C. V. Index, Global mobile data traffic forecast update https://www.cisco.com/c/en/us/solutions/collateral/service-provider/ visual-networking-index-vni/mobile-white-paper-c11-520862.html, pp.2016-2021

W. Su, S. Lee, and M. Gerla, Mobility prediction in wireless networks, MILCOM 2000 Proceedings. 21st Century Military Communications. Architectures and Technologies for Information Superiority (Cat. No.00CH37155), pp.491-495, 2000.
DOI : 10.1109/MILCOM.2000.905001

URL : http://www.cs.ucla.edu/NRL/wireless/PAPER/wsu-milcom00.ps.gz

P. N. Pathirana, A. V. Savkin, and S. Jha, Mobility modelling and trajectory prediction for cellular networks with mobile base stations, Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing , MobiHoc '03, pp.213-221, 2003.
DOI : 10.1145/778415.778441

URL : http://www.cse.unsw.edu.au/%7Enrl/pub/papers/mobimanacm03.pdf

W. Soh and H. S. Kim, QoS provisioning in cellular networks based on mobility prediction techniques, IEEE Communications Magazine, vol.41, pp.86-92, 2003.

P. Baier, F. Durr, and K. , TOMP: Opportunistic traffic offloading using movement predictions, 37th Annual IEEE Conference on Local Computer Networks, pp.50-58, 2012.
DOI : 10.1109/LCN.2012.6423668

V. A. Siris and D. Kalyvas, Enhancing mobile data offloading with mobility prediction and prefetching, Proceedings of the seventh ACM international workshop on Mobility in the evolving internet architecture, pp.17-22
DOI : 10.1145/2502935.2502940

URL : http://mm.aueb.gr/publications/2012-route_prefetch_MobiArch2012_cr.pdf

H. Petander, Energy-aware network selection using traffic estimation, Proceedings of the 1st ACM workshop on Mobile internet through cellular networks, MICNET '09, pp.55-60, 2009.
DOI : 10.1145/1614255.1614268

X. Zhuo, W. Gao, G. Cao, and S. Hua, An Incentive Framework for Cellular Traffic Offloading, IEEE transactions on mobile computing, pp.541-555, 2014.
DOI : 10.1109/TMC.2013.15

R. Zhu, B. Liu, D. Niu, Z. Li, and H. V. Zhao, Network Latency Estimation for Personal Devices: A Matrix Completion Approach, IEEE/ACM Transactions on Networking, vol.25, issue.2, pp.724-737, 2010.
DOI : 10.1109/TNET.2016.2612695

Z. Li, J. Bi, and S. Chen, Traffic Prediction-Based Fast Rerouting Algorithm for Wireless Multimedia Sensor Networks, International Journal of Distributed Sensor Networks, vol.9, issue.5, p.176293, 2013.
DOI : 10.1109/HICSS.2000.926982

Y. Xu, J. Winter, and W. Lee, Prediction-based strategies for energy saving in object tracking sensor networks, IEEE International Conference on Mobile Data Management, pp.346-357, 2004.

D. G. Taylor and M. Levin, Predicting mobile app usage for purchasing and information-sharing, International Journal of Retail & Distribution Management, vol.42, issue.8, pp.759-774, 2014.
DOI : 10.1016/j.csda.2004.03.005

C. Zhang, X. Ding, G. Chen, K. Huang, X. Ma et al., Nihao: A Predictive Smartphone Application Launcher, International Conference on Mobile Computing, Applications, and Services, pp.294-313
DOI : 10.1145/2307636.2307648

URL : http://www.cs.uml.edu/~glchen/papers/nihao-mobicase12.pdf

M. C. Gonzalez, C. A. Hidalgo, and A. Barabasi, Understanding individual human mobility patterns, Nature, vol.89, issue.7196, pp.779-782, 2008.
DOI : 10.1038/nature06958

C. Song, Z. Qu, N. Blumm, and A. Barabasi, Limits of Predictability in Human Mobility, Science, vol.73, issue.3 Pt 2, pp.1018-1021, 2010.
DOI : 10.1038/20144

M. W. Horner and M. E. Kelly, Embedding economies of scale concepts for hub network design, Journal of Transport Geography, vol.9, issue.4, pp.255-265, 2001.
DOI : 10.1016/S0966-6923(01)00019-9

P. Wang, T. Hunter, A. M. Bayen, K. Schechtner, and M. C. González, Understanding Road Usage Patterns in Urban Areas, Scientific Reports, vol.1, issue.1, p.1001, 2012.
DOI : 10.1103/PhysRevLett.96.138701

URL : http://www.nature.com/articles/srep01001.pdf

L. Pappalardo, D. Pedreschi, Z. Smoreda, and F. Giannotti, Using big data to study the link between human mobility and socio-economic development, 2015 IEEE International Conference on Big Data (Big Data), pp.871-878, 2015.
DOI : 10.1109/BigData.2015.7363835

X. Gabaix, P. Gopikrishnan, V. Plerou, and H. E. Stanley, A theory of power-law distributions in financial market fluctuations, Nature, vol.46, issue.6937, pp.267-270, 2003.
DOI : 10.1111/j.1540-6261.1991.tb02683.x

F. Rebecchi, M. Dias-de-amorim, V. Conan, A. Passarella, R. Bruno et al., Data Offloading Techniques in Cellular Networks: A Survey, IEEE Communications Surveys & Tutorials, vol.17, issue.2, pp.580-603
DOI : 10.1109/COMST.2014.2369742

URL : https://hal.archives-ouvertes.fr/hal-01081713

D. Naboulsi, M. Fiore, S. Ribot, R. Stanica, S. Hoteit et al., Large-Scale Mobile Traffic Analysis: A Survey, IEEE Communications Surveys & Tutorials, vol.18, issue.1, pp.124-161, 2014.
DOI : 10.1109/COMST.2015.2491361

URL : https://hal.archives-ouvertes.fr/hal-01132385

Y. Zheng, L. Zhang, X. Xie, and W. Ma, Mining interesting locations and travel sequences from GPS trajectories, Proceedings of the 18th international conference on World wide web, WWW '09, pp.791-800, 2009.
DOI : 10.1145/1526709.1526816

URL : http://www2009.eprints.org/80/1/p791.pdf

P. Baumann, W. Kleiminger, and S. Santini, How long are you staying?, Proceedings of the 19th annual international conference on Mobile computing & networking, MobiCom '13, pp.231-234
DOI : 10.1145/2500423.2504583

U. Paul, A. P. Subramanian, M. M. Buddhikot, and S. R. Das, Understanding traffic dynamics in cellular data networks, 2011 Proceedings IEEE INFOCOM, pp.882-890, 2011.
DOI : 10.1109/INFCOM.2011.5935313

URL : http://www.wings.cs.sunysb.edu/~upaul/paper/Infocom11-final-version.pdf

S. Ostring and H. Sirisena, The influence of long-range dependence on traffic prediction, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240), pp.1000-1005, 2001.
DOI : 10.1109/ICC.2001.936787

M. Crovella and A. Bestavros, Self-similarity in World Wide Web traffic: evidence and possible causes, IEEE/ACM Transactions on Networking, vol.5, issue.6, pp.835-846, 1997.
DOI : 10.1109/90.650143

URL : http://www.cs.bu.edu/fac/best/res/papers/sigmetrics96.pdf

A. Sang and S. Li, A predictability analysis of network traffic, Computer Networks, vol.39, issue.4, pp.329-345, 2002.
DOI : 10.1016/S1389-1286(01)00304-8

X. Zhou, Z. Zhao, R. Li, Y. Zhou, and H. Zhang, The predictability of cellular networks traffic, 2012 International Symposium on Communications and Information Technologies (ISCIT), pp.973-978, 2012.
DOI : 10.1109/ISCIT.2012.6381046

R. Li, Z. Zhao, X. Zhou, J. Palicot, and H. Zhang, The prediction analysis of cellular radio access network traffic: From entropy theory to networking practice, IEEE Communications Magazine, vol.52, issue.6, pp.234-240, 2014.
DOI : 10.1109/MCOM.2014.6829969

URL : https://hal.archives-ouvertes.fr/hal-01073344

M. Z. Shafiq, L. Ji, A. X. Liu, and J. Wang, Characterizing and modeling internet traffic dynamics of cellular devices, Proceedings of the ACM SIGMETRICS joint international conference on Measurement and modeling of computer systems, SIGMETRICS '11, pp.305-316, 2011.
DOI : 10.1145/1993744.1993776

E. Mucelli-rezende, A. Oliveira, K. Viana, C. Naveen, and . Sarraute, Mobile data traffic modeling: Revealing temporal facets, Computer Networks, vol.112, issue.9, pp.176-193, 2017.
DOI : 10.1016/j.comnet.2016.10.016

URL : https://hal.archives-ouvertes.fr/hal-01073129

H. Jo, M. Karsai, J. Karikoski, and K. Kaski, Spatiotemporal correlations of handsetbased service usages, EPJ Data Science, vol.1, issue.9, pp.1-18, 2012.

A. Nika, A. Ismail, B. Y. Zhao, S. Gaito, G. P. Rossi et al., Understanding and Predicting Data Hotspots in Cellular Networks, Mobile Networks and Applications, vol.3, issue.1, pp.402-413, 2015.
DOI : 10.1023/A:1010933404324

F. Xu, Y. Lin, J. Huang, D. Wu, H. Shi et al., Big Data Driven Mobile Traffic Understanding and Forecasting: A Time Series Approach, IEEE transactions on services computing, pp.796-805, 2016.
DOI : 10.1109/TSC.2016.2599878

F. Xu, Y. Li, H. Wang, P. Zhang, and D. Jin, Understanding Mobile Traffic Patterns of Large Scale Cellular Towers in Urban Environment, IEEE/ACM Transactions on Networking, vol.25, issue.2, pp.1147-1161, 2017.
DOI : 10.1109/TNET.2016.2623950

M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang, Characterizing geospatial dynamics of application usage in a 3G cellular data network, 2012 Proceedings IEEE INFOCOM, pp.1341-1349
DOI : 10.1109/INFCOM.2012.6195497

I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci, Measuring serendipity, Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference, IMC '09, pp.267-279, 2009.
DOI : 10.1145/1644893.1644926

C. L. Williamson, E. Halepovic, H. Sun, and Y. Wu, Characterization of CDMA2000 cellular data network traffic, The IEEE Conference on Local Computer Networks 30th Anniversary (LCN'05)l, pp.0-719, 2005.
DOI : 10.1109/LCN.2005.37

Y. Li, J. Yang, and N. Ansari, Cellular smartphone traffic and user behavior analysis, 2014 IEEE International Conference on Communications (ICC), pp.1326-1331, 2014.
DOI : 10.1109/ICC.2014.6883505

N. Bui, F. Michelinakis, and J. Widmer, A model for throughput prediction for mobile users, 20th European Wireless Conference; Proceedings of, pp.1-6, 2014.

N. Bui and J. Widmer, Modelling Throughput Prediction Errors as Gaussian Random Walks, The 1st KuVS Workshop on Anticipatory Networks, 2014.

B. Liu, D. Niu, Z. Li, and H. V. Zhao, Network latency prediction for personal devices: Distance-feature decomposition from 3D sampling, 2015 IEEE Conference on Computer Communications (INFOCOM), pp.307-315, 2015.
DOI : 10.1109/INFOCOM.2015.7218395

G. Ranjan, H. Zang, Z. Zhang, and J. Bolot, Are call detail records biased for sampling human mobility?, ACM SIGMOBILE Mobile Computing and Communications Review, vol.16, issue.3, pp.33-49, 2012.
DOI : 10.1145/2412096.2412101

URL : https://research.sprintlabs.com/publications/uploads/MC2R_2012_CDR_Bias_Mobility.pdf

D. Zhang, J. Huang, Y. Li, F. Zhang, C. Xu et al., Exploring human mobility with multi-source data at extremely large metropolitan scales, Proceedings of the 20th annual international conference on Mobile computing and networking, MobiCom '14, p.2014
DOI : 10.1145/2639108.2639116

URL : http://www-users.cs.umn.edu/~tianhe/Papers/mobicom-zhang.pdf

E. Chung and A. Shalaby, A Trip Reconstruction Tool for GPS-based Personal Travel Surveys, Transportation Planning and Technology, vol.12, issue.5, pp.381-401, 2005.
DOI : 10.1016/S0968-090X(00)00026-7

G. L. Ulmer, Internet invention: From literacy to electracy, 2003.

S. Hoteit, S. Secci, Z. He, C. Ziemlicki, Z. Smoreda et al., Content consumption cartography of the paris urban region using cellular probe data, Proceedings of the first workshop on Urban networking, UrbaNe '12, pp.43-48
DOI : 10.1145/2413236.2413246

URL : https://hal.archives-ouvertes.fr/hal-01131516

E. M. Oliveira, A. C. Viana, K. P. Naveen, and C. Sarraute, Measurement-driven mobile data traffic modeling in a large metropolitan area, 2015 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp.230-235, 2015.
DOI : 10.1109/PERCOM.2015.7146533

URL : https://hal.archives-ouvertes.fr/hal-01089434

A. Fumo, M. Fiore, and R. Stanica, Joint spatial and temporal classification of mobile traffic demands, INFOCOM 2017-IEEE Conference on Computer Communications, pp.1-9

Y. Zang, F. Ni, Z. Feng, S. Cui, and Z. Ding, Wavelet transform processing for cellular traffic prediction in machine learning networks, 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), pp.458-462
DOI : 10.1109/ChinaSIP.2015.7230444

Z. Yi, X. Dong, X. Zhang, and W. W. , Spatial traffic prediction for wireless cellular system based on base stations social network, 2016 Annual IEEE Systems Conference (SysCon), 2016.
DOI : 10.1109/SYSCON.2016.7490601

R. Keralapura, A. Nucci, Z. Zhang, and L. Gao, Profiling users in a 3g network using hourglass co-clustering, Proceedings of the sixteenth annual international conference on Mobile computing and networking, MobiCom '10, pp.341-352
DOI : 10.1145/1859995.1860034

Y. Zhang and A. Årvidsson, Understanding the characteristics of cellular data traffic, Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks: operations, challenges, and future design, pp.13-18

R. Li, Z. Zhao, J. Zheng, C. Mei, Y. Cai et al., The Learning and Prediction of Application-Level Traffic Data in Cellular Networks, IEEE Transactions on Wireless Communications, vol.16, issue.6, pp.3899-3912, 2017.
DOI : 10.1109/TWC.2017.2689772

C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, C. Ziemlicki et al., Not All Apps Are Created Equal, Proceedings of the 13th International Conference on emerging Networking EXperiments and Technologies , CoNEXT '17, pp.180-186
DOI : 10.1007/BF02294245

P. Fiadino, M. Schiavone, and P. Casas, Vivisecting whatsapp through large-scale measurements in mobile networks, ACM SIGCOMM Computer Communication Review, pp.133-134
DOI : 10.1145/2619239.2631461

Q. Deng, Z. Li, Q. Wu, C. Xu, and G. Xie, An empirical study of the WeChat mobile instant messaging service, 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp.390-395, 2017.
DOI : 10.1109/INFCOMW.2017.8116408

J. Erman, A. Gerber, K. Ramadrishnan, S. Sen, and O. Spatscheck, Over the top video, Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference, IMC '11, pp.127-136
DOI : 10.1145/2068816.2068829

Z. Li, X. Wang, N. Huang, M. A. Kaafar, Z. Li et al., An Empirical Analysis of a Large-scale Mobile Cloud Storage Service, Proceedings of the 2016 ACM on Internet Measurement Conference, IMC '16, pp.287-301
DOI : 10.1145/2716281.2836094

T. M. Cover and J. A. Thomas, Elements of Information Theory, p.11, 1991.

M. Feder and N. Merhav, Relations between entropy and error probability, IEEE Transactions on Information Theory, vol.40, issue.1, pp.259-266, 1994.
DOI : 10.1109/18.272494

X. Lu, E. Wetter, N. Bharti, A. J. Tatem, and L. Bengtsson, Approaching the Limit of Predictability in Human Mobility, Scientific Reports, vol.453, issue.1, pp.2923-2934, 2013.
DOI : 10.1038/nature06958

G. Smith, J. Wieser, D. Goulding, and . Barrack, A refined limit on the predictability of human mobility, 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp.88-94, 2014.
DOI : 10.1109/PerCom.2014.6813948

J. Wang, Y. Mao, J. Li, Z. Xiong, and W. Wang, Predictability of Road Traffic and Congestion in Urban Areas, PLOS ONE, vol.4, issue.7346, p.121825, 2015.
DOI : 10.1371/journal.pone.0121825.g007

G. Ding, J. Wang, Q. Wu, Y. Yao, R. Li et al., On the limits of predictability in real-world radio spectrum state dynamics: from entropy theory to 5G spectrum sharing, IEEE Communications Magazine, vol.53, issue.7, pp.178-183, 2015.
DOI : 10.1109/MCOM.2015.7158283

R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications, 2000.

K. Papagiannaki, N. Taft, Z. Zhang, and C. Diot, Long-term forecasting of Internet backbone traffic: observations and initial models, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428), pp.1178-1188, 2003.
DOI : 10.1109/INFCOM.2003.1208954

N. Sadek and A. Khotanzad, Multi-scale high-speed network traffic prediction using k-factor Gegenbauer ARMA model, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577), pp.2148-2152, 2004.
DOI : 10.1109/ICC.2004.1312898

Y. Qiao, J. A. Skicewicz, and P. A. Dinda, An Empirical Study of the Multiscale Predictability of Network Traffic, HPDC, 2004.

B. Zhou, D. He, Z. Sun, and W. H. Ng, Network traffic modeling and prediction with arima/garch, Proc. of HET-NETs ConferenceCited on page 11.) [75] C. M. Bishop, Pattern Recognition and Machine Learning, pp.1-10, 1971.
DOI : 10.1007/0-387-34167-6_5

L. Song, D. Kotz, R. Jain, and X. He, Evaluating next-cell predictors with extensive wi-fi mobility data, IEEE transactions on mobile computing, pp.1633-1649, 2006.

J. Jeong, M. Leconte, and A. Proutiere, Cluster-aided mobility predictions, IEEE INFOCOM 2016, The 35th Annual IEEE International Conference on Computer Communications, pp.1-9, 2016.
DOI : 10.1109/INFOCOM.2016.7524491

URL : http://arxiv.org/pdf/1507.03292

A. Moffat, Implementing the PPM data compression scheme, IEEE Transactions on Communications, vol.38, issue.11, pp.1917-1921, 1990.
DOI : 10.1109/26.61469

URL : http://www.cs.toronto.edu/~roweis/csc310-2006/extras/implementing_ppm.pdf

P. Jacquet, W. Szpankowski, and I. Apostol, An universal predictor based on pattern matching, preliminary results Mathematics and Computer Science: Algorithms, Trees, Combinatorics and Probabilities, pp.75-85, 2000.
DOI : 10.1007/978-3-0348-8405-1_7

K. Gopalratnam and D. J. Cook, ACTIVE LEZI: AN INCREMENTAL PARSING ALGORITHM FOR SEQUENTIAL PREDICTION, International Journal on Artificial Intelligence Tools, vol.24, issue.04, pp.917-929, 2004.
DOI : 10.1002/0471200611

J. H. Friedman, machine., The Annals of Statistics, vol.29, issue.5, pp.1189-1232, 2001.
DOI : 10.1214/aos/1013203451

J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, vol.61, pp.85-117, 2015.
DOI : 10.1016/j.neunet.2014.09.003

URL : http://arxiv.org/pdf/1404.7828

G. Rutka, Neural network models for internet traffic prediction, Elektronika ir Elektrotechnika, vol.68, issue.4, pp.55-58, 2006.

C. Iovan, A. Olteanu-raimond, T. Couronné, and Z. Smoreda, Moving and Calling: Mobile Phone Data Quality Measurements and Spatiotemporal Uncertainty in Human Mobility Studies, Geographic Information Science at the Heart of Europe, pp.247-265
DOI : 10.1007/978-3-319-00615-4_14

M. Ficek and L. Kencl, Inter-Call Mobility model: A spatio-temporal refinement of Call Data Records using a Gaussian mixture model, 2012 Proceedings IEEE INFOCOM, pp.469-477, 2012.
DOI : 10.1109/INFCOM.2012.6195786

M. Seshadri, S. Machiraju, A. Sridharan, J. Bolot, C. Faloutsos et al., Mobile call graphs, Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 08, pp.596-604, 2008.
DOI : 10.1145/1401890.1401963

D. Naboulsi, R. Stanica, and M. Fiore, Classifying call profiles in large-scale mobile traffic datasets, IEEE INFOCOM 2014, IEEE Conference on Computer Communications, pp.1806-1814
DOI : 10.1109/INFOCOM.2014.6848119

URL : https://hal.archives-ouvertes.fr/hal-01005050

Y. Dong, J. Tang, T. Lou, B. Wu, and N. V. Chawla, How Long Will She Call Me? Distribution, Social Theory and Duration Prediction, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp.16-31
DOI : 10.1007/978-3-642-40991-2_2

URL : http://www.cse.nd.edu/~nchawla/papers/duration.pdf

P. O. De-melo, L. Akoglu, C. Faloutsos, and A. A. Loureiro, Surprising Patterns for the Call Duration Distribution of Mobile Phone Users, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp.354-369
DOI : 10.1007/978-3-642-15939-8_23

T. Cheng, J. Wang, J. Haworth, B. Heydecker, and A. Chow, A Dynamic Spatial Weight Matrix and Localized Space-Time Autoregressive Integrated Moving Average for Network Modeling, Geographical Analysis, vol.76, issue.376, pp.75-97
DOI : 10.1016/S0169-2070(03)00010-4

URL : http://onlinelibrary.wiley.com/doi/10.1111/gean.12026/pdf

J. Ma, H. Li, F. Yuan, and T. Bauer, Deriving Operational Origin-Destination Matrices From Large Scale Mobile Phone Data, International Journal of Transportation Science and Technology, vol.2, issue.3, pp.183-204
DOI : 10.1260/2046-0430.2.3.183

Q. Xu, A. Gerber, Z. M. Mao, and J. Pang, AccuLoc, Proceedings of the 9th international conference on Mobile systems, applications, and services, MobiSys '11, pp.183-196
DOI : 10.1145/1999995.2000013

Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang et al., Identifying diverse usage behaviors of smartphone apps, Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference, IMC '11, pp.329-344
DOI : 10.1145/2068816.2068847

Z. Zhao, S. Shaw, Y. Xu, F. Lu, J. Chen et al., Understanding the bias of call detail records in human mobility research, International Journal of Geographical Information Science, vol.4, issue.9, pp.1738-1762, 2016.
DOI : 10.1016/j.sste.2010.03.002

S. Jiang, G. A. Fiore, Y. Yang, J. Ferreira-jr, E. Frazzoli et al., A review of urban computing for mobile phone traces, Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, UrbComp '13, pp.2013-2027
DOI : 10.1145/2505821.2505828

W. Wu, Y. Wang, J. B. Gomes, D. T. Anh, S. Antonatos et al., Oscillation Resolution for Mobile Phone Cellular Tower Data to Enable Mobility Modelling, 2014 IEEE 15th International Conference on Mobile Data Management, pp.321-328
DOI : 10.1109/MDM.2014.46

URL : http://www1.i2r.a-star.edu.sg/%7Exlli/publication//OscillationResolution.pdf

R. S. Campos, Evolution of Positioning Techniques in Cellular Networks, from 2G to 4G, Wireless Communications and Mobile Computing, vol.10, issue.2, p.14, 2017.
DOI : 10.1109/35.667415

J. Schlaich, T. Otterstätter, and M. Friedrich, Generating trajectories from mobile phone data, Proceedings of the 89th annual meeting compendium of papers, 2010.

S. Isaacman, R. Becker, R. Caceres, S. Kobourov, M. Martonosi et al., Ranges of human mobility in Los Angeles and New York, 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp.88-93, 2011.
DOI : 10.1109/PERCOMW.2011.5766977

C. Song, Z. Qu, N. Blumm, and A. Barabási, Supplementary material, pp.16-18, 1018.
URL : https://hal.archives-ouvertes.fr/hal-01359058

R. Ahas, S. Silm, E. Saluveer, and O. Järv, Modelling home and work locations of populations using passive mobile positioning data Location based services and TeleCartography II, pp.301-315, 2009.

S. Isaacman, R. Becker, R. Caceres, S. Kobourov, M. Martonosi et al., Identifying Important Places in People???s Lives from Cellular Network Data, Lecture Notes in Computer Science, pp.133-151, 2011.
DOI : 10.1145/1287853.1287868

URL : http://www.cs.arizona.edu/%7Ekobourov/pervasive.pdf

H. Zang and J. Bolot, Mining call and mobility data to improve paging efficiency in cellular networks, Proceedings of the 13th annual ACM international conference on Mobile computing and networking , MobiCom '07, pp.123-134, 2007.
DOI : 10.1145/1287853.1287868

C. Song, T. Koren, P. Wang, and A. Barabási, Modelling the scaling properties of human mobility, Nature Physics, vol.42, issue.10, pp.818-823, 2010.
DOI : 10.1007/s10745-006-9083-4

Y. De-montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel, Unique in the Crowd: The privacy bounds of human mobility, Scientific Reports, vol.23, issue.1, pp.18-42, 2013.
DOI : 10.1007/BF00344744

N. B. Ponieman, A. Salles, and C. Sarraute, Human mobility and predictability enriched by social phenomena information, Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM '13, pp.1331-1336
DOI : 10.1145/2492517.2500236

URL : http://arxiv.org/pdf/1311.5917.pdf

F. Simini, M. C. González, A. Maritan, and A. Barabási, A universal model for mobility and migration patterns, Nature, vol.104, issue.7392, pp.96-100, 2012.
DOI : 10.1073/pnas.0610245104

URL : http://dspace.mit.edu/bitstream/1721.1/77896/1/Gonzalez_A%20universal%20model.pdf

D. Zhang, J. Zhao, F. Zhang, and T. He, coMobile, Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS '15, pp.1-40
DOI : 10.1145/1772690.1772698

URL : http://dl.acm.org/ft_gateway.cfm?id=2820821&type=pdf

R. Ganti, F. Ye, and H. Lei, Mobile crowdsensing: current state and future challenges, IEEE Communications Magazine, vol.49, issue.11, pp.32-39, 2011.
DOI : 10.1109/MCOM.2011.6069707

E. Mucelli-rezende, A. Oliveira, C. Viana, J. Sarraute, I. Brea et al., On the regularity of human mobility, Pervasive and Mobile Computing, vol.33, issue.57, pp.73-90, 2016.
DOI : 10.1016/j.pmcj.2016.04.005

N. Eagle and A. , Reality mining: sensing complex social systems, Personal and Ubiquitous Computing, vol.10, issue.2, pp.255-268, 2005.
DOI : 10.1109/2.940013

C. Song, Z. Qu, N. Blumm, and A. Barabasi, Limits of Predictability in Human Mobility, Science, vol.73, issue.3 Pt 2, pp.1018-1021, 2010.
DOI : 10.1038/20144

M. Seshadri, S. Machiraju, A. Sridharan, J. Bolot, C. Faloutsos et al., Mobile call graphs, Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 08, pp.596-604, 2008.
DOI : 10.1145/1401890.1401963

M. Coscia, S. Rinzivillo, F. Giannotti, and D. Pedreschi, Optimal Spatial Resolution for the Analysis of Human Mobility, 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp.248-252, 2012.
DOI : 10.1109/ASONAM.2012.50

S. Hoteit, S. Secci, S. Sobolevsky, G. Pujolle, and C. Ratti, Estimating Real Human Trajectories through Mobile Phone Data, 2013 IEEE 14th International Conference on Mobile Data Management, pp.148-153, 2013.
DOI : 10.1109/MDM.2013.85

URL : https://hal.archives-ouvertes.fr/hal-01131515

S. Phithakkitnukoon, Z. Smoreda, and P. Olivier, Socio-Geography of Human Mobility: A Study Using Longitudinal Mobile Phone Data, PLoS ONE, vol.33, issue.6, p.39253, 2012.
DOI : 10.1371/journal.pone.0039253.s010

C. Iovan, A. Olteanu-raimond, T. Couronné, and Z. Smoreda, Moving and Calling: Mobile Phone Data Quality Measurements and Spatiotemporal Uncertainty in Human Mobility Studies, Geographic Information Science at the Heart of Europe, pp.247-265
DOI : 10.1007/978-3-319-00615-4_14

L. M. Silveira, J. M. De-almeida, H. T. Marques-neto, C. Sarraute, and A. Ziviani, MobHet: Predicting human mobility using heterogeneous data sources, Computer Communications, vol.95, pp.54-68, 2016.
DOI : 10.1016/j.comcom.2016.04.013

S. Lu, Z. Fang, X. Zhang, S. Shaw, L. Yin et al., Understanding the Representativeness of Mobile Phone Location Data in Characterizing Human Mobility Indicators, ISPRS International Journal of Geo-Information, vol.116, issue.1, p.7, 2017.
DOI : 10.1093/oxfordjournals.aje.a113284

G. Khodabandelou, V. Gauthier, M. El-yacoubi, and M. Fiore, Population estimation from mobile network traffic metadata, 2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2016.
DOI : 10.1109/WoWMoM.2016.7523554

URL : https://hal.archives-ouvertes.fr/hal-01426320

J. A. Hartigan, Clustering Annual review of biophysics and bioengineering, pp.81-102, 1973.

T. Hastie, J. Friedman, and R. Tibshirani, The Elements of Statistical Learning, p.53, 2001.

L. Kong, M. Xia, X. Liu, G. Chen, Y. Gu et al., Data Loss and Reconstruction in Wireless Sensor Networks, IEEE Transactions on Parallel and Distributed Systems, vol.25, issue.11, pp.2818-2828, 2014.
DOI : 10.1109/TPDS.2013.269

G. Takács, I. Pilászy, B. Németh, and D. Tikk, Matrix factorization and neighbor based algorithms for the netflix prize problem, Proceedings of the 2008 ACM conference on Recommender systems, RecSys '08, pp.267-274, 2008.
DOI : 10.1145/1454008.1454049

C. M. Schneider, V. Belik, T. Couronne, Z. Smoreda, and M. C. Gonzalez, Unravelling daily human mobility motifs, Journal of The Royal Society Interface, vol.10, issue.3, pp.20130246-20130246, 2013.
DOI : 10.1186/1471-2334-10-190

URL : http://rsif.royalsocietypublishing.org/content/royinterface/10/84/20130246.full.pdf

Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, Large-Scale Parallel Collaborative Filtering for the Netflix Prize, Lecture Notes in Computer Science, vol.5034, issue.63, pp.337-348, 2008.
DOI : 10.1007/978-3-540-68880-8_32

A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, Multiverse recommendation, Proceedings of the fourth ACM conference on Recommender systems, RecSys '10, pp.79-86
DOI : 10.1145/1864708.1864727

T. G. Kolda and B. W. Bader, Tensor Decompositions and Applications, SIAM Review, vol.51, issue.3, pp.455-500, 2009.
DOI : 10.1137/07070111X

URL : http://csmr.ca.sandia.gov/~tgkolda/pubs/bibtgkfiles/SAND2007-6702.pdf

J. Portela and M. Alencar, Cellular network as a multiplicatively weighted voronoi diagram, CCNC 2006. 2006 3rd IEEE Consumer Communications and Networking Conference, 2006., pp.913-917, 2006.
DOI : 10.1109/CCNC.2006.1593171

H. Kuhn and A. Tucker, Proceedings of 2nd berkeley symposium, 1951.

S. Boyd and L. Vandenberghe, Convex Optimization, 2004.

I. Kontoyiannis, P. Algoet, Y. Suhov, and A. Wyner, Nonparametric entropy estimation for stationary processes and random fields, with applications to English text, IEEE Transactions on Information Theory, vol.44, issue.3, pp.1319-1327, 1998.
DOI : 10.1109/18.669425

M. Ankerst, M. M. Breunig, H. Kriegel, and J. Sander, Optics, Proceedings of the 1999 ACM SIGMOD international conference on Management of data -SIGMOD '99, pp.49-60, 1999.

P. Tan, M. Steinbach, and V. Kumar, Introduction to data mining, 2006.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization

Y. De-montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel, Unique in the Crowd: The privacy bounds of human mobility, Scientific Reports, vol.23, issue.1, p.1376, 2013.
DOI : 10.1007/BF00344744