A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids, Journal of Non-Newtonian Fluid Mechanics, vol.139, issue.3, pp.153-176, 2006.
DOI : 10.1016/j.jnnfm.2006.07.007

URL : https://hal.archives-ouvertes.fr/hal-01004909

A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids, Journal of Non-Newtonian Fluid Mechanics, vol.144, issue.2-3, pp.98-121, 2007.
DOI : 10.1016/j.jnnfm.2007.03.009

URL : https://hal.archives-ouvertes.fr/hal-01633241

H. Arai, C. Maung, and H. Schweitzer, Optimal column subset selection by A-star search, AAAI, pp.1079-1085, 2015.

P. Astrid, S. Weiland, K. Willcox, and T. Backx, Missing Point Estimation in Models Described by Proper Orthogonal Decomposition, IEEE Transactions on Automatic Control, vol.53, issue.10, pp.2237-2251, 2008.
DOI : 10.1109/TAC.2008.2006102

J. Ballani and L. Grasedyck, Hierarchical Tensor Approximation of Output Quantities of Parameter-Dependent PDEs, SIAM/ASA Journal on Uncertainty Quantification, vol.3, issue.1, pp.852-872, 2015.
DOI : 10.1137/140960980

J. Ballani, L. Grasedyck, and M. Kluge, Black box approximation of tensors in hierarchical Tucker format, Linear Algebra and its Applications, vol.438, issue.2, pp.639-657, 2013.
DOI : 10.1016/j.laa.2011.08.010

M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An ???empirical interpolation??? method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, vol.339, issue.9, pp.667-672, 2004.
DOI : 10.1016/j.crma.2004.08.006

URL : https://hal.archives-ouvertes.fr/hal-00021702

M. Bebendorf, Approximation of boundary element matrices, Numerische Mathematik, vol.86, issue.4, pp.565-589, 2000.
DOI : 10.1007/PL00005410

M. Bebendorf, Adaptive Cross Approximation of Multivariate Functions, Constructive Approximation, vol.23, issue.2
DOI : 10.1137/S0895479899352045

M. Bebendorf, Y. Maday, and B. Stamm, Comparison of Some Reduced Representation Approximations, pp.67-100
DOI : 10.1007/978-3-319-02090-7_3

URL : https://hal.archives-ouvertes.fr/hal-00825315

P. Benner, V. Mehrmann, and D. C. Sorensen, Dimension reduction of large-scale systems, 2005.
DOI : 10.1007/3-540-27909-1

M. W. Berry, S. A. Pulatova, and G. W. Stewart, Algorithm 844, ACM Transactions on Mathematical Software, vol.31, issue.2, pp.31252-269, 2005.
DOI : 10.1145/1067967.1067972

D. Bigoni, A. P. Engsig-karup, and Y. M. Marzouk, Spectral Tensor-Train Decomposition, SIAM Journal on Scientific Computing, vol.38, issue.4, pp.2405-2439, 2016.
DOI : 10.1137/15M1036919

URL : http://arxiv.org/pdf/1405.5713

F. Bonizzoni, F. Nobile, and D. Kressner, Tensor train approximation of moment equations for elliptic equations with lognormal coefficient, Computer Methods in Applied Mechanics and Engineering, vol.308, pp.349-376, 2016.
DOI : 10.1016/j.cma.2016.05.026

C. Boutsidis and D. P. Woodruff, Optimal CUR matrix decompositions, Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC '14, pp.353-362, 2014.
DOI : 10.1145/2591796.2591819

URL : http://arxiv.org/pdf/1405.7910

M. Brand, Incremental Singular Value Decomposition of Uncertain Data with Missing Values, Computer Vision?ECCV, pp.707-720, 2002.
DOI : 10.1007/3-540-47969-4_47

C. Jacob, C. T. Bridgeman, and . Chubb, Hand-waving and interpretive dance : An introductory course on tensor networks, 2016.

P. Businger and G. H. Golub, Linear least squares solutions by householder transformations, Numerische Mathematik, vol.4, issue.3, pp.269-276, 1965.
DOI : 10.1007/BF01436084

K. Carlberg, C. Bou-mosleh, and C. Farhat, Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, International Journal for Numerical Methods in Engineering, vol.35, issue.2, pp.155-181, 2011.
DOI : 10.1016/j.compfluid.2004.11.006

K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem, The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows, Journal of Computational Physics, vol.242, pp.623-647, 2013.
DOI : 10.1016/j.jcp.2013.02.028

J. , D. Carroll, and J. Chang, Analysis of individual differences in multidimensional scaling via an n-way generalization of " Eckart-Young " decomposition, Psychometrika, vol.35, issue.3, pp.283-319, 1970.

F. Casenave, A. Ern, and T. Lelièvre, Variants of the Empirical Interpolation Method: Symmetric formulation, choice of norms and rectangular extension, Applied Mathematics Letters, vol.56, pp.23-28
DOI : 10.1016/j.aml.2015.11.010

URL : https://hal.archives-ouvertes.fr/hal-01186039

M. Cavazzuti, Optimization methods : from theory to design scientific and technological aspects in mechanics, 2013.
DOI : 10.1007/978-3-642-31187-1

A. Çivril and M. Magdon-ismail, On selecting a maximum volume sub-matrix of a matrix and related problems, Theoretical Computer Science, vol.410, issue.47-49, pp.4801-4811, 2009.
DOI : 10.1016/j.tcs.2009.06.018

S. Chaturantabut and D. C. Sorensen, Nonlinear Model Reduction via Discrete Empirical Interpolation, SIAM Journal on Scientific Computing, vol.32, issue.5, pp.2737-2764, 2010.
DOI : 10.1137/090766498

URL : https://scholarship.rice.edu/bitstream/1911/70218/1/ChaturantabutS.pdf

F. Chinesta, A. Ammar, F. Lemarchand, P. Beauchene, and F. Boust, Alleviating mesh constraints: Model reduction, parallel time integration and high resolution homogenization, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.5, pp.400-413, 2008.
DOI : 10.1016/j.cma.2007.07.022

URL : https://hal.archives-ouvertes.fr/hal-01004980

F. Chinesta, A. Leygue, F. Bordeu, J. V. Aguado, E. Cueto et al., PGD-Based Computational Vademecum for Efficient Design, Optimization and Control, Archives of Computational Methods in Engineering, vol.51, issue.1, pp.31-59, 2013.
DOI : 10.1016/j.ijheatmasstransfer.2008.02.029

URL : https://hal.archives-ouvertes.fr/hal-01515083

A. Cichocki, Tensor networks for big data analytics and large-scale optimization problems. arXiv preprint, 2014.

J. Cormier and G. Cailletaud, Constitutive modeling of the creep behavior of single crystal superalloys under non-isothermal conditions inducing phase transformations, Materials Science and Engineering: A, vol.527, issue.23, pp.6300-6312, 2010.
DOI : 10.1016/j.msea.2010.06.023

URL : https://hal.archives-ouvertes.fr/hal-00509944

E. Corona, A. Rahimian, and D. Zorin, A Tensor-Train accelerated solver for integral equations in complex geometries, Journal of Computational Physics, vol.334, pp.145-169, 2017.
DOI : 10.1016/j.jcp.2016.12.051

C. Daversin and C. Prud-'homme, Simultaneous empirical interpolation and reduced basis method for non-linear problems, Comptes Rendus Mathematique, vol.353, issue.12, pp.1105-1109, 2015.
DOI : 10.1016/j.crma.2015.08.003

URL : https://hal.archives-ouvertes.fr/hal-01219063

J. Delvillet, L. Ukeiley, L. Cordier, J. Bonnet, and M. Glauser, Examination of large-scale structures in a turbulent plane mixing layer. Part 1. Proper orthogonal decomposition, Journal of Fluid Mechanics, vol.391, pp.91-122, 1999.
DOI : 10.1017/S0022112099005200

R. Desmorat, A. Mattiello, and J. Cormier, ??rafting in nickel-based single crystal superalloys, International Journal of Plasticity, vol.95, pp.43-81, 2017.
DOI : 10.1016/j.ijplas.2017.03.010

A. Doostan, A. Validi, and G. Iaccarino, Non-intrusive low-rank separated approximation of high-dimensional stochastic models, Computer Methods in Applied Mechanics and Engineering, vol.263, pp.42-55, 2013.
DOI : 10.1016/j.cma.2013.04.003

P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo Algorithms for Matrices III: Computing a Compressed Approximate Matrix Decomposition, SIAM Journal on Computing, vol.36, issue.1, pp.184-206, 2006.
DOI : 10.1137/S0097539704442702

Z. Drma? and S. Gugercin, A New Selection Operator for the Discrete Empirical Interpolation Method---Improved A Priori Error Bound and Extensions, SIAM Journal on Scientific Computing, vol.38, issue.2, pp.631-648, 2016.
DOI : 10.1137/15M1019271

S. Michael, D. M. Eldred, and . Dunlavy, Formulations for surrogate-based optimization with data fit, multi-fidelity, and reduced-order models, Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, pp.2006-7117, 2006.

R. Everson and L. Sirovich, Karhunen???Lo??ve procedure for gappy data, Journal of the Optical Society of America A, vol.12, issue.8, pp.1657-1664, 1995.
DOI : 10.1364/JOSAA.12.001657

URL : http://camelot.mssm.edu/publications/larry/Karhunen-Loeve.pdf

A. Forrester, A. Sobester, and A. Keane, Engineering design via surrogate modelling : a practical guide, 2008.
DOI : 10.1002/9780470770801

R. Ghanem, D. Higdon, and H. Owhadi, Handbook of uncertainty quantification, 2017.

J. Ghighi, Mechanical behavior and creep life of crystal superalloys : crystal anisotropy and microstructure evolutions. Theses, ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d'Aérotechique -Poitiers, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00823045

J. Ghighi, J. Cormier, E. Ostoja-kuczynski, J. Mendez, G. Cailletaud et al., A microstructure sensitive approach for the prediction of the creep behaviour and life under complex loading paths, pp.205-220, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00722620

L. Giraldi, Contributions aux méthodes de calcul basées sur l'approximation de tenseurs et applications en mécanique numérique, 2012.

R. Giraud, Influence de l'histoire thermique sur les propriétés mécaniques à haute et très haute température du superalliage monocristallin CMSX-4, 2014.

H. Gene, C. F. Golub, and . Van-loan, Matrix computations, 2013.

S. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, and N. Zamarashkin, How to find a good submatrix Matrix Methods : Theory, Algorithms and Applications : Dedicated to the Memory of Gene Golub, p.247, 2010.

S. Goreinov and E. E. Tyrtyshnikov, The maximal-volume concept in approximation by low-rank matrices, Contemporary Mathematics, vol.268, pp.47-51, 2001.
DOI : 10.1090/conm/280/4620

S. Goreinov, E. E. Tyrtyshnikov, and N. Zamarashkin, A theory of pseudoskeleton approximations, Linear Algebra and its Applications, vol.261, issue.1-3, pp.1-21, 1997.
DOI : 10.1016/S0024-3795(96)00301-1

S. Goreinov, N. Zamarashkin, and E. E. Tyrtyshnikov, Pseudo-skeleton approximations by matrices of maximal volume, Mathematical Notes, vol.343, issue.No. 2, pp.515-519, 1997.
DOI : 10.1007/978-1-4612-4814-9

L. Grasedyck, Hierarchical Singular Value Decomposition of Tensors, SIAM Journal on Matrix Analysis and Applications, vol.31, issue.4, pp.2029-2054, 2010.
DOI : 10.1137/090764189

L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor approximation techniques, GAMM-Mitteilungen, vol.93, issue.3, pp.53-78, 2013.
DOI : 10.1103/PhysRevLett.93.207205

A. Martin, Y. Grepl, N. C. Maday, A. T. Nguyen, and . Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations

M. Gu and S. C. Eisenstat, Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization, SIAM Journal on Scientific Computing, vol.17, issue.4, pp.848-869, 1996.
DOI : 10.1137/0917055

W. Hackbusch, Tensor spaces and numerical tensor calculus, 2012.
DOI : 10.1007/978-3-642-28027-6

W. Hackbusch and S. Kühn, A New Scheme for the Tensor Representation, Journal of Fourier Analysis and Applications, vol.5, issue.3, pp.706-722, 2009.
DOI : 10.2478/s11533-007-0018-0

J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numerische Mathematik, vol.38, issue.1, pp.84-90, 1960.
DOI : 10.1007/BF01386213

R. A. Harshman, Foundations of the PARAFAC procedure : Models and conditions for an "explanatory" multi-modal factor analysis, UCLA Working Papers in Phonetics, vol.16, pp.1-84, 1970.

P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley, Turbulence, coherent structures, dynamical systems and symmetry, 2012.

S. Holtz, T. Rohwedder, and R. Schneider, The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format, SIAM Journal on Scientific Computing, vol.34, issue.2, pp.683-713, 2012.
DOI : 10.1137/100818893

S. Holtz, T. Rohwedder, and R. Schneider, On manifolds of tensors of fixed TT-rank, Numerische Mathematik, vol.69, issue.14, pp.701-731, 2012.
DOI : 10.1103/PhysRevLett.69.2863

J. Håstad, Tensor rank is NP-complete, Journal of Algorithms, vol.11, issue.4, pp.644-654, 1990.
DOI : 10.1016/0196-6774(90)90014-6

R. Hübener, V. Nebendahl, and W. Dür, Concatenated tensor network states, New Journal of Physics, vol.12, issue.2, p.25004, 2010.
DOI : 10.1088/1367-2630/12/2/025004

T. Huckle, K. Waldherr, and T. Schulte-herbrüggen, Computations in quantum tensor networks, Linear Algebra and its Applications, vol.438, issue.2, pp.750-781, 2013.
DOI : 10.1016/j.laa.2011.12.019

URL : https://doi.org/10.1016/j.laa.2011.12.019

I. T. Jolliffe, Principal Component Analysis and Factor Analysis, Principal component analysis, pp.115-128, 1986.
DOI : 10.1007/978-1-4757-1904-8_7

K. Karhunen, Über lineare Methoden in der Wahrscheinlichkeitsrechnung, 1947.

N. Boris and . Khoromskij, Tensors-structured numerical methods in scientific computing : Survey on recent advances, pp.1-19, 2012.

N. Boris, I. Khoromskij, and . Oseledets, Quantics-TT collocation approximation of parameter-dependent and stochastic elliptic pdes, Computational Methods in Applied Mathematics Comput. Methods Appl. Math, vol.10, issue.4, pp.376-394, 2010.

M. Kobayashi, G. Dupret, O. King, and H. Samukawa, Estimation of singular values of very large matrices using random sampling, Computers & Mathematics with Applications, vol.42, issue.10-11, pp.10-111331, 2001.
DOI : 10.1016/S0898-1221(01)00244-9

G. Tamara, B. W. Kolda, and . Bader, Tensor decompositions and applications. Siam review, pp.455-500, 2009.

D. Kressner, M. Steinlechner, and B. Vandereycken, Low-rank tensor completion by Riemannian optimization, BIT Numerical Mathematics, vol.23, issue.2, pp.447-468, 2014.
DOI : 10.1137/110845768

P. Krysl, S. Lall, and J. E. Marsden, Dimensional model reduction in non???linear finite element dynamics of solids and structures, International Journal for Numerical Methods in Engineering, vol.31, issue.4, pp.479-504, 2001.
DOI : 10.1002/nme.1620310809

P. Ladevèze, Sur une famille d'algorithmes en mécanique des structures

B. D. Lieven-de-lathauwer, J. Moor, and . Vandewalle, A Multilinear Singular Value Decomposition, SIAM Journal on Matrix Analysis and Applications, vol.21, issue.4, pp.1253-1278, 2000.
DOI : 10.1137/S0895479896305696

J. Le-graverend, J. Cormier, F. Gallerneau, P. Villechaise, S. Kruch et al., A microstructure-sensitive constitutive modeling of the inelastic behavior of single crystal nickel-based superalloys at very high temperature, International Journal of Plasticity, vol.59, pp.55-83, 2014.
DOI : 10.1016/j.ijplas.2014.03.004

J. Lemaitre and J. Chaboche, Mechanics of solid materials, 1994.

C. Lemieux, Monte Carlo and Quasi-Monte Carlo sampling, 2009.

L. Lim, Tensors and hypermatrices. Handbook of Linear Algebra, pp.231-260, 2013.
DOI : 10.1201/b16113-19

M. Loève, Probability theory : foundations, random sequences, 1955.

J. Lumley, The structure of inhomogeneous turbulent flows Atmospheric Turbulence and, 1967.

Y. Maday and O. Mula, A Generalized Empirical Interpolation Method: Application of Reduced Basis Techniques to Data Assimilation, pp.221-235, 2013.
DOI : 10.1007/978-88-470-2592-9_13

URL : https://hal.archives-ouvertes.fr/hal-00812913

Y. Maday, O. Mula, A. T. Patera, and M. Yano, The Generalized Empirical Interpolation Method: Stability theory on Hilbert spaces with an application to the Stokes equation, Computer Methods in Applied Mechanics and Engineering, vol.287, pp.310-334, 2015.
DOI : 10.1016/j.cma.2015.01.018

URL : https://hal.archives-ouvertes.fr/hal-01032168

Y. Maday, O. Mula, and G. Turinici, A priori convergence of the Generalized Empirical Interpolation Method, 10th international conference on Sampling Theory and Applications, pp.168-171, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00797271

Y. Maday, N. C. Nguyen, A. T. Patera, and G. S. Pau, A general multipurpose interpolation procedure: the magic points, Communications on Pure and Applied Analysis, vol.8, issue.1, pp.383-404, 2009.
DOI : 10.3934/cpaa.2009.8.383

URL : https://hal.archives-ouvertes.fr/hal-00174797

W. Michael and . Mahoney, Randomized algorithms for matrices and data, Machine Learning, pp.123-224, 2011.

N. C. Nguyen, A. T. Patera, and J. Peraire, A ???best points??? interpolation method for efficient approximation of parametrized functions, International Journal for Numerical Methods in Engineering, vol.35, issue.4, pp.521-543, 2008.
DOI : 10.1016/j.crma.2004.08.006

A. Nouy, Recent Developments in Spectral Stochastic Methods for??the??Numerical Solution of Stochastic Partial Differential Equations, Archives of Computational Methods in Engineering, vol.24, issue.2, pp.251-285, 2009.
DOI : 10.1007/978-94-017-2838-6

URL : https://hal.archives-ouvertes.fr/hal-00366636

A. Nouy, A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.23-24, pp.23-241603, 2010.
DOI : 10.1016/j.cma.2010.01.009

URL : https://hal.archives-ouvertes.fr/hal-00455635

C. Olivier, D. Ryckelynck, and J. Cortial, Tensor-train approximation of parametric constitutive equations in elasto-viscoplasticity. Soumis pour publication dans le journal, Computer Methods in Applied Mechanics and Engineering, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01590194

C. Olivier, D. Ryckelynck, J. Cortial, and C. Rey, Méthode de décomposition tensorielle pour la calibration de lois de comportement en sciences des matériaux, Actes du 13 ème colloque national en calcul des structures, 2017.

V. Ivan and . Oseledets, Compact matrix form of the d-dimensional tensor decomposition, 2009.

V. Ivan and . Oseledets, Tensor-train decomposition, SIAM Journal on Scientific Computing, vol.33, issue.5, pp.2295-2317, 2011.

V. Ivan, E. E. Oseledets, and . Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear Algebra and its Applications, vol.432, issue.1, pp.70-88, 2010.

R. Penrose, Applications of negative dimensional tensors. Combinatorial mathematics and its applications, p.221244, 1971.

L. Petzold, S. Li, Y. Cao, and R. Serban, Sensitivity analysis of differential-algebraic equations and partial differential equations, Papers form Chemical Process Control VII, pp.1553-1559, 2006.
DOI : 10.1016/j.compchemeng.2006.05.015

Z. Qu, Model order reduction techniques with applications in finite element analysis, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01713836

N. Relun, D. Néron, and P. Boucard, A model reduction technique based on the PGD for elastic-viscoplastic computational analysis, Computational Mechanics, vol.20, issue.7???8, pp.83-92, 2013.
DOI : 10.1016/j.jcp.2008.09.010

URL : https://hal.archives-ouvertes.fr/hal-01696628

G. Rozza, D. B. Huynh, and A. T. Patera, Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations, Archives of Computational Methods in Engineering, vol.40, issue.11, pp.229-275, 2008.
DOI : 10.1016/j.crma.2003.09.023

URL : https://hal.archives-ouvertes.fr/hal-01722593

D. Ryckelynck, A priori hyperreduction method: an adaptive approach, Journal of Computational Physics, vol.202, issue.1, pp.346-366, 2005.
DOI : 10.1016/j.jcp.2004.07.015

D. Ryckelynck, Hyper-reduction of mechanical models involving internal variables, International Journal for Numerical Methods in Engineering, vol.1, issue.3, pp.75-89, 2009.
DOI : 10.1002/nme.2406

URL : https://hal.archives-ouvertes.fr/hal-00732247

D. Ryckelynck, D. Missoum-benziane, A. Musienko, and G. Cailletaud, Toward ???green??? mechanical simulations in materials science, European Journal of Computational Mechanics, vol.1, issue.3, pp.365-388, 2010.
DOI : 10.1016/j.ijplas.2003.11.010

URL : https://hal.archives-ouvertes.fr/hal-00523243

D. Ryckelynck, F. Chinesta, E. Cueto, and A. Ammar, On thea priori model reduction: Overview and recent developments, Archives of Computational Methods in Engineering, vol.43, issue.5, pp.91-128, 2006.
DOI : 10.1007/3-540-27099-X_1

D. Ryckelynck, K. Lampoh, and S. Quilicy, Hyper-reduced predictions for lifetime assessment of elasto-plastic structures, Meccanica, vol.65, issue.3, pp.309-317, 2016.
DOI : 10.1090/qam/910464

URL : https://hal.archives-ouvertes.fr/hal-01295849

D. Ryckelynck and D. Missoum-benziane, Multi-level A Priori Hyper-Reduction of mechanical models involving internal variables, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.17-20, pp.17-201134, 2010.
DOI : 10.1016/j.cma.2009.12.003

URL : https://hal.archives-ouvertes.fr/hal-00461492

D. Ryckelynck, D. Missoum-benziane, S. Cartel, and J. Besson, A robust adaptive model reduction method for damage simulations, Computational Materials Science, vol.50, issue.5, pp.1597-1605, 2011.
DOI : 10.1016/j.commatsci.2010.11.034

URL : https://hal.archives-ouvertes.fr/hal-00585356

D. Ryckelynck, F. Vincent, and S. Cantournet, Multidimensional a priori hyper-reduction of mechanical models involving internal variables, Computer Methods in Applied Mechanics and Engineering, vol.225, issue.228, pp.225-22828, 2012.
DOI : 10.1016/j.cma.2012.03.005

URL : https://hal.archives-ouvertes.fr/hal-00705783

B. Sarbandi, S. Cartel, J. Besson, and D. Ryckelynck, Truncated Integration for Simultaneous Simulation of Sintering Using a Separated Representation, Archives of Computational Methods in Engineering, vol.12, issue.1, pp.455-463, 2010.
DOI : 10.1002/nme.1620121010

URL : https://hal.archives-ouvertes.fr/hal-00542499

S. Sargsyan, S. L. Brunton, and J. N. Kutz, Online Interpolation Point Refinement for Reduced-Order Models using a Genetic Algorithm, SIAM Journal on Scientific Computing, vol.40, issue.1, 2016.
DOI : 10.1137/16M1086352

V. Dmitry and . Savostyanov, Quasioptimality of maximum-volume cross interpolation of tensors, Linear Algebra and its Applications, vol.458, pp.217-244, 2014.

V. Dmitry, I. V. Savostyanov, and . Oseledets, Fast adaptive interpolation of multidimensional arrays in tensor train format, Multidimensional (nD) Systems (nDs), 2011 7th International Workshop on, pp.1-8, 2011.

U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Annals of Physics, vol.326, issue.1, pp.96-192, 2011.
DOI : 10.1016/j.aop.2010.09.012

L. Sirovich, Turbulence and the dynamics of coherent structures. I. Coherent structures, Quarterly of Applied Mathematics, vol.45, issue.3, pp.561-571, 1987.
DOI : 10.1090/qam/910462

C. Danny, M. Sorensen, and . Embree, A DEIM induced CUR factorization, SIAM Journal on Scientific Computing, vol.38, issue.3, pp.1454-1482, 2016.

M. Steinlechner, Riemannian Optimization for High-Dimensional Tensor Completion, SIAM Journal on Scientific Computing, vol.38, issue.5, pp.461-484, 2016.
DOI : 10.1137/15M1010506

G. W. Stewart, Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse matrix, Numerische Mathematik, vol.83, issue.2, pp.313-323, 1999.
DOI : 10.1007/s002110050451

B. Daniel and . Szyld, The many proofs of an identity on the norm of oblique projections, Numerical Algorithms, vol.42, issue.3-4, pp.309-323, 2006.

B. Tang, Orthogonal Array-Based Latin Hypercubes, Journal of the American Statistical Association, vol.2, issue.424, pp.1392-1397, 1993.
DOI : 10.1214/aos/1176347399

A. Townsend and S. Olver, The automatic solution of partial differential equations using a global spectral method, Journal of Computational Physics, vol.299, pp.106-123, 2015.
DOI : 10.1016/j.jcp.2015.06.031

R. Ledyard and . Tucker, The extension of factor analysis to three-dimensional matrices, Contributions to mathematical psychology, pp.110-127, 1964.

E. Tyrtyshnikov, Incomplete Cross Approximation in the Mosaic-Skeleton Method, Computing, vol.64, issue.4, pp.367-380, 2000.
DOI : 10.1007/s006070070031

E. E. Tyrtyshnikov, S. Goreinov, and N. Zamarashkin, Pseudo-skeleton approximations, Institute of Numerical Mathematics of the Russian Academy of Sci, 1995.
DOI : 10.1007/bf02575706

R. Steven and . White, Density-matrix algorithms for quantum renormalization groups, Physical Review B, vol.48, issue.14, p.10345, 1993.

M. Yano, A Space-Time Petrov--Galerkin Certified Reduced Basis Method: Application to the Boussinesq Equations, SIAM Journal on Scientific Computing, vol.36, issue.1, pp.232-266, 2014.
DOI : 10.1137/120903300

R. Zimmermann and K. Willcox, An Accelerated Greedy Missing Point Estimation Procedure, SIAM Journal on Scientific Computing, vol.38, issue.5, pp.2827-2850, 2016.
DOI : 10.1137/15M1042899

URL : http://dspace.mit.edu/bitstream/1721.1/109454/1/An%20accelerated.pdf