
HAL Id: tel-01784066
https://pastel.hal.science/tel-01784066

Submitted on 3 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Multiplicative Weights Update Algorithm for
Mixed Integer NonLinear Programming : Theory,

Applications, and Limitations
Luca Mencarelli

To cite this version:
Luca Mencarelli. The Multiplicative Weights Update Algorithm for Mixed Integer NonLinear Pro-
gramming : Theory, Applications, and Limitations. Optimization and Control [math.OC]. Université
Paris Saclay (COmUE), 2017. English. �NNT : 2017SACLX099�. �tel-01784066�

https://pastel.hal.science/tel-01784066
https://hal.archives-ouvertes.fr

NNT : 2017SACLSX099

1

Thèse de doctorat
de l’Université Paris-Saclay

préparée à l’École Polytechnique

Ecole doctorale n�580

Sciences et Technologies de l’Information et de la Communication
(STIC)

Spécialité de doctorat : Informatique
par

M. Luca Mencarelli
L’Algorithme Multiplicative Weights Update pour la

Programmation non linéaire en nombres entiers: Théorie,
Applications et Limites

Thèse présentée et soutenue à Palaiseau, le 4 Décembre 2017.

Composition du Jury :

Mme. Sourour Elloumi Professeur (Présidente du jury)
ENSTA ParisTech

Mme. Ivana Ljubic Professeur (Rapporteur)
ESSEC Business School

M. Lucas Létocart Maître de conférences HDR (Rapporteur)
LIPN, Université Paris 13

M. Emiliano Traversi Maître de conférences (Examinateur)
LIPN, Université Paris 13

Mme. Claudia D’Ambrosio Chargée de recherche (Co-Directrice de thèse)
CNRS, École Polytechnique

M. Leo Liberti Directeur de recherche (Directeur de thèse)
CNRS, École Polytechnique

This PhD thesis has been realized with the LATEX distribution on Mac OS
X using the ClassicThesis style by André Miede, inspired by the book “The
Elements of Typographic Style” [34] by Robert Bringhurst. The graphic de-
sign of this thesis can be reproduced by compiling the example TesiClassica
on http://www.lorenzopantieri.net/LaTeX.html.

http://www.lorenzopantieri.net/LaTeX.html

Apprendre sans désir, c’est désapprendre à désirer.

— Raoul Vaneigem

To my extraordinary family.

C O N T E N T S

I Overview 1

1 introduction 3

1.1 Mixed Integer NonLinear Programming 4

1.2 MINLP Algorithms 6

1.3 The MultiStart Algorithm 9

1.4 The Multiplicative Weights Update Algorithm 10

1.5 Formulations and Reformulations 11

1.6 Thesis Structure 12

II Theory 15

2 the mwu algorithm for minlp 17

2.1 Introduction 17

2.2 Pointwise Reformulations 18

2.3 Generating Pointwise Reformulations 20

2.3.1 A First-Order Reformulation 20

2.3.2 Polynomial MINLPs 21

2.3.3 Bilinear MINLPs 22

2.3.4 Quadratic MINLPs 22

2.4 MWU Algorithm for MINLPs 23

2.4.1 Sampling 23

2.4.2 Solution and Refinement 23

2.4.3 Computing MWU Costs/Gains 24

2.5 Conclusions 25

III Applications 27

3 mean-variance portfolio selection problem 29

3.1 Introduction 29

3.2 Portfolio Optimization 30

3.3 Robust and Probabilistic Approaches 32

3.3.1 Robust Approaches 32

3.3.2 Probabilistic Approach 32

3.4 Additional Constraints 35

3.4.1 Buy-in Thresholds 36

3.4.2 Round Lot Purchasing 36

3.4.3 Sector Diversification 37

3.4.4 Cardinality Constraints 37

v

vi contents

3.4.5 Sector Capitalization 38

3.4.6 Turnover and Trading 39

3.4.7 Benchmark Constraints 39

3.4.8 Collateral Constraints 39

3.5 Objective Functions 40

3.5.1 Penalty Functions 40

3.5.2 Balanced Objective Functions 41

3.6 Compact Reformulations 42

3.6.1 SOCC Inner Approximations 42

3.6.2 Variance Reformulation 43

3.6.3 Period-separable Reformulation 44

3.7 Exact Algorithms 44

3.8 MWU for a Class of MVPS Problems 48

3.8.1 Pointwise Reformulation 48

3.8.2 Computing MWU Costs/Gains 50

3.8.3 Computational Experiments 50

3.9 Conclusions 57

4 multiple nonlinear knapsack problems 59

4.1 Introduction 59

4.2 MWU for the MNLKP 61

4.2.1 Pointwise Reformulation 61

4.2.2 Computing MWU Costs/Gains 62

4.2.3 Computational Experiments 62

4.3 Relaxations 64

4.4 Constructive Heuristics 68

4.4.1 Discretization Heuristic 68

4.4.2 Surrogate Heuristics 70

4.4.3 Local Search 72

4.4.4 Overall Algorithm 74

4.4.5 Computational Experiments 74

4.5 Conclusions 81

IV Conclusions 89

5 conclusions 91

Appendix 93

a notation for portfolio selection 95

bibliography 97

L I S T O F F I G U R E S

Figure 1 Examples of transaction cost functions. 52

Figure 2 MVPS, CPU time vs. size of the problem n (#assets). 58

Figure 3 Example of profit function. 61

L I S T O F TA B L E S

Table 1 Deterministic exact approaches to mean-variance port-
folio selection problem (see also [173] and references
within). References are sorted in chronological order;
papers published in the same year are sorted accord-
ing to alphabetic order of the last name of the corre-
sponding first author. 47

Table 2 MVPS, comparative results of MS and MWU for the
transaction cost function (a). 54

Table 3 MVPS, comparative results of MS and MWU for the
transaction cost function (b). 54

Table 4 MVPS, comparative results of MS and MWU for the
transaction cost function (c). 55

Table 5 MVPS, comparative results of MS and MWU for the
transaction cost function (d). 55

Table 6 MVPS, comparative results of MS and MWU for the
transaction cost function (e). 56

Table 7 MNLKP, nonlinear weights, similar capacities. Aver-
age solution values over 20 instances. 65

Table 8 MNLKP, nonlinear weights, similar capacities. Aver-
age CPU times over 20 instances. 65

Table 9 MNLKP, nonlinear weights, dissimilar capacities. Av-
erage solution values over 20 instances. 66

Table 10 MNLKP, nonlinear weights, dissimilar capacities. Av-
erage CPU times over 20 instances. 66

Table 11 MNLKP, nonlinear weights, similar capacities. Aver-
age solution values over 20 instances (#no solution). 77

Table 12 MNLKP, nonlinear weights, similar capacities. Aver-
age CPU times over 20 instances (#no solution). 78

Table 13 MNLKP, nonlinear weights, dissimilar capacities. Av-
erage solution values over 20 instances (#no solution). 79

vii

viii list of tables

Table 14 MNLKP, nonlinear weights, dissimilar capacities. Av-
erage CPU times over 20 instances (#no solution). 80

Table 15 MNLKP, linear weights, similar capacities. Average
solution values over 20 instances (#no solution). 82

Table 16 MNLKP, linear weights, similar capacities. Average
CPU times over 20 instances (#no solution). 83

Table 17 MNLKP, linear weights, dissimilar capacities. Aver-
age solution values over 20 instances (#no solution). 84

Table 18 MNLKP, linear weights, dissimilar capacities. Aver-
age CPU times over 20 instances (#no solution). 85

Table 19 MNLKP, nonlinear weights. Solution values for in-
stances globally solved by Couenne. 86

Table 20 MNLKP, linear weights. Solution values for instances
globally solved by Couenne. 87

A B S T R A C T

This thesis presents a new algorithm for Mixed Integer NonLinear Pro-
gramming, inspired by the Multiplicative Weights Update framework and
relying on a new class of reformulations, called the pointwise reformulations.
The thesis is divided in three main parts: a foreword consisting in Chapter
1, a theoretical foundation of the new algorithm in Chapter 2, and the ap-
plication of this new methodology to two real-world optimization problems,
namely the Mean-Variance Portfolio Selection in Chapter 3, and the Multiple
NonLinear Knapsack Problem in Chapter 4.

Mixed Integer NonLinear Programming is a hard and fascinating topic
in Mathematical Optimization both from a theoretical and a computational
viewpoint. These problems are characterized by nonlinear objective func-
tion and constraints, and continuous and integer decision variables. Many
real-world problems can be cast this general scheme and, usually, are quite
challenging in terms of efficiency and solution accuracy with respect to the
solving procedures. Another very important tool in Mathematical Optimiza-
tion is represented by formulations and reformulations: in particular, we
introduce a new family of reformulations, namely pointwise reformulations,
depending on a given parameter, which are easier to solve than the origi-
nal formulation. A remarkable characteristic we look for in the pointwise
reformulation is exactness, i.e., the existence of a given value of the param-
eter such that a global optimum of the original problem is also a global
optimum for the reformulation. The basic idea to heuristically solve Mixed
Integer NonLinear Problems consists in finding the optimum of the (easier)
exact pointwise reformulation, which immediately yields the corresponding
global optimum of the original problem. We employ the Multiplicative Wei-
ghts Update algorithm in order to identify the correct value of the parameter
for the pointwise reformulation.

In Chapter 1 we give an overview of the mathematical concepts and en-
tities we use in the rest of the thesis. Chapter 2 is devoted to illustrate the
general scheme of the new algorithm, the Multiplicative Weights Update for
Mixed Integer NonLinear Programming, and its main theoretical properties.
Moreover, in this chapter we define several automatic building procedures
to determine the pointwise reformulation of a given Mixed Integer NonLin-
ear Problem for specific, but broad, classes of optimization problems.

In the rest of the thesis we deal with two real-world challenging optimiza-
tion problems: Mean-Variance Portfolio Selection and Multiple NonLinear
Knapsack Problems. In Chapter 3 we give a survey on the models, formula-
tions and reformulations, and exact methods for the single-objective single-

ix

period Mean-Variance Portfolio Selection problem. Among all the versions
for the portfolio problems proposed in the specialized literature, we choose
the most addressed class, namely cardinality constrained portfolio selection
with semi-continuous variables. We consider also a possibly non-convex non-
concave transaction cost function, with the only hypothesis of separability,
which is quite natural in the context of financial markets. The Multiplicative
Weights Update for Mixed Integer NonLinear Problems behaves sufficiently
better than the benchmarks with respect to the quality of the solution pro-
duced and the number of assets which compose the optimal portfolios. In
general, in fact, minimizing the number of assets in the optimal portfolio is
a second goal for the optimal selection procedures.

Then, in Chapter 4 we consider the Multiple NonLinear Knapsack Prob-
lem, addressed here for the first time in its entirely. We adapt the Multiplica-
tive Weights Updated framework to this problem, proposing a new point-
wise reformulation. Unfortunately, extensive computational experiments
show this algorithmic approach is not well suitable to solve challenging in-
stances of this knapsack problem. Hence, we illustrate a different heuristic
method based on the discretization of the solution space and on the surro-
gate relaxation. The method consists of three phases: we propose a construc-
tive greedy procedure, and two procedures for the feasibility recovering of
the surrogate solution. A local search post-procedure is also implemented in
order to improve the overall quality of the solution produced by the heuris-
tics. Computational experiments indicate that this method prevails over the
benchmarks both in terms of quality of the solution and of total computa-
tional elapsed time.

R É S U M É

L’objectif de cette thèse consiste à présenter un nouvel algorithme pour
la programmation non linéaire en nombres entiers, inspirée par la méthode
Multiplicative Weights Update et qui compte sur une nouvelle classe de re-
formulations, appelées les reformulations ponctuelles. La thèse est divisée
en trois parties principales: une introduction composée par le Chapitre 1,
une définition théorique du nouvel algorithme dans le Chapitre 2 et l’appli-
cation de cette nouvelle méthodologie à deux problèmes concrets d’optimisa-
tion, tels que la sélection optimale du portefeuille avec le critère moyenne-
variance dans le Chapitre 3 et le problème du sac à dos multiple non linéaire
dans le Chapitre 4.

La programmation non linéaire en nombres entiers est un sujet très diffi-
cile et fascinant dans le domaine de l’optimisation mathématique à la fois
d’un point de vue théorique et computationnel. Ces problèmes sont car-
actérisés par une fonction objective et des contraintes non linéaires, ainsi

list of tables xi

que des variables de décision continues et entières. Il est possible de for-
muler de nombreux problèmes dans ce schéma général et, habituellement,
ils posent de réels défis en termes d’efficacité et de précision de la solution
obtenue quant aux procédures de résolution. Un autre outil très important
dans l’optimisation mathématique est représenté par les formulations et re-
formulations. En particulier, nous introduisons une nouvelle famille de refor-
mulations, appelées reformulations ponctuelles, en fonction d’un paramètre
donné. Elles sont plus simples à résoudre que la formulation originale. Une
caractéristique remarquable recherchée dans la reformulation ponctuelle est
l’exactitude, c’est-à-dire l’existence d’une valeur donnée du paramètre telle
que un optimum global du problème d’origine est aussi un optimum glob-
ale pour la reformulation. L’idée de base pour résoudre heuristiquement
les problèmes non linéaires en nombres entiers consiste à trouver l’optimum
des reformulations ponctuelles exactes (les plus faciles), qui produit immédi-
atement l’optimum global correspondant du problème d’origine. Nous em-
ployons alors l’algorithme Multiplicative Weights Update afin d’identifier la
valeur correcte du paramètre pour la reformulation ponctuelle.

Dans le Chapitre 1, nous définissons les concepts et les objets mathéma-
tiques utilisés dans le corps de la thèse. Le Chapitre 2 est consacré à illustrer
le cadre général du nouvel algorithme, le Multiplicative Weights Update
pour la programmation non linéaire en nombres entiers et ses principales
propriétés théoriques. En outre, dans ce chapitre, nous définissons plusieurs
procédures de construction automatique pour déterminer la reformulation
ponctuelle d’un problème non linéaire en nombres entiers pour des classes
spécifiques, mais larges, de problèmes d’optimisation.

Dans le corps de la thèse, nous nous occupons de deux problèmes d’optimi-
sation difficiles: la sélection du portefeuille moyenne-variance et le prob-
lème du sac à dos multiple non linéaire. Dans le Chapitre 3, nous don-
nons un résumé des modèles, formulations et reformulations, ainsi que les
méthodes spécifiques orientées sur le problème de la sélection du porte-
feuille moyenne-variance avec un seul objectif et sur une période unique.
Parmi toutes les versions du problème de portefeuille proposé dans la lit-
térature spécialisée, nous avons choisi la catégorie la plus abordée, appelée
la sélection de portefeuille avec contrainte de cardinalité avec variables semi-
continues. Nous considérons également une fonction de coût de transaction
non-concave et non-convexe, avec la seule hypothèse de séparabilité, ce qui
est tout à fait naturel dans le contexte des marchés financiers. Le Multiplica-
tive Weights Update pour les problèmes non linéaires en nombres entiers
fait preuve d’un meilleur comportement par rapport aux autres méthodes
de résolution, notamment en termes de qualité de la solution produite et
du nombre d’actions qui composent le portefeuille optimal. En général, en
fait, la minimisation du nombre d’actions dans le portefeuille optimal est un
deuxième objectif pour les procédures optimales de sélection.

xii list of tables

Par conséquent, dans le Chapitre 4, nous considérons le problème du sac à
dos multiple non linéaire, abordé ici pour la première fois dans son intégral-
ité. Nous adaptons la structure du Multiplicative Weights Update à ce prob-
lème, proposant une nouvelle reformulation ponctuelle. Malheureusement,
des expériences computationnelles poussées montrent que cette approche
algorithmique n’est pas bien adaptée pour résoudre les cas difficiles de ce
problème de sac à dos. Ensuite, nous illustrons une méthode heuristique
différente basée sur la discrétisation de l’espace de solutions et sur sa relax-
ation agrégée. La méthode consiste en trois phases: nous proposons une
procédure gloutonne constructive et deux algorithmes pour la récupération
de la faisabilité de la relaxation agrégée. Une post-procédure de recherche
locale est également exécutée afin d’améliorer la qualité globale de la solu-
tion produite par les heuristiques. Les expériences de calcul indiquent que
cette méthode prévaut sur les autres tant en termes de qualité de la solution
que de temps total de calcul.

A C K N O W L E D G M E N T S

The last four years have been an unforgettable experience for me and actu-
ally this is due to many persons I had the chance to meet. First of all I want
to thank my supervisors for their incredible help and support also during
the moments of greater difficulty.

To Claudia D’Ambrosio for her extraordinary patience and guidance. She
is one of the kindest person and successful researcher I met in my life. I am
very glad for having been one of her PhD students.

To Leo Liberti for the ideas and the advices he shared with me, for the
talent to light my passion for the research and for keeping me grounded.
Thanks for all your illuminating suggestions.

To all the professors and researchers I had the chance to work with: An-
gelo Di Zio, Silvano Martello, Mathieu Van Vyve . . .

To Sonia, Raouia, Claire, Gustavo, Andrea, Pierre-Louis, Olivier, Kostas,
Ky, Youcef, Naveen, Eduardo, Maria, Christos, Panagiotis, Konstantinos,
Fragkiskos, and all the guys I met at LIX during the last four years: I will
never forget all the days at École Polytechnique I spent with you, friends.

To Maryam, Maribel, Malwina, Sven, Matteo, Andrea, Bartosz, Francesco,
Ruobing, and Ahmadreza, and all MINO Initial Training Network people!
To the Marie Curie 7th European Framework Programme for the financial
support.

To the fantastic research groups of CORE at University of Louvain-la-
Neuve (Manuela, Andrea, Ignacio, Cyrille) and of M.A.I.O.R. Srl (Samuela,
Francesco, Leopoldo, Giuliano).

To Stefano Lucidi and Laura Palagi for the having indicated me this PhD
open position and for your fantastic reference letters. Everything started
while I was writing my Master thesis and without you I definitively would
have lost this great opportunity.

To Jeff Linderoth, Jon Lee, Andrew R. Conn, Amitabh Basu and all the
fantastic researchers I had the opportunity to meet during seminars or con-
ferences: all those discussions with you have been an inspiring source for
me.

xiii

xiv list of tables

To Flavia, Martina, Frédèric and all my friends in Rome: every time I re-
turn to my hometown, you make me feel really at home.

To my extraordinary family for all the unique support. Grazie e ancora
grazie!

Paris, december 4th, 2017

A C R O N Y M S

BB Branch-and-Bound

BC Branch-and-Cut

DGP Distance Geometry Problem

HUC Hydro Unit Commitment

KKT Karush-Kuhn-Tucker

LMI Linear Matrix Inequality

L(MNLKP,λ) Lagrange Relaxation of MNLKP

LP Linear Problem

LP Linear Programming

MILP Mixed Integer Linear Problem

MILP Mixed Integer Linear Programming

MNLKP Multiple Linear Knapsack Problem

MINLP Mixed Integer NonLinear Problem

MINLP Mixed Integer NonLinear Programming

MIQP Mixed Integer Quadratic Problem

MIQP Mixed Integer Quadratic Programming

MNKP Multiple NonLinear Knapsack Problem

MP Mathematical Programming

MS MultiStart

MVPS Mean-Variance Portfolio Selection

MWU Multiplicative Weights Update

NLKP NonLinear Knapsack Problem

NLP NonLinear Problem

NLP NonLinear Programming

PRS Pure Random Search

SDP Semidefinitive Problem

xv

xvi list of tables

SDP Semidefinitive Programming

S(MNLKP,π) Surrogate Relaxation of MNLKP

SOC Second Order Cone

SOCC Second Order Cone Constraint

SOCP Second Order Cone Problem

SOCP Second Order Cone Programming

SQP Sequential Quadratic Programming

Part I.

Overview

1 I N T R O D U C T I O N

This thesis is devoted to introduce and analyze a new methodology to
solve optimization problems, i.e., a broad class of problems, in which we
want to find the minimum of a single deterministic objective function, in
a finite or infinite set of feasible points, described by a finite number of
inequalities and possibly implicit constraints such as integrality or member-
ship in given polyhedra. In particular, we consider Mixed Integer NonLin-
ear Problems (MINLPs), i.e., optimization problems involving continuous
and discrete decision variables and possibly nonlinear terms in the objective
function and the constraints.

The methodology we employ in this thesis involves three main ingredi-
ents: MultiStart algorithm, Multiplicative Weights Update algorithm, and
reformulations. The MultiStart algorithm is a simple random (heuristic) pro-
cedure to globally solve optimization problems. The Multiplicative Weights
Update algorithm can be explained as a stochastic (heuristic) method for
a decision maker to iteratively take a decision among different choices, by
observing the prediction of a finite number of advisors. Reformulations are
a fundamental tool in optimization both from a theoretical and applicative
viewpoint. The formulation describes the structure of a Mathematical Pro-
gramming (MP). Reformulations change the symbolic structure of a MP for-
mulation while keeping some of its mathematical properties invariant.

This chapter constitutes a foreword to the rest of the thesis: we introduce
the notation and the mathematical entities we will use in the other chapters.
The rest of this chapter is organized as follows. In Section 1.1 we give the
mathematical formal definition of Mixed Integer NonLinear Programming
(MINLP) and we remark its general properties. In Section 1.2 we describe a
general classification for the algorithms for MINLP. In Sections 1.3 and 1.4 we
describe the MultiStart and the Multiplicative Weights Update algorithms,
respectively. In Section 1.5 we present a definition of formulations and re-
formulations of a given optimization problem, and we propose a general
classification, based on the relationship between the original problem and
its reformulated versions. Finally, in Section 1.6 the thesis structure is drawn
with all the complete references from which the others chapters are sourced.

3

4 introduction

1.1 mixed integer nonlinear programming

Let x ∈ Rn be an n-dimensional vector of continuous decision variables
and y ∈ Zp be a p-dimensional vector of integer variables. The general
MINLP is defined as follows:

min f(x,y) (1.1a)

s.t. g(x,y) 6 0 (1.1b)

x ∈ X (1.1c)

y ∈ Y ∩Zp, (1.1d)

where f(x,y) : Rn+p → R and g(x,y) : Rn+p → Rm represent the objec-
tive function and the constraints, respectively. The sets X ⊆ Rn and Y ⊆ Rp

are two polyhedra of suitable dimensions. Let F be the feasible set of the
MINLP, i.e.,

F := {(x,y) : g(x,y) 6 0, x ∈ X,y ∈ Y ∩Zp}. (1.2)

Moreover, we define projections of the feasible set over the continuous and
discrete variables, respectively:

FX :={x ∈ X : ∃y ∈ Y ∩Zp such that g(x,y) 6 0} (1.3a)

FY :={y ∈ Y ∩Zp : ∃x ∈ X such that g(x,y) 6 0}. (1.3b)

Definition 1.1.1. With a slight abuse of notation, we say that a MINLP is convex
if f(x,y) and g`(x,y) are convex for all ` ∈ {1, . . . ,m}, otherwise the MINLP is
non-convex.

Remark 1.1.2. We emphasize that the continuous relaxation of a convex MINLP,
i.e., the nonlinear problem obtained by removing the integrality requirements of the
variable y, has a convex feasible set.

Definition 1.1.3. With a slight abuse of notation, we say that a MINLP is strictly
convex if f(x,y) and g`(x,y) are strictly convex for all ` ∈ {1, . . . ,m}.

If p = 0, the MINLP reduces to NonLinear Problem (NLP). If the objective
function and the constraints are linear, the MINLP reduces to Mixed Integer
Linear Problem (MILP). Finally, if p = 0 and the objective function and the
constraints are linear, the MINLP reduces to Linear Problem (LP).

Then we introduce the definitions of neighborhoods of a given point (x̃, ỹ) ∈
Rn ×Zp.

Definition 1.1.4. Let (x̃, ỹ) ∈ Rn ×Zp, then

B((x̃, ỹ); ε) := {(x,y) ∈ Rn ×Zp : y = ỹ, ||x− x̃||q 6 ε} (1.4a)

N(x̃, ỹ) := {(x,y) ∈ Rn ×Zp : x = x̃, ||y− ỹ||0 6 1}, (1.4b)

where q ∈N and ε > 0.

1.1 mixed integer nonlinear programming 5

Henceforth, solving a MINLP means finding at least one global solution for
the optimization problem, i.e., a feasible point whose objective value is the
minimum among all the points in the feasible set.

Definition 1.1.5. A point (x∗,y∗) ∈ F is a global solution of a MINLP if
f(x∗,y∗) 6 f(x,y) for all (x,y) ∈ F.

We introduce also the definition of local optimum of a MINLP.

Definition 1.1.6. A point (x∗,y∗) ∈ F is a local solution of a MINLP if, for some
ε > 0, f(x∗,y∗) 6 f(x,y) for all x ∈ B((x∗,y∗); ε) ∩ FX and y ∈ N(x∗,y∗) ∩
FY .

A global solution is given by the best solution in all the feasible set: this
definition takes into account the global behavior of the objective function
and the entire feasible set. A local solution, on the contrary, is a solution
restricted to a small subset of the feasible set, with respect to which the local
behavior of the objective function is considered.

While a strictly convex NLP has at most one global solution, the same
property does not necessarily hold for strictly convex MINLPs [154, 166].

MINLP is NP-hard because it includes Mixed Integer Linear Programming
(MILP) [102, 139] and Mixed Integer Quadratic Programming (MIQP) [69] as
special cases, when constraints are affine and objective function is linear
or quadratic, respectively. MINLP is, in general, undecidable [130], even for
p > 10, when the objective function is linear and the constraints are polyno-
mial [67]. For a survey on computational complexity of MINLP we refer the
interested reader to Hemmecke et al. [115] and Köppe [149]. However, if the
MINLP is convex or polyhedra X and Y are bounded, the undecidability is
fortunately avoided.

Usually, solving MINLPs in practice could be extremely difficult, as the
following example shows.

Example 1.1.7. Fermat’s Last Theorem, formulated by Pierre de Fermat in 1637 on
the margin of his copy of Arithmetica by Diophantus of Alexandria and published
by his son Samuel de Fermat in Tolosa in 1670 (see [64, p. 62]) states:

“Cubum autem in duos cubos, aut quadratoquadratum in duos quadra-
toquadratos et generaliter nullam in infinitum ultra quadratum potes-
tatem in duos eiusdem nominis fas est dimidere cuius rei demonstra-
tionem mirabilem sane detexi. Hanc marginis exiguitas non caperet.”.1

This conjecture, finally proved by Wiles [242], asserts the Diophantine equation
xn + yn = zn has no integer solution when n ∈ Z ∩ [3,+∞) and x,y, z ∈ Z+ ∩

1 Translation: “It is impossible to separate a cube into two cubes, or a fourth power into two
fourth powers, or in general, any power higher than the second, into two like powers. I have
discovered a truly marvelous proof of this, which this margin is too narrow to contain”. (see
[114, p. 144-145]).

6 introduction

[1,+∞). Now, Fermat’s conjecture is false if and only if the optimum value of the
following MINLP is zero [198]:

min
x ,y ,z ,n

(xn + yn − zn)2 (1.5)

s.t. x ∈ Z+ ∩ [1,+∞) (1.6)

y ∈ Z+ ∩ [1,+∞) (1.7)

z ∈ Z+ ∩ [1,+∞) (1.8)

n ∈ Z∩ [3,+∞). (1.9)

For simplicity, from now on, we assume all the optimization problems we
introduce are characterized by lower and upper bounds on the decision vari-
ables, i.e., by constraints such as x ∈ [x, x] and y ∈ [y,y], where the underline
symbol indicates the lower bounds and the upperline symbol indicates the
upper bounds.

1.2 minlp algorithms

The algorithms proposed in the literature to solve optimization problems
can be subdivided into two different classes, with respect to the type of
solution produced:

• local algorithms produce local solutions;

• global algorithms produce global solutions.

Optimization algorithms can also be subjected to a further classification:

• exact algorithms;

• heuristic algorithms.

Exact algorithms produce a solution which meets a given optimization cri-
terion which characterized a local or a global solution [30, 94, 201], while
heuristic algorithms produce, in general quickly, a good feasible solution for
the problem. Global algorithms consider the entire feasible set and they
try to explore it in order to find a global optimum, exactly or heuristically.
According to the way they search the feasible set, they can be:

• deterministic methods;

• stochastic methods.

Deterministic methods are such that, if applied several times to the same
instance of the optimization problem, they produce the same output every

1.2 minlp algorithms 7

time; instead, stochastic methods are characterized by probabilistic proce-
dures, which may produce different solutions each time the algorithm is
executed on the same input.

One of the first general heuristic methods for global optimization problems,
i.e., mathematical programs in which we want to find the global minimum, is
the Pure Random Search (PRS) algorithm. The PRS (see Algorithm 1) is
based on a simple restart procedure: at each iteration a new (feasible) point
is generated (Step 3) and it is valued with respect to the objective function, if
the current point has a better objective function value, the current returned
point is updated (Steps 4-8).

Algorithm 1 Pure Random Search
1: Initially set t=1, (x∗0,y∗0) := (x0,y0) and U := f(x0,y0)
2: while termination condition is not met do
3: generate a feasible point (x ′t,y

′
t)

4: if f(x ′t,y
′
t) < U then

5: set x∗t := x
′
t, y
∗
t := y

′
t, U := f(x∗t ,y

∗
t)

6: else
7: set x∗t := x

∗
t−1, y∗t := y

∗
t−1

8: end if
9: t := t+1

10: end while
11: return point (x∗t−1,y∗t−1) and upper bound U.

Step 3 can be implemented in many different ways from pure systematic
generation to pure randomization procedure [183]. The termination condi-
tion is, in general, given by the maximum number of iterations or, in the
case the global minimum value is known, the distance between the current
function value and the global one [220].

Remark 1.2.1. Although Algorithm 1 is quite simple, the implementation of this
method cannot be a trivial task, since generating points in a feasible set is generally
a non easy operation. One possible implementation is to generate a point in a box
containing the feasible set and accept the point only if it is feasible.

Assumption 1.2.2. We assume the feasible set is defined only by lower and upper
bounds constraints: in this case Step 3 can be implemented in a pure randomization
fashion, i.e., the current point is generated according to a uniform distribution over
the feasible set.

Proposition 1.2.3. Let Assumption 1.2.2 hold, and {(xt,yt)} be a sequence of uni-
formly random distributed points on the feasible set F of the optimization problem.
Let Zt = {(x1,y1), . . . , (xt,yt)}. Then, for all subset A ⊂ F with strictly positive
Lebesgue measure,

lim
t→∞P (Zt ∩A 6= ∅) = 1. (1.10)

8 introduction

Proof. Let meas(A) denote the Lebesgue measure of set A. p = meas(A)/

meas(F) ∈ (0, 1) is the probability that a point sampled in F belongs to A.
Therefore, we have:

P (Zt ∩A 6= ∅) = 1− (1− p)t. (1.11)

The statement follows.

Proposition 1.2.3 guarantees the entire feasible set is covered by the se-
quence of random points: no part of the feasible set remains unexplored.
The following proposition states that the Algorithm 1 converges to the global
optimum in probability as the number of iterations goes to infinity.

Proposition 1.2.4. Let Assumption 1.2.2 hold and suppose the problem is feasible.
Let {(x∗t ,y∗t)} be a sequence of points generated by the Algorithm 1. Then, for any
ε > 0, we have

lim
t→∞P ((x∗t ,y

∗
t) ∈ {(x,y) ∈ F : f(x,y) 6 f∗ + ε}) = 1, (1.12)

where f∗ is the optimal value of the optimization problem.

Proof. Let A = {(x,y) ∈ F : f(x,y) 6 f∗ + ε}. The statement follows by
invoking Proposition 1.2.3.

The serious drawback of Algorithm 1 consists in the fact that, in order to
reach a point in the neighborhood of the global solution of the optimization
problem, many iterations may be necessary: in the worst case the number
of iterations is infinite. The probability of finding a point (xt,yt) such that
f(xt,yt) 6 f∗ + ε is ε/meas(F) and the probability of finding such point in
N iterations is

1−

(
1−

ε

meas(F)

)N
. (1.13)

In order to produce a point in the neighborhood of the optimal solution of

the problem with a confidence level α, i.e., such that 1−
(
1− ε

meas(F)

)N
=

α, we need

N =
log (1−α)

log(1− ε/meas(F)) (1.14)

iterations. Therefore, as pointed out by Locatelli and Schoen [165], if the
optimization problem is pure continuous, i.e., p = 0, the feasible set F is
a unit box, and the neighborhood of the global minimum is a box of edge
length `, the number of iterations needed is

log (1−α)

log(1− `n)
= O

(
1

`n

)
. (1.15)

1.3 the multistart algorithm 9

1.3 the multistart algorithm

In order to speed up Algorithm 1 a local search phase can be also imple-
mented, defining the MultiStart (MS) algorithm: at Step 4 in Algorithm 2 a
local algorithm is applied to the randomly generated point. Obviously, in
practical implementation, this local phase is crucial for the computational
behavior of the algorithm since it is, in general, much more expensive than
the global one [158].

Remark 1.3.1. Note that, when the mathematical program is a non-convex NLP,
Step 4 is NP-hard [95, 204], however it is practically fast. Moreover, we can consider
local NLP optimization as tractable as long as we limit ourselves to constraints
involving only factorable functions over a simple operator alphabet such as +, −, ∗,
/, log, exp.

Algorithm 2 MultiStart Algorithm
1: Initially set t := 1, (x∗0,y∗0) := (x0,y0) and U := f(x0,y0)
2: while termination condition is not met do
3: generate a feasible point (x ′t,y

′
t)

4: apply a local algorithm from (x ′t,y
′
t), obtaining point (x ′′t ,y ′′t)

5: if f(x ′′t ,y ′′t) < U then
6: set x∗t := x

′′
t , y∗t := y

′′
t , U := f(x∗t ,y

∗
t)

7: else
8: set x∗t := x

∗
t−1, y∗t := y

∗
t−1

9: end if
10: t := t+1

11: end while
12: return point (x∗t−1,y∗t−1) and upper bound U.

In order to avoid too many local minimization procedures, variants of
Algorithm 2 have been proposed: in particular, the local phase could be per-
formed only if the randomization phase produces a better point in terms of
the objective function [158].

Moreover, a population of points could be randomly generated in the ran-
domization phase and a certain subset of points could be selected by means
of clustering techniques (see [22, 158, 222]) and local minimizations can be
performed, considering the selected points as starting points [158]. In other
versions of the MS, an escaping strategy is also implemented in order to avoid
local minima: for instance, Simulated Annealing [145] (see also [189, 43, 144,
68, 164]) is considered in the context of non-convex MINLP by Cardoso et
al. [40] and Tabu Search [103, 104, 105] is applied to non-convex MINLP by
Munawar et al. [197] (see also [160, 196]).

Finally, the generation of the random points can be implemented by means
of non uniform distributions [230], such as in Simulated Annealing: in this

10 introduction

case the following proposition guarantees the convergence of the algorithm
in probability.

Proposition 1.3.2. (Solis and Wets [230]) Let meas(A) be the Lebesgue measure
of set A. Let {mt(·)} be a sequence of probability measures such that, for all (Borel)
subset A ⊂ F with meas(A) > 0,

∞∏
t=1

(1−mt(A)) = 0. (1.16)

Then, if f is a Lebesgue-measurable function and F ⊆ Rn is a Lebesgue-measurable
set, the sequence of random point (x∗t ,y∗t) generated by the algorithm is such that

lim
t→∞P ((x∗t ,y

∗
t) ∈ {(x,y) ∈ F : f(x,y) 6 f∗ + ε}) = 1, (1.17)

where ε > 0.

1.4 the multiplicative weights update algorithm

The Multiplicative Weights Update (MWU) algorithm is a “meta-algorithm”,
i.e., it could be adapted to many different settings, with a broad application
in Optimization, Machine Learning, and Game Theory. In particular, we
point out the Plotkin-Shmoys-Tardos Algorithm [206] for fractional pack-
ing and covering LPs, which can be derived by the MWU framework. The
Plotkin-Schmoys-Tardos Algorithm is connected with the Lagrangian relax-
ation approach, in which several “complicated constraints” are relaxed. Let
A ∈ Rn×n, x,b ∈ Rn and P be a convex subset of suitable dimension. The
Plotkin-Schmoys-Tardos Algorithm solves the following feasibility problem:

∃?x ∈ P : Ax > b (1.18)

in which x ∈ P represent the “easy constraints”, while Ax > b indicate the
“complicated constraints”. The Algorithm calls repetitively a sub-procedure
(Oracle) which deals with the following feasibility problem:

∃?x ∈ P : p>Ax > p>b, (1.19)

where p is a vector of suitable dimensions. Arora et al. [3] show that, if
the sub-procedure is an (`, ρ)-bounded Oracle, then there exists an algorithm
which solves the problem (1.18) up to an additive error ε or derives that the
problem (1.18) is infeasible. The algorithm calls the Oracle only O(`ρ log(m)/

ε2) times.

For a general explanation of MWU we refer the reader to the excellent
survey by Arora et al. [3], from which we borrow the following example.

In a very simple stock market with just one stock characterized by two
possible daily price movements (up and down), an investor has the possi-
bility to observe the prediction of q experts. The investor wants to gain as

1.5 formulations and reformulations 11

much as possible in terms of overall return, according to the prediction of
the best expert which, however, is of course not known a priori. The first
(trivial) algorithm one could think about consists in operating in the market,
selling or buying the stock, according to the majority opinion of the experts.
Nevertheless, the experts could be correlated or even not really experts in
finance, so the majority opinion could be systematically wrong.

The MWU algorithm (see Algorithm 3) corrects the trivial one: the in-
vestor chooses his/her financial strategy according to the weighted majority
opinion of the experts. Initially all the experts have the same weights wi
(i 6 q) (Step 1), but, as the time goes on, the algorithm gives a gain to the
experts who made the correct prediction, and gives a cost to ones who made
a wrong prediction (Step 4). For technical reasons the costs/gains must be
in [−1, 1]. If this is not the case, a step to suitably scale the costs/gains has
to be implemented. The weight of each expert is updated in a multiplica-
tive fashion (Step 5). At each iteration, the investor chooses on the basis of
the predictions in a random way according to the probability distribution
induced by the weights (Step 3).

Algorithm 3 Multiple Weights Update Algorithm

1: Initially set t:=1, η 6 1
2 and wi,t := 1 for all i 6 q

2: while termination condition is not met do
3: sample i 6 q from the distribution pt ∼ (wi,t : i 6 q).
4: each decision incurs a cost/gain ψt ∈ [−1, 1]q.
5: update weights wi,t+1 := wi,t(1− ηψi,t).
6: t := t+ 1.
7: end while

Even though the MWU is a quite simple strategy, it is possible to show an
upper bound for the overall expected cost

∑
t6T ptψt.

Theorem 1.4.1 (Arora et al. [3]). Let T be the number of iterations, ψi,t ∈ [−1, 1],
for all i ∈ q and t 6 T , be the cost/gain associated to expert i at time t and η 6 1

2 .
The MWU Algorithm guarantees an overall expected cost

EMWU :=
∑
t6T

ψtpt 6 min
i6q

∑
t6T

ψi,t + η
∑
t6T

|ψi,t|

+
lnq
η

(1.20)

1.5 formulations and reformulations

Intuitively a formulation is a way to write down a given optimization
problem. Specific types of formulation are, for instance, required by the
implemented solvers in order to address a specific type of problems, such as
LPs, NLPs, MILPs, and MINLPs. Formulations can be:

12 introduction

• flat formulations;

• structured formulations.

In the objective and constraints of structured formulations, quantifiers, such
as ∀, ∑,

∏
, appear; in flat formulations no quantifier is present. When a

formulation P is cast into another formulation Q, we say that Q is a reformu-
lation of P.

Several definitions for reformulation have been proposed (see, e.g., Audet
et al. [5] and Sherali [227]). Generally, reformulations are defined in such a
way that several properties of the original formulation are preserved, such as
the set of the optimal solutions or the set of the feasible points. A systematic
theory for reformulations is presented in Liberti [157], which proposes the
following classification.

Definition 1.5.1. A reformulationQ of a formulation P is a relaxation if its feasible
set contains the feasible set of P.

Definition 1.5.2. A reformulation Q of a formulation P is exact if it shares all the
optimization properties (local optima, global optima, feasible set) with P.

Moreover, in the next chapters we will consider also bounding reformula-
tions [187].

Definition 1.5.3. A reformulation Q of a formulation P is bounding if, when
solved to optimality, produces a lower bound for P and its feasible set contains the
feasible set of P.

Remark 1.5.4. Note that all the relaxations are also bounding reformulations.

1.6 thesis structure

This thesis is based on several published papers, namely [187, 188], and
other working papers [185, 186] submitted to the international refereed jour-
nals Computers & Operations Research and International Transactions in
Operational Research, respectively. In particular, Chapter 2 is sourced from
[187], Chapter 3 from [185], and Chapter 4 from [186, 188].

Beside the introductory section, the thesis is structured in two main parts:
a theoretical part (Chapter 2), and an applicative one (Chapters 3 and 4). In
the theoretical part we introduce a new algorithm to solve MINLP, and we ex-
plain its fundamental steps and its theoretical properties. In the second part
we apply the methodology to two different optimization problems, namely
the Mean-Variance Portfolio Selection and the Multiple NonLinear Knap-
sack Problems, both modeled as MINLPs and difficult to solve in practice.
We will see that for the first problem the algorithm performs quite well with
respect to the benchmarks, while this is not the case for the second problem.

https://www.journals.elsevier.com/computers-and-operations-research
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1475-3995
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1475-3995

1.6 thesis structure 13

Hence, for the sake of completeness, we describe a constructive heuristic
procedure to find good solutions in a reasonable amount of computational
time.

Part II.

Theory

2 T H E M W U A LG O R I T H M F O R M I N L P

2.1 introduction

The MWU algorithm can be described as a special case of the MS algo-
rithm to solve MINLPs. The MS algorithm is composed of two main steps:
the choice of a random starting point, and a local optimization procedure,
meaning we solve the problem with a local solver (for instance, we can
heuristically solve non-convex problems by means of a solver which solves
convex problems exactly). In the MWU algorithm for MINLPs we follow
the same structure of the MS, but we introduce a strategy for generating
promising points for the objective function and for the constraints. It is quite
clear what “promising point” means in terms of objective function: if we
consider a minimization problem and two feasible points, the one with the
lowest objective function value is more promising than the other. Intuitively,
being a “promising point” for the constraints corresponds to a sufficiently
little violation of the constraints in terms of the difference between the value
of the left hand side of the constraint and the value of the right hand side.

Moreover, since in the MWU algorithm for MINLPs we generate “promis-
ing points” according to the problem formulation, in order to guarantee low
objective function values and low violation of the constraints, we say that
MWU algorithm for MINLPs is a matheuristic [171], i.e., a heuristic algorithm
based on the MP formulation. In other words, we generate the promising
point by solving an auxiliary formulation of the original problem, where
several terms are fixed to the values given by the MWU, we call a point-
wise reformulation. The solution we obtain is the starting point for a local
optimization procedure. Then, we iterate the two steps (solving the point-
wise reformulation and applying a local procedure) for a given number of
iterations or until a given optimality criterion is satisfied. If the pointwise
reformulation is built in such a way that there exists a value of the parameter
for which the reformulation has the same optimum as the original one, i.e.,
the pointwise reformulation is exact, then we only need to guess the correct
value of the parameter and solve the simpler reformulation. If the pointwise
reformulation is bounding, at each iteration we obtain a lower bound for the
optimal value of the original formulation, by simply solving the reformu-
lated problem.

The rest of this chapter is organized as follows. In Section 2.2 we formally
introduce the pointwise reformulation, describing its theoretical properties
and characterizations. In Section 2.3 we illustrate several examples of auto-
matic procedures to build the pointwise reformulation for specific classes of

17

18 the mwu algorithm for minlp

MINLPs. Finally, in Section 2.4 a complete description of the MWU algo-
rithm for MINLPs is specified.

2.2 pointwise reformulations

Definition 2.2.1. Given a MINLP P as in (1.1), a pointwise reformulation Rθ =

ptw
t←t’(θ)

(P) is a family of MINLP formulations, depending on a parameter θ =

(θs | s 6 r), which are obtained by replacing terms t1, . . . , tr in P by corresponding
parametrized terms t ′s(θs) (for s 6 r).

Given a MINLP P as in (1.1), a term of P is a symbolic expression in its ex-
pression tree, i.e., it is represented by a set of adjacent nodes in its expression
tree. The expression tree of a MINLP is a way to computationally represent
the problem in a tree, having as leaves the variables and the constants of
the problem and as the other nodes the logical operators (+, ×, /, sin, etc.)
linking variables and constants [54].

Both the original terms t and the substituting ones t ′ are functions of the
decision variables x and y; furthermore, the substituting terms t ′ are also
functions of the parameters θ: hence, we extensively indicate the substituted
terms as t(x,y) and the substituting terms as t ′(x,y; θ).

Definition 2.2.2. Given a MINLP P and Rθ = ptw
t←t’(θ)

(P), both defined on a vector

x of continuous decision variables in Rn and a vector y of discrete decision variables
in Zp:

(a) For every replaced term ts (for s 6 r) in Definition 2.2.1, let Ds be the range
of ts(x,y), where the term is interpreted as a function of the decision variables
x and y of P ranging in the respective domains.

(b) For every replacement term t’s (for s 6 r) in Definition 2.2.1, let D ′s(θs)
be the range of t’s(x,y; θs) when the term is interpreted as a function of the
decision variables x and y of P ranging in the respective domains.

(c) For s 6 r, let Θs be the range of the corresponding parameter θs, and let
Θ = (Θs | s 6 r).

Finally, given a parameter θ ∈ Θ and a function φ, we indicate with φθ

the function obtained by replacing the terms ts(x,y) with t ′s(x,y; θ) (s 6 r).
Let Xθ and Yθ be the sets obtained by replacing the terms ts(x,y) into the

2.2 pointwise reformulations 19

inequalities defining sets X and Y, respectively. With the previous notation,
we rewrite the pointwise reformulation as follows:

min fθ(x,y) (2.1a)

s.t. gθ(x,y) 6 0 (2.1b)

x ∈ Xθ (2.1c)

y ∈ Yθ ∩Zp
′
. (2.1d)

Remark 2.2.3. The number of the constraints in the pointwise reformulation (2.1)
is the same as in the original formulation (1.1); however, since in the pointwise
reformulation (2.1) several terms are substituted by means of parameters θ, the
number of variables could be different from the one of the original formulation (1.1).

We introduce the following classification for the pointwise reformulations.

Definition 2.2.4. Given a MINLP P and its pointwise reformulation Rθ:

(a) Rθ is spanning if, for any x ∈ Rn and y ∈ Zp, there are values of θ such
that evaluating the functions of P and of Rθ at (x,y) determines the same
value, i.e., such that

∀s 6 r Ds ⊂
⋃

θs∈Θs

D ′(θs) ∧ t’s(x,y; θs) = ts(x,y) (2.2)

(b) Rθ is exact if, for each globally optimal solution (x∗,y∗) of P, there is at least
one vector θ ′ ∈ Θ such that (x∗,y∗) is also an optimal solution of Rθ

′
;

(c) Rθ is efficient if there is a polynomial-time algorithm for approximately solv-
ing Rθ (for θ ∈ Θ) to within a given ε > 0 approximation factor.

Lemma 2.2.5. Let P be a MNLP cast in form (1.1) and Rθ = ptw
t←t ′

(P) be a spanning

reformulation, then we have:

feas(P) ⊆
⋃
θ∈Θ

feas(Rθ). (2.3)

where feas(P) is the feasible set of problem P.

Proof. Let (x ′,y ′) ∈ feas(P). Given that Rθ is spanning, there exists a param-
eter ξ ∈ Θ such that ts(x ′,y ′) = ts(x ′,y ′; ξs) for each s 6 r. Hence it follows
gξ` (x

∗,y∗) = g`(x
∗,y∗) for all ` 6 m. Note (x ′,y ′) ∈ feas(P), g`(x ′,y ′) 6 0

for all ` 6 m, therefore (x ′,y ′) is also feasible for Rξ. Since for all ξ ∈ Θ
feas(Rξ) is a subset of

⋃
θ∈Θ feas(Rθ), the statement follows.

Lemma 2.2.6. Let P be a given formulation and Rθ be a spanning pointwise refor-
mulation, then there exists ξ ∈ Θ such that Rξ is a bounding reformulation of
P.

20 the mwu algorithm for minlp

Proof. In the proof of Lemma 2.2.5 we saw that, if ξ ∈ Θ is such that
ts(x∗,y∗) = ts(x∗,y∗; ξs) for all s 6 r, then (x∗,y∗) ∈ feas(Rξ). Analogously,
it is possible to prove fξ(x∗,y∗) = f(x∗,y∗), and therefore:

val(Rξ) 6 fξ(x∗,y∗) = f(x∗,y∗) = val(P), (2.4)

where val(P) indicates the value of the optimal solution of P. The statement
of the theorem follows.

2.3 generating pointwise reformulations

2.3.1 A First-Order Reformulation

In this section we derive a pointwise linear reformulation for a general
non-convex MINLP. We assume functions f and g` (` 6 m) are at least once
continuously differentiable. Moreover, we suppose without loss of general-
ity that the objective functions of the original problem P and of its pointwise
reformulation Rθ are the same, i.e., fθ ≡ f. If this is not the case, we add a
dummy variable γ ∈ R to P, and we consider the following exact reformula-
tion, in the sense of [157], of the original MINLP problem:

min γ (2.5a)

s.t. f(x,y) 6 γ (2.5b)

g(x,y) 6 0 (2.5c)

x ∈ X (2.5d)

y ∈ Y ∩Zp. (2.5e)

We assume all the inequalities describing sets X and Y are included on
inequalities g(x,y) 6 0 with g(x,y) : Rn+p → Rm. We replace each non-
convex multivariate function in (2.5) with an affine approximation, i.e., with
a first-order approximation at a given point (x̃, ỹ):

min γ (2.6a)

ν00 + ν10
>
(
x− x̃

y− ỹ

)
6 γ (2.6b)

ν0` + ν1`
>
(
x− x̃

y− ỹ

)
6 0 ∀` 6 m (2.6c)

y ∈ Zp. (2.6d)

Remark 2.3.1. In the pointwise reformulation (2.6), the parameter θ is the matrix
((x̃ ỹ)>,ν0k>,ν1k>) (k ∈ {0, . . . ,m}), whose dimensions are (n+ p)× (2m+

3).

For simplicity of notation, in the rest of this subsection, we set g0(x,y) :=
f(x,y).

Lemma 2.3.2. The pointwise reformulation (2.6) is spanning.

2.3 generating pointwise reformulations 21

Proof. For each k ∈ {0, . . . ,m}, we note that the replacement term ν0k +

ν1k
>(x− x̃ y− ỹ)> and the replaced term gk(x,y) have the same value for

all values of θ such that (x̃, ỹ) = (x,y) and ν0k = gk(x,y).

The previous approach to generate a pointwise reformulation has been
successfully applied to a special class of the Hydro Unit Commitment (HUC)
problems arising in energy industry in the paper [187].

2.3.2 Polynomial MINLPs

In this section, we consider polynomial MINLPs, i.e., formulations (1.1)
where functions f and g` (` 6 m) are polynomials of (x,y). For simplicity
in this section we assume p = 0. All the results, except where explicitly
indicated, are valid also in case discrete decision variables are present.

A Trivial Pointwise MILP Reformulation

A trivial method to derive a pointwise MILP reformulation for any poly-
nomial MINLP P consists in turning every variable but one to a parameter
in every monomial of P. For two integer sequences h = (h1, . . . ,ht) and
d = (d1, . . . ,dt), let

µd
h =
∏
j6t

x
dj
hj

be a monomial occurring in P. Let us see the MILP pointwise reformulation
first:

1. introduce new parameters θ1, . . . , θt;

2. for each monomial µd
h in P:

a) choose ` 6 t as ` = argminj6t{dj}

b) replace µ by the linear term aµxh` , where

aµ = θd`−1h`

∏
j6=`

θ
dj
hj

.

Since every monomial is reduced to a linear term, but the rest of the con-
straints remains unchanged, it is immediate to show that the formulation
obtained by the above procedure is a pointwise MILP reformulation of P.

We point out that, if, with respect to the monomial µd
h, there exists an

index k 6 t, such that dk = 1, because of the rule (a), we do not introduce
θhk in the pointwise reformulation keeping the number of the parameters
as low as possible.

Remark 2.3.3. By construction, the previous pointwise reformulation is spanning
since, for each feasible xd, the replaced term µ is always equal to the replacement
term xh`θ

d`−1
h`

∏
j6=` θ

dj
hj

for θhj = xhj (j 6 t).

22 the mwu algorithm for minlp

2.3.3 Bilinear MINLPs

The trivial pointwise MILP reformulation appears particularly well suited
to the case of bilinear MINLPs where the incident graph corresponding to
the matrix of the quadratic form is bipartite, i.e., polynomial MINLPs of
degree 2 where the variables can be partitioned into two sets I and J such
that every monomial xixj has i ∈ I and j ∈ J. Then the procedure reduces
to choose I (resp. J) and replace xi with θi (resp. xj with θj) for all i ∈ I
(resp. j ∈ J).

2.3.4 Quadratic MINLPs

Consider MINLPs involving quadratic terms only and assume without
loss of generality p = 0:

min x>Q0x+ q0x (2.7a)

s.t. x>Q`x+ q`x 6 b` ∀` 6 m (2.7b)

Let L be the set of indices in {0, . . . ,m} such that Q` is indefinite. For each
` ∈ L, we look for two matrices A`,B` such that:

(i) A` is positive semidefinite;

(ii) B` is sparse;

(iii) A` +B` = Q`.

Next, we rewrite x>Q`x+ q`x as x>A`x+ x>B`x+ q`x, introduce as many
parameters θ as there are variables x, and define the pointwise reformulation
by replacing every term x>B`x by θ>B`x. This yields a pointwise convex
Mixed Integer Quadratic Problem (MIQP) reformulation, since all the non-
convex terms x>B`x have been turned into linear terms. Thereby, given the
indefinite matrix Q`, we aim the following optimization problem to recover
A` � 0 and B`:

min ‖B`‖0 (2.8a)

s.t. A` � 0 (2.8b)

A` +B` = Q`. (2.8c)

A convex relaxation of (2.8) can be obtained by replacing, in the objective
function, the `0-norm with `1-norm, namely

min ‖B`‖1 (2.9a)

s.t. A` � 0 (2.9b)

A` +B` = Q`. (2.9c)

Remark 2.3.4. Let λmin be the minimum eigenvalue of Q`, and 1n×n indicate the
identity matrix of order n. B` = λmin1n×n is a good solution for both (2.8) and
(2.9) (see Section 4 in [97]).

2.4 mwu algorithm for minlps 23

Remark 2.3.5. By construction, the pointwise convex MIQP reformulation previ-
ously introduced is spanning for all θ = x.

2.4 mwu algorithm for minlps

The pseudocode of the MWU algorithm for MINLPs is shown in Algo-
rithm 4. It takes a MINLP formulation P as input and produces a local solu-
tion as output. In the next sections we analyze in more detail the steps of
the algorithm.

Algorithm 4 MWU Algorithm for MINLPs
1: assign weights w1 := 1, incumbent (x∗,y∗) := (∞,∞) and t := 1
2: while t 6 T do
3: sample θt from the distribution pt ∼ (wi,t | i 6 q)
4: solve Rθt = ptw

t←t’(θt)
(P), get solution (xt,yt)

5: optionally refine (xt,yt) (e.g. using local descent)
6: if (xt,yt) is better than the incumbent, set (x∗,y∗) = (xt,yt)
7: (xt,yt) yields decision costs ψt ∈ [−1, 1]q

8: update weights for next iteration: wi,t+1 ← wi,t(1−
ψi,t
2)

9: increase t.
10: end while
11: return (x∗,y∗)

2.4.1 Sampling

In MWU, a weight is maintained for each advisors. In this case we want to
estimate parameters θ: hence, we have to take q decisions at each step, not
only one. In Step 3 we randomly select r values for the parameters accord-
ing to the distribution of the weights: we have one weight, and therefore one
expert, for each decision.

In general, the number r of the parameters and the dimension q of the
weights w could be different. Techniques of aggregation, if r < q, or disag-
gregation, if, on the contrary, r > q, must be implemented before the sam-
pling step. For instance, in [187] an example of disaggregation methodology
is given for the Euclidian Distance Geometry Problem (DGP).

2.4.2 Solution and Refinement

Usually, solving the pointwise reformulation is not an easy task if the re-
formulation is not efficient. However, if the reformulation is good and easier
to solve than the original formulation, the proposed methodology can be
successfully exploited. This is the case, for instance, when the original prob-

24 the mwu algorithm for minlp

lem P is a non-convex MINLP and the reformulation is a convex MINLP or
even a MILP.

Remark 2.4.1. In order to obtain an upper bound, we do not need to solve the
pointwise reformulation exactly, but we can use any heuristic we like. Several
termination criteria can be considered, such as the number of iterations or the opti-
mality gap.

The refinement procedure (Step 5) is not expressly needed to guarantee
the upper bound on the cumulative error of MWU algorithm. Nevertheless,
computational experiments show it is necessary in practice to speed up the
algorithm. Moreover, if we consider Algorithm 4 as a special case of the
two-phase MS algorithm, the refinement step coincides with a local phase in
which we locally improve the initial solution.

2.4.3 Computing MWU Costs/Gains

This is the most critical step of the MWU algorithm, since it can influ-
ence the performance guarantee. It has basically two requirements: (a) each
cost vector ψt should have components in [−1, 1]; (b) if θt replaces several
terms in the original formulation, ψt reflects the contribution of its value to
optimality and feasibility. Requirement (a) is necessary for the MWU perfor-
mance guarantee to hold, while requirement (b) tries to correlate EMWU (see
(1.20)) to suboptimality and infeasibility.

Hence, ψi,t consists of a scaled contribution αt to the error of (xi,yi) from
the suboptimality of (xt,yt) in P and of βt from its infeasibility. Since it is
not necessary to reward “better feasibility”, we consider βt belonging to
[0,1].

Let fθ(x,y) and gθ` (x,y) 6 0 (` 6 m) be respectively the objective function
and the constraints of Rθ.

After Steps 4-5, we can evaluate the current solution (xt,yt) in the orig-
inal formulation P by computing f(xt,yt) and g`(xt,yt) for each `. We
let αt be proportional to fθ(xt,yt) − f(xt,yt) and βt = (β`,t : ` 6 m) to
(max(gθ` (xt), 0) : ` 6 m). These quantities have, however, to be scaled in
order to guarantee ψt = [−1, 1]q. For simplicity, in the rest of the Section,
we assume the original problem is continuous, i.e., p = 0. Formally, here is
how ψt is computed:

1. for t = 1, let αt = sgn(fθ(xt) − f(xt)) and β`,t = sgn(max(g`(xt), 0))
for all `;

2. for each t > 1 let:

αt =
fθ(xt) − f(xt)

max
s6t

|fθ(xs) − f(xs)|
and β`,t =

max(g`(xt), 0)
max
s6t

(max(g`(xs), 0))

2.5 conclusions 25

for all `;
3. Ψt = 1

m+1(αt +
∑
`6m

β`,t);

4. for each s 6 r let ψs,t = Ψt
|ts(xt,yt) − t ′s(xt,yt; θt)|

max(|ts(xt,yt)|, |t ′s(xt,yt; θt|)
.

Remark 2.4.2. Ψt could be the result of many different ways to combine of αt and
the β`,t depending from the specific application.

Remark 2.4.3. Since Ψt ∈ [−1, 1] and
|ti(xt,yt) − t ′i(xt,yt; θt)|

max(|ti(xt,yt)|, |t ′i(xt,yt; θt|)
∈ [0, 1],

we have ψt ∈ [−1, 1].

2.5 conclusions

In this chapter we have given a theoretical insight with regard to the MWU
algorithm for MINLPs. In particular we have introduced the pointwise refor-
mulation of a given MP formulation and we have stated its main properties.
Moreover, we have drawn several building procedures for the pointwise re-
formulations with respect to several classes of MINLPs. Finally, we have
discussed in detail the main steps of the MWU algorithm.

Part III.

Applications

3 M E A N -VA R I A N C E P O R T F O L I O
S E L E C T I O N P R O B L E M

3.1 introduction

The first milestone in modern single-period portfolio selection theory is
undoubtedly Harry Markowitz’s 1952 seminal paper [177] (for an historic
perspective, see also [214] and surveys [241, 55, 80]), in which the mean-
variance portfolio optimization model was proposed for the first time. Al-
though several ideas and results are already introduced by de Finetti [65]
(see [7] for the English translation of the first chapter “The problem in a sin-
gle accounting period”), the contribution of the Italian mathematician was
discovered only recently by the financial international community (see [213,
212, 209]) and was acknowledged by Harry Markowitz himself [175].

The mean-variance approach is based on the fundamental observation
that, according to what Markowitz states in [177], the investors should try to
increase their portfolio return and contemporaneously to decrease, as much
as possible, its volatility or its risk (see also [178, 180]). The portfolio vari-
ance is the most widely used measurement of the portfolio volatility; other
possible risk measurements are reported, for instance, in [48, 120, 173]. If
the expected returns of the assets follow a Gaussian distribution [112] or the
investor’s utility function is quadratic [41], then the mean-variance criterion
is theoretically compatible with the expected utility hypothesis originally in-
troduced by Bernoulli [15] (see [232] for the English translation and see also
[93, 121, 240] for more modern approaches). As pointed out by Markowitz
in [176, 179], the previous assumptions are sufficient, but not necessary con-
ditions. However, the assumption of Gaussian asset returns might be un-
realistic: the probability distribution for the expected returns is generally
leptokurtic [191].

The resulting mathematical program might not represent completely the
problem solved nowadays by the practitioners, but it can be enriched with
various constraints to model the different characteristics of the modern finan-
cial markets. Moreover, the mean-variance approach considers only the first-
and second-order moments of the probability distribution of the returns:
consequently, in specific situations, this approach might lead to counterintu-
itive or even paradoxical solutions [56].

Kallberg and Ziemba [137] compare the effects of different utility functions
with respect to the optimal portfolios when the distribution of the expected
returns is Gaussian, and show empirically that utility functions with similar
absolute risk aversion indices – defined by Arrow [4] and Pratt [208], but

29

30 mean-variance portfolio selection problem

originally introduced by de Finetti [66] (see also [41, 194]) – give rise to sim-
ilar optimal portfolios.

The reminder of the chapter is organized into two parts. In the first part
we survey convex MIQP approaches to solve the Mean-Variance Portfolio Se-
lection (MVPS) problem: in the next section we present the mathematical
formulation of the portfolio problem with quadratic risk measure according
to Markowitz [177] and we analyze its main disadvantages; Sections 3.3, 3.4,
and 3.5 provide several ways to enrich the original formulation in order to
overcome its drawbacks; several equivalent mathematical reformulations for
the mean-variance probabilistic portfolio problem are described in Section 3.6;
finally, in Section 3.7 we summarize exact methods proposed in the literature
to solve MVPS problems.

In the second part of the chapter, in Section 3.8, we choose a specific fam-
ily of portfolio problems with cardinality constraint and transaction costs
and we apply the MWU algorithm to this class of uncountable many MVPS
problems. The aim of this part consists in a computational study of the
performances of MWU, with a particular focus on the behavior of MWU
depending on the degree of nonlinearity of the cost function. We propose a
promising pointwise reformulation for this class of problems and a proce-
dure to compute costs/gains in the MWU framework. Computational exper-
iments show that the algorithm outperforms the benchmarks with respect to
the quality of the solution produced. A summary of the main notation used
throughout the chapter is reported in the Appendix A.

Sections 3.3.2 and 3.4.1-3.4.3 are entirely based on the papers by Bonami
and Lejeune [26] and Lejeune [152]. Section 3.6.1 is completely based on [26],
while Sections 3.6.2-3.6.3 on [89].

3.2 portfolio optimization

We consider r possibly risky assets characterized by a mean return vector
µ ∈ Rr. Let x ∈ Rr+ be the vector, whose generic entry j (j = 1, . . . , r)
represents the fraction of the portfolio value invested in asset j. For the
moment, following Markowitz [177], we assume that the entries of µ and of
the covariance return matrix Σ ∈ Rr×r are known precisely. In the mean-
variance approach, we aim to minimize the portfolio variance x>Σx under
the constraint that the portfolio return is at least equal to a given level R > 0.
Therefore, the problem we aim to solve can be stated as follows:

min x>Σx (3.1a)

s.t. µ> x > R (3.1b)

1r> x = 1 (3.1c)

x > 0, (3.1d)

3.2 portfolio optimization 31

where 1r ∈ Rr is the all-one vector. Then, by repeatedly solving problem
(3.1) for different values of return R, we can compute the efficient frontier,
i.e., the set of the non-dominated portfolios in the sense of Pareto optimality.
In several cases (see, e.g., [26]) an additional non-risky asset with mean µ0
and zero variance is also considered, in order to algorithmically derive the
efficient frontier (see Section 3.4.8). Several papers (see, e.g., [61]) consider
an equality version for the return constraint (3.1b), namely µ> x = R.

Constraint (3.1c) ensures that the whole capital available is invested in the
portfolio and in several papers (see, e.g., [38]) is substituted by

1r> x 6 1. (3.2)

Constraint (3.1d) prevents short selling, i.e., the possibility for the investor
to sell financial assets not already in his/her portfolio. This financial op-
eration is generally performed with speculative intents when the investor
expects a bearish trend in the financial stock market. In case short selling
is allowed, (3.1c) can be replaced by the constraint 1r> x = 0, which defines
the so-called dollar neutral portfolio, by requiring the exposure on long part
of the portfolio to be equal to the one on the short part. Several authors con-
sider the case where the decision variables x represent the absolute amount
invested per asset so that the inequality (3.1c) becomes 1r> x 6 B, where B
is the investor’s total initial budget.

In [37], Buchheim et al. introduce the budget constraint:

v>x 6 B, (3.3)

where the decision variables x are the units of financial asset held in the
investor’s portfolio and v ∈ Rr+ is the vector of the costs per unit of corre-
sponding asset.

Problem (3.1) is a convex continuous linearly constrained quadratic pro-
gram, because, by definition, matrix Σ is symmetric and positive semidef-
inite; hence, we have a computationally tractable problem. However, the
main drawback of this model consists in the sensitivity of the optimal solu-
tions with respect to the input parameters (expected returns and covariance
matrix), which are clearly unknown in real-world applications (see, e.g., [35,
36, 42, 50, 86, 131, 136, 132, 190]). Furthermore, when Σ is estimated start-
ing from empirical measurements, it might happen that semidefiniteness is
not directly satisfied and some ad-hoc procedures are required (see [60, 117,
222]).

Chopra [52] empirically analyzes the effects of slight differences in the es-
timate. Best and Grauer [19] conduct a theoretically rigorous analysis with
computational results about the sensitivity of mean-variance efficient portfo-
lios with respect to possible changes in asset means.

32 mean-variance portfolio selection problem

Several papers study the instability and ill-conditioning of problem (3.1):
for instance, Kallberg and Ziemba [138] consider estimation errors in the in-
vestor’s utility function and the mean vector and covariance matrix of the
return distribution for normally distributed portfolio selection problems and
observe that errors in mean vector give rise to significant problems. Chopra
and Ziemba [53] show that the estimating errors with respect to the expected
return means is generally one order of magnitude larger than the one cor-
responding to estimating errors in asset variances or covariances, assuming
negative exponential utility function with joint normal distribution of re-
turns.

3.3 robust and probabilistic approaches

3.3.1 Robust Approaches

The robust version of the mean-variance problem (3.1) has been consid-
ered in quite recent works (see the surveys [81, 101]). It consists in assuming
that the expected returns are uncertain and their expected values and vari-
ances belong to a given set. By supposing that the unknown input param-
eters belong to a given uncertainty set (see [13, 14, 77, 79]), it is possible to
show some theoretical results: for instance, Goldfarb and Iyengar [106] and
Tütüncü and Koenig [237] established the robust portfolio selection problem
can be formulated as a Second-Order Cone Problem (SOCPs) (see [1, 12, 31,
163]) for ellipsoidal and box uncertain sets, respectively.

Under the assumption that the return mean belongs to a convex polytope,
whose vertices are known, Costa and Paiva [57] prove that program (3.1) can
be formulated as a Linear Matrix Inequalities (LMI) problem (see [32, 200]).
Moreover, El Ghaoui et al. [78] show that, when the mean and the covariance
are unknown, but bounded, the worst-case mean-variance portfolio selection
problem can be reformulated as a Semidefinite Program (SDP) (see [12, 200,
217, 238]).

Finally, Ye et al. [246] introduce uncertain sets both for the mean vector
and the second moment matrix of the returns, showing the connection be-
tween the fully robust portfolio selection problem with box uncertain set for
the mean and ellipsoid uncertain set for the second moment of the returns
and SOCP, SDP, and Semi-Infinite Programming (see [247]).

3.3.2 Probabilistic Approach

Bonami and Lejeune [26] take into account the uncertainty in the expected
assets returns by dealing with a probabilistic problem and by introducing a
probabilistic constraint, which imposes that the expected return of the op-

3.3 robust and probabilistic approaches 33

timal portfolio should be not less than a given return level R with a high
probability p > 0.

Let ξ be the random vector representing the expected returns of the r risky
assets. We assume that the random vector ξ admits a probability density
function and the density function of ξ>x is strictly positive. Moreover, let
µ ∈ Rr with µ = E [ξ] and Σ = E

[
(ξ− µ)(ξ− µ)>

]
be the mean and the co-

variance matrix for the r-variate distribution of ξ, respectively. Formulation

min x>Σx (3.4a)

s.t. P
(
ξ> x > R

)
> p (3.4b)

1r> x = 1 (3.4c)

x > 0 (3.4d)

is usually referred to as the probabilistic Markowitz formulation and its
deterministic equivalent defines a NLP (see [26, 89, 90, 153]). Let ψ =

(ξ> x−µ> x)/
√
x>Σx be the standardized random variable representing the

normalized portfolio return. Equation (3.4b) can be equivalently rewritten,
as follows:

P
(
ξ>x > R

)
= P

(
ψ >

R− µ> x√
x>Σx

)
= 1− F(x)

(
R− µ> x√
x>Σx

)
, (3.5)

where F(x) (·) is the cumulative distribution of the standardized portfolio
return. We assume that F(x) (·) is a continue strictly increasing function.
Moreover, we point out that the analytic form of the probability distribu-
tion F depends on the portfolio weights x. It follows that the probabilistic
constraint (3.5) becomes

1− F(x)

(
R− µ> x√
x>Σx

)
> p⇐⇒ 1− p > F(x)

(
R− µ> x√
x>Σx

)
⇐⇒ µ> x+ F−1(x) (1− p)

√
x>Σx > R,

(3.6)

where F−1(x)
(·) is the inverse of the cumulative distribution F(x) (·) and F−1(x)

(1− p)

is the (1− p)-quantile of F(x) (·). Therefore, the deterministic equivalent of
optimization problem (3.4) corresponds to the following NLP [141]:

min x>Σx (3.7a)

s.t. µ> x+ F−1(x) (1− p)
√
x>Σx > R (3.7b)

1r> x = 1 (3.7c)

x > 0. (3.7d)

In the following, we survey for which classes of probability distributions
the problem can be reformulated as a SOCP. We thus recall several defini-
tions in probability theory and convex optimization.

34 mean-variance portfolio selection problem

Definition 3.3.1. (Serfling [225]) Let ξ ∈ Rr be a random variable, whose prob-
ability density function is f : Rr → R. If f(ξ − θ) = f(θ − ξ), then ξ has a
distribution that is centrally symmetric about θ ∈ Rr.

Definition 3.3.2. (Boyd and Vandenberghe [31]) Let x ∈ Rn be the decision
variables and Ai ∈ R(ni−1)×r, H ∈ Rp×r and h, ci ∈ Rr, βi ∈ Rni−1, g ∈ Rp,
di ∈ R (∀i ∈ {1, . . . ,n}) be the parameters of a given convex continuous opti-
mization problem and ‖ · ‖2 indicates the Euclidean norm. If a convex continuous
optimization problem can be (equivalently) rewritten as follows,

min h> x

s.t. ‖Aix+βi‖2 6 ci>, x+ di, i = 1, . . . ,n

Hx = g,

(SOCP)

then it is an SOCP. A constraint is a Second-Order Cone Constraint (SOCC) of
dimension ni, if it can be equivalently rewritten as

‖Aix+βi‖2 6 ci> x+ di. (SOCC)

Remark 3.3.3. (Boyd and Vandenberghe [31]) Observe that SOCP generalizes
Quadratically Constrained Programming, i.e., the case when ci = 0 for all i =

1, . . . ,n: a Quadratically Constrained Problem can be obtained by squaring the
constraints. SOCP generalizes also Liner Programming (LP), i.e., the case when
instead Ai = 0(ni−1)×r for all i = 1, . . . ,n, where 0(ni−1)×r is the zero matrix of
suitable dimensions.

Definition 3.3.4. (Lobo et al. [163]) A convex set C ⊆ Rr is SOC-representable
if it is equivalent to the intersection of a finite number of SOCC, i.e., there exist
parameters Ai ∈ R(ni−1)×(r+m), βi ∈ Rni−1, ci ∈ Rr+m, and di ∈ R such
that

x ∈ C⇐⇒ ∃y ∈ Rm :

∥∥∥∥Ai(xy
)
+βi

∥∥∥∥
2

6 ci
>
(
x

y

)
+ di i = 1, . . . ,n.

Moreover, a given function f : Rr → R is SOC-representable if the set {(x, t) :

f(x) 6 t} is SOC-representable.

Ultimately, given an objective function f : Rr → R and a feasible convex
set C ⊆ Rr, which are SOC-representable, then the corresponding convex
optimization program, i.e.,

min f(x)

s.t. x ∈ C,
(SOC)

can be dealt with as a SOCP by means of efficient interior point methods
(see, for instance, [98, 199, 200, 207, 244]), characterized by polynomial time
computational complexity [108, 200]. Bonami and Lejeune [26] showed some
convexity results for problem (3.7) that we briefly discuss in the following
for the sake of completeness.

3.4 additional constraints 35

Theorem 3.3.5. (Bonami and Lejeune [26]) Let p ∈ [0.5, 1). If the probability
distribution of ξ>x is centrally symmetric, then the deterministic constraint (3.7b),
equivalent to (3.5), is a SOCC.

Therefore, optimization problem (3.4) is an SOCP because its objective
function is convex quadratic and its feasible region is described by the in-
tersection of a second-order cone and several linear constraints. Constraint
µ> x > R− F−1(x)

(1− p)
√
x>Σx ensures that the expected portfolio return is

greater than the given return plus a penalty term, which is function of the
portfolio variance and is increasing with the confidence level p [89].

We recall also the definition of the skewness of a multi-variate distribution
of a real-valued random variable ξ with mean µ and standard deviation σ
[6]:

skew(ξ) =
E [ξ− µ]3

σ3
, (3.8)

The skewness is basically an asymmetry index of the distribution: perfectly
symmetric distributions have zero skewness.

Definition 3.3.6. (Bonami and Lejeune [26]) A probability distribution of an
r-variate real-valued random vector ξ with mean µ and median m has positive
skewness if

P (0 > ψ) > P (m > ψ)⇐⇒ F−1(x) (α) 6 0, α 6 0.5,

where E [ψ] = E [ξ− µ] = 0 and F(x) (m) = P (m > ψ) = 0.5.

Theorem 3.3.7. (Bonami and Lejeune [26]) Let p ∈ [0.5, 1). If the skewness
of the probability distribution of ξ> x is positive, then the deterministic constraint
(3.7b), equivalent to (3.5), is a SOCC.

The exact value of the (1− p)-quantile, F(x) (1− p), is known only for few
probability distributions. If we assume, for example, that the distribution
of the expected returns is Gaussian, which is a quite restrictive assumption
(see, for example, [84, 85, 170, 210]), but rather common in several theo-
retical frameworks (see [112, 137, 194]), then the numerical values of quan-
tiles F−1(x)

(1− p) of the normalized portfolio return ψ are computationally
known.

3.4 additional constraints

Beyond the ill-conditioning of problem (3.1), the other serious drawback of
Markowitz’s original proposal is represented by the mismatch with the prob-
lems faced by practitioners in real-world applications (see, e.g., [60, 220]).
Nevertheless, we can consider additional constraints to problems (3.1) or
(3.4), which describe the most common restrictions observed in real-world
financial markets (see [82, 146, 153, 162, 173]). However, this kind of con-
straints could make the efficient frontier discontinuous and more challeng-
ing to compute [133].

36 mean-variance portfolio selection problem

3.4.1 Buy-in Thresholds

Generally, investors avoid extremely small long positions in their portfo-
lios, because, on one side, they have a limited impact on the return value
of the portfolio and, on the other side, they could be quite expensive with
respect to finance fees and monitoring costs [219]. Long positions not be-
longing to a given range [xj, xj] ⊂ [0, 1] of the total initial budget B can be
prevented by the simple range constraint

xj 6 xj 6 xj, j = 1, . . . , r. (3.9)

Several authors (see, e.g., [44, 49, 97, 133]) require x to be a semi-continuous
variable [234], i.e., they require xj ∈ [xj, xj]∪ {0} for all j = 1, . . . , r: they intro-
duce extra binary variables δ ∈ {0, 1}r such that, for all j = 1, . . . , r, δj = 1 if
the investor holds the asset j, i.e. if xj > 0, and add the following constraints
avoiding too small or huge holding positions:

xjδj 6 xj 6 xjδj, j = 1, . . . , r. (3.10)

Note that constraints (3.10) directly imply 0 6 xj 6 δj for all j = 1, . . . , r.

3.4.2 Round Lot Purchasing

Usually, investors manage only given lots of shares and other financial
agreements, because of the facility in monitoring and purchasing/selling
operations. Furthermore, for small private investors, splitting a large lot in-
volves a premium, that has to be paid to the broker. The higher the cost of
splitting large batch in single shares, the greater the impact of this kind of
cost with respect to the optimal portfolios. Round lot purchasing constraints
prescribe that investors hold, for the risky asset j (j = 1, . . . , r), batches or lots
of Sj stocks.

Let us define γ ∈ Zr+ as a vector of general integer variables. We require
that the number of the shares of asset j (j = 1, . . . , r), namely ηj ∈ Z+, is an
integer multiple of the lot-size Sj:

ηj = γjSj, j = 1, . . . , r. (3.11)

Let qj be the market value of asset j (j = 1, . . . , r) held in portfolio, then
we have ηj = xjB/qj and constraint (3.12) can be equivalently rewritten as
follows,

xj =
qjγjSj

B
, j = 1, . . . , r. (3.12)

The reader is referred to [26] for further discussion.

Mansini and Speranza [174] have shown that finding a feasible solution of
problem (3.1) with round lot constraints (3.11), upper bound on γj, i.e., the
number (j = 1, . . . , r) of minimum lots, and bound constraints with respect
to the total portfolio expenditure is NP-complete.

3.4 additional constraints 37

3.4.3 Sector Diversification

Generally, either there exist law limitations about the risk exposure (this is
the case, for instance, of pension funds) or investors try to hold a represen-
tative portion of their portfolio in a prescribed number of asset categories or
industrial sectors. However, in general, optimal portfolios for problem (3.1)
are not well-diversified [109]. Usually, given are lower bound on the frac-
tion of portfolio value held in specific sets of shares. For classical empirical
analysis about financial benefits of a well-diversified portfolio, we refer the
reader to [56, 83, 231].

Let us assume that every asset can be allocated to a specific financial cate-
gory and let Ck (k = 1, . . . ,n) be the index set of all risky assets connected
with the category k. Moreover, we suppose that sets Ck define a partition
of {1, . . . , r}. We introduce a binary variable ζk ∈ {0, 1} for each financial
category, such that ζk = 1 if and only if the investment in financial category
k (k = 1, . . . ,n) is above a prescribed minimum level s:

sζk 6
∑
j∈Ck

xj 6 s+ (1− s)ζk. (3.13)

Moreover, we have to consider an additional constraint in order to satisfy
the diversification prescription [26], which requires to hold portions of assets
in at least n > 0 categories:

n∑
k=1

ζk > n. (3.14)

3.4.4 Cardinality Constraints

Beyond diversification requirements, asset managers (for instance in index
tracking funds) wish to replicate as accurately as possible a market index
with a limited number of financial agreements, namely K > 0. This can be
modeled through the following cardinality constraint:

‖x‖0 =
r∑
j=1

sgn(|xj|) 6 K. (3.15)

By introducing additional decision variables δj, already presented for con-
straints (3.10), we can straightforwardly reformulate the previous constraint
in the following equivalent form [153]:

r∑
j=1

δj 6 K. (3.16)

Bienstock [20] (see also [226]) shows that problem (3.1) with cardinality
constraint (3.16) is NP-hard, even when r = 3. Several authors (see, e.g., [49,

38 mean-variance portfolio selection problem

70, 87, 229, 243]) consider an equality version for cardinality constraint (3.16)
and propose mainly heuristic methods to solve the corresponding problem:

r∑
j=1

δj = K. (3.17)

Moreover, finding the K assets that should be included in the optimal port-
folio is, in general, an NP-hard problem [195].

Using the theoretical results in [224, 236] and extending [45, 46, 47], Ce-
sarone et al. [44] have shown that the problem (3.1) with cardinality con-
straints (3.16) has the same optimal solution of problem (3.1) with equality
cardinality constraints (3.17) and reduce this kind of programs to Standard
Quadratic Programming Problem (see [23, 24]), avoiding to explicitly intro-
duce binary variables and considering an exact tailored solving procedure,
called Increasing Set Algorithm. The Standard Quadratic Programming
Problem is an NP-hard problem when the Hessian matrix of the objective
function is indefinite, i.e., if the Hessian matrix of the objective function is
neither positive nor negative semidefinite [23].

Di Gaspero et al. [71] consider an “interval” version for the cardinality
constraint (3.16): K 6

∑r
j=1 δj 6 K, where K and K are such that 1 6 K 6 K 6

r. Cardinality constraints are closely related to buy-in threshold constraints
[133]. Finally, in several papers (see, e.g., [44, 49, 133]) it is observed that
the problem (3.1), with cardinality constraints (3.16) and with minimum and
maximum buy-in thresholds (3.10) can be straightforwardly reformulated as
a convex MIQP.

3.4.5 Sector Capitalization

Sector capitalization constraints are introduced by Soleimani et al. [229],
in order to mathematically formulate the behavior of investors generally in-
clined to hold assets in financial sectors with higher capitalization value to
reduce the total portfolio risk.

Let ` be the number of economic sectors and suppose, without loss of
generality, that they are sorted in non-increasing way according to their
capitalization value. Define Ll as the set of assets for economic sector l
(l ∈ {1, . . . , `}). We introduce additional binary variables yl such that

1

M

∑
j∈Ll

δj 6 yl 6M
∑
j∈Ll

δj l ∈ {1, . . . , `} (3.18a)

∑
j∈Ll

µj + (1− yl) >
∑
j∈Ll+1

µj l ∈ {1, . . . , `− 1}, (3.18b)

where M ∈ R+ is a sufficiently large positive number. The “big-M” con-
straints (3.18) ensure that the assets belonging to the sectors with higher

3.4 additional constraints 39

capitalization values have basically higher probability to be in the optimal
portfolios than the ones belonging to sectors with less capitalization values.

3.4.6 Turnover and Trading

Frequently, investors already hold a portfolio x(0) and, because of muta-
tions in the financial market or others, they want to change their portfolio,
by considering the new financial environment and by limiting, however, the
variations with respect to the portfolio already held [205].

Crama and Schyns [61] propose to introduce restrictions on purchasing
and selling variations. In particular, let Pj and Sj be respectively the max-
imum purchasing and selling levels for asset j (j = 1, . . . , r), turnover con-
straints can be stated as follows:

max
{
xj − x

(0)
j , 0

}
6 Pj j = 1, . . . , r (3.19a)

max
{
x
(0)
j − xj, 0

}
6 Sj j = 1, . . . , r. (3.19b)

Because of fixed transaction costs (see Section 3.4.1), additional constraints
are, generally, introduced in order to prevent small variations between port-
folios. Let Pj and Sj be respectively the minimum purchasing and selling
levels for asset j, trading disjunctive constraints can be stated as follows,(
xj = x

(0)
j

)
∨
(
xj 6 x

(0)
j + Pj

)
∨
(
xj 6 x

(0)
j − Sj

)
for all j = 1, . . . , r .

3.4.7 Benchmark Constraints

Often, investors want to obtain a portfolio which is as close as possible to
a benchmark (or target) portfolio xB [17]. With respect to economic sector
diversified investments, Bertsimas and Shioda [18] introduce the following
additional constraints in order to bound variances between the optimal and
the target portfolios:

∣∣∣∣∑
j∈Sl

(xj − x
B
j)

∣∣∣∣6 εl l = 1, . . . , `. (3.20)

3.4.8 Collateral Constraints

Di Gaspero et al. [73] (see also [127]) discuss the following legal constraints
for short selling portfolios imposed by US Regulation T, a set of US laws
concerning the margin requirements for the collateral agreement. The com-
plete text of the regulation is available at https://www.ecfr.gov/cgi-bin/
text-idx?tpl=/ecfrbrowse/Title12/12cfr220_main_02.tpl. In particular,

https://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title12/12cfr220_main_02.tpl
https://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title12/12cfr220_main_02.tpl

40 mean-variance portfolio selection problem

they introduce a free-risk asset with mean µ0 and zero variance, the so-called
collateral agreement, such that

x0 > −a

r∑
j=1

min{0, xj} (3.21a)

r∑
j=0

|xj| 6 2 (3.21b)

where a ∈ N+ is the security level for the collateral agreement. In this case
the decision variables x are not constrained to be positive, since short-selling
is allowed, and variables δ defined in (3.10) are replaced by ternary variables
z ∈ {−1, 0, 1}r, such that, for each j (j = 1, . . . , r), zj = 1 if the investor bought
the asset j, i.e., if xj > 0, zj = −1 if the investor sold the asset j, i.e., if
xj < 0, and zj = 0 if the investor does not hold asset j. Therefore, cardinality
constraint (3.16) becomes

∑r
j=1 |zj| 6 K.

3.5 objective functions

Besides (3.1a), several different objective functions have been proposed in
the literature in order to make problems (3.1) and (3.4) simpler with respect
to computational tractability or to better model real behaviors of investors
and money savers. We consider only objective functions involving quadratic
risk measure, namely portfolio variance (for an exhaustive survey on ap-
proaches proposed for portfolio selection problem with linear risk measures
we refer the interested reader to the paper [173] and to the recent book [172]).

3.5.1 Penalty Functions

In order to define an unconstrained NLP, Bartholomew-Biggs and Kane
[8] introduce the following penalty function for problem (3.1) with minimum
buy-in threshold constraints (3.9) with xj := x and xj := 1 for all j ∈ {1, . . . , r},

φ(xj) =
4 xj(xj − x)

x2
, j = 1, . . . , r (3.22)

which is non negative when xj 6 0 or xj > x. Moreover, −1 6 φ(xj) < 0

when xj ∈ (0, x), so that additional constraint (3.9) can be replaced by the
following continuous one:

φ(xj) > 0, j = 1, . . . , r. (3.23)

Therefore, an unconstrained NLP can be easily defined, by introducing ad-
ditional continuous variables s ∈ Rr, such that xj := s2j for all j = 1, . . . , r
and considering the resulting objective function, adjoint with three penalty
terms, one replacing each set of constraints:

x>Σx+ ρ(1− 1r>x)2 + ρ
(
µ>x

R
− 1

)2
+τ

r∑
j=1

κj(xj)
2, (3.24)

3.5 objective functions 41

where ρ and τ are suitable positive parameters and κj(xj) := min{0,φ(xj)}
for all j = 1, . . . , r.

A similar approach is stated also for the round lot purchasing constraints
(3.11) or (3.12), that can be replaced by the following constraints:

κ ′j(xj) =

(
Bxj

qj
−

⌊
Bxj

qj

⌋)(
1−

(
Bxj

qj
−

⌊
Bxj

qj

⌋))
= 0, j = 1, . . . , r

(3.25)
where bvc denotes the integer part of v ∈ R.

However, round lot purchasing constraints (3.11) might make impossi-
ble satisfy at the same time request (3.1c): consequently, the following new
quadratic risk measure [192] is considered:

x>Σx

(1r>x)2
, (3.26)

leading to an alternative definition of (3.24):

x>Σx

(1r>x)2
+ ρ
(

min{0, 1− 1r>x}
)2

+ ρ

(
µ> x

R
− 1

)2
+τ

r∑
j=1

κ ′j(xj)
2. (3.27)

Bartholomew-Biggs and Kane [8] apply a DIRECT (DIviding RECTangles)
type global algorithm (see [91, 99, 100, 134, 135]) to the previous uncon-
strained NLPs (3.24) and (3.27).

3.5.2 Balanced Objective Functions

Mean-variance portfolio selection problems (3.1) and (3.4) are naturally
multi-objective optimization programs since usually investors want to gain
the maximum profit at the minimum risk: these are, of course, conflicting
targets, that have to be considered at the same time.

Several authors (see, e.g., [49]) use standard (linear) scalarization tech-
niques such as the Weighted Sum approach (see, for example, [76]). Namely,
they consider the “balanced” objective function

λ(x>Σx) − (1− λ)(µ> x), (3.28)

where λ ∈ [0, 1] is a parameter which represents investor’s risk aversion.
Let θ1, θ2 ∈ R+ be two parameters, a more general variant is proposed by
Schaerf [218]:

θ1(x
>Σx) + θ2max{0,µ> x− R}. (3.29)

Bertsimas and Shioda [18] (see also [17]) introduce an extended “balanced”
objective function, considering also trading and turnover requirements with
respect to a given initial portfolio x(0):

1

2
x>Σx− µ> x+

r∑
j=1

ιj
(
xj − x

(0)
j

)2, (3.30)

42 mean-variance portfolio selection problem

where ιj > 0 is a coefficient for asset j which models the symmetric purchas-
ing/selling impact with respect to the stock price. Finally, Tadonki and Vial
[235] and Shaw et al. [226] consider respectively constant and linear trans-
action costs embedded in a quadratic “balanced” objective function, namely
respectively

λ1(x
>Σx) − λ2(µ

> x) + c> δ (3.31)

λ1(x
>Σx) − λ2(µ

> x) + c> x, (3.32)

where λ1 ∈ R+ and λ2 ∈ R+ are two positive scalars, c ∈ Rr+ is a vector,
whose entries represent the transaction costs for the portfolio assets and
δ ∈ Rr is the binary vector defined in constraints (3.10).

3.6 compact reformulations

In this section we present several different possible reformulations and
approximations for the mean-variance portfolio optimization problem.

3.6.1 SOCC Inner Approximations

As observed in Section 3.3.2, given a probability distribution on the port-
folio returns, it is not always possible to write the problem (3.7) in a closed
form: the exact value for the quantile F−1(x)

(1− p) is known only for spe-
cial distributions (e.g., normal distribution, Student distribution, uniform
distribution on an ellipsoid). However, if the probability distribution of the
expected returns is only partially known, the value of its quantiles can be
approximately computed using several well-known probability inequalities
[153], such as, e.g., Cantelli [26], Chebyshev [26], and Camp-Meidell [152]
inequalities (see also [113, 125, 161, 181]).

Theorem 3.6.1. (Bonami and Lejeune [26]) Assume the first and the second
moment of the probability distribution of the portfolio return are finite. The SOCC

µ> x−

√
p

1− p

√
x>Σx > R (3.33)

is an approximation of the chance constraint (3.4b).

Theorem 3.6.2. (Bonami and Lejeune [26]) Assume the first and the second
moment of the probability distribution of the portfolio return are finite and the dis-
tribution is symmetric. The SOCC

µ> x−

√
1

2 (1− p)

√
x>Σx > R (3.34)

is an approximation of the chance constraint (3.4b).

3.6 compact reformulations 43

Theorem 3.6.3. (Lejeune [152]) Assume the first and the second moment of the
probability distribution of the portfolio return are finite and the distribution is sym-
metric and unimodal. The SOCC

µ> x−

√
1

9 (1− p)

√
x>Σx > R (3.35)

is an approximation of the chance constraint (3.4b).

Remark 3.6.4. (Bonami and Lejeune [26]) The approximation given by Theorem
3.6.2 for a symmetric probability distribution is tighter than the one given by The-
orem 3.6.1 and that the approximation given by Theorem 3.6.3 for a symmetric
unimodal probability distribution is tighter than the one given by Theorem 3.6.2.

3.6.2 Variance Reformulation

Given the symmetric positive definite matrix Σ, we consider its Cholesky
decomposition Σ = CC>, where C ∈ Rr×r is a lower triangular matrix. From
a computational viewpoint, the Cholesky decomposition is twice faster and
more stable than LU factorization or Gauss elimination method (see [143,
184, 233]) and it is implemented in High Performance Computing numerical
software libraries (see [2, 21, 75]).

Note that Cholesky decomposition exists and is unique if matrix Σ is
positive definite (see [107, 114]) and this property is verified by variance-
covariance matrix, if we exclude the case of exact collinearity of the random
variables, i.e., we assume that none of the risky asset can be exactly repli-
cated by a linear combination of the other ones. The hypotheses to apply
Cholesky decomposition to positive semidefinitive matrices are identified in
[116, 114, 193] and error analysis is instead formally stated in [193] for idem-
potent matrices and in [116] for the general case.

By assuming positive definiteness for covariance matrix Σ and introducing
non negative decision variable h ∈ R+, we obtain the following problem,
equivalent to (3.7):

min
x,h
‖C> x‖22 (3.36a)

s.t. µ> x− R > h (3.36b)

F−1(x) (1− p) ‖C> x‖2 > −h (3.36c)

1r>x = 1 (3.36d)

x > 0, h > 0. (3.36e)

Theorem 3.6.5. (Filomena and Lejeune [89]) Program (3.36) is equivalent to the
following NLP:

min
x,h

h

s.t. (3.36b), (3.36c), (3.36d), (3.36e).
(3.37)

44 mean-variance portfolio selection problem

3.6.3 Period-separable Reformulation

As pointed out by Filomena and Lejeune [89], the variance of the portfo-
lio can be reformulated as the Euclidean norm of a vector, whose number
of components T corresponds to the number of data points, by using the
following preliminary result:

Theorem 3.6.6. (Konno and Suzuki [147]) Let νjt be the (observed) return of
asset j at time t and introduce the extra variables bt =

∑r
j=1(νjt − µj)xj (t =

1, . . . , T). The variance of the portfolio return can be rewritten as

x>Σx =
1

T
‖b‖22.

Therefore, the probabilistic Markowitz portfolio model (3.4) can be refor-
mulated as the following convex NLP:

min
x,h,b

1

T
‖b‖22 (3.38a)

s.t. µ> x− R > h (3.38b)

F−1(x)
(1− p)
√
T

‖b‖2 > −h (3.38c)

bt −

r∑
j=1

(νjt − µj) xj = 0, t = 1, . . . , T (3.38d)

1r>x = 1 (3.38e)

x > 0, h > 0. (3.38f)

Furthermore, Filomena and Lejeune [89] observe that in order to mathe-
matically compute the variance in problems (3.4) and (3.37) the estimate of
only r(r+ 1)/2 covariance terms is needed: this situation can lead to several
coherence problems for the covariance matrix (see Section 3.1). Moreover,
the approach described in this section does not require any assumption on
matrix Σ. Finally, we can consider the corresponding equivalent epigraph
formulation of problem (3.38):

min
x,h,b

h

s.t. (3.38b), (3.38c), (3.38d), (3.38e), (3.38f).

3.7 exact algorithms

Mean-variance portfolio selection problem with the constraints introduced
in Section 3.4 gives rise to a convex MIQP, which is at least as difficult as
NP-hard, because it includes MILP as special case [139, 102]. Nowadays,
MIQPs can be solved via commercial and open-source solvers (see, e.g., [25,
62, 239]). In this section we overview specialized and more efficient compu-
tational procedures recently proposed in literature.

3.7 exact algorithms 45

In [20] Bienstock proposes a tailored Branch-and-Cut (BC) procedure to
solve the cardinality constrained portfolio problem, where (3.16) is replaced
with the “surrogate” constraint

r∑
j=1

xj

xj
6 K. (3.39)

Several types of cutting planes, namely mixed-integer rounding inequali-
ties, knapsack cuts, intersection cuts, and disjunctive cuts are also considered
in the same paper.

Bertsimas and Shioda [18] develop a BC algorithm where at each node
of Branch-and-Bound (BB) tree the convex continuous relaxation of problem
(3.1) with cardinality (3.16) and buy-in (3.10) constraints is solved by means
of Lemke’s method [58]. The portfolio problem with objective function (3.31)
and cardinality (3.16) and buy-in (3.10) constraints was solved by Tadonki
and Vial [235] with BB techniques together with a Bender decomposition
approach.

Lee and Mitchell [151] describe a parallel BB framework for the cardinality
constrained portfolio selection problem, in which each node is approximated
by means of Sequential Quadratic Programming (SQP) and each quadratic
subproblem is solved via interior-point method (see, e.g., [199, 200]).

Frangioni and Gentile [97] solve problem (3.1) with minimum and maxi-
mum buy-in thresholds additional constraints (3.10) with a BC method im-
proved by using Perspective Cuts (see also [96]), a family of valid inequal-
ities, related to the perspective function (see [118, 119]) and to the convex
envelope of the objective function (see [110]).

Zheng et al. [251] propose a difference of convex functions approach to
the cardinality constrained quadratic program, by replacing the cardinality
constraint (3.15) with the following piecewise linear approximation:

1

ω

(
‖x‖1 −

r∑
j=1

max{xj −ω, 0}+ max{−xj −ω, 0}
)
6 0, (3.40)

where ω > 0 is a given parameter. Non-smooth approximation (3.1) with
constraint (3.40) is solved by means of Successive Convex Approximation
method. This algorithm determines a Karush-Kuhn-Tucker (KKT) point or
defines a sequence of points converging to a KKT point for theω-parametrized
approximation. Moreover, the authors show that, letting ω → 0+, the opti-
mal value of the approximate problem approaches the optimal value of the
original problem.

Shaw et al. [226] solve cardinality constrained portfolio problem under the
assumption that vector µ of assets returns can be decomposed according to

46 mean-variance portfolio selection problem

a multiple factor model [41], i.e., µ = Ξf+ u, where r ′ represents the num-
ber of different factors, Ξ ∈ Rr×r

′
is the sensitivity-factor matrix, f ∈ Rr

′
is

the factor-return vector, and u ∈ Rr is the asset-specific (non-factor) returns
vector. A Lagrangian relaxation of the problem is then solved by means of
sub-gradient procedure [211] and embedded in a BB framework.

In [26] Bonami and Lejeune deal with the deterministic equivalent (3.7)
of the probabilistic portfolio selection problem with buy-in threshold (3.10),
round lot purchasing (3.12), and diversification (3.13)-(3.14) constraints, by
proposing a Nonlinear BB algorithm [11] with two specific branching rules:

1. Idiosyncratic Risk Branching, consisting in selecting the fractional vari-
able δj or γj, which corresponds to the asset with the highest expected
return;

2. Portfolio Risk Branching: consisting in selecting the fractional variable
δj or γj, whose integer fixing has the highest impact on the objective
function (3.1a).

Buchheim et al. [37] consider portfolio selection problem with objective
function (3.28), constraints (3.1d) and (3.3) and integrality requirement on
the decision variables, i.e.,

x ∈ Zr, (3.41)

which represents the units of assets held in the investor’s portfolio. They
introduce a new BB algorithm where the continuous relaxation is solved
through an efficient Frank-Wolfe type method with non-monotone Armijo
line-search.

Burdakov et al. [38] deal with the cardinality constrained portfolio prob-
lem, by introducing a NLP reformulation, whose global minima are the same
of the ones of the original problem. The NLP is solved via a sequence of reg-
ularized programs (see [140]).

We end this section with Table 1 that summarizes the main characteristics
of the papers described above. In particular, the columns report the authors,
the year of publication of the paper, the objective function and constraints of
the tackled problem, the proposed algorithm, the competitors employed as
benchmarks, and the instances that were used for the computational experi-
ments.

1 Available at URL http://miplib.zib.de/

2 Available at URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html

3 Available at URL http://www.di.unipi.it/optimize/Data/MV.html

4 Available at URL http://w3.uniroma1.it/tardella/datasets.html

http://miplib.zib.de/
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
http://www.di.unipi.it/optimize/Data/MV.html
http://w3.uniroma1.it/tardella/datasets.html

3.7 exact algorithms 47

A
ut

ho
r(

s)
Ye

ar
O

bj
ec

ti
ve

C
on

st
ra

in
ts

A
lg

or
it

hm
Be

nc
hm

ar
k(

s)
In

st
an

ce
s

(n
um

be
r

an
d

ty
pe

)

[2
0

]
1

9
9

6
(3

.1
a)

(3
.1

c)
,(

3
.1

b)
,(

3
.1

d)
,(

3
.9

),
(3

.1
6
)

Br
an

ch
-a

nd
-C

ut
–

1
3

pr
ob

le
m

s
(r

ea
l-

lif
e

da
ta

)

[1
5

1
]

2
0

0
0

(3
.1

a)
(3

.1
c)

,(
3
.1

b)
,(

3
.1

d)
,(

3
.1

6
)

Br
an

ch
-a

nd
-B

ou
nd

–
5

po
rt

fo
lio

in
st

an
ce

s
an

d
1

6
in

st
an

ce
s

fr
om

M
IP

LI
B1

[2
3

5
]

2
0

0
3

(3
.3

1
)

(3
.1

c)
,(

3
.1

b)
,(

3
.1

d)
,(

3
.1

0
),

(3
.1

6
)

Br
an

ch
-a

nd
-B

ou
nd

–
O

R
-L

ib
ra

ry
2

[9
,1

0
]

[9
7

]
2

0
0

6
(3

.1
a)

(3
.1

c)
,(

3
.1

b)
,(

3
.1

d)
,(

3
.1

0
)

Br
an

ch
-a

nd
-C

ut
C

PL
EX

8
.0

2
0

se
lf

-g
en

er
at

ed
3

(s
ee

[2
0

3
])

[2
2

6
]

2
0

0
8

(3
.3

2
)

(3
.9

),
(3

.1
6

)
Br

an
ch

-a
nd

-B
ou

nd
C

PL
EX

8
.1

8
re

al
re

pr
es

en
ta

ti
ve

in
st

an
ce

s
[8

]
2

0
0

9
(3

.2
4
)

–
D

IR
EC

T
–

2
ill

us
tr

at
iv

e
ex

am
pl

es
[8

]
2

0
0

9
(3

.2
7
)

–
D

IR
EC

T
–

2
ill

us
tr

at
iv

e
ex

am
pl

es
[1

8
]

2
0

0
9

(3
.3

0
)

(3
.1

c)
,(

3
.1

d)
,(

3
.9

),
(3

.1
6
),

(3
.2

0
)

Br
an

ch
-a

nd
-B

ou
nd

C
PL

EX
8
.1

5
0

ra
nd

om
ly

ge
ne

ra
te

d

[2
6

]
2

0
0

9
(3

.1
a)

(3
.1

c)
,(

3
.1

d)
,(

3
.7

b)
,(

3
.1

0
)

Br
an

ch
-a

nd
-B

ou
nd

[2
7
],

C
PL

EX
1

0
.1

3
6

se
lf

-g
en

er
at

ed
in

st
an

ce
s

(3
.1

2
),

(3
.1

3
),

(3
.1

4
),

(3
.4

1
)

M
IN

LP
_B

B
[1

5
5

]
[2

5
1

]
2

0
1

2
(3

.1
a)

(3
.1

c)
,(

3
.1

b)
,(

3
.1

d)
,(

3
.9

),
(3

.1
5
)

SQ
A

A
lg

or
it

hm
[1

6
7

]
[9

7
]

[4
4

]
2

0
1

3
(3

.1
a)

(3
.1

c)
,(

3
.1

b)
,(

3
.1

d)
,(

3
.1

0
),

(3
.1

6
)

In
cr

ea
si

ng
Se

t
[7

2
],

[1
9

5
],

[4
9
]

[2
1

6
],

[2
1

8
]

5
ad

di
ti

on
al

da
ta

se
ts

4

[2
5

2
]

2
0

1
3

(3
.1

a)
(3

.1
c)

,(
3

.1
b)

,(
3

.1
d)

,(
3
.1

0
),

(3
.1

6
)

Br
an

ch
-a

nd
-C

ut
–

[9
7
]

O
R

-L
ib

ra
ry

2
[9

,1
0
]

[3
7

]
2

0
1

5
(3

.2
8
)

(3
.1

d)
,(

3
.3

),
(3

.4
1
)

Br
an

ch
-a

nd
-B

ou
nd

w
it

h
C

PL
EX

1
2

.6
[4

4
]

Fr
an

k-
W

ol
fe

[3
8

]
2

0
1

6
(3

.1
a)

(3
.1

c)
,(

3
.1

d)
,(

3
.2

),
(3

.9
),

(3
.1

6
)

R
eg

ul
ar

iz
at

io
n

M
et

ho
d

G
U

R
O

BI
5

.6
.2

[9
7
]

Ta
bl

e
1:

D
et

er
m

in
is

ti
c

ex
ac

t
ap

pr
oa

ch
es

to
m

ea
n-

va
ri

an
ce

po
rt

fo
lio

se
le

ct
io

n
pr

ob
le

m
(s

ee
al

so
[1

7
3

]
an

d
re

fe
re

nc
es

w
it

hi
n)

.
R

ef
er

en
ce

s
ar

e
so

rt
ed

in
ch

ro
no

lo
gi

ca
l

or
de

r;
pa

pe
rs

pu
bl

is
he

d
in

th
e

sa
m

e
ye

ar
ar

e
so

rt
ed

ac
co

rd
in

g
to

al
ph

ab
et

ic
or

de
r

of
th

e
la

st
na

m
e

of
th

e
co

rr
es

po
nd

in
g

fir
st

au
th

or
.

48 mean-variance portfolio selection problem

3.8 mwu for a class of mvps problems

The portfolio problem we are interested in can be formulated as follows.
Let x ∈ Rr+ be the decision variables representing the fraction of asset
j ∈ {1, . . . , r} held in the portfolio. Each asset j is characterized by a mean
expected return µj (j ∈ {1, . . . , r}) and a non negative, possibly non-convex
non-concave, cost function Cj(xj) : R+ → R+ (j ∈ {1, . . . , r}). The goal
consists in maximizing the overall return of the portfolio in presence of car-
dinality constraint, risk constraint, and no-short-selling constraint. The risk
of the portfolio is represented by its total variance x>Σx, where Σ ∈ Rr×r is
the covariance matrix of the return distribution of the assets. The portfolio
problem reads:

max µ>x−C(x) (3.42a)

s.t. 1r> x = 1 (3.42b)

x>Σx 6 σ (3.42c)

‖x‖0 6 K (3.42d)

x ∈ [x, x]∪ {0}, (3.42e)

where C(x) :=
∑r
j=1Cj(xj), and σ and K are the maximum levels of risk and

sparsity we aim for our portfolio, respectively.

Remark 3.8.1. We assume both the mean vector µ and the covariance matrix Σ are
perfectly known or coherently estimated from historical data measurements.

Problem (3.42) generalizes the usual portfolio problem with concave trans-
action costs already considered in the literature (see, e.g., Konno and Wi-
jayanayake [148] and Xue et al. [245]). To the best of our knowledge, this is
the first time this kind of portfolio problems is addressed in its entirely.

The previous MVPS problem is NP-hard (see Section 3.4.4) and can be
exactly reformulated, in the sense explained in [157], by introducing extra
binary variables δ ∈ {0, 1}r as follows:

max µ>x−C(x) (3.43a)

s.t. 1r> x = 1 (3.43b)

x>Σx 6 σ (3.43c)

1r> δ 6 K (3.43d)

δ>x 6 x 6 δ>x (3.43e)

δ ∈ {0, 1}r. (3.43f)

3.8.1 Pointwise Reformulation

A pointwise reformulation for problem (3.43) can be obtained by replacing
each function Cj(xj) with the term (1+ xj) θj parametrized by θj. The only

3.8 mwu for a class of mvps problems 49

part of the problem, where the substituting terms appear, is the objective
function:

µ>x−

r∑
j=1

(1+ xj) θj = (µ− θ)>x− 1r>θ, (3.44)

which becomes an affine function of the continuous decision variables xj
(j ∈ {1, . . . , r}). Thus, the pointwise reformulation is:

−1r>θ+ max (µ− θ)>x (3.45a)

s.t. 1r> x = 1 (3.45b)

x>Σx 6 σ (3.45c)

1r> δ 6 K (3.45d)

δ>x 6 x 6 δ>x. (3.45e)

Remark 3.8.2. The pointwise reformulation (3.45) is spanning: the replacement
terms θj perfectly matches the replaced terms Cj(xj)xj+1

at each feasible point xj (j ∈
{1, . . . , r}). By Lemma 2.2.6, there exist values of θ which make (3.45) a bounding
reformulation for the original problem (3.42).

Example 3.8.3. The pointwise reformulation (3.45) is not exact. For instance, we
consider a portfolio problem with r = 2 stocks, Σ = I2, K = 2, x = 0, x = 0.55 and
σ = r, i.e., an essentially unconstrained portfolio problem, apart from the budget
constrained x1 + x2 = 1. Let µ = (1, 0.40)> and C(x) = (C1(x1), C2(x2))

> =

(x1 , 0)>. For all j ∈ {1, 2}, θj =
Cj
1+xj

and, hence,Θj = [Cj(x)/(1+x),Cj(x)/(1+
x)]. For the example, we have Θ1 = [0, 0.55] and Θ2 = {0}. The objective function
of the original formulation (3.42) is simply max(0.40 x2) and its global optimum
is x∗ = (0.45, 0.55)>. The objective function of the pointwise reformulation is
max((1− θ1) x1 + 0.50 x2 − θ1). Now, x∗ = (0.45, 0.55)> is a global optimum
of the pointwise reformulation if and only if (1 − θ1) 6 0.40, i.e., if and only if
θ1 > 0.60: however, these values of θ1 do not belong to the set Θ1.

Remark 3.8.4. The pointwise reformulation (3.45) is not efficient (see Section
3.4.4). However, since convex MIQPs can be solved nowadays with reasonable
efficiency, certainly more efficiently than non-convex non-concave MINLPs, the pro-
posed reformulation is good.

The previous approach can be easily extended to cardinality constrained
portfolio selection problem with cost functions and fixed transaction costs,
i.e., when a term

∑r
j=1 cjδj is added to the objective function: in these prob-

lems the investor has to pay a fixed amount cj (j ∈ {1, . . . , r}) of money if
he/she decided to buy a certain asset j (j ∈ {1, . . . , r}). Moreover, since the
previous strategy consists essentially in substituting each single term in the
separable function with an affine function depending on a given parameter,
it can be extended to general MINLPs with separable non-convexities and
non-concavities.

50 mean-variance portfolio selection problem

3.8.2 Computing MWU Costs/Gains

Since the substituting terms appear only in the objective function, we do
not need to address feasibility issues in computing MWU costs/gains. In
particular, we define, at each iteration t 6 T , a r-dimensional vector αt ∈
[−1, 1]r whose components are:

αj,t =
Cj(xj,t) − (xj,t + 1) θj,t

max(|Cj(xj,t)|, |(xj,t + 1) θj,t|)
(j ∈ {1, . . . , r} , t 6 T). (3.46)

Remark 3.8.5. Each component αj,t represents the scaled cost/gain determined
by each asset j (j ∈ {1, . . . , r}). In other words, each αj,t takes into account the
contribution of the fraction of each asset held in the portfolio to the overall cost
function.

Remark 3.8.6. We define αt to be a vector, instead of a scalar as described in
Section 2.4.3, because this definition is more effective in presence of separable non-
convexities and non-concavities: it allows us to better follow the numerical behavior
of each single cost function Cj(xj) for all j ∈ {1, . . . , r}

In order to define the costs/gains, we simply set:

ψj,t := αj,t (j ∈ {1, . . . , r} , t 6 T). (3.47)

3.8.3 Computational Experiments

The test-bed set with respect to which we analyze our algorithm and
the benchmarks consists in the 20 real-world instances described by Chang
et al. [49] publicly available through the OR-Library (see Beasley [9] and
Beasley [10]) on the web site http://www.brunel.ac.uk/~mastjjb/jeb/info.

html. Each instance is characterized by the number n of assets and the value
of the risk level σ. We impose, as in Chang et al. [49], x = 0.01, x = 1 and
K = 10.

Transaction Cost Functions

One of the aims of the computational experiments, in addition to analyze
the behavior of the MWU algorithm against other methods to solve MVPS
problems, consists in empirically evaluating the performances of the MWU
algorithm depending from the nonlinearity of the replaced transaction cost
functions. In particular, we consider the following five univariate functions
(see Figure 1):

(a) Cj(xj) = −µj ln
(20−0.06(1+xj)

1+xj

)
for all j ∈ {1, . . . , r}: this cost function

is increasing, concave and “almost linear”.

(b) Cj(xj) = −µj ln
(0.2−0.01(0.00001+xj)

0.00001+xj

)
for all j ∈ {1, . . . , r}: this cost

function is increasing, concave, and replicates the behavior of the trans-
action cost function described in Konno and Wijayanayake [148].

http://www. brunel.ac.uk/~mastjjb/jeb/info.html
http://www. brunel.ac.uk/~mastjjb/jeb/info.html

3.8 mwu for a class of mvps problems 51

(c) Cj(xj) = µj(4xj + 0.12 sin(40xj)) for all j ∈ {1, . . . , r}: this cost function
has a sinusoidal behavior similar to a step function.

(d) Cj(xj) = µj(4xj + 0.3 sin(40xj)) for all j ∈ {1, . . . , r}: this cost function
is similar to the one in (c) but with a “stronger nonlinear behavior”.

(e) Cj(xj) = µj(0.5xj+ sin(50xj)) for all j ∈ {1, . . . , r}: this is the “most non-
linear” transaction cost function among which we tested the methods.

Remark 3.8.7. We want to emphasize that the definition of nonlinearity of a given
transaction cost function was not given in rigorous mathematical terms, but it is
mostly qualitative: in fact, we carefully use quotes around each nonlinearity char-
acterization. However, since our aim consists in empirically analyzing the behavior
of the MWU algorithm with respect to a given cost function, we trust most readers
will agree with our categorization, by inspection of Figure 1.

Computational Environment

Since for the MVPS problem we consider in this section there are no tai-
lored exact or heuristic methods to solve it and since the MWU algorithm is
essentially a MS algorithm with a special strategy to choose the more promis-
ing initial points both in terms of feasibility and optimality, we compare the
MWU with the MS.

We used T = 20 iterations for both MWU and MS. We adopted Bonmin
[29] as local MINLP solver: since Bonmin exactly solve convex MINLPs,
it is a reliable heuristic for non-convex MINLPs. In particular, we employ
Bonmin’s native Branch-and-Bound (B-BB) algorithm (see Bonami et al. [28]
and Gupta and Ravindran [111]), since it is generally more stable for non-
convex MINLPs. We used Cplex [124] as the convex MIQP solver for the
pointwise reformulation (3.45), with a 600 seconds time limit, using only
one thread. All of the computational experiments were performed on an
Intel Xeon CPU E5649, 2.53 GHz, using only one processor.

Localization of the MS Subsolver

Since we want to compare MWU against MS and MS is essentially a pro-
cedure composed by two steps: a random choice of a starting point, and a
local descend method, we would like that Bonmin BB-B behaves like a local
solver. From preliminary tests, however, the behavior of Bonmin BB-B was
mostly similar to a global solver: Bonmin BB-B sets a cut-off value for the
optimum based on the starting point and for our test-bed it found almost
always the same solution point. In order to turn Bonmin B-BB into a truly
local solver, we consider an adding local branching constraint (see Fischetti
and Lodi [92]) for the original formulation, which basically defines an upper
bound bνnc, where ν ∈ [0, 1], on the number of flips of binary variables δ:∑

i6r
δ ′
j
=0

δj +
∑
j6r
δ ′
j
=1

(1− δj) 6 bνnc, (3.48)

52 mean-variance portfolio selection problem

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

xi

C
i
(x
i
)

(a) Easy concave transaction costs.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

xi

C
i
(x
i
)

(b) Hard concave transaction costs.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

xi

C
i
(x
i
)

(c) Easy trigonometric transaction costs.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

xi
C
i
(x
i
)

(d) Medium trigonometric transaction
costs.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

xi

C
i
(x
i
)

(e) Hard trigonometric transaction costs.

Figure 1: Examples of transaction cost functions.

3.8 mwu for a class of mvps problems 53

where δ ′ is the starting point. The spirit of the constraints (3.48) consists
in enforcing a local exploration in the combinatorial neighborhood of the
starting point δ ′. After several computational experiments we decided to set
ν = 0.96, since lower values made the instance infeasible excessively often.

Tables 2-6 report the computational results for each transaction cost func-
tion. Their columns are as follows:

• instance name;

• maximum risk level σ;

• number r of assets quoted on the financial market;

• objective value for the MWU algorithm;

• CPU time (in seconds) for the MWU algorithm;

• objective value for the MWU algorithm with the local branching con-
straint;

• CPU time (in seconds) for the MWU algorithm with the local branching
constraint;

• objective value for the MS algorithm with the local branching con-
straint;

• CPU time (in seconds) for the MS algorithm with the local branching
constraint;

• relative objective value improvement from MS to MWU computed as

Γ =
val(MWU) − val(MS)

|val(MS)| ; (3.49)

• time improvement ratio from MS to MWU:

Λ =
cpu(MS)

cpu(MWU)
; (3.50)

• relative objective value improvement from MS to MWU with the local
branching constraint (see Equation (3.49));

• time improvement ratio Λ from MS to MWU with the local branching
constraint (see Equation (3.50)).

Computational Results

The comparison metrics are summarized in the last three lines with the
sum (

∑
), average (avg), and the standard deviation (std) across all 20 in-

stances. For the CPU time we reported also the geometrical mean among all
the instances.

54 mean-variance portfolio selection problem
M
W
U

M
W
U
+
L
B

M
S

M
W
U

vs.
M
S

M
W
U
+
L
B

vs.
M
S

Instance
σ

n
objective

C
PU

‖
x
∗
‖
0

objective
C

PU
‖
x
∗
‖
0

objective
C

PU
‖
x
∗
‖
0

Γ
Λ

Γ
Λ

p
o
r
t
-
o
r
l
i
b
1
_
0
0
0

0.
0
0
4
7
7
5
5
0
1
0

3
1

1.0742596
2
9
2.

5
5
6

1
1.0742596

3
1
4.

9
1
8

1
1.0742596

31.203
1

0.
0
0
0%

0.
1
0
7

0.
0
0
0%

0.
0
9
9

p
o
r
t
-
o
r
l
i
b
1
_
0
5
0

0.
0
0
2
1
5
2
2
0
7
5

3
1

1.0742596
2
6
8.

2
7
8

1
1.0742596

2
1
2.

9
1
5

1
1.0742596

31.469
1

0.
0
0
0%

0.
1
1
7

0.
0
0
0%

0.
1
4
8

p
o
r
t
-
o
r
l
i
b
1
_
1
0
0

0.
0
0
1
0
5
8
5
9
6
9

3
1

1.0592082
1
3.

5
8
7

3
1.0592082

12.915
3

1.0592082
1
3.

1
8
0

3
0.

0
0
0%

0.
9
7
0

0.
0
0
0%

1.
0
2
1

p
o
r
t
-
o
r
l
i
b
1
_
1
5
0

0.
0
0
0
7
1
5
8
4
2
1

3
1

1.0180977
1
1.

9
9
8

5
1.0180977

1
2.

3
9
1

5
1.0180977

11.764
5

0.
0
0
0%

0.
9
8
0

0.
0
0
0%

0.
9
4
9

p
o
r
t
-
o
r
l
i
b
2
_
0
0
0

0.
0
0
2
8
3
5
2
4
3
0

8
5

1.8750415
1
6
0
0
0.

3
7
1

1
1.8750415

1
8
5
1
6.

3
9
5

1
1.8750415

1339.651
1

0.
0
0
0%

0.
0
8
4

0.
0
0
0%

0.
0
7
2

p
o
r
t
-
o
r
l
i
b
2
_
0
5
0

0.
0
0
0
4
9
5
3
2
3
7

8
5

1.8741070
3
3
0.

9
4
1

3
1.8741070

1
9
6.

8
6
5

3
1.8741070

182.681
3

0.
0
0
0%

0.
5
5
2

0.
0
0
0%

0.
9
2
8

p
o
r
t
-
o
r
l
i
b
2
_
1
0
0

0.
0
0
0
2
7
0
4
0
6
2

8
5

1.8587348
7
0
3
8.

5
9
9

5
1.8587348

5745.031
5

1.8587348
7
1
8
3.

4
4
0

5
0.

0
0
0%

1.
0
2
1

0.
0
0
0%

1.
2
5
0

p
o
r
t
-
o
r
l
i
b
2
_
1
5
0

0.
0
0
0
1
6
6
3
2
0
0

8
5

1.7828905
214.691

9
1.7828905

3
8
4.

0
2
6

9
1.7828905

4
2
5.

7
5
0

9
0.

0
0
0%

1.
9
8
3

0.
0
0
0%

1.
1
0
9

p
o
r
t
-
o
r
l
i
b
3
_
0
0
0

0.
0
0
1
5
1
6
6
3
5
1

8
9

2.3898574
1
8
0
1
9.

8
2
4

1
2.3898574

1
7
8
6
2.

7
8
5

1
2.3898574

1396.067
1

0.
0
0
0%

0.
0
7
7

0.
0
0
0%

0.
0
7
8

p
o
r
t
-
o
r
l
i
b
3
_
0
5
0

0.
0
0
0
5
8
4
9
7
5
8

8
9

2.
3
8
9
2
1
7
4

2
8
3
1.

2
0
4

2
2.3892246

213.402
2

2.
3
8
9
2
1
7
4

3
3
3.

0
6
2

2
0.

0
0
0%

0.
1
1
8

0.
0
0
0%

1.
5
6
1

p
o
r
t
-
o
r
l
i
b
3
_
1
0
0

0.
0
0
0
3
2
1
5
9
4
1

8
9

2.
3
6
2
2
6
5
0

7
4
3.

1
8
9

8
2.

3
6
2
2
6
5
0

173.656
8

2.3645800
4
9
0.

4
3
4

7
-
0.

0
9
8%

0.
6
6
0

-
0.

0
9
8%

2.
8
2
4

p
o
r
t
-
o
r
l
i
b
3
_
1
5
0

0.
0
0
0
2
2
3
9
1
1
7

8
9

2.
2
6
5
2
6
9
6

3329.717
10

2.
2
6
4
5
1
6
9

4
4
0
5.

8
7
4

10
2.2677086

3
2
3
8.

5
6
1

10
-
0.

1
0
8%

0.
9
7
3

-
0.

1
4
1%

0.
7
3
5

p
o
r
t
-
o
r
l
i
b
4
_
0
0
0

0.
0
0
2
9
3
8
7
2
4
1

9
8

2.
9
2
3
4
5
9
7

2
9
8
7
5.

5
3
9

1
2.

9
2
3
4
5
9
7

2
6
5
3
8.

9
3
1

1
2.9234600

4777.167
1

0.
0
0
0%

0.
1
6
0

0.
0
0
0%

0.
1
8
0

p
o
r
t
-
o
r
l
i
b
4
_
0
5
0

0.
0
0
0
6
8
2
8
4
5
0

9
8

2.9200045
2
1
0.

9
7
9

3
2.9200045

192.266
3

2.9200045
7
4
2.

8
3
8

3
0.

0
0
0%

3.
5
2
1

0.
0
0
0%

3.
8
6
4

p
o
r
t
-
o
r
l
i
b
4
_
1
0
0

0.
0
0
0
3
0
5
9
5
5
3

9
8

2.
9
0
6
7
6
9
0

6
9
9
7.

8
7
1

5
2.

9
0
6
5
8
8
4

6364.984
4

2.9073338
1
1
8
8
4.

6
6
5

5
-
0.

0
1
9%

1.
6
9
8

-
0.

0
2
6%

1.
8
6
7

p
o
r
t
-
o
r
l
i
b
4
_
1
5
0

0.
0
0
0
1
6
1
3
9
7
9

9
8

2.8526192
8
9
5.

8
6
3

1
0

2.8526192
754.278

1
0

2.8526192
6
4
6
1.

0
3
6

1
0

0.
0
0
0%

7.
2
1
2

0.
0
0
0%

8.
5
6
6

p
o
r
t
-
o
r
l
i
b
5
_
0
0
0

0.
0
0
1
6
4
8
5
2
2
4

2
2
5

4.6677119
3478.872

2
4.6677119

5
2
8
8.

9
6
9

2
4.

6
6
7
3
8
2
3

5
7
3
6.

2
6
7

4
0.

0
0
7%

1.
6
4
9

0.
0
0
7%

1.
0
8
5

p
o
r
t
-
o
r
l
i
b
5
_
0
5
0

0.
0
0
0
5
1
5
0
2
7
7

2
2
5

4.6668554
5
6
5
2.

4
2
0

3
4.6668554

4949.565
3

4.6668554
1
0
9
3
2.

2
0
9

3
0.

0
0
0%

1.
9
3
4

0.
0
0
0%

2.
2
0
9

p
o
r
t
-
o
r
l
i
b
5
_
1
0
0

0.
0
0
0
3
9
1
8
2
6
0

2
2
5

4.6577793
3451.980

4
4.6577793

3
6
4
0.

4
2
2

4
4.6577793

9
8
3
3.

0
0
2

4
0.

0
0
0%

2.
8
4
9

0.
0
0
0%

2.
7
0
1

p
o
r
t
-
o
r
l
i
b
5
_
1
5
0

0.
0
0
0
3
2
7
2
8
7
6

2
2
5

4.
6
2
6
4
5
6
8

7934.132
8

4.6228591
9
5
6
4.

9
0
5

9
4.

6
2
6
4
5
6
8

1
0
6
8
4.

6
2
9

8
0.

0
0
0%

1.
3
4
7

-
0.

0
7
8%

1.
1
1
7

∑
5
1.

2
4
4
8
6
4
1

1
0
7
5
9
2.

6
1
1

85
5
1.

2
4
0
3
4
0
2

1
0
5
3
4
5.

4
9
3

85
51.2498536

75729.075
8
6

-
0.

2
1
8%

28.011
-
0.

3
3
5%

32.362
avg

2.
5
6
2
2
4
3
2

5
3
7
9.

6
3
1

4.250
2.

5
6
2
0
1
7
0

5
2
6
7.

2
7
5

4.250
2.5624927

3786.454
4.

3
0
0

-
0.

0
1
1%

1.401
-
0.

0
1
7%

1.618
std

(
1.

2
4
1
4
7
0
9)

(
7
7
2
1.

1
6
7)

(
6
3.

1
4
3)

(
1.

2
4
1
1
6
3
1)

(
7
4
7
8.

1
1
3)

(
3.

2
1
0)

(
1.

2
4
1
3
9
9
6)

(
4
2
8
7.

6
0
8)

(
3.

0
4
5)

(
0.

0
3
2%

)
(
1.

6
7
2)

(
0.

0
4
0%

)
(
1.

9
2
8)

geo
(C

PU
)

1
3
2
4.

2
5
6

1
0
9
0.

1
5
1

909.83

Table
2:M

V
PS,com

parative
results

of
M

S
and

M
W

U
for

the
transaction

cost
function

(a).

M
W
U

M
W
U
+
L
B

M
S

M
W
U

vs.
M
S

M
W
U
+
L
B

vs.
M
S

Instance
σ

n
objective

C
PU

‖
x
∗
‖
0

objective
C

PU
‖
x
∗
‖
0

objective
C

PU
‖
x
∗
‖
0

Γ
Λ

Γ
Λ

p
o
r
t
-
o
r
l
i
b
1
_
0
0
0

0.
0
0
4
7
7
5
5
0
1
0

3
1

0.3283893
1.

5
0
2

1
0.3283893

1.295
1

0.3283893
4.

8
9
6

1
0.

0
0
0%

3.
2
6
0

0.
0
0
0%

3.
7
8
1

p
o
r
t
-
o
r
l
i
b
1
_
0
5
0

0.
0
0
2
1
5
2
2
0
7
5

3
1

0.
3
2
6
8
0
0
2

1.
6
9
8

2
0.

3
2
6
8
0
0
2

1.488
2

0.3268555
5.

3
1
0

1
-
0.

0
1
7%

3.
1
2
7

-
0.

0
1
7%

3.
5
6
9

p
o
r
t
-
o
r
l
i
b
1
_
1
0
0

0.
0
0
1
0
5
8
5
9
6
9

3
1

0.3264242
1.807

3
0.3264242

1.
9
7
7

3
0.3264242

5.
4
9
3

3
0.

0
0
0%

3.
0
4
0

0.
0
0
0%

2.
7
7
8

p
o
r
t
-
o
r
l
i
b
1
_
1
5
0

0.
0
0
0
7
1
5
8
4
2
1

3
1

0.3255758
2.890

6
0.3255758

3.
0
0
2

6
0.3255758

5.
6
4
9

6
0.

0
0
0%

1.
9
5
5

0.
0
0
0%

1.
8
8
2

p
o
r
t
-
o
r
l
i
b
2
_
0
0
0

0.
0
0
2
8
3
5
2
4
3
0

8
5

0.5696578
7.

4
0
4

1
0.5696578

7.059
1

0.5696578
4
3.

5
7
0

1
0.

0
0
0%

5.
8
8
5

0.
0
0
0%

6.
1
7
2

p
o
r
t
-
o
r
l
i
b
2
_
0
5
0

0.
0
0
0
4
9
5
3
2
3
7

8
5

0.5677078
1
9.

6
3
8

5
0.

5
6
7
7
0
7
5

11.335
8

0.
5
6
7
7
0
7
7

5
2.

4
0
1

5
0.

0
0
0%

2.
6
6
8

0.
0
0
0%

4.
6
2
3

p
o
r
t
-
o
r
l
i
b
2
_
1
0
0

0.
0
0
0
2
7
0
4
0
6
2

8
5

0.
5
6
7
1
8
0
8

6
1
1.

4
2
4

8
0.

5
6
7
1
8
0
9

7
7
6.

7
1
2

1
0

0.5671812
35.439

1
0

0.
0
0
0%

0.
0
5
8

0.
0
0
0%

0.
0
4
6

p
o
r
t
-
o
r
l
i
b
2
_
1
5
0

0.
0
0
0
1
6
6
3
2
0
0

8
5

0.5668838
568.841

10
0.5668838

1
5
6
0.

2
0
5

10
0.5668838

1
7
3
7.

2
4
0

10
0.

0
0
0%

3.
0
5
4

0.
0
0
0%

1.
1
1
3

p
o
r
t
-
o
r
l
i
b
3
_
0
0
0

0.
0
0
1
5
1
6
6
3
5
1

8
9

0.7248280
10.288

1
0.7248280

1
3.

4
6
3

1
0.7248280

3
7.

7
1
7

1
0.

0
0
0%

3.
6
6
6

0.
0
0
0%

2.
8
0
2

p
o
r
t
-
o
r
l
i
b
3
_
0
5
0

0.
0
0
0
5
8
4
9
7
5
8

8
9

0.
7
2
3
4
2
2
9

1
9.

9
3
6

3
0.7234556

19.177
2

0.7234556
4
6.

7
1
4

2
-
0.

0
0
5%

2.
3
4
3

0.
0
0
0%

2.
4
3
6

p
o
r
t
-
o
r
l
i
b
3
_
1
0
0

0.
0
0
0
3
2
1
5
9
4
1

8
9

0.7229391
17.926

7
0.7229391

1
2
1
0.

1
3
1

7
0.

7
2
2
9
5
8
7

6
5
1.

5
7
8

7
-
0.

0
0
3%

3
6.

3
4
8

-
0.

0
0
3%

0.
5
3
8

p
o
r
t
-
o
r
l
i
b
3
_
1
5
0

0.
0
0
0
2
2
3
9
1
1
7

8
9

0.7225929
1165.350

10
0.

7
2
2
5
9
2
8

3
6
4
3.

6
0
5

10
0.7225929

2
8
6
4.

1
6
5

10
0.

0
0
0%

2.
4
5
8

0.
0
0
0%

0.
7
8
6

p
o
r
t
-
o
r
l
i
b
4
_
0
0
0

0.
0
0
2
9
3
8
7
2
4
1

9
8

0.8862800
11.850

1
0.8862800

2
9.

0
2
2

1
0.8862800

5
0.

9
8
8

1
0.

0
0
0%

4.
3
0
3

0.
0
0
0%

1.
7
5
7

p
o
r
t
-
o
r
l
i
b
4
_
0
5
0

0.
0
0
0
6
8
2
8
4
5
0

9
8

0.8846300
28.928

2
0.8846300

5
0.

4
4
9

2
0.8846300

6
1.

2
3
0

2
0.

0
0
0%

2.
1
1
7

0.
0
0
0%

1.
2
1
4

p
o
r
t
-
o
r
l
i
b
4
_
1
0
0

0.
0
0
0
3
0
5
9
5
5
3

9
8

0.
8
8
4
0
6
6
8

1
0
0
5.

3
8
0

7
0.

8
8
4
0
6
6
8

44.561
7

0.8840702
6
8
1.

4
5
6

9
0.

0
0
0%

0.
6
7
8

0.
0
0
0%

1
5.

2
9
3

p
o
r
t
-
o
r
l
i
b
4
_
1
5
0

0.
0
0
0
1
6
1
3
9
7
9

9
8

0.
8
8
3
6
9
4
9

3778.496
10

0.
8
8
3
6
9
4
5

4
3
0
6.

0
8
4

10
0.8836971

4
2
5
4.

1
5
9

10
0.

0
0
0%

1.
1
2
6

0.
0
0
0%

0.
9
8
8

p
o
r
t
-
o
r
l
i
b
5
_
0
0
0

0.
0
0
1
6
4
8
5
2
2
4

2
2
5

1.4120658
2
1
1.

9
4
8

2
1.4120658

117.720
2

1.
4
1
2
0
5
8
7

3
8
1.

8
0
6

3
0.

0
0
1%

1.
8
0
1

0.
0
0
1%

3.
2
4
3

p
o
r
t
-
o
r
l
i
b
5
_
0
5
0

0.
0
0
0
5
1
5
0
2
7
7

2
2
5

1.4112207
4
8
9
5.

4
1
7

5
1.4112207

3
0
5
5.

8
8
8

5
1.4112207

892.922
5

0.
0
0
0%

0.
1
8
2

0.
0
0
0%

0.
2
9
2

p
o
r
t
-
o
r
l
i
b
5
_
1
0
0

0.
0
0
0
3
9
1
8
2
6
0

2
2
5

1.4109834
4
2
9
1.

4
4
5

7
1.4109834

2
4
5
0.

8
9
8

7
1.4109834

777.179
7

0.
0
0
0%

0.
1
8
1

0.
0
0
0%

0.
3
1
7

p
o
r
t
-
o
r
l
i
b
5
_
1
5
0

0.
0
0
0
3
2
7
2
8
7
6

2
2
5

1.4108196
755.727

7
1.

4
1
0
8
1
9
5

2
2
4
2.

5
6
8

7
1.4108196

1
3
6
8.

1
4
5

7
0.

0
0
0%

1.
8
1
0

0.
0
0
0%

0.
6
1
0

∑
1
5.

6
5
6
1
6
3
6

1
7
4
0
7.

8
9
5

98
1
5.

6
5
6
1
9
5
6

1
9
5
4
6.

6
3
9

1
0
2

15.6562699
13958.057

1
0
1

-
0.

0
2
4%

80.060
-
0.

0
2
0%

54.240
avg

0.
7
8
2
8
0
8
2

8
7
0.

3
9
5

4.900
0.

7
8
2
8
0
9
8

9
7
7.

3
3
2

5.
1
0
0

0.7828135
697.903

5.
0
5
0

-
0.

0
0
1%

4.003
-
0.

0
0
1%

2.712
std

(
0.

3
7
3
6
0
8
4)

(
1
5
4
2.

2
3
8)

(
3.

2
4
3)

(
0.

3
7
3
6
0
8
1)

(
1
4
0
6.

9
5
7)

(
3.

4
7
8)

(
0.

3
7
3
6
0
3
8)

(
1
1
2
1.

6
0
0)

(
3.

5
1
7)

(
0.

0
0
4%

)
(
7.

7
5
1)

(
0.

0
0
4%

)
3.

3
8
0

geo
(C

PU
)

71.630
8
7.

5
5
7

1
2
7.

1
6
8

Table
3:M

V
PS,com

parative
results

of
M

S
and

M
W

U
for

the
transaction

cost
function

(b).

3.8 mwu for a class of mvps problems 55
M
W
U

M
W
U
+
L
B

M
S

M
W
U

vs
.M

S
M
W
U
+
L
B

vs
.M

S

In
st

an
ce

σ
n

ob
je

ct
iv

e
C

PU
‖x

∗
‖ 0

ob
je

ct
iv

e
C

PU
‖x

∗
‖ 0

ob
je

ct
iv

e
C

PU
‖x

∗
‖ 0

Γ
Λ

Γ
Λ

p
o
r
t
-
o
r
l
i
b
1
_
0
0
0

0
.0

0
4
7
7
5
5
0
1
0

3
1

-0
.0

00
43

56
1.

02
4

1
-0

.0
0
3
2
9
8
5

3
.1

7
9

1
0

-0
.0

0
3
9
9
2
9

5
.5

5
4

1
0

8
1
6

.6
2
8

%
5

.4
2
4

2
1

.0
5
3

%
1

.7
4
7

p
o
r
t
-
o
r
l
i
b
1
_
0
5
0

0
.0

0
2
1
5
2
2
0
7
5

3
1

-0
.0

00
42

19
1.

10
4

2
-0

.0
0
3
0
8
3
6

3
.9

5
6

1
0

-0
.0

0
3
9
9
2
9

5
.6

9
7

1
0

8
4
6

.4
0
5

%
5

.1
6
0

2
9

.4
8
7

%
1

.4
4
0

p
o
r
t
-
o
r
l
i
b
1
_
1
0
0

0
.0

0
1
0
5
8
5
9
6
9

3
1

-0
.0

02
12

66
1.

45
5

8
-0

.0
02

12
66

2
.3

6
3

8
-0

.0
0
4
1
3
4
6

5
.6

8
0

9
9
4

.4
2
7

%
3

.9
0
4

9
4

.4
2
7

%
2

.4
0
4

p
o
r
t
-
o
r
l
i
b
1
_
1
5
0

0
.0

0
0
7
1
5
8
4
2
1

3
1

-0
.0

0
3
7
4
7
6

2.
61

1
7

-0
.0

03
44

43
3

.9
6
0

5
-0

.0
0
3
8
7
4
2

3
.8

9
3

7
3

.3
7
7

%
1

.4
9
1

1
2

.4
8
3

%
0

.9
8
3

p
o
r
t
-
o
r
l
i
b
2
_
0
0
0

0
.0

0
2
8
3
5
2
4
3
0

8
5

-0
.0

0
0
1
4
4
6

9
.9

9
3

5
-0

.0
0
0
0
6
8
7

1
7
.2

7
5

2
-0

.0
0
0
2
0
1
6

3
2
.1

4
9

6
3
9

.4
0
8

%
3

.2
1
7

1
9
3
.3

6
2

%
1

.8
6
1

p
o
r
t
-
o
r
l
i
b
2
_
0
5
0

0
.0

0
0
4
9
5
3
2
3
7

8
5

-0
.0

0
0
0
9
1
7

7.
26

9
3

-0
.0

00
11

01
1
3
.6

7
0

5
-0

.0
0
0
2
0
1
6

3
2
.3

7
0

6
1
1
9

.7
4
2

%
4

.4
5
3

8
3

.1
6
7

%
2

.3
6
8

p
o
r
t
-
o
r
l
i
b
2
_
1
0
0

0
.0

0
0
2
7
0
4
0
6
2

8
5

-0
.0

00
53

85
33

.3
73

9
-0

.0
00

53
85

4
2
.6

1
0

9
-0

.0
00

53
85

6
4

.9
1
8

9
-0

.0
0
2

%
1

.9
4
5

-0
.0

0
2

%
1

.5
2
4

p
o
r
t
-
o
r
l
i
b
2
_
1
5
0

0
.0

0
0
1
6
6
3
2
0
0

8
5

-0
.0

02
48

57
1
3
2
2

.3
2
0

10
-0

.0
02

48
57

2
6
2
.9

1
3

10
-0

.0
02

48
57

11
15

.0
10

10
-0

.0
0
1

%
0

.8
4
3

-0
.0

0
1

%
4

.2
4
1

p
o
r
t
-
o
r
l
i
b
3
_
0
0
0

0
.0

0
1
5
1
6
6
3
5
1

8
9

-0
.0

0
0
1
2
1
4

7.
34

0
3

-0
.0

00
12

05
2
1
.9

8
4

1
-0

.0
0
0
1
8
2
5

4
1
.2

6
3

4
5
0

.3
3
9

%
5

.6
2
2

5
1

.4
6
6

%
1

.8
7
7

p
o
r
t
-
o
r
l
i
b
3
_
0
5
0

0
.0

0
0
5
8
4
9
7
5
8

8
9

-0
.0

00
13

55
6.

64
3

3
-0

.0
00

13
55

1
3
.9

2
9

3
-0

.0
0
0
1
8
2
5

3
7
.4

3
6

4
3
4

.6
6
3

%
5

.6
3
5

3
4

.6
6
2

%
2

.6
8
8

p
o
r
t
-
o
r
l
i
b
3
_
1
0
0

0
.0

0
0
3
2
1
5
9
4
1

8
9

-0
.0

00
71

10
17

.4
59

6
-0

.0
0
0
7
7
6
8

5
0
.7

3
5

7
-0

.0
0
0
7
7
6
0

4
2
.1

4
1

7
9

.1
3
9

%
2

.4
1
4

-0
.1

0
8

%
0

.8
3
1

p
o
r
t
-
o
r
l
i
b
3
_
1
5
0

0
.0

0
0
2
2
3
9
1
1
7

8
9

-0
.0

0
3
2
7
5
7

1
3
3
4
9
.9

0
0

10
-0

.0
0
3
2
2
2
1

1
0
9
0
5
.2

0
2

10
-0

.0
03

19
12

29
57

.4
84

10
-2

.5
8
0

%
0

.2
2
2

-0
.9

6
0

%
0

.2
7
1

p
o
r
t
-
o
r
l
i
b
4
_
0
0
0

0
.0

0
2
9
3
8
7
2
4
1

9
8

-0
.0

0
0
1
8
2
0

11
.7

05
3

-0
.0

0
0
5
7
6
6

1
6
.7

4
0

7
-0

.0
00

14
14

2
8

.0
4
9

3
-2

2
.2

9
3

%
2

.3
9
6

-7
5

.4
7
7

%
1

.6
7
6

p
o
r
t
-
o
r
l
i
b
4
_
0
5
0

0
.0

0
0
6
8
2
8
4
5
0

9
8

-0
.0

00
14

04
14

.6
38

3
-0

.0
0
0
3
4
6
6

1
6
.5

0
4

5
-0

.0
0
0
1
4
1
4

2
6
.8

5
9

3
0

.7
1
9

%
1

.8
3
5

-5
9

.2
0
8

%
1

.6
2
7

p
o
r
t
-
o
r
l
i
b
4
_
1
0
0

0
.0

0
0
3
0
5
9
5
5
3

9
8

-0
.0

0
0
6
2
8
8

19
.6

24
6

-0
.0

0
0
6
8
0
1

6
4
.9

0
4

6
-0

.0
00

62
27

3
3

.0
5
0

6
-0

.9
6
7

%
1

.6
8
4

-8
.4

4
1

%
0

.5
0
9

p
o
r
t
-
o
r
l
i
b
4
_
1
5
0

0
.0

0
0
1
6
1
3
9
7
9

9
8

-0
.0

02
22

39
8
3
7
1

.6
5
5

10
-0

.0
02

22
39

61
98

.3
04

10
-0

.0
02

22
39

1
5
7
0
.8

7
3

10
0

.0
0
2

%
0

.1
8
8

0
.0

0
2

%
0

.2
5
3

p
o
r
t
-
o
r
l
i
b
5
_
0
0
0

0
.0

0
1
6
4
8
5
2
2
4

2
2
5

-0
.0

00
06

47
72

.4
65

7
-0

.0
0
0
0
7
1
2

1
4
9
.3

5
1

8
-0

.0
0
0
0
7
5
7

1
6
7
.0

3
8

9
1
6

.9
1
3

%
2

.3
0
5

6
.2

6
5

%
1

.1
1
8

p
o
r
t
-
o
r
l
i
b
5
_
0
5
0

0
.0

0
0
5
1
5
0
2
7
7

2
2
5

-0
.0

0
0
4
9
7
8

10
8.

45
2

8
-0

.0
0
0
4
9
7
8

2
2
4
.8

8
2

8
-0

.0
00

12
12

2
9
1
.8

7
9

5
-7

5
.6

5
4

%
2

.6
9
1

-7
5

.6
5
4

%
1

.2
9
8

p
o
r
t
-
o
r
l
i
b
5
_
1
0
0

0
.0

0
0
3
9
1
8
2
6
0

2
2
5

-0
.0

0
1
3
8
6
5

1
2
9
.5

9
8

8
-0

.0
0
0
7
1
2
9

95
.8

63
8

-0
.0

00
40

68
2
0
9
.7

7
1

6
-7

0
.6

6
0

%
1

.6
1
9

-4
2

.9
3
7

%
2

.1
8
8

p
o
r
t
-
o
r
l
i
b
5
_
1
5
0

0
.0

0
0
3
2
7
2
8
7
6

2
2
5

-0
.0

0
1
6
8
8
9

1
8
0
.1

8
1

8
-0

.0
0
1
6
8
8
9

16
9.

20
6

8
-0

.0
01

08
23

5
4
6
.6

3
4

8
-3

5
.9

1
7

%
3

.0
3
4

-3
5

.9
1
7

%
3

.2
3
1

∑
-0

.0
21

04
89

2
3
6
6
8
.8

0
9

12
0

-0
.0

2
6
2
0
9
0

1
8
2
7
7
.5

3
0

1
4
0

-0
.0

2
8
5
6
9
6

72
17

.7
48

1
4
2

18
23

.6
89

%
56

.0
82

22
7.

67
0%

34
.1

35
av

g
-0

.0
01

05
24

1
1
8
3

.4
4
0

6.
00

0
-0

.0
0
1
3
1
0
4

9
1
3
.8

7
7

7
.0

0
0

-0
.0

0
1
4
2
8
5

36
0.

88
7

7
.1

0
0

91
.1

84
%

2.
80

4
11

.3
83

%
1.

70
7

st
d

(0
.0

0
1
1
4
6
4

)
(3

4
1
9
.0

7
2

)
(2

.9
2
0

)
(0

.0
0
1
2
4
4
1
)

(2
7
2
2

.5
1
0
)

(2
.7

5
3
)

(0
.0

0
1
5
7
8
0

)
(7

3
7
.0

8
5
)

(2
.4

6
9
)

(2
5
7
.3

5
8
%

)
(1

.7
2
5
)

(6
2
.4

5
8
%

)
(0

.9
8
5
)

ge
o

(C
PU

)
31

.2
88

4
7
.3

3
9

6
5

.6
6
1

Ta
bl

e
4:

M
V

PS
,c

om
pa

ra
ti

ve
re

su
lt

s
of

M
S

an
d

M
W

U
fo

r
th

e
tr

an
sa

ct
io

n
co

st
fu

nc
ti

on
(c

).

M
W
U

M
W
U
+
L
B

M
S

M
W
U

vs
.M

S
M
W
U
+
L
B

vs
.M

S

In
st

an
ce

σ
n

ob
je

ct
iv

e
C

PU
‖x

∗
‖ 0

ob
je

ct
iv

e
C

PU
‖x

∗
‖ 0

ob
je

ct
iv

e
C

PU
‖x

∗
‖ 0

Γ
Λ

Γ
Λ

p
o
r
t
-
o
r
l
i
b
1
_
0
0
0

0
.0

0
4
7
7
5
5
0
1
0

3
1

-0
.0

00
39

29
0.

82
5

2
-0

.0
0
0
5
4
4
2

3
.3

1
9

9
-0

.0
0
0
8
7
3
2

5
.7

5
0

9
1
2
2

.2
6
0
%

6
.9

7
0

6
0
.4

4
6
%

1
.7

3
2

p
o
r
t
-
o
r
l
i
b
1
_
0
5
0

0
.0

0
2
1
5
2
2
0
7
5

3
1

-0
.0

00
32

64
1.

04
0

3
-0

.0
0
0
6
5
9
2

3
.1

2
7

6
-0

.0
0
0
8
7
3
2

6
.0

0
8

9
1
6
7

.4
9
6
%

5
.7

7
7

3
2
.4

6
4
%

1
.9

2
1

p
o
r
t
-
o
r
l
i
b
1
_
1
0
0

0
.0

0
1
0
5
8
5
9
6
9

3
1

-0
.0

0
0
7
3
0
8

1.
78

0
9

-0
.0

00
67

70
4

.0
3
0

9
-0

.0
0
1
0
0
0
3

5
.7

1
6

9
3
6

.8
8
7
%

3
.2

1
1

4
7
.7

6
0
%

1
.4

1
8

p
o
r
t
-
o
r
l
i
b
1
_
1
5
0

0
.0

0
0
7
1
5
8
4
2
1

3
1

-0
.0

0
2
7
0
5
1

2.
16

5
5

-0
.0

0
1
6
9
8
6

4
.5

3
7

6
-0

.0
01

00
05

3
.9

7
0

8
-6

3
.0

1
5
%

1
.8

3
4

-4
1
.0

9
8
%

0
.8

7
5

p
o
r
t
-
o
r
l
i
b
2
_
0
0
0

0
.0

0
2
8
3
5
2
4
3
0

8
5

-0
.0

0
0
0
4
2
8

4.
97

0
6

-0
.0

00
00

04
1
3
.1

7
0

3
-0

.0
0
0
0
4
2
8

2
8
.1

6
6

6
0

.0
0
0
%

5
.6

6
7

1
1
0
3
4
.2

3
5
%

2
.1

3
9

p
o
r
t
-
o
r
l
i
b
2
_
0
5
0

0
.0

0
0
4
9
5
3
2
3
7

8
5

-0
.0

0
0
0
7
8
4

4.
27

2
9

-0
.0

0
0
0
5
4
4

1
6
.7

6
5

7
-0

.0
00

04
64

3
1

.6
6
3

6
-4

0
.7

7
4
%

7
.4

1
2

-1
4
.5

9
8
%

1
.8

8
9

p
o
r
t
-
o
r
l
i
b
2
_
1
0
0

0
.0

0
0
2
7
0
4
0
6
2

8
5

-0
.0

0
0
1
5
5
2

16
.0

52
9

-0
.0

0
0
1
5
5
2

3
3
.2

0
7

9
-0

.0
00

12
73

9
6

.6
7
7

9
-1

7
.9

5
3
%

6
.0

2
3

-1
7
.9

5
6
%

2
.9

1
1

p
o
r
t
-
o
r
l
i
b
2
_
1
5
0

0
.0

0
0
1
6
6
3
2
0
0

8
5

-0
.0

0
0
7
0
3
4

16
5.

86
5

10
-0

.0
0
0
8
2
7
4

3
6
2
7

.8
7
1

10
-0

.0
00

70
33

3
2
7

.5
1
5

10
-0

.0
0
1
%

1
.9

7
5

-1
4
.9

9
3
%

0
.0

9
0

p
o
r
t
-
o
r
l
i
b
3
_
0
0
0

0
.0

0
1
5
1
6
6
3
5
1

8
9

-0
.0

0
0
1
2
5
7

6.
59

0
1

-0
.0

0
0
1
6
0
5

1
3
.7

4
3

9
-0

.0
00

12
32

2
9

.9
9
7

6
-1

.9
7
7
%

4
.5

5
2

-2
3
.2

1
2
%

2
.1

8
3

p
o
r
t
-
o
r
l
i
b
3
_
0
5
0

0
.0

0
0
5
8
4
9
7
5
8

8
9

-0
.0

0
0
1
1
6
6

10
.8

15
6

-0
.0

00
10

25
2
0
.9

7
5

6
-0

.0
0
0
1
2
3
2

3
3
.9

7
3

6
5

.6
6
7
%

3
.1

4
1

2
0
.2

4
3
%

1
.6

2
0

p
o
r
t
-
o
r
l
i
b
3
_
1
0
0

0
.0

0
0
3
2
1
5
9
4
1

8
9

-0
.0

00
20

09
22

.0
68

7
-0

.0
0
0
4
4
7
6

2
9
.2

8
1

7
-0

.0
00

20
09

1
8
0

.9
5
9

7
0

.0
0
0
%

8
.2

0
0

-5
5
.1

2
6
%

6
.1

8
0

p
o
r
t
-
o
r
l
i
b
3
_
1
5
0

0
.0

0
0
2
2
3
9
1
1
7

8
9

-0
.0

00
70

63
9
8
7
2

.0
6
4

10
-0

.0
0
0
9
3
8
7

9
0
6
7

.6
0
0

10
-0

.0
00

70
63

77
5.

90
0

10
0

.0
0
0
%

0
.0

7
9

-2
4
.7

5
9
%

0
.0

8
6

p
o
r
t
-
o
r
l
i
b
4
_
0
0
0

0
.0

0
2
9
3
8
7
2
4
1

9
8

-0
.0

00
02

10
8.

92
6

2
-0

.0
0
0
1
2
7
7

2
3
.2

0
3

7
-0

.0
0
0
1
1
3
7

3
4
.4

6
2

5
4
4
1

.2
5
7
%

3
.8

6
1

-1
0
.9

5
0
%

1
.4

8
5

p
o
r
t
-
o
r
l
i
b
4
_
0
5
0

0
.0

0
0
6
8
2
8
4
5
0

9
8

-0
.0

00
07

37
9.

19
7

3
-0

.0
0
0
1
1
3
4

2
4
.8

5
3

6
-0

.0
0
0
1
5
7
8

3
5
.7

1
2

8
1
1
4

.1
8
8
%

3
.8

8
3

3
9
.1

4
6
%

1
.4

3
7

p
o
r
t
-
o
r
l
i
b
4
_
1
0
0

0
.0

0
0
3
0
5
9
5
5
3

9
8

-0
.0

00
20

65
10

.2
95

9
-0

.0
0
0
2
6
8
1

2
3
.8

2
6

7
-0

.0
00

20
65

3
6

.1
9
2

9
0

.0
0
0
%

3
.5

1
5

-2
2
.9

5
7
%

1
.5

1
9

p
o
r
t
-
o
r
l
i
b
4
_
1
5
0

0
.0

0
0
1
6
1
3
9
7
9

9
8

-0
.0

0
0
6
6
9
0

63
21

.1
29

9
-0

.0
00

58
19

3
3
1
2
.9

7
1

1
0

-0
.0

0
0
6
1
5
5

4
8
3
7

.0
9
7

1
0

-8
.0

0
8
%

0
.7

6
5

5
.7

6
4
%

1
.4

6
0

p
o
r
t
-
o
r
l
i
b
5
_
0
0
0

0
.0

0
1
6
4
8
5
2
2
4

2
2
5

-0
.0

0
0
0
1
9
8

93
.5

10
9

-0
.0

0
0
0
1
7
2

1
2
4
.4

4
2

9
-0

.0
00

01
55

1
5
1

.1
8
0

9
-2

1
.7

5
9
%

1
.6

1
7

-9
.9

7
0
%

1
.2

1
5

p
o
r
t
-
o
r
l
i
b
5
_
0
5
0

0
.0

0
0
5
1
5
0
2
7
7

2
2
5

-0
.0

0
0
1
0
7
7

8
2
3
.9

5
6

8
-0

.0
0
0
0
8
6
9

25
7.

90
4

7
-0

.0
00

07
62

1
3
4
7
.5

5
1

7
-2

9
.2

6
6
%

1
.6

3
5

-1
2
.2

9
0
%

5
.2

2
5

p
o
r
t
-
o
r
l
i
b
5
_
1
0
0

0
.0

0
0
3
9
1
8
2
6
0

2
2
5

-0
.0

0
0
2
7
2
9

13
0.

75
1

7
-0

.0
0
0
6
6
9
8

1
4
8
.3

8
8

6
-0

.0
00

15
07

6
3
8

.9
8
4

6
-4

4
.7

6
8
%

4
.8

8
7

-7
7
.4

9
9
%

4
.3

0
6

p
o
r
t
-
o
r
l
i
b
5
_
1
5
0

0
.0

0
0
3
2
7
2
8
7
6

2
2
5

-0
.0

00
38

06
10

4.
12

4
8

-0
.0

00
38

06
1
4
2
.8

4
5

8
-0

.0
0
0
2
5
4
2

2
6
9
.7

5
7

8
-3

3
.1

9
9
%

2
.5

9
1

-3
3
.1

9
9
%

1
.8

8
8

∑
-0

.0
0
8
0
3
5
7

1
7
6
1
0
.3

9
4

13
2

-0
.0

0
8
5
1
1
2

1
6
8
9
6

.0
5
7

1
5
1

-0
.0

07
41

09
88

77
.2

29
1
5
7

62
7.

03
6%

77
.5

94
10

88
1.

45
0%

41
.5

80
av

g
-0

.0
0
0
4
0
1
8

8
8
0
.5

2
0

6.
60

0
-0

.0
0
0
4
2
5
6

8
4
4
.8

0
3

7
.5

5
0

-0
.0

00
37

05
44

3.
86

1
7

.8
5
0

31
.3

52
%

3.
88

0
54

4.
07

3%
2.

07
9

st
d

(0
.0

0
0
5
9
4
1

)
(2

5
4
0
.7

4
5

)
(2

.9
4
5

)
(0

.0
0
0
4
1
8
2
)

(2
2
0
3

.0
3
6
)

(1
.8

2
0
)

(0
.0

0
0
3
5
6
7

)
(1

0
8
9
.0

8
9
)

(1
.5

9
9
)

(1
1
3
.0

7
7

%
)

(2
.2

7
6

)
(2

4
6
9
.3

6
7

%
)

1
.5

3
6

ge
o

(C
PU

)
25

.7
37

5
0
.5

7
0

7
3

.9
5
7

Ta
bl

e
5:

M
V

PS
,c

om
pa

ra
ti

ve
re

su
lt

s
of

M
S

an
d

M
W

U
fo

r
th

e
tr

an
sa

ct
io

n
co

st
fu

nc
ti

on
(d

).

56 mean-variance portfolio selection problem

M
W
U

M
W
U
+
L
B

M
S

M
W
U

vs.
M
S

M
W
U
+
L
B

vs.
M
S

Instance
σ

n
objective

C
PU

‖
x
∗
‖
0

objective
C

PU
‖
x
∗
‖
0

objective
C

PU
‖
x
∗
‖
0

Γ
Λ

Γ
Λ

p
o
r
t
-
o
r
l
i
b
1
_
0
0
0

0.
0
0
4
7
7
5
5
0
1
0

3
1

0.
0
2
1
7
1
7
0

1.877
6

0.
0
3
9
5
5
6
3

1
4.

9
5
2

1
0

0.0487432
4
3.

1
8
0

1
0

-
1
2
4.

4
4
7%

2
3.

0
0
5

-
2
3.

2
2
5%

2.
8
8
8

p
o
r
t
-
o
r
l
i
b
1
_
0
5
0

0.
0
0
2
1
5
2
2
0
7
5

3
1

0.
0
4
6
9
3
3
7

3.138
10

0.
0
4
7
6
6
5
9

5
6.

1
6
1

10
0.0488171

3
7.

3
5
1

10
-
4.

0
1
3%

1
1.

9
0
3

-
2.

4
1
5%

0.
6
6
5

p
o
r
t
-
o
r
l
i
b
1
_
1
0
0

0.
0
0
1
0
5
8
5
9
6
9

3
1

0.
0
4
3
2
0
5
9

2.984
10

0.
0
4
1
3
7
1
0

4.
9
6
2

10
0.0498939

5
8.

5
1
5

10
-
1
5.

4
7
9%

1
9.

6
1
0

-
2
0.

6
0
1%

1
1.

7
9
3

p
o
r
t
-
o
r
l
i
b
1
_
1
5
0

0.
0
0
0
7
1
5
8
4
2
1

3
1

0.0399172
2.588

9
0.

0
3
7
6
0
6
0

6.
1
7
2

9
0.

0
3
8
8
7
7
9

6.
7
5
7

9
2.

6
0
4%

2.
6
1
1

-
3.

3
8
2%

1.
0
9
5

p
o
r
t
-
o
r
l
i
b
2
_
0
0
0

0.
0
0
2
8
3
5
2
4
3
0

8
5

0.
0
1
3
6
6
0
1

1
0.

5
1
0

4
0.

0
1
3
3
7
2
1

8.726
3

0.0184047
3
7
5.

7
3
8

1
0

-
3
4.

7
3
4%

3
5.

7
5
1

-
3
7.

6
3
5%

4
3.

0
6
0

p
o
r
t
-
o
r
l
i
b
2
_
0
5
0

0.
0
0
0
4
9
5
3
2
3
7

8
5

0.
0
3
8
3
8
7
6

3
9.

2
6
7

7
0.0387789

33.822
6

0.
0
1
8
6
8
6
1

5
2
2.

3
7
6

1
0

5
1.

3
2
3%

1
3.

3
0
3

5
1.

8
1
4%

1
5.

4
4
5

p
o
r
t
-
o
r
l
i
b
2
_
1
0
0

0.
0
0
0
2
7
0
4
0
6
2

8
5

0.0283756
4
2
2
6.

2
1
1

10
0.

0
1
6
6
8
9
0

4
3
8
2.

7
8
5

10
0.

0
2
0
7
0
8
3

524.517
10

2
7.

0
2
1%

0.
1
2
4

-
2
4.

0
8
3%

0.
1
2
0

p
o
r
t
-
o
r
l
i
b
2
_
1
5
0

0.
0
0
0
1
6
6
3
2
0
0

8
5

0.0315010
3
6
4
2.

8
7
7

10
0.

0
3
0
7
3
7
4

3
9
8
9.

9
6
2

10
0.

0
2
6
8
6
6
2

1599.415
10

1
4.

7
1
3%

0.
4
3
9

1
2.

5
9
4%

0.
4
0
1

p
o
r
t
-
o
r
l
i
b
3
_
0
0
0

0.
0
0
1
5
1
6
6
3
5
1

8
9

0.
0
1
1
6
5
6
4

9.548
2

0.
0
0
2
9
3
3
8

2
2.

0
3
5

8
0.0234077

2
4
0.

5
9
2

1
0

-
1
0
0.

8
1
4%

2
5.

1
9
8

-
6
9
7.

8
5
7%

1
0.

9
1
9

p
o
r
t
-
o
r
l
i
b
3
_
0
5
0

0.
0
0
0
5
8
4
9
7
5
8

8
9

0.
0
3
4
7
9
2
3

19.026
8

0.0348732
1
0
2.

8
0
2

8
0.

0
2
3
9
9
1
2

4
4
1.

4
0
4

1
0

3
1.

0
4
4%

2
3.

2
0
0

3
1.

2
0
4%

4.
2
9
4

p
o
r
t
-
o
r
l
i
b
3
_
1
0
0

0.
0
0
0
3
2
1
5
9
4
1

8
9

0.
0
3
4
2
8
6
7

9
0
3.

5
8
6

9
0.0392775

2
1
4
2.

7
9
0

1
0

0.
0
1
8
8
4
6
0

719.657
1
0

4
5.

0
3
4%

0.
7
9
6

5
2.

0
1
8%

0.
3
3
6

p
o
r
t
-
o
r
l
i
b
3
_
1
5
0

0.
0
0
0
2
2
3
9
1
1
7

8
9

0.0284570
1
5
6
5
0.

8
8
2

10
0.

0
2
6
9
6
9
2

1
1
2
3
1.

3
7
9

10
0.

0
2
5
5
7
9
8

5050.864
10

1
0.

1
1
1%

0.
3
2
3

5.
1
5
2%

0.
4
5
0

p
o
r
t
-
o
r
l
i
b
4
_
0
0
0

0.
0
0
2
9
3
8
7
2
4
1

9
8

0.
0
1
3
0
8
9
0

4.641
2

0.
0
1
2
3
6
1
1

6
6.

0
3
4

1
0

0.0233697
4
3
2.

9
0
8

1
0

-
7
8.

5
4
5%

9
3.

2
7
9

-
8
9.

0
5
8%

6.
5
5
6

p
o
r
t
-
o
r
l
i
b
4
_
0
5
0

0.
0
0
0
6
8
2
8
4
5
0

9
8

0.0583659
32.832

10
0.

0
5
4
1
5
4
1

9
1.

1
9
2

10
0.

0
2
3
9
5
4
3

2
7
2.

4
0
5

10
5
8.

9
5
8%

8.
2
9
7

5
5.

7
6
6%

2.
9
8
7

p
o
r
t
-
o
r
l
i
b
4
_
1
0
0

0.
0
0
0
3
0
5
9
5
5
3

9
8

0.
0
1
3
5
3
0
1

1
0
8
2.

3
0
7

10
0.

0
0
7
8
8
4
3

6
9
6.

9
3
8

10
0.0248876

513.718
10

-
8
3.

9
4
3%

0.
4
7
5

-
2
1
5.

6
6
0%

0.
7
3
7

p
o
r
t
-
o
r
l
i
b
4
_
1
5
0

0.
0
0
0
1
6
1
3
9
7
9

9
8

0.
0
2
3
6
7
3
8

1
5
9
2
9.

0
0
2

10
0.0260514

2
4
6
0
4.

1
6
7

10
0.

0
2
5
2
7
6
5

5982.823
10

-
6.

7
7
0%

0.
3
7
6

2.
9
7
4%

0.
2
4
3

p
o
r
t
-
o
r
l
i
b
5
_
0
0
0

0.
0
0
1
6
4
8
5
2
2
4

2
2
5

0.
0
3
2
6
3
0
2

1
4
4
8.

9
3
4

6
0.032836

788.687
6

0.
0
0
1
7
3
4
9

5
5
1
3.

3
4
4

1
0

9
4.

6
8
3%

3.
8
0
5

9
4.

7
1
7%

6.
9
9
1

p
o
r
t
-
o
r
l
i
b
5
_
0
5
0

0.
0
0
0
5
1
5
0
2
7
7

2
2
5

0.
0
0
3
1
3
0
9

302.041
9

0.0073133
3
7
0.

4
2
5

1
0

0.
0
0
1
8
3
5
1

3
5
0.

6
6
0

9
4
1.

3
8
6%

1.
1
6
1

7
4.

9
0
7%

0.
9
4
7

p
o
r
t
-
o
r
l
i
b
5
_
1
0
0

0.
0
0
0
3
9
1
8
2
6
0

2
2
5

0.
0
0
7
8
5
6
4

5
5
1
6.

0
4
3

7
0.

0
0
3
5
6
6
8

4
7
7
4.

5
1
6

8
0.0103946

1525.448
1
0

-
3
2.

3
0
8%

0.
2
7
7

-
1
9
1.

4
3
0%

0.
3
1
9

p
o
r
t
-
o
r
l
i
b
5
_
1
5
0

0.
0
0
0
3
2
7
2
8
7
6

2
2
5

0.0143170
9
6
8.

6
8
4

10
0.

0
1
4
3
1
6
9

730.436
10

0.0143170
9
1
3.

9
2
0

10
0.

0
0
0%

0.
9
4
3

0.
0
0
0%

1.
2
5
1

∑
0.5394835

4
9
7
9
6.

9
7
8

159
0.

5
2
8
3
1
5
1

5
4
1
1
8.

9
4
3

1
7
8

0.
4
8
8
5
9
1
9

25125.592
1
9
8

-
1
0
4.

1
7
7%

264.875
-
9
2
4.

2
0
0%

111.494
avg

0.0269742
2
4
8
9.

8
4
9

7.950
0.

0
2
6
4
1
5
8

2
7
0
5.

9
4
7

8.
9
0
0

0.
0
2
4
4
2
9
6

1256.280
9.

9
0
0

-
5.

2
0
9%

13.244
-
4
6.

2
1
0%

5.575
std

(
0.

0
1
4
5
7
1
9)

(
4
8
1
9.

7
7
5)

(
2.

6
8
5)

(
0.

0
1
5
5
3
1
2)

(
5
8
4
6.

2
2
7)

(
1.

9
1
7)

(
0.

0
1
3
5
5
8
8)

(
1
8
9
1.

4
3
5)

(
0.

3
0
8)

(
5
6.

9
9
1%

)
(
2
1.

7
2
9)

(
1
7
2.

0
7
9%

)
9.

9
0
0

geo
(C

PU
)

135.816
2
4
7.

7
8
6

4
2
6.

4
6
4

Table
6:M

V
PS,com

parative
results

of
M

S
and

M
W

U
for

the
transaction

cost
function

(e).

3.9 conclusions 57

While with transaction costs (a) and (b) MS performs better than MWU,
with transaction costs (c) and (e) MWU overcomes MS: we can reasonably
imply that MWU behaves better with respect to “high nonlinear” transaction
cost functions. In particular, for the geometric average values, the relative
improvement we obtain is considerably high.

A secondary observation is about the number of assets, which composed
the optimal portfolios. In MVPS problems, defining a portfolio with few
assets could be a secondary goal, since for each asset we have several costs,
such as transaction costs, monitoring costs, and brokerage fee (see Di Lorenzo
et al. [74]). MWU algorithm produces small values of the number of assets
compared to MS algorithm.

Finally, for the geometric mean for the CPU time, the MS defeats MWU
only for the cost function (a), in all the other cases MWU overcomes MS.

3.9 conclusions

In this chapter we dealt with the Mean-Variance Portfolio Selection prob-
lem. At the beginning, we have illustrated the mathematical models pro-
posed in the literature with a survey about the possible objective functions
and constraints. Then, we have adapted the MWU algorithm to the real-
world portfolio problem with separable transaction cost with respect to the
strategy to define the pointwise reformulation and to compute the costs/-
gains necessary for the algorithm. Computational experiments on real-world
instances allow us to observe that the MWU algorithm performs better than
the MS algorithm for “heavily nonlinear” instances.

58 mean-variance portfolio selection problem

50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

·104

size (# assets)

C
PU

(s
ec

on
ds

)

MWU
MWU+LB
MS

(a) “Easy" concave transaction costs.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

·104

size (# assets)

C
PU

(s
ec

on
ds

)

MWU
MWU+LB
MS

(b) “Hard" concave transaction costs.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

·104

size (# assets)

C
PU

(s
ec

on
ds

)

MWU
MWU+LB
MS

(c) “Easy" trigonometric transaction
costs.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

·104

size (# assets)

C
PU

(s
ec

on
ds

)

MWU
MWU+LB
MS

(d) “Medium" trigonometric transaction
costs.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

·104

size (# assets)

C
PU

(s
ec

on
ds

)

MWU
MWU+LB
MS

(e) “Hard" trigonometric transaction
costs.

Figure 2: MVPS, CPU time vs. size of the problem n (# assets).

4 M U LT I P L E N O N L I N E A R K N A P S A C K
P R O B L E M S

4.1 introduction

Let x be an m × n array of non negative real variables x = [xij] (i =

1, . . . ,m, j = 1, . . . ,n) and define M = {1, . . . ,m} and N = {1, . . . ,n}. We
consider a multiple nonlinear knapsack problem in which

• the objective function and the capacity constraints are expressed by
separable, continuously differentiable functions fj(xij) and gj(xij) (i ∈
M, j ∈ N);

• the values of f and g do not depend on i, i.e., fj(xij) = fj(xkj) and
gj(xij) = gj(xkj) when xij = xkj for j ∈ N and i,k ∈M;

• fj(xij) and gj(xij) are nonlinear non negative non-decreasing functions
for j ∈ N and i ∈M;

• for each j ∈ N, the total value of xij over all i ∈ M cannot exceed a
given upper bound uj;

• integrality requirements may be imposed on part of the variables.

Remark 4.1.1. Note that there is no further assumption on fj(xij) and gj(xij)
which, in general, can be non-convex and non-concave.

The Multiple NonLinear (Separable) Knapsack Problem (MNLKP) is:

max
∑
i∈M

∑
j∈N

fj(xij) (4.1a)

s.t.
∑
j∈N

gj(xij) 6 ci i ∈M (4.1b)

∑
i∈M

xij 6 uj j ∈ N (4.1c)

xij > 0 i ∈M, j ∈ N (4.1d)

xij integer i ∈M, j ∈ N ⊆ N, (4.1e)

which can be informally described as follows. We are given m knapsacks
and n items. Each item j has a profit function fj(xij) and a weight function
gj(xij) (i ∈ M), and each knapsack i has a capacity ci. For each item j

we want to assign xij quantities (some restricted to integer values) to the
knapsacks so that

• the overall assigned profit is maximized, see (4.1a);

59

60 multiple nonlinear knapsack problems

• for each knapsack i the overall assigned weight does not exceed the
corresponding capacity, see (4.1b);

• for each item j the overall assigned quantity does not exceed the corre-
sponding upper bound, see (4.1c).

The MNLKP generalizes the classical 0-1 Multiple Linear Knapsack Prob-
lem (MLKP) (see, e.g., Martello and Toth [182] and Kellerer et a. [142]): in
the MLKP xij are binary decision variables, i.e., xij ∈ {0, 1} for all i ∈M and
j ∈ N, and the profit and the weight functions are linear, i.e., fj(xij) = pjxij
and gj(xij) = wjxij, and uj = 1 for all j ∈ N.

It follows that MNLKP is, at least, strongly NP-hard. Moreover, the MN-
LKP generalizes also the (single) NonLinear Knapsack Problem (NLKP) [63]:
MNLKP reduces to NLKP when m = 1 and, consequently, objective func-
tion (4.1a) and constraints (4.1b) read

∑
j∈N fj(xij) and

∑
j∈N gj(xij) 6 c1,

respectively.

The nonlinear knapsack structure arises in many different real-world prob-
lems, such as portfolio selection, capacity and production planning, and re-
source allocation (see, e.g., Ibaraki and Katoh [123], Bretthauer and Shetty
[33], and Li and Sun [156]). For instance, we assume we have m different
economical resources and n products and we want to subdivide a certain
amount of advertising budget ci related to resource i in order to maximize
the overall expected sales for all resources. Obviously, the profit is increas-
ing with the advertising investment since more and more buyers happened
to find out our advertisement. However, at some point, a saturation effect
occurs when, despite we further increase the investments, no more buyers
are interested in our products. In this example the profit function happens
to be non-convex non-concave with a shape represented in Figure 3 where
the advertisement cost could be linear, i.e., gj(xij) = xij, if a constant unit
cost is assumed or nonlinear if economies of scale are considered, i.e., unit
costs decrease with size.

To the best of our knowledge no tailored exact methods or heuristics have
been proposed for the MNLKP. Zhang and Hua [250] proposed an exact
method for the minimization version of the convex continuous NLKP, i.e.,
when all the profit and weight functions are convex, and all variables are
continuous, i.e., N = ∅. Zhang and Chen [249] described exact and heuristic
methods for the pure integer version of same problem, i.e., when N = N.

The rest of the chapter consists of three other sections. In Section 4.2
we apply the MWU algorithm for MNLPs, by specializing its main steps,
namely the construction of the pointwise reformulation and the definition
of costs/gains, to the MNLKP. Since this method does not fit very well this
kind of optimization problems, we propose also other heuristic procedures.
First of all we introduce the surrogate and Lagrangian relaxations for MN-
LKPs in Section 4.3, while in Section 4.4 we discuss a constructive solution

4.2 mwu for the mnlkp 61

0 20 40 60 80 100
0

20

40

60

80

xij

f j
(x
ij
)

Figure 3: Example of profit function.

approach, whose main aspects are a greedy heuristic, two other heuristics
based on the feasibility recovery of the solution produced by the surrogate
relaxation, and a local search procedure to improve the quality of the heuris-
tic solution. Extensive computational experiments are conducted both for
the MWU heuristic and for the constructive one, with respect to challenging
instances.

4.2 mwu for the mnlkp

4.2.1 Pointwise Reformulation

In order to define a pointwise reformulation for the MNLKP, we replace
the “complicated” non-convex non-concave terms gj(xij) with affine terms
in xij, i.e., with terms θijxij for all i ∈M and j ∈ N:

max
∑
i∈M

∑
j∈N

fj(xij) (4.2a)

s.t.
∑
j∈N

θijxij 6 ci i ∈M (4.2b)

∑
i∈M

xij 6 uj j ∈ N (4.2c)

xij > 0 i ∈M, j ∈ N (4.2d)

xij integer i ∈M, j ∈ N ⊆ N, (4.2e)

Remark 4.2.1. The pointwise reformulation (4.2) is spanning, since the replacement
terms θij correspond to the replaced terms gj(xij)xij

for all i ∈ M and j ∈ N. By
Lemma 2.2.6, there exist values of θ which make the pointwise reformulation (4.2) a
bounding reformulation for the original problem (4.1).

62 multiple nonlinear knapsack problems

Remark 4.2.2. The pointwise reformulation (4.2) is not efficient. Nevertheless, the
feasible set of the reformulation (4.2) is polyhedral. We note that the problem (4.1)
is always feasible since the zero solution, i.e., xij = 0 for all i ∈ M and j ∈ N, is
always a feasible point for the problem.

The approach, we have adopted in this section, is quite similar to the one
we followed for the MVPS problem with univariate cost functions: essen-
tially we substitute the nonlinear non-convex non-concave terms with affine
terms in the decision variables.

4.2.2 Computing MWU Costs/Gains

Since the replaced terms appear only in the constraint (4.2b), we do not
take into account optimality issues in defining MWU costs/gains. In partic-
ular, at each iteration t 6 T , we implement the following strategy. We define
a profit-to-weight ratio for each item xij for i ∈ M and j ∈ N, as the ratio
between its profit and weigh function values, representing the profitability
of filling the knapsack i (i ∈M) with xij units of item j (j ∈ N), as follows:

rij,t =
fj(xij,t)

gj(xij,t)
(i ∈M, j ∈ N, t 6 T). (4.3)

Then, we compute the feasibility costs/gains βi,t (i ∈ N, t 6 T) as the
scaled difference from the left hand side and the right hand side of constrains
(4.1b) calculated on the current point xt (see Section 2.4.3):

βi,t =
max(

∑
j∈N gj(xij,t) − ci, 0)

maxs6t(max(
∑
j∈N gj(xij,s) − ci), 0)

(i ∈M, t 6 T). (4.4)

Finally, we need to spread the previous feasibility cost/gain to the item j

(j ∈ N). We simply scale the feasibility cost/gain with respect to the profit-
to-weight ratio, defining in this way our MWU costs/gains for the MNLKP:

ψij,t = βi,t
rij,t∑

j∈N
rij,t

(i ∈M, j ∈ N, t 6 T). (4.5)

We choose the profit-to-weight ratio since in heuristic methods for NLKP
it is used to sort the items (see D’Ambrosio and Martello [63]). The items
with a greater ratio are more promising in terms of the trade-off represented
by the objective function we want to maximize and the amount we have to
pay in order to fill the knapsacks with those items. In the heuristic method
proposed by D’Ambrosio and Martello [63] for the NLKP, they select the
item with the best profit-to-ratio at first and then fill as much as possible the
knapsack with that item.

4.2.3 Computational Experiments

The MWU method was experimentally compared with the MS algorithm.
We use Ipopt [126] with its default options: Ipopt is an exact solver for con-
vex NLPs, hence it can be used as local solvers for non-convex NLPs. The

4.2 mwu for the mnlkp 63

number of iterations was set to T := 10 both for the MWU and MS. Moreover,
we compare the MWU with Ipopt with one starting point and Couenne [59],
which is an open-source global solver for MINLPs.

For the profit and the weight functions, we used the ones proposed in
D’Ambrosio and Martello [63]. In particular, the profits were always ob-
tained from

fj(xij) =
cj

1+ bje−aj(xij+dj)
(4.6)

by uniformly randomly generating aj in [0.1, 0.2], bj and cj in [0, 100], and
dj in [−100, 0]. These functions replicate the sigmoid shape of the profit
function depicted in Figure 3. The upper bounds on the variables xij were
set to uj := 100 for all j ∈ N. For the weight, we adopted the concave
increasing functions:

gj(xij) =
√
pjxij + qj −

√
qj. (4.7)

Moreover, we define two sets of instances depending on the way we gen-
erated the capacities. In order to obtain challenging instances, we adopted
the numerical methods described in Chapter 6 of Martello and Toth [182]:

Similar capacities

ci uniformly random in

[
0.4

n∑
j=1

gj(uj)

m
, 0.6

n∑
j=1

gj(uj)

m

]
(i = 1, . . . ,m− 1),

(4.8)
and Dissimilar capacities

ci uniformly random in

[
0,
(
0.5

n∑
j=1

gj(uj) −

i−1∑
k=1

ck

)]
(i = 1, . . . ,m− 1).

(4.9)
In both cases, the m-th capacity was set to:

cm = 0.5
n∑
j=1

gj(uj) −

m−1∑
i=1

ci. (4.10)

The value of the number of items n varied in the set {10, 20, 50}, while the
value of the number of knapsacks m varied in the set {2, 5, 10}. For each com-
bination of (n,m) 20 real instances, i.e., with N = ∅ are generated. The total
number of instance we tested was 360. All instances are available at http://
or.dei.unibo.it/library/multiple-nonlinear-knapsack-problem. If the
pointwise reformulation was not solved within the time limit, we set its so-
lution to zero.

All the experiments were performed on an Intel Xeon, CPU 3220, 2.4 GHz,
using only one processor. The local method (Ipopt), the global algorithm
(Couenne), and the MWU were run with a time limit of one CPU hour per

http://or.dei.unibo.it/library/multiple-nonlinear-knapsack-problem
http://or.dei.unibo.it/library/multiple-nonlinear-knapsack-problem

64 multiple nonlinear knapsack problems

problem.

Tables 7 and 9 report the average solution values for the group of instances
with similar and dissimilar capacities, respectively. The entries give:

• number of knapsacks;

• number of items;

• average values produced by MWU, Ipopt with a single starting point
(Ipopt_1), MS, i.e., Ipopt with ten starting points (Ipopt_10), and Couenne;

Tables 8 and 10 report the average CPU times (in seconds) for instances
with similar and dissimilar capacities, respectively.

Tables 7 and 9 show that generally the solution produced by the MWU
heuristic was better than the ones produced by Ipopt_1 and worse than the
ones produced by Ipopt_10. For the bigger continuous similar instances, Ta-
ble 7 shows the MWU algorithm was on average completely outperformed
by Ipopt for all the instances with m = 5 and for the instances with m = 10

and n = 20. For the similar instances there is only one case in which the
MWU algorithm is better than Ipopt_10: the dissimilar instances with m = 2

and n = 50.

Moreover, Tables 8 and 10 clearly indicate the average CPU times for
MWU was one order of magnitude larger than the ones of Ipopt_10 and
around two orders of magnitude larger than the ones of Ipopt_1.

We point out all the knapsack problems were solved to optimality within
the time limit.

From the previous observations, we can argue that the MWU method was
in general outperformed by the heuristic methods available for the MNLKPs
both in terms of quality of the solution found and of CPU times needed. The
behavior of the proposed heuristic was not satisfying, and this is the reason
why in the next sections we will introduce a different approach to heuristi-
cally solve MNLKPs relying on the discretization of the solution space and
on the surrogate relaxation.

4.3 relaxations

In this section we introduce some relevant relaxations of MNLKP.

Let (π1, . . . ,πm) be an m-dimensional vector of non negative multipliers.
By multiplying the i-th constraints (4.1b) and summing up all the new ca-

4.3 relaxations 65

Table 7: MNLKP, nonlinear weights, similar capacities. Average solution values
over 20 instances.

Real Variables

m n MWU Ipopt_1 Ipopt_10 Couenne

2 10 326.57 313.50 351.70 362.63

2 20 622.24 569.20 635.35 593.43(12)
2 50 1,777.83 1,714.74 1,799.78 n/a(20)
2 total 2,726.64 2,597.44 2,786.83 –
5 10 266.09 271.61 312.63 299.06(5)
5 20 677.78 687.95 733.25 n/a(20)
5 50 1,705.66 1,705.86 1,782.99 n/a(20)
5 total 2,649.53 2,655.42 2,828.87 –

10 10 195.08 187.40 218.59 212.07(2)
10 20 658.91 664.58 702.21 n/a(20)
10 50 1,873.94 1,864.39 1,927.13 n/a(20)
10 total 2,727.93 2,716.37 2,847.93 –

total total 8,104.10 7,979.23 8,463.63 –

Table 8: MNLKP, nonlinear weights, similar capacities. Average CPU times over 20

instances.

Real Variables

m n MWU Ipopt_1 Ipopt_10 Couenne

2 10 1.48 0.05 0.51 1,113.88

2 20 8.08 0.10 1.18 3,601.81(12)
2 50 33.01 0.34 3.45 n/a(20)
2 total 42.57 0.49 5.14 –
5 10 8.75 0.16 1.72 3,600.61(5)
5 20 22.82 0.32 3.57 n/a(20)
5 50 68.97 1.17 11.76 n/a(20)
5 total 100.54 1.65 17.05 –

10 10 15.88 0.39 3.78 3,600.54(2)
10 20 43.02 0.93 8.57 n/a(20)
10 50 122.74 3.35 30.70 n/a(20)
10 total 181.64 4.67 43.05 –

total total 324.75 6.81 65.24 –

66 multiple nonlinear knapsack problems

Table 9: MNLKP, nonlinear weights, dissimilar capacities. Average solution values
over 20 instances.

Real Variables

m n MWU Ipopt_1 Ipopt_10 Couenne

2 10 311.18 298.24 339.50 355.19

2 20 600.98 547.68 610.20 564.65(9)
2 50 1,766.38 1,619.80 1,737.00 n/a(20)
2 total 2,678.54 2,465.72 2,686.70 –
5 10 288.27 285.28 318.68 329.51(1)
5 20 688.35 670.57 717.91 659.84(17)
5 50 1,654.93 1,614.39 1,723.24 n/a(20)
5 total 2,631.55 2,570.24 2,759.83 –

10 10 316.10 314.88 345.18 354.52

10 20 687.13 678.59 741.04 699.31(11)
10 50 1,825.00 1,807.00 1,909.65 n/a(20)
10 total 2,828.23 2,800.47 2,995.87 –

total total 8,138.32 7,836.43 8,442.40 –

Table 10: MNLKP, nonlinear weights, dissimilar capacities. Average CPU times
over 20 instances.

Real Variables

m n MWU Ipopt_1 Ipopt_10 Couenne

2 10 1.84 0.05 0.53 794.39

2 20 8.59 0.11 1.14 3,307.95(9)
2 50 33.88 0.34 3.36 n/a(20)
2 total 44.31 0.50 5.03 –
5 10 9.27 0.14 1.53 2,790.28(1)
5 20 24.62 0.34 3.23 3,600.18(17)
5 50 68.75 1.16 10.25 n/a(20)
5 total 102.64 1.64 15.01 –

10 10 16.06 0.31 2.62 2,266.36

10 20 42.70 0.79 6.10 3,599.61(11)
10 50 126.30 2.89 23.01 n/a(20)
10 total 185.06 3.99 31.73 –

total total 332.01 6.13 51.77 –

4.3 relaxations 67

pacity constraints obtained, we define the surrogate relaxation, S(MNLKP,π),
of the MNLKP:

max
∑
i∈M

∑
j∈N

fj(xij) (4.11a)

s.t.
∑
i∈M

πi
∑
j∈N

gj(xij) 6
∑
i∈M

πici (4.11b)

∑
i∈M

xij 6 uj j ∈ N (4.11c)

xij > 0 i ∈M, j ∈ N (4.11d)

xij integer i ∈M, j ∈ N ⊆ N. (4.11e)

Let val(S(MNLKP,π)) denote the optimal value of (4.11) under given mul-
tipliers π. The surrogate dual problem

min
π>0

{val(S(MNLKP,π))} (4.12)

consists in finding the optimal vector of multipliers, i.e., the one produc-
ing the minimum optimal value for the surrogate relaxation, and hence the
tighter upper bound for the MNLKP.

Remark 4.3.1. While the surrogate relaxation of the 0-1 MLKP has strong duality
property, i.e., the vector of multipliers which produced the minimum value for the
surrogate relaxation is πi = k for all i ∈M [182], the same result does not hold for
the MNLKP, as the following example shows. Let m = 2, n = 1, u1 = 100, c1 =

10, c2 = 2, and, for i ∈ {1, 2}, f1(xi1) = xi1, g1(xi1) = 80/
(
1+ 50e−

1
10 (xi1−10)

)
.

For π1 = π2 = 1 the optimal solution to S(MNLKP,π) is x11 = x21 ' 24 (with
g1(x11) = g1(x21) ' 6) and has value ' 48. For π1 = 1 and π2 = 2 such
solution violates (4.11b) and the optimal solution is x11 ' 26 and x21 ' 18 (with
g1(x11) ' 7.2 and g1(x21) ' 3.4), of value ' 44.

Even though the optimal surrogate multipliers are not known a priori,
good multipliers can heuristically found (see Section 4.4.5) and, from the sur-
rogate solution, a feasible solution can be easily defined (see Section 4.4.2).

Let (λ1, . . . , λm) be anm-dimensional vector of non negative multipliers, a
possible Lagrangian relaxation, L(MNLKP,λ), of the MNLKP can be obtained
by relaxing (4.1b):∑
i∈M

λici + max
∑
i∈M

∑
j∈N

(
fj(xij) − λigj(xij)

)
(4.13a)

s.t.
∑
i∈M

xij 6 uj j ∈ N (4.13b)

xij > 0 i ∈M, j ∈ N (4.13c)

xij integer i ∈M, j ∈ N ⊆ N. (4.13d)

Remark 4.3.2. The Lagrangian relaxation (4.13) can be decomposed into n inde-
pendent subproblems, one for each item j, with nonlinear objective functions. Other

68 multiple nonlinear knapsack problems

Lagrangian relaxations can be obtained by multiplying the upper bound constraints
(4.1c) by a vector of non negative multipliers or relaxing both the constraints (4.1b)
and (4.1c). Preliminary computational experiments have shown that the solutions
produced by the Lagrangian relaxations are generally worse than the ones produced
by the surrogate relaxation.

4.4 constructive heuristics

In this section we describe two different kinds of heuristic algorithms for
the MNLKP: the first type of heuristic is represented by a constructive pro-
cedure based on the discretization of the solution space; the second one,
instead, is based on feasibility recovery strategies to restore the feasibility of
the surrogate solutions with respect to the relaxed constraints.

4.4.1 Discretization Heuristic

The constructive procedure extends the heuristic method proposed by
D’Ambrosio and Martello [63] for the NLKP to the MNLKP.

We assume without loss of generality that the knapsacks are preliminary
sorted in non-increasing order according to their capacities, i.e., c1 > c2 >
· · · > cm. The algorithm is based on the discretization of the solution
space. Let s be the number of sampling and δj = uj/s for j ∈ N (or
δj = max(1, buj/sc) if j ∈ N) be the sampling step. We consider the profit-to-
weight ratio, meaning the ratio between the profit functions and the weight
functions evaluated over the sampling points:

rjk =
fj(kδj)

gj(kδj)
(j ∈ N,k = 1, . . . , s). (4.14)

Moreover, we assume without loss of generality that the items are sorted
in non-increasing order according to their maximum profit-to-weight ratios
µj = arg maxk=1,...,s{rjk} , i.e., r1µ1 > r2µ2 > · · · > rnµn .

We apply the same strategy as in [63] by considering one single knapsack
at each iteration. We take the first two items and we try to fill the knapsack
as much as possible with the first one (see Procedure Construct(i)). We cal-
culate the higher sampling point µ̄1 such that the ratio of the first item is
greater than the ratio of the second one (Step 5), we fill the current knap-
sack with µ̄1δ1 units of the first item (Steps 6) and we update the remaining
upper bound and the residual capacity (Step 7). Assume by the moment
that the sampling points corresponding to µ2 and µ3 remain feasible. At the
second iteration, the second item is taken into account and the knapsack is
filled with µ̄2δ2 units, where µ̄2 is the analogue of µ̄1 for the second item
and, again, the upper bound and the capacity are updated, and so on. If in-
stead (Step 8) for at least one of the next two items, say 2 and 3, the sampling

4.4 constructive heuristics 69

point corresponding to µ2 or µ3 is infeasible, an update of the µ values is per-
formed on items 2, 3, . . . (and, consequently, the item order might change).

Remark 4.4.1. Note that, whenever a partial solution xij is determined, the ratios
of all the unscanned items might be re-calculated, but it is not necessary to re-sort
all the items: in fact, the algorithm only needs the items with the first and the second
best ratio, which can be found in linear time.

The algorithm stops when only one element remains unscanned and, in
this case, tries to fill the current knapsack with the last item as much as pos-
sible (Step 12).

Algorithm 5 Procedure Construct(i).
1: c̄i := ci;
2: ūj := uj;
3: j := 1;
4: while j < n and c̄i > 0 do
5: µ̄j := max{k : rjk > r(j+1)µj+1 ,µj 6 k 6 s};
6: xij := µ̄j δj;
7: ūj := ūj − xij, c̄i = c̄i − gj(xij);
8: if (gj+1(µj+1 δj+1) > c̄i or gj+2(µj+2 δj+2) > c̄i) then update µ for

items j+ 1, j+ 2, . . . (and possibly update their order);
9: j := j+ 1;

10: end while
11: if c̄i > 0 then {comment: fill the residual capacity with item n}
12: xin := min(g−1n (c̄i), ūn);
13: ūn = ūn − xin, c̄i = c̄i − gn(xin);
14: end if

We simply assume that the weight functions gj are strictly increasing and
continuous, so that the inverse g−1j exists (Step 12). If it is not the case, we
consider the pseudo-inverse of gj with the largest value of the pre-image.
In order to compute this value, we only need to calculate the zeros of the
function gj(xij) − c̄i, which can be evaluated in a CPU time bounded by a
constant independent from the instance size.

The algorithm can be improved through a refined search for µ̄j. Once it
has been obtained (at Step 5), the interval [µ̄j, µ̄j+1] can be searched with
a smaller sampling step and new, more precise, profit-to-weight ratios for
item j can be computed. In this way a more precise point µ̄j is obtained, and
the process can be iterated by further decreasing the sampling step.

Steps 5–9 are iterated at most n times. At each time we have to determine
the items with the first and the second best ratio, which can be calculated in
O(n), and the (pseudo-)inverse of the function gj, which can be effectuated,

70 multiple nonlinear knapsack problems

as said before, in a computational time bounded by a constant. The main
loop is executed up to n times (Step 4). If the refinement parameters, i.e., the
number of sampling step and the number of the refinements are bounded by
a constant (as usual in practice), the time complexity of Construct(i) is O(n2).

Procedure Construct(i) is therefore executed for each knapsack i by con-
sidering, at each iteration, only those items whose quantities are still smaller
than the upper bound (see Procedure Constructive). At the end, a greedy
heuristic is applied to fill the knapsack as much as possible with the current
item (Step 5). The overall time complexity of Procedure Constructive(i) is
O(mn2).

Algorithm 6 Procedure Constructive.

1: for i := 1 to m do Construct(i) {comment: optionally include the refined
search};

2: for i := 1 to m do
3: if c̄i > 0 then
4: for j := 1 to n do {comment: increase xij as much as possible}
5: xij := xij + min(g−1j (c̄i), ūj);
6: if j ∈ N then xij := bxijc;
7: ūj := uj −

∑
k∈M xkj, c̄i := ci −

∑
k∈N gj(xik);

8: end for
9: end if

10: end for

4.4.2 Surrogate Heuristics

In this section we introduce two different heuristic procedures based on
the feasibility recovery of the solution of the surrogate relaxation (4.11). Let
us first consider the problem of determining good surrogate multipliers π.
A series of preliminary experiments was performed on the benchmark in-
stances adopted for the computational experiments of Section 4.4.5, with

(i) πi uniformly random in [0.0, 3.0] for all i ∈M;

(ii) πi uniformly random in [0.8, 1.2] for all i ∈M;

(iii) πi uniformly random in [0.9, 1.1] for all i ∈M,

and

(iv) πi = 1 for all i ∈M.

It turned out that the surrogate solutions produced by (i) were dominated
by the other generations, those produced by (ii) and (iii) had about the same
quality, and those produced by (iv) were, on average, clearly the best ones.
Additional tests were performed using (easier) convex and concave objective
functions, globally obtaining the same results. It was thus decided to always

4.4 constructive heuristics 71

adopt option (iv). In Section 4.3 we have shown that identical multipliers
(optimal solution of the surrogate dual for the linear case) are not necessary
optimal for the nonlinear case. It is worth observing that they appear to be
a good choice for such case too, at least for the objective functions we con-
sidered.

Let x∗ij be the surrogate solution. We assume, as in Section 4.4.1, that the
knapsacks are sorted in non-increasing order according to their capacities
and the items are sorted in non-increasing order according to the profit-to-
weight ratios evaluated over the surrogate solution, i.e.,

rj =

∑
i∈M fj(x

∗
ij)∑

i∈M gj(x
∗
ij)

(j ∈ N). (4.15)

The first heuristic (see Procedure Surrogate-feas-1(x∗)) starts with a zero
solution – note that this solution is always feasible for the MNLKP – and is
divided into two main phases.

Algorithm 7 Procedure Surrogate-feas-1(x∗).

1: for j := 1 to n do ūj := uj;
2: for i := 1 to m do
3: c̄i := ci;
4: for j := 1 to n do xij := 0;
5: end for
6: for i := 1 to m do
7: for j := 1 to n do
8: if gj(x∗ij) 6 c̄i then xij := x∗ij, c̄i := c̄i − gj(x

∗
ij), ūj := ūj − x

∗
ij;

9: end for
10: end for
11: ı̄ = arg maxi∈M{c̄i}, c̄max := c̄ı̄, ūmax := maxj∈N{ūj};
12: while c̄max > 0 and ūmax > 0 do
13: for j := 1 to n do

14: r̄j :=


0 if ūj = 0
fj(min(xı̄j+ūj,max(0,bg−1

j (c̄ı̄+gj(xı̄j))c)))
gj(min(xı̄j+ūj,max(0,bg−1

j (c̄ı̄+gj(xı̄j))c)))
if ūj > 0 and i ∈ N̄

fj(min(xı̄j+ūj,max(0,g−1
j (c̄ı̄+gj(xı̄j)))))

gj(min(xı̄j+ūj,max(0,g−1
j (c̄ı̄+gj(xı̄j)))))

if ūj > 0 and i /∈ N̄
;

15: end for
16: ̄ = arg maxj∈N{r̄j};
17: xı̄̄ := min(xı̄̄ + ū̄, max(0,g−1̄ (c̄ı̄ + g̄(xı̄̄))));
18: if ̄ ∈ N then xı̄̄ := bxı̄̄c;
19: ū̄ := u̄ −

∑
i∈M xi̄, c̄ı̄ := cı̄ −

∑
j∈N gj(xı̄j);

20: ı̄ = arg maxi∈M{c̄i}, c̄max := c̄ı̄, ūmax := maxj∈N{ūj};
21: end while

In the first phase (Steps 6-10) the current knapsack is filled with the surro-
gate solution if no relaxed constraint is violated (see Step 8). Since the items

72 multiple nonlinear knapsack problems

are sorting according to their profit-to-weight ratios, the current knapsack is
filled at first with the more promising items.

In the second phase we identify the knapsack ı̄ with the largest residual
capacity (Step 11), we update the profit-to-weight ratios (Steps 13-15), and
we determine the item ̄ with the best residual profit-to-weight ratio (Step 16).
Knapsack ı̄ is then filled as much as possible with item ̄ (Steps 17-18). We
iteratively update the upper bound and the residual capacity (Step 19), and
we repeat the previous steps, as long as the largest residual capacity or the
largest residual upper bound are strictly positive.

The two for loops 2-5 and 6-10 are executed mn times. The while loop
is executed at most max(m,n) times. Moreover, if we assume, as in Section
4.4.1, that computing the (pseudo-)inverse of the weight function gj takes
a time bounded by a constant independent from the input size, each for
loop 13-15 takes n times. Hence, the overall time complexity of Procedure
Surrogate-feas-1(x∗) is O(mn+n2).

In short, the Procedure Surrogate-feas-1(x∗) starts with an empty solution
and tries to construct a feasible solution that replicates as much as possible
the (infeasible) surrogate solution. Procedure Surrogate-feas-2(x∗) starts in-
stead with the surrogate solution and considers the items in reverse order,
i.e., according to non-decreasing rj values (see (4.15)). The idea is to reduce
the quantity x∗ij of each item j in the current knapsack i, until the capacity
constraints (4.1b) are satisfied (Step 5-6). This is obtained by iteratively re-
ducing the quantity of the item with the worst profit-to-weight ratio, so as
to undermine as little as possible the quality of the surrogate solution.

Remark 4.4.2. The surrogate solution already satisfies the upper bound constraints
(4.1c), and therefore, if we reduce the units x∗ij, the new solution still meets the
constraints (4.1c).

The for loop 5-8 is executed mn times. If, we assume, as above, that time
to compute the (pseudo-)inverse of function gj can be bounded by constant
independent from the input size, the overall time complexity of Procedure
Surrogate-feas-2(x∗) is O(mn).

4.4.3 Local Search

In this section we introduce a post-processing local search procedure in
order to improve the quality of the solution found by the heuristics. The lo-
cal search implements pairwise exchanges of the amounts of items assigned
to the same knapsack i.

For a given knapsack i, the local search considers a pair of items j and k
and applies two small variations to them. Let ε be a new incremental step
smaller than δj and δk (see Section 4.4.1). The local search simultaneously

4.4 constructive heuristics 73

Algorithm 8 Procedure Surrogate-feas-2(x∗).

1: for i := 1 to m do for j := 1 to n do xij := x∗ij;
2: for i := 1 to m do
3: c̄i := max(0,

∑
j∈N gj(xij) − ci);

4: for j := n back to 1 do
5: xij := max(0,g−1j (gj(xij) − c̄i));
6: if j ∈ N then xij := bxijc;
7: c̄i := max(0,

∑
j∈N gj(xij) − ci);

8: if c̄i 6 0 then break;
9: end for

10: end for

increases (resp. decreases) xij and decreases (resp. increases) xik by ε units,
respectively. Then, it computes the following variations for the objective
function:

1. ∆1 := (fj(xij + ε) − fj(xij)) + (fk(xik − ε) − fk(xik));

2. ∆2 := (fj(xij − ε) − fj(xij)) + (fk(xik + ε) − fk(xik)).

Further impose that a ∆` (` = 1, 2) takes the value 0 if the corresponding vari-
ation is infeasible, i.e., if either a right-hand side (uj, uk, or ci) of inequalities
(4.1b)-(4.1c) is exceeded or one of the two variables takes a negative value.
Let ∆ = max(∆1,∆2):

• if ∆ > 0 the procedure, shown in Algorithm 9,

(i) performs the corresponding variation, producing a new solution
with objective function value increased by ∆;

(ii) iterates the process, for the same couple of items and ε, obviously
by only computing the ∆` (` = 1 or 2) that produced ∆;

• if instead ∆ 6 0, i.e., both variations either worsen the solution value or
are infeasible, the next couple of items is tested, or the next knapsack
is considered (when j = n− 1 and k = n).

Preliminary computational experiments are conducted by varying the se-
lection procedure for the knapsack i and for the items j and k: for instance,
we select the knapsack and the couple of items randomly. However, the
deterministic version produces the most satisfactory results.

74 multiple nonlinear knapsack problems

Algorithm 9 Procedure Local Search.

1: for i := 1 to m do
2: for j := 1 to n− 1 do
3: for k := j+ 1 to n do
4: define an appropriate value ε < min(δj, δk);
5: repeat
6: compute ∆1, ∆2, and ∆;
7: if ∆ > 0 then apply the variation corresponding to ∆;
8: until ∆ > 0
9: end for

10: end for
11: end for

The inner repeat-until loop is executed mn2 times. This loop can theo-
retically take a pseudo-polynomial time but, in practice, it is executed for
a number of times bounded by a constant independent from the input size.
Over the 3,360 instances we tested the algorithm (see Section 4.4.5), the num-
ber of iterations was normally between 1 and 2, and it never attained 10. The
overall computational time of the local search is O(mn2) time.

4.4.4 Overall Algorithm

The overall heuristic algorithm for the MNLKP can be stated as follows:

Algorithm 10 DMM.

1: solve the surrogate relaxation (4.11) and let U and x∗ be respectively the
resulting upper bound and the corresponding solution;

2: execute procedure Constructive of Section 4.4.1 and let Zh be the solu-
tion value;

3: if Zh = U then terminate;
4: execute procedures Surrogate-feas-1(x∗) and Surrogate-feas-2(x∗) of Sec-

tion 4.4.2 and let Zs be the best solution value;
5: if Zs = U then terminate else Z := max(Zh,Zs);
6: execute Local Search of Section 4.4.3 on the solution corresponding to Z

and let Zl be the solution value;
7: return the solution corresponding to Zl.

4.4.5 Computational Experiments

In order to evaluate the computational behavior of the algorithms of Sec-
tion 4.4.4, we compared it with open-source local solvers for nonlinear pro-
gramming (Ipopt [126] for real instances and Bonmin [29], with option bonmin.

algorithm B-BB, for integer instances) and with a global solver (Couenne
[59], both for real and integer instances). Ipopt and Bonmin are exact solvers
for convex NLPs and convex MINLPs, respectively: hence, they can be used

4.4 constructive heuristics 75

as heuristics for non-convex problems like MNLKPs.

The first test-bed with respect to which we computationally test the heuris-
tic algorithm is the same as in Section 4.2.3. Furthermore, we consider a
second test-bed, characterized by linear weight functions, namely

gj(xij) = wjxij, (4.16)

with wj uniformly random in [1, 100].

The number of items n took the value in {10, 20, 50, 100, 200, 500, 1000},
while, as in the Section 4.2.3, the number of knapsacks m took the value
in {2, 5, 10}. For each test-bed, we generate two groups of instances Similar
capacities and Dissimilar capacities (see Section 4.2.3). For each combination of
(n,m), 20 real instances, i.e., with N = ∅, and 20 integer instances, i.e., with
N = N, are generated. The total number of tested instances was thus 3,360.
All the experiments were performed on an Intel Core 2, CPU 6600, 2.4 GHz,
1.94 GB ram, using only one processor.

We ran all the algorithms (Ipopt, Bonmin, Couenne, and DMM) with a
time limit of one CPU hour per instance. Couenne was executed with its de-
fault values (with an exception mentioned at the end of the present section)
as the use of other options strongly increases its computing times. Couenne
was executed only for n 6 50, since already in those smaller instances its
performances are quite poor. For DMM, we compute the solution of the
surrogate relaxation (4.11) by means of Couenne with a time limit of n/10
seconds. If Couenne did not find a feasible solution within the time limit,
we did not execute the surrogate heuristics. Moreover, the time limit of each
local search (Step 6) is 5 CPU seconds.

We compare the heuristic against Bonmin and Ipopt with one and ten ran-
dom starting points. We also tested Bonmin with ten random starting points
at each branch-and-bound decision node, but this only resulted in few im-
provements for the small instances, and, however, in high computational
time, so we do not report the corresponding computational results, which,
however, can be found in the technical report [186].

Preliminary computational tests were conducted by using Scip [223], as
exact solver for non-convex MINLPs, resulting in significantly worse perfor-
mances than the ones obtained by Couenne.

Procedure Construct(i) (within Constructive) was executed for s ∈ {1, 10, 50,
100}, and the best solution was selected. The refined search for µ̄j (see
Section 4.4.1) was obtained: (i) by trying up to 5 consecutive refinement
rounds, each time dividing the current sampling step by 2; (ii) by trying a
single refinement round twice (dividing the initial sampling step by 5 and
10, respectively), and (iii) taking the best solution. We set the value of ε

76 multiple nonlinear knapsack problems

to min(δj, δk)/2. All computations of the zero of a weight function needed
by DMM were performed through a binary search over the definition range.
(The impact on the overall CPU time was however negligible.)

Tables 11-12 report the results for nonlinear weights, with real and integer
variables xij for similar capacities. The entries are, for real variables: the av-
erage values produced by DMM, Ipopt with a single starting point (Ipopt_1),
Ipopt with 10 starting points (Ipopt_10), and Couenne, and for integer vari-
ables: the average values produced by DMM, Bonmin with a single starting
point (Bonmin_1), Bonmin with 10 starting points at the root node (Bonmin_-
10), and Couenne. For the group of instances, for which the solvers do not
succeed in finding a feasible solution within the time limit, the tables report
also in brackets the number of non-solved instances.

Tables 13-14 report the same statistic for dissimilar capacities. The tables
with odd numbering present the average solution values produced over the
20 generated instances, while those with even numbering report the corre-
sponding average CPU times (in seconds).

Tables 15-18 report the same information for the case of linear weights for
similar and dissimilar capacities.

Tables 11 and 13 clearly show that, on the nonlinear instances, a part for
few smaller instances with n = 10 (and a single case for n = 20), the pro-
posed algorithm almost always outperforms both the exact and the heuristic
solvers. Tables 12 and 14 show that on the integer instances DMM is always
the fastest method with regard to the elapsed CPU time. For the real in-
stances Ipopt_1 is generally faster, but the solution values it produces are
definitely worse (by over 10% on average). Overall, DMM seems to be a
reasonable algorithm with respect to the trade-off between the quality of the
produced solution value and the computational time.

For the instances with linear weight functions, Tables 15 and 17 show that
Ipopt_10 and Bonmin_10 often provide better solutions for smaller instances,
while, instead, DMM always performs better for n > 200. Concerning the
average CPU times (Tables 16 and 18), DMM is again the clear winner on
the integer instances. For the real instances, Ipopt_1 is faster for m = 2 (but
it produces on the other hand worse solution values), while DMM always
outperforms the open-source solvers for m > 5 (the difference is particularly
high on the larger instances).

It turns out that the instances with linear weights are more difficult to
solve to optimality than those with nonlinear weights. Although this can
appear surprising, there is no theoretical result implying that one case must
be easier than the other. Couenne, for example, transforms the objective
function so as it becomes linear, while its nonlinear terms become additional

4.4 constructive heuristics 77

Ta
bl

e
11

:M
N

LK
P,

no
nl

in
ea

r
w

ei
gh

ts
,s

im
ila

r
ca

pa
ci

ti
es

.A
ve

ra
ge

so
lu

ti
on

va
lu

es
ov

er
2

0
in

st
an

ce
s

(#
no

so
lu

ti
on

).

R
ea

lV
ar

ia
bl

es
In

te
ge

r
V

ar
ia

bl
es

m
n

D
M

M
Ip

op
t_

1
Ip

op
t_

1
0

C
ou

en
ne

D
M

M
Bo

nm
in

_1
Bo

nm
in

_1
0

C
ou

en
ne

2
1

0
3

5
0

.4
9

3
1

3
.5

0
3

5
1
.7

0
3

6
2
.6

3
3

5
0

.4
7

3
2

7
.2

1
3

1
3
.8

7
3

6
4
.4

5

2
2

0
6

4
1

.7
3

5
6

9
.2

0
6

3
5
.3

5
5

9
3
.4

3
(1

2
)

6
4

5
.6

3
5

9
1
.2

6
5

8
9
.8

8
5

6
1
.8

3

2
5

0
1

,9
0

0
.4

1
1
,7

1
4

.7
4

1
,7

9
9
.7

8
n/

a(
2

0
)

1
,9

0
2
.6

5
1
,7

6
9
.7

6
1
,8

0
0

.6
3

1
,4

8
1
.3

6

2
1

0
0

3
,7

4
1
.9

2
3
,3

4
1

.0
4

3
,5

4
8
.4

0
–

3
,7

4
2
.1

4
3
,4

1
3
.9

8
3
,4

5
4

.5
4

–
2

2
0

0
7

,1
6

7
.8

0
6
,3

0
2

.0
4

6
,6

8
3
.3

9
–

7
,1

6
8
.0

7
6
,4

2
9
.8

0
(5

)
6
,4

1
9

.0
5

–
2

5
0

0
1

8
,3

7
5
.3

5
1

6
,1

5
3

.1
0

1
6
,9

4
2
.3

0
–

1
8
,3

7
6
.3

0
1

6
,2

8
6
.8

0
(1

3
)

1
6
,4

0
4
.9

0
(5

)
–

2
1

0
0

0
3

7
,0

5
1
.1

6
3

2
,1

1
7

.8
0

3
3
,8

9
9
.3

0
–

3
7
,0

5
8
.3

0
n/

a(
2

0
)

n/
a(

2
0
)

–
2

to
ta

l
6

9
,2

2
8
.8

6
6

0
,5

1
1

.4
2

6
3
,8

6
0
.2

2
–

6
9

,2
4

3
.5

6
–

–
–

5
1

0
3

2
2

.7
6

2
7

1
.6

1
3

1
2
.6

3
2

9
9
.0

6
(5

)
3

2
1
.1

8
2

8
8
.1

9
2

8
1
.0

5
2

9
9
.3

5

5
2

0
7

2
9

.4
6

6
8

7
.9

5
7

3
3
.2

5
n/

a(
2

0
)

7
2

7
.2

4
7

0
6
.8

8
7

1
6
.2

3
6

2
0
.5

4
(2

)
5

5
0

1
,8

2
2
.5

8
1
,7

0
5

.8
6

1
,7

8
2
.9

9
n/

a(
2

0
)

1
,8

2
1
.5

7
1
,7

5
3
.7

6
(2

)
1
,7

6
5
.7

2
1
,2

4
5
.5

2
(1

)
5

1
0

0
3

,8
6

5
.6

4
3
,7

0
1
.1

0
3
,8

1
8
.1

4
–

3
,8

6
8
.6

2
3
,7

1
9
.8

6
(1

)
3
,8

2
5
.2

3
–

5
2

0
0

7
,8

4
6
.0

3
7
,3

7
2
.5

6
7
,6

8
1
.4

3
–

7
,8

5
0
.1

8
n/

a(
2

0
)

7
,6

7
7

.5
4
(1

6
)

–
5

5
0

0
1

9
,2

7
2
.6

0
1

8
,1

8
0
.8

0
1

8
,8

2
5
.7

0
–

1
9
,2

7
3
.7

3
n/

a(
2

0
)

n/
a(

2
0
)

–
5

1
0

0
0

3
8

,5
4

0
.1

6
3

6
,3

9
1
.0

0
3

7
,4

8
5
.8

0
–

3
8
,5

4
1
.1

4
n/

a(
2

0
)

n/
a(

2
0
)

–
5

to
ta

l
7

2
,3

9
9
.2

3
6

8
,3

1
0

.8
8

7
0
,6

3
9
.9

4
–

7
2

,4
0

3
.6

6
–

–
–

1
0

1
0

2
1

6
.1

9
1

8
7
.4

0
2

1
8
.5

9
2

1
2
.0

7
(2

)
2

3
2
.5

8
1

8
3
.3

7
(2

)
2

0
1

.6
0
(1

)
2

2
2
.2

9

1
0

2
0

7
3

4
.7

5
6

6
4
.5

8
7

0
2
.2

1
n/

a(
2

0
)

7
2

7
.8

5
7

1
9
.1

7
(3

)
6

8
1
.7

6
(2

)
4

8
9
.3

5
(5

)
1

0
5

0
1

,9
8

3
.1

0
1
,8

6
4

.3
9

1
,9

2
7
.1

3
n/

a(
2

0
)

1
,9

8
3
.7

2
1
,8

3
4
.3

9
(1

6
)

1
,9

3
7

.8
9

1
,2

7
5
.4

3
(1

6
)

1
0

1
0

0
3

,9
5

2
.7

8
3
,7

3
2

.5
1

3
,8

4
3
.8

8
–

3
,9

5
7
.8

4
n/

a(
2

0
)

3
,8

5
2
.2

8
(1

9
)

–
1

0
2

0
0

7
,6

5
2
.0

5
7
,3

1
1

.3
7

7
,4

3
1
.3

6
–

7
,6

5
5
.0

4
n/

a(
2

0
)

n/
a(

2
0
)

–
1

0
5

0
0

1
9

,6
4

0
.7

5
1

8
,7

8
8
.4

0
1

9
,0

9
7
.9

0
–

1
9
,6

4
5
.3

4
n/

a(
2

0
)

n/
a(

2
0
)

–
1

0
1

0
0

0
3

9
,7

1
7
.6

9
3

6
,3

1
6
.5

0
3

8
,2

6
6
.7

0
–

3
9
,7

2
1
.9

3
n/

a(
2

0
)

n/
a(

2
0
)

–
1

0
to

ta
l

7
3
,8

9
7
.3

1
6

8
,8

6
5

.1
5

7
1
,4

8
7
.7

7
–

7
3

,9
2

4
.3

0
–

–
–

to
ta

l
to

ta
l

2
1

5
,5

2
5
.4

0
1

9
7
,6

8
7

.4
5

2
0

5
,9

8
7
.9

3
–

2
1

5
,5

7
1
.5

2
–

–
–

78 multiple nonlinear knapsack problems

Table
12:M

N
LK

P,nonlinear
w

eights,sim
ilar

capacities.A
verage

C
PU

tim
es

over
2

0
instances

(#
no

solution).

R
ealV

ariables
Integer

V
ariables

m
n

D
M

M
Ipopt_

1
Ipopt_

1
0

C
ouenne

D
M

M
Bonm

in_
1

Bonm
in_

1
0

C
ouenne

2
1

0
1.

0
8

0.
0

5
0.

5
1

1,
1

1
3.

8
8

1.
0

9
3.

7
1

1.
4

7
8

4
7.

1
7

2
2

0
2.

0
2

0.
1

0
1.

1
8

3,
6

0
1.

8
1(

1
2)

2.
0

3
1

5.
5

8
4.

5
3

3,
6

0
1.

2
0

2
5

0
5.

0
8

0.
3

4
3.

4
5

n/a(
2

0)
5.

1
1

6
3

7.
5

1
7

8.
2

5
3,

6
0

3.
1

9

2
1

0
0

1
0.

2
3

0.
9

3
1

0.
2

4
–

1
0.

2
6

2,
3

6
3.

9
4

9
7

8.
3

4
–

2
2
0

0
2

0.
8

8
2.

4
4

2
8.

3
4

–
2

0.
7

2
3,

0
8

9.
9

8(
5)

2,
6

9
3.

7
1

–
2

5
0
0

5
7.

4
5

1
0.

6
0

1
1

2.
0

8
–

5
4.

1
4

3,
6

0
0.

4
8(

1
3)

3,
4

9
6.

8
3(

5)
–

2
1
0

0
0

1
1
3.

5
4

3
2.

8
4

3
2

7.
9

3
–

1
1

6.
1

1
n/a(

2
0)

n/a(
2

0)
–

2
total

2
1

0.
2

8
4

7.
3

0
4

8
3.

7
3

–
2

0
9.

4
6

–
–

–
5

1
0

1.
2

0
0.

1
6

1.
7

2
3,

6
0

0.
6

1(
5)

1.
2

4
6

0.
5

8
8.

3
4

3,
6

0
0.

8
8

5
2

0
2.

0
3

0.
3

2
3.

5
7

n/a(
2

0)
2.

0
5

6
0

1.
0

1
1

8
5.

1
2

3,
6

0
2.

2
5(

2)
5

5
0

5.
1

5
1.

1
7

1
1.

7
6

n/a(
2

0)
5.

1
8

2,
7

6
5.

2
4(

2)
9

9
6.

1
6

3,
6

0
2.

4
7(

1)
5

1
0

0
1

0.
2

5
3.

5
3

3
1.

7
6

–
1

0.
4

1
3,

0
7

1.
0

8(
3)

3,
4

1
9.

4
9

–
5

2
0
0

2
0.

7
9

9.
7

2
8

7.
0

3
–

2
1.

3
5

n/a(
2

0)
3,

6
0

0.
4

0(
1

6)
–

5
5

0
0

5
4.

2
6

5
1.

1
2

4
0

3.
1

5
–

5
7.

2
9

n/a(
2

0)
n/a(

2
0)

–
5

1
0
0

0
1
2

5.
8

6
1

5
1.

1
3

1,
2

0
7.

4
8

–
1

2
6.

7
0

n/a(
2

0)
n/a(

2
0)

–
5

total
2

1
9.

5
4

2
1

7.
1

5
1,

7
4

6.
4

7
–

2
2

4.
2

2
–

–
–

1
0

1
0

1.
4

9
0.

3
9

3.
7

8
3,

6
0

0.
5

4(
2)

1.
5

4
8

2
7.

8
0(

2)
1

8
1.

1
5(

1)
3,

6
0

0.
1

7

1
0

2
0

2.
1

4
0.

9
3

8.
5

7
n/a(

2
0)

2.
1

7
2,

5
7

0.
8

8(
3)

1
0

5
9.

4
0(

2)
3,

6
0

2.
8

1(
5)

1
0

5
0

5.
1

4
3.

3
5

3
0.

7
0

n/a(
2

0)
5.

3
1

3,
6

0
1.

4
2(

1
6)

3,
4

6
4.

1
9

3,
6

6
5.

7
6(

1
6)

1
0

1
0

0
1

0.
3

7
1

0.
3

8
8

6.
3

7
–

1
0.

9
4

n/a(
2

0)
3,

6
0

0.
1

9(
1

9)
–

1
0

2
0

0
2

3.
5

1
3

2.
9

8
2

7
8.

6
7

–
2

3.
4

3
n/a(

2
0)

n/a(
2

0)
–

1
0

5
0

0
8

7.
1

1
1

4
7.

1
2

1,
1

9
7.

9
1

–
8

6.
4

9
n/a(

2
0)

n/a(
2

0)
–

1
0

1
0

0
0

3
7

5.
5

7
3

4
8.

5
2

3,
1

0
8.

3
1

–
3

7
1.

9
4

n/a(
2

0)
n/a(

2
0)

–
1

0
total

5
0
5.

3
3

5
4

3.
6

7
4,

7
1

4.
3

1
–

5
0

1.
8

2
–

–
–

total
total

9
3

5.
1

5
8

0
8.

1
2

6,
9

4
4.

5
1

–
9

3
5.

5
0

–
–

–

4.4 constructive heuristics 79

Ta
bl

e
13

:M
N

LK
P,

no
nl

in
ea

r
w

ei
gh

ts
,d

is
si

m
ila

r
ca

pa
ci

ti
es

.A
ve

ra
ge

so
lu

ti
on

va
lu

es
ov

er
2

0
in

st
an

ce
s

(#
no

so
lu

ti
on

).

R
ea

lV
ar

ia
bl

es
In

te
ge

r
V

ar
ia

bl
es

m
n

D
M

M
Ip

op
t_

1
Ip

op
t_

1
0

C
ou

en
ne

D
M

M
Bo

nm
in

_1
Bo

nm
in

_1
0

C
ou

en
ne

2
1

0
3

4
0

.6
2

2
9

8
.2

4
3

3
9
.5

0
3

5
5
.1

9
3

3
9

.8
9

2
9

9
.2

1
3

0
8
.6

0
3

5
4
.6

2

2
2

0
6

3
4

.6
8

5
4

7
.6

8
6

1
0
.2

0
5

6
4
.6

5
(9

)
6

3
6
.5

4
5

6
9
.6

7
5

7
3
.2

5
5

5
5
.9

0

2
5

0
1

,8
7

0
.8

3
1
,6

1
9

.8
0

1
,7

3
7
.0

0
n/

a(
2

0
)

1
,8

7
1
.4

5
1
,6

8
8
.4

8
1
,6

5
3
.2

6
1
,3

6
2
.6

2

2
1

0
0

3
,7

2
2
.8

4
3
,2

3
6

.1
8

3
,4

3
7
.9

1
–

3
,7

2
2
.4

3
3
,3

4
0
.3

5
(1

)
3
,2

9
4
.4

1
–

2
2

0
0

7
,0

7
4
.4

8
5
,9

0
8
.9

0
6
,3

1
3
.0

1
–

7
,0

7
2
.5

3
6
,1

8
8
.8

2
(3

)
5
,9

0
5
.4

1
–

2
5

0
0

1
8

,2
8

0
.2

5
1

5
,2

8
6
.7

0
1

6
,0

8
1
.2

0
–

1
8
,2

8
7
.2

8
1

5
,8

8
3
.5

0
(1

4
)

1
5
,8

6
2

.4
0
(5

)
–

2
1

0
0

0
3

7
,0

8
9
.6

5
3

1
,1

6
8
.3

0
3

2
,8

2
5
.2

0
–

3
7
,0

8
6
.8

4
n/

a(
2

0
)

n/
a(

2
0
)

–
2

to
ta

l
6

9
,0

1
3
.3

5
5

8
,0

6
5
.8

0
6

1
,3

4
4
.0

2
–

6
9
,0

1
6
.9

6
–

–
–

5
1

0
3

2
1

.2
8

2
8

5
.2

8
3

1
8
.6

8
3

2
9
.5

1
(1

)
3

1
3
.7

0
3

0
5
.0

5
(1

)
2

9
9

.2
8
(1

)
3

1
9
.2

2
(1

)
5

2
0

7
2

8
.4

2
6

7
0
.5

7
7

1
7
.9

1
6

5
9
.8

4
(1

7
)

7
2

0
.9

7
6

9
2
.0

1
(2

)
6

6
4
.8

4
5

9
8
.8

7
(5

)
5

5
0

1
,7

9
2
.7

6
1
,6

1
4
.3

9
1
,7

2
3
.2

4
n/

a(
2

0
)

1
,7

7
2
.3

3
1
,6

0
0
.3

0
(4

)
1
,6

2
7
.8

5
1
,2

2
8
.1

8
(4

)
5

1
0

0
3

,8
1

0
.8

0
3
,3

9
2
.7

8
3
,6

2
5
.1

4
–

3
,8

0
5
.9

1
3
,4

0
6
.6

9
(2

)
3
,4

0
0
.2

3
–

5
2

0
0

7
,6

4
7
.4

4
6
,7

7
8
.9

6
7
,1

8
0
.8

1
–

7
,5

9
5
.8

0
n/

a(
2

0
)

n/
a(

2
0
)

–
5

5
0

0
1

9
,1

0
8
.4

6
1

7
,1

3
1
.0

0
1

7
,9

6
7
.3

0
–

1
9
,1

0
0
.0

0
n/

a(
2

0
)

n/
a(

2
0
)

–
5

1
0

0
0

3
8

,4
4

7
.5

2
3

4
,5

5
9
.2

0
3

6
,0

9
9
.6

0
–

3
8
,4

7
2
.1

1
n/

a(
2

0
)

n/
a(

2
0
)

–
5

to
ta

l
7

1
,8

5
6
.6

8
6

4
,4

3
2
.1

8
6

7
,6

3
2
.6

8
–

7
1
,7

8
0
.8

2
–

–
–

1
0

1
0

3
4

3
.9

5
3

1
4
.8

8
3

4
5
.1

8
3

5
4
.5

2
3

2
1

.4
7

3
1

5
.2

0
(1

)
3

0
7
.1

1
3

4
0
.2

1
(1

)
1

0
2

0
7

5
7

.2
8

6
7

8
.5

9
7

4
1
.0

4
6

9
9
.3

1
(1

1
)

7
3

7
.3

4
7

0
3
.5

7
(3

)
6

8
1

.3
7
(1

)
6

3
3
.9

5
(8

)
1

0
5

0
1

,9
7

2
.1

1
1
,8

0
7
.0

0
1
,9

0
9
.6

5
n/

a(
2

0
)

1
,8

8
3
.6

2
1
,8

1
7
.6

4
(9

)
1
,8

1
0

.5
1
(1

)
1
,4

9
9
.6

7
(7

)
1

0
1

0
0

3
,8

7
3
.0

7
3
,4

4
1
.8

7
3
,6

8
4
.9

9
–

3
,6

1
5
.1

2
n/

a(
2

0
)

3
,8

0
4

.8
2
(1

9
)

–
1

0
2

0
0

7
,5

4
3
.0

3
6
,7

0
8
.0

0
7
,0

9
4
.4

0
–

7
,3

9
5
.6

2
n/

a(
2

0
)

n/
a(

2
0
)

–
1

0
5

0
0

1
9

,2
7

1
.7

3
1

7
,0

2
7
.6

0
1

7
,9

5
0
.8

0
–

1
9
,2

4
2
.9

6
n/

a(
2

0
)

n/
a(

2
0
)

–
1

0
1

0
0

0
3

9
,4

8
6
.3

6
3

5
,2

4
8
.3

0
3

7
,2

3
7
.5

0
–

3
9
,4

0
3
.0

1
n/

a(
2

0
)

n/
a(

2
0
)

–
1

0
to

ta
l

7
3
,2

4
7
.5

3
6

5
,2

2
6
.2

4
6

8
,9

6
3
.5

6
–

7
2
,5

9
9
.1

4
–

–
–

to
ta

l
to

ta
l

2
1

4
,1

1
7
.5

6
1

8
7
,7

2
4
.2

2
1

9
7
,9

4
0
.2

6
–

2
1

3
,3

9
6
.9

2
–

–
–

80 multiple nonlinear knapsack problems

Table
14:M

N
LK

P,nonlinear
w

eights,dissim
ilar

capacities.A
verage

C
PU

tim
es

over
2

0
instances

(#
no

solution).

R
ealV

ariables
Integer

V
ariables

m
n

D
M

M
Ipopt_

1
Ipopt_

1
0

C
ouenne

D
M

M
Bonm

in_
1

Bonm
in_

1
0

C
ouenne

2
1

0
1.

0
8

0.
0

5
0.

5
3

7
9

4.
3

9
1.

0
9

2.
9

1
1.

1
1

3
6

4.
4

4

2
2
0

2.
0

2
0.

1
1

1.
1

4
3,

3
0

7.
9

5(
9)

2.
0

3
2

0.
4

1
8.

1
8

3,
4

3
0.

2
9

2
5

0
5.

0
8

0.
3

4
3.

3
6

n/a(
2

0)
5.

3
0

2
7

7.
5

7
6

9.
6

6
3,

6
0

2.
7

8

2
1

0
0

1
0.

2
3

0.
8

9
9.

9
6

–
1

0.
2

6
1,

7
3

1.
3

3(
1)

8
1

3.
9

9
–

2
2

0
0

2
0.

8
7

2.
4

0
2

6.
5

1
–

2
0.

7
1

3,
2

5
4.

2
3(

3)
3,

0
9

9.
9

8
–

2
5

0
0

5
7.

3
4

1
0.

6
4

1
0

5.
7

6
–

5
4.

0
7

3,
2

6
5.

7(
1

4)
3,

4
5

6.
1

8(
5)

–
2

1
0

0
0

1
1

3.
3

9
3

3.
7

1
3

1
8.

1
0

–
1

1
5.

9
3

n/a(
2

0)
n/a(

2
0)

–
2

total
2

1
0.

0
1

4
8.

1
4

4
6

5.
3

6
–

2
0

9.
3

9
–

–
–

5
1

0
1.

2
0

0.
1

4
1.

5
3

2,
7

9
0.

2
8(

1)
1.

2
3

2
9.

1
1(

1)
1

9
6.

6
6(

1)
2,

0
1

3.
3

4(
1)

5
2

0
2.

0
3

0.
3

4
3.

2
3

3,
6

0
0.

1
8(

1
7)

2.
0

5
2

5
0.

5
3(

2)
5

8
8.

3
8

3,
6

0
0.

9
2(

5)
5

5
0

5.
1

6
1.

1
6

1
0.

2
5

n/a(
2

0)
5.

1
7

2,
7

1
6.

9
6(

4)
7

7
3.

8
9

3,
6

0
4.

7
7(

4)
5

1
0

0
1

0.
2

5
3.

0
4

2
6.

4
5

–
1

0.
4

1
3,

3
7

3.
1

8(
2)

2,
3

4
1.

6
3

–
5

2
0

0
2

0.
7

7
8.

7
0

7
4.

4
5

–
2

1.
2

5
n/a(

2
0)

n/a(
2

0)
–

5
5

0
0

5
4.

1
4

4
5.

0
4

3
5

6.
0

4
–

5
7.

0
2

n/a(
2

0)
n/a(

2
0)

–
5

1
0

0
0

1
2

4.
8

4
1

3
0.

8
9

1,
0

4
4.

0
9

–
1

2
6.

0
5

n/a(
2

0)
n/a(

2
0)

–
5

total
2

1
8.

3
9

1
8

9.
3

1
1,

5
1

6.
0

4
–

2
2

3.
1

8
–

–
–

1
0

1
0

1.
4

9
0.

3
1

2.
6

2
2,

2
6

6.
3

6
1.

5
3

3
3.

2
5(

1)
5

3.
0

9
1,

7
5

3.
2

0(
1)

1
0

2
0

2.
1

6
0.

7
9

6.
1

0
3,

5
9

9.
6

1(
1

1)
2.

1
6

6
5

0.
1

1(
3)

6
3

1.
4

4(
1)

3,
6

0
0.

0
0(

8)
1

0
5
0

5.
1

4
2.

8
9

2
3.

0
1

n/a(
2

0)
5.

2
8

3,
1

7
7.

6
6(

9)
2,

3
2

6.
3

5(
1)

3,
5

9
7.

4
8(

7)
1
0

1
0

0
1

0.
3

5
7.

9
8

5
8.

1
8

–
1

0.
8

4
n/a(

2
0)

3,
6

0
0.

9(
1

9)
–

1
0

2
0

0
2

3.
4

4
2

5.
9

3
1

8
4.

1
3

–
2

3.
2

2
n/a(

2
0)

n/a(
2

0)
–

1
0

5
0

0
8

6.
9

2
1

1
3.

3
2

7
0

4.
5

7
–

8
6.

0
7

n/a(
2

0)
n/a(

2
0)

–
1

0
1

0
0

0
3

7
4.

2
0

3
2

8.
1

0
2,

2
6

8.
4

0
–

3
7

0.
2

2
n/a(

2
0)

n/a(
2

0)
–

1
0

total
5

0
3.

7
0

4
7

9.
3

2
3,

2
4

7.
0

1
–

4
9

9.
3

2
–

–
–

total
total

9
3

2.
1

0
7

1
6.

7
7

5,
2

2
8.

4
1

–
9

3
1.

8
9

–
–

–

4.5 conclusions 81

constraints. It follows that, in any case, the feasible region is defined by non-
linear constraints, and the evolution of the branching search is unpredictable.

For all the real instances, all the algorithms (DMM, Ipopt_1, and Ipopt_-
10) are able to provide a feasible solution within the time limit (both for the
case of linear and nonlinear weights); while, for the larger integer instances,
DMM is the only heuristic with can determine a feasible solution within the
time limit.

Tables 19 and 20 compare the solution values produced by DMM and
Couenne, for those instances, with respect to which Couenne is able to find
the global maximum. Table 19 reports the results for nonlinear weights and
both similar and dissimilar capacities, while Table 20 is the analogue for
linear weights. DMM computes solutions with an average error of 3.65%,
with a minimum of 0% and a maximum of 18% with regards to the global
optimum. We observe that Couenne optimally solved more instances with
nonlinear weights (5.6%) than with linear weights (1.8%).

Finally, for 10 of the instances globally solved by Couenne, it turned out
that the software behaved incorrectly, finding a solution value lower that
the one produced by DMM. Hence, at the suggestion of Couenne devel-
oper, we re-execute the solver by disabling several default options, namely:
aggressive_fbbt, optimality_bt, and redcost_bt. For instance, the solu-
tion value of the instance 6 with m = 5, n = 10, dissimilar capacities, integer
variables and nonlinear weights, produced by Couenne with the default op-
tions was 286.86, while DMM provide a feasible solution of value 294.76. We
re-run Couenne without the suggested options and the solution value was
305.67.

4.5 conclusions

In this chapter we considered the MNLKP and we discussed the possible
relaxations for this problem. We implemented the MWU algorithm, adapt-
ing its main steps to this class of problems. However, computational experi-
ments illustrated that this methodology was not successful in this situation;
hence, we proposed different constructive heuristic strategies followed by a
local search post-processing. Extensive computational tests clearly showed
that this approach outperformed the other heuristic and exact algorithms
available for the MNLKP both in terms of solution quality and of CPU time
elapsed.

82 multiple nonlinear knapsack problems

Table
15:M

N
LK

P,linear
w

eights,sim
ilar

capacities.A
verage

solution
values

over
2

0
instances

(#
no

solution).

R
ealV

ariables
Integer

V
ariables

m
n

D
M

M
Ipopt_

1
Ipopt_

1
0

C
ouenne

D
M

M
Bonm

in_
1

Bonm
in_

1
0

C
ouenne

2
1

0
3

4
3.

6
3

3
1

8.
6

6
3

5
0.

6
2

3
4

3.
6

5(
6)

3
4

3.
9

5
3

3
2.

9
1

3
5

1.
3

5
3

3
5.

5
3

2
2

0
7

8
0.

5
4

7
3

9.
7

0
7

8
6.

0
5

n/a(
2

0)
7

8
0.

0
3

7
5

2.
4

2
7

8
4.

4
6

6
7

6.
7

0

2
5

0
1,

9
4
3.

4
4

1,
8

4
1.

9
3

1,
9

2
1.

1
7

n/a(
2

0)
1,

9
4

1.
3

8
1,

8
9

6.
6

6
1,

9
3

9.
1

8
1,

4
9

4.
7

7(
1

0)
2

1
0

0
3,

8
7

3.
3

4
3,

5
8

5.
0

2
3,

7
2

7.
5

5
–

3,
8

7
2.

2
9

3,
6

8
1.

9
2

3,
7

4
0.

0
8

–
2

2
0

0
7,

9
6

6.
7
4

7,
4

0
1.

9
9

7,
6

4
5.

1
4

–
7,

9
6

6.
3

2
7,

5
1

0.
3

8(
4)

7,
5

7
4.

3
4(

1)
–

2
5

0
0

2
0,

1
1

1.
1

0
1

8,
6

8
5.

0
0

1
9,

2
2

2.
2

0
–

2
0,

1
0

7.
1

3
1

8,
4

3
8.

1
0(

1
8)

1
8,

4
3

8.
1

0(
1

8)
–

2
1

0
0

0
3

9,
5

6
2.

0
6

3
6,

7
5

2.
9

0
3

7,
4

4
8.

7
0

–
3

9,
5

6
3.

9
7

n/a(
2

0)
n/a(

2
0)

–
2

total
7

4,
5

8
0.

8
5

6
9,

3
2

5.
2

0
7

1,
1

0
1.

4
3

–
7

4,
5

7
5.

0
7

–
–

–
5

1
0

3
7

4.
5

8
3

6
4.

5
4

3
9

2.
8

1
2

4
3.

9
5(

1)
3

7
5.

2
8

3
6

6.
7

5
3

8
6.

3
9

2
8

6.
9

9(
2)

5
2

0
7
6

2.
5

1
7

3
9.

2
2

7
8

2.
2

2
n/a(

2
0)

7
6

1.
9

9
7

5
0.

9
2

7
6

8.
7

7
4

8
5.

0
2(

4)
5

5
0

2,
0

1
0.

4
4

1,
9

9
0.

0
1

2,
0

3
8.

9
3

n/a(
2

0)
2,

0
1

3.
1

3
1,

9
9

1.
9

6
1,

9
9

7.
3

3
1,

3
6

6.
9

8(
1

1)
5

1
0
0

3,
9

4
2.

0
2

3,
8

0
8.

0
3

3,
9

5
5.

7
7

–
3,

9
4

2.
9

0
3,

9
7

8.
8

3(
1

5)
3,

9
0

0.
3

6(
1

4)
–

5
2
0

0
8,

1
3

5.
8

6
7,

9
2

7.
2

3
8,

1
2

5.
1

5
–

8,
1

4
1.

7
7

n/a(
2

0)
n/a(

2
0)

–
5

5
0
0

2
0,

8
8

3.
1

9
2

0,
1

2
3.

6
0

2
0,

4
2

4.
6

0
–

2
0,

9
0

0.
0

4
n/a(

2
0)

n/a(
2

0)
–

5
1
0

0
0

4
1,

7
4

8.
2

5
3

9,
4

0
6.

9
0

4
0,

2
3

1.
0

0
–

4
1,

7
5

5.
3

7
n/a(

2
0)

n/a(
2

0)
–

5
total

7
7,

8
5
6.

8
5

7
4,

3
5

9.
5

3
7

5,
9

5
0.

4
8

–
7

7,
8

9
0.

4
8

–
–

–
1

0
1
0

2
4
0.

6
1

2
2

4.
0

4
2

4
3.

6
2

2
1

1.
0

5(
1

5)
2

3
5.

4
8

2
2

9.
5

2
2

3
8.

9
9

1
7

0.
2

9(
4)

1
0

2
0

7
9

0.
0
0

7
7

8.
7

3
8

1
6.

6
1

n/a(
2

0)
7

8
7.

6
1

8
0

4.
2

4(
1)

8
0

7.
2

2
3

2
9.

7
1(

4)
1

0
5
0

2,
0

9
5.

6
7

2,
0

4
2.

5
6

2,
1

2
2.

7
2

1,
5

7
2.

9
6(

1
8)

2,
0

9
7.

9
0

2,
2

4
9.

0
9(

1
9)

2,
2

4
9.

0
9(

1
9)

4
8

6.
7

9(
6)

1
0

1
0
0

4,
0

4
0.

2
9

3,
8

6
0.

7
2

4,
0

0
8.

9
1

–
4,

0
4

3.
6

5
n/a(

2
0)

n/a(
2

0)
–

1
0

2
0

0
8,

3
7

6.
5

5
8,

0
6

3.
3

9
8,

2
2

4.
5

9
–

8,
3

8
2.

2
1

n/a(
2

0)
n/a(

2
0)

–
1
0

5
0

0
2

1,
3

0
9.

2
8

2
0,

0
9

1.
2

0
2

0,
5

3
5.

4
0

–
2

1,
3

2
1.

3
9

n/a(
2

0)
n/a(

2
0)

–
1
0

1
0
0

0
4

2,
7

6
6.

3
6

3
6,

8
5

3.
0

0
3

9,
2

7
6.

1
0

–
4

2,
7

8
2.

1
9

n/a(
2

0)
n/a(

2
0)

–
1

0
total

7
9,

6
1
8.

7
6

7
1,

9
1

3.
6

4
7

5,
2

2
7.

9
5

–
7

9,
6

5
0.

4
3

–
–

–

total
total

2
3

2,
0

5
6.

4
6

2
1

5,
5

9
8.

3
7

2
2

2,
2

7
9.

8
6

–
2

3
2,

1
1

5.
9

8
–

–
–

4.5 conclusions 83

Ta
bl

e
16

:M
N

LK
P,

lin
ea

r
w

ei
gh

ts
,s

im
ila

r
ca

pa
ci

ti
es

.A
ve

ra
ge

C
PU

ti
m

es
ov

er
2

0
in

st
an

ce
s

(#
no

so
lu

ti
on

).

R
ea

lV
ar

ia
bl

es
In

te
ge

r
V

ar
ia

bl
es

m
n

D
M

M
Ip

op
t_

1
Ip

op
t_

1
0

C
ou

en
ne

D
M

M
Bo

nm
in

_1
Bo

nm
in

_1
0

C
ou

en
ne

2
1

0
1

.0
6

0
.0

4
0
.5

6
2
,2

5
0
.1

0
(6

)
1
.0

7
3
.6

7
2
.9

1
3
,5

9
2
.3

6

2
2

0
2

.0
2

0
.1

3
1
.4

0
n/

a(
2

0
)

2
.0

2
1

6
.7

6
1

2
.9

4
3
,6

0
2
.0

5

2
5

0
5

.0
6

0
.5

0
6
.0

2
n/

a(
2

0
)

5
.0

8
1

4
5
.3

7
1

9
5
.6

6
3
,6

0
2
.2

3
(1

0
)

2
1

0
0

1
0

.2
1

1
.6

9
1

7
.6

4
–

1
0
.2

2
1
,4

9
9
.3

9
1
,3

1
2

.3
0

–
2

2
0

0
2

0
.7

1
5
.9

0
5

8
.3

1
–

2
0
.8

1
2
,9

7
8
.5

0
(4

)
2
,6

6
6
.1

5
(1

)
–

2
5

0
0

5
6

.5
9

2
6
.1

8
2

7
3
.8

7
–

5
8
.5

0
1
,4

6
7

1
.8

0
(1

8
)

1
1
,7

1
8
.9

(1
8
)

–
2

1
0

0
0

1
1

5
.6

9
8

2
.5

3
8

5
7
.7

4
–

1
1

8
.5

8
n/

a(
2

0
)

n/
a(

2
0
)

–
2

to
ta

l
2

1
1
.3

4
1

1
6
.9

7
1
,2

1
5
.5

4
–

2
1

6
.2

8
–

–
–

5
1

0
1

.1
1

0
.1

3
1
.4

6
3
,6

0
0
.7

7
(1

)
1
.1

3
3

5
0
.9

2
3

3
0
.2

1
3
,6

0
1
.2

8
(2

)
5

2
0

2
.0

3
0
.3

6
3
.7

8
n/

a(
2

0
)

2
.0

4
5

5
0
.7

5
6

7
5
.7

6
3
,6

0
1
.4

1
(4

)
5

5
0

5
.1

0
1
.4

1
1

4
.7

4
n/

a(
2

0
)

5
.1

4
3
,1

1
0
.1

3
3
,1

8
2
.5

3
3
,6

0
8
.2

0
(1

1
)

5
1

0
0

1
0

.3
4

5
.7

2
4

7
.3

8
–

1
0
.3

2
3
,5

8
5
.9

5
(1

5
)

3
,2

9
2
.5

2
(1

4
)

–
5

2
0

0
2

0
.8

5
1

5
.1

5
1

4
5
.1

0
–

2
1
.1

8
n/

a(
2

0
)

n/
a(

2
0
)

–
5

5
0

0
5

5
.0

2
8

2
.1

7
8

3
4
.0

1
–

5
7
.2

3
n/

a(
2

0
)

n/
a(

2
0
)

–
5

1
0

0
0

1
1

9
.4

2
2

2
9
.5

8
2
,3

5
7
.4

8
–

1
2

8
.1

0
n/

a(
2

0
)

n/
a(

2
0
)

–
5

to
ta

l
2

1
3
.8

7
3

3
4
.5

2
3
,4

0
3
.9

5
–

2
2

5
.1

4
–

–
–

1
0

1
0

1
.2

1
0
.3

4
3
.3

6
3
,6

0
2
.4

4
(1

5
)

1
.2

7
1
,0

8
8
.1

1
9

3
4
.4

7
3
,6

0
1
.5

6
(4

)
1

0
2

0
2

.0
4

0
.8

1
8
.0

0
n/

a(
2

0
)

2
.0

6
3
,1

3
0
.1

7
(1

)
3
,0

9
7

.3
1

3
,6

0
2
.0

8
(4

)
1

0
5

0
5

.1
1

3
.4

6
3

5
.5

0
3
,5

9
6
.0

6
(1

8
)

5
.1

8
3
,5

8
3
.3

6
(1

9
)

3
,4

1
7
.9

8
(1

9
)

3
,6

1
0
.7

5
(6

)
1

0
1

0
0

1
0

.3
1

1
3
.3

0
1

4
8
.4

1
–

1
0
.5

7
n/

a(
2

0
)

n/
a(

2
0
)

–
1

0
2

0
0

2
1
.0

9
4

6
.5

9
4

9
7
.5

0
–

2
2
.1

8
n/

a(
2

0
)

n/
a(

2
0
)

–
1

0
5

0
0

5
6
.1

7
1

9
5
.5

8
1
,9

9
9
.5

6
–

6
3
.6

4
n/

a(
2

0
)

n/
a(

2
0
)

–
1

0
1

0
0

0
1

7
0
.6

9
3

9
8
.5

6
4
,2

1
9
.1

8
–

1
6

3
.0

9
n/

a(
2

0
)

n/
a(

2
0
)

–
1

0
to

ta
l

2
6

6
.6

2
6

5
8
.6

4
6
,9

1
1
.5

1
–

2
6

7
.9

9
–

–
–

to
ta

l
to

ta
l

6
9

1
.8

3
1
,1

1
0
.1

3
1

1
,5

3
1
.0

0
–

7
0

9
.4

1
–

–
–

84 multiple nonlinear knapsack problems

Table
17:M

N
LK

P,linear
w

eights,dissim
ilar

capacities.A
verage

solution
values

over
2

0
instances

(#
no

solution).

R
ealV

ariables
Integer

V
ariables

m
n

D
M

M
Ipopt_

1
Ipopt_

1
0

C
ouenne

D
M

M
Bonm

in_
1

Bonm
in_

1
0

C
ouenne

2
1
0

3
3

3.
3

9
2

9
6.

5
6

3
4

2.
0

3
3

4
2.

2
0(

3)
3

3
1.

7
5

3
1

2.
0

5
3

3
9.

3
2

3
3

6.
7

8

2
2

0
7
6

0.
0

8
6

9
6.

1
3

7
5

8.
7

0
6

7
4.

8
5(

1
6)

7
5

7.
2

4
7

0
5.

3
7

7
6

3.
3

6
6

5
2.

2
2(

1)
2

5
0

1,
9

1
6.

4
4

1,
7

8
9.

2
4

1,
8

5
4.

1
6

n/a(
2

0)
1,

9
2

0.
4

1
1,

8
6

6.
9

7
1,

8
8

7.
1

0
1,

4
0

7.
0

8(
5)

2
1
0

0
3,

8
5

9.
9

5
3,

4
5

1.
6

0
3,

6
2

5.
9

3
–

3,
8

6
4.

1
8

3,
6

1
4.

5
6

3,
6

9
6.

0
8

–
2

2
0
0

7,
8

5
6.

5
7

7,
0

4
4.

6
5

7,
2

6
3.

3
5

–
7,

8
5

4.
7

9
7,

2
0

9.
4

6(
2)

7,
3

4
8.

7
6(

1)
–

2
5

0
0

1
9,

8
0
6.

1
3

1
7,

8
1

7.
5

0
1

8,
2

4
0.

7
0

–
1

9,
8

7
0.

1
3

1
9,

1
6

4.
1

0(
1

8)
1

8,
2

9
6.

7
0(

1
4)

–
2

1
0

0
0

3
9,

1
9

3.
3

0
3

5,
2

2
0.

4
0

3
5,

9
0

0.
9

0
–

3
9,

1
8

3.
3

0
3

1,
5

1
6.

0
0(

1
9)

n/a(
2

0)
–

2
total

7
3,

7
2

5.
8

6
6

6,
3

1
6.

0
8

6
7,

9
8

5.
7

7
–

7
3,

7
8

1.
8

0
–

–
–

5
1
0

3
9

4.
6

0
3

7
1.

4
0

4
0

4.
2

0
4

3
4.

8
2(

1
0)

3
9

4.
1

2
3

7
9.

3
4

4
0

1.
0

4
3

7
8.

3
0(

3)
5

2
0

7
4

9.
4

2
6

9
9.

4
4

7
5

7.
7

0
6

0
0.

4
6(

1
8)

7
4

6.
2

9
7

0
8.

6
6

7
3

9.
9

1
4

8
1.

2
7(

6)
5

5
0

1,
9

8
5.

2
0

1,
9

0
7.

9
9

1,
9

6
5.

2
4

n/a(
2

0)
1,

9
8

6.
8

3
1,

9
5

3.
9

5
1,

9
7

8.
8

5
1,

0
3

0.
5

2(
8)

5
1

0
0

3,
9

0
6.

8
2

3,
6

5
7.

6
4

3,
7

7
6.

5
1

–
3,

8
9

9.
9

2
3,

6
5

7.
9

9(
8)

3,
7

3
3.

0
0(

9)
–

5
2

0
0

7,
9
9

1.
0

3
7,

5
3

5.
8

8
7,

7
3

9.
5

6
–

8,
0

0
0.

1
0

6,
7

6
8.

7
4(

1
9)

7,
0

2
1.

5
1(

1
8)

–
5

5
0

0
2

0,
5
9

8.
0

5
1

9,
0

7
6.

7
0

1
9,

5
4

0.
1

0
–

2
0,

5
9

7.
9

3
n/a(

2
0)

n/a(
2

0)
–

5
1

0
0

0
4

1,
1

1
2.

4
7

3
7,

4
3

0.
5

0
3

8,
6

2
3.

6
0

–
4

1,
1

4
4.

6
1

n/a(
2

0)
n/a(

2
0)

–
5

total
7
6,

7
3

7.
5

9
7

0,
6

7
9.

5
5

7
2,

8
0

6.
9

1
–

7
6,

7
6

9.
8

0
–

–
–

1
0

1
0

3
0

8.
9

9
2

7
9.

2
0

3
1

0.
7

2
3

1
3.

6
5(

1
1)

3
0

7.
0

6
2

8
3.

1
2

3
0

4.
8

6
2

7
3.

3
8(

1)
1
0

2
0

8
1

6.
7

2
8

1
4.

4
3

8
5

4.
1

9
n/a(

2
0)

8
1

7.
8

7
8

2
4.

6
6(

1)
8

4
4.

1
3

6
4

7.
1

7(
8)

1
0

5
0

2,
0

6
0.

7
0

1,
9

5
1.

8
5

2,
0

4
0.

0
1

n/a(
2

0)
2,

0
6

4.
8

6
1,

8
6

5.
5

2(
6)

1,
9

2
1.

8
4(

6)
1,

1
1

7.
4

9(
6)

1
0

1
0
0

3,
9

5
7.

5
3

3,
6

4
0.

1
5

3,
7

9
3.

3
1

–
3,

9
5

6.
1

2
3,

4
2

6.
4

1(
1

3)
3,

7
1

1.
0

3(
1

6)
–

1
0

2
0

0
8,

2
8

7.
6

8
7,

5
4

9.
4

0
7,

8
5

9.
1

0
–

8,
2

9
9.

4
1

n/a(
2

0)
n/a(

2
0)

–
1

0
5

0
0

2
0,

9
8

4.
5

6
1

8,
8

5
8.

9
0

1
9,

4
4

5.
6

0
–

2
0,

8
9

8.
0

3
n/a(

2
0)

n/a(
2

0)
–

1
0

1
0

0
0

4
1,

9
8

9.
2

7
3

7,
1

1
4.

2
0

3
8,

3
3

2.
1

0
–

4
1,

9
6

3.
2

2
n/a(

2
0)

n/a(
2

0)
–

1
0

total
7

8,
4
0

5.
4

5
7

0,
2

0
8.

1
3

7
2,

6
3

5.
0

3
–

7
8,

3
0

6.
5

7
–

–
–

total
total

2
2

8,
8

6
8.

9
0

2
0

7,
2

0
3.

7
6

2
1

3,
4

2
7.

7
1

–
2

2
8,

8
5

8.
1

7
–

–
–

4.5 conclusions 85

Ta
bl

e
18

:M
N

LK
P,

lin
ea

r
w

ei
gh

ts
,d

is
si

m
ila

r
ca

pa
ci

ti
es

.A
ve

ra
ge

C
PU

ti
m

es
ov

er
2

0
in

st
an

ce
s

(#
no

so
lu

ti
on

).

R
ea

lV
ar

ia
bl

es
In

te
ge

r
V

ar
ia

bl
es

m
n

D
M

M
Ip

op
t_

1
Ip

op
t_

1
0

C
ou

en
ne

D
M

M
Bo

nm
in

_1
Bo

nm
in

_1
0

C
ou

en
ne

2
1

0
1
.0

6
0
.0

4
0
.5

8
1

6
1

3
.0

9
(3

)
1
.0

7
2
.2

4
1
.8

5
2
,0

1
7
.1

1

2
2

0
2

.0
2

0
.1

2
1
.4

6
3
,6

0
2
.0

1
(1

6
)

2
.0

2
9
.9

9
1

0
.6

4
3
,6

0
1
.0

4
(1

)
2

5
0

5
.0

6
0
.4

8
5
.7

8
n/

a(
2

0
)

5
.0

8
5

3
0
.3

0
1

3
7
.5

4
3
,6

0
2
.4

0
(5

)
2

1
0

0
1

0
.2

1
1
.5

5
1

6
.2

3
–

1
0
.2

1
1
,6

9
9

.7
4

1
,5

7
1
.0

1
–

2
2

0
0

2
0

.6
9

5
.1

3
5

2
.3

7
–

2
0
.7

7
2
,6

5
5
.7

9
(2

)
2
,6

0
1
.0

8
(1

)
–

2
5

0
0

5
6

.6
1

2
2
.9

0
2

3
7
.3

3
–

5
8
.3

0
1
,4

9
3
.7

8
(1

8
)

4
,3

1
8
.6

7
(1

4
)

–
2

1
0

0
0

1
1

5
.2

6
7

0
.2

7
7

4
1
.2

5
–

1
1

8
.1

6
5

0
,8

9
2
.3

0
(1

9
)

n/
a(

2
0
)

–
2

to
ta

l
2

1
0
.9

1
1

0
0
.4

9
1
,0

5
5
.0

0
–

2
1

5
.6

1
–

–
–

5
1

0
1
.1

0
0
.1

4
1
.4

1
3
,2

6
9
.8

5
(1

0
)

1
.1

3
3

1
6
.6

1
4

7
5
.2

7
3
,6

0
0
.8

7
(3

)
5

2
0

2
.0

2
0
.3

4
3
.5

9
3
,6

0
1
.7

0
(1

8
)

2
.0

4
4

7
7
.6

2
7

9
3
.0

9
3
,6

0
1
.0

3
(6

)
5

5
0

5
.1

0
1
.4

0
1

4
.2

1
n/

a(
2

0
)

5
.1

3
2
,3

5
6

.9
2

2
,8

7
2
.4

5
3
,6

0
2
.5

2
(8

)
5

1
0

0
1

0
.4

1
4
.0

3
4

0
.9

6
–

1
0
.3

0
3
,2

4
0
.8

2
(8

)
2
,6

2
4
.4

7
(9

)
–

5
2

0
0

2
0

.8
0

1
1
.9

1
1

1
2
.0

3
–

2
1
.1

2
3
,5

8
9
.8

5
(1

9
)

3
,4

1
1
.5

5
1
(1

8
)

–
5

5
0

0
5

4
.6

8
5

8
.9

2
5

5
4
.5

1
–

5
6
.8

7
n/

a(
2

0
)

n/
a(

2
0
)

–
5

1
0

0
0

1
1

8
.2

8
1

9
2
.4

6
1
,7

3
6
.1

5
–

1
2

6
.8

8
n/

a(
2

0
)

n/
a(

2
0
)

–
5

to
ta

l
2

1
2
.3

9
2

6
9
.2

0
2
,4

6
2
.8

6
–

2
2

3
.4

7
–

–
–

1
0

1
0

1
.2

4
0
.2

8
2
.9

0
2
,5

4
6
.8

1
(1

1
)

1
.2

7
7

6
8
.9

4
7

6
3
.0

7
3
,0

8
5
.9

3
(1

)
1

0
2

0
2

.0
4

0
.7

1
7
.2

1
n/

a(
2

0
)

2
.0

6
1
,6

9
3
.6

8
(1

)
2
,0

9
1
.5

8
3
,6

0
1
.5

6
(8

)
1

0
5

0
5

.1
0

2
.5

5
2

8
.4

0
n/

a(
2

0
)

5
.1

7
2
,6

3
4
.7

0
(6

)
2
,3

6
1
.3

6
(6

)
3
,6

0
1
.5

3
(6

)
1

0
1

0
0

1
0

.2
7

8
.9

8
9

2
.6

4
–

1
0
.5

3
3
,2

1
1
.5

5
(1

3
)

2
,7

5
2
.2

6
(1

6
)

–
1

0
2

0
0

2
0

.9
4

2
6
.0

5
2

9
5
.6

9
–

2
2
.0

4
n/

a(
2

0
)

n/
a(

2
0
)

–
1

0
5

0
0

5
5

.1
4

1
3

9
.9

6
1
,3

5
1
.5

0
–

6
2
.2

5
n/

a(
2

0
)

n/
a(

2
0
)

–
1

0
1

0
0

0
1

7
2

.9
9

3
5

0
.0

2
3
,6

2
9
.1

8
–

1
5

9
.2

3
n/

a(
2

0
)

n/
a(

2
0
)

–
1

0
to

ta
l

2
6

7
.7

2
5

2
8
.5

5
5
,4

0
7
.5

2
–

2
6

2
.5

5
–

–
–

to
ta

l
to

ta
l

6
9

1
.0

2
8

9
8
.2

4
8
,9

2
5
.3

8
–

7
0

1
.6

3
–

–
–

86 multiple nonlinear knapsack problems
Table

19:M
N

LK
P,nonlinear

w
eights.Solution

values
for

instances
globally

solved
by

C
ouenne.

Sim
ilar

D
issim

ilar

R
eal

Integer
R

eal
Integer

m
n

instance
D

M
M

C
ouenne

D
M

M
C

ouenne
D

M
M

C
ouenne

D
M

M
C

ouenne

2
1

0
0

2
2

3.
2

0
2

3
0.

6
9

2
0

5.
3

7
2

2
8.

6
5

2
1

1.
0

3
2

3
0.

6
2

2
1

1.
9

8
2

2
8.

3
3

1
4

6
2.

0
2

4
7

0.
9

8
4

5
7.

4
9

4
7

1.
8

7
–

–
4

5
7.

0
4

4
7

1.
5

0

2
3

3
8.

8
1

3
4

9.
2

3
–

–
3

4
0.

3
6

3
4

9.
2

9
3

3
9.

0
4

3
4

9.
2

1

3
3

7
3.

1
4

3
8

1.
2

1
3

6
8.

5
6

3
7

9.
9

8
3

6
7.

9
9

3
8

2.
7

2
3

6
7.

8
3

3
8

2.
8

2

4
3

0
9.

9
5

3
1

7.
6

1
–

–
3

0
9.

0
4

3
1

6.
5

3
3

1
2.

2
0

3
1

6.
1

7

5
5

5
3.

6
9

5
8

4.
9

9
5

5
3.

9
2

5
8

3.
2

8
5

5
3.

6
6

5
8

7.
4

8
5

5
4.

0
2

5
8

5.
6

3

6
–

–
2

8
6.

4
2

3
0

3.
5

7
2

5
0.

5
5

2
6

4.
4

3
2

5
0.

5
5

2
6

3.
7

1

7
2

8
6.

7
1

3
0

4.
7

6
2

8
5.

5
0

3
0

5.
0

6
2

1
7.

6
8

2
2

1.
7

8
2

1
7.

8
3

2
2

1.
6

4

8
–

–
4

4
3.

0
8

4
5

5.
5

3
–

–
4

3
8.

3
6

4
5

5.
4

9

9
–

–
4

4
0.

1
8

4
5

4.
9

0
–

–
4

0
7.

3
5

4
5

5.
2

9

1
0

3
1

4.
7

4
3

3
0.

2
5

3
1

4.
7

4
3

2
6.

3
3

3
2

7.
9

4
3

3
0.

4
0

3
2

2.
2

6
3

2
6.

8
6

1
1

3
5

5.
7

4
3

9
6.

7
9

3
5

3.
7

0
3

9
5.

0
0

3
7

4.
3

6
3

9
5.

1
4

3
6

9.
8

3
3

9
3.

5
8

1
2

2
9

1.
9

3
3

0
5.

0
5

2
9

4.
1

8
3

0
2.

8
2

2
9

8.
8

1
2

9
9.

8
2

2
9

2.
9

6
2

9
9.

3
9

1
3

3
2

8.
8

3
3

5
3.

5
9

3
2

8.
7

3
3

5
2.

3
0

3
2

9.
2

0
3

4
9.

6
2

3
2

9.
0

8
3

4
9.

5
0

1
4

3
7

4.
8

5
3

9
0.

8
8

3
7

5.
3

0
3

8
9.

5
6

3
6

1.
3

9
3

9
0.

9
2

3
6

2.
0

7
3

8
9.

3
2

1
5

–
–

4
4

0.
2

9
4

4
0.

7
9

4
0

9.
6

0
4

2
8.

2
6

4
1

1.
7

9
4

2
2.

7
4

1
6

2
4

4.
2

5
2

4
4.

2
5

2
4

4.
2

5
2

4
4.

2
5

2
4

4.
2

5
2

4
4.

2
5

2
4

4.
2

5
2

4
4.

2
5

1
7

3
8

8.
2

2
4

0
1.

2
2

3
9

1.
2

1
4

0
1.

1
6

3
5

0.
1

1
3

5
2.

3
9

3
5

1.
3

2
3

5
2.

1
1

1
8

3
5

8.
2

0
3

6
2.

8
5

3
5

7.
6

5
3

6
2.

0
5

3
3

2.
1

1
3

5
9.

0
7

3
3

0.
5

8
3

5
7.

3
8

1
9

2
1

8.
7

5
2

2
7.

5
0

2
1

7.
8

3
2

2
7.

5
0

2
2

7.
5

0
2

2
7.

5
0

2
2

7.
5

0
2

2
7.

5
0

2
2

0
1
7

–
–

–
–

5
2

5.
5

8
5

3
0.

8
2

5
2

4.
7

0
5

3
0.

7
0

5
1

0
0

–
–

–
–

–
–

2
2

1.
5

6
2

2
7.

4
7

6
–

–
–

–
2

9
3.

8
9

3
0

6.
3

3
2

9
4.

7
6

3
0

5.
6

7

7
–

–
–

–
–

–
2

9
3.

0
4

3
0

3.
3

3

8
–

–
–

–
3

8
3.

5
4

3
9

2.
5

8
3

6
7.

8
0

3
9

0.
9

5

1
0

–
–

–
–

–
–

2
2

6.
8

3
2

3
2.

7
3

1
4

–
–

–
–

3
0

2.
4

8
3

0
9.

3
2

3
0

2.
9

9
3

0
8.

4
6

1
6

–
–

–
–

2
3

8.
8

4
2

5
5.

3
6

2
3

9.
2

3
2

5
4.

7
0

1
8

–
–

–
–

2
5

9.
9

0
2

6
4.

8
9

2
5

9.
1

7
2

6
4.

1
0

1
9

–
–

–
–

4
7

6.
7

9
4

8
6.

3
7

4
6

4.
0

6
4

8
3.

9
8

1
0

1
0

1
–

–
–

–
4

4
9.

4
4

4
5

3.
3

9
4

4
8.

3
8

4
5

2.
7

6

3
–

–
–

–
2

6
1.

6
7

2
6

7.
2

0
2

6
0.

8
6

2
6

6.
6

8

4
–

–
–

–
–

–
3

2
7.

7
3

3
9

9.
6

9

6
–

–
–

–
4

6
9.

9
6

4
8

6.
0

0
4

7
6.

0
2

4
8

3.
2

3

7
–

–
–

–
2

6
3.

7
6

2
6

6.
9

5
2

6
3.

7
6

2
6

5.
7

8

9
–

–
–

–
2

3
2.

6
3

2
3

4.
3

1
2

3
3.

5
7

2
3

3.
5

9

1
2

–
–

–
–

1
7

6.
4

1
1

7
8.

0
4

1
4

6.
2

3
1

6
2.

5
5

1
3

–
–

–
–

2
8

8.
5

7
2

8
8.

7
9

2
8

7.
8

9
2

8
8.

6
7

1
5

–
–

–
–

2
6

7.
6

9
2

7
4.

3
8

2
5

9.
6

8
2

7
4.

0
1

1
6

–
–

–
–

4
3

1.
6

9
4

3
7.

8
5

4
3

2.
1

1
4

3
7.

9
8

4.5 conclusions 87

Ta
bl

e
20

:M
N

LK
P,

lin
ea

r
w

ei
gh

ts
.S

ol
ut

io
n

va
lu

es
fo

r
in

st
an

ce
s

gl
ob

al
ly

so
lv

ed
by

C
ou

en
ne

.

Si
m

ila
r

D
is

si
m

ila
r

R
ea

l
In

te
ge

r
R

ea
l

In
te

ge
r

m
n

in
st

an
ce

D
M

M
C

ou
en

ne
D

M
M

C
ou

en
ne

D
M

M
C

ou
en

ne
D

M
M

C
ou

en
ne

2
1

0
1

–
–

–
–

2
1

3
.7

8
2

1
7
.1

2
2

1
3

.4
1

2
1

7
.0

3

2
2

8
6
.7

4
2

9
1
.8

8
2

8
6
.9

4
2

9
2
.1

1
2

8
1
.8

6
2

9
1
.3

2
2

8
1

.8
6

2
9

0
.3

4

3
2

6
9
.2

1
2

7
1
.6

7
–

–
2

6
2
.4

9
2

7
1
.6

1
2

5
0

.5
9

2
7

1
.2

9

4
–

–
–

–
–

–
2

8
7
.5

1
2

9
6
.5

9

7
–

–
–

–
2

4
6
.8

3
2

5
0
.4

5
2

4
7

.6
6

2
5

0
.2

2

1
0

2
7

9
.4

1
2

9
6
.1

3
–

–
2

8
2
.8

8
2

9
7
.5

3
2

7
8

.6
5

2
9

7
.0

7

1
2

–
–

–
–

4
6

2
.9

3
4

8
4
.8

0
4

6
3

.0
5

4
8

4
.8

4

1
3

–
–

–
–

4
5

2
.9

1
4

8
4
.6

5
4

5
4

.4
4

4
8

5
.2

6

1
5

3
5

1
.9

5
3

5
4
.6

9
–

–
3

3
2
.0

8
3

4
9
.8

0
3

3
2

.2
6

3
4

9
.2

8

1
7

5
9

7
.8

9
6

2
6
.0

7
–

–
4

5
1
.6

4
4

8
8
.1

1
4

5
1

.2
3

4
9

2
.9

0

1
8

–
–

–
–

4
8

1
.0

8
4

9
4
.0

4
–

–
1

9
2

5
0
.9

4
2

5
2
.7

5
–

–
–

–
–

–
5

1
0

1
7

–
–

–
–

4
8

1
.4

4
4

9
6
.1

0
–

–
1

0
1

0
1

–
–

–
–

4
7

7
.9

3
5

1
6
.4

3
4

7
9

.1
3

5
1

7
.0

8

1
1

–
–

–
–

–
–

3
6

3
.2

1
3

6
5
.0

8

1
3

–
–

–
–

2
8

8
.6

6
2

9
5
.0

5
2

8
8

.6
9

2
9

4
.7

8

1
9

–
–

–
–

1
9

5
.2

5
2

0
6
.4

4
–

–

Part IV.

Conclusions

5 C O N C L U S I O N S

In this thesis we have described a new heuristic algorithm for Mixed In-
teger NonLinear Problems, based on the general Multiplicative Weights Up-
date algorithm. The contribution of the thesis is twofold: from one side
we have theoretically introduced the algorithm framework with a new class
of mathematical reformulation, namely the pointwise reformulation, whose
theoretical properties are inspected in detail; from the other side we have il-
lustrated two real-world optimization problems, namely the Mean-Variance
Portfolio Selection and the Multiple NonLinear Knapsack Problems, with re-
gard to which we practically applied and implemented the algorithm.

In the theoretical part, we analyzed in depth the steps of the algorithm
and the general properties of the pointwise reformulation with a particular
emphasis on exactness and efficiency. A pointwise reformulation is exact
if there exists a parameter such that the global optimality properties of the
original formulation are preserved; while a reformulation is efficient if it can
be solved in polynomial time. In case the reformulation is exact and effi-
cient, it is sufficient to solve the (easier) reformulation in order to obtain a
global solution for the original problem. The Multiplicative Weights Update
for Mixed Integer NonLinear Problems is, in fact, a MultiStart type algo-
rithm with a specific choice of the starting points, conducted according to
the Multiplicative Weights Update algorithm. Moreover, we described sev-
eral general building strategies for the pointwise reformulation with respect
to given classes of mathematical optimization problems, such as Polynomial,
Bilinear, and Quadratic Mixed Integer NonLinear Problems.

In the second part, we examined two different real-world problems and
we adapted the general framework to these programs. First, we gave a suf-
ficiently complete survey of the Mean-Variance Portfolio Selection Problems
about the ways to model the behaviors of investors and the restrictions of the
financial markets, robust and stochastic approaches, exact reformulations
and inner approximations, and exact algorithms to solve these challenging
problems. Then, we introduced a Multiplicative Weights Update for a gen-
eral class of portfolio optimization problems, specifying how to generate the
pointwise reformulation and how to choose the promising starting points for
the original formulation. The second problem we dealt with is the Multiple
NonLinear (Separable) Knapsack Problem, characterized by a set of items
and a set of knapsacks and whose target consists in filling the knapsacks
with units of items in order to maximize a given profit function and meeting
knapsack and upper bound constraints. In the general scheme, several vari-
ables can be required to be integer. We apply the Multiple Weights Update

91

92 conclusions

to this kind of problems, but the computational behavior of this algorithm
was quite poor in terms of performances: in facts, it was almost always over-
come by the MultiStart procedure.

Therefore, we considered a constructive heuristic based on three elements:
(i) a greedy type heuristic, already proposed for the single knapsack prob-
lem, and here extended to the multiple case; (ii) a feasibility recovery strat-
egy which, starting from the empty solution, tries to fill the knapsacks
as much as possible with the solution of the surrogate relaxation; (iii) an-
other feasibility recovery procedure which, starting from the surrogate so-
lution, progressively removes the exceeding capacities. Then, we took the
best solution produced by procedures (i)-(iii) and ran a local search post-
processing. The computational tests indicate the resulting algorithm outper-
formed heuristic and exact solution methods available for these knapsack
problems.

We hope that the Multiplicative Weights Update algorithmic methodo-
logy will be applied with success also to other Mixed Integer NonLinear
Problems. However, several questions are still open. It could be interesting
to consider an analysis of the goodness of a given pointwise reformulation
a priori, i.e., a way to theoretically evaluate several formulations and choose
between them. We felt that the general approach presented for the portfo-
lio and the knapsack problems could be easily exploited for other problems
characterized by separable non-convexities and non-concavities. Moreover,
it could be an engaging target defining other automatic strategies to build
the pointwise reformulation for other classes of problems and testing them
over general Mixed Integer NonLinear Problems Libraries. Therefore, there
could be also the possibility to employ several different reformulations at
the same time, alternating from one iteration to another the set with respect
to which the parameter θ is defined: this could be the case of bilinear op-
timization problems where the decision variables can be divided into two
different disjunctive sets. Finally, we point out that the definition of the
pointwise reformulation could be exploited also in more general situations
than the Multiplicative Weights Update Algorithm: it generalizes the defi-
nition of relaxations to bounding reformulations since by solving them we
always obtain a lower bound for the original optimization problem.

Appendix

93

A N OTAT I O N F O R P O R T F O L I O
S E L E C T I O N

Parameters:
r ∈N+ number of possibly risky assets
r ′ ∈N+ number of number of different factors
n ∈N+ number of financial categories
` ∈N+ number of economic sectors
R ∈N+ minimum return level for the portfolio
p ∈N+ confidence level for the probabilistic return constraint
B ∈N+ total investor initial budget
s ∈N+ prescribed minimum level per financial category
n ∈N+ minimum number of categories with positive positions
K,K ∈N+ minimum and maximum number of assets in the portfolio
P ∈ R+ maximum purchasing level per asset
S ∈ R+ maximum selling level per asset
T ∈N+ number of time period for observing the returns of quoted assets
m ∈N+ number of factors in the multiple factor model
µ ∈ Rr mean return vector of the assets
ξ ∈ Rr random vector of expected returns
µ ∈ Rr mean of the r-variate distribution of ξ
ψ ∈ Rr normalized portfolio return
x, x ∈ Rr lower and upper bound for the fraction of the portfolio value
S ∈ Rr size of the batches of the assets
q ∈ Rr+ market value of the quoted assets
x(0) ∈ Rr fraction of the portfolio value already invested
xB ∈ Rr benchmark (or target) portfolio
c ∈ Rr transaction costs per asset
v ∈ Rr costs per unit of asset
f ∈ Rm factor-return vector
u ∈ Rr asset-specific (non-factor) returns vector
Ξ ∈ Rr×r

′
sensitivity-factor matrix

Σ ∈ Rr×r covariance matrix of the r-variate distribution of ξ
Σ ∈ Rr×r covariance return matrix of the assets

Sets:
Ll ⊆ {1, . . . , r} set of assets for economic sector l (l = 1, . . . , `)
Ck ⊆ {1, . . . , r} set of indexes of all risky assets connected with the category k

(k = 1, . . . ,n)

95

96 notation for portfolio selection

Decision Variables:
x ∈ Rr (fraction of the) portfolio value invested per asset
η ∈ Zr+ integer multiple of the lot-size S
δ ∈ {0, 1}r additional binary variables such that δj = 1 (j ∈ {1, . . . , r})

iff xj > 0 (j ∈ {1, . . . , r})
γ ∈ Zr+ additional vector of general integer variables
ζ ∈ {0, 1}n additional binary variables such that ζk = 1 (k ∈ {1, . . . ,n})

iff
∑
j∈Ck xj 6 s

y ∈ {0, 1}` additional binary variables such that yl = 1 (l ∈ {1, . . . , `})
iff
∑
j∈Ll δj = 1

z ∈ {−1, 0, 1}r
additional ternary variables such that zj = 1 (j ∈ {1, . . . , r})
iff xj > 0 (j ∈ {1, . . . , r})
and zj = −1 (j ∈ {1, . . . , r}) iff xj < 0 (j ∈ {1, . . . , r})

s ∈ Rr additional continuous variables such that sj =
√
xj (j ∈

{1, . . . , r})
b ∈ RT additional continuous variables such that bt =

∑r
j=1(νjt−

µj)xj (t ∈ {1, . . . , T })

Functions:
F(x) : R→ R cumulative distribution of the normalized portfolio return
φ : R→ R penalty function for the minimum buy-in threshold con-

straint (3.9)
θ : R→ R penalty function for the round lot purchasing constraints

(3.11)

B I B L I O G R A P H Y

[1] F. Alizadeh and D. Goldfarb. “Second-Order Cone Programming”. In:
Mathematical Programming, Series B 95.1 (2003), pp. 3–51.

[2] E. Anderson et al. LAPACK User’s Guide. Society for Industrial and
Applied Mathematics (SIAM), 1999.

[3] S. Arora, E. Hazan, and S. Kale. “The Multiplicative Weights Update
Method: A Meta-Algorithm and Applications”. In: Thory of Computing
8 (2012), pp. 121–164.

[4] K.J. Arrow. Essays in the Theory of Risk-Bearing. North–Holland, 1970.

[5] C. Audet et al. “Links betwwn Linear Bilevel and Mixed 0-1 Program-
ming”. In: Journal of Optimization Theory and Applications 93.2 (1997),
pp. 273–300.

[6] J. Avèrous and M. Meste. “Skewness for Multivariate Distributions:
Two Approaches”. In: The Annals of Statistics 25.5 (1997), pp. 1984–
1997.

[7] L. Barone. “Bruno de Finetti. The Problem of Full-Risk Insurances”.
In: Journal of Investment Management 4.3 (2006), pp. 19–43.

[8] M.C. Bartholomew-Biggs and S.J. Kane. “A Global Optimization Prob-
lem in Portfolio Selection”. In: Computational Management Science 6.3
(2009), pp. 329–345.

[9] J.E. Beasley. “Obtaining Test Problems via Internet”. In: Journal of
Global Optimization 8.4 (1996), pp. 429–433.

[10] J.E. Beasley. “OR-Library: Distributing Test Problems by Electronic
Mail”. In: Journal of the Operational Research Society 41.11 (1990), pp. 1069–
1072.

[11] P. Belotti et al. “Mixed Integer Nonlinear Optimization”. In: Acta Nu-
merica. Vol. 22. Cambridge University Press, 2013, pp. 1–131.

[12] A. Ben-Tal and A.S. Nemirovskii. Lectures on Modern Convex Optimiza-
tion: Analysis, Algorithms, and Engineering Applications. Society for In-
dustrial and Applied Mathematics (SIAM), 2001.

[13] A. Ben-Tal and A.S. Nemirovskii. “Robust Convex Optimization”. In:
Mathematics of Operations Research 23.4 (1998), pp. 769–805.

[14] A. Ben-Tal and A.S. Nemirovskii. “Robust Solutions of Uncertain Lin-
ear Programs”. In: Operations Research Letters 25.1 (1999), pp. 1–13.

[15] D. Bernoulli. “Specimen Theoriae Novae de Mensura Sortis”. In: Com-
mentarii Academiae Scientiarum Imperialis Petropolitanae 5 (1738).

97

98 bibliography

[16] T. Berthold and A.M. Gleixner. “Undercover: A Primal MINLP Heuris-
tic Exploring a Largest sub-MIP”. In: Mathematical Programming 144.1
(2014), pp. 315–346.

[17] D. Bertsimas, C. Darnell, and R. Soucy. “Portfolio Construction Through
Mixed-Integer Programming at Grantham, Mayo, Van Otterloo and
Company”. In: Interfaces 29.1 (1999), pp. 49–66.

[18] D. Bertsimas and R. Shioda. “Algorithm for Cardinality-Constrained
Quadratic Optimization”. In: Computational Optimization and Applica-
tions 43.1 (2006), pp. 1–22.

[19] M.J. Best and R.R. Grauer. “On the Sensitivity of Mean-Variance-
Efficient Portfolios to Changes in Asset Means: Some Analytical and
Computational Results”. In: The Review of Financial Studies 4.2 (1991),
pp. 331–342.

[20] D. Bienstock. “Computational Study of a Family of Mixed-Integer
Quadratic Programming Problems”. In: Mathematical Programming 74.2
(1996), pp. 121–140.

[21] L.S. Blackford et al. ScaLAPACK User’s Guide. Society for Industrial
and Applied Mathematics (SIAM), 1997.

[22] C.G.E. Boender and H.E. Romeijn. “Stochastic Methods”. In: Hand-
book of Global Optimization. Ed. by R. Horst and H. Tuy. Springer–
Verlag, 1990, pp. 829–869.

[23] I.M. Bomze. “On Standard Quadratic Optimization Problems”. In:
Journal of Global Optimization 13.4 (1998), pp. 369–387.

[24] I.M. Bomze, M. Locatelli, and F. Tardella. “New and Old Bounds for
Standard Quadratic Optimization: Dominance, Equivalence and In-
comparability”. In: Mathematical Programming, Series A 115.1 (2008),
pp. 31–64.

[25] P. Bonami, M. Kilinç, and J. Linderoth. “Algorithms and Software for
Convex Mixed Integer Nonlinear Programs”. In: Mixed Integer Non-
linear Programming. Ed. by J. Lee and S. Leyffer. Vol. 154. The IMA
Volumes in Mathematics and its Applications. Springer–Verlag, 2012,
pp. 1–39.

[26] P. Bonami and M.A. Lejeune. “An Exact Solution Approach for Portfo-
lio Optimization Problems under Stochastic and Integer Constraints”.
In: Operations Research 57.3 (2009), pp. 650–670.

[27] P. Bonami et al. “An Algorithmic Framework for Convex Mixed Inte-
ger Nonlinear Programs”. In: Discrete Optimization 5.2 (2008), pp. 186–
204.

[28] P. Bonami et al. “More Branch-and-Bound experiments in convex non-
linear integer programming”. Preprint ANL/MCS-P1949-0911, Ar-
gonne National Laboratory, Mathematics and Computer Science Di-
vision. 2011.

[29] Bonmin. url: https://projects.coin-or.org/Bonmin.

https://projects.coin-or.org/Bonmin

bibliography 99

[30] J.-F. Bonnans et al. Numerical Optimization: Theoretical and Practical As-
pects. Second. Universitext. Springer–Verlag, 2000.

[31] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, 2004.

[32] S. Boyd et al. Linear Matrix Inequalities in System and Control Theory.
Vol. 15. Studies in Applied Mathematics. Society for Industrial and
Applied Mathematics (SIAM), 1994.

[33] K.M. Bretthauer and B. Shetty. “The Nonlinear Knapsack Problem:
Algorithms and Applications”. In: European Journal of Operational Re-
search 138.3 (2002), pp. 459–472.

[34] R. Bringhurst. The Elements of Typographic Style: 4.0: 20th Anniversary
Edition. Hartley & Marks, 2013.

[35] M. Britten-Jones. “The Sampling Error in Estimates of Mean-Variance
Efficient Portfolio Weights”. In: The Journal of Finance 54.2 (1999), pp. 655–
671.

[36] M. Broadie. “Computing Efficient Frontiers using Estimated Parame-
ters”. In: Annals of Operations Research 45.1 (1993), pp. 21–58.

[37] C. Buchheim et al. “A Frank-Wolfe Based Branch–and–Bound Algo-
rithm for Mixed–Integer Portfolio Optimization”. http://arxiv.org/
abs/1507.05914. 2015.

[38] O.P. Burdakov, C. Kanzow, and A. Schwartz. “Mathematical Programs
with Cardinality Constraints: Reformulation by Complementarity-type
Conditions and a Regularization Method”. In: SIAM Journal of Opti-
mization 26.1 (2016), pp. 397–425.

[39] A. Caprara, H. Kellerer, and U. Pferschy. “The Multiple Subset Sum
Problem”. In: SIAM Journal on Optimization 11.2 (2000), pp. 308–319.

[40] M.F. Cardoso et al. “A Simulated Annealing Approach to the Solution
of MINLP Problems”. In: Computers and Chemical Engineering 21.12

(1997), pp. 1349–1364.

[41] G. Castellani, M. De Felice, and F. Moriconi. Manuale di Finanza. Teoria
del Portafoglio e Mercato Azionario (in Italian). Vol. 2. Il Mulino, 2005.

[42] S. Ceria and R.A. Stubbs. “Incorporating Estimation Errors into Port-
folio Selection: Portfolio Construction”. In: Journal of Asset Manage-
ment 7.2 (2006), pp. 109–127.

[43] V. Cerny. “Thermodynamical Approach to the Travelling Salesman
Problem: An Efficient Simulation Algorithm”. In: Journal of Optimiza-
tion Theory and Applications 45.1 (1985), pp. 41–51.

[44] F. Cesarone, A. Scozzari, and F. Tardella. “A New Method for Mean-
Variance Portfolio Optimization with Cardinality Constraints”. In:
Annals of Operations Research 205.1 (2013), pp. 213–234.

http://arxiv.org/abs/1507.05914
http://arxiv.org/abs/1507.05914

100 bibliography

[45] F. Cesarone, A. Scozzari, and F. Tardella. “Efficient Algorithms for
Mean–Variance Portfolio Optimization with Hard Real–Word Con-
straints”. In: Proceedings of the 18th AFIR Colloquium: Financial Risk in
a Changing World. 2008.

[46] F. Cesarone, A. Scozzari, and F. Tardella. “Efficient Algorithms for
Mean-Variance Portfolio Optimization with Hard Real-Word Constraints”.
In: Giornale dell’Istituto Italiano degli Attuari 72 (2009), pp. 37–56.

[47] F. Cesarone, A. Scozzari, and F. Tardella. “Portfolio Selection Prob-
lems in Practice: A Comparison Between Linear and Quadratic Opti-
mization Models”. 2010. url: http://arxiv.org/abs/1105.3594.

[48] T.-J. Chang, S.C. Yang, and K.J. Chang. “Portfolio Optimization Prob-
lems in Different Risk Measures Using Genetic Algorithm”. In: Expert
Systems with Applications 36.7 (2009), pp. 10529–10537.

[49] T.-J. Chang et al. “Heuristics for cardinality constrained portfolio opti-
mization”. In: Computers and Operations Research 27.13 (2000), pp. 1271–
1302.

[50] Z.-P. Chen and C. Zhao. “Sensitivity to Estimation Errors in Mean-
Variance Models”. In: Acta Mathematicae Applicatae Sinica 19.2 (2003),
pp. 255–266.

[51] C. Chenkuri and S. Khanna. “A PTAS for the Multiple Knapsack Prob-
lem”. In: SIAM Journal on Computing 35.3 (2006), pp. 713–728.

[52] V.K. Chopra. “Mean-Variance Revisited: Near-Optimal Portfolios and
Sensitivity to Input Variations”. In: Journal of Investing 2.1 (1993), pp. 51–
59.

[53] V.K. Chopra and W.T. Ziemba. “The Effect of Errors in Means, Vari-
ances, and Covariances on Optimal Portfolio Choice”. In: Journal of
Portfolio Management 12.2 (1993), pp. 6–11.

[54] J.S. Cohen. Computer Algebra and Symbolic Computation: Mathematical
Methods. A K Peters, Natick, Massachusetts, 2003.

[55] G.M. Constantinides and A.G. Malliaris. “Portfolio Theory”. In: Fi-
nance. Handbooks in Operations Research and Management Science. Ed. by
R.A. Jarrow, V. Maksimovic, and W.T. Ziemba. Vol. 9. North–Holland,
1995, pp. 1–30.

[56] T.E. Copeland and J.F. Weston. Financial Theory and Corporate Policy.
Addison–Wesley, 1988.

[57] O.L.V. Costa and A.C. Paiva. “Robust Portfolio Selection Using Linear-
Matrix Inequalities”. In: Journal of Economics Dynamics and Control 26.6
(2002), pp. 889–909.

[58] R.W. Cottle, J.-S. Pang, and R.E. Stone. The Linear Complementarity
Problem. Classics in Applied Mathematics. Society for Industrial and
Applied Mathematics (SIAM), 2009.

[59] Couenne. url: https://projects.coin-or.org/Couenne.

http://arxiv.org/abs/1105.3594
https://projects.coin-or.org/Couenne

bibliography 101

[60] G. Cournéjols and R.H. Tütüncü. Optimization Methods in Finance. Math-
ematics, Finance and Risk. Cambridge University Press, 2007.

[61] Y. Crama and M. Schyns. “Simulated Annealing for Complex Port-
folio Selection Problems”. In: European Journal of Operational Research
150.3 (2003), pp. 546–571.

[62] C. D’Ambrosio and A. Lodi. “Mixed Integer Nonlinear Programming
Tools: An Updated Practical Overview”. In: Annals of Operations Re-
search 204.1 (2013), pp. 301–320.

[63] C. D’Ambrosio and S. Martello. “Heuristic Algorithms for the Gen-
eral Nonlinear Separable Knapsack Problem”. In: Computers & Opera-
tions Research 38.2 (2011), pp. 505–513.

[64] P. de Fermat. “Observatio Domini Petri de Fermat”. Diophantus of
Alexandria, Arithmetica, Arithmeticorum Liber II. 1670.

[65] B. de Finetti. “Il Problema dei Pieni (in Italian)”. In: Giornale dell’Istituto
Italiano degli Attuari 11 (1940), pp. 1–88.

[66] B. de Finetti. “Sulla Preferibilità (in Italian)”. In: Giornale degli Economisti
e Annali di Economia 11.11–12 (1952), pp. 685–709.

[67] J.A. De Loera et al. “Integer Polynomial Optimization in Fixed Di-
mension”. In: Mathematics of Operations Research 31.1 (2006), pp. 147–
153.

[68] A. Dekker and E. Aarts. “Global Optimization and Simulated Anneal-
ing”. In: Mathematical Programming 50.1–3 (1991), pp. 367–393.

[69] A. Del Pia, S.S. Dey, and M. Molinaro. “Mixed-Integer Quadratic
Programming is in NP”. In: Mathematical Programming 162.1 (2017),
pp. 225–240.

[70] G.F. Deng and W.T. Lin. “Ant Colony Optimization for Markowitz
Mean-Variance Portfolio Model”. In: First International Conference on
Swarm, Evolutionary, and Memetic Computing, SEMCCO 2010. Ed. by
B.K. Panigrahi et al. Swarm, Evolutionary, and Memetic Computing.
Springer–Verlag, 2010, pp. 238–245.

[71] L. Di Gaspero et al. “Hybrid Local Search for Constrained Financial
Portfolio Selection Problem”. In: Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems. 4th
International Conference, CPAIOR 2007, Brussels. Ed. by P. Van Henten-
ryck and L. Wolsey. Vol. 4510. Lecture Notes in Computer Science.
Springer–Verlag, 2007, pp. 44–58.

[72] L. Di Gaspero et al. “Hybrid Metaheuristics for Constrained Portfolio
Selection Problems”. In: Quantitative Finance 11.10 (2011), pp. 1473–
1487.

102 bibliography

[73] L. Di Gaspero et al. “Local Search for Constrained Financial Portfo-
lio Selection Problems with Short Sellings”. In: Learning and Intelli-
gent Optimization. 5th International Conference (LION 5), Rome, January
17–21, 2011. Ed. by C.A. Coello Coello. Vol. 6683. Lecture Notes in
Computer Science. Springer–Verlag, 2011, pp. 450–453.

[74] D. Di Lorenzo et al. “A Concave Optimization-based Approach to
Sparse Portfolio Selection”. In: Optimization Methods and Software 27.6
(2012), pp. 983–1000.

[75] J.J. Dongarra et al. LINPACK User’s Guide. Society for Industrial and
Applied Mathematics (SIAM), 1979.

[76] M. Ehrgott. Multicriteria Optimization. Springer, 2005.

[77] L. El Ghaoui and H. Lebret. “Robust Solutions to Least-Squares Prob-
lems with Uncertain Data”. In: SIAM Journal of Matrix Analysis and
Applications 18.4 (1997), pp. 1035–1064.

[78] L. El Ghaoui, M. Oks, and F. Oustry. “Worst-Case Value-at-Risk and
Robust Portfolio Optimization: A Conic Programming Approach”. In:
Operations Research 51.4 (2003), pp. 543–556.

[79] L. El Ghaoui, F. Oustry, and H. Lebret. “Robust Solutions to Uncertain
Semidefinite Programs”. In: SIAM Journal of Optimization 9.1 (1998),
pp. 33–52.

[80] E.J. Elton and M.J. Gruber. “Modern Porfolio Thory, 1950 to Date”.
In: Journal of Banking and Finance 21.11–12 (1997), pp. 1743–1759.

[81] F.J. Fabozzi, D. Huang, and G. Zhou. “Robust Portfolios: Contribu-
tions from Operations Research and Finance”. In: Annals of Operations
Research 176.1 (2010), pp. 191–220.

[82] F.J. Fabozzi et al. Robust Portfolio Optimization and Management. John
Wiley and Sons, 2007.

[83] E.F. Fama. Foundations of Finance: Portfolio Decisions and Securities Prices.
Basic Books, 1976.

[84] E.F. Fama. “Mandelbrot and the Stable Paretian Hypothesis”. In: The
Journal of Business 36.4 (1963), pp. 420–429.

[85] E.F. Fama. “The Behaviour of Stock-Market Prices”. In: The Journal of
Business 38.1 (1965), pp. 34–105.

[86] B. Fastrich and P. Winker. “Robust Portfolio Optimization with a Hy-
brid Heuristic Algorithm”. In: Computational Management Science 9.1
(2012), pp. 63–88.

[87] A. Fernández and S. Gómez. “Portfolio Selection Using Neural Net-
works”. In: Computers and Operations Research 34.4 (2007), pp. 1177–
1191.

[88] A.V. Fiacco and Y. Ishizuka. “Sensitivity and Stability Analysis for
Nonlinear Programming”. In: Annals of Operations Research 27.1 (1990),
pp. 215–235.

bibliography 103

[89] T.P. Filomena and M.A. Lejeune. “Stochastic Portfolio Optimization
with Proportional Transaction Costs: Convex Reformulations and Com-
putational Experiments”. In: Operations Research Letters 40.3 (2012),
pp. 212–217.

[90] T.P. Filomena and M.A. Lejeune. “Warm–Start Heuristic for Stochas-
tic Portfolio Optimization with Fixed and Proportional Transaction
Costs”. In: Journal of Optimization Theory and Applications (2013).

[91] D.E. Finkel. DIRECT Optimization Algorithm User Guide. Center for Re-
sarch in Scientific Computation, Department of Mathematics, North
Carolina State University. 2003.

[92] M. Fischetti and A. Lodi. “Local Branching”. In: Mathematical Program-
ming, Series B 98.1–3 (2003), pp. 23–47.

[93] P. Fishburn. Utility Theory for Decision Making. John Wiley and Sons,
1970.

[94] R. Fletcher. Practical Methods of Optimization. Second. John Wiley and
Sons, 1987.

[95] C.A. Floudas and V. Visweswaran. “Quadratic Optimization”. In: Hand-
book of Global Optimization. Ed. by R. Horst and P.M. Pardalos. Vol. 2.
Nonconvex Optimization and Its Applications. Springer, 1995, pp. 217–
269.

[96] A. Frangioni, F. Furini, and C. Gentile. “Approximated Perspective
Relaxations: A Project and Lift Approach”. In: Computational Optimiza-
tion and Applications 3.63 (2016), pp. 705–735.

[97] A. Frangioni and C. Gentile. “Perspective Cuts for a Class of Convex
0-1 Mixed Integer Programs”. In: Mathematical Programming, Series A
106.2 (2006), pp. 225–236.

[98] R.M. Freund and S. Mizuno. “Interior Point Methods: Current Status
and Future Directions”. In: High Performance Optimization. Ed. by H.
Frenk et al. Vol. 33. Applied Optimization. Kluwer Academic Publish-
ers, 2000, pp. 441–466.

[99] J.M. Gablonsky. DIRECT Version 2.0. Center for Resarch in Scientific
Computation, Department of Mathematics, North Carolina State Uni-
versity. 2001.

[100] J.M. Gablonsky. “Modifications of the DIRECT Algorithm”. PhD the-
sis. Department of Mathematics, North Carolina State University, 2001.

[101] V. Gabriel, C. Murat, and A. Thiele. “Recent Advances in Robust Op-
timization: An Overview”. In: European Journal of Operational Research
235.3 (2014), pp. 471–483.

[102] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Series of Books in the Mathematical
Sciences. W.H. Freeman and Company, 1979.

[103] F. Glover. “Tabu Search, Part 1”. In: ORSA Journal of Computing 1.3
(1989), pp. 190–205.

104 bibliography

[104] F. Glover. “Tabu Search, Part 2”. In: ORSA Journal of Computing 2.1
(1990), pp. 4–32.

[105] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
1997.

[106] D. Goldfarb and G. Iyengar. “Robust Portfolio Selection Problems”.
In: Mathematics of Operations Research 28.1 (2003), pp. 1–38.

[107] G.H. Golub and C.F. Van Loan. Matrix Computation. Third. Johns Hop-
kins Studies in the Mathematical Science. John Hopkins University
Press, 1996.

[108] J. Gondzio. “Interior Point Methods 25 Years Later”. In: European Jour-
nal of Operational Research 218.3 (2012), pp. 587–601.

[109] R.H. Green and B. Hollifield. “When Will Mean-Variance Efficient
Portfolios be well Diversified?” In: The Journal of Finance 47.5 (1992),
pp. 1785–1809.

[110] O. Günlük and J. Linderoth. “Perspective Reformulation and Appli-
cations”. In: Mixed Integer Nonlinear Programming. Ed. by J. Lee and
S. Leyffer. Vol. 154. The IMA Volumes in Mathematics and its Appli-
cations. Springer–Verlag, 2012, pp. 61–81.

[111] O.K. Gupta and A. Ravindran. “Branch-and-Bound Experiments in
Convex Nonlinear Integer Programming”. In: Management Science 31.12

(1985), pp. 1533–1546.

[112] G. Hanoch and H. Levy. “The Efficiency Analysis of Choices Involv-
ing Risk”. In: Review of Economic Studies 36.3 (1969), pp. 335–346.

[113] G.H. Hardy, J.E. Littlewood, and G. Pòlya. Inequalities. Cambridge
University Press, 1934.

[114] T. Heath. Diophantus of Alexandria. Dover, New York, 1964.

[115] R. Hemmecke et al. “Nonlinear Integer Programming”. In: 50 Years of
Integer Programming 1958-2008: From the Early Years to the State-of-the-
Art. Ed. by M. Jünger et al. Springer–Verlag, 2010, pp. 561–618.

[116] N.J. Higham. “Analysis of the Cholesky Decomposition of a Semi–
Definite Matrix”. In: Reliable Numerical Computation. Ed. by M.G. Cox
and S. Hammarling. Oxford University Press, 1990, pp. 161–185.

[117] N.J. Higham. “Computing the Nearest Correlation Matrix: A Prob-
lem from Finance”. In: IMA Journal of Numerical Analysis 22 (2002),
pp. 329–343.

[118] J.B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimiza-
tion Algorithms. Vol. 1. Springer–Verlag, 1999.

[119] J.B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimiza-
tion Algorithms. Vol. 2. Springer–Verlag, 1999.

[120] L.W. Hoe, J.S. Hafizah, and I. Zaidi. “An Empirical Comparison of
Different Risk Measures in Portfolio Optimization”. In: Business and
Economic Horizons 1.1 (2010), pp. 39–45.

bibliography 105

[121] C.F. Huang and R.H. Litzenberger. Foundations for Financial Economics.
North–Holland, 1988.

[122] J. Humpola, A. Fügenschuh, and T. Lehman. “A Primal Heuristic
for Optimizing the Topology of Gas Networks Based on Dual Infor-
mation”. In: EURO Journal on Computational Optimization (2014). doi:
10.1007/s13675-014-0029-0.

[123] T. Ibaraki and N. Katoh. Resource Allocation Problems. Cambridge, MA:
MIT Press, 1998.

[124] IBM. ILOG CPLEX 12.2 User’s Manual. IBM. 2010.

[125] R.A. Ion. “Nonparametric Statistical Process Control”. PhD thesis.
Korteweg-de Vries Instituut voor Wiskunde, Faculteit der Natuurweten-
schappen, Wiskunde en Informatica, Universiteit van Amsterdam,
2001.

[126] Ipopt. url: https://projects.coin-or.org/Ipopt.

[127] B.I. Jacobs, K.N. Levy, and H.M. Markowitz. “Portfolio Optimization
with Factors, Scenarios, and Realistic Short Positions”. In: Operations
Research 53.4 (2005), pp. 586–599.

[128] K. Jansen. “A Fast Approximation Scheme for the Multiple Knap-
sack Problem”. In: SOFSEM 2012 (38th Conference on Current Treads in
Theory and Practise of Computer Science, Špindlerův Mlýn, Czech Repub-
lic, January 2012). Ed. by M. Bieliková et al. Vol. 7147. Lecture Notes
in Computer Science. 2012, pp. 313–324. doi: 10.1007/978-3-642-
27660-6_26.

[129] K. Jansen. “Parametrized Approximation Scheme for the Multiple
Knapsack Problem”. In: SIAM Journal on Computing 39.4 (2009), pp. 1392–
1412.

[130] R.G. Jeroslow. “There Cannot be any Algorithm for Integer Program-
ming with Quadratic Constraints”. In: Operations Research 21.1 (1973),
pp. 221–224.

[131] J.D. Jobson. “Confidence Regions for the Mean-Variance Efficient Set:
An Alternative Approach to Estimation Risk”. In: Review of Quantita-
tive Finance and Accounting 1.3 (1991), pp. 235–257.

[132] J.D. Jobson and R.M. Korkie. “Putting Markowitz Theory to Work”.
In: Journal of Portfolio Management 7.4 (1981), pp. 70–74.

[133] N.J. Jobst et al. “Computational Aspects of Alternative Portfolio Se-
lection Models in the Presence of Discrete Asset Choice Constraints”.
In: Quantitative Finance 1 (2001), pp. 1–13.

[134] D.R. Jones. “The DIRECT Global Optimization Algorithm”. In: En-
cyclopaedia of Optimization. Ed. by C.A. Floudas and P.M. Pardalos.
Kluwer Academic Publishers, 2001, pp. 421–440.

[135] D.R. Jones, C.D. Pettunen, and B.E. Stuckman. “Lipschitzian Opti-
mization without the Lipschitz Constant”. In: Journal of Optimization
Theory and Applications 79.1 (1993), pp. 157–181.

https://doi.org/10.1007/s13675-014-0029-0
https://projects.coin-or.org/Ipopt
https://doi.org/10.1007/978-3-642-27660-6_26
https://doi.org/10.1007/978-3-642-27660-6_26

106 bibliography

[136] P. Jorion. “Portfolio Optimization in Practice”. In: Financial Analysis
Journal 48.1 (1992), pp. 68–74.

[137] J.G. Kallberg and W.T. Ziemba. “Comparision of Alternative Utility
Functions in Portfolio Selection Problems”. In: Management Science
29.11 (1983), pp. 1257–1276.

[138] J.G. Kallberg and W.T. Ziemba. “Mis-Specifications in Portfolio Selec-
tion Problems”. In: Proceedings of the 2nd Summer Workshop on Risk
and Capital Held. Ed. by G. Bamberg and K. Spremann. Vol. 227. Lec-
ture Notes in Economics and Mathematical Systems. Springer-Verlag,
1984, pp. 74–87.

[139] R. Kannan and C.L. Monma. “On the Computational Complexity of
Integer Programming Problems”. In: Optimization and Operations Re-
search. Ed. by R. Henn, B. Korte, and W. Oettli. Vol. 157. Lecture Notes
in Economics and Mathematical Systems. Springer–Verlag, 1978, pp. 161–
172.

[140] C. Kanzow and A. Schwartz. “A New Regularization Method for
Mathematical Programs with Complementarity Constraints with Strong
Convergence Properties”. In: SIAM Journal of Optimization 23.2 (2013),
pp. 770–798.

[141] S. Kataoka. “A Stochastic Programming Model”. In: Econometrica 31.1–
2 (1963), pp. 181–196.

[142] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Berlin,
Germany: Springer, 2004.

[143] A. Kielbasinski. “A Note on Rounding-Error Analysis of Cholesky
Factorization”. In: Linear Algebra and its Applications 88–89 (1987), pp. 487–
494.

[144] S. Kirkpatrick. “Optimization by Simulated Annealing: Quantitative
Studies”. In: Journal of Statistical Physics 34.5–6 (1984), pp. 975–986.

[145] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. “Optimization by Simu-
lated Annealing”. In: Science 220.4598 (1983), pp. 671–680.

[146] P.N. Kolm, R.H. Tütüncü, and F.J. Fabozzi. “60 Years of Portfolio Op-
timization: Practical Challenges and Current Trends”. In: European
Journal of Operational Research 234.2 (2014), pp. 356–371.

[147] H. Konno and K. Suzuki. “A Fast Algorithm for Solving Large Scale
Mean-Variance Models by Compact Factorization of Covariance Ma-
trices”. In: Journal of the Operations Research Society of Japan 35.1 (1992),
pp. 93–104.

[148] H. Konno and A. Wijayanayake. “Portfolio Optimization Problem un-
der Concave Transaction Costs and Minimal Transaction Unit Con-
straints”. In: Mathematical Programming, Series B 89.2 (2001), pp. 233–
250.

bibliography 107

[149] M. Köppe. “On the Complexity of Nonlinear Mixed-Integer Opti-
mization”. In: Mixed Integer Nonlinear Programming. Ed. by J. Lee and
S. Leyffer. Vol. 154. The IMA Volumes in Mathematics and its Appli-
cations. Springer–Verlag, 2012, pp. 533–557.

[150] A. Kulik and H. Shachnai. “There is No EPTAS for Two-dimensional
Knapsack”. In: Information Processing Letters 110.16 (2010), pp. 707–
710.

[151] E.K. Lee and J.E. Mitchell. “Computational Experience of An Interior-
Point SQP Algorithm in a Parallel Branch-and-Bound Framework”.
In: High Performance Optimization. Ed. by H. Frenk et al. Vol. 33. Ap-
plied Optimization. Springer–Verlag, 2000, pp. 329–347.

[152] M.A. Lejeune. “A VaR Black-Litterman Model for the Construction of
Absolute Return Fund-of-Funds”. In: Quantitative Finance 11.10 (2011),
pp. 1489–1501.

[153] M.A. Lejeune. “Portfolio Optimization with Combinatorial and Down-
side Return Constraints”. In: Selected Contributions from the MOPTA
2012 Conference. Ed. by L.F. Zuluaga and T. Terlaky. Modeling and Op-
timization: Theory and Applications. Springer–Verlag, 2014, pp. 31–
50.

[154] S. Leyffer. “Deterministic Methods for Mixed Integer Nonlinear Pro-
gramming”. PhD thesis. University of Dundee, 1993.

[155] S. Leyffer. “User Manual for MINLP_BB”. Argonne National Labora-
tory, Mathematics and Computer Science Division. 2003.

[156] D. Li and X. Sun. Nonlinear Integer Programming. Vol. 84. International
Series in Operations Research & Management Science. Berlin, Ger-
many: Springer, 2006.

[157] L. Liberti. “Reformulations in Mathematical Programming: Defini-
tions and Systematics”. In: RAIRO–RO 43.1 (2009), pp. 55–86.

[158] L. Liberti. “Writing Global Optimization Software”. In: Global Opti-
mization: From Theory to Implementation. Ed. by L. Liberti and N. Mac-
ulan. Vol. 84. Nonconvex Optimization and Its Applications. Springer,
2006, pp. 211–262.

[159] L. Liberti, S. Cafieri, and F. Tarissan. “Reformulations in Mathemat-
ical Programming: A Computational Approach”. In: Foundations of
Computational Intelligence Vol. 3. Ed. by A. Abraham et al. Studies in
Computational Intelligence 203. Springer, 2009, pp. 153–234.

[160] B. Lin et al. “Using Tabu Search to Solve MINLP Problems for PSE”.
In: Computer Aided Chemical Engineering. 8th International Symposium
on Process Systems Engineering. Ed. by B. Chen and A.W. Westerberg.
Vol. 15. 2003, pp. 541–546.

[161] Z. Lin and Z. Bai. Probability Inequalities. Springer–Verlag, 2011.

108 bibliography

[162] M.S. Lobo, M. Fazel, and S. Boyd. “Portfolio Optimization with Linear
and Fixed Transaction Costs”. In: Annals of Operations Research 152.1
(2007), pp. 341–365.

[163] M.S. Lobo et al. “Applications of Second-Order Cone Programming”.
In: Linear Algebra and its Applications 284.1–3 (1998), pp. 193–228.

[164] M. Locatelli. “Simulated Annealing Algorithms for Global Optimiza-
tion”. In: Handbook of Global Optimization. Ed. by R. Horst and P.M.
Pardalos. Vol. 2. Nonconvex Optimization and Its Applications. Kluwer
Academic Publishers, 2002, pp. 217–269.

[165] M. Locatelli and F. Schoen. Global Optimization: Theory, Algorithms, and
Applications. MPS-SIAM Series on Optimization. Society for Indus-
trial and Applied Mathematics, 2013.

[166] H.T. Loh and P.Y. Papalambros. “A Sequential Linearization Approach
for Solving Mixed-Discrete Nonlinear Design Optimization Problems”.
In: Journal of Mechanical Design 113.1 (1991), pp. 325–334.

[167] Z. Lu and Y. Zhang. “Sparse Approximation via Penalty Decomposi-
tion Methods”. In: SIAM Journal of Optimization 23.4 (2013), pp. 2448–
2478.

[168] S. Lucidi. “Appunti dalle Lezioni di Ottimizzazione Globale (in Ital-
ian)”. Dipartimento di Informatica e Sistemistica “A. Ruberti”, Uni-
versità di Roma “La Sapienza”. 2015–2016.

[169] N. Madras. Lectures on Monte Carlo Methods. The Fields Institute for
Research in Mathematical Sciences. American Mathematical Society,
2002.

[170] B. Mandelbrot. “The Variation of Certain Speculative Prices”. In: The
Journal of Business 36.4 (1963), pp. 394–419.

[171] V. Maniezzo, T. Stützle, and S. Voß, eds. Hybridizing Metaheuristics and
Mathematical Programming. Vol. 10. Annals of Information Systems.
New York: Springer, 2009.

[172] R. Mansini, W. Ogryczak, and M.G. Speranza. Linear and Mixed Integer
Programming for Portfolio Optimization. Euro Advanced Tutorials on
Operational Research. Springer–Verlag, 2015.

[173] R. Mansini, W. Ogryczak, and M.G. Speranza. “Twenty Years of Lin-
ear Programming Based Portfolio Optimization”. In: European Journal
of Operational Research 234.2 (2014), pp. 518–535.

[174] R. Mansini and M.G. Speranza. “Heuristic Algorithms for the Portfo-
lio Selection Problem with Minimum Transaction Lots”. In: European
Journal of Operational Research 114.2 (1999), pp. 219–233.

[175] H.M. Markowitz. “de Finetti Scoops Markowitz”. In: Journal of Invest-
ment Management 4.3 (2006), pp. 5–18.

[176] H.M. Markowitz. “Mean-Variance Approximations to Expected Util-
ity”. In: European Journal of Operational Research 234.2 (2014), pp. 346–
355.

bibliography 109

[177] H.M. Markowitz. “Portfolio Selection”. In: The Journal of Finance 7.1
(1952), pp. 77–91.

[178] H.M. Markowitz. Portfolio Selection: Efficient Diversification of Investi-
men. Cowles Foundation for Research in Economics at Yale University,
1959.

[179] H.M. Markowitz. “Portfolio Theory: As I Still See It”. In: Annual Re-
view of Financial Economics 2 (2010), pp. 1–23.

[180] H.M. Markowitz and G.P. Todd. Mean–Variance Analysis in Portfolio
Choice and Capital Markets. Revised. John Wiley and Sons, 2000.

[181] A.W. Marshall, I. Olkin, and B.C. Arnorld. Inequalities: Theory of Ma-
jorization and Its Applications. Second. Springer Series in Statistics. Springer–
Verlag, 2011.

[182] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer
Implementations. Chichester, New York: John Wiley & Sons, 1990.

[183] R. Martí. “Multi-Start Methods”. In: Handbook of Methaheuristics. Ed.
by F. Glover and G. A. Kochenberger. Vol. 57. International Series in
Operations Research & Management Science. Springer, 2003.

[184] J. Meinguet. “Refined Error Analyses of Cholesky Factorization”. In:
SIAM Journal of Numerical Analysis 20.6 (1983), pp. 1243–1250.

[185] L. Mencarelli and C. D’Ambrosio. “Complex Portfolio Selection via
Convex Mixed-Integer Quadratic Programming: A Survey”. Labo-
raire d’Informatique (LIX), École Polytechnique, Palaiseau, France.
2017.

[186] L. Mencarelli, C. D’Ambrosio, and S. Martello. “Relaxations and Heuris-
tics for the General Multiple NonLinear Knapsack”. DEI, University
of Bologna, Italy and LIX, École Polytechnique, Palaiseau, France.
2017.

[187] L. Mencarelli, Y. Sahraoui, and L. Liberti. “A Multiplicative Weights
Update Algorithm for MINLP”. In: EURO Journal on Computational
Optimization 5.1–2 (2017), pp. 31–86.

[188] L. Mencarelli et al. “Heuristics for the General Multiple Non-linear
Knapsack Problem”. In: Electronics Notes in Discrete Mathematics 55

(2016), pp. 69–72.

[189] N. Metropolis et al. “Equation of State Calculations by Fast Comput-
ing Machines”. In: The Journal of Chemical Physics 21.6 (1953), pp. 1087–
1092.

[190] R.O. Michaud. “The Markowitz Optimization Enigma: is “Optimized”
Optimal?” In: Financial Analysis Journal 45.1 (1989), pp. 31–42.

[191] T.C. Mills. “Stylized Facts on the Temporal and Distributional Proper-
ties of Daily FT–SE Returns”. In: Applied Financial Economics 7.6 (1997),
pp. 599–604.

110 bibliography

[192] J.E. Mitchell and S. Braun. “Rebalancing an Investment Portfolio in
the Presence of Convex Transaction Costs and Market Impact Costs”.
In: Optimization Methods and Software 28.3 (2013), pp. 523–542.

[193] C.B. Moler and G.W. Stewart. “On the Householder-Fox Algorithm
for Decomposing a Projection”. In: Journal of Computational Physics
28.1 (1978), pp. 82–91.

[194] A. Montesano. “de Finetti and the Arrow-Pratt Measure of Risk Aver-
sion”. In: Bruno de Finetti Radical Probabilist. Ed. by M.C. Galavotti.
Texts in Philosophy (Book 8). College Pubblication, 2009, pp. 115–
127.

[195] R. Moral-Escudero, R. Ruiz-Torrubiano, and A. Suarez. “Selection
of Optimal Investment Portfolios with Cardinality Constraints”. In:
IEEE Congress on Evolutionary Computation, CEC’06. 2006, pp. 2382–
2388.

[196] A. Munawar et al. “arGA: Adaptive Resolution Micro-Genetic Algo-
rithm with Tabu Search to Solve MINLP Problems Using GPU”. In:
Massively Parallel Evolutionary Computation on GPGPUs. Ed. by S. Tsut-
sui and P. Collet. Natural Computing Series. Springer–Verlag, 2013.

[197] A. Munawar et al. “Solving Extremely Difficult MINLP Problems Us-
ing Adaptive Resolution Micro-GA with Tabu Search”. In: Learning
and Intelligent Optimization. 5th International Conference (LION 5), Rome,
January 17–21, 2011. Ed. by C.A. Coello Coello. Vol. 6683. Lecture
Notes in Computer Science. Springer–Verlag, 2011, pp. 203–217.

[198] K.G. Murty and S.N. Kabadi. “Some NP-complete Problems in Quadratic
and Nonlinear Programming”. In: Mathematical Programming 39.2 (1987),
pp. 117–129.

[199] A.S. Nemirovskii and M.J. Todd. “Interior–Point Methods for Opti-
mization”. In: Acta Numerica. Vol. 17. Cambridge University Press,
2008, pp. 191–234.

[200] Y. Nesterov and A.S. Nemirovskii. Interior–Point Polynomial Algorithms
in Convex Programming. Society for Industrial and Applied Mathemat-
ics (SIAM), 1994.

[201] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in
Operations Research. Springer–Verlag, 1999.

[202] C. Papadimitriou. Computational Complexity. Addison–Wesley, 1993.

[203] P.M. Pardalos and G.P. Rodgers. “Computational Aspects of a Branch
and Bound Algorithm for Quadratic Zero-One Programming”. In:
Computing 45.2 (1990), pp. 131–144.

[204] P.M. Pardalos and G. Schnitger. “Checking Local Optimality in Con-
strained Quadratic Programming is NP-hard”. In: Operations Research
Letters 7.1 (1988), pp. 33–35.

[205] A.F. Perold. “Large-Scale Portfolio Optimization”. In: Management Sci-
ence 30.10 (1984), pp. 1143–1160.

bibliography 111

[206] S.A. Plotkin, D.B. Shmoys, and E. Tardos. “Fast Approximation Algo-
rithm for Fractional Packing and Covering Problems”. In: Mathematics
of Operations Research 20.2 (1995), pp. 257–301.

[207] F.A. Potra and S.J. Wright. “Interior-Point Methods”. In: Journal of
Computational and Applied Mathematics 124 (2000), pp. 281–302.

[208] J.W. Pratt. “Risk Adversion in the Small and in the Large”. In: Econo-
metrica 32.1–2 (1964), pp. 122–136.

[209] F. Pressacco and P. Serafini. “The Origins of the Mean-Variance Ap-
proach in Fnance: Revisiting de Finetti 65 Years Later”. In: Decisions
in Economics and Finance 30.1 (2007), pp. 19–49.

[210] S.T. Rachev et al. “An Empirical Examination of Daily Stock Return
Distributions for U.S. Stocks”. In: Data Analysis and Decision Support.
Studies in Classification, Data Analysis, and Knowledge Organiza-
tion. Springer–Verlag, 2005, pp. 269–281.

[211] R.T. Rockafellar. Theory of Subgradients and Its Applications to Problems
of Optimization: Convex and Nonconvex Functions. Vol. 1. Research and
Exposition in Mathematics. Heldermann Verlag, 1981.

[212] M. Rubinstein. A History of the Theory of Investments: My Annotated
Bibliography. Wiley Finance 335. John Wiley and Sons, 2006.

[213] M. Rubinstein. “Bruno de Finetti and Mean-Variance Portfolio Selec-
tion”. In: Journal of Investment Management 4.3 (2006), pp. 3–4.

[214] M. Rubinstein. “Markowitz’s Portfolio Selection: A Fifty-Year Retro-
spective”. In: The Journal of Finance 57.3 (2002), pp. 1041–1045.

[215] R.Y. Rubinstein and D.P. Kroese. Simulation and the Monte Carlo Method.
John Wiley and Sons, 2008.

[216] R. Ruiz-Torrubiano and A. Suarez. “Hybrid Approaches and Dimen-
sionality Reduction for Portfolio Selection with Cardinality Constraints”.
In: IEEE Computational Intelligence Magazine 5.2 (2010), pp. 92–107.

[217] R. Saigal, L. Vandenberghe, and H. Wolkowicz. Handbook of Semidefi-
nite Programming and Applications. Kluwer Academic Publishers, 2000.

[218] A. Schaerf. “Local Search Techniques for Constrained Portfolio Selec-
tion Problems”. In: Computational Economics 20.3 (2002), pp. 177–190.

[219] B. Scherer and D. Martin. Introduction to Modern Portfolio Optimization.
Springer–Verlag, 2005.

[220] F. Schoen. “Stocastic Global Optimization: Stopping Rules”. In: Ency-
clopedia of Optimizaton. Ed. by C.A. Floudas and P.M. Pardalos. Kluwer
Academic Publishers, 2001, pp. 297–301.

[221] F. Schoen. “Stocastic Global Optimization: Two-Phase Methods”. In:
Encyclopedia of Optimizaton. Ed. by C.A. Floudas and P.M. Pardalos.
Kluwer Academic Publishers, 2001, pp. 297–301.

112 bibliography

[222] F. Schoen. “Two-Phase Methods for Global Optimization”. In: Hand-
book of Global Optimization. Ed. by P.M. Pardalos and H.E. Romeijn.
Vol. 2. Nonconvex Optimization and Its Applications. Springer, 2002,
pp. 151–177.

[223] Scip. url: http://scip.zib.de.

[224] A. Scozzari and F. Tardella. “A Clique Algorithm for Standard Quadratic
Programming”. In: Discrete Applied Mathematics 156.2439–2448 (2008).

[225] R.J. Serfling. “Multivariate Symmetry and Asymmetry”. In: Encyclo-
pedia of Statistical Sciences. Ed. by S. Kotz et al. Second. Vol. 8. John
Wiley and Sons, 2006, pp. 5338–5345.

[226] D.K. Shaw, S. Liu, and L. Kopman. “Lagrangian Relaxation Proce-
dure for Cardinality-Constrained Portfolio Optimization”. In: Opti-
mization Methods and Software 23.3 (2008), pp. 411–420.

[227] H.D. Sherali. “Personal Communication”. 2007.

[228] M. Sipser. Introduction to the Theory of Computation. PWS Publishing,
1997.

[229] H. Soleimani, H.R. Golmakani, and M.H. Salimi. “Markowitz-based
Portfolio Selection with Minimum Transaction Lots, Cardinality Con-
straints and Regarding Sector Capitalization using Genetic Algorithm”.
In: Expert Systems with Applications 36.3 (2009), pp. 5058–5063.

[230] F.J. Solis and R.J-B. Wets. “Minimization by Random Search Tech-
niques”. In: Mathematics of Operations Research 6.1 (1981), pp. 19–30.

[231] B.H. Solnick. “The Advantages of Domestic and International Diver-
sification”. In: International Capital Markets. Ed. by E.J. Elton and M.J.
Gruber. North–Holland, 1975.

[232] L. Sommer. “Daniel Bernoulli. Exposition of a New Theory on the
Measurement of Risk”. In: Econometrica 22.1 (1954), pp. 23–36.

[233] J. Sun. “Rounding-Error and Perturbation Bounds for the Cholesky
and LDLT Factorizations”. In: Linear Algebra and its Applications 173

(1992), pp. 77–97.

[234] X. Sun, X. Zheng, and D. Li. “Recent Advances in Mathematical
Programming with Semi-continuous Variables and Cardinality Con-
straint”. In: Journal of the Operations Research Society of China 1.1 (2013),
pp. 55–77.

[235] C. Tadonki and J.-P. Vial. “Portfolio Selection with Cardinality and
Bound Constraints”. University of Geneva. 2003.

[236] F. Tardella. “Connections between Continuous and Combinatorial
Optimization Problems through an Extension of the Fundamental
Theorem of Linear Programming”. In: Electronics Notes in Discrete
Mathematics 17 (2004), pp. 257–262.

[237] R.H. Tütüncü and M. Koenig. “Robust Asset Allocation”. In: Annals
of Operations Research 132.1–4 (2004), pp. 157–187.

http://scip.zib.de

bibliography 113

[238] L. Vandenberghe and S. Boyd. “Semidefinite Programming”. In: SIAM
Review 38.1 (1996), pp. 49–95.

[239] S. Vigerske and M.R. Bussieck. “MINLP Solver Software”. In: Wiley
Encyclopedia of Operations Research and Management Science (EORMS).
Ed. by J.J. Cochran et al. John Wiley and Sons, 2010.

[240] J. von Neumann and O. Morgenstern. Theory of Games and Economic
Behaviour. Princeton University Press, 1944.

[241] B.A. Wallingford. “A Survey and Comparison of Porfolio Selection
Models”. In: Journal of Financial and Quantitative Analysis 2.2 (1967),
pp. 85–106.

[242] A.J. Wiles. “Modular Elliptic Curves and Fermat’s Last Theorem”. In:
Annals of Mathematics 141.3 (1995), pp. 443–551.

[243] M. Woodside-Oriakhi, C. Lucas, and J.E. Beasley. “Heuristic Algo-
rithms for the Cardinality Constrained Efficient Frontier”. In: Euro-
pean Journal of Operational Research 213.3 (2011), pp. 538–550.

[244] M.H. Wright. “The Interior-Point Revolution in Optimization: His-
tory, Recent Developments, and Lasting Consequences”. In: Bulletin
of American Mathematical Society 42.1 (2004), pp. 39–56.

[245] H.-G. Xue, G.-X. Xu, and Z.-X. Feng. “Mean-Variance Portfolio Opti-
mal Problem under Concave Transaction Cost”. In: Applied Mathemat-
ics and Computation 174.1 (2006), pp. 1–12.

[246] K. Ye, P. Parpas, and B. Rustem. “Robust Portfolio Optimization: A
Conic Programming Approach”. In: Computational Optimization and
Applications 52.2 (2012), pp. 463–481.

[247] S. Žaković and B. Rumstem. “Semi-Infinite Programming and Appli-
cations to Minimax Problems”. In: Annals of Operations Research 124.1–
4 (2002), pp. 81–110.

[248] S.H. Zanakis and J.R. Evans. “Heuristic “Optimization”: Why, When
and How to Use It”. In: Interfaces 11.5 (1981), pp. 84–91.

[249] B. Zhang and B. Chen. “Heuristic and Exact Solution Method for Con-
vex Nonlinear Knapsack Problem”. In: Asia-Pacific Journal of Opera-
tional Research 29.5 (2012), p. 1250031. doi: 10.1142/S0217595912500315.

[250] B. Zhang and Z. Hua. “A Unified Method for a Class of Convex Sep-
arable Nonlinear Knapsack Problems”. In: European Journal of Opera-
tional Research 191.1 (2008), pp. 1–6.

[251] X. Zheng et al. “Successive Convex Approximations to Cardinality-
constrained Convex Programs: A Piecewise-linear DC Approach”. In:
Computational Optimization and Applications 59.1-2 (2014), pp. 379–397.

[252] X.J. Zheng, X.L. Sun, and D. Li. “Improving the Performance of MIQP
Solvers for Quadratic Programs with Cardinality and Minimum Thresh-
old Constraints: A Semidefinite Program Approach”. In: INFORMS
Journal on Computing 26.4 (2014), pp. 690–703.

https://doi.org/10.1142/S0217595912500315

Titre : L’Algorithme Multiplicative Weights Update pour la Programmation non
linéaire en nombres entiers: Théorie, Applications et Limites

Mots clefs : Algorithme Multiplicative Weights Update, Programmation non linéaire en nombres
entiers, Sélection du portefeuille moyenne-variance, Sac à dos multiple non linéaire

Résumé : L’objectif de cette thèse consiste à pré-
senter un nouvel algorithme pour la programma-
tion non linéaire en nombres entiers, inspirée par
la méthode Multiplicative Weights Update et qui
compte sur une nouvelle classe de reformulations,
appelées les reformulations ponctuelles.
La programmation non linéaire en nombres en-
tiers est un sujet très difficile et fascinant dans
le domaine de l’optimisation mathématique à la
fois d’un point de vue théorique et computation-
nel. Il est possible de formuler de nombreux pro-
blèmes dans ce schéma général et, habituellement,
ils posent de réels défis en termes d’efficacité et de

précision de la solution obtenue quant aux procé-
dures de résolution.
La thèse est divisée en trois parties principales: une
introduction composée par le Chapitre 1, une défi-
nition théorique du nouvel algorithme dans le Cha-
pitre 2 et l’application de cette nouvelle méthodolo-
gie à deux problèmes concrets d’optimisation, tels
que la sélection optimale du portefeuille avec le cri-
tère moyenne-variance dans le Chapitre 3 et le pro-
blème du sac à dos non linéaire dans le Chapitre 4.
Conclusions et questions ouvertes sont présentées
dans le Chapitre 5.

Title : The Multiplicative Weights Update Algorithm for Mixed Integer NonLi-
near Programming: Theory, Applications, and Limitations

Keywords : Mixed Integer NonLinear Programming, Multiplicative Weights Update Algorithm, Mean-
Variance Portfolio, Multiple NonLinear Knapsack Problem

Abstract : This thesis presents a new algorithm
for Mixed Integer NonLinear Programming, inspi-
red by the Multiplicative Weights Update frame-
work and relying on a new class of reformulations,
called the pointwise reformulations.
Mixed Integer NonLinear Programming is a hard
and fascinating topic in Mathematical Optimiza-
tion both from a theoretical and a computational
viewpoint. Many real-world problems can be cast
this general scheme and, usually, are quite challen-
ging in terms of efficiency and solution accuracy

with respect to the solving procedures.
The thesis is divided in three main parts: a fore-
word consisting in Chapter 1, a theoretical founda-
tion of the new algorithm in Chapter 2, and the ap-
plication of this new methodology to two real-world
optimization problems, namely the Mean-Variance
Portfolio Selection in Chapter 3, and the Multiple
NonLinear Separable Knapsack Problem in Chap-
ter 4. Conclusions and open questions are drawn in
Chapter 5.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

2

	Dedication
	Contents
	List of Figures
	List of Tables
	Abstract
	Résumé
	Acknowledgments
	Acronyms
	 Overview
	1 Introduction
	1.1 Mixed Integer NonLinear Programming
	1.2 MINLP Algorithms
	1.3 The MultiStart Algorithm
	1.4 The Multiplicative Weights Update Algorithm
	1.5 Formulations and Reformulations
	1.6 Thesis Structure

	 Theory
	2 The MWU Algorithm for MINLP
	2.1 Introduction
	2.2 Pointwise Reformulations
	2.3 Generating Pointwise Reformulations
	2.3.1 A First-Order Reformulation
	2.3.2 Polynomial MINLPs
	2.3.3 Bilinear MINLPs
	2.3.4 Quadratic MINLPs

	2.4 MWU Algorithm for MINLPs
	2.4.1 Sampling
	2.4.2 Solution and Refinement
	2.4.3 Computing MWU Costs/Gains

	2.5 Conclusions

	 Applications
	3 Mean-Variance Portfolio Selection Problem
	3.1 Introduction
	3.2 Portfolio Optimization
	3.3 Robust and Probabilistic Approaches
	3.3.1 Robust Approaches
	3.3.2 Probabilistic Approach

	3.4 Additional Constraints
	3.4.1 Buy-in Thresholds
	3.4.2 Round Lot Purchasing
	3.4.3 Sector Diversification
	3.4.4 Cardinality Constraints
	3.4.5 Sector Capitalization
	3.4.6 Turnover and Trading
	3.4.7 Benchmark Constraints
	3.4.8 Collateral Constraints

	3.5 Objective Functions
	3.5.1 Penalty Functions
	3.5.2 Balanced Objective Functions

	3.6 Compact Reformulations
	3.6.1 SOCC Inner Approximations
	3.6.2 Variance Reformulation
	3.6.3 Period-separable Reformulation

	3.7 Exact Algorithms
	3.8 MWU for a Class of MVPS Problems
	3.8.1 Pointwise Reformulation
	3.8.2 Computing MWU Costs/Gains
	3.8.3 Computational Experiments

	3.9 Conclusions

	4 Multiple NonLinear Knapsack Problems
	4.1 Introduction
	4.2 MWU for the MNLKP
	4.2.1 Pointwise Reformulation
	4.2.2 Computing MWU Costs/Gains
	4.2.3 Computational Experiments

	4.3 Relaxations
	4.4 Constructive Heuristics
	4.4.1 Discretization Heuristic
	4.4.2 Surrogate Heuristics
	4.4.3 Local Search
	4.4.4 Overall Algorithm
	4.4.5 Computational Experiments

	4.5 Conclusions

	 Conclusions
	5 Conclusions
	Appendix
	A Notation for Portfolio Selection
	 Bibliography

