J. Vonneumann and R. Richtmyer, A Method for the Numerical Calculation of Hydrodynamic Shocks, Journal of Applied Physics, vol.21, issue.3, pp.232-237, 1950.
DOI : 10.1007/BF01448839

M. E. Gurtin, E. Fried, and L. Anand, The mechanics and thermodynamics of continua, 2010.
DOI : 10.1017/CBO9780511762956

A. J. Barlow, P. Maire, W. J. Rider, R. N. Rieben, and M. J. Shashkov, Arbitrary Lagrangian???Eulerian methods for modeling high-speed compressible multimaterial flows, Journal of Computational Physics, vol.322, pp.603-665
DOI : 10.1016/j.jcp.2016.07.001

E. H. Lieb and J. Yngvason, The physics and mathematics of the second law of thermodynamics, Physics Reports, vol.310, issue.1, pp.1-96, 1999.
DOI : 10.1016/S0370-1573(98)00082-9

M. Kenamond, M. Bement, and M. Shashkov, Compatible, total energy conserving and symmetry preserving arbitrary Lagrangian???Eulerian hydrodynamics in 2D rz ??? Cylindrical coordinates, Journal of Computational Physics, vol.268, pp.154-185
DOI : 10.1016/j.jcp.2014.02.039

F. Coquel and P. L. Floch, Convergence of Finite Difference Schemes for Conservation Laws in Several Space Dimensions: A General Theory, SIAM Journal on Numerical Analysis, vol.30, issue.3, pp.675-700, 1993.
DOI : 10.1137/0730033

O. M. Belotserkovskii, V. V. Demchenko, V. I. Kosarev, and A. S. Kholodov, Numerical simulation of some problems of the laser compression of shells, USSR Computational Mathematics and Mathematical Physics, vol.18, issue.2, pp.117-137, 1978.
DOI : 10.1016/0041-5553(78)90046-0

J. R. Freeman, M. J. Clauser, and S. L. Thompson, « Rayleigh-Taylor instabilities in inertial-confinement fusion targets », Nuclear Fusion, vol.172, p.223, 1977.
DOI : 10.2184/lsj.4.278

V. A. Dobrev, T. E. Ellis, T. V. Kolev, and R. N. Rieben, « High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics ». Computers & Fluids 83 Numerical methods for highly compressible multi-material flow problems, Supplement C, pp.58-69, 2013.
DOI : 10.1016/j.compfluid.2012.06.004

P. P. Whalen, Algebraic Limitations on Two-Dimensional Hydrodynamics Simulations, Journal of Computational Physics, vol.124, issue.1, pp.46-54, 1996.
DOI : 10.1006/jcph.1996.0043

C. W. Hirt, A. A. Amsden, and J. L. Cook, « An arbitrary Lagrangian-Eulerian computing method for all flow speeds », Journal of Computational Physics, vol.143, pp.227-253, 1974.
DOI : 10.1016/0021-9991(74)90051-5

C. W. Hirt, A. A. Amsden, and J. L. Cook, « An Arbitrary Lagrangian?Eulerian Computing Method for All Flow Speeds », Journal of Computational Physics, vol.1352, pp.203-216, 1997.
DOI : 10.1016/0021-9991(74)90051-5

L. G. Margolin, Arbitrary Lagrangian-Eulerian (ALE) methods: a personal perspective, Rapp. tech. LANL, 2013.

W. Boscheri and M. Dumbser, A direct Arbitrary-Lagrangian???Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D, Journal of Computational Physics, vol.275, pp.484-523
DOI : 10.1016/j.jcp.2014.06.059

T. Vazquez-gonzalez, « Schémas numériques mimétiques et conservatifs pour la simulation d'écoulements multiphasiques compressibles, Thèse de doct. CEA, Centrale Supélec, 2016.

T. Vazquez-gonzalez, A. Llor, and C. Fochesato, A novel GEEC (Geometry, Energy, and Entropy Compatible) procedure applied to a staggered direct-ALE scheme for hydrodynamics, European Journal of Mechanics - B/Fluids, vol.65, 2017.
DOI : 10.1016/j.euromechflu.2017.05.003

B. Vanleer, « Towards the ultimate conservative difference scheme. V. A secondorder sequel to Godunov's method », Journal of Computational Physics, vol.321, pp.101-136, 1979.

L. G. Margolin and M. Shashkov, Remapping, recovery and repair on a staggered grid, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.39-41, p.39, 2004.
DOI : 10.1016/j.cma.2003.07.016

R. Loubère, M. Staley, and B. Wendroff, The repair paradigm: New algorithms and applications to compressible flow, Journal of Computational Physics, vol.211, issue.2, pp.385-404, 2006.
DOI : 10.1016/j.jcp.2005.05.010

M. Shashkov and B. Wendroff, The repair paradigm and application to conservation laws, Journal of Computational Physics, vol.198, issue.1, pp.265-277, 2004.
DOI : 10.1016/j.jcp.2004.01.014

J. P. Boris and D. L. Book, Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works, Journal of Computational Physics, vol.11, issue.1, pp.38-69, 1973.
DOI : 10.1016/0021-9991(73)90147-2

D. Kuzmin, R. Löhner, and S. Turek, Flux-Corrected Transport: Principles, Algorithms , and Applications. Scientific Computation, 2005.

S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, Journal of Computational Physics, vol.31, issue.3, pp.335-362, 1979.
DOI : 10.1016/0021-9991(79)90051-2

R. Tipton, Grid optimization by equipotential relaxation, Rapp. tech. LLNL, 1992.

J. U. Brackbill and J. S. Saltzman, Adaptive zoning for singular problems in two dimensions, Journal of Computational Physics, vol.46, issue.3, pp.342-368, 1982.
DOI : 10.1016/0021-9991(82)90020-1

B. Jun, A modified equipotential method for grid relaxation, Rapp. tech. LLNL, 2000.

P. Knupp, L. G. Margolin, and M. Shashkov, Reference Jacobian Optimization-Based Rezone Strategies for Arbitrary Lagrangian Eulerian Methods, Journal of Computational Physics, vol.176, issue.1, pp.93-128, 2002.
DOI : 10.1006/jcph.2001.6969

URL : http://math.lanl.gov/~shashkov/papers/report.ps

R. Loubère, P. Maire, M. Shashkov, J. Breil, S. Galera et al., ReALE: A reconnection-based arbitrary-Lagrangian???Eulerian method, Journal of Computational Physics, vol.229, issue.12, pp.4724-4761, 2010.
DOI : 10.1016/j.jcp.2010.03.011

J. D. Ramshaw, « Simplified second-order rezoning algorithm for generalized twodimensional meshes », Journal of Computational Physics, vol.671, pp.214-222, 1986.
DOI : 10.1016/0021-9991(86)90122-1

J. K. Dukowicz and J. W. Kodis, Accurate Conservative Remapping (Rezoning) for Arbitrary Lagrangian-Eulerian Computations, SIAM Journal on Scientific and Statistical Computing, vol.8, issue.3, pp.305-321, 1987.
DOI : 10.1137/0908037

W. F. Noh and P. Woodward, SLIC (Simple Line Interface Calculation), Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics, pp.330-340, 1976.
DOI : 10.1007/3-540-08004-X_336

C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, vol.39, issue.1, pp.201-225, 1981.
DOI : 10.1016/0021-9991(81)90145-5

D. L. Youngs, « Time-dependent multi-material flow with large fluid distortion ». Numerical methods for fluid dynamics, 1982.

H. T. Ahn and M. Shashkov, Multi-material interface reconstruction on generalized polyhedral meshes, Journal of Computational Physics, vol.226, issue.2, pp.2096-2132, 2007.
DOI : 10.1016/j.jcp.2007.06.033

V. Dyadechko and M. Shashkov, Reconstruction of multi-material interfaces from moment data, Journal of Computational Physics, vol.227, issue.11, pp.5361-5384, 2008.
DOI : 10.1016/j.jcp.2007.12.029

B. Després, F. Lagoutiere, E. Labourasse, and I. Marmajou, « An antidissipative transport scheme on unstructured meshes for multicomponent flows », International Journal on Finite Volumes, vol.7, pp.30-65, 2010.

J. Vonneumann, Proposal and analysis of a new numerical method for the treatment of hydrodynamical shock problems, Rapp. tech. Institute of Advanced Study, 1944.

R. Richtmyer, Proposed numerical method for calculation of shocks, 1948.

R. Richtmyer, Proposed numerical method for calculation of shocks II, Rapp. tech. LANL, 1948.

J. B. Delambre, De l'usage du calcul différentiel dans la construction des tables astronomiques, 1790.

L. Verlet, « Computer " experiments " on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules ». Physical review 159, p.98, 1967.

W. B. Goad, WAT: a numerical method for two-dimensional unsteady fluid flow, Rapp. tech. LANL, 1960.
DOI : 10.21236/ADA384958

M. L. Wilkins, Calculation of elastic-plastic flow. Rapp. tech, 1963.

W. E. Pracht, Calculating three-dimensional fluid flows at all speeds with an Eulerian-Lagrangian computing mesh, Journal of Computational Physics, vol.17, issue.2, pp.132-159, 1975.
DOI : 10.1016/0021-9991(75)90033-9

R. B. Debar, Fundamentals of the Kraken code, Rapp. tech. LLNL, 1974.

J. G. Trulio, K. R. Trigger, and D. E. Burton, Numerical solution of the one-dimensional Lagrangian hydrodynamic equationsUnited States) Lawrence Radiation Lab « Exact conservation of energy and momentum in staggered-grid hydrodynamics with arbitrary connectivity, Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method, pp.7-19, 1991.

A. Llor, A. Claisse, and C. Fochesato, Energy preservation and entropy in Lagrangian space- and time-staggered hydrodynamic schemes, Journal of Computational Physics, vol.309, pp.324-349, 2016.
DOI : 10.1016/j.jcp.2015.12.044

A. E. Mattsson and W. J. Rider, Artificial viscosity: back to the basics, International Journal for Numerical Methods in Fluids, vol.72, issue.1, pp.400-417, 2015.
DOI : 10.1016/0021-9991(87)90074-X

R. Landshoff, A numerical method for treating fluid flow in the presence of shocks, Rapp. tech. LANL, 1930.

R. D. Richtmyer and K. W. Morton, Different methods for initial value problems. Interscience, 1967.

V. F. Kurapatenko, « Difference Methods for Solutions of Problems of Mathematical Physics, chapter, p.17, 1967.

W. D. Schulz, Two-dimensional Lagrangian hydrodynamic difference equations, 1963.
DOI : 10.2172/4055712

URL : http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA385003&Location=U2&doc=GetTRDoc.pdf

G. Maenchen and S. Sack, The tensor code, 1963.
DOI : 10.2172/4694346

W. F. Noh, CEL: A time-dependent, two-space-dimensional, coupled Eulerian- Lagrange code, Rapp. tech. LLNL, 1963.
DOI : 10.2172/4621975

URL : https://digital.library.unt.edu/ark:/67531/metadc1035629/m2/1/high_res_d/4621975.pdf

H. G. Kolsky, A method for the numerical solution of transient hydrodynamic shock problems in two space dimensions, Rapp. tech. LANL, 1867.

E. J. Caramana, D. E. Burton, M. J. Shashkov, and P. P. Whalen, The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy, Journal of Computational Physics, vol.146, issue.1, pp.227-262, 1998.
DOI : 10.1006/jcph.1998.6029

E. J. Caramana and M. J. Shashkov, Elimination of Artificial Grid Distortion and Hourglass-Type Motions by Means of Lagrangian Subzonal Masses and Pressures, Journal of Computational Physics, vol.142, issue.2, pp.521-561, 1998.
DOI : 10.1006/jcph.1998.5952

E. J. Caramana, M. J. Shashkov, and P. P. Whalen, Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations, Journal of Computational Physics, vol.144, issue.1, pp.70-97, 1998.
DOI : 10.1006/jcph.1998.5989

E. J. Caramana and P. P. Whalen, Numerical Preservation of Symmetry Properties of Continuum Problems, Journal of Computational Physics, vol.141, issue.2, pp.174-198, 1998.
DOI : 10.1006/jcph.1998.5912

L. Margolin and M. Shashkov, Using a Curvilinear Grid to Construct Symmetry-Preserving Discretizations for Lagrangian Gas Dynamics, Journal of Computational Physics, vol.149, issue.2, pp.389-417, 1999.
DOI : 10.1006/jcph.1998.6161

P. Maire, R. Loubère, and P. Váchal, Abstract, Communications in Computational Physics, vol.146, issue.04, pp.940-978, 2011.
DOI : 10.1016/j.jcp.2005.11.022

V. A. Dobrev, T. V. Kolev, and R. N. Rieben, High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics, SIAM Journal on Scientific Computing, vol.34, issue.5, pp.606-641, 2012.
DOI : 10.1137/120864672

T. Belytschko, A survey of numerical methods and computer programs for dynamic structural analysis, Nuclear Engineering and Design, vol.37, issue.1, pp.23-34, 1976.
DOI : 10.1016/0029-5493(76)90050-9

J. O. Hallquist, User's manual for DYNA3D and DYNAP: nonlinear dynamic analysis of solids in three dimension, Rapp. tech. LLNL, 1981.

J. O. Hallquist, User's manual for DYNA2D: an explicit two-dimensional hydrodynamic finite-element code with interactive rezoning, Rapp. tech. LLNL, 1982.
DOI : 10.2172/5321112

G. L. Goudreau and J. O. Hallquist, Recent developments in large-scale finite element lagrangian hydrocode technology, Computer Methods in Applied Mechanics and Engineering, vol.33, issue.1-3, pp.725-757, 1982.
DOI : 10.1016/0045-7825(82)90129-3

R. Hartmann and P. Houston, Adaptive Discontinuous Galerkin Finite Element Methods for the Compressible Euler Equations, Journal of Computational Physics, vol.183, issue.2, pp.508-532, 2002.
DOI : 10.1006/jcph.2002.7206

M. Tavelli and M. Dumbser, A pressure-based semi-implicit space???time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier???Stokes equations at all Mach numbers, Journal of Computational Physics, vol.341, pp.341-376, 2017.
DOI : 10.1016/j.jcp.2017.03.030

L. G. Margolin, M. Shashkov, and P. K. Smolarkiewicz, A discrete operator calculus for finite difference approximations, Computer Methods in Applied Mechanics and Engineering, vol.187, issue.3-4, pp.365-383, 2000.
DOI : 10.1016/S0045-7825(00)80001-8

K. Lipnikov, G. Manzini, and M. Shashkov, Mimetic finite difference method, Journal of Computational Physics, vol.257, pp.1163-1227, 2014.
DOI : 10.1016/j.jcp.2013.07.031

D. E. Burton, Multidimensional discretization of conservation laws for unstructured polyhedral grids, Rapp. tech. LLNL, Rapport UCRL-JC-118306, 1994.

J. M. Owen and M. Shashkov, Arbitrary Lagrangian Eulerian remap treatments consistent with staggered compatible total energy conserving Lagrangian methods, Journal of Computational Physics, vol.273, pp.520-547, 2014.
DOI : 10.1016/j.jcp.2014.05.023

M. Kucharik and M. Shashkov, Conservative multi-material remap for staggered multi-material Arbitrary Lagrangian???Eulerian methods, Journal of Computational Physics, vol.258, pp.268-304, 2014.
DOI : 10.1016/j.jcp.2013.10.050

D. P. Starinshak and J. M. Owen, A subzone reconstruction algorithm for efficient staggered compatible remapping, Journal of Computational Physics, vol.296, pp.263-292, 2015.
DOI : 10.1016/j.jcp.2015.04.046

J. C. Campbell and M. J. Shashkov, A Tensor Artificial Viscosity Using a Mimetic Finite Difference Algorithm, Journal of Computational Physics, vol.172, issue.2, pp.739-765, 2001.
DOI : 10.1006/jcph.2001.6856

URL : http://math.lanl.gov/~shashkov/papers/tensor_viscosity.ps

K. Lipnikov and M. Shashkov, A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes, Journal of Computational Physics, vol.229, issue.20, pp.7911-7941, 2010.
DOI : 10.1016/j.jcp.2010.06.045

R. K. Chan, A generalized arbitrary Lagrangian-Eulerian method for incompressible flows with sharp interfaces, Journal of Computational Physics, vol.17, issue.3, pp.311-331, 1975.
DOI : 10.1016/0021-9991(75)90055-8

D. P. Flanagan and T. Belytschko, « A uniform strain hexahedron and quadrilateral with orthogonal hourglass control ». International journal for numerical methods in engineering 17, pp.679-706, 1981.

P. Matejovi? and V. Adamík, A one-point integration quadrilateral with hourglass control in axisymmetric geometry, Computer Methods in Applied Mechanics and Engineering, vol.70, issue.3, pp.301-320, 1988.
DOI : 10.1016/0045-7825(88)90022-9

A. L. Bauer, D. E. Burton, E. J. Caramana, R. Loubère, M. J. Shashkov et al., The internal consistency, stability, and accuracy of the discrete, compatible formulation of Lagrangian hydrodynamics, Journal of Computational Physics, vol.218, issue.2, pp.572-593, 2006.
DOI : 10.1016/j.jcp.2006.02.024

R. Loubère, M. Shashkov, and B. Wendroff, Volume consistency in a staggered grid Lagrangian hydrodynamics scheme, Journal of Computational Physics, vol.227, issue.8, pp.3731-3737, 2008.
DOI : 10.1016/j.jcp.2008.01.006

D. E. Burton, N. R. Morgan, M. R. Charest, M. A. Kenamond, and J. Fung, Compatible, energy conserving, bounds preserving remap of hydrodynamic fields for an extended ALE scheme, Journal of Computational Physics, vol.355, pp.492-533, 2018.
DOI : 10.1016/j.jcp.2017.11.017

D. Bailey, M. Berndt, M. Kucharik, and M. Shashkov, Reduced-dissipation remapping of velocity in staggered arbitrary Lagrangian???Eulerian methods, Journal of Computational and Applied Mathematics, vol.233, issue.12, pp.3148-3156, 2009.
DOI : 10.1016/j.cam.2009.09.008

D. S. Bailey, Second-order monotonic advection in LASNEX. Rapp. tech. Laser Program Annual Report'84, Rapport UCRL-50021-84, pp.3-57, 1984.

B. Després and C. Mazeran, Symmetrization of Lagrangian gas dynamic in dimension two and multidimensional solvers, Comptes Rendus M??canique, vol.331, issue.7, pp.475-480, 2003.
DOI : 10.1016/S1631-0721(03)00112-8

C. Mazeran, « Sur la structure mathématique et l'approximation numérique de l'hydrodynamique lagrangienne bidimensionnelle, Thèse de doct. Bordeaux 1, 2007.

G. Carré, S. Del-pino, B. Després, and E. Labourasse, A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, Journal of Computational Physics, vol.228, issue.14, pp.5160-5183, 2009.
DOI : 10.1016/j.jcp.2009.04.015

P. Maire, R. Abgrall, J. Breil, and J. Ovadia, A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems, SIAM Journal on Scientific Computing, vol.29, issue.4, pp.1781-1824, 2007.
DOI : 10.1137/050633019

URL : https://hal.archives-ouvertes.fr/inria-00113542

R. Abgrall, J. Breil, P. Maire, and J. Ovadia, Un schéma centré pour l'hydrodynamique Lagrange bidimensionnelle, 2004.

D. E. Burton, T. C. Carney, N. R. Morgan, S. K. Sambasivan, and M. J. Shashkov, « A cell-centered Lagrangian Godunov-like method for solid dynamics ». Computers & Fluids 83 Numerical methods for highly compressible multi-material flow problems, pp.33-47, 2013.
DOI : 10.1016/j.compfluid.2012.09.008

. Wohlbier, « A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes », Journal of Computational Physics, vol.290, pp.239-273, 2015.

D. E. Burton, N. R. Morgan, T. C. Carney, and M. A. Kenamond, Reduction of dissipation in Lagrange cell-centered hydrodynamics (CCH) through corner gradient reconstruction (CGR), Journal of Computational Physics, vol.299, pp.229-280
DOI : 10.1016/j.jcp.2015.06.041

A. J. Barlow, « A high order cell centred dual grid Lagrangian Godunov scheme ». Computers & Fluids 83 Numerical methods for highly compressible multi-material flow problems, pp.15-24, 2013.
DOI : 10.1016/j.compfluid.2013.02.009

J. Cheng and C. Shu, A high order ENO conservative Lagrangian type scheme for the compressible Euler equations, Journal of Computational Physics, vol.227, issue.2, pp.1567-1596, 2007.
DOI : 10.1016/j.jcp.2007.09.017

P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications on Pure and Applied Mathematics, vol.24, issue.1, pp.159-193, 1954.
DOI : 10.1002/cpa.3160070112

P. D. Lax and B. Wendroff, Systems of conservation laws, Rapp. tech. LANL, 1960.

P. D. Lax and B. Wendroff, « Systems of conservation laws, Communications on Pure and Applied mathematics 13, pp.217-237, 1960.

S. K. Godunov, « A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Matematicheskii Sbornik, vol.893, pp.271-306, 1959.

E. Godlewski and P. Raviart, Numerical approximation of hyperbolic systems of conservation laws. T. 118, 2013.

F. L. Addessio, D. E. Caroll, J. K. Dukowicz, J. N. Johnson, B. A. Kashiwa et al., CAVEAT: A computer code for fluid dynamics with large distortions and internal slip, Rapp. tech. LANL, 1986.

J. Braeunig, Reducing the entropy production in a collocated Lagrange???Remap scheme, Journal of Computational Physics, vol.314, pp.127-144, 2016.
DOI : 10.1016/j.jcp.2016.03.008

P. Maire, R. Loubère, and P. Váchal, Abstract, Communications in Computational Physics, vol.146, issue.04, pp.940-978, 2011.
DOI : 10.1016/j.jcp.2005.11.022

B. Després and E. Labourasse, Stabilization of cell-centered compressible Lagrangian methods using subzonal entropy, Journal of Computational Physics, vol.231, issue.20, pp.6559-6595, 2012.
DOI : 10.1016/j.jcp.2012.04.018

R. B. Christensen, « Godunov methods on a staggered mesh-an improved artificial viscosity, Proceedings of the Nuclear Explosives Code Development Conference, pp.6-9, 1990.

J. K. Dukowicz, A general, non-iterative Riemann solver for Godunov's method, Journal of Computational Physics, vol.61, issue.1, pp.119-137, 1985.
DOI : 10.1016/0021-9991(85)90064-6

G. Luttwak and J. Falcovitz, Slope limiting for vectors: A novel vector limiting algorithm, International Journal for Numerical Methods in Fluids, vol.72, issue.5, pp.11-12, 2011.
DOI : 10.1016/0021-9991(87)90074-X

P. Hoch and E. Labourasse, A frame invariant and maximum principle enforcing second-order extension for cell-centered ALE schemes based on local convex hull preservation, International Journal for Numerical Methods in Fluids, vol.201, issue.297, pp.1043-1063, 2014.
DOI : 10.1098/rspa.1950.0052

J. José and E. Saletan, Classical dynamics: a contemporary approach, 1998.
DOI : 10.1017/CBO9780511803772

P. J. Morrison, « Hamiltonian description of the ideal fluid ». Reviews of modern physics 70, p.467, 1998.

A. P. Veselov, « Integrable discrete-time systems and difference operators ». Functional Analysis and its Applications 22, pp.83-93, 1988.
DOI : 10.1007/bf01077598

E. P. Fahrenthold and J. C. Koo, Discrete Hamilton's equations for viscous compressible fluid dynamics, Computer Methods in Applied Mechanics and Engineering, vol.178, issue.1-2, pp.1-22, 1999.
DOI : 10.1016/S0045-7825(99)00100-0

J. C. Koo and E. P. Fahrenthold, Discrete Hamilton's equations for arbitrary Lagrangian???Eulerian dynamics of viscous compressible flow, Computer Methods in Applied Mechanics and Engineering, vol.189, issue.3, pp.875-900, 2000.
DOI : 10.1016/S0045-7825(99)00405-3

A. Claisse, A. Llor, P. L. Tallec, and A. Marboeuf, « Reducing mesh distortions and asymmetries in space-staggered Lagrangian hydro-schemes : variable node masses and momentum filtering, p.soumettre, 2017.

Z. Ge and J. E. Marsden, « Lie-poisson hamilton-jacobi theory and lie-poisson integrators, Physics Letters A, vol.1333, pp.134-139, 1988.

J. M. Wendlandt and J. E. Marsden, Mechanical integrators derived from a discrete variational principle, Physica D: Nonlinear Phenomena, vol.106, issue.3-4, pp.3-4, 1997.
DOI : 10.1016/S0167-2789(97)00051-1

URL : http://www.cds.caltech.edu/~marsden/bib/1997/09-WeMa1997/WeMa1997.pdf

E. Van-renterghem, A. Llor, . Rapp, . Tech, R. Cea et al., [125] C.P. Pesce et L. Casetta. « Systems with mass explicitly dependent on position ». Dynamics of mechanical systems with variable mass, pp.51-106, 2013.

A. V. Wilchinsky and K. Hutter, « On Thermodynamic Consistency of Turbulent Closures ». Theoretical and Computational Fluid Dynamics 15, pp.23-33, 2001.

A. W. Cook, Enthalpy diffusion in multicomponent flows, Physics of Fluids, vol.21, issue.5, p.55109, 2009.
DOI : 10.1063/1.1758717

S. Galera, P. Maire, and J. Breil, « A two-dimensional unstructured cellcentered multi-material ALE scheme using VOF interface reconstruction », Journal of Computational Physics, vol.22916, pp.5755-5787, 2010.
DOI : 10.1016/j.jcp.2010.04.019

URL : http://hal.archives-ouvertes.fr/docs/00/45/35/34/PDF/article_ale.pdf

M. Kucharik, R. V. Garimella, S. P. Schofield, and M. J. Shashkov, A comparative study of interface reconstruction methods for multi-material ALE simulations, Journal of Computational Physics, vol.229, issue.7, pp.2432-2452, 2010.
DOI : 10.1016/j.jcp.2009.07.009

J. Breil, « Numerical methods for Lagrangian and Arbitrary-Lagrangian-Eulerian Hydrodynamic Contribution to the simulation of High-Energy-Density-Physics Problems, Thèse de doct, 2016.

S. and D. Pino, Metric-based mesh adaptation for 2D Lagrangian compressible flows, Journal of Computational Physics, vol.230, issue.5, pp.1793-1821, 2011.
DOI : 10.1016/j.jcp.2010.11.030

J. Haas and B. Sturtevant, Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, Journal of Fluid Mechanics, vol.201, issue.-1, pp.41-76, 1987.
DOI : 10.1121/1.387106

J. J. Quirk and S. Karni, On the dynamics of a shock???bubble interaction, Journal of Fluid Mechanics, vol.18, issue.-1, pp.129-163, 1996.
DOI : 10.1017/S0022112078000981

S. M. Bakhrakh, V. F. Spiridonov, and A. A. Shanin, « Method for calculating gasdynamic flows of an inhomogeneous medium in Lagrange-Euler variables », Akademiia Nauk SSSR Doklady. T, vol.276, pp.829-833, 1984.

A. Llor, « De A1 à A3 : peut-on améliorer le schéma lagrangien « saute-mouton, École thématique de simulation numérique (ETSN) (Porquerolles, 2013.

W. Research, . Inc, and . Mathematica, Version 11.2, 2017.

J. U. Brackbill, On modelling angular momentum and vorticity in compressible fluid flow, Computer Physics Communications, vol.47, issue.1, pp.1-16, 1987.
DOI : 10.1016/0010-4655(87)90063-4

B. Després, Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.41-44, pp.2669-2679, 2010.
DOI : 10.1016/j.cma.2010.05.010

E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 1999.

M. L. Wilkins, Use of artificial viscosity in multidimensional fluid dynamic calculations, Journal of Computational Physics, vol.36, issue.3, pp.281-303, 1980.
DOI : 10.1016/0021-9991(80)90161-8

R. Menikoff, Equations of state and fluid dynamics (lecture notes), 2007.

R. E. Kidder, « Theory of homogeneous isentropic compression and its application to laser fusion, Nuclear Fusion, vol.141, p.53, 1974.

L. Rayleigh, The theory of sound. T. 2, 1896.

K. Lipnikov and M. Shashkov, A mimetic tensor artificial viscosity method for arbitrary polyhedral meshes, Procedia Computer Science, vol.1, issue.1, pp.1921-1929, 2010.
DOI : 10.1016/j.procs.2010.04.215

URL : https://doi.org/10.1016/j.procs.2010.04.215

A. W. Cook and W. H. Cabot, Hyperviscosity for shock-turbulence interactions, Journal of Computational Physics, vol.203, issue.2, pp.379-385, 2005.
DOI : 10.1016/j.jcp.2004.09.011

A. W. Cook, M. S. Ulitsky, and D. S. Miller, Hyperviscosity for unstructured ALE meshes, International Journal of Computational Fluid Dynamics, vol.201, issue.1, pp.32-50, 2013.
DOI : 10.1016/0021-9991(80)90161-8

W. F. Noh, Artificial viscosity (Q) and artificial heat flux (H) errors for spherically divergent shocks, Rapp. tech. LLNL, 1983.
DOI : 10.2172/5773058

URL : https://www.osti.gov/servlets/purl/5773058

R. Loubère, P. Maire, and P. Váchal, A second-order compatible staggered Lagrangian hydrodynamics scheme using a cell-centered multidimensional approximate Riemann solver, Procedia Computer Science, vol.1, issue.1, pp.1931-1939, 2010.
DOI : 10.1016/j.procs.2010.04.216

R. Loubère, P. Maire, and P. Váchal, 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity, International Journal for Numerical Methods in Fluids, vol.72, issue.1, pp.22-42, 2013.
DOI : 10.1016/0021-9991(87)90074-X

R. Courant, K. Friedrichs, and H. Lewy, « Über die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen, vol.1001, pp.32-74, 1928.
DOI : 10.1007/978-1-4612-5385-3_7

L. I. Sedov, Similarity and dimensional methods in mechanics (similarity and dimensional methods in mechanics, 1959.
DOI : 10.1063/1.3057121

J. R. Kamm, Evaluation of the Sedov-von Neumann-Taylor blast wave solution, Rapp. tech. LANL, 2000.

J. R. Kamm and F. X. Timmes, On efficient generation of numerically robust Sedov solutions, Rapp. tech. LANL, 2007.

W. F. Noh, Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux, Journal of Computational Physics, vol.72, issue.1, pp.78-120, 1987.
DOI : 10.1016/0021-9991(87)90074-X

A. M. Winslow, Equipotential zoning of two dimensional meshes, 1963.

A. M. Winslow, « Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh », Journal of Computational Physics, vol.1352, pp.128-138, 1997.

J. K. Dukowicz, Conservative rezoning (remapping) for general quadrilateral meshes, Journal of Computational Physics, vol.54, issue.3, pp.411-424, 1984.
DOI : 10.1016/0021-9991(84)90125-6

J. D. Ramshaw, Conservative rezoning algorithm for generalized two-dimensional meshes, Journal of Computational Physics, vol.59, issue.2, pp.193-199, 1985.
DOI : 10.1016/0021-9991(85)90141-X

R. Scardovelli and S. Zaleski, Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection, International Journal for Numerical Methods in Fluids, vol.33, issue.3, pp.251-274, 2003.
DOI : 10.1137/0733033

URL : http://www.lmm.jussieu.fr/~zaleski/fit.ps.gz

S. Diot, M. M. François, and E. D. Dendy, An interface reconstruction method based on analytical formulae for 2D planar and axisymmetric arbitrary convex cells, Journal of Computational Physics, vol.275, pp.53-64
DOI : 10.1016/j.jcp.2014.06.060

P. Vigneaux, « Méthodes Level-Set pour des problèmes d'interface en microfluidique, Thèse de doct, 2007.

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

M. Sussman, P. Smereka, and S. Osher, A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, Journal of Computational Physics, vol.114, issue.1, pp.146-159, 1994.
DOI : 10.1006/jcph.1994.1155

P. Starinshak, « Level-Set Methods for Multimaterial Radiative Shock Hydrodynamics, Thèse de doct, 2012.

M. Kucharik, R. V. Garimella, S. P. Schofield, and M. J. Shashkov, A comparative study of interface reconstruction methods for multi-material ALE simulations, Journal of Computational Physics, vol.229, issue.7, pp.2432-2452, 2010.
DOI : 10.1016/j.jcp.2009.07.009

R. Loubère and M. J. Shashkov, A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian???Eulerian methods, Journal of Computational Physics, vol.209, issue.1, pp.105-138, 2005.
DOI : 10.1016/j.jcp.2005.03.019

C. Shu, « Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws ». Advanced numerical approximation of nonlinear hyperbolic equations, pp.325-432, 1998.
DOI : 10.1007/bfb0096355

URL : http://www.ipam.ucla.edu/publications/pcatut2005/pcatut_5477_preprint.pdf

C. Hu and C. Shu, Weighted Essentially Non-oscillatory Schemes on Triangular Meshes, Journal of Computational Physics, vol.150, issue.1, pp.97-127, 1999.
DOI : 10.1006/jcph.1998.6165

URL : http://techreports.larc.nasa.gov/icase/1998/icase-1998-32.ps.gz

H. C. Yee, N. D. Sandham, and M. J. Djomehri, Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic-Based Filters, Journal of Computational Physics, vol.150, issue.1, pp.199-238, 1999.
DOI : 10.1006/jcph.1998.6177

URL : http://hdl.handle.net/2060/19980201047

W. Boscheri and M. Dumbser, A direct Arbitrary-Lagrangian???Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D, Journal of Computational Physics, vol.275, pp.484-523
DOI : 10.1016/j.jcp.2014.06.059

T. Vazquez-gonzalez, A. Llor, and C. Fochesato, Ransom test results from various two-fluid schemes: Is enforcing hyperbolicity a thermodynamically consistent option?, International Journal of Multiphase Flow, vol.81, pp.104-112, 2016.
DOI : 10.1016/j.ijmultiphaseflow.2015.12.007

P. Maire, R. Abgrall, J. Breil, R. Loubère, and B. Rebourcet, A nominally second-order cell-centered Lagrangian scheme for simulating elastic???plastic flows on two-dimensional unstructured grids, Journal of Computational Physics, vol.235, pp.626-665
DOI : 10.1016/j.jcp.2012.10.017

URL : https://hal.archives-ouvertes.fr/hal-00934989