversified Portfolios.  

In this analysis, we consider the volatility (𝜎 ) and correlation ( ) estimators derived from the GAS 

model in Chapter 1, along with the frailty and contagion estimators we obtained in the preceding 

section, as material information. And we investigate the potential benefit of using these indicators in 

the context of portfolio optimisation, instead of more common estimators.  

In the general theory of portfolio optimisation, the vector of the desired (or potential) returns 

denoted    here, is an important component of the procedure as well.    in particular is worth to be 

added when investors have to achieve a specific performance during the full investment period (like 

in Markovitz or Mean-Variance portfolios for instance, as described in Varga-Haszonits, Caccioli, 
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Kondor (2016), and Davis (2013)). Achieving a particular return necessarily implies being exposed to 

higher-yielding securities. This is obviously at the risk of larger losses as well, given the more 

aggressive risk-reward on these assets. As a result, imposing a target return    as an objective 

constraint generally leads to more volatile portfolios, ex-post. In comparison, optimisation 

procedures free of any target return are more inclined to encourage a prudent positioning, with the 

flexibility of overweighting safer assets in time of crises, and so regardless of the incurred shortfall in 

terms of returns.  On that basis, optimisation procedures that rely on minimising a risk metric 

without involving any target return    look more appropriate to understand the pure risk 

management component. And since the purpose of this analysis is to design novel approaches to 

risk management, we prefer discarding the return objectives component   . Instead, we focus on 

methodologies that do not involve any constraints on the expected portfolio performance. Kempf, 

Memmel (2003) also shows that the risk-measure is usually a more accurate predictor of the 

performance than estimators of potential returns - this is another reason for not considering any 

constraint on the expected performance.  

In the following paragraphs we explore three popular approaches to portfolio optimisation: the 

‘Global Minimum Variance’ (GMV), the ‘Equal Risk Contribution’ (ERC) which is a subset of risk 

budgeting portfolios (RB), and the ‘Most diversified portfolios’ (MDP). The three methodologies are 

volatility-based approaches, ie. the risk metric is deduced from the covariance matrix of the 

considered securities.  

Let us consider a portfolio of   securities. We define    as the weight attached to the 𝑖   asset (or 
the exposure to it) and            as the risk measure of the portfolio               . If the 
risk measure is coherent and convex (see Artzner et al., 1999), it verifies the following Euler 
decomposition: 

              

           

   

 

   

 
(85) 

The risk measure is then the sum of the product of the exposure by its marginal risk. In this case, it is 

natural to define the risk contribution     of the 𝑖   asset as: 

               

           

   
 

(86) 

Since  we focus on volatility risk-measures exclusively, we define   as: 

     𝜎          (87) 

The GMV portfolio is the portfolio which delivers the lowest ex-ante return variance for a given 

covariance matrix  . As a consequence, the GMV portfolio is the solution of the following 

minimization problem: 

           𝜎    

           
𝑇

     𝑇  
           

𝑇
      s.t.            and      (88) 

Where   is a column vector of the appropriate dimension whose entries are ones and because we 

also prefer having a long-only portfolio, all the weights have to be positive. The weights of the GMV 

portfolio are then deduced by solving the problem in eq. (88).  
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The return of the portfolio      and the portfolio variance 𝜎   are then calculated as: 

              
    

 𝑇    
 (89) 

where   is a vector composed of the (ex-post) returns of each security during the investment period. 

𝜎         
           

 

       

 
(90) 

We also calculate the marginal risk and the risk contribution of the 𝑖   security as: 
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(91) 

We check that the volatility verifies the Euler decomposition: 
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 𝑇         𝜎         (92) 

Different definitions of the covariance matrix   will obviously lead to different weights, and thus 

different returns ex-post. There is therefore a need to identify the optimal definition for the 

covariance matrix  . In the following paragraphs we explore different formulations of the covariance 

matrix, and we assess the relevance of each candidate. These definitions are largely based on 

parameters obtained with the GAS method. 

GMV portfolios face some notable limitations. First, the final weights may exhibit little risk 

diversification, with a too high concentration on the safer securities. True, the ex-ante portfolio 

volatility is reduced as much as possible in this approach, but excessively small weights on the more 

volatile (and thus higher yielding) securities may also cause a massive deterioration of the portfolio 

return ex-post. The second caveat comes from the sensitivity of the GMV algorithm to the 

correlation matrix, in particular to the degenerated values (see Senneret, Malevergne et al. (2016)). 

As a consequence, the weights may be irrationally instable. This makes rebalancing particularly 

challenging as the excessive turnover translates into prohibitive transaction costs, and a lack of 

coherence in the allocation strategy. On top of that, Roncalli (2012) also notes that slight differences 

in the input can lead to dramatic changes in the resulting allocation and thus leads to portfolios 

heavily invested in very few assets. 

 

In a risk budgeting (RB) approach, the investor has to set up the desired risk repartition between 

each security within the portfolio, and so regardless of consideration of returns. This helps address 

the risk of a too high concentration/sensitivity that we just mentioned in the GMV methodology. Risk 

contributions are defined as ‘risk budgets’, and help control the contribution of each asset to the 

portfolio variance (Roncalli, Bruder (2012)). ‘Equal Risk Contribution’ (ERC) portfolios is a popular 

subclass of risk budgeting portfolios, whereby the risk contribution from each asset is made equal. In 
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this case, Maillard, Roncalli, Teiletche (2010) shows that the ex-post volatility in ERC portfolios is 

located between the GMV and equally-weighted portfolios. 

 

From a general perspective, we consider a set of given risk budgets            . The risk 

budgeting portfolio is then defined by the following conditions: 

 
 
 

 
 
                     

 
                     

 
                     

  

(93) 

Risk contributions also have to be positive, otherwise the resulting portfolio will be highly 

concentrated on assets with positive risk contributions, which is not acceptable since the ERC 

approach is supposed to improve risk diversification. We thus consider the following constraint: 

        and     . In the end, the general formulation of RB portfolios is the following: 

 
 
 
 

 
 
 
            

    
    
    

     
 

   

     
 

   

  

(94) 

In ERC portfolios, all the involved securities are contributing to a similar extent to the portfolio 

variance. In this case, we define the budgets as       , and we update the formulation in eq. (94) 

accordingly: 

 
 
 
 
 

 
 
 
 
            

    

   
 

 
    

     
 

   

     
 

   

  

(95) 

Finally we derive the formulation of the ERC optimisation problem: 

                    
 

   
  𝑖  

 

 
  𝑖    𝑖   𝑖  

𝑇     
(96) 

Interestingly, Roncalli, Bruder (2012) demonstrates that there always exists a unique portfolio that 

satisfies eq. (96).  

 

Finally, the “Most Diversified Portfolio” (MDP) tends to maximise risk diversification. Choueifaty, 

Froidure, Reynier (2011) introduces the concept of maximum diversification based on a formal 

definition of portfolio diversification via the diversification ratio (  ) formalised in eq. (97):  
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   𝜎 
 
   

      
 

(97) 

   is the ratio of the portfolio’s weighted average asset volatility over the total portfolio variance. 

Since different asset classes are not perfectly correlated to each other, this ratio is generally higher 

than   and a well diversified portfolio will exhibit a larger ratio. 

Diversification is a fundamental aspect of risk management. As Choueifaty, Froidure, Reynier (2013) 

argues, it is intuitive that “concentrated” weights and/or highly correlated holdings are poorly 

diversified. And as a consequence, too little diversification translates into an unexpectedly large 

exposure to idiosyncratic risks. Enhancing diversification means that a larger weight is given to non-

correlated assets. This helps abate the portfolio exposure to unsystematic risk, and thus improves 

the resilience of the portfolio against idiosyncratic developments. We also understand that there are 

other recognized estimators of portfolio diversification like measures of entropy (see Carmichael, 

Koumou, Moran (2015)) that look sensible as well.  

As additional descriptors of the portfolio’s behaviour, Choueifaty, Froidure, Reynier (2013) also 

considers the volatility-weighted concentration ratio    (eq. (98)), and the volatility-weighted 

average correlation    (eq. (99)): 
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(98) 

and: 

       
    𝜎   𝜎         

    𝜎   𝜎     
 

(99) 

The concentration of the weights is effectively a meaningful characteristic of the portfolio. Too much 

concentration on risk-free assets for instance will cause a shortfall in returns, ex-post. Based on eq. 

(98), a lower ratio is preferable. 

In the end, the three estimators   ,    and    are bound together such that: 

      
  

                     
 

(100) 

The MDP is defined as the portfolio which maximizes      . We denote      as the solution of the 

MDP problem, which is defined as: 

                             s.t.            and      (101) 

Choueifaty, Froidure, Reynier (2013) also demonstrates that the long-only MDP always exists and is 

unique when the covariance matrix   is definite.  

 

 

Choueifaty, Froidure, Reynier (2013) have made a comparative exploration of recognised approaches 

to portfolio optimisation. The authors investigate basic properties that an unbiased, agnostic 

portfolio construction process should respect. They consider in particular some invariance properties 

based on the ground that an unbiased optimisation procedure is supposed to produce exactly the 

same portfolio when considering a universe equivalent to the original one.  
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The authors consider three different invariance properties: 

- Duplication invariance: consider a universe where an asset has been replicated. An unbiased 

optimisation procedure should produce the same portfolio, regardless of whether the asset 

was duplicated.  

- Leverage invariance: imagine that a company chooses to deleverage/leverage. All else being 

equal, the weights allocated by the portfolio to the company’s underlying business(es) 

should not change, as its cash exposure is dealt with separately.  

- Polico invariance: the addition of a positive linear combination of assets already belonging 

to the universe (e.g. the creation of a long-only leveraged exchange-traded fund on a subset 

of the universe) should not affect the portfolio’s weights to the original assets, as they were 

already available in the original universe. In this case, “positive linear combination” is 

abbreviated as “polico”.    

The authors then demonstrate that the more compliant risk measure is the MDP, while the GMV 

portfolio is duplication invariant only, while the ERC is leverage invariant only. Table 146 summarises 

the results.  
Table 146. Invariance properties  

   

 

 

  

The data. We consider a portfolio of daily     European sovereign asset swap spreads for      

countries in the euro area from January 2008 to December 2016. We understand that every 

rebalancing induces a cost that turn to be more expensive on a frequent rebalancing. But we also 

seek to illustrate the relevance of risk-metrics derived from our previous analysis with the GAS 

method. Since the GAS approach has been calibrated on daily price variations, it looks appropriate to 

consider daily-based risk indicators. But since a daily rebalancing of the portfolio is not realistic, we 

explore two different scenarios: first the rebalancing of the weights is assumed to happen on a daily 

basis. This delivers very short term recommendations. Then we assume a monthly rebalancing of the 

portfolio. Amongst other things, this helps differentiate which risk measure is the most appropriate 

in each scenario. 

Finally, we explore an in-house definition of the risk metric that delivers interesting results, 

especially in periods of crisis. 

 

 

The theory of risk management indicates how to calculate the return      of an asset swap spread 

position held for   sessions from     to   (Fabozzi, Davis, Choudry (2006)): 

     
 𝑆       

 
   

   𝑆           

     
 

(102) 

Portfolio Duplication Leverage Polico

GMV Yes No No

ERC Non Yes No

MDP Yes Yes Yes
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Where   is the investment period for which the weights are kept unchanged;  𝑆       is the asset 

swap spread of country 𝑖 at time    , and   𝑆     is the asset swap variation over the period  ,  

ie.   𝑆      𝑆      𝑆      . Note that      needs to be multiplied by     to be expressed in 

%.  

 

       is also the modified duration of the sovereign bond: this is a measure of the change in price 

for a small change in the yield : 

        
  

 
 
 

 
 

Where   is the price of the bond (see Fabozzi (2003)). 

We approximate the modified duration using its exponential form, as described in Livingston, Zhou 

(2005), and Tchuindjo (2007). The calculation is then based on the maturity and the yield to maturity 

of the bond: 

       
        

 𝑇        
    

        
 𝑇    

    
 (103) 

Where  𝑇     is the yield to maturity of the 10Y benchmark government bond of country 𝑖 at time   

(expressed in %) and             .   

 

The portfolio value    that is calculated as the weighted sum of the performance of each asset: 

           

 

   

 
(104) 

     is the performance of the 𝑖   security within the portfolio. We calculate      out of      for the 

period         : 

                       (105) 

With the convention that         . 

 

Forecasting volatility using the GAS method  

As mentioned in Chapter 1, the GAS volatility 𝜎  is calculated via a score   , such that  

𝜎           . The calculation of    depends on the chosen formulation of the GAS method. In our 

case,    is an autoregressive expression of parameters that refer to market realisations at    : 

                        (106) 

Where         are three unknowns, that need to be calibrated.  

The autoregressive relationship in eq. (106) makes the determination of a forecast for the one-step 

ahead period relatively straightforward: at a given time 𝑇   , the score forecast     is calculated as: 

                         (107) 
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Where         are calibrated on the time interval    𝑇    . This interval is of prime importance 

because the calculation of the true value                   involves three different 

coefficients         calibrated on the interval    𝑇 . 

As a result, and for better clarity we update the notation of         as    𝑇        . This helps 

understand on which interval these three unknowns have been calibrated. We also stick to the initial 

notation of         when the three unknowns are calibrated on the full sample.   

We then update the formulation of our score forecast     as:   

       
      𝑇          𝑇    

𝑇  
 (108) 

Then we compute the volatility forecast 𝜎   out of the score forecast: 

𝜎              (109) 

We seek to evaluate the quality of the volatility forecast 𝜎  . To do so, we consider that   is varying 

from January 2010 up to end-2016. We arbitrarily choose to start the simulation with 𝑇      

points, which is long enough to ensure coherence and stability. Some observations indicate that the 

calibration on smaller samples is more challenging.  

Then we calculate    . In line with the preceding sections, we consider the ADC criterion as a 

relevant estimator of the quality of the calibrations (when 𝑇 is moving). We plot the results relative 

to Germany and Italy in Graph 188 and Graph 189: there is a large concentration of the points below 

the     threshold, which indicates that the calibration is successful in most cases. There are a few 

outliers though, with values closer to     - but this is in a relatively marginal proportion. 

Graph 188. ADC relative to Germany  Graph 189. ADC relative to Italy 

     

 

 

 
   

We calculate the     and     percentiles of the ADCs for all countries, that we show in Table 147. 

The numbers confirm that calibrations are compelling in most of the countries, although a bit more 

difficult for Greece and Portugal. 

 

Table 147. Summary of all ADC, with 10% and 90% percentiles   
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Looking at the prediction, we compare the forecast 𝜎   to the true volatility 𝜎  : Graph 190 and Graph 

191 shows that the forecast is fairly close to the actual value, and replicates the general trend 

relatively well.  

Let us now consider the average error (AE): 

   
 

 
  𝜎   𝜎   

 

 

As Table 148 shows, the average error is relatively contained, which is a sign that there is not too 

much divergence between the forecast and the true values.   

Table 148. Average error against the prediction and its true value   

   

 

 

  
 

Graph 190. Prediction versus true volatility, Germany  Graph 191. Prediction versus true volatility, Italy 

     

 

 

 
   

And as a measure of the error in absolute terms we also calculate the root mean square deviation 

(RMSE): 

  𝑆  
 

 
   𝜎   𝜎   

 

 

 

Table 149. RMSE between the prediction and the true value   

   

 

 

  

This time we note a sharp deterioration for Ireland, Portugal, Greece. That said, and in contrast to 

these numbers, Graph 192 and Graph 193 also suggest that the deviation between the forecast and 

the true volatility may be not so huge for Portugal and Greece. In this case effectively, the larger 

  𝑆  could just reflect the fact that the intrinsic volatility – in absolute terms - is larger at the 

periphery.  
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Graph 192. Forecast versus true value for Portugal  Graph 193. Forecast versus true value for Greece 

     

 

 

 
   

As a consequence, we explore an adjusted version of the RMSE, which this time illustrates the error 

as a share of the true volatility: 
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Table 150. Adjusted RMSE (%)   

   

 

 

  

Finally, results in Table 150 indicate that the error in Ireland and Portugal is just slightly more 

important than in France, Belgium and Italy. For Greece in contrast, we still have a massive deviation. 

As Graph 194 shows, the forecast error in the case of Greece, is largely driven by the presence of 

spikes (see red arrows), which are much difficult to forecast.  

It is also worth to note that the forecast error is very small, at        of the average volatility for 

core countries (Table 150), and a bit larger (      ) for soft-and non-core countries (excluding 

Greece).  

Graph 194. For Greece, the error is largely driven by spikes  

   

 

 

  

Let us now consider the consistency of the forecast on a larger time-step. For portfolio optimisation 

purposes in particular, having a next-day volatility forecast may prove useless given that the weights 

of the portfolio are usually kept unchanged for longer periods. We therefore adjust the methodology 
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and explore another scenario where rebalancing occurs every two weeks. Let us see if the GAS 

method is still prompt to provide decent forecasts in these circumstances.  

We consider the same portfolio as before, though with bimonthly market variations this time. In 

order to improve the consistency of the calibration we consider a bigger sample, and we consider 

market valuations from January 2000 (instead of 2008).  

We calculate the forecast on the new dataset following the same procedure as before; we denote 

the forecast as 𝜎     . We also take a look at the ADC criteria for all the calibrated distributions - 

Table 151 shows the results. ADCs on average are relatively similar to what we had in Table 147, with 

compelling results for almost all countries, except for Greece and Portugal, which are much beyond 

the     limit. This deterioration is largely attributable to the sharp variations in market sentiment 

during the considered period. 

Table 151.     in the case of bimonthly data   

   

 

 

  

We also calculate the corresponding RMSE and the adjusted RMSE. Table 152 shows that the 

deviation between the forecast and the true value is much bigger this time. For Portugal and Greece 

in particular, the forecast error is abnormally large, so definitely the forecasting aptitude of the 

model is very limited for these two countries.  

Table 152. RMSE and adjusted RMSE assuming a bimonthly rebalancing of the portfolio  

   

 

 

  

We also plotted the forecast 𝜎      against the true value 𝜎     in Graph 195 and Graph 196 for the 

Netherlands and France as examples. In both cases, there is limited deviation between both 

variables. We consider these volatility forecasts in the context of portfolio optimisation in the next 

section. This will provide additional insightful on the forecasting capability of the GAS model. 

Graph 195. Forecast versus true value for the 

Netherlands 

 Graph 196. Forecast versus true value for France 
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A view on optimal portfolio rebalancing   

We now take a look at popular portfolio optimisation procedures, and we implement different 

versions of each model, every time based on a specific definition of the (volatility-based) risk metric.  

‘Global Minimum Variance’ (GMV), ‘Equal Risk Contribution’ portfolio (ERC), and ‘Most diversified 

portfolios’ (MDP) are three popular approaches in risk management. These three models rely on risk 

minimization exclusively, without any performance objectives. As a consequence, the covariance 

matrix of the data is the only information needed to calculate the weights of the portfolio (see eq. 

(88), (96)).  

 We look at the performance of portfolios obtained with different definitions of the covariance 

matrix. All these versions involve some volatility estimators calculated in the preceding sections. 

This will help identify the most effective risk management procedure and the optimal definition of 

the risk metric. 

 

So far we have manipulated four different indicators of the univariate volatility: 

- The empirical volatility, calculated as the rolling standard deviation, that we denote       .  

- The GHT volatility obtained with the GAS method, which is denoted   . 

- The un-temporal volatility coefficient        (see methodology in Chapter 1).  

- The volatility forecast     that we just calculated.  

In terms of correlations, we consider the matrix   composed of all the correlation coefficients 

obtained with the GAS method: 

  

 
 
 
 
 
 
 
 
 
 
         

         

         

            

            

            

                    

                    

                    
            

            

            

         

         

         

                    

                    

                    
            

            
    

    

    

    

    

    

    

    

    

            

            
    

    

    

    

    

    

    

    

    

                 

                 
    

    

    

    

    

    

 

    

    

    

 

    

    

    

  
 
 
 
 
 
 
 
 
 

 (110) 

Since   is not a proper correlation matrix but an aggregate of correlation coefficients (derived from 

bivariate distributions),   is not necessarily a definite positive matrix. When this condition is not 

verified, we consider the adjustment algorithm of Higham (2002) which determines the closest 

definite positive matrix. We use it every time when required, including with other definitions of the 

covariance matrix that may need it. 

Portfolio optimisation based on the empirical volatility. In this paragraph we explore the 

optimisation of the GMV, ERC and MDP portfolios based on the empirical estimator 𝜎     . In this 

case, the covariance matrix   is calculated as the following product:  

    𝑖   𝜎          𝑖   𝜎       (111) 

Where  𝑖   𝜎       is a     matrix with the diagonal holding the   values of 𝜎     .  
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We first consider daily variations of sovereign asset swap spreads as the dataset. We assume a daily 

rebalancing of the weights and long-only positions. We do not take any transaction fee into account. 

We understand that a daily rebalancing is not realistic per se, given that portfolio managers generally 

rebalance far less frequently. However, the higher frequency induced by daily data could reveal 

interesting information on the effectiveness of each version of the risk metric as to detect short-term 

opportunities in the market. This could prove especially useful for tactical asset managers (like fast 

money investors).  

We measure the quality of the portfolios on the basis of several metrics. The portfolio return and 

portfolio values indicate how productive investments have been over the period, while the portfolio 

variance 𝜎 illustrates at what cost these returns have been achieved. The purpose of portfolio 

optimisation is obviously to find a relevant trade-off between reduced variance and increased 

returns.  

The marginal risk contribution     is another estimator worth to look at as it highlights the 

contribution of each asset to the portfolio variance. This helps identify a potentially too high 

concentration of the risks on certain securities. For ERC portfolios obviously we must find        

where    are the risk budgets.  

We also consider the diversification and the concentration ratios    and    (as expressed in eq. 

(97) and eq. (98)), along with the portfolio turnover (𝑇 ) which highlights the volume of trades 

required to achieve the rebalancing. We consider the definition of turnover described in De Miguel, 

Garlappi, Nogales (2009), and as indicated in eq. (112). A lower turnover is preferable as it leads to 

smaller rebalancing costs. 

𝑇                      

 

   

 (112) 

Finally we also calculate the commonly used Sharpe ratio (eq. (113)), which illustrates the 

performance of the portfolio in light of the risks, ie. adjusted by both the performance of a risk-free 

portfolio (  ) and the underlying volatility (𝜎).  

𝑆   
    

𝜎
 (113) 

Where    is the return of a risk-free portfolio over the period. In this analysis, the risk-free portfolio is 

made of a long position of a 10Y German asset swap spread. This ‘Long Bund Only’ portfolio 

(denoted LBO) is understood as a benchmark measure of the risk-free performance.  

The performance of the LBO is shown in Graph 197. The portfolio shows a performance of 5pp 

(percentage point) during the sovereign crisis (2010 to mid-2012), which is coincident with a large 

spread widening in Spain (grey line).  This outlines the risk-free dimension of the LBO portfolio. 

The value of the LBO portfolio is also on a decline during the period that followed the sovereign 

crisis. The years 2013 to 2016 were essentially driven by risk-appetite in sovereign spreads. This 

positive momentum favoured an underperformance of risk-free securities in general compared to 

higher-yielding products. On top of that, 10Y German asset swap spreads have been trading at 

negative levels during this period, which means that the position induced a negative carry 

(something visible in eq. (102)) – hence the deteriorated performance of the LBO after the peak of 

the crisis. 

 



196 
 

Graph 197. Performance of the risk-free portfolio ‘LBO’  

   

 

 

  

More generally, the dynamics of the dataset in Graph 198 and Graph 199 suggests that asset swaps 

spreads have been consistently on the rise from Jan-2008 to Feb-2012. During this period, sovereign 

bonds have been underperforming the swap rate, hence the persistent widening. By large this was a 

consequence of the GFC in 2008 amplified by mounting uncertainties on Greece in the following 

years.  

 The period from 2008 to 2012 was marked by fierce risk aversion in Euro sovereigns. The risk-

off price action in particular reached a peak between January and May 2012, before receding in 

line with global risks in the years that followed. 

In contrast to this period where risk aversion was dominating, asset swap spreads have consistently 

tightened from mid-2012 until end-2014. This reflects a substantial change in market sentiment, as 

sovereign bonds were outperforming swaps during this second phase in the sample. And as the 

general momentum was turning much more supportive for risky assets, a very accommodative ECB 

also helped bolster risk appetite while refraining any contagion from persisting concerns (like in 

Greece or Italy).  Risk appetite has been prevailing in the second part of the sample, from mid-

2012 onwards. 

This subdivision of the price action in the sample (Graph 198 and Graph 199) makes the 

identification of the most appropriate portfolios under each regime (risk aversion or risk appetite) 

much convenient. 

Graph 198. Two prevailing momentums in the sample: 

risk aversion, followed by risk appetite (focus on 

peripheral countries) 

 Graph 199. Two prevailing momentums in the sample: 

risk aversion, followed by risk appetite (core, soft-core) 

     

 

 

 
   

0

100

200

300

400

500

600

700

95

96

97

98

99

100

101

102

103

Jan-08 Jan-10 Jan-12 Jan-14 Jan-16

bp

portf olio 
v alue

LBO 10Y SPGB v ersus Bund

-50

150

350

550

750

950

1150

1350

Jan-08 Jan-10 Jan-12 Jan-14 Jan-16

ASW, bp

IT SP IR PT

Feb 2012

Risk AppetiteRisk Aversion

-100

-50

0

50

100

150

200

250

300

Jan-08 Jan-10 Jan-12 Jan-14 Jan-16

ASW, bp

GE FI NL AT FR BE



197 
 

We build GMV, ERC, MDP and LBO portfolios using the empirical volatility estimator 𝜎      as 

defined in eq. (111). Graph 200 to Graph 205 displays the performance of the resulting portfolios.  

Graph 200. GMV, ERC, MDP portfolios, empirical version  Graph 201. Portfolio volatility (standard deviation) 

     

 

 

 
   

Graph 200 first, indicates that the LBO benchmark outperforms the three other approaches.  

 This illustrates the fact that empirical estimators of the volatility offer very limited protection 

against risk aversion. Hence the need to consider more sophisticated definitions. 

We also note that the ERC portfolio outperforms other approaches over the full period, though 

losses are more important as well at the fore of the peak of the sovereign crisis. While the 

performance of the GMV portfolio is much disappointing, the variance of the portfolio is the smallest 

in Graph 201. As a consequence the loss around end-2011 is more contained than in MDP and ERC 

portfolios. 

We look at the weights   in Graph 202, Graph 203 and Graph 204, and we also plot average 

weights in Table 153 for better clarity. First we note that Germany is consistently overweighted in 

the three approaches. This preference for Germany is more pronounced for the MDP, which 

allocates 50% of the weights on German securities on average. This compares with just 32% in the 

GMV portfolio, and 15% in the ERC.  

Interestingly, the ERC is the least conservative approach as in this framework every asset is meant 

to contribute equally to the portfolio volatility. As a result, the allocation involves a decent portion 

of all securities (Graph 203), and this helps avoiding too much concentration (Table 154). In contrast 

to the ERC, the MDP involves only six securities in the sample, including Germany, France, Spain and 

Greece. As expected, the diversification ratio is higher for the MDP in Graph 205, which is a sign of 

coherence. The higher diversification is achieved via higher weights allotted to these securities that 

look the most de-correlated to each other (see eq. (110)).  

As Graph 202 shows, turnover is also incredibly high for the GMV portfolio, and more contained for 

the ERC and MDP.  
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Graph 202. GMV weights        Graph 203. ERC weights       

     

 

 

 
   

 

Graph 204. MDP weights       Graph 205. Diversification ratio 

     

 

 

 

   

 

Table 153. Summary of the GMV, ERC, MDP portfolios with empirical covariance  

   

 

 

  

The marginal risk contribution to the portfolio volatility gives additional information on how the 

weights translate into a more or less risky position within the portfolio. The definition of the risk 

contribution in eq. (91) is applicable here: 

              𝑖
𝑇      

      
 𝜎  

𝜎  highlights how much risk is attached to each asset, in light of the total portfolio variance. Volatile 

assets for instance may contribute to a larger extent to the total volatility than expected, even if they 

are given a smaller weight than other securities.  

Graph 206 shows that for the GMV portfolio, the marginal risk (or volatility) contributions are 

relatively similar to the weights, which is consistent with the analytical definition of the optimisation. 

In this configuration, the portfolio volatility is optimally reduced. But as Graph 206 shows, this is at 
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the expense of a greater turnover (the graph is too volatile), and a notable loss in returns as the 

weights have a tendency to focus on the securities that offer the smaller return.  

In the ERC approach in contrast, every asset contributes equally to the portfolio variance (Graph 

207). The variations of the weights in Graph 203 are therefore decided so that the risk contribution 

of each security remains unchanged as time goes by. And because the desired risk contribution is 

independent of the credit quality, there is a sizeable exposure to the more volatile securities in 

general. This largely explains the bigger losses during the sovereign crisis in Graph 200, and the faster 

recovery rate when market sentiment improved.  

In the MDP finally, a good chunk of the portfolio variance is attributable to Germany (Graph 208). 

Spain and Greece are also largely involved, though in a sensible way as we see a notable 

underweight on these two countries during the crisis. Austria and France instead are preferred 

during this period. While this selection looks relatively coherent, the performance is much 

disappointing during the risk aversion period in Graph 200.  Clearly the defensive re-allocation of 

the portfolio happens too late.  

Graph 206. GMV volatility contribution, Germany 

contributes more 

 Graph 207. ERC volatility contribution, equally distributed 

     

 

 

 

   

 In the end, portfolios based on empirical estimators largely underperform the benchmark LBO 

during the whole period. This reflects the limitation of empirical estimators in risk management.  

We previously emphasized that the deterioration induced by risk aversion is non-linear. We 

consider now other formulations of the risk measure that could potentially reflect this 

phenomenon in a more effective manner.  

Graph 208. Volatility contribution to the MDP portfolio  Table 154. Criterions of the portfolios with empirical 

covariance 
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Let us now consider three additional versions of the portfolio: 

- First a version that involves the GAS volatility 𝜎  instead of the empirical estimator 𝜎     . 

Inthis case the covariance matrix is denoted     : 

       𝑖   𝜎      𝑖   𝜎   (114) 

- Then another version based on the un-temporal volatility coefficient       . In this case we 

denote the covariance matrix   : 

     𝑖              𝑖           (115) 

- Finally we calculate a version based on the volatility forecast 𝜎    . In this case we denote the 

covariance matrix      : 

        𝑖   𝜎         𝑖   𝜎      (116) 

Graph 209. Performance of GMV portfolios  Graph 210. Performance of ERC portfolios 

     

 

 

 
   

Graph 209, Graph 210 and Graph 211 show the performance of these different portfolios. First we 

note that in each category, the empirical portfolio is the worst performer. This outlines that the GAS 

volatility 𝜎 , the un-temporal estimator    and the volatility forecast 𝜎   are more adequate 

descriptors of the volatility risk than the basic standard deviation.  

Another observation if that the ‘GMV   ’ portfolio outperforms all other portfolios (Graph 209). 

Although this version does not provide as much protection as the LBO benchmark during the risk 

aversion period, losses around the end of 2011 (ie. on tough risk aversion) are relatively small 

compared to other portfolios. Then the recovery of the ‘GMV   ’ portfolio during the risk appetite 

period is outstanding, and offers a consistent return from 2012 to end-2016. In comparison the LBO 

fails to provide such a reward. 

The ERC and MDP portfolios are much disappointing in comparison to the ‘GMV   ’ definition: losses 

from 2010 to 2012 are substantial in Graph 210 and Graph 211, and the recovery rate is not 

sufficiently robust to compensate this deterioration. In this configuration, we also note that there is 

little upside in using the forecast 𝜎     instead of the volatility estimator 𝜎 .     

87

89

91

93

95

97

99

101

103

Jan-08 Jan-09 Jan-10 Jan-11 Jan-12 Jan-13 Jan-14 Jan-15 Jan-16

portf olio v alue

LBO Empirical GAS h f cst

80

85

90

95

100

105

Jan-08 Jan-09 Jan-10 Jan-11 Jan-12 Jan-13 Jan-14 Jan-15 Jan-16

LBO Empirical GAS h f cst



201 
 

Graph 211. Performance of MDP portfolios  Graph 212. Contribution to the portfolio volatility (GMV   ) 

     

 

 

 
   

Looking at the ‘GMV   ’ portfolio, Graph 212 shows the contribution of each asset to the portfolio 

variance, with a breakdown by asset category. Arguably, non-core securities are excluded from the 

portfolio, which is coherent with the fact that the GMV methodology focuses on the least volatile 

securities. And because the coefficient    is an illustration of the ‘intrinsic’ volatility, this estimator is 

a fair representation of the underlying risks - hence the outperformance of the      version compared 

to the GAS portfolio in Graph 209. In contrast to these observations, other portfolios always involve 

peripheral securities to some extent: this is in effect largely responsible for the massive loss observed 

during the risk aversion period.  The un-temporal GHT volatility    delivers interesting results 

when applied to the GMV methodology. And while protection is not as high as in the risk-free 

benchmark, the performance of the ‘GMV   ’ portfolio over the risk appetite period is much more 

appealing than in the LBO, with gains largely offsetting the depreciation accumulated in the years 

2008 to 2011.   

Less engaging, Table 155 shows that the turnover of the ‘GMV   ’ portfolio is high and larger than in 

other portfolios. Rebalancing looks thus particularly costly here. Risk diversification also is a bit small, 

but this is a natural consequence of the fact that peripheral assets are excluded from within the 

portfolio. 

Table 155. Diversification, Concentration and Turnover ratios   

   

 

 

Table 156, Table 157 and Table 158 offer additional insight on the features of each portfolio.  
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Table 156. Statistics summary of GMV portfolios (all versions)  

   

 

 

 

Table 157. Statistics of ERC portfolios (all versions)  

   

 

 

  

 

Table 158. Statistics of MDP portfolios (all versions)  

   

 

 

  

Let us now consider a monthly rebalancing of the weights. We consider the same estimators as 

before, and we take the bimonthly volatility forecast previously calculated (ie. 𝜎       ) as the 

forecast involved in       : 

        𝑖   𝜎            𝑖   𝜎         (117) 

All other versions remain unchanged. Graph 213 to Graph 218 and Table 159 show the performance 

of the resulting portfolios.  

GE FI NL AT FR BE IT SP IR PO GR

Empirical 0.3 0.1 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0

GAS 0.4 0.1 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0

0.4 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Forecast 0.3 0.1 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Empirical 26 15 16 16 8 5 3 7 1 2 1

GAS 31 14 25 20 12 2 1 2 0 0 0

37 29 30 15 4 1 0 0 0 0 0

Forecast 27 16 30 17 16 2 1 2 0 0 0

Empirical 30 14 14 15 9 5 3 7 1 2 1

GAS 33 13 21 19 9 2 0 2 0 0 0

35 22 24 14 4 1 0 0 0 0 0

Forecast 29 14 23 15 13 2 0 2 0 0 0

Risk contribution (%)

Average Weights

Contrib to total vol (%)

   

   

   

GE FI NL AT FR BE IT SP IR PO GR

Empirical 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0

GAS 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0

0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0

Forecast 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0

Empirical 2 9 8 10 12 11 11 11 10 10 6

GAS 2 8 8 10 12 11 10 10 10 11 6

2 8 8 9 11 10 10 11 10 11 10

Forecast 1 7 7 9 12 11 11 12 10 11 8

Empirical 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.2

GAS 9.0 9.0 9.1 9.0 9.1 9.1 9.0 9.2 9.0 9.1 9.3

8.9 8.9 8.9 8.9 8.9 9.0 9.0 9.1 9.3 9.5 9.6

Forecast 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.1 9.1 9.2 9.6

Risk contribution (%)

Average Weights

Contrib to total vol (%)

   

   

   

GE FI NL AT FR BE IT SP IR PO GR

Empirical 0.5 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0

GAS 0.5 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0

0.6 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.0 0.0 0.0

GHT forecast 0.5 0.0 0.0 0.1 0.2 0.0 0.0 0.2 0.0 0.0 0.0

Empirical 36 6 1 8 14 0 0 25 0 0 9

GAS 40 5 1 8 16 0 0 24 0 0 6

34 2 0 4 11 0 0 27 0 0 21

GHT forecast 29 2 1 5 15 0 0 34 0 0 14

GHT correl 41 6 1 7 12 0 0 23 0 0 10

GAS 41 4 1 7 13 0 0 24 0 0 10

41 2 0 5 10 0 0 26 0 0 17

GHT forecast 41 2 1 6 13 0 0 25 0 0 13

Contrib to total vol (%)

Risk contribution (%)

Average Weights
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Results are much different this time: for the three methodologies (GMV, ERC, MDP), the ‘forecast’ 

version (based on      ) distinctly outperforms other definitions of the portfolio. The ERC and MDP 

‘forecast’ portfolios even show a gain (of 4pp and 3.5pp) at the end of the period. The GMV version 

in contrast is much less volatile than the two others, and this tends to harm returns.  

In comparison to the ‘forecast’ portfolios, the empirical portfolio is still the worst methodology, 

while the GAS (involving 𝜎 ) and un-temporal (involving   ) versions show a relatively similar 

performance, and consistently underperform the ‘forecast’ version. 

Graph 213. GMV portfolio, monthly rebalancing  Graph 214. ERC portfolio, monthly rebalancing 

     

 

 

 
   

The protection offered by considering the forecast estimator          is particularly obvious now: 

in all cases, losses around end-2011 are more than 5pp smaller in ‘forecast’ portfolios compared to 

the worst versions. The recovery during the period of risk appetite is also much faster in ‘forecast’ 

portfolios, which means that the forecast risk measure helps achieve a more efficient switch in the 

asset allocation when risk aversion is abating.  

Graph 215. MDP portfolio, monthly rebalancing  Graph 216. Volatility contribution in the ‘GMV forecast’ 

portfolio 

     

 

 

 
   

Looking at the risk contribution, Graph 216 shows that the GMV ‘forecast’ portfolio is prompt to 

overweight core securities when risk aversion is mounting. This largely explains the remarkable 

resilience of this portfolio in Graph 213. This version however is very slow to re-adjust the risk 

exposure of the portfolio when risk appetite is back, and this explains the very modest performance 

between 2012 and end-2013. 

Graph 217 and Graph 218 shows the risk contribution in the ERC and MDP ‘forecast’ portfolios. In 

these two approaches, the exposure to peripheral countries does not noticeably shrink during the 
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crisis. These two portfolios however outperform their peers during the risk aversion period in Graph 

214 and Graph 215, so the proposed risk contribution offers interesting protection.  

Graph 217. Volatility contribution in the ‘ERC forecast’ 

portfolio 

 Graph 218. Volatility contribution in the ‘MDP forecast’ 

portfolio 

     

 

 

 
   

An interesting point in Table 159 is that the ERC and MDP ‘forecast’ portfolios display a very small 

turnover, and a much decent diversification ratio. This suggests that a proper implementation of 

these two portfolios could be less of an issue than when we assumed a daily rebalancing.  

Table 159. Diversification, Concentration and Turnover ratios   

   

 

 

 The monthly rebalancing of the portfolio underscores the relevance of considering the forecast 

value       instead of the present estimators    or   , for portfolio optimisation purposes. On that 

basis, we conclude that the forecasting capability of the GAS model is robust and could be used to 

enhance risk manage procedures. 
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GMV

Diversification 1.22 1.20 1.16 1.14

Concentration 0.40 0.42 0.29 0.54

Turnover 0.87 0.77 0.32 1.11

ERC

Diversification 1.41 1.41 1.41 1.39

Concentration 0.10 0.10 0.10 0.12

Turnover 0.15 0.13 0.05 0.27

MDP

Diversification 1.57 1.58 1.63 1.50

Concentration 0.28 0.28 0.31 0.32

Turnover 0.22 0.21 0.13 0.43
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A novel optimisation procedure based on mean reversion 

Aside from these recognised portfolio optimisation procedures, we now describe an in-house 

empirical procedure to calculate the weights of the portfolio. We still consider a long-only portfolio, 

with normalized weights ( ie.      and      ), and we seek to design a relevant and simple risk 

measure, ideally able to provide a sensible trade-off between protection and return.  

Let us denote this metric as      for a given country 𝑖 at time  . As a common practice, we consider 

mean-reversion as a sensible rationale to take decision on the weights. Mean reversion assumes 

that the greater the deviation of a random variable from its mean, the greater the probability that 

the next measures will converge towards the mean. We assume that      will mean-revert as time 

goes by. In this case, periods of very large deviations from the mean value will be perceived as a 

signal to overweight or underweight certain securities, on the basis that the position will take 

advantage of a convergence towards the mean value.  

In the previous chapter we defined two different formulations of the market reaction to a shock 𝑆 : 

 
𝑆  
            

                            

𝑆    
           𝑖   

 
          𝑖        

  respectively taken from both eq. (58) and eq. (64)    

Since 𝑆  
  and 𝑆    

  are supposed to describe the same entity, we can assume that both variables are 

mean reverting one against each other. If this assumption is true, the differential  𝑆    𝑆  
  𝑆    

  

must be stationary. And effectively, this is confirmed by unit-root tests. The mean reverting 

dimension is also visible in Graph 219 for Germany, France and Spain (as examples).  Since   𝒊   is 

mean reverting, we consider this variable as a starting point to design the risk measure.  

A meaningful caveat with mean reversion however, is that this assumption may not hold in 

periods of severe risk aversion because correlations are largely distorted in deteriorated market 

conditions. In Graph 219 for instance,  𝑆    is temporarily peaking in 2011-2012. In this 

configuration, the deviation from the mean goes much beyond the usual range, and this can lead to 

a misguiding signal in times of crisis.  

 Mean reverting behaviours in “normal” market conditions are usually broken in periods of crisis 

as risk aversion tends to stretch market valuations. Our risk-metric somehow has to reflect this 

change of regime, when risk aversion becomes a dominant factor.  

Graph 219.  𝑆    𝑆  
  𝑆    

 
 for selected countries 

 
Graph 220. 10Y Sovereign interest rate (%) 
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As a means to address this issue, we introduce 10-year sovereign interest rates in absolute terms 

as a relevant additional variable. Graph 220 in particular shows that sovereign interest rates were 

abnormally high during the period of intense risk aversion in Q4 2011/Q1 2012. This is an illustration 

of larger risk-premia and therefore increased risks of contagion by then.  

We already mentioned that contagion influences interest rates, sometimes heavily, and push them 

to higher levels.  This connection between sovereign interest rates and the risk of contagion can 

be used to gauge the underlying uncertainties in market sentiment. We therefore decide to adjust 

the differential  𝑆    by the corresponding 10Y sovereign interest rate      in order to capture the risk 

of any distortion in mean reversion when risk aversion is mounting.  𝑆    is thus re-defined as: 

 𝑆    
𝑆  
  𝑆    

 

    
 

  𝒊   is now much more contained during periods of financial distress. Graph 221 for instance 

shows the difference between the two definitions, with the adjusted (blue line) and the non-

adjusted (grey line) versions of  𝑆    for Ireland. Graph 222 shows the same series for Italy. In these 

two graphs, the adjusted version in blue is smaller during the sovereign crisis than during periods of 

risk appetite. From a mean reverting standpoint, the smaller variations in   𝒊   in 2011-2012 (ie. 

under tough risk aversion) reflect very little market opportunities during this period.  This is 

coherent with the fact that portfolio managers have limited room for rebalancing portfolios when 

risk aversion is fierce. Unit root tests also indicate that the new version of  𝑆    is still stationary.  

We consider this ‘interest rate’-adjusted version of   𝒊   as a relevant risk-indicator. We now focus 

on designing an optimisation procedure that will help compute the weights out of  𝑆   .  

Graph 221. The interest rate adjustment leads to more 

contained       indicators during periods of financial 

distress (Ireland)  

 Graph 222. The interest rate adjustment leads to more 

contained       indicators during periods of financial 

distress (Spain) 

     

 

 

 
   

Under the assumption of mean-reversion, a given variable delivers meaningful information only if it 

sits sufficiently far from the mean. In this case, the expected reversion towards the mean is seen as 

a market opportunity.  

We already mentioned that   𝒊  
  is more reactive than   𝒊

 . And as a result,   𝒊  
  can be seen as a 

reference for detecting contagion. A very high and positive coefficient  𝑆    for instance, indicates 

that 𝑆  
  𝑆    

 . In this case, the intrinsic measure 𝑆  
  is much higher than it should be - compared to 

the multivariate measure 𝑆    
  (which takes the whole spread complex into account) and in light of 
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the underlying idiosyncratic risks illustrated by     . Invoking mean reversion when  𝑆    is very large 

essentially means that 𝑆  
  has risen too much compared to 𝑆    

 . Based on eq. (58), this implies that 

         and consequently      are too large as well, and should correct downwards in the future. The 

downward correction in      means that the sovereign bond in country 𝑖 is seen as outperforming the 

interest rate swap. In this case, you can make a profit if you open a long position on the asset swap 

spread in country 𝑖 (ie. you buy the bond and you pay the IRS). But this makes sense only if  𝑆    is 

large enough, ie. only if   𝒊   has exceeded a certain threshold that we denote     𝒊. Below this 

threshold, the mean reverting rationale is null and void. 

By analogy, a very negative  𝑆    means that it could be profitable to short the asset swap spread. 

However, we consider a long only portfolio, so this recommendation is not applicable. We restrain 

therefore our analysis to  𝑆     .  

In order to quantify any deviation in  𝑆    from its mean, we consider the z-score estimator as 

defined in Abdi (2010): 

        
 𝑆       𝑆    

𝜎  𝑆    
 

(118) 

Where    𝑆     and 𝜎  𝑆     are the empirical mean and standard deviation of  𝑆   . Because we 

seek to observe the out-of-sample performance of the portfolio we calculate    𝑆     and 𝜎  𝑆     

over the sub-period from January 2008 to December 2010.  

The z-score     is an illustration of the deviation of  𝑆    against its mean value    𝑆𝑖    as a share of 

its standard deviation 𝜎  𝑆    . This will prove a convenient estimator to define a threshold 𝑆    .    

Before calculating 𝑆     we would like to add a differentiation criterion that will help discriminate 

countries in the sample according to their credit quality. We distinguish three main categories: core, 

soft-core (or semi-core) and non-core countries (or peripheral) countries. This qualitative 

categorisation in Table 160 is based on the general understanding of each country by market 

participants. We note in particular that peripheral countries are more numerous in the sample (5 

peripheral countries versus 3 soft-core and 3 core countries).  

We believe it is worth discriminating countries in order to avoid an inconvenient concentration of 

the weights on the more volatile countries. As a result we give each country a score    that will be 

used as a “guide” to ensure a more conservative selection of the assets. We define the score    on 

the basis of two arbitrary conditions: 

- First, so that the score in soft-core countries be twice as big as for non-core countries; and so 

that the score for core countries be once and half as big as for soft-core countries, ie: 

                                                

- Secondly, the scores is normalised:          

In the end these are sufficient to get a unique score for each group, as displayed in Table 160. In this 

configuration, we get a total score of     for core countries, 30% for soft-core countries, and     

for peripheral countries.  
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Table 160. Breakdown between core/soft-core and peripheral countries and corresponding scores     

   

 

 

The role of the score    is comparable to the optimised criterion in the GMV, ERC and MDP 

frameworks, namely the portfolio volatility (GMV), the univariate risk contribution (ERC), and the 

portfolio diversification criterion (MDP).  

The proposed definition of the score    is an arbitrary choice, other definitions could provide 

interesting results as well. A more sophisticated definition e.g. involving the average volatility could 

be an alternative too. In the present analysis however, we want the score to have little influence so 

that we can focus on the role of  𝑆   . So we prefer a simple definition of   .  

As we mention before, we have to estimate a threshold 𝑆     which makes the mean reversion 

reasoning applicable when  𝑆    𝑆    . By definition,      are standardized time series, ie. with 

normalised variance and a centred mean. Higher moments tend to differ from one country to 

another, and as a result the absolute z-scores        exhibit different mean values.  

A key consideration is that we seek to build a conservative portfolio that is supposed to enhance 

prudence in investments during periods of risk aversion. Since German ASW is the safest security in 

the sample, the corresponding z-scores       exhibit small tails. And since            is an illustration 

of the average absolute magnitude of      , We assume that       is mean-reverting when  

                   . But this only makes sense for Germany, which is particularly stable and 

resilient to financial distress.  

The score    is supposed to restrain the proportion of soft-core and peripheral securities within the 

portfolio. In order to make the selection for mean reverting strategies less frequent in soft-and non-

core countries, we need to get a more stringent threshold 𝑆     on these countries. In particular, we 

consider the ratio 
   

  
 as a ‘penalty’ coefficient, that we apply to           .   

On that basis, we consider that mean reversion on country 𝑖 makes sense only if: 

                   
   

 𝑖
 

This tends to make the asset selection more severe. Then considering the point where the equality 

holds, we obtain the following equation: 

           
   
  

 
𝑆   𝑖     𝑆𝑖   

𝜎  𝑆𝑖   
 

This gives the value of the threshold 𝑆    : 

𝑆               
   

 𝑖
𝜎  𝑆        𝑆     (119) 

Table 161 shows the resulting 𝑆    , along with the corresponding percentile taken on the empirical 

distribution of  𝑆    from the upper tail. This percentile indicates which portion of  𝑆    is above the 

threshold 𝑆     and thus will lead to a trade in the portfolio. Table 161 indicates that this portion 

GE FI NL AT FR BE IT SP IR PT GR

Category Core Core Core Soft-core Soft-core Soft-core Non-core Non-core Non-core Non-core Non-core

0.050.10 0.05 0.05 0.05 0.050.15 0.15 0.15 0.10 0.10
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consistently declines for countries of a lesser credit quality: around        of the distribution for 

core countries, then       for soft-core credits, and finally just      in peripheral markets.  

 The reduced portion in peripheral markets illustrates the more severe selection procedure for 

volatile countries.  

Table 161. thresholds above which mean reverting is seen as applicable, and corresponding percentiles  

   

 

 

  

We have now defined a selection procedure for all countries: a given security is selected in the 

portfolio if  𝑆    is larger than 𝑆    .  

We now have to determine the weight attached to each asset. A large z-score means that there is a 

high probability that mean reversion will effectively materializes. It looks therefore coherent to 

consider z-scores themselves as a an estimate of the weights, that we then normalise so that 

     . 

In the end we formalise the weight estimation procedure as per the following equations: 

 

             𝑖   

     
    

     
  
   

      
  (120) 

Where  
             𝑆𝑖   𝑆   𝑖
                          

              and because we consider    different securities. 

Unlike the GMV, ERC and MDP approaches, it is important to note that there is no constraint in 

terms of portfolio volatility, risk contribution or diversification. Instead of seeking to reduce one of 

these parameters, the risk metric has been designed to detect market discrepancies and to take 

advantage of a possible reversion to the mean. 

We denote the resulting portfolio as a ‘z-score portfolio’, and we compare it to the GMV    version 

that delivered an interesting performance (Graph 209). As Graph 223 shows, the z-score portfolio 

largely outperforms the GMV    version in terms of return, with a stunning     gain over the full 

period.  

Graph 223. The z-score portfolio outperforms other optimization procedure (daily rebalancing)  
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Looking at the dynamics, we note all the same that the z-score portfolio is very similar to the LBO 

and the GMV    versions until end-2010, ie. during the period we consider to calculate    𝑆    , 

𝜎  𝑆    , and           . Then there is a notable differentiation, with a sharp rebound emerging in 

January 2011, which is albeit partly offset by some losses in H2 when contagion is intense. By end-

2011, the z-score portfolio is at an equivalent level to the risk-free LBO portfolio, suggesting that our 

asset selection offers sensible protection during the risk aversion period. The portfolio value then 

consistently rises from 2012 to 2015 and shows an outstanding performance during the whole risk 

appetite period.  

Looking at the weights within the portfolio, Graph 224 indicates that core securities are in a big 

portion, around     on average, while there is just     invested in soft-core assets and     in 

peripherals.  

The risk contribution however is much different in Graph 225. First we note that core countries 

account for a smaller portion of the portfolio variance than the weights suggest. There is also a clear 

preference for soft-core securities between 2010 and 2012, while the exposure to non-core assets is 

declining meanwhile. This partly explains some robustness compared to other methodologies 

during this period. Finally, the portfolio slides towards a greater exposure to peripheral countries 

from 2013 onwards. Thus largely boosted the performance of the portfolio during these years, 

marked by risk appetite and tighter asset swap spreads in general.  

Graph 226, Graph 227, Graph 228 give more clarity on the contribution of each country separately. 

Table 162 is a summary. 

Graph 224. Weights in the z-score portfolio  Graph 225. Contribution to portfolio volatility, z-score 

portfolio 

     

 

 

 
   

 
Graph 226. Contribution from core 

countries to the portfolio volatility, 

expressed as a share of the total 

contribution by these three countries  

 Graph 227. Contribution from soft-core 

countries to the portfolio volatility, 

expressed as a share of the total 

contribution by these three countries 

 Graph 228. Contribution from non-core 

countries to the portfolio volatility, 

expressed as a share of the total 

contribution by these five countries 
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Table 162. Summary of the z-score portfolio  

   

 

 

  

This time, the greater ability to adjust the exposure to core/soft-core/non-core bonds when 

market conditions turn sharply risk-averse offers meaningful protection. This also helps enhance 

returns in periods of risk-appetite by overweighting the higher yielding securities. In the end our 

assumption of mean reversion in  𝑆    proves coherent and efficient to detect market 

opportunities.  

Like in the preceding analysis, we also consider a monthly rebalancing of the weights. We follow the 

same methodology and some empirical tests indicate that the following formulation of the threshold 

𝑆     offers interesting results:  

𝑆          
   

 𝑖
𝜎          𝑆     

(121) 

Compared to the initial formulation in eq. (119), we replaced            by      , which looks more 

adequate for monthly rebalancing.   

Graph 229 shows the resulting portfolio. This time again, the z-score portfolio outperforms the GHT 

and MDP forecast versions that we previously identified as interesting. Graph 230 shows the 

contribution of each asset category to the portfolio variance. First we note that only a few trades 

happened between 2008 and 2011, which means that there was no particular mean reverting 

opportunities detected during this period. Then from mid-2011 onwards, core countries have a 

dominating influence in the portfolio. Non-core securities in comparison are largely involved in 2012, 

but their contribution is less important during the following years. Soft-core countries in the end are 

selectively involved.  

Graph 229. Performance of the z-score portfolio, monthly 

rebalancing 

 Graph 230. Contribution to the portfolio volatility 
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Conclusion 

In conclusion, we showed in this Chapter that our statistical approach is able to deliver insightful 

conclusions on how risk-propagation is supposed to operate, from both univarite and multivariate 

perspectives. 

First, we have rationalised the dynamics of the deterioration, in terms of credit quality, that arises 

from the emergence of shocks. Our approach involves two different definitions of the shock: one, 

temporal, is based on the market-implied probability of default; this formulation involves the GAS 

volatility estimator obtained in Chapter 1. A second definition investigates the relevance of time-

invariant stress tests and finally delivers an estimator of the expected market reaction from a more 

general point of view than the temporal approach. We considered a series of many shocks with 

gradual intensity. The analysis offers a high-degree of granularity in the results, and this proved 

particularly helpful to extrapolate empirical rules on the general behaviour of 1) the intrinsic 

volatility, 2) the market response to shocks, 3) the expected frailty ensuing from the shock.  

On a cross country basis, our analysis also shows that there exists a linear trajectory amongst the 

different sovereigns (Graph 163), that relates the maximum market reaction to what we consider as 

a measure of the frailty induced by financial distress. This linear behaviour is insightful information, 

which was unexpected.  

Then, in a second part, we focused on multivariate dependencies and how these are affected by 

shocks. Our analysis shows that the general acceleration of the joint market reaction to shocks 

admits a logarithmic behaviour, when expressed as a function of the shock intensity. Results also 

suggest that a purely univariate exploration of sovereign risk tends to underestimate the market 

reaction to shocks, hence there is a visible benefit in considering a multivariate framework. 

Finally, we explored an application of the model in the context of portfolio optimisation. First we 

explored the relevance of incorporating our own volatility or market reaction to shocks into popular 

portfolio optimisation procedures (GMV, ERC, MDP). Results indicate that the modified version, 

involving our in-house risk-estimators, consistently outperform the more standard formulations 

found in the literature. Involving our measure of intrinsic volatility    or the volatility forecast 𝜎     in 

particular, greatly enhance the robustness of returns. Portfolios based on 𝜎     also show an 

interesting performance when rebalancing happens on a monthly basis. This reaffirms the 

forecasting capability of the GAS model, which is a valuable dimension of the methodology.  

In the last part of the chapter, we designed an in-house methodology for optimal portfolio 

rebalancing, based on mean reversion. This approach offers outstanding results, overall 

demonstrating that the allocation strategy is able to fit many different market environments. In 

particular, a back-test over the full period shows that reallocation out of risk-seeking strategies and 

into more prudent positioning takes place as soon as there are palpable signs of mounting risk 

aversion. This is a sign of robustness. While mean-reverting approaches offer simplicity, they usually 

prove more hazardous when financial markets are very directional. We address this issue via sensible 

adjustments; overall results suggest that mean reversion can effectively be used for risk 

management purposes.    
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Chapter III.  

Price discovery in bond options 
 

Résumé du Chapitre III 
 

Le Chapitre III est dédié au pricing de produits dérivés de taux. Nous considérons maintenant que 

l’aversion au risque cause l’émergence de discontinuités dans les prix de marché, que nous simulons 

par le biais de processus stochastiques à sauts. Notre modèle se concentre sur les processus de 

Hawkes qui ont l’avantage de capturer la présence d’auto-excitation dans la volatilité. Le manque de 

données sur les volatilités implicites traitées sur le marché rend la calibration du modèle 

particulièrement difficile.  

 

Dans un premier temps nous considérons le modèle proposé par Ait-Sahalia (2010). L’auteur cherche 

à distinguer la dynamique discontinue des prix de marchés, visible en période d’aversion au risque, 

de la dynamique purement continue, qui domine en période de sentiment de marché plus stable. Au 

final, le modèle proposé implique un nombre considérable d’inconnues à calibrer. Nous notons aussi 

un risque de redondance entre les coefficients continus et discontinus qui rend la calibration 

relativement instable. Les calibrations que nous avons menées n’ont pas donné de résultats 

tangibles et nous avons été contraints de considérer une approche alternative.  

 

Le second modèle que nous explorons se base sur l’approche de Hainaut (2016). Notre formulation 

du problème est relativement similaire à l’approche initiale, cependant nos hypothèses sont très 

différentes car nous supposons que les sauts ne sont pas observables et font donc parties des 

données latentes du problème. Ceci implique des changements majeurs quant à la calibration du 

modèle et nous développons une procédure de calibration qui se distingue des méthodologies 

habituellement trouvées dans la littérature. Les résultats de volatilité implicite sont cohérents avec la 

volatilité réalisée, et suggèrent que les coefficients de prime de risque ont été estimés avec succès. 
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Introduction 

Chapter 1 and Chapter 2 stress that the transformation induced by risk aversion is fairly described by 

heavy-tailed probability distribution functions. While the heavy-tailed component is an illustration of 

the non-linear aspect of the market reaction when flight-to-quality is intense, we also note that the 

probabilistic nature of the framework is equivalent to assuming a continuous transition in market 

prices. This is visible for instance when we move from the centre-region of the distribution and 

towards the tails, in a context of fierce risk aversion. To some extent, this assumption on the 

continuous nature of any risk-off-induced market reaction, may be seen as narrowing the scope of 

the analysis. We thus revisit it in the third chapter of this dissertation.  

As an alternative approach to sovereign risk exploration, we now consider that risk aversion favours 

the emergence of noticeable discontinuities in market prices, that we model as stochastic jumps. 

We also focus on the observed hysteresis in the dynamics of the price action: empirical observations 

suggest that periods of recurrent jumps are likely to be followed by periods of even more frequent 

and bigger jumps (in terms of their amplitude). This supports the existence of a self-feeding 

component, that tends to affect the jump dynamics in a meaningful way during periods of intense 

risk aversion. In this context, we consider Hawkes processes as a relevant descriptor of the jump 

dynamics. This category of models is based on stochastic jumps, and introduces self-excited jump 

intensities. Self-excitation is a key component that we explore in depth. First we replicate the model 

of Ait-Sahalia (2010), but results are disappointing and the calibration is not successful. As a 

substitute, we consider a modified version of the model explored in Hainaut (2016). We also 

investigate a multivariate formulation of the model, which helps identify the contagion effect within 

a basket of different securities.  

Stochastic models are popular for pricing financial derivatives. Their diffusive capability, in particular, 

makes the exploration of synthetic scenarios on the future trajectory of market prices especially 

convenient. We explore this feature as well, and we draw guidelines on the expected implied 

volatility, for sovereign bond options.  

Bond options is (still) a very modest market in terms of size and this makes the case for a 

pronounced lack of information on traded products. In particular, we were not given the chance to 

involve a reliable set of quoted implied volatilities. This naturally added to the general complexity of 

the model, encouraging us to design a novel methodology for the calibration. In the end, our 

methodology differentiates itself in many ways from more traditional approaches commonly seen 

in the literature.  
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Literature review and context 

In the previous chapters, we showed that fat-tailed probability distribution functions are a relevant 

choice to explore the dynamics of the volatility arising from risk-averse market conditions. The  

heavy-tailed component looks especially appropriate to model the acceleration in price variations 

when flight to quality is fierce. And aside from the tails, the general shape of Generalized Hyperbolic 

distributions also helped identify how the switch from moderate volatility into a more extreme 

regime of widespread price deteriorations operates. The continuous dimension of probability 

distribution functions has been a meaningful feature as well. First this made the calculation of  

VaR-based stress tests relatively straightforward. Plus, the continuous approach allowed us to 

explore a series of numerous stress scenarios, with varying intensity. The assumption of a continuous 

transition in price variations when moving into risk averse market conditions also offered some 

computational tractability, and we largely took advantage of it in Chapter 2. While results look 

consistent with the actual price dynamics, we understand that the deployed methodology has also 

built-in limitations. First, we note that every financial crisis results from a unique set of different 

circumstances. Since each episode has its own particularities, risk aversion may be impacted by the 

very specific nature of each crisis. As a result, the price action may be impacted in a peculiar manner 

every time, depending on the nature of growing concerns in the background. For instance, liquidity-

based or credit crunch-based crises will probably hit main asset classes differently during the early 

stages of the market rout. Then, as time goes by, further escalation in risk aversion may favour more 

convergence in terms of how market prices is impacted in both cases – at least episodes of 

generalised market debacle in the past have proven somewhat similar beyond a certain degree of 

risk aversion. Given that the dynamics of risk aversion may vary from one crisis to another 

(depending on nature of the underlying shocks), the relevance of ‘summarising’ the price action 

during financial crises into just one and unique probability distribution function may be questionable. 

While any model has to deal with this issue of robustness, our assumption that risk propagation 

occurs in a continuous manner, as we did in Chapter 1, may prove particularly restrictive in this 

respect. Stochastic models to some extent, may offer greater flexibility on this specific issue. Another 

drawback relates to the fact that shocks in financial markets, at least in developed markets, are 

(thankfully) infrequent. As a result, the portion of data supposed to describe a proper financial crisis 

in the sample, is relatively small compared to the data illustrating the normal course of financial 

markets. This scarcity of information could negatively weigh on the robustness of tail-related 

observations and on the ensuing conclusions. Finally, a third limitation comes from the continuous 

dimension itself, which looks empirically questionable as to explore periods marked by major 

discontinuities in the market volatility.  

As an alternative approach to sovereign risk exploration, we now consider that risk aversion is 

prompt to generate noticeable discontinuities in market valuations. These discontinuities, 

admittedly, stand in contrast with the continuous dynamics prevailing when volatility is more 

contained. Since the seminal paper of Merton (1976), stochastic models with jumps have been 

gaining importance, especially for option pricing and risk management purposes. A basic assumption 

is that jumps are independent one from each other. This occasioned the emergence of many models 

involving compounded Poisson jumps (see Embrechts et al. (1997), Katz (2002), Scalas (2006), 

Basawa and Brockwell (1982), Buchmann (2009), Chen et al. (2010), Comte and Genon-Catalot (2009, 

2010, 2011), Figueroa-Lopez and Houdré (2006), Figueroa-Lopez (2009), Gugushvili (2009, 2012), 
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Jongbloed et al. (2005), Kim (1999), Neumann and Reiss (2009), Ueltzhofer and Kluppelberg (2011), 

Zhao and Wu (2009)). These models are usually based on Levy processes, where increments are 

independent and stationary. More recently, the exploration of high-frequency data has encouraged 

broader investigations on the dynamics of jumps, with a focus on justifying the emergence of such 

market discontinuities (see Barndorff-Nielsen and Shephard (2006), Ait-Sahalia and Jacod (2009a, 

2009b, 2011, 2012), Ait-Sahalia, Jacod, and Li (2012), Jing, Kong, Liu, and Mykland (2012), Bollerslev 

and Todorov (2011)). For this purpose, the assumption of pure temporal independence between 

jumps looked less relevant, and had to be revised. This was comforted by the basic empirical 

observation that the presence of jumps in financial markets is usually coincident with typical 

situations of growing risk aversion. As it was observed that a persistence of this momentum (in the 

background) tends to encourage more frequent and bigger jumps as time goes by, there exists a 

logical connection between the volatility itself, and the jump intensity. While investigating the 

impact of exogenous factors on the jump dynamics is a sound way to get a deeper understanding of 

shocks (like in Goutte (2012)), other studies also explored an adjustment of the intrinsic definition of 

the shock dynamics. Christoffersen, Jacobs, and Ornthanalai (2012) for instance propose a discrete 

time model, whereby the jump intensity is a function of itself. Another interesting approach in Ait-

Sahalia, Cacho-Diaz, and Laeven (2010) seeks to reconcile the observed persistence of the volatility 

during financial crisis and the notable hysteresis in jumps during these periods. In many cases for 

instance, it was shown that durable risk aversion tends to amplify weakness in market prices, hence 

making jumps more frequent and bigger in terms of amplitude. As a means to capture this feature, 

Ait-Sahalia, Cacho-Diaz, and Laeven (2010) consider that there exists a self-exciting dimension 

attached to jumps, which they incorporate into a specific redenomination of the jump intensity, 

involving Hawkes processes. A valuable feature of Hawkes processes is that the occurrence of a jump 

increases temporarily the probability of subsequent jumps in the future. As shown in Errais et al. 

(2010), this approach is a notable innovation when it comes to illustrating how risk aversion nurtures 

the deterioration of credit quality on a prolonged period of flight to quality. Ait-Sahalia, Laeven, 

Plizzon (2014) also offers an interesting exploration of Hawkes processes: the authors show that 

Hawkes processes are sufficiently versatile to model the dynamics of CDS spreads during financial 

crisis in general, with a focus on the European sovereign crisis. This approach can be extended to 

more sophisticated frameworks. In the case of a multivariate analysis for instance, Hawkes processes 

make possible the existence of some cross-excitation: a jump on a given security increases not only 

the probability of future jumps on this specific market, but on other surrounding markets as well. 

This can illustrate the propagation of financial distress via contagion. We seek to identify and 

quantify this  phenomenon in the following analysis. Aside from credit risk, Hawkes processes have 

also found much wider applications like the modelling of limit order books in high frequency trading 

(see e.g. Alfonsi and Blanc (2016), and Abergel and Jedidi (2015)), or the design of rules for optimal 

decision making on the duration of trades (Bauwens and Hautsch (2009)). Buy and sell orders can 

also be seen as admitting a Hawkes dynamics (Bacry et al. (2013)). While Hawkes processes offer 

some value when it comes to pricing financial derivatives, the literature dedicated to stochastic 

jumps in the context of option pricing, is still relatively scarce. One of the first approaches was the 

Merton Jump model (Burger, Kliaras (2013)). The main incentive for designing a variation to the 

Black-Scholes formulation was to capture the negative skewness and excess kurtosis of the log stock 

price density by the addition of a compound Poisson jump process. Results suggest that option prices 

are more accurately estimated under this framework than the usual Black-Scholes model. As Burger, 

Kliaras (2013) indicates, the Kou model is another interesting variation, as it does not assume a 
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normal distribution of the stock returns. This approach is based on a double exponential jump 

diffusion model, which offers a higher peak and two heavier tails than a Gaussian distribution. Other 

approaches like in Fulop, Li, Yu (2014), Todorov (2009) and Chen and Poon (2013) also show the 

relevance of involving Hawkes processes as a means to model volatility risk premiums.  

For Fixed Income derivatives, term structure models, like in Duffie and Kan (1996), Dai and Singleton 

(2000), have gained popularity for pricing swaptions and coupon-bond options. The affine approach 

in particular accommodates mean-reverting, correlated factors, and offers the possibility to consider 

stochastic volatility. Plus the estimation procedure is made straightforward by the fact that the 

conditional characteristic function of an affine process is known in closed-form (Duffie, Pan, and 

Singleton (2000),Bakshi and Madan (2000)). Then the price of a zero-coupon bond option is easily 

computed using Fourier inversion (Chen and Scott (1995), Chen (1996), Chacko and Das (1998), 

Nunes, Clewlow, and Hodges (1999), Duffie, Pan, and Singleton (2000), and Bakshi and Madan 

(2000)). In this context, there is little surprise that the affine class of term structure models (as 

characterized by Duffie and Kan (1996)) has effectively become the dominant class of models, and so 

mostly because of its analytical tractability: by restricting the spot rate, the risk neutral drift, and the 

instantaneous covariance matrix of the state vector to be linear in the state vector, bond prices 

inherit a simple exponential affine structure. As a result, coupon bond options or swaptions can be 

priced accurately and efficiently, and analytical solutions exist for the optimal bond portfolio choice 

problem. These models became the focus of a series of papers including Carverhill (1994), Ritchken 

and Sankarasubramanian (1995), Bhar and Chiarella (1997), Inui and Kijima(1998) and Jong and 

Santa-Clara (1999). Chiarella and Kwon (2001b) brings to light an interesting generalisation of the 

affine approach, in which the components of the forward rate volatility process satisfy ordinary 

differential equations in the maturity variable. As a result, and this is the main innovation, the 

forward rate curve can be expressed as an affine function of the state variables while conversely 

these state variables can be expressed as a function of each other. The introduced state variables 

however, do not have clear links to market observed quantities, and this can be seen as a limitation. 

The closed-form solution provided by the class of affine models has been a major reason for its 

success (see e.g. Duffie, Pan, and Singleton (2000)). This category of models has also been exploited 

to develop efficient approximation methods for pricing swaptions (Collin-Dufresne and Goldstein 

(2002b), Singleton and Umantsev (2002)), and closed-form moment conditions for empirical analysis 

(Singleton (2000), Pan (2002)). As such, it has generated much attention both theoretically and 

empirically.  

Back to our concern of exploring market discontinuities, we note that Cont, Tankov, Voltchkova 

(2007) investigate the implications of adding jumps onto an affine pricing framework. They stress in 

particular, that discontinuities in   tend to create some market incompleteness. This leads to some 

hedging error when considering the Black-Scholes model, an error that the authors seek to estimate. 

Tankov (2010) and Tankov, Kohatsu-Higa (2010) give extensive details on how to improve hedging 

procedures, in light of this market incompleteness. This question of maximising the effectiveness of 

the hedging procedure when dealing with jump models is also investigated in Cont, Tankov, 

Voltchkova (2007). In this paper, the authors explore an optimal hedging strategy involving the 

underlying asset as well as a set of different options. This offers greater tractability than more 

common quadratic hedges (see e.g. Arai (2005)). Considering jump models applied to Fixed Income 

derivatives specifically, we see two main approaches. In equilibrium-based models on one side, the 
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dynamics of the term structure is deduced from short term interest rates, via a set of factors (jointly 

Markov). The process for these factors under the real measure   is supposed to be given. Then one 

has to specify a market price of risk for each of these factors, as to move under the so-called risk-

neutral measure  , under which all discounted-asset-price processes are martingales (Harrison and 

Kreps (1979)). The market price of risk may either be arbitrarily defined (Vasicek (1977)) or derived 

from fundamental observations and appropriate restrictions (Cox, Ingersoll and Ross (1985)). Aside 

from equilibrium-based models, a second part of literature seeks to avoid specifying the complexity 

of an evolving term structure. This approach, initiated by Ho and Lee (1986) and generalized by 

Heath Jarrow Morton (1992) (HJM), takes the initial term structure as given and, using the no-

arbitrage condition, derives some restrictions on the drift term of the process of the forward rates, 

under the risk-neutral probability measure  . While this approach offers some advantages compared 

to equilibrium-based models, HJM models also face notable limitations. First and perhaps the most 

important, HJM models are non-Markovian in general, which means that consequently the theory of 

PDEs no longer apply. Secondly, the HJM framework introduces some path dependency to pricing 

problems, and this tends to increase computational times significantly. Another limitation is that 

there are generally no simple methods for pricing commonly-traded derivatives such as caps/floors 

and swaptions. Finally, if we model forward rates as log-normal processes then the HJM model may 

become instable (Sandmann, Sondermann (1997)). This last theoretical problem can be addressed by 

describing LIBOR and swap rates as log-normal rather than instantaneous forward rates.  

In this report, we add to the existing literature in different ways. First we explore the model of Ait-

Sahalia, Cacho-Diaz, and Laeven (2010). The model relies on a sophisticated framework that seeks to 

differentiate the continuous part of market prices from the discontinuous dimension induced by 

jumps. This necessarily leads to a fairly high sophistication of the model, with many unknowns 

involved. We show that the calibration, under these conditions, is very instable. Even when adding 

additional constraints, the model seems to involve too many latent variables. In our view, a proper 

calibration of the model is extremely difficult to achieve. As we explore two different versions of this 

model, we also show that the computational burden is even higher for models involving stochastic 

volatility (as a means to capture the continuous dynamics of prices). Results suggest that the 

combination of stochastic volatility and a Hawkes process is a bit irrelevant as it tends to induce 

some unnecessary redundancy within the variables. In this set-up in particular, it is not clear whether 

jumps come from the Hawkes intensity itself, or from the presumed stochastic nature of volatility. As 

an alternative to capture the continuous dynamics, we show that models relying on constant 

volatility (instead of stochastic volatility) are more efficiently calibrated, although it is still challenging 

to find a global optimum for every unknown variable. In a second part of this report, we consider the 

approach described in Hainaut (2016). This model can be seen as a simplified version of Ait-Sahalia, 

Cacho-Diaz, and Laeven (2010). The proposed framework this time focuses exclusively on jumps, 

with no particular reference to the continuous part of the market dynamics. While the author 

considers that every market realisation is a jump, we do not make this assumption. We agree that a 

series of jumps can logically occur during any trading session. But we prefer assuming that they are 

not observable (in our own sample at least), given that we only get market-close prices, with no 

particular insight on the daily intraday volatility. One could possibly identify jumps via empirical 

methods by involving high-frequency intraday data; but this was not possible for us. This difference 

with the approach provided in Hainaut (2016) led to sizeable modifications in the calibration 

procedure, that we highlight in the following sections.  
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Separating the (continuous) wheat from the (jumpy) chaff 

Stochastic jumps have become a popular approach in the recent literature to describe the behaviour 

of shocks in financial markets. The non-continuous dimension of jumps makes them especially 

relevant to illustrate erratic variations observed in market prices during periods of distressed market 

conditions.  

In the last chapters, shocks and financial crises were understood as ‘tail-events’. As a result, we 

explored the tail regions of appropriately chosen/calibrated distributions, and this helped draw 

conclusions on the dynamics of financial markets under heavy risk aversion. In this chapter now, we 

consider that risk aversion favours more frequent and larger jumps than in more balanced market 

conditions. Hawkes processes offer a versatile formulation that enables capturing this phenomenon, 

via the introduction of mutually-excited jump intensities. This category of stochastic processes was 

introduced by the foundational work of Hawkes (1971), Hawkes and Oakes (1974), and Oakes (1975).  

The self-exciting loop within Hawkes processes, has proven to be particularly helpful to illustrate the 

self-feeding dimension of financial crises. In practice, this phenomenon is visible in the fact that 

shocks are increasingly more frequent, and bigger, when financial distress is mounting. Ait-Sahalia, 

Cacho-Diaz, and Laeven (2010) has made an extensive exploration of Hawkes processes in the 

context of modelling financial contagion. In this approach, the asset price is modelled as the 

combination of a diffusion part (𝜎  ) and a jump component (   ).  

 

Hawkes processes are largely inspired from the more commonly used Poisson processes. Both are 

defined by the intensity process of the jump, that we denote     . This describes the   -conditional 

mean jump rate per unit of time for a given security 𝑖, ie. the temporal frequency of shocks. We also 

denote      the point-process that counts the shocks from the beginning of the simulation, and we 

assume that there are   measures available (      ) in the sample, referring to   different 

countries. In the end we obtain the following dynamics: 

 

                                

                                      

                                              

  
(122) 

Ait-Sahalia, Cacho-Diaz, and Laeven (2010) define the intensity      as a Markov process: 

                         

 

  

 

   

 
(123) 

As a result,       is a Markov process too, and the adjusted process             
 

  
 is a local 

martingale.  

The intensity of the shock is a positive dimension by nature. As a result, Ait-Sahalia, Cacho-Diaz, and 

Laeven (2010) assumes that the constant        for all 𝑖          and the function           

for all     and for all 𝑖         .   

In the end, eq. (123) can be re-written as:   

                        
 

  

 

   

                  
  

 

   

 

   

 
(124) 
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Where    denotes the     vector with components      and        
 

 
 the     matrix 

where    is the matrix with elements        . Eq. (124) also comes from the fact                 

Eq. (124) can also be expressed in the form of a vector:         . Assuming that all elements 

of   are positive and finite, we can deduce that            , where I is the identity matrix of 

the corresponding dimension.  

Mutually Exciting Jump Diffusion 

We consider a dataset of 10Y sovereign asset swap spreads (this is the same sample as in Chapter 2). 

As per Ait-Sahalia, Cacho-Diaz, and Laeven (2010), we also assume that daily price variations admit 

the following semi-martingale dynamics: 

            𝜎                            𝑖          (125) 

This formulation consists of a drift term     , a volatility term 𝜎      , and mutually exciting jumps 

         .  

                
  is an   dimensional vector of standard Brownian motions with constant 

correlation coefficients     , 𝑖            . Aside from the temporal intensity of the shock      and 

the corresponding criterion      , we think that it is also important to model the amplitude of the 

jump as an independent variable. We therefore define      as the jump size, which we suppose are 

independently distributed, both serially and on a cross-country basis. We also assume that the 

amplitude      is distributed according to the probability distribution function    . We denote the 

corresponding cumulative distribution function as    .     is a key feature of the model as it dictates 

the behaviour of the jump amplitude.  

Finally,                     is the vector of Hawkes processes. As indicated in eq. (125), the 

quantities    and 𝜎  are constant parameters. The different vectors  ,   and   are supposed to be 

mutually independent. 

We also want to explore the potential benefit of considering volatility as a stochastic variable. We 

consider therefore a second version of the model, which is also investigated in Ait-Sahalia, Cacho-

Diaz, and Laeven (2010): 

                      
            (126) 

Where the instantaneous variance      admits the dynamics of Heston (1993): 

                                 
  (127) 

  ,   ,    are constant parameters, and      illustrates the stochastic volatility.  

     follows the square root process of Feller (1951) and is necessarily a positive (and non-zero) 

coefficient. The lower bound of zero cannot be achieved as long as Feller’s condition is satisfied: 

        
 . In this approach, the volatility is no longer observable.  

This second model also incorporates a correlation coefficient between individual Brownian motions 

    
  and     

 , which is denoted   
  . This variable could reflect a change in correlation regimes, e.g. 

when financial distress is on the rise.  

  



225 
 

Mean Reversion-based Jump Intensities 

The parameterization of the intensity processes      has meaningful implications on how contagion is 

effectively captured. In this respect, Ait-Sahalia, Cacho-Diaz, and Laeven (2010) assumes that the 

intensity is decaying ‘exponentially’ as time goes by: 

              
                    𝑖         (128) 

with     ,        for all 𝑖            . 

This definition tends to fit empirical observations that panic in financial markets usually causes the 

emergence of knee-jerk market reactions. Then, as time goes by, the volatility is seen as converging 

towards sn equilibrium, more or less quickly.  

The corresponding   matrix is then given by: 

  

 

 
 

   
  

 
   
  

   
   

  
 

   

   

 
 

 (129) 

The exponential decay in eq. (128) means that the jump intensity admits the dynamics of an 

Ornstein-Uhlenbeck process. This process is mean-reverting, with    illustrating the speed of 

reversion: 

                            

 

   

      (130) 

This definition looks consistent with our desire to capture financial contagion: on one side,       

takes past realisations to estimate the strength of mean reversion (via              ), this is jump 

clustering. On the other side,      is supposed to reflect financial contagion, across the different 

securities.  

The dynamics induced by the exponential decay also suggests that a long period with no shock 

materialising can be seen as a time of consolidation. On that basis,      and    are key variables to 

understand the velocity of any market convalescence.  

The model proposed in Ait-Sahalia, Cacho-Diaz, and Laeven (2010) belongs to the category of 

generalized affine jump-diffusion processes. To see this, consider the general form of affine jump-

diffusion   in a state space       , defined as a strong solution to the stochastic differential 

equation: 

              𝜎        
        

 

   

 (131) 

where   :       , 𝜎 :               ,    is a Brownian motion in     , and   , 

𝑖         , are jump processes with jump intensities     
      

     , for some 

  
 :          , and with fixed jump size distributions on     .  

It is possible to restrict a process A of the form (131) to be affine, by considering the special case 

where   , 𝜎 𝜎 
 

 and   
  are affine on  . Then the model with exponential decay can be restricted 
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to be affine by setting        𝜎𝜎
      or               (depending on whether volatility is fixed 

or stochastic, ie. eq. (125) or (126)) with the corresponding   , 𝜎 𝜎 
 

  and   
  being affine. 

Distribution of the jump amplitude 

The amplitude of the shock is described by the random variable     , distributed according to the 

probability distribution function       . Ait-Sahalia, Cacho-Diaz, and Laeven (2010) considers that the 

jump amplitude follows an exponential distribution function of the form:  

   
      

       
                              

           
                         

  (132) 

with the corresponding cumulative distribution function: 

   
      

   
                              

                                       
  (133) 

The moments of the distribution are rather straightforward: 

    
        

    
    

 
 
        

    
 

                         (134) 

This distribution is also used by Kou (2002), in a context of pricing financial derivatives. 

As a possible alternative, we also consider that the jump amplitude   admits a Variance Gamma (VG) 

distribution. In particular, the VG distribution shows bigger tails than the exponential distribution, 

and this feature can prove useful to understand the dynamics of jumps. In this case,     is defined as: 

   
          𝜎                           
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(135) 

Where      is the modified Bessel function of the third kind, of order  , and: 

     𝜎           
 

𝜎        
         

 

 
 

  𝜎    
         

 

 

 

       

 
(136) 

   is the location parameter, so we assume that      (we showed in Chapter 2 that the dataset is 

centred). We take the same degree of freedom   as in Chapter 1, so    . In the end, we see only 

two unknown parameters: 𝜎     and      .   

As we previously explained in Chapter 2, a positive shock translate into tighter asset swap spreads 

(the bond outperforms the IRS), which is a negative jump for  𝒊   ( 𝒊    ). In contrast, a negative 

shock leads to wider asset swap spreads (the bond underperforms the IRS), and this is a positive 

jump, ie.  𝒊    .  

Our analysis in the previous chapters brought to light that positive and negative shocks do not 

propagate the same way throughout sovereign securities. As a consequence, jumps may exhibit 

some skewness.  
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In the case of    
 , we note that    

       , and more generally we have:   
                

           
   

As a result,    is driving the skewness of the distribution. In the case of    
 ,       describes the 

skewness of the distribution  

Let us now undertake a few synthetic examples: Graph 231 to Graph 233 illustrate the shape of    
  

and    
  for a selection of different parameters, described in Table 29. The first observation is that    

exhibits a significantly bigger kurtosis than   . As a result, the VG distribution (via   ), is potentially a 

better choice to capture heavy tails.  

Having said that, we note that    is remarkably versatile, and probably more versatile than    given 

the greater number of unknowns involved in the double exponential distribution (3 unknowns versus 

just 1 in the VG distribution).  

Table 163. Parameters of the distributions in Graph 231 to 

Graph 233 

  

 

 
 

Calibration Procedure 

The point processes      and the intensity      are latent variables, ie. they are not observable. In the 

case of the version involving stochastic volatility,      is an additional unobservable variable. We 

consider the Generalised Method of Moments (GMM) as a recognised approach to calibrate 

stochastic models involving unobservable variables. The estimation procedure involves the moments 

of the distribution of      

In particular we consider the following moments: 

 
 
 

 
 

        

                  
 
               

                                   𝑖     

                                     𝜏   

  

(137) 

f1_1 0.5 1 1 f2_1 50 0

f1_2 0.5 0.5 0.5 f2_2 20 0

f1_3 0.2 0.4 0.4 f2_3 10 -100

f1_4 0.2 f2_4 1000 -20

 𝑖   𝑖 ,1   𝑖 ,2  𝜎  ,𝑖   𝑖  

Graph 231. Synthetic examples  Graph 232.  Synthetic examples  Graph 233.  Synthetic examples 
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These are the “natural” moments: variance, kurtosis, skewness and autocovariances. The 

formulation of these moments is given in Ait-Sahalia, Cacho-Diaz, and Laeven (2010).  

The univariate calibration 

In this section we explore the calibration of the model, from a univariate perspective. As mentioned 

above, we explore different versions: fixed or stochastic volatility, double exponential jumps (   
  in 

eq. (132)) or variance gamma distributed jumps (   
  in eq. (135)). We are thus left with four 

different models. Assuming a fixed variance (eq. (125)), we see either 7 or 8 unknowns to calibrate: 

Exponentially distributed jumps:     𝜎                            8 unknowns 

Variance gamma jumps:     𝜎             𝜎        6 unknowns 

Now assuming stochastic volatility, we get either 9 or 11 unknowns to calibrate: 

Exponentially distributed jumps:          
                                   11 unknowns 

Variance gamma jumps:          
                    𝜎       9 unknowns 

The univariate dimension means that there is just one term   involved in the dynamics of the shock 

intensity, namely     , that we simply rewrite as    (see eq. (130)): 

                               (138) 

Ait-Sahalia, Cacho-Diaz, and Laeven (2010) considers a two stage calibration procedure. First the 

authors take a truncated version of the sample, where there is supposedly no jump. This allows them 

to ignore the discontinuous part of the model. Instead, they focus on the variables that relate to the 

continuous part. In the end, the first step of the calibration delivers as estimate for 

         
            . Then in a second step, the authors take the full sample into account and they 

run the calibration on the remaining set of variables (ie. these supposed to illustrate the dynamics of 

the jumps).  

First we considered a similar approach to the calibration issue; but results were not convincing. For 

instance, it was not possible to replicate the empirical distribution of the data via Monte Carlo 

diffusion with the set of parameters we obtained.  

As another illustration,  𝒊, as a skewness coefficient, was very far from the empirical skewness 

calculated on the dataset. We explain the methodology used to calculate the empirical skewness in 

the next paragraph. 

A measure of the empirical skewness 

Since      is a latent variable, none of       and      is observable. For convenience, we draw 

empirical rules to identify the distribution of shocks. In Ait-Sahalia, Cacho-Diaz, and Laeven (2010) for 

instance, the authors define two positive thresholds   
   and   

  : they assume that a positive jump 

happens when      
      , while a negative jump is detected when       

    }. They also 

argue that any variations beyond the average value of    
  is a shock. As a result, they obtain:  

  
            and   
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And thus:          
    

       
     and      

    
                (139) 

Let us now denote positive jumps as     
 , and similarly negative jumps as     

 . We then define our 

empirical skewness estimator     as the ratio:  

    
      

 

      
         

 
 (140) 

Where       
  and       

 is the quantity of positive and negative shocks ‘empirically detected’ in the 

sample. We calculate     for all possible values of    
     

    available. In the end, we obtain the 

following map for    , which looks like a function of   
   and   

  . 

We plot the results for Germany and Italy in Graph 234 and Graph 235. We identify three different 

regimes: 

- “no skewness”: in this case, both positive and negative jumps have the same probability to 

materialise, and thus        . This is described in yellow in the graphs. 

- “positive skewness”: from a statistical point of view, positive skewness means that the mass 

of the distribution function is concentrated on the lower part of the figure, ie. for     . 

This describes a situation where negative jumps are more frequent than positive jumps. This 

is achieved for      , which appears in red in the graphs.   

- “negative skewness”: negative skewness means that the mass of the distribution is 

concentrated on the upper part of the figure, ie. for     . This describes a situation where 

positive jumps are much more frequent than negative jumps. This is achieved for      , 

which appears in green in the graphs.   

Graph 234.     , the empirical skewness for Germany 

Yellow:          green:          red:           

 Graph 235.     , the empirical skewness for Italy 

Yellow:          green:          red:           

     

 

 

 
   

Overall, the shape of   𝒊 looks coherent with our interpretation of the skewness. We make 

therefore the assumption that     is a reliable estimator of    (      ). We show later that this 

assumption is reasonable and helps simplify the calibration of the model. This way to estimate    

differs from the methodology developed in Ait-Sahalia, Cacho-Diaz, and Laeven (2010), as instead 

the author assumes that     . On our side, we prefer calculating     out of   
     

   using a linear 

extrapolation on the surface shown in Graph 234 and Graph 235 (we get this kind of surface for each 

country).  

In the case of variance gamma distributed jumps, an initial attempt to calibrate    showed that the 

coefficient       is very instable, too instable in our view. And it is not clear either whether shocks 
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exhibit significant skewness or not. In Chapter 1 for instance, the un-temporal volatility was fairly 

symmetric although our approach allowed replicating the skewness. Generalized skewed 

distributions also did not outperform the corresponding unskewed versions.  

 Overall, we think that the unstable       reflects the burden of having too many unknowns to 

calibrate. On top of that, the benefit of Variance Gamma distributions remains in the bigger tails, 

compared to exponential distributions. In the end, we prefer considering a non-skewed version of 

the Variance Gamma and thus we force 𝜽 𝑮 𝒊   . This leaves us with just one variable to calibrate 

when considering the Variance Gamma distribution, ie.   𝑮 𝒊. 

Calibrating the remaining unknowns 

Since    is now a function of      and     , we are left with    unknowns to calibrate, when 

considering exponentially distributed jumps (  ); this is still too many. In order to facilitate the 

calibration, we now seek to restrain the range of possible values for each variable.  

 

 𝒊 is a drift coefficient. We already noted that ACF and PACF showed no particular evidence of any 

non-stationarity in the dataset. As a result,    should be relatively small. We thus restrain initial 

values to the range         .   

In order to respect the positivity of     , we also constraint    such that             (this comes 

from         
 ). We also note that:            

      

     
  with     ,     , and       .  

Since          , we force    to remain in the range         .  

It looks coherent to cap the average jump intensity at           . We thus restrain initial values on 

     so that           :                     . 

Based on empirical tests we also implement the following restrictions: 

-         and         look reasonable for all countries.  

-    is apparently largely dependent on the magnitude of the volatility. We identify three main 

regimes for the upper-bound of   :  

Table 164. Upper bound of    is larger for peripheral countries  

  

 

 

- Finally, we also take initial values for      from within the range        .  

 

If we denote the moment of the amplitude   by             , and           , Ait-Sahalia, 

Cacho-Diaz, and Laeven (2010) gives the corresponding expressions: 

-  Stochastic volatility: 
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Then the autocorrelation function of the process is given by: 

                                      
            

        
                          (141) 

For all 𝜏   . 

- Fixed volatility: 
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Then the autocorrelation function of the process is given by: 

                                      
            

        
                          (142) 

Results 

We calibrate each model in a one-stage procedure, by imposing the aforementioned restrictions on 

initial values/admissible ranges and we ran the calibration 50 times. We then had to select the best 

combination. Looking at the calibration error first, Graph 237 shows that the error is relatively stable 

for the 35th-40th best combinations; then, the error tends to surge. As a result, we kept the 40 best 

combinations as potentially candidates for the best set of parameters.  
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Graph 236.      ,     ,      Graph 237. Calibration error surging beyond the 40th 

calibration 

     

 

 

 

  Results from the calibration are ordered on the x-axis on the basis that a higher index 

reflects a bigger calibration error 

Table 165 shows the smallest error, out of the 50 runs. The error looks much bigger for models 

involving the Variance Gamma distribution (   
 ) rather than the double exponential approach. This is 

a sign that the calibration is probably less efficient with the variance gamma distribution.  

Table 165. Value of the likelihood function at the end of the calibration (ie. resulting error) 

  

 

 

Then we calculate       and      for the 40 best combinations of parameters. Graph 238 and Graph 

239 show the resulting series, for the calibrations providing the 5 smallest errors (e.g. in Graph 237), 

assuming a fixed volatility (eq. (125)) and exponentially distributed jumps (ie.   
 ). 

Graph 238. Probability that a jump materializes in Italy  Graph 239. Probability that a jump materializes in Spain 

     

 

 

 
   

Monte Carlo simulations 

The capability to replicate the empirical distribution of the data is a key determinant to identify 

the best set of parameters (out of the 40 selected best combinations). In order to understand if the 

model is able to replicate the empirical distribution of the data, we conduct Monte Carlo (MC) 

simulations, and we calculate the ADC criterion and Kolmogorov-Smirnov (KS) p-value that illustrate 
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the quality of fit between the generated and the empirical distributions. These statistical tests are 

meant to highlight the best set of parameters. 

For coherence, we takes the profile of jumps   𝒊   and intensities  𝒊   that corresponds to the 

empirical probability distribution of the data (denoted         ). This is an unchanged feature in all 

our MC simulations. We generated 1000 time series      for each country, via the diffusion of     , 

and      , (respectively       
       

   in the case of the stochastic volatility model). Graph 240 

shows a few paths generated for Italy, as an example.  

We then calculate the corresponding ADC criterion and KS p-values. Both estimators are supposed to 

highlight the degree of similarity between both, generated and empirical distributions. Finally, we 

keep the best parameters based on the ADC (as in previous chapters). We check for coherence that 

the corresponding KS p-value is satisfactory as well. (ADC focuses on the quality of the distribution in 

the tails, while KS gives extra credentials to the centre of the distribution). 

Graph 240. Jump intensity out of different models 

(jumps/years) 

 Graph 241. Jump intensity for different countries 

     

 

 

 
   

Table 166 shows the best ADC and KS p-value. Overall, the model with exponential jumps and fixed 

volatility delivers better results than the three other versions. This model also proves sensible, 

regardless of the credit quality it seems (core/soft-core or peripheral countries).  

The calibration of the stochastic volatility model (third line in Table 166) delivers compelling results 

too, but only for six countries: Germany, Finland, the Netherlands, France, Italy, Spain. The 

calibration is not successful for Italy, Spain, Ireland, Portugal, Greece. This is obviously a limitation. 

Good results for both core and non-core countries suggest that the Variance Gamma offers some 

versatility, and therefore cannot be discarded as such.  

Table 166. Minimum ADC and maximum KS p-values out of the 40 “best” combinations 
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KS 28 41 65 2 9 1 28 13 0 6 0

ADC 1.0 1.8 1.9 3.6 3.6 1.6 6.9 5.0 5.3 7.4 6.9

KS 80 40 13 1 1 39 0 0 0 0 0

ADC 4.0 2.4 3.3 3.6 6.9 11.0 7.7 3.7 4.6 3.3 6.0

KS 0 14 2 1 0 0 0 0 0 8 0
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Table 167. ADC (left) and KS p-values (right) 

  

 
 

Results with stochastic volatility (in Table 166) look disappointing. ADCs in the last two rows of the 

table indicate that the calibration is just occasionally successful. Too many unknowns is probably one 

of the reasons for lacklustre results, as it makes the calibration more hazardous. We also think that 

there is a conflict in using stochastic volatility and jumps in the same time, as both were introduced 

for the same reasons, namely to simulate ‘rare’ events. There is therefore a logical redundancy 

between jumps and stochastic volatility, which may be responsible for some hazard during the 

calibration.  

More positively, core countries and Belgium look properly calibrated when assuming exponential 

jumps, but even here, the quality of the calibration noticeably shrinks in the VG version (fourth row).  

 The model with fixed volatility and exponential jumps outperforms other approaches.  

Table 167 shows the ADC and KS p-values for all combinations. Results look remarkably instable: for 

every country, only a few calibrations shows ‘acceptable’ ADC/KS. Overall, this suggests little 

robustness, with some degree of complexity to find a global optimum during the calibration. 

  

GE FI NL AT FR BE IT SP IR PT GR

4.3 2.9 2.8 6.7 5.8 4.4 18.5 5.8 2.0 4.4 23.1

3.0 2.2 3.1 12.6 3.0 6.4 5.5 6.1 6.5 4.5 4.9

2.9 2.2 4.0 4.9 1.5 7.3 20.9 4.8 5.3 4.2 23.7

3.0 4.1 1.8 17.1 1.2 5.3 19.2 4.4 5.3 4.4 23.6

3.0 4.1 4.9 3.1 6.9 1.7 6.1 3.9 3.8 5.5 23.7

3.0 3.0 1.9 6.7 7.1 6.1 3.6 3.3 5.6 5.6 23.7

2.9 12.2 10.8 2.2 10.4 5.9 12.8 3.7 5.4 5.2 15.4

2.9 12.2 2.1 4.7 8.1 4.1 14.5 6.7 5.4 3.6 13.3

3.0 9.1 2.2 5.2 7.3 7.7 11.1 5.7 5.3 4.8 7.0

3.0 4.8 2.5 5.9 5.8 7.4 7.1 2.5 5.1 4.2 6.9

3.0 8.9 10.8 2.3 6.2 5.2 19.5 3.2 5.1 3.2 6.7

3.0 8.2 11.6 3.7 5.5 4.2 13.8 5.1 5.0 4.9 6.1

3.0 1.5 10.9 2.0 1.8 5.5 25.5 3.9 5.1 4.9 5.2

3.0 3.1 3.5 3.8 5.7 8.7 22.1 4.1 5.0 5.2 4.8

3.0 9.3 1.9 2.9 8.2 4.6 13.6 7.9 5.0 4.8 4.8

3.0 8.3 1.9 6.2 5.6 5.8 28.3 2.0 5.1 2.3 11.2

3.0 8.4 5.0 1.3 6.7 2.8 10.2 6.5 5.0 4.8 4.9

3.0 7.0 2.9 2.4 3.4 5.2 17.2 6.2 5.1 5.0 4.6

3.0 7.8 3.4 5.0 5.7 8.7 21.9 1.4 5.1 5.2 5.6

3.0 4.0 9.2 2.7 5.4 6.1 21.6 6.2 5.0 4.6 8.4

3.0 2.9 9.1 4.3 3.9 4.0 22.2 6.9 5.0 4.7 6.1

3.0 1.4 1.9 4.0 5.4 4.6 7.4 5.6 5.1 4.9 6.9

2.9 2.2 2.5 4.4 4.0 4.8 1.9 10.0 5.1 7.3 8.0

2.9 2.4 8.9 7.4 5.1 6.6 1.6 3.5 5.1 4.6 16.0

3.0 9.3 9.1 2.8 4.0 6.1 1.7 3.1 5.1 4.5 7.1

3.0 5.1 8.8 3.4 4.9 4.6 4.4 14.3 5.3 3.7 7.6

2.9 5.2 8.7 3.8 5.2 4.4 5.4 2.9 5.3 4.4 5.2

2.7 5.1 8.6 3.6 4.6 4.3 9.6 3.0 3.6 4.0 6.2

2.1 5.3 10.8 2.7 4.5 5.4 6.8 6.9 4.0 1.5 2.3

2.4 5.2 2.1 4.9 4.6 5.4 6.7 2.9 1.6 3.6 2.2

2.0 3.1 2.1 8.4 5.1 5.4 6.3 6.9 3.0 4.0 4.6
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1.8 4.6 5.5 2.9 5.1 4.5 7.2 3.2 4.4 2.2 2.7

1.5 1.3 1.8 4.7 5.6 5.3 7.6 3.3 15.7 7.2 4.3

1.5 1.5 2.1 2.5 5.6 4.7 7.2 6.9 5.4 3.7 3.0

2.2 5.8 6.9 2.7 5.1 5.2 3.8 7.0 2.1 7.4 3.2

1.6 2.3 3.0 4.1 4.5 5.3 6.6 6.8 4.3 3.5 3.0

2.0 3.4 10.6 3.9 4.2 4.5 8.0 6.0 3.9 3.7 2.9

2.9 3.3 1.8 4.1 3.7 4.6 6.5 6.0 4.8 2.9 3.3

3.2 3.3 2.3 4.0 4.2 5.1 7.0 5.5 4.7 4.1 4.1
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0 2 3 0 0 1 0 0 13 0 0

9 9 1 0 8 0 0 0 0 0 1

9 12 1 0 27 0 0 0 0 0 0

8 0 27 0 56 0 0 0 0 0 0

9 0 0 3 0 18 0 1 2 0 0

9 2 19 0 0 0 2 5 0 0 0

10 0 0 20 0 0 0 2 0 0 0

9 0 12 0 0 1 0 0 0 1 0

9 0 29 0 0 0 0 0 0 0 0

8 0 6 0 0 0 0 12 0 0 0

8 0 0 16 0 0 0 6 0 1 0

8 0 0 0 0 0 0 0 0 0 0

8 42 0 31 23 0 0 0 0 0 0

8 2 1 0 0 0 0 1 0 0 0

9 0 22 8 0 0 0 0 0 0 0

8 0 20 0 0 0 0 14 0 5 0

8 0 0 47 0 2 0 0 0 0 0

9 0 2 9 3 0 0 0 0 0 0

9 0 1 0 0 0 0 54 0 0 0

9 1 0 7 0 0 0 0 0 0 0

9 3 0 0 0 0 0 0 0 0 0

9 49 21 1 0 0 0 0 0 0 0

9 12 6 0 0 0 42 0 0 0 0

9 6 0 0 0 0 45 3 0 0 0

9 0 0 4 0 0 52 2 0 0 0

9 0 0 1 0 0 0 0 0 1 0

9 0 0 0 0 0 0 8 0 0 0

12 0 0 0 0 0 0 4 0 0 0

14 0 0 3 0 0 0 0 0 47 13

9 0 13 0 0 0 0 6 27 0 15

14 2 13 0 0 0 0 0 6 0 0

5 0 0 0 0 0 0 0 0 0 11

20 0 0 1 0 0 0 1 0 18 9

36 48 36 0 0 0 0 1 0 0 1

32 39 21 21 0 0 0 0 0 0 1

16 0 0 2 0 0 1 0 16 0 1

27 11 4 0 0 0 0 0 0 1 1

24 1 0 0 0 0 0 0 1 0 0

8 1 29 0 0 0 0 0 0 2 0

0 2 8 0 0 0 0 0 0 1 0
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Table 168. Calibrated parameters, vol fixed, Exponential distribution  

  

 
 

 

 

 

Table 169. Calibrated parameters, vol fixed, Variance Gamma distribution 

  

 
 

 

 

 

Table 170. Calibrated parameters, vol stochastic, Exponential distribution 

  

 
 

Table 168, Table 169 and Table 170 show the optimal parameters for each model. First we note that 

the parameter    is very close to    , thus indicating that the jumps exhibit little skewness (This 

validates our assumption that        ). Another observation is that 𝜎  gradually rises for the more 

volatile countries, from   bp/year for Germany up to 116bp/year for Greece. Though we were 

expecting    to be closer to zero, it appears that there is a non-negligible trend. Another observation 

if that  𝒊 is large in general, and usually relatively close to  𝒊. This means that the self-exciting loop 

is greatly instrumental on the dynamics of the jump intensity. From a general point of view, 

coefficients between France/Belgium and Italy/Spain are greatly dissimilar – we see no obvious 

reasons for that.  

        reveals interesting information as it describes the average numbers of jumps expected per 

year (we supposed     working days per year). Surprisingly, Germany, the Netherlands, Austria and 

France exhibit a bigger number of jumps than countries of lesser credit quality (e.g.     jumps/year 

for Germany, which compares with just    for Spain). This is counterintuitive since jumps are 

supposed to reflect the materialisation of financial shocks, and these are more likely to happen in 

peripheral countries. Market valuations in countries like Germany are in contrast more stable, and 

should thus exhibit less frequent jumps.  

GE 0.3 17.2 26.5 14.8 12.4 0.48 0.62 0.65 0.84 163

FI 16.8 30.5 43.5 13.8 6.4 0.58 0.53 0.41 0.47 81

NL 0.0 25.5 54.3 11.1 6.7 0.62 1.00 0.53 0.61 138

AT 34.9 29.3 42.5 21.2 13.3 0.58 0.43 0.34 0.63 114

FR 17.4 28.4 38.6 18.4 13.2 0.53 0.46 0.42 0.72 137

BE 0.0 41.2 62.0 23.7 4.5 0.53 0.24 0.22 0.19 76

IT 1.0 64.4 43.3 86.8 22.5 0.49 0.11 0.10 0.26 58

SP 63.0 65.2 18.7 0.5 0.4 0.51 0.12 0.11 0.81 97

IR 0.0 64.1 16.8 8.3 6.8 0.56 0.14 0.11 0.81 90

PT 0.0 73.2 12.5 88.6 79.8 0.46 0.12 0.13 0.90 126

GR 2.5 115.7 1.3 5.4 5.3 0.46 0.03 0.03 0.99 104

vol fixed, Exponential distribution

 𝑖 ,2  𝑖 ,1  𝑖   𝑖   𝑖   𝑖 ,   𝑖  𝜎𝑖   ( 𝑖 , )    𝑖/  𝑖   𝑖/ 𝑖  

GE 0.2 26.2 134.6 1.3 0.6 2.54 0.31 241

FI 4.1 33.0 32.4 16.8 13.4 2.88 0.44 160

NL 3.0 30.5 63.3 16.4 11.1 2.63 0.40 197

FR 0.0 36.2 31.7 22.0 19.0 3.23 0.46 233

IT 18.7 75.1 26.2 21.8 18.9 8.21 0.46 195

SP 0.0 88.5 9.1 6.3 6.0 7.95 0.49 195

vol fixed, Variance Gamma distribution

 𝑖  𝜎𝑖   𝑖,   𝑖   𝑖  𝜎  ,𝑖   ( 𝑖 , )    𝑖/  𝑖   𝑖/ 𝑖  

GE 0.3 56.7 0.6 41.3 19.2 17.0 16.2 5.0 0.7 0.7 0.49 0.95 104

FI 0.0 47.2 0.2 31.5 31.3 7.4 7.4 0.1 0.7 0.6 0.50 1.00 78

NL 0.0 7.6 0.6 3.4 41.0 2.2 2.2 0.1 0.8 0.7 0.52 1.00 196

BE 31.7 25.7 0.4 5.7 1.8 8.2 0.3 85.2 0.4 0.3 0.57 0.03 88

vol stochastic, Exponential distribution

 𝑖
    𝑖   𝑖   𝑖,   𝑖   𝑖   𝑖   𝑖   𝑖 ,2  𝑖,1  𝑖    𝑖/  𝑖   ( 𝑖 , )   𝑖/ 𝑖  
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 The larger    𝒊    in core countries suggests that the identification of jumps in the more robust 

countries is not successful. This highlights noticeable redundancy between continuous (   ) and 

jump components (𝒁  ) inside the model. 

Results from the stochastic volatility model in Table 170 are a bit confusing:      is very small in 

Finland and the Netherlands, and this looks a bit discordant compared with the larger values we 

obtain for Germany and Belgium.  

Graph 241, Graph 242 and Graph 243 show the jump intensity      for different countries. This time 

again, we see large variations in the dynamics of jumps from one country to another. This suggests 

little consistency in the calibrated values.  

 The calibration of the model is not particularly conclusive. On one side, some indicators like ADC 

and KS p-values, suggest that the model is able to replicate the empirical distribution of the data. But 

playing against that, many calibrated values prove abnormally instable from one country to another, 

and this suggests little consistency in general. We are also surprised that only a tiny portion of the 50 

calibrations (per country) provides acceptable results.  

 

The rationale behind a common utilisation of Brownians and jumps, as exposed in Ait-Sahalia 

(2010) looks sensible. However, the observed lack of robustness may come from using too many 

unknowns. We explore an interesting alternative in the following section.  

 
 

 

Graph 242. Jump intensities in core and soft-core 

countries 

 Graph 243. Jump intensities at the periphery 
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A model exclusively based on jumps  

Hainaut (2016) explores bivariate Hawkes processes in the context of interest rates modelling. The 

proposed framework focuses on jumps, exclusively, with no particular reference to the continuous 

dimension of market prices. As such, this may be an interesting alternative to Ait-Sahalia (2010), 

where the desire to separate the continuous part from the jumps led to a substantial increase of the 

computational burden. 

In Hainaut (2016), the author assumes that every price realisation is a jump, driven either by the 

demand for, or the supply of, the underlying security. This approach looks particularly relevant when 

you can explore the dynamics of high-frequency market valuations as in this case, jumps may be 

observable. Getting intraday data was not possible for us, so it was clear from the beginning that 

jumps are not observable in our dataset (we explore close-to-close price variations). In our model, 

jumps are therefore a latent (non-observable) variable. And as we show below, this incurs major 

changes to the calibration procedure compared to Hainaut (2016). 

An interesting feature in Hainaut (2016), is that supply and demand are illustrated by two different 

jump processes. This gives the model a ‘bivariate’ dimension, which is reinforced by the fact that 

both intensities are interconnected via a mutually-exciting loop (Hawkes process). In the end, the 

model offers an interesting framework to price zero-coupon bond options, with some simplifications 

compared to Ait-Sahalia (2010). In this report, we also explore a new version of the model, where we 

extend the dimension of the problem: we assume that jumps intensities are also excited by 

contagion, emanating from exogenous time series. 

 

Formalisation of the problem, univariate case 

Hainaut (2016) explores the dynamics of Fixed Income instruments, and the author assumes that the 

interest rate    is a combination of a function of time      and a process   : 

          (143) 

   is supposed to reflect the difference between supply of and demand for the underlying security, 

at the very front-end of the interest rate curve. As a general practice with interest rates models 

based on the short-term dynamics (e.g. Vasicek, LIBOR models…),    is seen as the instantaneous 

interest rate. We adopt the same approach here, and we will see later that 1-month interest rates 

are a reasonable proxy for   .   

Hainaut (2016) assumes that any price variation in the sample is a proper jump  , either positive or 

negative. Positive jumps on one side, lead to an increase of the yield to maturity of the bond, and 

thus a decline of the price. This category of jumps thus reflects the ‘supply’ effect. They are denoted 

  
 . In contrast, negative jumps lead to a lower yield to maturity, and thus an increase of the price. 

Negative jumps therefore illustrate the ‘demand’ effect; these jumps are denoted   
 . In both cases 

(positive and negative), the corresponding jump intensities   
  and   

  are described by Hawkes 

processes (see Bacry et al. (2013)).  

From a very general perspective, the author defines the infinitesimal behaviour of   as: 

        
      

  (144) 
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on a complete probability space        , with a right-continuous information filtration  

         , and where   denotes the real probability measure. 

In this framework, Hainaut (2016) assumes that the amplitude of the jumps is a random variable too, 

which is denoted    and   . Both are drawn from two different probability distribution functions, 

      and      . The first and second moments of these distributions are         ,         , 

           ,            . We also denote by   
  and   

  counting processes that reflect the 

number of jumps that happened from the beginning of the simulation. Finally we can express    as: 

        
      

     
    

     
    

  (145) 

The ‘self-exciting’ loop in Hawkes’ processes is a key component of the model, and as such Hainaut 

(2016) assumes that intensities of jump arrivals are random processes governed by the following 

equation: 

   
          

            
         

          𝑖      (146) 

Where    and    are part of a mean-reverting Ornstein Uhlenbeck process (like in Ait-Sahalia (1996)). 

     and      set the level of self-excitation, while      and      illustrate the cross impact of supply 

and demand. 

Hainaut (2016) shows that if   ,     denote the moment generating functions of   ,   : 

           
 
          for 𝑖      (147) 

Then the moment generating function of             
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Where  ,        are solutions of a system of ODEs: 
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(149) 

With the terminal conditions   𝑇 𝑇   ,    𝑇 𝑇    ,    𝑇 𝑇    . 

The moment generating function of   is an affine function of    
    

    
    

  , and therefore Hainaut 

(2016) consider an exponential affine change of measure of the form: 
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(150) 

Where         are assimilated to risk premia. The author shows that the dynamics of interest 

rates is preserved under this new measure. Zhang et al. (2009) describes a similar change of 

measure, though for jumps with constant amplitude. In this set up, and as detailed in Hainaut (2016), 

   is a local martingale if it fulfils the following condition: 
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If for any given couple of parameters        , there exist suitable solutions          ,          , 

         ,           for the system of equations: 

 
                                                     

                                                     
  

(151) 

Where            
 
  for 𝑖      and if          is a linear combination of these solutions: 

                       (152) 

Then           is a local martingale. Assuming the existence of suitable solutions, an equivalent 

measure        is defined by: 

       

  
 
         

         
 

(153) 

This new measure        may be used as a risk neutral measure by investors. In this case, the 

dynamics of intensities and aggregate supply or demand is modified but is still a Hawkes process (see 

Hainaut (2016)). Let   
   

,   
   

be counting processes with respective intensities under the 

equivalent measure       : 

 
  
                            

 

  
   

                         
 
  

(154) 

On the other hand, if     ,      denote the random variables defined by the following moment 

generating function:  

 
 
 

 
 
  
          

   
  

                        

                    

  
          

   
  

                        

                    

  
(155) 

And if the jump processes   
   ,   

    are defined such that: 

  
       

     
   

        𝑖            
(156) 

Then intensities   
  are driven by the following EDS under       :  

 
   

         
    

           
    

      
    

 

   
         

    
           

    
      

    
 
  

(157) 

Hainaut (2016) also considers that the amplitude    of jumps, under  , is exponentially distributed. 

The probability distribution functions of the jump amplitude are thus defined as:  

 
       

 
           

       
 
            

  With          
(158) 
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In this case, the first and second moments of   ,    are respectively equal to    
 

  
,    

 

  
, and 

to    
 

    
 . The moment generating functions are given by: 

      
  

    
 for     ,          

  

    
 for       

Then Hainaut (2016) shows that the distribution of the jump amplitude is exponential under   as 

well, and the corresponding densities, denoted   
    , are defined such that: 

 
  
 
                      

  
 
                      

  (159) 

On top of that, Hainaut (2016) notes that the dynamics of the jump intensity is preserved under 

      : the intensities of the counting processes   
   ,   

   ,   
    ,   

     are Hawkes processes with 

the same structure under   as under the real measure  : 
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with: 

 
 
 

 
   

                        

  
 
                       

    
                                   

    
 
                                   

 
  

(161) 

If market participants adopt an exponential affine measure for the risk neutral one, equivalent to the 

real measure, then the price of a zero coupon bond is equal to the expected discount factor, under 

this risk neutral measure. The price of the zero coupon bond is thus denoted as: 

    𝑇   
    

    
    

    
     

     
     

              
 

     

                                                           
 

           
 

     
 

(162) 

And then we have: 

          
 

              𝑇         𝑇   
     𝑇 
     𝑇 

 
𝑇

 
  
   

  
      (163) 

Where     𝑇 ,      𝑇 ,      𝑇  are solutions of the following system of ODEs: 

 
 
 

 
 
 

  
          𝑇     

        
        

     𝑇        

 

  
          𝑇     

        
        

     𝑇        

 

  
       

        
   

  

(164) 

With the terminal condition:   𝑇 𝑇   ,    𝑇 𝑇     𝑇 𝑇   .  
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The dynamics of bond prices depends on the random measures of jump processes, noted 

  
          ,   

           and such that: 

  
   

              
  

  

  

 

                  
(165) 

Furthermore the expectation of these measures is equal to                      
   
         . 

As Hainaut (2016) shows, the bond prices     𝑇   
   
   
   
   

   
   
   
  are ruled by the following SDE: 

           
       

       𝑇     
       𝑇     

     𝑇          

   
       

       𝑇     
       𝑇     

     𝑇          

             𝑇     
       𝑇     

     𝑇        
  

  

           

             𝑇     
       𝑇     

     𝑇        
  

  

            

(166) 

where   
          ,   

           are random measures of jump processes (see Hainaut (2016) for all 

the corresponding demonstrations). 

Table 171. Descriptive Statistics  

  

 

 

  

1m 3m 6m 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

Mean of 

absolute values
0.00015 0.00016 0.00013 0.00018 0.00026 0.00028 0.00031 0.00032 0.00032 0.00032 0.00032 0.00032 0.00032

standard deviation 0.00028 0.00032 0.00024 0.00029 0.00029 0.00042 0.00043 0.00044 0.00044 0.00044 0.00043 0.00044 0.00043

Mean of 

absolute values
0.00019 0.00019 0.00019 0.00025 0.00026 0.00026 0.00029 0.00031 0.00032 0.00031 0.00031 0.00032 0.00031

standard deviation 0.00032 0.00035 0.00034 0.00039 0.0004 0.00039 0.00041 0.00043 0.00045 0.00044 0.00043 0.00043 0.00042

Mean of 

absolute values
0.00015 0.00015 0.00015 0.00022 0.00024 0.00027 0.00029 0.00031 0.00032 0.00032 0.00031 0.00031 0.00031

standard deviation 0.00026 0.00028 0.00027 0.00035 0.00038 0.00041 0.00042 0.00044 0.00044 0.00044 0.00042 0.00042 0.00042

Mean of 

absolute values
0.00011 0.00012 0.00018 0.00023 0.00025 0.00027 0.00029 0.00029 0.0003 0.00029 0.00031 0.00031 0.00031

standard deviation 0.00036 0.00038 0.00038 0.00039 0.00041 0.00044 0.00045 0.00046 0.00045 0.00043 0.00042 0.00050 0.00043

Mean of 

absolute values
0.00015 0.00016 0.00014 0.00019 0.00028 0.00029 0.00030 0.00032 0.00032 0.00032 0.00032 0.00032 0.00032

standard deviation 0.00042 0.00044 0.00038 0.00031 0.00036 0.00046 0.00043 0.00045 0.00045 0.00043 0.00043 0.00043 0.00043

Mean of 

absolute values
0.00020 0.00021 0.00021 0.00021 0.00027 0.0003 0.00032 0.00033 0.00034 0.00033 0.00033 0.00033 0.00033

standard deviation 0.00036 0.00037 0.00037 0.00037 0.00043 0.00046 0.00049 0.0005 0.00049 0.00049 0.00048 0.00048 0.00048

Mean of 

absolute values
0.00031 0.00031 0.00027 0.00034 0.00038 0.00039 0.0004 0.0004 0.0004 0.00039 0.00038 0.00038 0.00038

standard deviation 0.00062 0.00064 0.00064 0.00071 0.00067 0.00067 0.00064 0.00062 0.00059 0.00058 0.00059 0.00058 0.00058

Mean of 

absolute values
0.00025 0.00025 0.00025 0.00032 0.00039 0.00041 0.00042 0.00042 0.00042 0.00041 0.00041 0.00040 0.00040

standard deviation 0.00067 0.00068 0.00066 0.00062 0.00070 0.00069 0.00069 0.00065 0.00066 0.00065 0.00062 0.00061 0.00062

Mean of 

absolute values
0.00040 0.0004 0.00041 0.00048 0.00046 0.00042 0.00048 0.00042 0.00039 0.00036 0.00037 0.00040 0.00039

standard deviation 0.00082 0.00085 0.00086 0.0009 0.00089 0.00082 0.00086 0.00078 0.00077 0.00068 0.00066 0.00068 0.00066

Mean of 

absolute values
0.00035 0.00037 0.00035 0.00037 0.00050 0.00055 0.00057 0.00061 0.00058 0.00054 0.00053 0.00051 0.00051

standard deviation 0.00086 0.00089 0.00086 0.00100 0.00105 0.00102 0.00108 0.00101 0.00093 0.00091 0.00091 0.00089 0.00085
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Dataset and calibration of the univariate model 

Our dataset is made of European sovereign zero coupon bond curves, taken from January 2000 up to 

end-December 2016. We get zero coupon curves from Bloomberg, and when needed, we calculate 

missing valuations by using the popular bootstrap approach. We consider the following set of 

maturities  𝑇: 

 𝑇                                            

As an illustration, Graph 244 shows the dynamics of 5Y zero coupon bonds over the full period. 

Graph 244. 5Y zero coupon bond, over the full period 
 

   

 

 

  

Then Graph 245 to Graph 248 show the shape of the zero coupon curves, for Germany, France, Italy 

and Spain. The curve is upward slopping in all cases, and the slope is almost flat at the very front-end 

of the curve. This suggests that the true instantaneous interest rate    must be relatively close to the 

1-month interest rate (ie. the first point in the chart, starting from the left). We will thus consider the 

approximation that                    . As we show below, this assumption is helpful to refine 

the range of initial values during the calibration. 

Graph 245. German zero coupon bonds at selected 

dates 

 Graph 246. French zero coupon bonds at selected 

dates 
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Graph 247. Italian zero coupon bonds at selected dates  Graph 248. Spanish zero coupon bonds at selected 

dates 

     

 

 

 
   

The amplitude of the jumps, in Hainaut (2016), is assumed to be exponentially distributed, and based 

on the distributions    and   . Although this is a generalised approach in the literature (e.g. see 

Cremers, Driessen, Maenhout (2008), Kita (2012)), there is little insight in Hainaut (2016) on the 

relevance of exponential distributions as to model jumps.  

We understand that the major benefit of considering exponential distributions is the very few 

number of unknown variables involved. In Hainaut (2016) for instance, the knowledge of    and    is 

sufficient to determine the distributions    and    as a whole. A limitation however, is that the 

exponential distribution is not recognized as a “heavy-tailed” distribution.  

As we seek to understand whether exponential distributions are an appropriate choice for    and     

we explore the goodness of fit offered by these distributions, when    and    are calibrated against 

the empirical distribution of the data. We calculate the corresponding ADC criterion, obtained under 

these circumstances, as a measure of similarity between both, the exponential distributions, and the 

empirical distribution of the dataset. Overall, results are relatively poor (        in many cases, 

see Table 172).  On that basis, exponential distributions seem not to be a reliable descriptor of the 

dynamics of the dataset, at least when we consider the full period (2000 to end-2016).  

Now focusing on reduced version of the sample, that takes only financial crises into account (ie. 

from 2008 up to end-2012), the ADC criterion improves significantly: in this case, and as Table 173 

shows, the condition         is almost always verified.  

 In the end, exponential distributions can be seen as a reliable descriptor of the market dynamics 

during periods of financial distress. By extrapolation, it looks fair to assume that intraday jumps 

could be similarly distributed. This observation tends to validate the general assumption of 

exponentially distributed jumps. 
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Table 172. ADC criterion calculated for the full period (2000-2016) 

  

 

 

 

 

Table 173. ADC criterion calculated for the sub-period 2008-2012 

  

 

 

 

Eq. (163) describes the behaviour of zero coupon bonds under the risk-neutral measure, in terms of 

price. Since we look at valuations in terms of yield to maturity, we consider   as the main variable, 

and we write it as:   

    𝑇   
    

    
    

    
 

𝑇   
              

 

      

                                                   
 

𝑇   
              

 

           
 

      

 

For simplicity we denote   as     𝑇 , and we derive its behaviour from eq. (163) as: 

    𝑇  
 

𝑇   
       
 

 

 
 

𝑇   
     𝑇         𝑇   

     𝑇 
     𝑇 

 
𝑇

 
  
   

  
      

 

3M 6M 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

8.1 6.5 3.6 2.4 1.3 0.9 1.5 1.5 1.9 2.1 2.0 2.4

5.9 4.9 2.8 1.2 0.9 1.9 2.4 2.7 3.3 3.5 3.7 3.4

6.2 5.3 4.5 2.4 1.3 1.1 1.0 1.3 1.4 2.2 2.3 1.9

6.7 5.2 2.3 1.0 1.0 1.5 2.4 2.2 2.3 3.6 3.8 4.1

5.9 5.5 5.1 2.8 1.5 1.2 0.9 1.8 1.8 2.0 2.5 2.2

4.0 4.0 2.6 1.8 1.5 1.4 2.3 2.4 3.5 3.8 3.9 3.9

4.7 4.8 2.9 2.3 2.2 1.4 1.5 1.9 2.0 1.7 2.0 2.4

3.8 3.7 2.2 1.4 1.2 0.8 1.5 2.5 2.9 3.5 1.9 3.2

11.1 9.3 3.5 3.1 1.7 1.3 1.1 1.9 2.0 2.0 2.2 2.3

7.1 6.6 3.2 3.2 1.8 1.7 2.5 2.5 3.4 3.6 4.0 3.9

3.9 4.0 4.1 2.9 2.1 1.3 1.1 1.2 1.4 1.4 1.7 1.7

4.1 4.0 3.9 1.8 1.0 1.0 1.5 3.1 2.6 3.5 3.9 3.9

9.4 8.8 7.3 6.0 4.7 3.4 2.9 2.3 2.0 1.9 1.8 1.7

8.1 6.7 4.9 4.4 2.6 2.3 1.9 1.8 2.1 1.9 2.4 2.4

11.8 9.8 6.7 4.5 4.1 3.0 2.1 1.9 1.6 1.5 1.4 1.6

10.7 9.3 5.6 5.2 3.3 2.9 2.0 2.3 2.1 1.9 1.9 2.0

11.5 11.8 11.2 10.7 10.9 6.5 4.5 4.8 3.5 3.3 2.4 2.7

9.7 9.5 9.3 9.3 9.1 5.1 3.2 3.2 2.6 1.7 2.0 2.1

12.3 12.8 10.8 8.4 7.2 6.3 6.6 5.0 5.2 5.1 3.9 3.8

11.0 11.4 12.1 9.5 8.2 5.9 6.1 5.4 5.3 4.5 3.8 4.1

IT

SP

IR

PT

GE

FI

NL

AT

FR

BE

3M 6M 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1.4 1.2 1.3 1.1 1.1 1.1 1.4 1.7 1.6 1.7 1.6 1.5

1.7 1.6 1.4 0.9 1.0 2.0 1.8 2.1 2.2 2.2 1.9 1.9

0.5 0.5 1.4 0.7 0.5 0.8 1.0 1.3 1.0 1.2 1.3 1.4

0.8 0.8 0.9 0.7 0.8 1.1 1.6 1.5 2.0 1.9 1.8 1.6

2.8 1.3 1.4 1.3 0.5 1.1 1.0 1.2 1.3 1.2 1.3 1.2

1.6 1.8 1.4 1.1 0.7 1.1 1.3 1.4 1.7 1.6 1.7 1.6

1.2 1.2 1.3 1.0 1.0 1.0 1.3 1.3 1.0 0.4 0.5 0.6

1.0 1.2 0.9 0.6 0.7 0.7 0.8 1.1 1.4 0.8 1.1 1.1

1.9 1.8 1.2 0.8 0.5 0.5 0.6 0.7 0.9 0.9 0.7 0.7

1.5 1.5 1.0 0.8 0.7 1.0 1.0 1.0 1.2 1.1 1.4 1.6

1.9 1.9 1.9 0.7 0.8 1.2 1.2 1.1 1.0 1.2 0.8 0.8

0.6 0.6 0.6 0.4 0.5 0.8 1.6 1.0 0.9 0.7 0.9 1.0

2.0 1.5 1.4 0.8 0.5 0.5 0.6 0.5 0.8 0.9 1.1 1.1

1.2 1.3 0.8 0.6 0.5 0.8 0.6 0.6 1.0 0.5 0.7 0.8

1.2 0.7 1.1 0.9 0.6 0.5 0.4 0.9 0.8 1.0 0.9 0.9

0.8 0.7 1.0 0.6 0.8 0.5 0.8 0.4 0.6 0.6 1.0 0.8

1.7 2.2 0.6 1.2 1.2 2.2 2.3 2.5 1.9 1.3 1.7 1.8

3.3 3.3 0.8 0.8 1.3 1.0 1.0 1.4 1.2 1.3 1.7 1.6

3.3 3.6 2.7 0.6 0.6 0.6 0.9 0.6 1.2 0.7 0.7 1.1

3.2 3.3 3.0 0.9 0.7 1.0 0.7 1.6 1.8 1.6 0.6 1.1
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Then under the historical measure, we obtain: 

    𝑇  
 

𝑇   
       
 

 

 
 

𝑇   
     𝑇         𝑇   

     𝑇 

     𝑇 
 
 

 
  
 

  
    

The volatility, both under the historical and the risk neutral measures, is not properly observable. 

However, we consider that empirical volatilities tend to approach the expected value of the volatility 

under the historical measure, ie.             𝑇           , with: 

         𝑇       
 

 𝑇     
        𝑇      

     𝑇 

     𝑇 
 
 

 
  
 

  
        

However, the expectation             𝑇            also involves the autocovariance of     , for 

which we do not have a dedicated expression. We prefer avoiding this additional complexity, 

although we reckon there might be a way to quantify the autocovariance. As an alternative to 

            𝑇           , we prefer focusing on         𝑇      , which does not involve the 

autocovariance. 

In the end, we calibrate the model by reducing the distance between the empirical estimator 

        
 

      
         𝑇 
    
    and the corresponding analytical expression 

        𝑇     
  on a rolling time-window        . We thus obtain the following optimisation 

problem: 

 𝑖             
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(167) 

With: 
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        𝑇      𝑇  
    

   
        

     
       ,  

    
       ,  

    
   

       are already given in Hainaut (2016) so only      
      , 

       
      ,  

      
       have to be calculated. Like in Hainaut (2016), we use the infinitesimal 

generator to calculate these expectations; and in particular we use the following properties of the 

infinitesimal generator: 
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As shown in Errais et al. (2010), if   
     

    
   the process       

    
    

    
   is a Markov process 

in the state space              and its infinitesimal generator for any function       

with partial derivatives          is such that: 

               
               

     

   
       

          
           

          
               

  

  

   
       

          
    

          
                      

  

  

 

(168) 

Based on Errais et al. (2010), we consider the following property where the expectation of   is equal 

to the integral of the expected infinitesimal generator: 

                                  
 

  

 (169) 

Another interesting property is the following: the derivative of              with respect to time is 

also equal to its expected infinitesimal generator: 

 

  
                            (170) 

First we calculate    𝑿   
𝒊    

 . Let us consider       
 . Using the infinitesimal generator we 

obtain the following relationship: 

                                 
                  

                 
       

     
                         

                 
       

     
               

Similarly with       
 , we obtain: 

                                 
                  

                 
        

     
                         

                 
            

               

Then using eq. (170) we obtain the following ODE: 

 

 
 
        

      

  
        

      

   

 
 
  

     

     
   

                 

                 
  

       
      

       
      

  

(171) 

With: 
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Then we can solve this system of ordinary equations over the interval       . We obtain: 

 
       

      

       
      

     
         
          

    
          
           

     
     
     

   
 

  

    
         
          

     
      

 

      
   

(172) 

Where      are constant: 

     
 

 
                          

 

 
                            

 

               

 ,     are given by: 

   
              

             
 

             
 

  

    
 

 
 
             

 
      

 
 
                   

  

And   is the determinant of   defined as: 

                                     
 

               

This approach is relatively similar to the calculation of      
𝑖     , shown in Hainaut (2016): 

 
     

      

     
      

    
      

            

       
           

     
    
    

     
         
          

     
   
 

   
   (173) 

In both eq. (172) and eq. (173) convergence as time goes by is ensured only if      and     . We 

thus add this condition to the calibration.  

Then we have to identify    𝑿 
      . This time we consider     

 . Then using the infinitesimal 

generator, we obtain the following relationship: 

                   
              

                   
              

           

Then using eq. (169) we obtain: 

    
          

            
              

                   
              

           
 

  

   

In particular we consider a discrete version of the integral  

    
          

              
              

                   
              

           

 

    

 

Some empirical tests suggest that the exponential in eq. (173) tends to converge towards 

equilibrium for          . As a result, we arbitrarily decide to consider rolling time windows of 

    points (ie. conditional expectations are calculated on the interval [    ]=[         ]). Empirical 

observations suggest that results of the calibration wouldn’t be that much affected by the length of 

the time-window anyway. 
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In the end, and for a given country, we see 10 ‘behavioural’ unknown variables 

                                       , plus two risk-premium parameters        .  

        are also unknown; we calculate them out of        , using the martingale condition in eq. 

(151).  

We also note that yields do not follow a unique and consistent trend over the full sample, as we see 

different periods of consistent rise or decline in valuations. As a result, we assume that positive and 

negative jumps have a similar speed of reversion, ie.       and      . In the end, we are left with 

the following vector of unknowns:                                . It is also worth noting that 

because                      is likely to differ from                     , we will probably 

have   
 
   

 
.  There is still a certain degree of flexibility left under the risk-neutral measure.  

Jumps are not observable in our own framework. As a result   
  is a latent variable that we do not 

calculate per se. This is a meaningful change compared to the proposed methodology in Hainaut 

(2016). All the same, and as indicated above, the calculation of      
       and        

       

involves the vector     
     

  , which therefore has to be estimated.  

We calculate an estimate of     
     

   by reducing the distance between            against its 

empirical value (via an ordinary OLS method). In particular, we consider the system of equations 

obtained with                    that we calibrate against the empirical value of 

              and               . For a matter of timing, we restrict the analysis to Germany, 

France, Italy and Spain.  

We conduct a two-step calibration. In both steps, we reduce the distance between 

        𝑇       (ie. under the historical measure, and with         ), versus the equivalent 1-

month empirical estimator, calculated on the interval       .    is the rolling variable, and takes any 

time value in the sample.  

In the first step, we focus on a simpler version of the problem, that takes the instantaneous interest 

rate    as the only available data: 

            

This simplifies the problem, and helps identify relevant intervals for the generation of initial values in 

the second part of the calibration.  

In the second step of the calibration, we take the full interest rate curve.  

Table 174 shows the calibrated variables, under the historical measures. Then Table 175 highlights 

the risk-premium coefficients. Finally, Table 176 shows the coefficients obtained under the risk-

neutral measure. For each parameter, there is a visible stability from one country to another. This 

is a sign of coherence.  

Table 174. Behavioral coefficients under the historical measure 

  

 

 
 

Germany 0.10 0.0012 0.500 -0.250 -0.083 0.531 30.0 15.3

France 0.10 0.0243 0.541 -0.355 -0.215 0.153 31.4 16.5

Italy 0.55 0.0176 0.877 -0.098 -0.155 1.558 20.2 7.5

Spain 0.50 0.0192 1.238 -0.257 -0.066 1.347 22.0 6.3

 1,1   1,2   2,1  2,2      1  2 
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Table 175. Risk-premium coefficients 

  

 

 

 

Table 176. Coefficients under the risk premium measure 

  

 

 

The difference between         𝑇       and its empirical equivalent is an illustration of the 

calibration error, which gives indications on the quality of the calibration. As shown in Graph 249 to 

Graph 252, we see periods of tight convergence between both indicators, as well as periods where 

the gap is more substantial. But overall, the prevailing picture suggests that the calibration was 

effective for the majority of the period considered. The error could surely be minimised further on a 

shorter sample (16 years means about 4450 points under study). The fit is also very much influenced 

by the shape of   , and how it differentiates itself from     𝑇 . On that basis too, a shorter sample 

would probably improve the calibration.  

Graph 249. Calculated   
      𝑇       versus its 

empirical estimator, Germany  (5Y maturity) 

 Graph 250. Calculated   
      𝑇       versus its 

empirical estimator, France  (5Y maturity) 

     

 

 

 
   

 

Graph 251. Calculated   
      𝑇       versus its 

empirical estimator, Italy  (5Y maturity) 

 Graph 252. Calculated   
      𝑇       versus its empirical 

estimator, Spain  (5Y maturity) 

     

 

 

 
   

Germany 1.33 0.97 2.8 -1.5

France 1.03 1.04 2.5 -1.3

Italy 1.45 0.88 6.0 -3.1

Spain 1.62 1.74 3.8 -3.7

1.127

1.099

1.543

1.352

1.093

1.100

1.329

1.379

 1   2   1   2   1  1,1 1 +  2,1 2 +  1   2  1,2 1 +  2,2 2 +  2  

Germany 26.6 14.0 0.001 0.001 0.564 -0.093 -0.090 0.581
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In order to understand the ‘strength’ of positive and negative jumps under the risk-neutral measure, 

let us consider a steady-state version of the jump amplitude, that we denote   
   

 and   
   

:  
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Finally we consider the coefficients     
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 as a reflection of the contribution of each, positive and negative jumps, onto the 

jump intensity   
   

 and   
   

. Table 177 shows the resulting values. Overall, the colour code 

indicates that the self-exciting dimension is bigger for Italy and Spain than Germany and France.  

Table 177.     
 

 highlight the strength of the self-exciting loop 

  

 

 

As already mentioned before, jump intensities are not observable. Instead, we calculate its 

conditional expectation (ie.      
      ). Graph 253 to Graph 260 show this indicator, either under 

the historical measure (on the left), or under the risk-neutral measure (on the right).  

 

Graph 253. Conditional expectation of jump intensities, 

under the historical measure 

 Graph 254. Conditional expectation of jump intensities, 

under the risk-neutral measure 
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Graph 255. Conditional expectation of jump intensities, 

under the historical measure 

 Graph 256. Conditional expectation of jump intensities, 

under the risk-neutral measure 

     

 

 

 
   

 

Graph 257. Conditional expectation of jump intensities, 

under the historical measure 

 Graph 258. Conditional expectation of jump intensities, 

under the risk-neutral measure 

     

 

 

 
   

 

Graph 259. Conditional expectation of jump intensities, 

under the historical measure 

 Graph 260. Conditional expectation of jump intensities, 

under the risk-neutral measure 
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The multivariate version of the model 

The model in Hainaut (2016) does not allow for any transmission of financial distress across 

securities. We therefore explore an extension of the model in this section, which seeks to address 

this limitation.  

We consider a framework where financial contagion is supposed to emanate from a dedicated risk 

index      recognised as a contagious time series.      can be a real or a synthetic zero coupon bond.  

We still denote by    the zero coupon bond under study, ie. the security targeted by contagion.  

The problem is now formulated as:  

 
             
                

  (175) 

With: 

 
            

          
   

        
      

              
  (176) 

This formulation involves four different jumps   
 ,   

 ,   
   

 and   
   

. The amplitude of the jumps   
   

 

and   
    is denoted by     and     with           ,           ,              , 

              and we have: 

   
         

     and      
         

   (177) 

     is assumed to be driven by the dynamics highlighted in the univariate part, developed above, as 

this series is not subject to any exogenous contagion. We thus define the corresponding jump 

intensities as   
   and   

   as: 

 
   

             
              

           
  

   
             

              
           

   
  (178) 

We adjust the definition of the intensity   
  and   

   according to our assumption that    is exposed 

to contagion stemming from     . And in particular we consider the additional cross-market 

parameters      ,      ,      ,      : these coefficients are supposed to illustrate the strength of the 

risk propagation stemming from the jumps   
   and   

  : 

 
   

          
            

         
          

           
  

   
          

            
         

          
           

  
  (179) 

In the end,      ,      ,      ,       describe the contagion effect. 

We also define the first moment of the intensities as        
 
     ,        

 
     , 

        
  
     ,         

  
     .  

We design our own risk index      in the following section. Before that, we explore the implications 

ensuing from the addition of      (as the engine of contagion) on to the methodology.  
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As shown in Errais et al. (2010), if   
     

    
   the process       

    
    

    
    

     
     

     
    is 

a Markov process in the state space              and its infinitesimal generator for any 

function       with partial derivatives                    is such that: 
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Proposition 1. (Moments of   
 ) The expected intensity           

       for 𝑖              , is 

calculated as the solutions of the following system of differential equations:  

 

  

 

 
 

    
      

    
      

    
       

    
        

 
 
  

    
    
      
      

  

 

 
 

                 

                 

                                  
                                   

                      
                      

                      

                       

 
 

 

 
 

    
      

    
      

    
       

    
        

 
 

 

Which gives the solution: 

 

 
 

      
      

      
      

      
       

      
        

 
 
  

 

 
 
 
      

                                     

                        
                        

                                 
                

                                           
             

 
 
    

    
    
      
      

 

   
 
                                   
                                         
                                        

                                              

    

 

 
 

   
 

   
 

   
  

   
  
 

 
 

 

(181) 

Where               are the eigenvalues of: 
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Which means that: 

 
 
 
 
 
 
 

 
 
 
 
 
 

   
 

 
                          

 

 
                            

 

              

   
 

 
                          

 

 
                            

 

              

    
 

 
                                

 

 
                                 

 

                  

    
 

 
                                

 

 
                                 

 

                  

  

The stationarity of the     
       is ensured only if the eigenvalues    are all negative. This is 

something we verify during the calibration. 

Finally,   is the matrix of the eigenvectors, corresponding to   ,   ,         . 

Then based on Hainaut (2016), the expectation of    is equal to: 

 
 
 

 
                                

 

 

                
 

 

                        
 

 

             
 

 

  (182) 

 

Proposition 2. Let   ,   ,    ,     denote the moment generating functions of   ,   ,    ,     in 

the multivariate franework: 

           
 
          for 𝑖            (183) 

The moment generating function of             
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Where  ,       ,    ,     are solutions of a system of ODEs: 
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(185) 
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With the terminal conditions   𝑇 𝑇   ,    𝑇 𝑇    ,    𝑇 𝑇    ,    𝑇 𝑇    , 

   𝑇 𝑇    .   

Equivalent exponential affine measure and bond pricing: 

Similarly to the univariate approach, and because the moment generating function of   is an affine 

function of    
    

    
    

    
     

     
     

   , we consider an exponential affine change of measure. 

The dynamics of interest rates the new measure is introduced by an exponential martingale of the 

form: 
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(186) 

Where               and are assimilated later to risk premiums. The next proposition specifies 

the condition that             have to fulfil so that    is a local martingale. 

 

Proposition 3. If for any given couple of parameters              , there exists suitable solutions 

               ,                ,                ,                 for the system of equations: 

 
 
 

 
 

                                

                                

                                                    

                                                    

  
(187) 

Where            
 
  for 𝑖            and if                is a linear combination of these 

solutions: 

                                               (188) 

Then                 is a local martingale.  

Assuming the existence of suitable solutions for the system in eq. (187), an equivalent measure 

             is defined by: 

             

  
 
               

               
 

(189) 

This may be used as risk neutral measure by investors. In this case, the dynamics of intensities and 

aggregate supply or demand is modified but is still a bivariate Hawkes process. 

Proposition 4. Let   
   ,   

   ,   
    ,   

     be counting processes with respective intensities: 

 
 
 

 
   

                            
 

  
                            

 

  
                                               

  

  
                                               

  

  
(190) 
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under the equivalent measure             . On the other hand, if     ,     ,      ,       denote the 

random variables defined by the following moment generating function:  

 
 
 
 
 
 

 
 
 
 
 

  
          

   
  

                        

                    

  
          

   
  

                        

                    

   
          

    
  

                                           

                                       

   
          

    
  

                                           

                                       

  
(191) 

And if   
   

,   
   

,   
    

   
    

 are defined by the jump processes: 

  
   

    
     

   

        𝑖            
(192) 

Then intensities   
  are driven by the following EDS under             :  

 
 
 

 
    

            
    

             
    

        
    

  

   
            

    
             

    
        

    
  

   
         

    
           

    
      

    
       

    
        

    
  

   
         

    
           

    
      

    
       

    
        

    
  

 
  

(193) 

 

This time again we assume an exponential distribution of the jumps: 
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(194) 

In this case, the first and second moments of   ,   ,    ,     are respectively equal to    
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 and to    

 

    
 . The moment generating functions are given by: 

      
  

    
 for     ,          

  

    
 for       
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 for        

 

Then we have the following interesting corollary: 

Corollary 1. The distribution of jump amplitudes are exponential under   and   and the densities, 

noted   
     under  , are defined by parameters: 

 
  
                          

  
                           

   
                                           

   
                                           

  (195) 
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Under             , the dynamics of intensities are preserved (for similar reasons as in the univariate 

analysis): the intensities of counting processes   
   ,   

   ,   
    ,   

     are Hawkes processes 

having the same structure under  , as these under the real measure  : 
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Where the parameters under   are: 

 
 
 
 
 

 
 
 
   

                        

  
 
                       

    
 
                                  

    
                                    

     
 

                                   

     
                                     

 
  

 
 
 

 
    

                                            

   
 
                                           

     
                                                       

     
 

                                                       

 
  

(197) 

We already mentioned that the price of a zero coupon bond is equal to the expected discount factor, 

under this risk neutral measure: 
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And in particular, adjusting the univariate formulation we obtain: 
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Where     𝑇 ,      𝑇 ,      𝑇 ,      𝑇 ,      𝑇  are solutions of the following system of ODEs: 
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With the terminal condition:   𝑇 𝑇   ,    𝑇 𝑇     𝑇 𝑇     𝑇 𝑇     𝑇 𝑇    

The dynamics of bond prices depends on the random measures of the jumps, noted   
          , 

  
          ,   

           ,   
            and such that: 

  
   

              
  

  

  

 

                  
(201) 

The expectation of these measures is equal to                     
   
         .  

Construction of the risk index 

Our multivariate framework assumes that the risk index      is the engine of financial contagion. 

While w could have considered Italian or Spanish zero coupon bonds as a possible time series for 

    , we prefer designing a specific risk index, calculated from a basket of those securities seen as 

potential candidates for financial contagion.  

We calculate      as a synthetic zero coupon bond, derived from the most ‘contagious’ time series in 

the sample, ie. those referring to peripheral countries (ie. Italy ‘IT’, Spain ‘SP’, Ireland ‘IR’ and 

Portugal ‘PT’).  

At time  , and for a given time series of price variations   , we measure the strength       of the price 

variation via its empirical cumulative distribution function    and such that:  

        
                           

                      
  

Based on the available data on peripheral countries, and for every   in the sample, we identify the 

‘toughest’ price variation as: 

                                         

Then we convert       as a synthetic data      by calculating the quantile that corresponds to      , 

drawn from a synthetic distribution function that we denote      In line with previous considerations, 

we assume that    is an exponential distribution that involves both coefficients      and     , 

calculated as the average value of respectively                             and 

                           , with: 

     
 

        
              

 

        
       for     𝑇 𝑆      𝑇  

In the end,    is defined as: 

 
       

   
             

       
   
              

   
(202) 

This looks rather consistent with the general methodology. We also assume that       is the 

average value of                                . 

We extend the procedure to all maturities in the range                           

                 . Graph 261 shows the resulting time series. 
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Graph 261. The risk index      in %, selection of different maturities   

 

 
 

We also compare the resulting risk index with the values in the dataset for each peripheral country. 

As Graph 262 shows, our risk-index is very similar to Ireland and Portugal. The risk-index even takes 

slightly higher values than other countries during periods of intense risk aversion. The commonality 

with peripheral countries looks consistent with the meaning of the risk index. 

Graph 262. 10Y risk-index compared to 10Y Zero coupon bonds in Italy, Spain, Ireland and Portugal  

 

 
 

We conduct the calibration of the risk-index, based on the univariate model developed above. We 

assumed the following dynamics: 
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And we obtain the following calibrated coefficients: 

Table 178. Behavioral coefficients under the historical measure 

  

 

 
 

Table 179. Risk-premium coefficients 

  

 

 
 

Table 180. Risk-premium coefficients 

  

 

 

We take a look at the error between the calculated         𝑇       and the corresponding 

empirical estimator: results in Graph 263 show that the error is more or less important depending on 

the period; but overall the fit is better during periods marked by intense risk aversion. We also plot 

the conditional expectation of the jump intensities, under the historical measure in Graph 264, and 

under the risk-neutral measure in Graph 265.  

Graph 263. Calculated variance versus empirical 

variance 

 Graph 264. Conditional expectation of jump intensities, 

under the historical measure 

     

 

 

 
   

 

Graph 265. Conditional expectation of jump intensities, 

under the risk-neutral measure 
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Calibration of the multivariate model 

In the multivariate framework, the dynamics of the zero coupon bond under the risk neutral 

measure is the following: 
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Then under the historical measure we obtain: 
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Like in the univariate analysis, we calibrate the model by minimizing the distance between 

        𝑇      , and the corresponding rolling empirical estimator. This time,         𝑇       is 

equal to: 
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We thus have to calculate:      
      ,      

       ,      
   

 
      for  𝑖             and 

             . Using the infinitesimal generator and following the same approach as in the 

univariate analysis, we obtain the following relationships: 
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Let us now calculate        
      . We consider the same approach as in the univariate case: 
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That we solve over the time interval        as: 

 

 
 

      
      

      
      

      
       

      
        

 
 
   

 
                                   
                                        
                                        

                                              

   
 
                                        
                                      
                                         

                                               

    

 

 

     

     

     

      

   
 

  

   
 
                                   
                                         
                                        

                                              

    

 

 
 

      
 

      
 

      
  

      
  
 

 
 

 

(204) 
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Where               are similar to eq. (181). Finally,   is the matrix of the eigenvectors, 

corresponding to   ,   ,         . 

For a given country 𝑖 , we are now left with 12 ‘behavioural’ unknown variables 

                                                       , plus four risk-premium parameters 

             .                are also unknown; we calculate them out of              , using the 

condition in eq. (187). We consider that the variables                                         are 

given in Table 178. 

Since         are intrinsic descriptors of     , we also involve      
    𝑇       into the calibration. 

Based on what we saw in the univariate analysis, we obtain the following equation: 
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Like in the univariate analysis, we conduct a two-step calibration. In both steps, we reduce the 

distance between between         𝑇       and      
    𝑇       versus their respective 

empirical estimators. In the first part of the calibration, we focus on a simple version of the problem 

where: 

             and                 

Then in a second part, we take the full curves into account. The interval of initial values is chosen 

based on the calibrated values obtained in the first step.  

Table 181 shows the calibrated variables, under the historical measures. Then Table 182 highlights 

the risk-premium coefficients. Finally, Table 183 shows the coefficients obtained under the risk-

neutral measure. For each parameter, there is a visible stability from one country to another.  

Table 181. Behavioral coefficients under the historical measure 

  

 

 
 

  

Germany 0.003 1.13 0.379 -0.06 -0.06 0.25 0.14 -0.01 0.00 0.02 356.1 183.4

France 0.021 0.19 0.933 -0.30 -0.23 0.45 0.44 0.00 -0.02 0.03 161.0 87.9

Italy 0.009 0.84 0.548 -0.15 -0.48 0.55 0.37 -0.01 -0.01 0.06 235.7 72.9

Spain 0.026 0.14 1.046 -0.32 -0.10 0.94 0.05 0.00 0.00 0.02 124.9 61.9

 1,1   1,2   2,1  2,2      1   2  1 ,1   1 ,2   2 ,1  2 ,2 
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Table 182. Risk-premium coefficients  

  

 
 

 

Table 183. Coefficients under the risk premium measure 

  

 
 

The calibration error is shown in the following charts, where we compare         𝑇       against 

its empirical value. This time again, the fit is not outstanding as we see periods of reduced error, and 

other periods with a sizeable gap between both series (Graph 249 to Graph 252). We also note that 

the resulting intensity is a bit more jumpy/instable than in the univariate simulation. Another 

observation is that Italy for instance shows a decent fit during the period until end-2012. Then, the 

algorithm is not able to fit the period (of ultra low rates) starting from early 2013. For Spain in 

contrast, the gap is larger during the period 2009-2014, then the period of ultra low rates is well 

fitted. In the end, and even if there are periods of significant gap between both series, the end-point 

of the model is to estimate implied volatilities, which has more to do with the variance of     𝑇 , 

rather than the absolute estimate of it. We will determine later in the report if there is a true 

benefit in considering a multivariate definition of the problem. 

Graph 266. Calculated variance versus empirical 

variance, Germany  (both are averaged on all maturities) 

 Graph 267. Calculated variance versus empirical 

variance, France  (both are averaged on all maturities) 

     

 

 

 
   

 

Germany 1.27 1.10 1.57 2.10 1.08 -0.86 1.87 -4.36

France 0.43 1.35 1.57 2.36 1.37 -2.96 1.91 -4.78

Italy 1.82 1.21 1.56 1.15 3.49 -0.61 1.28 -2.96

Spain 1.06 0.40 1.55 0.93 2.32 -0.90 1.85 -2.58

Germany

France

Italy
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1.009
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1.014

1.029

1.003

1.014

 1   2   1  1,1 1 +  2,1 2 +  1   2  1,2 1 +  2,2 2 +  2    1 

  1  1 ,1 1 +  2 ,1 2 +   1,1 3 +   2,1 4 +  3    2  1 ,2 1 +  2 ,2 2 +   1,2 3 +   2,2 4 +  4  

  2   1  2    1    2  

Germany 354.6 182.7 1.13 1.13 0.38 -0.06 -0.06 0.25 0.14 -0.01 0.00 0.02

France 159.5 85.5 0.20 0.20 0.94 -0.30 -0.24 0.46 0.45 0.00 -0.02 0.03

Italy 231.8 72.7 0.85 0.84 0.56 -0.15 -0.48 0.55 0.37 -0.01 -0.01 0.06

Spain 121.5 61.1 0.15 0.14 1.08 -0.33 -0.11 0.96 0.05 0.00 0.00 0.02

Germany 6.8 2.8 0.007 0.007 2.42 -0.55 -0.19 2.44

France 6.8 2.8 0.007 0.007 2.42 -0.55 -0.19 2.44

Italy 6.8 2.8 0.007 0.007 2.41 -0.55 -0.19 2.44

Spain 6.8 2.8 0.007 0.007 2.41 -0.55 -0.19 2.43
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Graph 268. Calculated variance versus empirical 

variance, Italy  (both are averaged on all maturities) 

 Graph 269. Calculated variance versus empirical variance, 

Spain  (both are averaged on all maturities) 

     

 

 

 
   

In order to understand the ‘strength’ of positive and negative jumps under the risk-neutral measure, 

we consider a steady-state version of the jump amplitude, that we denote   
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Using the univariate approach, we get that: 
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Then we also deduce that: 
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Finally, we consider the coefficients     
      

   
   

   ,      
      

   
   

           
      

   
   

   ,   

    
      

   
   

    as well as      
       

    
   

    ,       
       

    
   

             
       

    
   

    ,   

     
       

    
   

    , as a reflection of the contribution of each, positive and negative jumps, onto 

the jump intensity   
   

,   
   

.  

Table 184 shows the resulting values. First we note that on average,      
 , and      

  are bigger than 

    
 ,     

 : this is a sign that a positive jump (ie. risk aversion) will cause sizeable contagion between 
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the risk-index and the different sovereigns. The other way round, and as      
 

, and      
 

 looks very 

small compared to     
 

, and     
 

, it seems that negative jumps (ie. risk appetite) will provoke limited 

risk propagation into sovereigns.     

Table 184. Ratios illustrating the strength of risk propagation through jumps   

  

 

 

 

Finally, Graph 270 to Graph 285 show the resulting jump intensities, under the historical and risk-

neutral measures.  

 
Graph 270. Conditional expectation of the jump 

intensities    
  and   

 , under the historical measure 

 Graph 271. Conditional expectation of the jump 

intensities    
  and   

 , under the risk-neutral measure 

     

 

 

 
   

 

 
Graph 272. Conditional expectation of the jump 

intensities    
   and   

  , under the historical measure 

 Graph 273. Conditional expectation of the jump 

intensities    
   and   

  , under the risk-neutral measure 

     

 

 

 
   

 

Germany 2.240 1.711 0.087 0.001

France 0.598 0.197 0.086 0.001

Italy 0.706 0.913 0.084 0.001

Spain 0.154 0.343 0.082 0.001

Germany 2.4E-03 -5.4E-04 -3.9E-04 2.3E-03 3.1E-02 -1.5E-04 -2.4E-03 6.5E-04

France 3.5E-03 -6.9E-04 -8.8E-04 1.1E-03 3.1E-02 -1.5E-04 -2.4E-03 6.8E-04

Italy 1.7E-03 -7.6E-03 -1.5E-03 2.8E-02 3.0E-02 -1.9E-04 -2.3E-03 8.2E-04

Spain 1.4E-03 -1.8E-03 -1.3E-04 5.4E-03 2.9E-02 -2.0E-04 -2.3E-03 9.0E-04

Average 2.2E-03 -2.7E-03 -7.2E-04 9.2E-03 3.0E-02 -1.7E-04 -2.4E-03 7.6E-04
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Graph 274. Conditional expectation of the jump 

intensities    
  and   

 , under the historical measure 

 Graph 275. Conditional expectation of the jump 

intensities    
  and   

 , under the risk-neutral measure 

     

 

 

 

   

 

Graph 276. Conditional expectation of the jump 

intensities    
   and   

  , under the historical measure 

 Graph 277. Conditional expectation of the jump 

intensities    
   and   

  , under the risk-neutral measure 

     

 

 

 
   

 

Graph 278. Conditional expectation of the jump 

intensities    
  and   

 , under the historical measure 

 Graph 279. Conditional expectation of the jump 

intensities    
  and   

 , under the risk-neutral measure 

     

 

 

 
   

 

Graph 280. Conditional expectation of the jump 

intensities    
   and   

  , under the historical measure 

 Graph 281. Conditional expectation of the jump 

intensities    
   and   

  , under the risk-neutral measure 
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Graph 282. Conditional expectation of the jump 

intensities    
  and   

 , under the historical measure 

 Graph 283. Conditional expectation of the jump 

intensities    
  and   

 , under the risk-neutral measure 

     

 

 

 
   

 

Graph 284. Conditional expectation of the jump 

intensities    
   and   

  , under the historical measure 

 Graph 285. Conditional expectation of the jump 

intensities    
   and   

  , under the risk-neutral measure 

     

 

 

 
   

 

 

 

 

Pricing zero coupon bond options 

Our jump model can be used for pricing options on zero coupon bonds, and we explore this special 

feature and the corresponding methodology in this section.  

We define a forward interest rate on a given zero coupon bond curve, via its tenor 𝑆, (ie. the 

maturity of the corresponding zero coupon bond), and the forward date 𝑇. In practice, 𝑇 is the 

expiration date of the considered option, ie. at a given time    we get: 𝑇      expiry and  

𝑆      maturity of the underlying). We denote the yield to maturity of a forward zero coupon 

bond as   𝑇 𝑆 , and the corresponding forward discount factor as   𝑇 𝑆 .  

  𝑇 𝑆  is defined as: 
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We also denote by     𝑇 𝑆   the payoff, paid at time 𝑆  𝑇 relative to a European option written 

on the forward zero coupon bond   𝑇 𝑆 . As explained in Hainaut (2016), the payoff depends on the 

type of the option:  

- For caplets:     𝑇 𝑆     𝑆  𝑇    𝑇 𝑆       

- For floorlets:     𝑇 𝑆     𝑆  𝑇      𝑇 𝑆     

- For a call option based on the discount factor of a zero coupon bond:  

    𝑇 𝑆            𝑇 𝑆  𝑆  𝑇       

  and   are respectively the principal and the strike of the option.  

 

Then the option price is calculated as the conditional expectation of the corresponding discounted 

payoff, under the risk neutral measure: 

    
      

 

      𝑇 𝑆             𝑆  
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where            is the density of   𝑇 𝑆  under the forward measure. If      designates the market 

value of a cash account, ie.          
 

  , the Radon Nykodym derivative defining the S-forward 

measure, is equal to: 
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To calculate the expected payoff under   , a convenient approach consists of calculating the 

probability density function of   𝑇 𝑆 , denoted        
  , that we obtain by inverting the characteristic 

function       𝑖  , of   𝑇 𝑆 . Based on this formulation,          is necessarily the moment 

generating function of   𝑇 𝑆 .  

First, we focus on calculating the moment generating function         . In particular, we denote by 

        the version obtained in the univariate framework, and by         the corresponding moment 

generating function obtained in the multivariate framework.         𝑖   and         𝑖   are the 

characteristic functions of   𝑇 𝑆 .  

 

As shown in Hainaut (2016), the univariate moment generating function        , under the risk-

neutral measure, is calculated as: 
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Where       𝑆 ,   
     𝑆 ,   

     𝑆 ,   
     𝑆 ,   

     𝑆  are solutions of the system of ODEs in eq. 

(164) with a maturity 𝑆, and where       𝑇 ,   
     𝑇 ,   

     𝑇  are solutions of the following 

system of ODEs: 
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With the terminal conditions    𝑇 𝑇     
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In the multivariate framework, we then obtain the following expression: 

Corollary 2. The moment generating function of   𝑇 𝑆  at time    𝑇  under the risk-neutral 

measure   , denoted by           , is given by:    
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Where       𝑆 ,   
     𝑆 ,   

     𝑆 ,   
     𝑆 ,   

     𝑆  are solutions of the system of ODEs in eq. 

(200), with a maturity 𝑆 , and where       𝑇 ,   
     𝑇 ,   

     𝑇 ,   
     𝑇 ,   

     𝑇  are 

solutions of the following system of ODEs: 
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With the terminal conditions    𝑇 𝑇     
 

   
    𝑇 𝑆 ,   

  𝑇 𝑇     
 

   
   

  𝑇 𝑆 , 

  
  𝑇 𝑇     

 

   
   

  𝑇 𝑆 ,   
  𝑇 𝑇     

 

   
   

  𝑇 𝑆 ,   
  𝑇 𝑇     

 

   
   

  𝑇 𝑆 . 

 



272 
 

At a given time   , the vectors    
   
   

   
  and    

   
   

   
   

    
   

    
   are obviously unknown  

(since    𝑇 ). As a replacement, we take the vectors       
          

    
          and 

      
   
       

    
   
       

    
    

       
    

    
      , which are the expected value of the 

jumps intensities, conditional on     . These conditional expectations are calculated with the 

calibrated coefficients obtained above. 

Then we derive the corresponding probability distribution function by inverting the characteristic 

functions         𝑖   and         𝑖  . We denote by        
     and        

     the resulting probability 

distribution functions obtained respectively in the univariate and multivariate frameworks:  
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These integrals are resolved via a discrete (inverse) Fourier Transform. Hainaut (2016) gives 

extensive details on these calculations; we consider the same approach. 

 

Deriving implied volatility from characteristic functions 

Let us consider a floorlet, on a 5Y zero coupon bond, with an expiry of 3 months (ie. 𝑇        

working days, 𝑆       years). Assuming that        
     and        

     are known, we seek to extract the 

corresponding implied volatility. 

The price of the option   (or premium) is indicated by the payoff. Because we consider a floorlet, the 

premium is equal to        𝑇 𝑆     𝑆  𝑇      𝑇 𝑆   . 

Once we get the option price  , we then calculate the corresponding implied volatility using the 

pricing model of Bachelier (see Bachelier (1900), Bachelier (1912), Black (1976)), where volatility is 

assumed to be a Gaussian variable:  

   𝑇 𝑆  𝜎   (210) 

Where   is a Brownian motion and   𝑇 𝑆  is the forward interest rate. Then the price of put and 

call options of strike   and expiry 𝑇     are:  

              𝑇 𝑆      
  𝑇 𝑆   

𝜎  𝑇     
  𝜎  𝑇        

  𝑇 𝑆   

𝜎  𝑇     
   

(211) 

                𝑇 𝑆     
  𝑇 𝑆   

𝜎  𝑇     
  𝜎  𝑇        

  𝑇 𝑆   

𝜎  𝑇     
   

(212) 

Where   is the risk-free interest rate,     is the standard Normal cumulative distribution function, 

and     is the standard Normal probability distribution function. Floorlets behave like a call option 

on the price of the zero coupon bond, so the option premium   is homogeneous to       in eq. 

(211).  We calculate the implied volatility out of eq. (211).  
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A lack of data 

Options on sovereign bonds have always been a relatively small market, and volumes have remained 

at a very low level in recent years compared to the pre-crisis environment. As there is only very few 

market participants, options on sovereign bonds see a pronounced illiquidity, which overall stands in 

sharp contrast with the more popular – and liquid – market of swaptions. As a result, there is a 

persistent concern in banks about how to price sovereign bond options. A common solution, is to 

price implied volatility on a sovereign security as a ‘shift’, which is added to the implied volatility of 

the equivalent swaption (in terms of maturity and strikes). The shift, is supposed to reflect the fact 

that a sovereign bond yield can be seen as an IRS adjusted by a premium, mostly representing 

credit risk, liquidity conditions and a specific interpretation of the term premium component. On 

that basis, drawing an estimate of the sovereign implied volatility by ‘shifting’ the swaption volatility 

may look consistent for at-the-money options, at least if the shift is correctly appreciated by traders.  

In practice however, the value of the shift is usually calculated as an empirical transformation of the 

realised volatility of the underlying sovereign bond. As a result, the calculation of the shift is 

generally disconnected from the different components of the considered option, ie. independent 

of its strike and its expiry. And as a logical consequence, there no way to get a proper smile.  

 These are clear limitations of the ‘shift’ approach. 

In this challenging environment, we were not given the possibility to get a reliable set of implied 

volatilities on sovereign bond options. First, these are not tracked at SocGen, mostly as the 

methodology employed by traders to establish the shift is too empirical, and not necessarily robust 

from a mathematical standpoint. The few numbers we saw suggest that the mid-price, quoted at 

SocGen for these options, is extremely close to the historical volatility of the underlying, with 

remarkably wide bid-ask spreads depending on the nature of the bond (this is especially true for 

Italian and Spanish bonds as it is somewhat difficult to get a proper hedge on peripheral bonds).  

It is worth noting that on one side our analysis is based on zero coupon bond options, while on the 

other side traders are mostly requested to price coupon bond options. Jamshidian (1989) introduced 

a simple and interesting approach to make a bridge between zero coupon bond and coupon bond 

options. In particular, the author shows that a coupon bond option can be seen as a portfolio of zero 

coupon options.  

 

Results 

We focus on at-the-money options (ie.       𝑇 ). We calculate the univariate distribution 

function        
     over the full sample, for 3-month at-the-money options and we derive the 

corresponding implied volatility. We then compare the resulting implied volatility against the rolling 

3-month standard deviation that we take as an estimator of the realised volatility.  

Graph 286 to Graph 289 show the implied volatility obtained in the univariate framework. First we 

note that implied volatilities are somewhat jumpy. This surely reflects jumps at work. On average 

however, implied volatilities are very close to the series of realised volatility. This is a sign of 

coherence.  
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While there are periods where the implied volatility seems to be lagging a bit below the realised 

volatility, this is mostly during periods of stable financial markets. When we focus on periods of 

more volatile markets (like 2007-2010 and 2011-2013), the implied volatility is usually exceeding the 

realised volatility (though not for Spain). This is particularly visible with options on Italian bonds in 

Graph 288, during the sovereign crisis. From a general point of view, a sudden increase in the 

realised volatility is followed by a concomitant jump in the implied volatility: in fact jumps look 

particularly large in the early stage of risk aversion (arrows in the graphs illustrate some of these 

periods). 

  For us, this is a sign that the risk-premium coefficients were successfully calibrated. This 

pattern of larger jumps when the underlying situation starts deteriorating could be used by market 

participants to take action before the crisis materialises in full.  

While the implied volatility for options on Italian bonds tends to be significantly larger than the 

realised volatility during the years 2011 and 2012, this is not the case for options on Spanish bonds: 

the implied volatility is persistently underestimating the true volatility during this period in Graph 

289. The univariate approach looks a bit less relevant here.  

Graph 286. 3m5Y option on Germany bonds, implied versus realised volatility (univariate model) 

 

 
 

 

Graph 287. 3m5Y option on French bonds, implied versus realised volatility (univariate model) 
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Graph 288. 3m5Y option on Italian bonds, implied versus realised volatility (univariate model) 

 

 
 
 

Graph 289. 3m5Y option on Spanish bonds, implied versus realised volatility (univariate model) 

 

 

 

 

When we consider the general picture, the implied volatility obtained in the multivariate framework 

is very close to what we got from the univariate model (Graph 290 to Graph 293). Focusing on years 

of crisis (like 2011-2012) however, we note that for options on Italian bonds (Graph 292), the implied 

volatility is not jumping as much as in the univariate version (Graph 288).  

For options on Spanish bonds in contrast (Graph 293), the multivariate model gives a better fit during 

the same period, than the univariate one in Graph 289.  

Finally, Graph 294 to Graph 297 show an overlap of both implied volatilities with a focus on the 

2008-2012 period. For Germany (Graph 294), the two volatilities are somewhat equivalent, with very 

little deviation one from each other. For France and Italy in contrast, the fit seems to be better with 

univariate calculations, especially during the period of intense contagion from July to December 

2011 (Graph 295, Graph 296). For Spain finally, and as mentioned above, the multivariate approach 

slightly outperforms the univariate model (Graph 297).  

 It is not clear whether the multivariate approach improves the quality of the resulting implied 

volatilities. If it does, this is most probably just at the margin. In any way, the high degree of 

similarity between these two estimators is a sign that calculations are coherent. 
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Graph 290. 3m5Y option on Germany bonds, implied versus realised volatility (multivariate model) 

 

 
 

 

Graph 291. 3m5Y option on French bonds, implied versus realised volatility (multivariate model) 

 

 
 

 

Graph 292. 3m5Y option on Italian bonds, implied versus realised volatility (multivariate model) 

 

 
 
 

Graph 293. 3m5Y option on Spanish bonds, implied versus realised volatility (univariate model) 
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Graph 294. 3m5Y option on German bonds, implied volatility – univariate versus multivariate model 

 

 
 

 

Graph 295. 3m5Y option on French bonds, implied volatility – univariate versus multivariate model 

 

 
 

 

Graph 296. 3m5Y option on Italian bonds, implied volatility – univariate versus multivariate model 

 

 
 
 

Graph 297. 3m5Y option on Spanish bonds, implied volatility – univariate versus multivariate model 
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The shape of the distribution 

A quick look at the shape of        
       shows that the distribution is very close to a normal distribution, 

and this is irrespective of the dimension of the problem: assuming similar implied volatilities, the 

shape of        
     is almost identical to        

    . Overall, this corroborates comments made in Hainaut 

(2016) and Errais et al. (2010).  

Graph 298. The obtained distributions look Gaussian  Graph 299. There is almost no skewness 

     

 

 

 
   

Exploring the statistical features of        
      , we note that the skewness of the distributions is erratic 

and close to zero, with values alternatively positive or negative (Graph 299). Digging a bit further 

about whether        
       enables to generate some skewness, we conduct a few synthetic simulations. 

On one side we assume a symmetric distribution of the behavioural coefficients, as per Table 185. 

And since any asymmetry would come from very pronounced distortions between   
    and   

   , we 

explore three different scenarios based different degrees of dissimilarity between   
    and   

    

(Table 186).  

Table 185. A symmetrical problem involving synthetic coefficients 

  

 

 

 
Table 186. Three different scenarios 

  

 

 

We calculate        
  for the three different scenarios (multivariate coefficients not specified in Table 

185 are taken from Table 180). As Graph 300 shows, the distribution is mostly symmetrical when 

  
      

    (scenario 1, red line). The two other scenarios in comparison, involving very disparate 

values of   
    and   

   , effectively see the emergence of some modest skewness inside the 

distribution (see Graph 300). In scenario 2 for instance, a larger   
    makes the right-part of the 

distribution slightly bigger, while in scenario 3 the larger  
    tends to increase the left-part of the 

distribution. This looks consistent with the natural interpretation that a higher   
    reflects more 
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frequent positive jumps, and similarly a higher   
   

 reflects more frequent negative jumps.  

 The shape of the distribution function tends to adjust itself coherently to any deviation in the 

jump intensity. That said, the appearance of sizeable skewness requires substantial decoupling 

between   
   

 and   
   

. This is not the case in our analysis where      
       and      

       are 

relatively close one to each other.   

Graph 300. Probability distribution functions under the forward measure, in each scenario 
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Conclusion  

In Chapter III, we have explored different ways to quantify the behaviour of sovereign securities, 

with a particular emphasis on how sovereign risk tends to affect the price of financial derivatives in a 

risk-off environment. As a backbone of the analysis, we assumed that risk aversion and the ensuing 

volatility favour the emergence of sizeable discontinuities in market prices, that we model with 

stochastic jumps. This is in contrast with the framework explored in the first two chapters, where 

there is an implicit constraint that risk aversion induces a continuous transformation of the price 

dynamics.   

The different approaches we investigate, extensively rely on Hawkes processes. These processes 

seek to estimate the durable impact of risk aversion onto the dynamics of jumps, via the introduction 

of dedicated self-exciting loops. Empirical observations already suggest that jumps are more 

frequent when market sentiment markedly deteriorates. And effectively, our model corroborates 

this assertion in full, with calibration indicating that a repeated occurrence of jumps at a given time 

literally increases the likelihood and the amplitude of jumps, in the future. As the strength of  

self-excitation is described by at least four different variables (ie.     ,     ,     ,     , and up to eight 

coefficients in more complex versions), the model also quantifies the strength of any latent cross-

excitation (via     , and     ). Our approach, on that basis, looks particularly versatile. Results 

overall, suggest that there is sizeable risk transmission through all these different channels. In the 

multivariate framework as well, contagion from the risk-index is significant.  

Calibrating the model has been a real challenge, for different reasons. First, there is a notable 

complexity rising from the fact that none of the jump intensity and the jump amplitude is observable 

in our framework. Plus, we did not have any reliable data on implied volatility. This made common 

approaches available in the literature inapplicable, as methodologies exploring the pricing of 

financial derivatives most frequently involve a reference dataset of implied volatilities, which greatly 

simplifies the calibration. We therefore developed an original approach to the calibration, different 

from conventional procedures found in the literature.  

Results from the calibration look consistent from one country to another, and our implied volatility 

remains in the vicinity of the empirical realised volatility. Jumps seem to play an active role in the 

shape of the resulting time series. While this translates into a somewhat jumpy implied volatility, 

there is evidence that the model is able to jump as soon as from the early stages of a volatile period. 

This is a sign of robustness, suggesting that risk premium coefficients were successfully estimated.  

A visible limitation with jump-based stochastic processes, is the relatively large number of unknowns 

involved into the calibration. Our unsuccessful attempt to replicate the sophisticated model of Ait-

Sahalia (2010) is an illustration that too many latent variables is a risk to make the calibration 

remarkably instable. Even in the alternative approach inspired by Hainaut (2016), we were left with 

as much as twelve unknowns in the univariate case, and sixteen in the multivariate analysis. This is 

significant, but thankfully convergence during the calibration was achievable.  

Finally, while our model delivered an interesting estimate of the implied volatility, it is not able to 

replicate the natural skewness visible in volatility smiles. Skewness is a key component when pricing 

financial derivatives; further investigation and any improvement on that front could make this 

jump model very useful for market participants.   
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General Conclusion 
 

Periods of deep risk aversion are usually marked by sizeable distortions in market prices, and 

substantial losses in portfolios. As observed during every financial crisis, a generalized debacle in 

financial markets is a very negative shock for the real economy. Against this backdrop, it looks 

relevant to explore how risk aversion tends to affect global market valuations, especially if this 

exercise helps make the promotion of more optimal portfolio rebalancing procedures in periods of 

fierce flight to quality. Ultimately, research initiatives in this field could contribute to reduce the 

systemic impact of financial distress in general.  

In this dissertation, we investigated different dimensions of risk aversion, with a focus on European 

Sovereign debt instruments, including CDS spreads, asset swap spreads and zero coupon bonds. The 

period we cover offers a wide exploration over many years (2000-2016), including periods of stable 

market sentiment, as well as periods of recognized financial crises (namely the Global Financial Crisis 

in 2008, and the European debt crisis in 2011-2012). For a given sovereign bond, the (quoted) yield 

to maturity has to reflect the underlying risk that the borrowing entity (ie. the Treasury) would 

default on its debt, before maturation of the bond. This is sovereign risk. Since financial crises 

engender wide-spread price deteriorations in financial markets, they usually occasion an upward 

correction in bond yields. And logically, higher yields mean growing sovereign risk. A continued move 

in yields would thus eventually be perceived by investors as an implicit deterioration of the credit 

quality of the sovereign entity. An escalation in risk aversion then, eventually encourages the 

emergence of a confidence crisis, thereby inflating pressure on yields further. As the self-feeding 

mechanism is taking over, risk propagation ultimately has tremendous implications at the State level, 

especially in developed economies where the State machinery is much reliant on consistent demand 

from financial markets. From a Treasury point of view, there is therefore a natural incentive to get a 

deeper understanding of how sovereign risk could evolve under the influence of uncontrolled risk 

aversion. This is one of the goals we seek to achieve in this report.  

In the first two chapters, we considered a probabilistic approach to sovereign risk exploration, with 

the main purpose of illustrating the non-linear reaction ensuing from a gradual deterioration in 

market sentiment. First, we noted the need to consider heavy-tailed distributions as the backbone of 

the analysis. Then, we had to pick-up an adequate model to capture the volatility momentum, 

notoriously erratic in times of financial crisis. The GAS method proved particularly efficient from that 

point of view, and we took advantage of its agility to calibrate the model over an extended period of 

time, incorporating periods of hefty variations in market sentiment. In the end, we were amazed by 

the quality of fit provided by Generalised Hyperbolic distributions assorted with GAS-estimated 

volatility. Plus, we were able to derive an empirical formulation of the un-temporal volatility, for 

each security. This estimator offered an interesting view on the dynamics of the intrinsic volatility, 

with the obtained profile suggesting that volatility tends to accelerate in a quadratic manner when it 

is expressed against the cumulative distribution function of the price variations.  

In a second step, we extended this approach to a problem of larger dimension and we explored the 

dynamics of risk aversion from a bivariate point of view. While our multivariate model is not a copula 

per se, both have in common the fact that time series are adjusted by their own intrinsic volatility 

before the multivariate exploration. This proved especially convenient in our analysis, making the 
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estimation of multivariate correlations particularly straightforward. Unexpectedly, a proper 

calibration of the model also required a few adjustments to the initial formulation of the GAS 

method, which proved in the end fairly accommodative to our needs. This time again, we were 

positively surprised by the outstanding robustness of the multivariate calibration. As a general 

observation, results suggest that heavy-tailed distributions are effectively extremely efficient to 

replicate the empirical distribution of times-series affected by distorted volatility and erratic price 

variations. Following the multivariate calibration, we derived a preliminary picture of the 

multivariate dependencies, mostly based on an empirical interpretation of financial contagion. The 

profile we obtained illustrates very well the sharply non-linear acceleration in bivariate connections, 

that materializes when risk aversion exceeds a certain level of intensity.     

While Chapter I focuses on the calibration of the multivariate model, Chapter II explores different 

ways to extract information from the model, about contagion and how it impacts sovereign risk. 

First, we have rationalised the dynamics of the deterioration, in terms of credit quality, that arises 

from the emergence of shocks. Our approach involves two different definitions of the shock: one, 

temporal, is based on the market-implied probability of default; this formulation involves the GAS 

volatility estimator. A second definition investigates the relevance of time-invariant stress tests and 

finally delivers an estimator of the expected market reaction, from a more general standpoint than 

the temporal approach. We considered a series of many shocks with gradual intensity. The analysis 

offers a high degree of granularity in the results, and this proved particularly helpful to extrapolate 

empirical rules on the general behaviour of 1) the intrinsic volatility, 2) the market response to 

shocks, 3) the expected frailty hitting the credit quality. 

On a cross country basis, our analysis also shows that there exists a linear trajectory amongst the 

different sovereigns (Graph 163), that relates the maximum market reaction to what we consider as 

a measure of the frailty induced by financial distress. This linear behaviour is insightful information, 

which was unexpected.  

Then, in a second part, we focused on multivariate dependencies and how these are affected by 

shocks. Our analysis shows that the general acceleration of the joint market reaction to shocks 

admits a logarithmic behaviour, when expressed as a function of the shock intensity. Results also 

suggest that a univariate-only exploration of sovereign risk tends to sharply underestimate the 

market reaction to shocks, hence there is a visibile benefit in considering a multivariate framework 

instead. 

Finally, we explored an application of the model in the context of portfolio optimisation. First we 

investigated the relevance of incorporating our own estimators of volatility and market reaction (to 

shocks) into some popular portfolio optimisation procedures (GMV, ERC, MDP). Results indicate that 

the modified version, involving our own risk-estimators, consistently outperform the more standard 

formulations found in the literature. Involving our measure of intrinsic volatility    or the volatility 

forecast 𝜎     in particular, greatly enhanced the robustness of returns. Portfolios based on 𝜎     also 

showed an interesting performance when rebalancing happens on a bimonthly basis. This reaffirms 

the forecasting capability of the GAS model, which is a valuable dimension of the methodology.  

In the last part of the chapter, we designed an in-house methodology for optimal portfolio 

rebalancing, based on mean reversion. This approach offers outstanding results, overall 

demonstrating that the allocation strategy is able to fit many different market environments. In 
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particular, a back-test over the full period shows that reallocation out of risk-on strategies and into a 

more prudent positioning takes place as soon as there are palpable signs of mounting risk aversion. 

This is a sign of robustness. While mean-reverting approaches offer simplicity, they usually prove 

more hazardous when financial markets are very directional. We address this issue via sensible 

adjustments; overall results suggest that mean reversion can effectively be used for risk 

management purposes.   

In Chapter III, we explored different ways to quantify the behaviour of sovereign securities, with a 

particular emphasis on how sovereign risk tends to affect the price of financial derivatives in a risk-

off environment. We consider that risk aversion and the ensuing volatility, now favour the 

emergence of sizeable discontinuities in market prices, that we model with stochastic jumps. This is 

in contrast with the probabilistic framework explored in Chapter I and Chapter II, where there is an 

implicit constraint that risk aversion induces a continuous transformation of the price dynamics.   

The different approaches we investigate, extensively rely on Hawkes processes. These stochastic 

processes seek to estimate the durable impact of risk aversion onto the dynamics of jumps, via the 

introduction of dedicated self-exciting loops. Empirical observations suggest that jumps are more 

frequent when market sentiment markedly deteriorates. And effectively, our model corroborates 

this assertion in full, with calibration indicating that a repeated occurrence of jumps at a given time 

literally increases the likelihood and the amplitude of jumps, in the future. As the strength of any 

self-excitation is described by at least four different variables (ie.     ,     ,     ,     , and up to eight 

coefficients in more complex versions), the model also quantifies the strength of any latent cross-

excitation (via     , and     ). Our approach, on that basis, looks particularly versatile. Results overall, 

suggest that there is sizeable risk transmission through all these different channels. In the 

multivariate framework as well, contagion from the risk-index is significant.  

Calibrating the model has been a real challenge, for different reasons. First, there is a notable 

complexity rising from the fact that none of the jump intensity and the jump amplitude is observable 

in our framework. Plus, we did not have any reliable data on implied volatility. This made common 

approaches available in the literature inapplicable, as methodologies exploring the pricing of 

financial derivatives most frequently involve a reference dataset of implied volatilities, which greatly 

simplifies the calibration. We therefore developed an original approach to the calibration, different 

from conventional procedures found in the literature.  

Results from the calibration look consistent from one country to another, and our estimated implied 

volatility remains in the vicinity of the empirical realised volatility. Jumps seem to play an active role 

in the shape of the resulting time series. While this translates into a somewhat jumpy implied 

volatility, there is evidence that our model is capable to jump as soon as from the early stages of a 

volatile period. This is a sign of robustness, suggesting that risk premium coefficients were 

successfully estimated.  

A visible limitation with jump-based stochastic processes, is the relatively large number of unknowns 

involved into the calibration. Our unsuccessful attempt to replicate the sophisticated model of Ait-

Sahalia (2010) is an illustration that too many latent variables is a risk to make the calibration 

remarkably unstable. Even in the alternative approach inspired by Hainaut (2016), we were left with 

as much as twelve unknowns in the univariate case, and sixteen in the multivariate analysis. This is 

significant, but thankfully convergence during the calibration was achievable.  
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We identify different directions for further research. First, our multivariate analysis only explores 

bivariate risk transmission. The tests we made suggest that there is enough tractability to increase 

the dimension of the calibration significantly, up to 5 bonds in our simulations. While the 

computational burden is significantly heightened, a quick view indicates that calibrations were 

successful, although they were not as stable as in the bivariate case. Results could improve the 

performance of our own portfolio optimisation procedure, especially as cross-asset correlations 

would be more accurately estimated in a high-dimensional probabilistic model.  

There is also ample room for further exploration in sovereign bond options. While this market is very 

modest in terms of traded volumes, the greater financial stability ensuing from more efficient 

regulations could help increase the popularity of these products in the future. Our option model 

delivered an interesting estimate of the implied volatility, but it is not able to replicate the natural 

skewness visible in volatility smiles. Skewness is a key component when pricing financial derivatives; 

further investigation and any improvement on that front could make this jump model very useful for 

market participants. 
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Appendix 

Proofs of propositions. 

 

Proposition 1. Consider the functions      
  for 𝑖           . Based on eq. (180) and eq. (169), 

their expectations are such that: 
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Then if we refer to eq. Error! Reference source not found., the moments are solution of a system of 

ordinary differential equations (ODEs) with respect to time: 
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Finally    are obtained by solving the system in eq. (213).  

 

Proposition 2. Let define: 
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 and let   ,    ,    , 

    ,      denote the partial derivatives of   with respect to time and intensities. According to the 

Feynman-Kac formula,   is solution of the next partial integro differential equation: 
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  also satisfies the following limit condition: 
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Let us assume that   has an exponential form: 
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Under this assumption, eq. (214) becomes:  
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Since the relationship holds for any   
  and   

 , it is also verified when their multiplicative coefficients 

are null. This is achieved only if: 
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And as a result: 
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Proposition 3. Let us denote by    the exponent of   :  
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According to eq. (178) and (179), its infinitesimal dynamics is given by: 

              
 
              

 
                

  
   

             
  
                         

 

                      
 

                                        
  

                                        
                    

(219) 

 

 

Zhang et al. (2009) explore the formulation of Ito’s lemma in the context of generalised Hawks 

processes. Based on Protter (2005) (Chapter 2), they show that when the amplitude of the jumps is 

time invariant and takes the value of 1, the Ito’s formula is expressed as: 

          
 

 
           

                              
(220) 

Let us now consider a time-varying jump amplitude   (like in the univariate case); and let us denote 

the corresponding random measure   so that         
  

  
. In this case, the generalized form in 

eq. (220) becomes: 

          
 

 
           

                                  

  

  

      (221) 
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Back to our problem, we adjust this generalised expression to our definition that incorporates a 

series of jumps with time-varying amplitude    (𝑖           ). Let us denote the associated 

random measure    so that           
  

  
. Then we obtain: 

          
 

 
           

 

                                                 
        

 
  

  

                                                 
        

 
  

  

                                             
  

  

                                        
         

  

                                             
  

  

                                        
         

   

(222) 

with  
 

 
           

     (see Zhang et al. (2009)) 

 

Or equal to:  

                                        
                                      

  

  

   

     
                                      

  

  

   

     
                                                            

  

  

   

     
                                                            

  

  

   

                                      
    

          
  

  

                                      
    

          
  

  

                                                         
     

            
  

  

                                                         
     

            
  

  

 

(223) 

Since the integrals with respect to          
    

          are local martingales,    is also a 

martingale if and only if the following relationship holds: 
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  (224) 

This is equivalent to eq. (187) and (188).  

 

Proposition 4. If    is the exponent of    as defined by equation (150), the moment generating 

function of    under the risk neutral is then equal to:   

                                                 (225) 

If       
    

    
    

    
     

     
     

         𝑇   𝑇    , according to the Ito’s lemma, it solves the 

following equation: 

             
              

                
       

        

   
          

         
          

           
 

  

  

         
    

     
     

     
                  

   
         

          
    

          
           

     
     

     
   

  

  

               

   
          

           
    

           
    

            
  

  

  

          
            

                   

   
          

           
    

           
    

            
     

  
  

  

          
                           

(226) 

Furthermore given that  

          𝑇
     𝑇

     𝑇
      𝑇

       
      

      
       

  

                                  𝑇        
      

  

     𝑇
      𝑇      𝑇

      𝑇      𝑇
         𝑇 

     𝑇
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(227) 

  satisfies the following terminal condition at time   𝑇: 
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(228) 

Then we assume that   is an exponential affine function: 
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 (229) 

With:     𝑇         𝑇       𝑇       𝑇       𝑇  
 

 and 

    𝑇         𝑇       𝑇       𝑇       𝑇  
 

 

Under this assumption the partial derivatives of   are given by: 

    
 

  
      

 
 

  
       

 
 

  
        

  
 

  
        

  
 

  
      

 
 

  
     

 
 

  
  

   
  

 

  
      

  
 

  
      

                                                  

Where   ,   ,    ,    , abusively denote                     ,                     , 

                                       ,                                     

   .  

Integrands in eq. (226) are equal to: 

      
          

           
          

    
     

     
     

            

                                   

      
          

    
          

           
     

     
     

            

                                   

      
           

    
           

    
            

            
            

            

                                                          

      
           

    
           

    
            

     
            

                   

                                                          

Then injecting these equations in eq. (226) yields a system of ODEs for  ,  ,  :  
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(230) 

With the terminal condition: 
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And from what we deduce that: 
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And    𝑇 𝑇         𝑇        𝑇          𝑇          𝑇 

We also obtain:       𝑇        ;      𝑇        ;      𝑇    ;      𝑇    . 

Finally the moment generating function of    is equal to: 

      𝑇              𝑇   𝑇    

                                                
      

 

      
      

        
      

         
      

        

In the remainder of this proof, this expectation is restated in a form similar to the moment 

generating function of    under  . To achieve this, the following change of variable is done: 
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And based on eq. (151), the following relationship holds as well: 
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Then the system of ODEs in eq. (230) becomes: 

 
 
 
 
 
 

 
 
 
 
   

 

  
  
      

  
 

  

     
          

                             

  
 

  
  
      

  
 

  

     
          

                             

  
 

  
  
       

  
 

   

      
           

           
            

                                                 

  
 

  
  
       

  
 

   

      
           

           
            

                                                 

  
 

  
           

          
             

             
 

  
(231) 

If we consider     ,     ,      ,       with moment generating functions defined as eq. (155), the 

moment generating function of    under   is given by:     
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(232) 

Where      
 ,   

 ,   
 ,   

 , solve a system identical to the one proposed in Proposition 2.4. 

 

Corollary 1. If we denote                    , by construction the moment generating 

function under the risk-neutral measure   is:  

  
     

        

      
 

 
 

 
 
    

 

 
 
  

 

 
 

 (233) 

And we conclude that the amplitude    is also exponential under  . The same reasoning holds for 

  ,    ,    .  

 

Corollary 2. Change of numeraire:  

                
   

   

  
             

   
   

  
    

 

          
 

           
 

      

  

            

       
 

            
 

      

   

And because the risk-neutral measure   is martingale we get:  

          
 

             
 

           
 

      

while           
 

      cancels each other as      .  
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So finally we have: 

                
          

 

                   
 

         

          
 

     
 

Based on eq. (163) and eq. (207):  
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 we obtain: 

          
 

                   
 

         

   

 
 
 
 
 
 

   

 

 
 
 
 

          
 

𝑆  𝑇
           

 

 

    𝑇 𝑆        
 

 

 

 

  
 

𝑆  𝑇
    

 

 
 
 
   𝑆  𝑇  

 

 
 

  
  𝑇 𝑆 

  
  𝑇 𝑆 

  
  𝑇 𝑆 

  
  𝑇 𝑆  

 
 

 

 

 
 

  
   

  
   

  
    

  
    

 

 
 

 

 
 
 

 

 
 
 
 

 
 
 
 
 
 

 

We recognise here the general form of the process in Proposition 2.4 with: 
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Finally using Proposition 2.4 we deduce that: 

          
 
                   

 
         

    

 

 
 
 
          

 

𝑆  𝑇
          

 

 

    𝑆            𝑇 
 

 

 

 

 
 

  
    𝑇 

  
    𝑇 

  
    𝑇 

  
    𝑇  

 
 

 

 

 
 

  
   

  
   

  
    

  
    

 

 
 

 

 
 
 

 



294 
 

With the terminal conditions    𝑇 𝑇     
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Then the denominator is: 
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Finally we obtain: 
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Résumé 
Les périodes marquées par une aversion au 

risque intense sont souvent l’origine de 

distorsions notables dans les prix de marché, 

et de pertes substantielles pour les 

investisseurs. Chaque épisode de crise 

financière montre que les mouvements de 

ventes généralisées sur les marchés ont des 

conséquences très négatives sur l’économie 

réelle. Ainsi, explorer le phénomène 

d’aversion au risque et la dynamique de 

propagation du sentiment de panique sur les 

marchés financiers peut aider à appréhender 

ces périodes de forte volatilité. 

 

Dans ce rapport de thèse, nous explorons 

différentes dimensions du phénomène 

d’aversion au risque, dans le cadre de 

portefeuilles d’obligations souveraines 

Européennes. Chapitre I explore le risque 

souverain dans le cadre d’un modèle 

probabiliste impliquant des distributions à 

queues lourdes, ainsi que la méthode GAS 

qui permet de capturer la dynamique de la 

volatilité. L’ajustement obtenu avec les 

distributions Hyperboliques Généralisées est 

robuste, et les résultats laissent penser que 

notre approche est particulièrement efficace 

durant les périodes marquées par une 

volatilité erratique. 

 

Chapitre II décrit différentes manières 

d’exploiter ce modèle probabiliste. Afin 

d’illustrer le phénomène de contagion nous 

analysons la réaction attendue du marché à 

une série de chocs financiers. Ceci nous 

permet d’identifier des lois empiriques 

supposées généraliser le comportement de la 

réaction de marché lorsque l’aversion au 

risque s’intensifie.  

 

Chapitre III est dédié au pricing de produits 

dérivés de taux. Nous considérons 

maintenant que l’aversion au risque cause 

l’émergence de discontinuités dans les prix 

de marché, que nous simulons par le biais de 

processus à sauts.  

 

Mots Clés 

crise souveraine, probabilité de défaut, 

contagion, risque souverain, aversion au 

risque / appétit pour le risque, CDS, 

obligations souveraines. 
 

 

 

 

 

 

 

Abstract 
Periods of deep risk aversion are usually 

marked by sizeable distortions in market 

prices, and substantial losses in portfolios. As 

observed during financial crises, a 

generalized debacle in financial markets is a 

very negative shock for the real economy. 

Against this backdrop, it looks relevant to 

explore how risk aversion tends to affect 

global market valuations, especially if this 

exercise helps make the promotion of more 

optimal portfolio rebalancing procedures.  

 

In this dissertation, we investigate different 

dimensions of risk aversion, with a focus on 

European Sovereign debt securities. In 

Chapter I, we consider a probabilistic 

approach to sovereign risk exploration, with 

the main purpose of illustrating the non-linear 

reaction ensuing from a gradual deterioration 

in market sentiment. We consider heavy-

tailed distributions, and we use the 

Generalised Autoregressive Score method as 

a means to capture the volatility momentum. 

The goodness of fit provided by Generalised 

Hyperbolic distributions is compelling, and 

results suggest that our approach is 

particularly relevant to fit periods or erratic 

volatility, typical of financial crises.  

 

Chapter II explores different ways to extract 

information from the model, about financial 

contagion and how it is supposed to 

propagate through sovereign securities. In 

particular, we explore the market reaction to a 

series of many shocks with gradual intensity. 

Results offer a high degree of granularity and 

we extrapolate empirical rules on the 

expected market dynamics, when risk 

aversion intensifies.  

 

In Chapter III, we explore how sovereign risk 

tends to affect the price of financial 

derivatives in a risk-off environment. We 

consider that risk aversion now favours the 

emergence of sizeable discontinuities in 

market prices, that we model with stochastic 

jumps.  

 

Keywords 
sovereign crisis, default probability, financial 

contagion, credit risk, risk aversion / risk 

appetite, CDS spreads, sovereign bonds 
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