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Abstract [English]

The recovery of correlated signals from their linear combinations is a challenging task
and has many applications in signal processing. We focus on two problems that are the
blind separation of sparse sources and the adaptive subtraction of multiple events in
seismic processing. A special focus is put on convolutive mixtures: for both problems,
finite impulse response filters can indeed be estimated for the recovery of the desired
signals.

For instantaneous and convolutive mixing models, we address the necessary and
sufficient conditions for the exact extraction and separation of sparse sources by using
the ℓ0 pseudo-norm as a contrast function. Equivalences between sparse component
analysis and disjoint component analysis are investigated.

For adaptive multiple subtraction, we discuss the limits of methods based on indepen-
dent component analysis and we highlight equivalence with ℓp-norm-based methods.
We investigate how other regularization parameters may have more influence on the
estimation of the desired primaries. Finally, we propose to improve the robustness of
adaptive subtraction by estimating the extracting convolutive filters directly in the
curvelet domain. Computation and memory costs are limited by using the uniform
discrete curvelet transform.

Keywords: seismic processing • seismic multiples • adaptive filtering • blind source
separation • sparse component analysis • curvelet transform.
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Résumé [Français]

La séparation de signaux corrélés à partir de leurs combinaisons linéaires est une
tâche difficile et possède plusieurs applications en traitement du signal. Nous étudions
deux problèmes, à savoir la séparation aveugle de sources parcimonieuses et le filtrage
adaptatif des réflexions multiples en acquisition sismique. Un intérêt particulier est
porté sur les mélanges convolutifs : pour ces deux problèmes, des filtres à réponses
impulsionnelles finies peuvent être estimés afin de récupérer les signaux désirés.

Pour les modèles de mélange instantanés et convolutifs, nous donnons les conditions
nécessaires et suffisantes pour l’extraction et la séparation exactes de sources parci-
monieuses en utilisant la pseudo-norme ℓ0 comme une fonction de contraste. Des
équivalences entre l’analyse en composantes parcimonieuses et l’analyse en composantes
disjointes sont examinées.

Pour la soustraction adaptative des réflexions multiples en sismiques, nous discutons
les limites des méthodes basées sur l’analyse en composantes indépendantes et nous
soulignons l’équivalence avec les méthodes basées sur les normes ℓp. Nous examinons
de quelle manière les paramètres de régularisation peuvent être plus décisifs pour
l’estimation des primaires. Enfin, nous proposons une amélioration de la robustesse
de la soustraction adaptative en estimant les filtres adaptatifs directement dans le
domaine des curvelets. Les coûts en calcul et en mémoire peuvent être atténués par
l’utilisation de la transformée en curvelet discrète et uniforme.

Mots Clés : traitement sismique • réflexions multiples • filtrage adaptatif • séparation
aveugle de sources • analyse en composantes parcimonieuses • transformée en curvelet.
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Resumo [Português]

A separação de sinais correlacionados a partir de suas combinações lineares é uma tarefa
difícil e tem diversas aplicações diferentes em processamento de sinais. Nesta tese,
estudamos dois problemas, que são a separação cega de fontes esparsas e a filtragem
adaptativa de reflexões múltiplas em aquisição sísmica. Um interesse particular é dado
às misturas convolutivas. Para esses dois problemas, filtros de resposta ao impulso
finita podem ser estimados para recuperar os sinais desejados.

Para os modelos instantâneos e convolutivos, apresentamos as condições necessárias e
suficientes para a extração e a separação exatas de fontes esparsas usando a pseudo-
norma ℓ0 como uma função de contraste. Equivalência entre a análise de componentes
esparsas e a análise de componentes disjuntas são examinadas.

Para a subtração adaptativa de reflexões múltiplas em sísmica, discutimos os limites de
métodos baseados em análise de componentes independentes e realçamos equivalências
entre os métodos baseados em normas ℓp. Investigamos de qual maneira os parâmetros
de regularização podem ser mais decisivos para a estimação das primárias. Finalmente,
propomos uma melhora da robustez da subtração adaptativa com a estimação de filtros
adaptativos diretamente no domínio de curvelets. Os custos de cálculo e de memória
podem ser atenuados com o uso da transformada curvelet discreta e uniforme.

Palavras-chave: processamento śısmico • reflexões múltiplas • filtragem adapta-
tiva • separação cega de fontes • análise de componentes esparsas • transformada
curvelet.
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List of symbols and
abbreviations

A the mixing system
Cs[µ] the curvelet transform of a signal s

d[x] an observation vector ∈ R
M

fi(si) the PDF of a source (signal) si

Fi(si) the CDF of a source (signal) si

Fs[ω] the Fourier transform of a signal s

F−1 the inverse Fourier transform
gi a non-linear function
H the mapping system
hf the differential entropy associated to the PDF f
I(s1, s2) the mutual information between s1 and s2

m[x] the predicted multiples
M the number of observations
N the number of sources
p[x] the primaries
Qs the negentropy of s
Rs[t, q] the Radon transform of a signal s

s[x] a source (signal) vector ∈ R
N

s a random variable
s̃ an outcome of a random variable s
s a centralized random variable
s̆ a normalized random variable
s̆ a standardized random variable
S↓ a down-sampling operator
ui an extracted vector u = wT X

W the separating system
x index position
y, z index position (used for convolution)
∆ a diagonal matrix
κn the n-th cumulent
µn the n-th moment
Π a permutation matrix

⊙ the Hadamard product
⊗ the correlation product
∗ the convolution product
‖s‖p the ℓp-norm of a vector s

∇φ the gradient of an objective function φ
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BSE bind source extraction
BSS blind source separation
CDF cumulative density function
CMP common mid-point gather
COG common offset gather
CSG common shot gather
DCA disjoint component analysis
DCT discret curvelet transform
DE differential evolution
DO disjoint orthogonal
FIR finite impulse response
ICA independent component analysis
MIMO multiple-input and multiple-output
MISO multiple-input and single-output
NMO normal move-out
PCA principal component analysis
PDF probability density function
SCA sparse component analysis
SL0 smooth ℓ0

UDCT uniform discrete curvelet transform
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Résumé du chapitre [français]

Ce premier chapitre introduit le contexte, les objectifs et les contributions de la
thèse. L’exploration sismique consiste à estimer les paramètres de la sub-surface de la
Terre solide en analysant sa réponse à des vibrations. Les données enregistrées à la
surface sont introduites an sein d’un problème inverse afin d’estimer les paramètres
physiques des structures en sub-surface (tels que la vitesse de propagation des ondes,
l’atténuation. . . ).

La plupart des méthodes font l’hypothèse que les données enregistrées ne contiennent
que des événements primaires n’ayant été réfléchis qu’une seule fois vers la surface.
Lors d’une acquisition en mer, la surface libre entre l’eau et l’air agit comme un miroir
sur lequel les ondes se réfléchissent. Il en résulte dans les données des événements
cohérents, appelés “réflexions multiples”, qui doivent être soigneusement enlevés avant
de pouvoir passer au problème inverse.

Il existe plusieurs méthodes pour atténuer les multiples. Une partie d’entre elles
consiste à prédire les réflexions multiples et à les soustraire des données. Cependant,
les prédictions ne sont jamais parfaites et une étape de soustraction adaptative doit
être mise en place. Si cette étape n’est pas faite avec soin, on prend le risque d’atténuer
les primaires, c’est-à-dire le signal pertinent. Récemment, il a été proposé d’utiliser
des méthodes venant du problème de séparation aveugle de sources pour effectuer le
filtrage adaptatif des multiples. Ces méthodes intéressantes viennent compléter les
méthodes plus traditionnelles basées sur l’usage de normes. Elles font l’hypothèse que
les primaires et les multiples sont statistiquement indépendantes.

La séparation aveugle de source est un problème d’une grande occurrence. L’analyse
en composante indépendante s’est développée pour résoudre ce problème. Néanmoins,
lorsque les sources ne peuvent pas être modélisées comme des variables indépendantes,
on doit se tourner vers d’autres solutions. L’analyse en composante parcimonieuse
fait l’hypothèse que les sources peuvent être représentées par un nombre restreint de
coefficients.

Les contributions de la thèse sont les suivantes. Dans un premier temps, nous
présentons et discutons une condition nécessaire et suffisante pour l’extraction de
source parcimonieuse dans des mélanges instantanés et convolutifs. Dans un second
temps, nous donnons une unification de plusieurs méthodes de soustraction adaptative
permettant une meilleur comparaison de celles-ci. Finalement, nous proposons une
méthode pour calculer un filtre à réponse impulsionnelle dans le domaine des curvelets
avec un coût de calcul maîtrisé.
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Resumo do capítulo [português]

Esse primeiro capitulo introduz o contexto, os objetivos e as contribuições desta tese de
doutorado. A exploração sísmica consiste em estimar os parâmetros da subsuperfićıe da
Terra sólida analisando a sua resposta a vibrações. Os dados registrados da superfície
são introduzidos a um problema inverso com o objetivo de estimar os parâmetros
físicos das estruturas da subsuperfićıe, como a velocidade da propagação de ondas, a
atenuação, etc.

A maioria dos métodos são baseados na hipótese de que os dados registrados contêm
unicamente eventos primários tendo sido refletidos apenas uma vez em direção à
superfície. Durante uma aquisição marítima, a superfície livre entre a água e o ar
funciona como um espelho sobre o qual as ondas se refletem. Esses eventos coerentes,
chamados de reflexões múltiplas, devem ser cuidadosamente removidos previamente a
resolução do problema inverso em questão.

A atenuação das múltiplas pode ser feita através de vários métodos. Uma parte deles
consiste em prever e subtrair as reflexões múltiplas. No entanto, as previsões nunca são
perfeitas e uma etapa de subtração adaptativa deve ser estabelecida. Se esta etapa não
é feita com cuidado, corre-se o risco de atenuar as primárias, ou seja o sinal pertinente.
Foi proposta recentemente a possibilidade da utilização dos métodos provenientes do
problema de separação cega de fontes para efetuar a filtragem adaptativa das múltiplas.
Esses métodos interessantes vieram completar os métodos mais tradicionais baseados
no uso de normas. Eles são baseados na hipótese de que as primarias e as múltiplas
são estatisticamente independentes.

A separação cega de fontes é um problema de alta ocorrência. A análise de componentes
independentes foi desenvolvida para resolver esse problema. No entanto, enquanto as
fontes não podem ser modelizadas como variáveis independentes, devemos nos voltar
a outras soluções. A análise de componentes esparsos é baseada na hipótese de que as
fontes podem ser representadas por um numero restrito de coeficientes.

As contribuições desta tese de doutorado são as seguintes. Inicialmente será apresentada
e discutida uma condição necessária e suficiente para a extração de fontes esparsas
nos casos de misturas instantâneas e convolutivas. Em seguida, será apresentada
uma unificação de vários métodos de subtração adaptativa permitindo uma melhor
comparação entre eles. Por fim, um método será proposto para calcular um filtro de
resposta ao impulso no domínio das curvelets com um custo de cálculo controlado.
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1.1 Motivations and contextualization

1.1.1 Seismic exploration

Seismic exploration intends to retrieve the subsurface parameters (such as veloci-
ties, densities, attenuation,. . . ) controlling the wave propagation inside the solid
Earth [Kearey et al., 2002]. This is of particular interest for academic geosciences,
oil and gas industry, geothermal activities or C02 storage. Seismic exploration is a
noninvasive exploration technique based on the inverse problem theory that helps
to understand rock properties via wave propagation analysis [Tarantola, 1987]. In a
traditional survey, seismic waves are excited from the surface and propagate inside the
subsurface. Because of contrast in acoustic impedance, part of the energy is reflected
back to the surface and the wave-field response can be recorded at the surface [Aki
and Richards, 2002].

Marine acquisitions are distinct from land acquisitions [Sheriff and Geldart, 1995].
The recording device is called a hydrophone in the former and a geophone in the latter.
It measures, at a given location, the displacement or the acceleration as a function
of time. A seismic source1 is used to create the signal propagating inside the solid
Earth. In 3D modern acquisitions, several parallel lines of receivers are used in the
field. Figure 1.1 shows a 2D layered Earth model and several ray paths between the
seismic source (magenta star) and a receiver (magenta triangle). Ray paths represent
the main trajectories along which seismic energy propagates. For a 2D acquisition
when sources and receivers are located at the surface and aligned, the seismic data are
sorted in a cube comporting three fundamental coordinates: the source position, the
offset which is the distance between the source and the receiver, and the time. The
final seismic image is a 2D section of the solid Earth in depth. In 3D acquisition, the
source position and the offset are two dimensional vectors and the final seismic image
is a 3D volume of the solid Earth in depth. The processing from the data recorded in
time to real depth (the seismic image) relies on the considered velocity model.

By nature, seismic exploration relies on underdetermined inverse problems, for which
infinite numbers of solutions exist [Tarantola, 1987]. The main reasons of this under-
determinacy are related to the surface acquisition, the limited data and the uneven
illumination [Xie et al., 2006]. The art of seismic exploration lives between under-
standing the forward modeling of waves propagation, engineering the recording system
for the pertinent physical variables and properly inverting the seismic data. At one
side, the forward model gives what the observation should be given a specific model.
On the other side, the inversion methods try to reduce the number of solutions by
using regularization techniques or a proper processing of the data.

One of the objectives of the present thesis aims at improving the signal to noise ratio
of seismic images by attenuating one specific kind of reverberant coherent noise called
multiples. This typical noise occurring in marine acquisition must indeed be properly
removed for several reasons.

1.1.2 Multiple events

Seismic events in data sets are classified depending on their nature. For instance we
distinguish body waves from surface waves, P-waves from S-waves, Rayleigh waves from
Love waves, or refracted waves from reflection waves [Aki and Richards, 2002]. Another
crucial distinction is made between what is called primary events (or primaries) and
multiple events (or multiples). A multiple event has been reflected downward one or

1The terminology seismic source designates the particular waveform generated by the device (e.g.
dynamite or water-gun).
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Figure 1.1: Geometry of a seismic exploration survey with a representation of a
layered solid Earth. The magenta star indicates the seismic source position and the
magenta triangles indicate the receiver positions. The blue line indicates a primary
event ray path, the red lines indicate several surface related multiple ray paths, the
green line represents an internal multiple ray path.

more times into the Earth by a strong reflector. Red lines in figure 1.1 shows several
ray paths corresponding to multiple events. Figure 1.2 shows how the multiples look
like in a real common shot gather. It is of prime importance to process carefully this
energy because imaging artifacts may appear during the sequence of imaging steps
from the raw data to the final seismic image [Wiggins, 1988; Verschuur, 2013b]. A
strong reflector exists because of a strong contrast of impedance (product of density
and velocity) between two layers. This can occur between two layers made of different
rocks. For instance in marine acquisition, the water free surface between the water
layer and the air acts almost as a mirror and reflects back all the upcoming energy.
We can write the recorded data d[x] as

d[x] = p0[x] + m0[x], (1.1)

where p0[x] contains the energy of the primaries and m0[x] contains the energy of the
multiples. The variable vector x indicates the position in the data cube.

Multiple events are themselves categorized depending on the reflector they relate to
or on their signature in the data [Verschuur, 2013a]. Those categories may overlap
and a single multiple event may belong to more than one category. Section 4.2 will be
dedicated to a more precise overview of multiples, however it is good to have an idea
of the kind of multiples that will be treated in the present work. Specifically, we will
treat the multiples for which a prediction can be obtained.

Source ghosts and receiver ghosts are due to the free surface close to the seismic source
or the receiver, respectively [Verschuur, 2013a]. They must be removed as they create
a duplicated shifted version of any seismic event. They are not always considered as
multiples.

Surface-related multiples refer to the presence of one strong reflector [Verschuur,
2013b]. All multiples that are removed if this reflector disappears are said to be
related to this surface. If the strong reflector is the free surface, one speaks about
free-surface-related multiples. Internal multiples are due to one or two strong reflectors
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Figure 1.2: a) A common shot gather from a marine seismic acquisition in which
several orders of multiples can be identified. b) A prediction of the multiples.

below the free surface [Yilmaz, 2001]. They are often referred to as short period
multiples because they create close duplicated events. Intrabed multiples refer to
reflections created inside a single layer. Interbed multiples refer to reflections created
between two different layers. Pegleg multiples may refer to different kind of multiples.
Surface related multiples can be predicted from the data (see also section 4.4).

Depending on the context, the term m0[x] in equation 1.1 may contains only part
of the entire multiple energy. For instance, we may consider only the water surface
related multiples and in that case, internal multiples are contained in the term p0[x].
In a general sense, the term p0[x] is considered as the signal and the term m0[x] as
the noise.

As we will see in the next section, most of the common imaging steps in the processing
chain consider that the data are free from multiples. This is the reason why multiples
has been usually considered as coherent noise in seismic imaging. It is worth mentioning
that there is a change of paradigm in the community for using multiples as a signal.
However, those methods still have some limits and multiples cannot be used in all
steps of the process [Berkhout, 2016; Weglein, 2015] (see also section 4.6).

1.1.3 Basic production workflow of seismic images

A classical workflow from the raw data to the final seismic image consists of various
steps [Yilmaz, 2001; Robein, 2010]. It is worth mentioning that most of them are
included inside iterative loops: the decision maker quality controls and adapts each
step during the process. The accuracy of each step determines the accuracy of the
final image. We emphasize hereafter only a few key steps in order to highlight the
effect of multiple removal in some key steps [Sheriff and Geldart, 1995]. The set of
traces associated to one source is called a common shot gather (CSG). The set of
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traces associated to one pair of source-receiver with a fixed offset distance is called a
common offset gather (COG). The set of traces associated to the physical middle point
between the source and the receiver is called a common mid-point gather (CMP).

Pre-processing and editing. Acquisition starts in the field and one differentiates
marine acquisitions from land acquisitions. In both, the data are never acquired
perfectly and a few pre-processing steps are needed, such as trace edition, basic source
signature deconvolution, geometry correction, gain correction and interpolation to end
up with spatially coherent and regularly sampled data.

Stacking. Stacking is one of the main reason why we acquire multi-offset data. It
is the core of a lot of process and quality control checking point. In CMP gathers,
primary events are supposed to follow a normal move-out (NMO) travel time. Stacking
basically refers to the summation of several traces in CMP gathers, in order to check
or enhance coherency and to allow both velocity analysis and noise reduction. Other
processes can be said to be pre-stack or post-stack, depending if they are done before
or after stacking.

Migration. Migration is the linearization of forward modeling, in which only pri-
maries must be considered [Weglein, 2015]. It aims at determining the optimal model
perturbation (i.e. the reflectivity) to match the observed reflected data. In this context,
multiples create additional events that will be treated as primaries [Mulder and ten
Kroode, 2002; Li and Symes, 2007].

Tomography. Beyond migration results, the background velocity model controls
the kinematics of wave propagation. Tomography methods for retrieving a correct
velocity model can be developed in data domain (travel-time tomography [Bishop
et al., 1985], waveform inversion [Virieux and Operto, 2009]) or in image domain
(migration velocity analysis [Sava and Biondi, 2004]). As the velocity usually increases
with depth in the solid Earth, multiples generally present lower apparent velocity than
primaries. A wrong interpretation of multiples leads to a lower velocity estimation of
the subsurface model.

Full waveform inversion. Differently from migration and tomography, full wave-
form inversion (FWI) does not make distinction between large scales (obtained to-
mography) and fine scales (obtained by migration) [Virieux and Operto, 2009]. FWI
is the ultimate technique for retrieving all scales at once. In principle, multiples
are integrated into the FWI framework. In practice they create local minima and
slow down the convergence performance, enforcing the need of a good initial velocity
model [Brossier et al., 2009].

1.1.4 Multiple removal methods and adaptive multiple subtraction

As we explained previously, multiples are considered as a noise for most imaging steps.
Various methods exist in order to attenuate or remove them, and are generally divided
into two categories [Verschuur, 2013a]. The first class contains filtering techniques.
Those methods are mainly based on some transform domains in which the primaries
and the multiples are located in different area. Hence, multiples can be muted in their
corresponding area. The second class contains multiple removal methods based on a
prediction of the multiples. Generally, the prediction is done via a feedback model,
basically considering that multiples are echos of the primaries [Weglein et al., 1997].
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This feedback model, as used in the surface related multiple elimination (SRME)
technique [Verschuur et al., 1992], is able to give a good prediction of the multiples by
considering the recorded data only, hence avoiding the need of a velocity model.

The predictions generated by the feed-back model approaches are never perfect [Abma
et al., 2005]. Amplitude and phase errors always remain, mainly due to acquisition
limitation and complex Earth structure. Hence, the prediction methods require an
adaptive subtraction step to adapt the prediction of the multiples to the data [Verschuur
and Berkhout, 1997; Rickett et al., 2001; Guitton and Verschuur, 2004]. At this
condition only, the multiples can be efficiently removed from the data. Adaptive
subtraction has developed as an active research area and is considered as the main
challenge in multiple removal. In summary, adaptive subtraction looks for a local
convolutive filter that is applied to the imperfect predicted multiples to better match
the true multiples.

Two main approaches exist for adaptive subtraction namely matching filter tech-
niques [Verschuur and Berkhout, 1997; Guitton and Verschuur, 2004] and pattern
recognition methods [Spitz, 2000; Guitton et al., 2001]. Several issues remain in
adaptive subtraction, in particular if the signal and the noise are somehow correlated.
For matching filter techniques, if the primaries and the multiples overlap, the mini-
mum energy assumption fails and the method tends to over-estimate the multiple and
destroys part of the primary events. For pattern recognition approach, multiples are
removed if they share the same pattern as the primaries. Concerning matching filters,
several different metics have been investigated to tackle this issue.

Adaptive subtraction methods tend to have several crucial parameters to be tuned.
Those parameters can be linked to the objective function, the window size or the filter
size. The estimated primaries are highly dependent to the choice of those parameters
meaning that the methods are not robust enough. The choice of finding a good set of
parameters is generally left to the operator processing the data.

Figure 1.3 shows a synthetic example with one primary event and one multiple event,
clearly overlapping. In this example the prediction has the correct amplitude and the
correct wavelet, but a wrong time shift. The adaptive subtraction consists of recovering
the correct position of the multiple before its subtraction from the data. A common
approach is to minimize the ℓ2-norm of the primaries defined as

√∑

x(px)2 [Verschuur
and Berkhout, 1997]. Figure 1.4 shows the objective functional, function of two
parameters (amplitude and time shift). The minimum does not correspond to the
exact recovery of the true primary event. A common alternative is to use the ℓ1-norm
defined as

∑

x |px| [Guitton and Verschuur, 2004]. Figure 1.5 shows that this approach
also leads to a wrong primary estimate. Figure 1.6 shows that an approach based
on an approximation of the ℓ0 pseudo-norm2, further developed in the next sections,
could lead to a better estimate.

In a few recent works [Kaplan and Innanen, 2008; Donno, 2011; Liu and Dragoset,
2013], it has been proposed to analyze and perform adaptive subtraction as a blind
source separation (BSS) problem. The data are the sum of primary and multiple
events while the prediction is a filtered version of the multiples. The forward filters
between the true multiples and the prediction are unknown and the BSS framework is
potentially suited.

2In this thesis, ℓ0 is refereed to as “pseudo-norm” because it is not a norm. This terminlogy is
often use in the literature in this context for designing ℓ0. However, strictly speaking, ℓ0 is not a
pseudo-norm. We refer the interested reader to appendix 8.1 for more details.
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Figure 1.3: Synthetic example of adaptive multiple subtraction in a local window
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signal and the noise. The prediction d) gives a correct estimate of the multiple, except
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1.1.5 Blind source separation and independent component analysis

Blind source separation (BSS) is a general and widely referenced problem occurring
in a lot of science areas [Hyvärinen et al., 2001; Comon and Jutten, 2010]. In its
simplest formulation, a BSS problem considers that the observations are combinations
of the original signals. Those original signals that one wishes to recover are commonly
referred to as the sources in the BSS community. This terminology should not be
confused with the term seismic sources as we used and defined before. Solving a BSS
problem requires the recovery of the original signal from the observations without any
assumption on the mixing process. The term blind refers indeed to the fact that no
assumption is made on the mixing process. Figure 1.7 shows an example of a simple
blind source separation problem with two sources (original signals) and two mixtures.
Each mixture is an unknown linear combinations of the two sources. Based on the
assumption that the sources are statistically independent, one can build an objective
function (also named a contrast function) for which the local minima correspond to the
recovery (the separation) of the original sources [Comon and Jutten, 2010]. Table 1.1
summarizes some equivalences of terms used in the geophysics and BSS communities.

Independent component analysis (ICA) has emerged as a powerful tool for solving
BSS problems [Comon, 1994; Hyvärinen et al., 2001]. The main hypothesis of ICA
is that the original signals (the sources) are statistically independent. Two random
variables are independent if the knowledge about one does not change the knowledge
about the other. Hence, statistical independence can be seen as a generalization
of correlation, which is a measure of the linear statistical dependence. ICA-based
separation algorithms try to find outputs that are as much independent as possible.
Measuring quantitatively the independence between variables is not trivial and several
measures and algorithms have been developed such as FastICA [Hyvärinen, 1999],
Infomax [Bell and Sejnowski, 1995] or JADE [Cardoso, 1999]. Some of these ICA-based
methods have been used for adaptive subtraction of multiple events [Liu and Dragoset,
2013].

As we indicated before, one of the main issue in adaptive subtraction is the presence of
overlapping events that may be locally correlated. In that case, the assumption for ICA-
based method is not valid anymore and other methods must be investigated. Sparse
component analysis (SCA) have shown capacities for dealing with this particular
issue [Deville, 2014]. The second part (chapters 2 and 3) of the present thesis is
dedicated to SCA.

1.1.6 Sparse component analysis

Sparsity is a key concept in a lot of domains such as signal processing, data mining,
compression or inverse problems in general. It is a powerful concept for regularization
purpose for reducing the number of solutions or for finding a more realistic solution.
A signal (for instance an image or a seismic data cube) is said to be sparse in a given
representation (or a dictionary) if a small number of coefficients is sufficient to explain
most of it. The most common measure of sparsity is the ℓ0 pseudo-norm counting the
number of non-zero coefficients of a given vector [Hurley and Rickard, 2009].

With modern dense acquisition, seismic events can be seen as band-limited local plane
waves. Hence, seismic data are sparse in the FK domain, in which band-limited plane
waves are represented by straight lines. Also, multi-scale transforms have shown to be
efficient for representing signal in a sparse manner [Mallat, 1998]. In particular, for
seismic purpose, the curvelet transform has shown its ability to sparsely represent the
data [Candès and Demanet, 2005; Herrmann and Moghaddam, 2004].

Recently, a huge interest on sparse representation appeared after the work of Candès
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Original sources

Mixing system

Observations

Separation

Separated sources

Figure 1.7: Example of a BSS problem. The two original sources are pages of a book.
Each observation is a linear superposition of the original pages. The desired separated
sources are recovered with a permutation ambiguity. No assumption on the mixing
system is required for separating the sources.
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Blind source separation Exploration geophysics

Source Signal or parameters
Mixing system Seismic source

Contrast function Objective (or cost) function
Separation or extraction Parameter (or signal) estimation

Table 1.1: Short list of particular terms used in blind source separation and geophysics,
in order to avoid confusion in the rest of the thesis.

et al. [2006b], showing that a sparse prior can be sufficient for solving under-determined
problems. These works had a huge impact and a new research field, named compressive
sensing, has emerged from it [Candès and Wakin, 2008]. Naturally, sparseness also
arises in the field of blind source separation. Bofill and Zibulevsky [2001] have seen
that the mixing system can be easily identified if the original signals are sparse, and
a lot of works have followed constituting what is called sparse component analysis
(SCA) [Bofill and Zibulevsky, 2001; Li et al., 2003a; Georgiev et al., 2005; Deville,
2014].

The objective of the present thesis is the removal of multiple events and more specifically
the improvement of the adaptive subtraction step indispensable on prediction based
methods. As we said before, adaptive subtraction can be formulated in a blind source
separation framework for which independent component analysis is an accomplished
direction for solutions. However, a main challenge in adaptive subtraction is the
presence of correlated primaries and multiples for which the hypothesis of statistical
independence fails. Sparse component analysis has emerged as a tool for solving BSS
problems when the source of interest are sparse in a given dictionary. We see it as
a path for improving adaptive subtraction. Figure 1.6 shows the objective function
based on the ℓ0 pseudo-norm (smoothed) for the example presented in figure 1.4. We
see that the objective function is not convex any-longer, but the global minimum
corresponds to the correct recovery of the primary event.

Ultimately in this thesis, we will use the BSS framework in its convolutive form, with
signal sparsity in the curvelet domain. To our knowledge, a few results exist on the
conditions under which SCA is able to separate sparse signals in convolutive mixtures.

1.2 Contributions

The present thesis has been motivated by the adaptive multiple subtraction problem.
In particular, the methods based on independent component analysis (ICA) have been
investigated in more details than before. In parallel, sparse component analysis (SCA)
became really attractive from a theoretical perspective. Independent contributions have
been given in both theoretical and applied areas but we intend to make connections
between them. The present work is motivated by the following questions :

• How far can SCA be used for separating correlated signals?
• In which manner do ICA methods really improve adaptive filtering?
• Is the curvelet transform limited to amplitude recovery?

Theoretical contribution for sparse component analysis

Our first contribution concerns sparse component analysis (SCA). We provide a
necessary and sufficient condition to the use of the ℓ0-norm as a contrast function
in blind source extraction and separation. In other terms, we provide the condition
under which minimizing the ℓ0 pseudo-norm leads to a perfect signal recovery. Also,
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we discuss the similarity between SCA and another method called disjoint component
analysis (DCA) for the blind separation of sparse sources. To do so, we expand
auto-regressive process to inter-regressive process. From that, we are able to show that
for SCA also, correlated events can be an issue. However, this assertion is true for one
really specific kind of strong linear dependency (namely an inter-regressive process).

A better view of adaptive subtraction methods

Lately, some works proposed to use ICA as a new tool for adaptive multiple subtraction.
In particular, it has been written that those techniques can handle the separation
of correlated events. We present a coherent analysis of all the adaptive subtraction
methods that clearly show that this assertion is not true. We show that all those
methods tend to minimize a non-linear correlation between the signal and the noise.
We emphasize the crucial role of regularization parameter such as filter size and window
size in the performance of adaptive filtering.

Improving robustness of adaptive subtraction with curvelets

Curvelet transform has been used for adaptive multiple subtraction in the amplitude
recovery model only, and not in a convolutive form. We discuss a convolutional
theorem for discrete curvelet transform from which we extract a way to compute FIR
filtering by limiting the computational time. The method makes use of the theoretical
work about the recovery condition with SCA and it gives a better overview of the
convolution theorem with curvelets.

These contributions are communicated in the following list of articles:

• Published article:
Y.-M. Batany, L. Tomazeli Duarte, D. Donno, J. M. T. Romano, and H. Chauris.
Adaptive multiple subtraction: Unification and comparison of matching filters based
on the lq-norm and statistical independence. Geophysics, 81(1):V43–V54, 2016.

• Conferences:
Y.-M. Batany, D. Donno, L. Tomazeli Duarte, H. Chauris, and J. M. T. Romano. A
necessary and sufficient condition for the blind extraction of the sparsest source in
convolutive mixtures. In European Signal Processing Conference (EUSIPCO), 2016.

Y.-M. Batany, L. Tomazeli Duarte, D. Donno, J. M. T. Romano, and H. Chauris.
Comparison of matching filters for adaptive multiple subtraction: Lq-norm versus
statistical independence. In 78th EAGE Conference and Exhibition, 2016.

• Book chapter:
L. T. Duarte, Y.-M. Batany, and J. M. T. Romano. Blind source separation:
principles of independent and sparse component analysis. In CRC Press, editor,
Signals and Images: Advances and results in speech, estimation, compression,
recognition, filtering and processing, chapter 1. 2015.

• In preparation:
About the equivalence between SCA and DCA for blind source separation. IEEE
Transactions on Signal processing.
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1.3 Outline of the thesis

As explained before, the present thesis aims at improving adaptive subtraction by
gathering different methods in a common framework and ultimately developing adaptive
subtraction fully in the curvelet domain. Blind source separation represents a solid
theoretical foundation for this purpose and sparse component analysis is a excellent
starting point from a theoretical perspective.

The thesis is divided into four parts. Part I (chapter 1) contains the present introduc-
tion. Part II (chapters 2 and 3) is dedicated to blind source separation methods and
specifically to methods promoting the sparsity of the signals. Chapter 2 is a general
introduction on inverse problem, blind source separation and independent component
analysis. Chapter 3 focuses on sparse component analysis and contains our results on
the necessary and sufficient conditions for a correct recovery in convolutive mixtures.

Part III (chapters 4, 5 and 6) contains our advances on adaptive subtraction methods
for prediction based multiple removal. Chapter 4 is a more precise and detailed
introduction on multiple elimination methods. Chapter 5 presents our analysis thus
allowing to gather all methods on a common framework. Chapter 6 details our
approach of convolutive adaptive subtraction fully in the curvelet domain. Finally,
the last part IV (chapter 7) draws perspectives and conclusions.
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Some of the ideas developed in this chapter 2 have been published in an introductory
chapter of a book [Duarte et al., 2015].
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Résumé du chapitre [français]

Le chapitre 2 présente une introduction à la séparation aveugle de sources (SAS).
Les concepts qui y sont développés seront utilisés tout au long du manuscrit. Dans
un problème de SAS, les signaux observés (les observations) sont des combinaisons
inconnues de signaux à estimer (les sources). Dans ce contexte, le terme de source
ne doit pas être confondu avec le terme de “source sismique” utilisé en géophysique.
Les méthodes de résolution de problème de SAS se distinguent principalement par les
hypothèses faites sur les sources ou sur le modèle de mélange.

La section 2.2 présente des généralités sur les problèmes inverses et sur les méthodes
d’optimisation mathématique. Les méthodes de régularisation de problèmes mal-posés
sont aussi évoquées, ainsi que les problèmes multi-objectifs avec l’analyse de courbe
de Pareto.

La section 2.3 discute les concepts liés aux statistiques d’ordre supérieur. Les statis-
tiques du second ordre se limitent essentiellement à l’utilisation de la moyenne et de
la variance des signaux traités. Elles sont généralement insuffisantes pour résoudre
des problèmes de SAS. D’autres caractéristiques dérivées des densités de probabilités
doivent êtres prises en compte pour une description adéquate des signaux.

La section 2.4 présente en détails les problèmes d’extraction et de séparation aveugle
de sources. Nous nous intéressons ici aux mélanges instantanés et convolutifs, deux cas
particuliers de problème linéaire. Dans un cas déterminé, l’extraction et la séparation
peuvent être effectuées en adaptant un système linéaire, inverse du système de mélange.
L’optimisation de ce système est faite par optimisation d’une fonction dite de contraste.

La section 2.5 introduit l’analyse en composantes indépendantes comme méthode de
résolution de problèmes de séparation aveugle. En effet, il a été montré que l’hypothèse
d’indépendance statistique des signaux originaux est une hypothèse suffisante pour
pouvoir séparer les sources.

Finalement, la section 2.6 introduit l’analyse en composantes parcimonieuses comme
méthode de résolution de problèmes de séparation aveugle. Les résultats importants
de la littérature y sont présentés, en particulier les conditions suffisantes pour que les
sources puissent être retrouvées.
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Resumo do capítulo [português]

O caṕıtulo 2 apresenta uma introdução à separação cega de fontes (SCF). Os conceitos
que aqui são desenvolvidos serão úteis ao longo de todo o manuscrito. Em um problema
de SCF, os sinais observados (as observações) são combinações desconhecidas de sinais
a serem estimados (as fontes). Dentro desse contexto, o termo “fonte” não deve
ser confundido com o termo “fonte sísmica” utilizado em geofísica. Os métodos de
resolução de problemas de SCF se distinguem principalmente pelas hipóteses feitas
sobre as fontes ou sobre o modelo de mistura.

A seção 2.2 apresenta generalidades sobre os problemas inversos e sobre os métodos
de otimização matemática. Os métodos de regularização de problemas mal postos são
também evocados, assim como os problemas multi-objetivos com a análise da curva
de Pareto.

A seção 2.3 discute os conceitos ligados às estatísticas de ordem superior. As estatísticas
de segunda ordem limitam-se essencialmente à utilização da média e da variância
dos sinais tratados. Elas são geralmente insuficientes para resolver problemas SCF.
Outras características derivadas das densidades das probabilidades devem ser levadas
em conta para uma descrição adequada de sinal.

A seção 2.4 apresenta em detalhes os problemas de extração e de separação cega
de fontes. Nós nos interessamos nessa seção pelo caso de misturas instantâneas e
convolutivas, dois casos particulares de problema linear. Em um caso determinado, a
extração e a separação podem ser efetuadas adaptando um sistema linear, inverso do
sistema de mistura. A otimização desse sistema é feita através da otimização de uma
função dita “de contraste”.

A seção 2.5 introduz a análise de componentes independentes como método de resolução
de problemas de separação cega. Foi mostrado que, de fato, a hipótese de independência
estatística de sinais originais é uma hipótese suficiente para poder separar as fontes.

Por fim, a seção 2.6 introduz a análise de componentes esparsos como método de
resolução de problema de separação cega. Os resultados importantes da literatura são
aqui apresentados, particularmente as condições suficientes para que as fontes possam
ser reencontradas.
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2.1 Introduction

The present chapter aims at introducing the blind source1 separation (BSS) problem
and the key concepts around independent component analysis (ICA) and sparse
component analysis (SCA). Basically, ICA and SCA are two different tools for solving
BSS problems. ICA is based on the assumption that the sources are statistically
independent while SCA is based on the assumption that the sources are sparse. The
inverse theory in presented in a general setting in section 2.2, along with optimization
and regularization techniques. Useful definitions and concepts of the statistical theory
are introduced in section 2.3. Section 2.4 is dedicated to the BSS problem while
sections 2.5 and 2.6 are dedicated to ICA and SCA, respectively. This chapter is
the mainstay of both chapter 3, dedicated to SCA, and chapter 5, dedicated to the
separation of primaries and multiples events in seismic acquisitions. Throughout the
thesis, we focus on the objective functions of the different methods and the conditions
assuring a perfect separation of the original sources.

2.2 Inverse problems and optimization

2.2.1 Generality on inverse problems

In a wide sense, an inverse problem consists in recovering a certain model from some
physical observations (data) denoted d. The model is generally defined by a set of
parameters s. The formulation of the direct problem gives an operator A : s → d
able to represent the mapping between the parametrized model and the observed
data [Tarantola, 1987]. We write the general formulation of a inverse problem as

find s∗ such that d ≈ A(s∗), (2.1)

where s∗ represent the best solution. If the direct problem is linear, A can be
represented by a matrix and the direct model is simply

d = As, (2.2)

where d ∈ R
M and s ∈ R

N are two vectors and A is a M ×N matrix. Equation 2.2
represents a linear system of M linear equations and we are facing a linear inverse
problem.

Definition 1. An inverse problem is well-posed if: (i) a solution exists, (ii) the
solution is unique, (iii) the solution is stable.

If the problem is not well-posed, we say that it is ill-posed. For instance, problem 2.2
is ill-posed if the singular values of A decay gradually to zero or if the ratio between
the largest and the smallest nonzero singular values is high [Hansen, 2008]. Also, if
there are less equations that parameters, i.e. M < N , the problem is underdetermined
and so ill-posed.

Figure 2.1 shows four basic examples of linear inverse problems with N = 2 parameters
and M observations. Each observation leads to one black linear constraint in the
parameter space. If there are as many independent equations as parameters such that
A is invertible, the problem is determined and a single solution exists at the crossing
point. If there are more equations than parameters, the problem is over-determined

1We remind here again that the word “source” in blind source separation has the meaning of any
original signal. For instance, sources can be temporal series or images. It must not be confused with
the term “seismic source” that has a specific meaning within the geophysical community.
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Figure 2.1: Example of inverse problem in R
2 with linear constraints (black lines).

(a) A determined problem with two constraints. (b) A noisy overdetermined problem
with four constraints. (c)-(d) An underdetermined problem with a single constraint.
The ℓ2 and ℓ1 balls (in blue) gives two different solutions.

and the solution should be at the position minimizing the distances from all linear
constraints. When the number of equations is not sufficient, there exist many solutions
s∗ such that equation 2.2 is valid. Such a problem is underdetermined and some prior
information must be added to uniquely find a unique solution s∗. For instance, the
physical informations available in a particular context can be jointed, or the sparsest
solution may be preferred. As proposed in the example, we can choose the model
minimizing a certain energy measurement such as the ℓ2 or the ℓ1-norm.

The problem 2.2 appears in a lot of domains and recasts into several categories,
depending on the knowledge or on the size of the problem. For instance in sparse
representation, A represents a known overcomplete dictionary in which one wants
to represent the data d sparsely [Donoho and Elad, 2003]. In compressive sensing,
the sensing matrix A is designed to reduce the number of data in a way that the
recovery of a sparse signal is possible [Baraniuk, 2007]. When both A and s are totally
unknown, one faces a bilinear problem known as blind source separation (BSS) that
will be discussed in the next sections and chapters [Comon and Jutten, 2010].

2.2.2 Optimization and regularization schemes

By writing d ≈ As, we set that the modeled observations should be closed to the
actual observations. The measure of the distance between the data d and the modeled
data As is the starting point of all inverse problem solvers. A classical measure is a
ℓq-norm defined as

‖s‖p =

(
∑

x

|sx|p
)1/p

, p ≥ 1. (2.3)

This definition can be expanded for p < 1, hence defining a quasi-norm that is non-
convex (see appendix 8.1). For p = 2 the norm is the classical Euclidean distance and
for p = 1 the norm is the sum of the absolute values. More precisely we have

‖s‖2 =

√
∑

x

s2
x and ‖s‖1 =

∑

x

|sx|. (2.4)

For an overdetermined linear problem, the least-square solution minimizing the ℓ2-norm
of the residual is given by

s∗
ℓ2

= (AT A)−1AT d, (2.5)

where T indicates the transpose operator.

When the problem is ill-posed the solution is not stable. It means a small perturbation
in the observations leads to large changes in the solution. A classical approach is
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Data fitting term Regularization term
Damped least-square ‖d−As‖2 ‖s‖2

Tikhonov ‖d−As‖2 ‖Bs‖2

LASSO ‖d−As‖2 ‖s‖1

Akaike Information Criterion ‖d−As‖2 ‖s‖0

Total variation ‖d−As‖2 ‖∇s‖1

Table 2.1: Some common data fitting and regularization terms for inverse problems.

to add a regularization term to the data fitting term (the distance). We build an
objective function of the form

min φ = ‖d−As‖+ ǫ φr (s) , (2.6)

where the second term penalizes solutions too far from the prior information contained
in φr. The notation ‖ · ‖ without specification denotes a distance in the general sense.
A similar strategy is used for underdetermined problems written as

min φr (s) such that ‖d−As‖2 < ǫ. (2.7)

The parameter ǫ controls the trade-off between the fitting and the regularization terms.
When ǫ = 0, only the data fitting term is relevant. When ǫ =∞, only the regularization
term is important. Table 2.1 presents several classical regularization schemes. For
most of them, the data fitting term is the ℓ2-norm and only the regularization term
changes. The Tikhonov regularization strategy has an analytic solution given by

s∗
ℓ2,ǫ = (AT A + ǫ BT B)−1AT d. (2.8)

For the damped least-square solution, we have B = I. Generally, the optimization
strategies do not have any analytical solution and optimization scheme must be
invoked.

Definition 2. A function φ is convex if

φ(λs1 + (1− λ)s2) ≤ λφ(s1) + (1− λ)φ(s2), (2.9)

for any λ ∈ [0, 1].

Convexity is a useful property for an objective function, because the minimum (the
solution) is located in a valley thus making the use of gradient based methods possi-
ble [Boyd and Vandenberghe, 2004]. An iterative strategy can be use, by following the
opposite direction of the gradient of the objective function ∇φ

s(k) ← s(k−1) − α∇φ. (2.10)

Because of convexity, the solution after convergence does not depend on the initial
solution s0. If the function is non-convex, evolutionary computation can be used. For
instance evolutionary algorithms based on a population of solutions can be used for
solving non-convex problems [Deb, 2001].

Most of the times, the two terms in the problem 2.6 are conflicting, meaning that
one decreases when the other increases. The framework of multi-objective Pareto
analysis with a combination of two objectives is useful to understand the behavior of
the solution and to correctly choose the tradeoff parameter ǫ.

Definition 3. A solution s1 dominates another s2 if φi(s1) < φi(s2) for all objective
φi. We denote this situation s1 ≺ s2. The Pareto frontier is the set of all non-
dominated solutions.
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Figure 2.2: Pareto’s framework for inverse problem regularization. The parameter ǫ
gives the slope of the solution line. The Pareto’s frontier is not always convex.

Figure 2.2 shows an example of an ill-posed problem with LASSO regularization
scheme. In a two-objectives Pareto framework, the parameter ǫ gives the slope of
the line ‖d−As‖2 ∝ −ǫ ‖s‖1, tangent to the Pareto frontier. The solution 1 gives
more importance to the sparsity of the solution but does not penalize enough a large
value of the residuals. The solution 3 gives more importance to the residuals, but
the solution associated is not sparse enough. The solution 2 is a good compromise
between minimizing the residuals and having a sparse solution.

2.3 Second and higher order statistics

In the previous section, we introduced the problem of parameter estimation within
the inverse problem framework. In this section, we introduce a few basic statistical
concepts that will be needed in the following [Cover and Thomas, 2006; T. Romano
et al., 2010; Comon and Jutten, 2010].

2.3.1 Characterization of a single random variable

We consider a continuous random variable, denoted s, taking values in the real
axis R [Leon-Garcia, 2008]. An outcome of s is denoted s̃. This random variable
can be fully characterized in different manners by its cumulative density function, its
probability density function, its first characteristic function or its second characteristic
function. All those representations are equivalent in the sense that they uniquely
represent the same random variable. In the following, the probability of a specific
event s̃ to occur is denoted as Pr(s̃).

Definition 4. Let s be a random variable. Its cumulative density function (CDF) is
defined such that

F (s) = Pr(s̃ ≤ s). (2.11)

Definition 5. Let s be a random variable with a CDF F (s). Its probability density



50 Chapter 2. Prelude on blind source (signal) separation

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

s

CDF

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

s

PDF

Figure 2.3: (a) CDF of a generalized Gaussian variable, (b) its PDF with a = 1,
p = 1 (blue) and a = 5, p = 4 (red).

function (PDF) is defined such that

f(s) =
d

ds
F (s). (2.12)

From the above definitions, one can show that

Pr(a ≤ s̃ ≤ b) =
∫ b

a

f(s)ds. (2.13)

The PDF of a random variable gives the probability of the random variable to be in a
certain interval. There is a large number of useful PDFs. However, it is out of the
scope of the present introduction to give a deep overview of all classes of famous PDFs.
We focus on one particular class of PDFs, linked to ℓp-norms defined in equation 2.3.
The Gamma function is denoted Γ(s)2.

Definition 6. The generalized Gaussian distribution is defined such that

fNp(s) =
p

2aΓ(1/p)
e

−
(

|s−µ|
a

)p

, (2.14)

where a > 0 is a scale parameter, p > 0 is a shaping parameter and µ ∈ R is a position
parameter. The Gaussian distribution and the Laplacian distribution appear when
p = 2 and p = 1, respectively.

Figure 2.3 shows two examples of the generalized Gaussian distribution.

From the PDF, two useful functions can be defined, namely the first and second
characteristic functions. From those two functions, two sets of coefficients describing
and synthesizing in a useful way a given random variable are defined. The expectation
operator with respect to the PDF f is denoted Ef .

Definition 7. Let s be a random variable with a PDF f(s). Its first characteristic
function is defined such that

ψ1(ω) = Ef

{
eisω

}
=
∫ ∞

−∞

eisωf(s)ds. (2.15)

The first characteristic function is the inverse Fourier transform of the PDF. Its Taylor
expansion gives the definition of the ordinary moments µn of the random variable
such that

ψ1(ω) = µ1iω − µ2ω
2

2
+ . . . ⇒ µn = (−i)n

∣
∣
∣
∣

dn

dωn
ψ1(ω)

∣
∣
∣
∣
ω=0

, (2.16)

2The Gamma function is defined as Γ(s) =
∫

∞

0
ts−1e−tdt.
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where i2 = −1. Equivalently, the n-th moment can be defined such that

µn = Ef{sn} =
∫ ∞

−∞

snf(s)ds. (2.17)

A central random variable is constructed by subtracting the mean as s = s− µ1. A
normalized random variable is constructed by dividing by the square root of the second
moment (i.e. the standard deviation) as s̆ = s/

√
µ2. We define the central moments

and the standardized moments (or normalized central moments) as

µn = Ef {sn} = Ef{(s− µ1)n} =
∫ ∞

−∞

(s− µ1)nf(s)ds, (2.18)

µ̆n = Ef

{

s̆
n
}

= Ef

{(
s− µ1√
µ2

)n}

=
∫ ∞

−∞

(
s− µ1√
µ2

)n

f(s)ds. (2.19)

The first ordinary moment µ1 is called the mean. The second central moment µ2 is
called the variance and measure the dispersion around the mean. The square root of
the variance is the standard deviation. The third standardized moment is called the
skewness and it measures the symmetry of the distribution around the mean. Random
variables with symmetrical PDF have zero valued skewness. The fourth standardized
moment is called the unnormalized kurtosis and it measures the length of the tail of
the distribution. The normalized kurtosis , simply called the kurtosis in the following,
is defined as

kurt(s) = µ̆4 − 3. (2.20)

The Gaussian distribution has a kurtosis equal to zero. If the kurtosis is superior or
inferior than zero, the distribution is said to be leptokurtic or platykurtic, respectively.

Definition 8. Let s be a random variable with a first characteristic function ψ1(ω).
Its second characteristic function is defined such that

ψ2(ω) = logψ1(ω). (2.21)

The Taylor expansion of the second characteristic function gives the definition of the
cumulant of a random variable s. Once more, we have

ψ2(ω) = κ1iω − κ2ω
2

2
+ . . . ⇒ κn = (−i)n

∣
∣
∣
∣

dn

dωn
ψ2(ω)

∣
∣
∣
∣
ω=0

. (2.22)

Second-order statistic (SOS) focusses only on the first and the second moments, in
other words on the mean and the variance. This choice is not arbitrary and has deep
links with the normal (or Gaussian) distribution that is fully described by its mean
and its variance. As opposed to SOS, high-order statistics (HOS) explicitly make use
of higher moments.

In its fundamental article, Shannon [1954] discusses ways to measure the quantity of
information contained in random variables. He defines the entropy for discrete random
variables and extends the concept to continuous random variables.

Definition 9. Let s be a random variable with a PDF f(s). The differential entropy
of s is defined such that

hf = −Ef{log [f(s)]} = −
∫ ∞

−∞

f(s) log [f(s)] ds. (2.23)

The differential entropy can be negative. For a fixed valued variance, the differential
entropy is maximal for a Gaussian random variable.
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Definition 10. Let s be a random variable with a differential entropy hf . The
negentropy of s is defined such that

Qs = hN2
− hf , (2.24)

where hN2
is the differential entropy of a random vector following a Gaussian distribu-

tion with the same mean and variance as s.

Finally, it is often practical to define a distance or divergence between two PDFs,
especially for analyzing how close a random variable is from another. The Kullback-
Leibler (KL) divergence is one of the possible definitions of this distance.

Definition 11. Let f1(s) and f2(s) 6= 0 be two PDFs. The Kullback-Leibler divergence
is defined such that

DKL(f1‖f2) =
∫ ∞

−∞

f1(s) log
f1(s)
f2(s)

ds. (2.25)

In the above definition, the two PDFs are non commutative. One can show that we
necessarily have DKL ≥ 0 and DKL = 0 if and only if f1(s) = f2(s).

2.3.2 Characterization of a set of random variables

So far we only considered a single random variable. From now on, we consider a set of
random variables s1, s2, . . . , sN or in other terms a random vector s. For each random
variable, we can define its own PDF f1, f2, . . . also called its marginal distribution.
The joint cumulative density function is crucial when considering several random
variables.

Definition 12. Let {si}N
i=1 be a set of random variables. The joint cumulative density

function is defined as

F (s1, s2, . . . ) = Pr(s̃1 < s1, s̃2 < s2, . . . ). (2.26)

Definition 13. Let {si}N
i=1 be a set of random variables. The joint probability density

function is defined as

f(s1, s2, . . . ) =
∂N

∂s1∂s2 . . .
F (s1, s2, . . . ). (2.27)

The generalization of moments and cumulants can be obtained for a set of random
variables. They are called cross-moments and cross-cumulants and constitute the
moment tensor and the cumulant tensor. The first and second characteristic functions
can also be generalized in the same way.

Definition 14. Let s1 and s2 be two random variables. The covariance between those
two random variables is defined as

cov(s1, s2) = E{s1s2}, (2.28)

and their correlation coefficient is defined as

corr(s1, s2) = E{s̆1s̆2}. (2.29)

Definition 15. Two random variables are said to be non-correlated if their covariance
is null.



2.4. Blind source extraction and separation 53

Definition 16. Let {si}N
i=1 be a set of random variables. The covariance matrix Σ

contains all the covariances computed for all pairs of random variables such that

Σ =






E{s1s1} E{s1s2} . . .
E{s2s1} E{s2s2}

...
. . .




 . (2.30)

The correlation matrix Θ contains all the correlation coefficients icomputed for all
pairs of random variables such that

Θ =






E{s̆1s̆1} E{s̆1s̆2} . . .
E{s̆2s̆1} E{s̆2s̆2}

...
. . .




 . (2.31)

From the two above definitions, we see that the covariance matrix of a set of un-
correlated variables is a diagonal matrix containing the variances and their correlation
matrix is the identity matrix.

Definition 17. Let {si}N
i=1 be a set of random variables. The joint differential entropy

is defined as

hs1,s2,... = −
∫

f(s1, s2, . . . ) log f(s1, s2, . . . )ds1ds2 . . . (2.32)

Definition 18. The mutual information is defined for two random variables.

I(s1, s2) = hs1
+ hs2

− hs1,s2
. (2.33)

Definition 19. The random variables {si}N
i=1 are said to be statistically independent

if and only if

f(s1, . . . , sN ) =
∏

n

f(sn). (2.34)

Statistical independence is a stronger concept than non-correlation. Statistically
independent variables are necessarily un-correlated but un-correlated variables may
be dependent. The mutual information between two variables is null if and only if
the two random variables are statistically independent. The generalization of mutual
information for several random variables is not straightforward and several definitions
has emerged [McGill, 1954; Watanabe, 1960].

All the important concepts have been defined. In the next sections, we will discuss the
blind source separation problem and two approaches for solving it, namely independent
component analysis and sparse component analysis

2.4 Blind source extraction and separation

Blind source extraction (BSE) and separation (BSS) problems arose in many applica-
tions such as speech and audio processing [Asano et al., 2003; Ozerov and Fevotte,
2010], medical imaging [Vigario and Oja, 2008], geophysics [Ikelle, 2010] or astro-
physics [Cardoso et al., 2002]. When the original signals of interest cannot be recorded
directly but only some combinations or mixtures of them, we are facing a source
separation problem. The term separation refers to the recovery of all sources (see
subsection 2.4.2) while the term extraction refers to the recovery of one source (see
subsection 2.4.3). If really few prior information is available on the mixing process,
the problem is referred to as blind source separation (or extraction). We remind the
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reader again that the term “source” has to be understood in the sense of “signal” in a
wide sense.

The first tool that has been historically developed for solving BSS problems is inde-
pendent component analysis (ICA). This class of technique makes the assumption that
the original signals of interest can be modeled as statistically independent random
variables [Comon, 1994; Amari and Cichocki, 1998; Hyvärinen and Oja, 2000]. More
recently, others techniques have emerged based on other assumptions on the sources.
One of them, namely sparse component analysis (SCA), makes the assumption that
the sources are sparse in a given representation [Bofill and Zibulevsky, 2001; Gribonval
and Lesage, 2006; Deville, 2014]. This technique is particularly valuable for dealing
with partially correlated sources.

2.4.1 The mixing model

A BSS problem consists of recovering a set of original signals denoted s[x] ∈ R
N

through M linear combinations of these sources denoted d[x] ∈ R
M , without any

assumption on the mixing process. Here, x denotes an index that can be of any
dimension. For instance, for time series x represents the time and for images x
represents the pixel location. We denote X the number of indexes. For instance,
if x = {x1, x2}, the number of indices is X = X1 × X2. When the summation
symbol

∑X
x=1 is used, it implicitly means the summation over all dimensions, i.e.

∑X1

x1=1

∑X2

x2=1.

BSS is a general problem that can be adapted for denoising or for dealing with multi-
channel observations [Comon and Jutten, 2010]. For an instantaneous mixture the
observations at index x are linear combinations of the sources taken at the same index.
The instantaneous mixing equation can be written as

d[x] = As[x], (2.35)

where the mixing matrix A ∈ R
M×N is unknown. If we develop the equation 2.35 we

have







d1[1] d1[2] . . .
d2[1] d2[2] . . .

...
... · · ·

dM [1] dM [2] . . .








=








a11 a12 · · · a1N

a21 a22 · · · a2N

...
...

. . .
...

aM1 aM2 · · · aMN















s1[1] s1[2] . . .
s2[1] s2[2] . . .

...
... · · ·

sN [1] sN [2] . . .







.

Equation 2.35 is sometime referred to as the noiseless ICA model. When the number
of observations is larger than the number of sources, i.e. M > N , the problem is
said to be overdetermined. When the number of sources is equal to the number of
observations, i.e. M = N , the BSS problem is said to be determined. When the
number of observations is less than the number of sources, i.e. M < N , the problem
is said to be underdetermined.

For a finite impulse response multiple-input multiple-output (FIR-MIMO) convolutive
mixture [Pope and Bogner, 1996; Pedersen et al., 2008], the convolutive mixing equation
is given by

d[x] =
Y∑

y=0

A[y]s[x− y], (2.36)

where the sum over y is done over the memory length Y of the mixing system. In
a similar manner as for X before, the summation is considered for all dimensions.
For instance if x = {x1, x2} the notation

∑Y
y=0 is equivalent to

∑Y1

y1=0

∑Y2

y2=0. As
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for the instantaneous BSS problem, all matrices A[y] ∈ R
M×N are unknown in the

convolutive BSS problem. In the convolutive BSS problem, a filter ambiguity appears.
We consider the following assumption.

Assumption 1. Considering the mixing model in equation 2.36, the system {A[y]}Y
y=0

is invertible.

For an instantaneous mixing system, the invertibility of the system just means that
the mixing matrix A is invertible. For a convolutive FIR-MIMO system, invertibility
is more difficult to address. We refer to Rajagopal and Potter [2003], Castella and
Pesquet [2004], Castella and Moreau [2009] and in particular to Law et al. [2009] for a
complete description of conditions ensuring the identifiability of FIR-MIMO systems.

2.4.2 Blind source separation

We described the mixing model for BSS problem. Under assumption 1, the mixing
system of an overdetermined or determined problem can be inverted. Solving a BSS
consists of finding a separating matrix W ∈ R

N×M that gives an estimate of the
sources such that

u[x] = W d[x] = W As[x] = Hs[x], (2.37)

where H = W A represents the global mapping between the true sources and the
estimates. An instantaneous problem can be resolved up to two ambiguities. Firstly,
the amplitude of each original signal cannot be recovered. Secondly, the order of the
signals cannot be recovered. The solution set is defined as follows.

Definition 20. The set of solutions S of an instantaneous BSS problem is defined
such that

S = {ŝ : ŝ[x] = Π∆s[x]} , (2.38)

where Π is a permutation matrix3 and ∆ is a diagonal matrix. The BSS problem is
solved when u[x] ∈ S.

Under assumption 1, the separation of sources in a determined convolutive BSS problem
can be achieved by finding a multiple-input multiples-output (MIMO) separating
system of Z + 1 extraction matrices W [z] ∈ R

N×M , with Z ≥ Y 4, such that

u[x] =
Z∑

z=0

W T [z]d[x− z] (2.39)

=
Z∑

z=0

W T [z]
Y∑

y=0

A[y]s[x− z − y] (2.40)

=
L∑

l=0

HT [l]s[x− l], (2.41)

where we defined L = Y +Z and the vectors h[l] are the mapping vectors between the
original sources and the extracted signal defined such that H [l]T =

∑Z
z=0 W [z]T Az−y

with 0 < z − y ≤ Y .
3A permutation matrix is a square matrix containing only a single coefficient per row and per column.
For instance in R3 the following matrix

[
0 1 0
1 0 0
0 0 1

]

is a permutation matrix.
4If x is multi-dimensional, Z ≥ Y stand for Z1 ≥ Y1, Z2 ≥ Y2, . . .
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Definition 21 (Separability). The mixing model is said to be separable by φ(W ) if
each local minimum W ∗ of φ is such that W ∗ = Π∆A.

Definition 22. A function φ(W ) is called a contrast function if its minimum W ∗

extracts the sources, i.e. if u∗[x] = W ∗d[x] is in S.

The definition 22 is at the core of all method solving BSS problems. Under some
assumptions, contrast functions are constructed and optimized in order to solve the
problem. As we will see later, the next chapter 3 will be dedicated to one specific
function, namely the ℓ0 pseudo-norm, and the conditions under which this function is
a contrast function for BSS problems.

The separability is a more tight concept than the contrast function. If the mixing
model is separable by φ, then φ is a contrast function. However, if a function is a
contrast, all its local minima are not necessarily corresponding to an extraction. If
the problem is separable, then it is identifiable.

2.4.3 Blind source extraction

Sometimes, it is not necessary to recover all the sources, but only one of them in the
set. This problem refers to as blind source extraction (BSE) [Delfosse and Loubaton,
1995]. It can be solved under assumption 1 by finding an extracting vector w such
that

u[x] = wT d[x] = wT As[x] = hT s[x], (2.42)

where h is a global mapping vector. Similarly to definition 20, the solution set Sn of a
BSE problem contains all the scaled versions of the signal sn except the zero vector.
For the extraction of a source in a determined convolutive BSE problem, a system of
extracting vector {w[z]} is used instead of a system of separation matrices.

Definition 23. The set of solutions Sq of an instantaneous BSE problem is defined
such that

Sq = {u : u = αδk(sq), ∀α ∈ R\{0}, ∀k ∈ Z}, (2.43)

where δk denotes the time shift operator. We call Gq the set of all mapping vectors
such that {hj}J

j=0 ∈ Gq ⇔ u ∈ Sq. The set Gq denotes the solution set of global
mapping corresponding to the correct extraction of the source sq. The BSE problem is
equivalently solved when u ∈ Sq or when {hj}J

j=0 ∈ Gq.

Definition 24. A function φ(w) is called a contrast function for the extraction of sq

if its minimum w∗ extracts the source sq, i.e. if u∗[x] = w∗d[x] is in Sq.

2.4.4 Performance measurement in BSE and BSS

Before going further into the methods for solving BSS problems, it is important to
define some performance measures [Vincent et al., 2006, 2012], determining the quality
of the recovered sources compared to the original sources. These distances must give a
quantitative measure of how close are our estimates to the true sources. Those indexes
should be insensitive to amplitude, permutation and delay ambiguities. The classic
signal to noise ratio (SNR) is given by

SNR = 10 log
‖sn‖2

‖sn − ŝn‖2

, (2.44)
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Figure 2.4: The value of the ISI performance measure in (left) R
2 and (right) R

3

for a single extraction vector.

where ambiguities must be carefully handled before the computation of such a ratio.
In particular, the amplitude ambiguity must not interfere and

ŝn = αu∗ with α =
(
u∗T u∗

)−1
snu∗T , (2.45)

where u∗ is the extracted signal after optimization of the contrast function and α is
the optimal scaling factor in the least-squares sense.

When the inverse system exists and the global mappings are known, the intersymbol
interference (ISI) is a particularly attractive performance measure [Lambert, 1999].
For an instantaneous BSE problem with global mapping hT = wT A, it is defined as

ISI =
∑

n h
2
n −max h2

n

max h2
n

. (2.46)

We always have ISI ≥ 0 with equality if and only if the sources are recovered up to a
scale ambiguity. For a convolutive BSE problem with global mapping H[y]

ISI =
∑

n Hn[y]2 −maxHn[y]2

maxHn[y]2
. (2.47)

Here, the ISI is also unchanged with delay. An important remark on the ISI measure,
compared to SNR, is that it refers to the mixing system which is blind and not to
the sources themselves. Figure 2.4 shows the value of the ISI for N = 2 and N = 3
sources. Its value is minimum and equal to 0 on the main axis only, when the mapping
vector corresponds to the extraction of one source. Its value does not depend on the
norm of h, but only on the direction.

2.4.5 Principal component analysis and its limit

Principal component analysis (PCA or Karhunen-Loève transform) is a convenient
method for data analysis and matrix factorization based on second-order statistics.
One could think of using PCA for solving BSS problems. It is well known that,
actually, PCA cannot solve BSS problems but it is a common tool for whitening the
observations [Comon and Jutten, 2010]. PCA algorithms look for a new orthogonal
frame in which it is more efficient to observe the data in term of variances. The first
component is given by

w1 = arg min
∥
∥wT d[x]

∥
∥

2
such that ‖w‖2 = 1, (2.48)
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and the second component as

w2 = arg min
∥
∥wT d[x]

∥
∥

2
such that ‖w‖2 = 1 and wT w1 = 0. (2.49)

A PCA algorithm leads to uncorrelated components. Is this assumption enough for
separating sources? Actually, no, and this is easy to see. We are looking for estimated
sources such that Σ = ŜT S = I. If we consider a rotation matrix Rθ that we apply
on the estimated sources, we have

Σθ = (RθŜ)T RθS = ŜT RT
θ RθS = I = Σ. (2.50)

The correlation matrix is unchanged for any chosen rotation matrix.

Hence, PCA algorithms cannot solve BSS problems under the simple un-correlation
assumption because of the rotation ambiguity. In other words, second-order statistics
are not sufficient and, as we will see in the next section, we must use higher order
statistics. Nevertheless, PCA and related are commonly used on the observations for
whitening. It makes ICA algorithms faster and more robust.

2.5 Independent component analysis

As explained in the previous subsection, the rotation ambiguity shows that the prior
information of decorrelation is not strong enough for a correct separation in BSS
problems. In other words, sources that are only uncorrelated cannot be separated.
The main result of ICA methods for solving BSS problems is that statistically inde-
pendent sources with any kind of distribution, except the Gaussian distribution can
be separated [Comon, 1994]. The main restriction, indeed, is that at most one source
can have a Gaussian distribution.

Assumption 2. The sources (signals) are statistically independent and at most one
of them is a Gaussian random variable.

Based on this assumption, a number of algorithms can be developed. We distinguish
two classes of algorithms. The first is based on maximizing the likelihood while the
second is based on maximizing the distance from Gaussian distribution.

2.5.1 Infomax and maximum likelihood

As proposed by Bell and Sejnowski [1995], maximizing the mutual information I
between the inputs and the outputs of the neural network in figure 2.5 leads to the
recovery of estimated sources that are statistically independent (see also Linsker [1989]).
It is important to note that, in the context of BSS, the outputs zi = G0(ui) of the
neural network are auxiliary variables used to optimize the statistical independence
between the estimated sources ui. Often, logistic functions are used such as the
sigmoid function

G0(s) =
1

1 + e−λs
, with g0(s) = G′

0(s) =
λe−λs

(1 + e−λs)2
, (2.51)

where λ is a shaping parameter.

It can be shown [Bell and Sejnowski, 1995] that maximizing the mutual information I
is actually equivalent to minimizing the following objective function

φIM = −E{log(|J |)}, (2.52)
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Figure 2.5: The Infomax neural network of a BSS linear mixing model and the
separation.

where J is the Jacobian of the neural network defined as

J = det






∂z1

∂d1

∂z1

∂d2

· · ·
∂z2

∂d1

∂z2

∂d2

...
. . .




 . (2.53)

Cardoso [1997] demonstrates that the Infomax method can be interpreted as the
maximum likelihood estimation of the sources with the estimated CDF G0(s) [Xu,
2005].

2.5.2 Maximization of non-Gaussianity

Independent sources can also be recovered by maximizing their distance to the Gaussian
distribution. This can be explained by the central limit theorem (CLT) [Leon-Garcia,
2008]. Due to the CLT, the mixture are more Gaussian than the signals. This also
explains why Gaussian sources cannot be recovered (except one).

As explained in Comon and Jutten [2010] or Hyvärinen et al. [2001], recovering
estimates Ŝ as far as possible from a Gaussian distribution is a valid method for
recovering independent sources, after whitening of the observations. This measure of
Gaussianity can be achieved by computing the negentropy Q

Ŝ
of the estimated sources.

As proposed by Hyvärinen and Oja [2000], we can approximate the maximization of
negentropy by minimizing the following objective function

φQ = −
(

E{gi(Ŝ0)} − E{gi(N0)}
)2

, (2.54)

where Ŝ0 has zero mean vector and unit co-variance matrix and N0 is a random
standardized Gaussian vector. The function gi(·) can be chosen within, for instance,
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the following set of non-quadratic functions [Li and Lu, 2013]

g1(s) = − exp
(

−s
2

2

)

, (2.55)

g2(s) = log(cosh(s)), (2.56)

g3(s) =
√

1 + s2 − 1. (2.57)

The kurtosis can also be used to measure the distance to a Gaussian (see equation 2.20).

2.5.3 ICA with convolutive mixture

The major part of works about ICA and BSS considers the instantaneous mixing
model. However, a non-negligible part is dedicated to handle the convolutive case
(see [Comon and Jutten, 2010], chapter 8). In most works, the convolutive problem is
transformed in the frequency domain by slicing the observations in the time domain
and using the short-time Fourier transform [Pedersen et al., 2008; Sawada et al., 2010].
We can write

Fd[ω, τ ] = A[ω, τ ] · Fs[ω, τ ], (2.58)

where F denotes the short-time Fourier transform, ω the frequency and τ the time
index of the considered bin. Hence, the convolutive model is reduced to several
instantaneous models, one per frequency and time bin. The main drawback of this
strategy is that the permutation ambiguity, present at each frequency bin, must be
carefully addressed for an accurate reconstruction of the sources [Duong et al., 2009].
Benichoux et al. [2012] discuss the filter ambiguity.

2.5.4 Recovery conditions with ICA

We focus here on two definitions, namely separability and uniqueness [Comon, 1994;
Cao and Liu, 1996; Eriksson and Koivunen, 2004]. The model in equation 2.35 is said
to be identifiable if we can retrieve the mixing matrix up to scaling and permutation
[Deville, 2014]. The model in equation 2.35 is said to be separable if we can retrieve
the sources up to scaling and permutation. One can notice that separability implies
identifiability. They are equivalent in the case of determined problems. The model in
equation 2.35 is said to be unique, if the decomposition is unique up to scaling and
permutation. The following results can be found in the literature.

Theorem 1 ([Comon, 1994], [Eriksson and Koivunen, 2004]). The model in equa-
tion 2.35 is separable if the mixing matrix A is of full column rank and at most one
source variable is normal.

Theorem 2 ([Eriksson and Koivunen, 2004]). If the model is separable, then the ICA
model is unique.

Eriksson and Koivunen [2006] extend these results for complex-valued sources. The
study of uniqueness and separability of model is an active area of research [Murillo-
Fuentes and Boloix-Tortosa, 2010; Wang et al., 2015].

Considering now the Infomax and maximum likelihood contrast functions, one generally
assumes that the true PDFs are known. In practice, however, the PDF of the sources
are generally unknown or difficult to model. The next theorem named the one-bit
matching ICA theorem gives a useful result.

Theorem 3 ([Xu, 2005]). If the kurtoses of the modeling PDFs f0(ui) have the same
sign as the true PDFs f(si), then the sources can be separated.
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This result is of important value. It means that we do not have to perfectly model the
true PDF of the sources we want to recover. Roughly knowing the PDF is sufficient
for an exact recovery, at least in the noise-less case.

2.6 Sparse component analysis

When the assumption of statistical independent variables is no-longer valid, ICA may
fail to recover the original sources. Other prior should be used such as the sparsity
of the sources in a domain or in a dictionary D. Sparse component analysis (SCA)
has been developed with the purpose of decomposing the observations such that
d[x] = Âŝ[x], where the estimated sources ŝ are sparse. SCA can be used for solving
BSS problems [Bofill and Zibulevsky, 2001; Gribonval and Lesage, 2006; Mourad and
Reilly, 2010; Nadalin, 2011; Bobin et al., 2015].

2.6.1 Sparsity of signals

The ℓ0 pseudo-norm is often used as a measure of sparseness [Hurley and Rickard,
2009]. Strictly speaking, it is neither a norm nor a pseudo-norm. However, the
terminology of pseudo-norm is often seen in the literature. We maintain this abuse of
terminology (see also appendix 8.1 for more details).

Definition 25. The ℓ0 pseudo-norm of a vector s is defined such that

‖s‖0 = lim
p→0
‖s‖p = # {sx | sx 6= 0} , (2.59)

which is the number of non-zero coefficients in the vector s.

As for ICA, the conditions for a correct estimation of the sources can be investigated
in SCA. Because SCA can be used for solving under-determined problems, system
recovery and source recovery are often treated separately. First, the recovery of the
mixing model A from the data studies the conditions underwhich blind identifiability
is possible. If this mixing model Â can be inverted, the sources can be recovered
directly at this stage. However, if the problem is underdetermined, we need to estimate
the sources ŝ[x] from the data d and the estimated mixing model Â.

Figure 2.6 shows an determined example with two sources, for which the ICA as-
sumption is not adequate for a correct extraction or separation. The two sources
(figure 2.6a) have a strong correlation in the background (the points) and some sparse
lines. The minimum of the kurtosis contrast function corresponds to an incorrect
signal (figure 2.6b) while the minimum of the ℓ0 pseudo-norm corresponds to the
correct source extraction (figure 2.6c). The kurtosis objective function separates the
sources based on a statistical independence assumption, which is clearly not valid
in this example. The objective function has two local minima, one for each source,
associated to an incorrect source extraction. The ℓ0 pseudo-norm has clearly three
strong local minima. Two of them correspond to a correct source extraction. The
extracting source û0 associated to the parasitic minima is canceling the correlated
background made of points.

2.6.2 Matrix recovery (identifiability)

The following assumption is very important for a lot of methods and results. It sets
the statistical dependence between the sources such that only one source can be active,
with a coefficient different from zero, at a time.
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ŝ2 û0 ŝ1
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The kurtosis-based contrast function and the extracted image. c) The ℓ0 pseudo-norm
contrast function and the three images corresponding to the three lower minima. The
objective functions are shown in the global mapping space.
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Assumption 3 (Disjointness of the sources.). At most one signal is active at a time.

Such a set of signals are also said to be disjoint orthogonal (DO). DO variables are
decorrelated but statistically dependent variables. This aspect will be discussed in
chapter 3.

Bofill and Zibulevsky [2001] is one of the first work showing that disjoint orthogonal
sources can be recovered from fewer observations in instantaneous mixtures. He shows
that after the mixing process, the data samples are located along lines corresponding
to the columns of A. This idea has been expanded for simple delayed mixtures in Bofill
[2003]. Around the same time, Jourjine et al. [2000] propose that any number of
sources can be separated from only two mixtures, if the sources satisfy assumption 3
in the frequency domain (see also [Rickard and Yilmaz, 2002]). They developed the
popular DUET algorithm based on clustering [Scott, 2007]. These results can be
summarized by the following theorem.

Theorem 4. If the sources are disjoint orthogonal, then the mixing system is identifi-
able.

In order to relax the DO assumption and possibly letting several sources to be active
at a time, Georgiev et al. [2007] propose sufficient conditions, on the source only, for
the recovery of both S and A in the underdetermined case. They consider column
sparsity and a subspace clustering algorithm but their conditions are difficult to verify
at first sight (see also Georgiev et al. [2005, 2007]). Mishali and Eldar [2009] develop
algorithms around the same idea (see also [Lindenbaum et al., 2015]).

Sun and Xin [2011] propose a necessary and sufficient for the underdetermined BSS
problem of m+ 1 sources, under the non-negative assumption of both A and S. The
two conditions forming the NSC are: i) on S, single source zones exist for each source;
ii) at most m− 1 sources are active at the same time; iii) on A, the mixing matrix is
degenerated. They extend their result for n sources.

Duarte et al. [2011] propose a sufficient condition for the extraction and separation
of sparse source in instantaneous mixtures. Our work in chapter 3 will expand these
results.

Theorem 5 ([Duarte et al., 2011]). If ‖s1‖ℓ0
< 1

2‖s2‖ℓ0
, then the ℓ0 pseudo-norm is

a contrast function for the extraction of s1.

2.6.3 Source recovery (separability)

Once the mixing model Â has been estimated, we must recover the original sources.
If the mixing model is overdetermined, the separation matrix can be estimated by
W = Â−1 and the sources are simply estimated by

ŝ[x] = W d[x] = Â−1d[x]. (2.60)

However, if the mixing model is underdetermined, we must investigate a signal recovery
problem. This problem has received a lot of attention, particularly the ℓ0 pseudo-norm
optimization problem P0:

min ‖s[x]‖0 such that d[x] ≈ As[x]. (2.61)

This problem is quite general in signal processing. A complete research has emerged
from the recent results in this area, namely compressive sensing.

The sparse recovery problem has received a lot of attention, starting from the work
of Donoho and Elad [2003] or Gribonval and Nielsen [2003]. In particular, a central
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question has been to know under which conditions the problem 2.61 can be solved by
convex optimization. In particular, it has been proved that under some conditions on
the matrix A and if s is sparse enough, the problem 2.61 can be solved by a ℓ1-norm
minimization problem P1 [Li et al., 2003b]:

min ‖s[x]‖1 such that d[x] ≈ As[x]. (2.62)

Theorem 6 (Sufficient condition for the equivalence of P0 and P1 [Donoho and Elad,
2003]). Less than 50% concentration implies equivalence.

Li and Amari [2010] tackle the problem in a probabilistic framework and found
interesting results and estimates (see also [Li et al., 2006]).

Theorem 7 (Necessary and sufficient condition for the equivalence of P0 and P1 [Li
and Amari, 2010]). ŝℓ1

= ŝℓ0
if and only if

max
Ns∑

i=1

[sign(si)δi]+ <
1
2
, (2.63)

where δ is such that Aδ = 0 and ‖δ‖1 = 1.

However, all the work on compressive sensing is dedicated to design the matrix A

with specific properties. In BSS, such an approach is not valid as one cannot assume
a priori that A follows such properties. Saab et al. [2007b] point out that the solution
of a ℓp-norm minimisation program (basis-pursuit) necessarily gives an estimate of
S that is k-column-sparse, k ≤ N . This result is true only for a real-valued mixing
matrix and fails for complex-valued mixing matrices.

2.7 Conclusion

In this chapter 2, we provide an introduction to the BSS problem which can be seen as
a bilinear inverse problem with an unknown direct problem. In particular, we focused
on the contrast functions (objective functions) used for tackling this specific problem.
Higher-order statistics form the theoretical background for methods based on ICA that
are able to separate sources that are statistically independent. When this assumption
fails, other prior information must be used such as sparsity for SCA methods. We
have reviewed the literature about SCA conditions. However, what is yet not clear are
the exact necessary and sufficient conditions under which the SCA method is valid.
The next chapter 3 is dedicated to this aspect.
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Part of the results in this chapter has been presented at the European Signal Precessing
Conference (EUSIPCO) in Budapest [Batany et al., 2016a]. More contents have been
added here, particularly concerning disjoint component analysis (DCA).
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Résumé du chapitre [français]

Le chapitre 3 traite de la séparation aveugle de sources parcimonieuses pour des
mélanges déterminés instantanés et convolutifs. Lorsque l’hypothèse d’indépendance
statistique des sources n’est pas valable, en d’autres termes lorsque les signaux à
estimer sont statistiquement dépendants , on peut (ou l’on doit) s’appuyer sur d’autres
caractéristiques des signaux. L’hypothèse de parcimonie des sources est souvent utilisée
et mène à l’analyse en composantes parcimonieuses. Un signal est dit parcimonieux
sous une représentation donnée lorsqu’un nombre faible de coefficients permet de le
représenter.

L’hypothèse forte d’orthogonalité disjointe est d’abord traitée dans la section 3.2.
Elle correspond au cas où au plus une seule source peut être active à la fois. Il
est montré que, dans le cas déterminé, la méthode Infomax peut être utilisée pour
séparer des sources orthogonalement disjointes. Il est ainsi mis en exergue le fait que
l’indépendance statistique n’est pas une condition nécessaire pour la séparation de
sources.

La section 3.3 introduit le concept de processus inter-regressif qui peut être vu comme
une généralisation de la notion de processus auto-regressif pour plusieurs signaux.

Dans les sections 3.4 et 3.5, nous analysons une condition nécessaire et suffisante à
l’extraction et à la séparation de sources parcimonieuses, en utilisant la pseudo-norme
ℓ0 comme fonction de contraste. Ces résultats utilisent directement la définition des
processus inter-regressifs.

Finalement, la section 3.6 propose un algorithme évolutionniste de type “évolution
différentielle” pour résoudre des problèmes d’extraction et de séparation de source
basé sur une version lissée de la pseudo-norme ℓ0. Plusieurs exemples sont traités et
analysés. La présence de bruit est examinée et une méthode d’analyse de Pareto est
proposée pour déterminer le niveau de bruit à partir des données uniquement.
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Resumo do capítulo [português]

O caṕıtulo 3 trata da separação cega de fontes esparsas para mistura determinada
instantânea e convolutiva. Quando a hipótese da independência estatística de fontes
não é verificada, devemos nos basear em outras caracteŕısticas dos sinais. A hipótese
da esparsidade das fontes é freqüentemente utilizada e leva à análise de componentes
esparsos. Um sinal é chamado de esparso sob uma dada representação na medida em
que um número pequeno de coeficientes permite representá-lo.

A forte hipótese da ortogonalidade disjunta entre as fontes é discutida inicialmente na
seção 3.2. Ela corresponde ao caso onde no máximo uma única fonte pode estar ativa
em um dado instante. Demonstra-se que, no caso determinado, o método Infomax pode
ser utilizado para separar fontes ortogonalmente disjuntas. É igualmente salientado o
fato de que a independência estatística não é uma condição necessária para a separação
de fontes.

A seção 3.3 introduz o conceito de processo inter-regressivo, que pode ser visto como
uma generalização da noção de um processo auto-regressivo para vários sinais.

Na seção 3.4 e 3.5 analisamos uma condição necessária e suficiente para a extração e
separação de fontes esparsas utilizando a pseudo norma ℓ0 como função de contraste.
Esses resultados utilizam diretamente a definição de processos inter-regressivos.

Por fim, a seção 3.6 sugere um algoritmo evolutivo do tipo “evolução diferencial” para
resolver problemas de extração e de separação de fontes baseados na versão suave da
pseudo norma ℓ0. Vários exemplos são discutidos e analisados. A presença de ruído é
examinada e um método de análise de Pareto é sugerido para determinar o nível de
ruído exclusivamente a partir dos dados.
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3.1 Introduction

In various situations, the observations we make of physical processes are mixtures of
several sources (signals) and one would like to recover the original sources. In a general
setting, we can write this problem as d = A(s) where d is the vector of observations,
s is the source vector (the original signal) and A represents the mixing process. When
few information is available about the mixing process and all the sources must be
recovered, the problem is referred to as blind source separation (BSS). If only one
source must be recovered, the problem is called blind source extraction (BSE) [Comon
and Jutten, 2010].

In order to recover the original sources with little prior information on the mixing
process, some assumptions must be added on the original sources to be recovered.
Independent component analysis (ICA) makes the assumption that the sources are
statistically independent and one can prove that this assumption is sufficient to ensure
the recoverability of the sources for linear problems [Comon, 1994].

Based on another assumption, namely the sparsity of the sources, sparse component
analysis (SCA) has shown to be able to solve BSS problems when the sources are
active over a restricted support. However, to our knowledge, the exact necessary and
sufficient conditions on the sources for their recovery have not been described yet in
details. The present chapter 3 attempts to fill this lack. In particular, we focus on
convolutive mixtures. Besides this theoretical work, the present chapter also provides
some numerical analysis in order to illustrate the conditions derived herein.

Concerning the chapter organization, section 3.2 is dedicated to present the strong
sparsity assumption of disjoint orthogonal sources. Section 3.3 defines a new concept,
namely inter-regressive process, that will be used in the next sections. Section 3.4
presents the necessary and sufficient conditions for the correct extraction of a sparse
source. Section 3.5 presents the necessary and sufficient conditions for the correct
separation of sparse sources. Finally, section 3.6 describes a differential evolution
(DE) algorithm for solving the extraction and the separation of sources. A method
for dealing with noisy observations is presented. Some examples are provided and
discussed.

3.2 Blind separation of disjoint orthogonal variables

ICA methods assume that the sources of interest are statistically independent and
one can show that this is a sufficient condition for the separability of sources [Comon,
1994]. In this section, we focus on a particular kind of statistically dependent class of
sources, namely disjoint orthogonal (DO) random variables. This class has been of
huge interest in SCA [Bofill and Zibulevsky, 2001; Scott, 2007]. Hereafter, we show
that ICA-based contrast functions are also contrast functions for the separation of this
particular class of sources. This result emphasizes that the assumption of statistical
independence is definitely not a necessary condition [Caiafa, 2012]. In this section we
consider disjoint orthogonal (DO) variables. The case where both s1 and s2 are equal
to zero is not considered here because, in such a case, all the observation coefficients
d = As are equal to zero and can be easily discarded.
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3.2.1 Mutual information of two DO variables

The joint PDF f1,2(s1, s2) of two disjoint orthogonal random variables s1 ∼ f1(s1)
and s2 ∼ f2(s2) can be written as (see figure 3.1a)

f1,2(s1, s2) = ψ1(s1)δ(s2) + ψ2(s2)δ(s1), (3.1)

where δ(si) are Dirac distributions and ψi(si) are positive continuous functions defined
such that

ψi(0) = 0, (3.2)
∫ ∞

−∞

dsi ψi(si) = Pi, (3.3)

with P1 + P2 = 1. The value Pi represents the probability of si to be active (i.e.
non-zero). Equation 3.1 means that if s1 = 0 then s2 6= 0 and if s1 6= 0 then s2 = 0.
The marginal probability distribution of each random variable is given by

fi(si) = ψi(si) + (1− Pi)δ(si). (3.4)

The mutual information of two random variables is defined such that

I(s1, s2) =
∫∫

R2

ds1ds2 f1,2(s1, s2) log
f1,2(s1, s2)
f1(s1)f2(s2)

. (3.5)

In the case of two disjoint orthogonal random variables, the domain of integration
can be restricted to the two axes without the origin. We define the two sets A1 =
{s1, s2|s1 6= 0, s2 = 0} and A2 = {s1, s2|s1 = 0, s2 6= 0}. The value of the joint PDF
is null outside A1 ∪ A2. Hence we have

I(s1, s2) =
∫

A1

ds1 ψ1(s1) log
ψ1(s1)

ψ1(s1)(1− P2)
+
∫

A2

ds2 ψ2(s2) log
ψ2(s2)

ψ2(s2)(1− P1)
(3.6)

= −P1 log(P1)− P2 log(P2). (3.7)

We see that 0 ≤ I(s1, s2) ≤ log 2, where the lower bound is reached for the trivial
case when one of the Pi is null (meaning that one of the random variable is null) and
the higher bound is reached when P1 = P2 = 1/2 (figure 3.1b). As expected, disjoint
orthogonal random variables are uncorrelated but statistically dependent. Also, their
mutual information does not depend on the function ψi but only on their respective
sparsity coefficients.

3.2.2 Blind separation of DO variables with ℓp-norm optimization

In this subsection, we show that DO variables can be separated with an Infomax
framework. It emphasizes that dependent variables can be separated by ICA-based
methods.

Theorem 8. Disjoint orthogonal sources can be separated with an Infomax network
by using any generalized super-Gaussian (or leptokurtic, p < 2) non-linear function.

Proof. We consider that the observation matrix D = AS has been whitened. For two
DO random variables, this means that a rotational ambiguity remains. The separation
can be restrained to orthogonal matrices W for which det W = ±1. We can write

|det J | =
∣
∣
∣
∣
∣
det W

N∏

n=1

G′(zn)

∣
∣
∣
∣
∣

=
N∏

n=1

G′(zn). (3.8)
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Figure 3.1: a) Joint PDF (blue color) of two disjoint orthogonal random variables and
their marginal PDF (red color). b) The mutual information of two disjoint orthogonal
variables, function of their sparsity repartition.

The Infomax objective function (equation 2.52) can be written such that

φIM = −
N∑

n=1

E {logG′(zn)} . (3.9)

Our study can also be restrained to orthogonal global mapping H.

We now consider that {sn}N
n=1 are DO random variables with sparsity coefficients αn

(probability of having a non-zero coefficient) such that
∑N

n=1 αn = 1. Because of this
property, we can split the arguments inside the function G′ such as

E {logG′(zn)} =
N∑

n′=1

αn′En′ {logG′(hnn′sn′)} , (3.10)

where En′ indicates that the considered expectation is computed for the active support
of sn′ only. Let us consider that the non-linear function G is the CDF of a symmetric
centered generalized normal distribution (equation 2.14) with a shape parameter p
and a scale parameter σ such that

G′(z) =
p

2aΓ(1/p)
︸ ︷︷ ︸

=C1

exp
[

−
( |z|
a

)p]

. (3.11)

This gives

E {logG′(zn)} =
N∑

n′=1

αn′En′

{

logC1 −
|hnn′sn′ |p

a

}

(3.12)

=
N∑

n′=1

αn′ logC1

︸ ︷︷ ︸

=C2

− 1
σ

Q
∑

n′=1

αn′ |hnn′ |En′ {|sn′ |p} . (3.13)

For a discrete vector sn′ ∈ R
N
x , we can write

En′{|sn′ |p} =
1

αn′Nx
‖sn′‖p

p (3.14)
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Figure 3.2: The blue circle indicates the ℓ2 unit-ball. The black squares indicates
two ℓ1 balls, bounding the ℓ2 unit-ball.

as the inactive support does not change the value of the norm. Then, we can express
the Infomax objective function as

φIM = −NC2 +
1

aNx

Q
∑

n′=1

N ‖sn′‖p
p

N∑

n=1

|hnn′ |p (3.15)

= −NC2 +
1

aNx

N∑

n′=1

‖sn‖p
p ‖hn‖p

p . (3.16)

We see that φIM is a function of H only and is minimized when the ‖h[n]‖q are
minimized. Because H is an orthogonal matrix, all the vectors h[q] have a unit
ℓ2-norm and are located on the unit sphere. As shown in figure 3.2 for R2, the minima
of the ℓp-norm of the vectors h[q], with p < 2, are located on the axes. Then, the
minimum of φIM is reached when H is a permutation matrix. �

Equivalently, we could also maximize φIM with a generalized Gaussian CDF having
p > 2 in order to reach a maximum when H = Π. In practice, a sigmoid function G0

is used in place of a generalized normal CDF. A sigmoid is a typical super-Gaussian
function making a smooth transition between an ℓ1 and an ℓ2-norm solution [Batany
et al., 2016b].

3.3 Inter-regressive processes

In several cases, the assumption of DO sources is not valid. Our main question is how
much can this assumption be relaxed while assuming the sources as sparse signals. In
other terms, how much can the sources overlap? We introduce in this section a new
concept, named inter-regressive processes, that will be useful in the next sections. It
can be seen as an extension of auto-regressive processes.

The properties describing a set of source signals s1, s2, . . . sN can be divided in two
categories. A first category contains the properties of each single signal sn taken
independently from the others. For instance, the kurtosis is defined for a single source,
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independently from the others. A second category contains the properties linked to the
relations between several signals, i.e. by considering s[x]. For instance, the covariance
structure or the measures related to statistical dependence are properties defining the
way all the sources interact between them.

The ℓp norms, defined as a distance, can belong to both categories. The norm of a
single source ‖sn‖p can be considered, as well as the norm ‖s[x]‖p of all of them at a
single index x. In the next sections, we will mainly considered the norm of each single
source, and especially the ℓ0 pseudo-norm ‖sn‖0.

Auto-regressive processes refer to the first category of signal properties. They have been
extensively used in the signal processing literature and can be defined as follow [Mitra
and Kaiser, 1993]. We emphasize that our definition is valid for a noiseless process.

Definition 26. A signal si is said to be an auto-regressive process of order D if it
exists a set of D + 1 parameters cd such that

D∑

d=0

cdsi[x− d] = 0, (3.17)

where at least two parameters cd are non-null.

For auto-regressive processes, the present si[x] is fully determined by the past si[x−1],
si[x− 2], . . . In other words, the convolution of the signal si by the filter c is equal
to zero. From a geometric point of view, any set of D + 1 consecutive coefficients
extracted from an auto-regressive process is located in a hyperplane in R

D+1 defined
by its normal vector c = {cd}D

d=0.

We propose to extend the concept of auto-regressive processes to the second category
of properties by introducing the concept of inter-regressive processes.

Definition 27. A set of N signals is said to be an inter-regressive process of order D
if it exists a set of N × (D + 1) parameters cid such that

N∑

i=1

D∑

d=0

cidsi[x− d] = 0, (3.18)

where at least two parameters cid are non-null.

From a geometric point of view, any set of D + 1 consecutive source vectors extracted
from an inter-regressive process and forming a set of N(D+ 1) coefficients is located in
a hyperplane in R

N(D+1). For an inter-regressive process of order D = 0, equation 3.18
can be written as cT s[x] = 0. When there is only one source, N = 1, an inter-regressive
process becomes an auto-regressive process.

Both of the above definitions generally consider that equations 3.17 and 3.18 must be
true for all indices x or for a closed support of consecutive indices. For our purpose,
we propose to expand these definitions. A signal is said to yield an auto-regressive
process of order D and length E ∈ N if equation 3.17 is true for E indices x, possibly
not consecutive. Equivalently, signals are said to yield an inter-regressive process
of order D and length E ∈ N if equation 3.18 is true for E indices x, possibly not
consecutive.

Figure 3.3 shows the construction of both auto-regressive and inter-regressive processes
of hypothetical length E = 2. For the auto-regressive process (figure 3.3a), each red
square is fully determined by the value of all antecedent grey dots, with a unique set of
parameters {cd}. When a signal holding an auto-regressive process is convolved with
the filter c, it results zero-valued coefficients (blue squares). For the inter-regressive
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a) Auto-regressive process

xs [x ]

s ∗ c =

b) Inter-regressive process

s 1[x ]

s 2[x ]

s 3[x ]

x

x

x

s ∗ c =

Figure 3.3: Examples of construction of a) an auto-regressive process of order D = 7
and length E = 2 and b) an inter-regressive process of order D = 5 and length E = 2
for N = 3 signals. For both a) and b), the result of the convolution between the source
or the source vector with the set of coefficients defining the inter-regressive process is
shown. Blue squares indicate zero-value coefficient.

process (figure 3.3b), each red square is fully determined by the value of all antecedent
and concomitant grey dots, with a unique set of parameters {cid}. When a set of
sources holding an auto-regressive process are convolved with the filter c, it results
zero-valued coefficients (blue squares).
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s 1
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s 3
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s 1
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h y p e r p l a n e

s
3

Figure 3.4: Example of three sources having an inter-regressive process of order
D = 0 and length E = 6. In the right hand figure, the grey dots circled in black in the
source space belong to this inter-regressive process and are inside the same hyperplane.

Figure 3.4 shows an example of an inter-regressive process of order D = 0 and length
E = 6 for three sources. The position of each sample is shown in the source space.
The samples belonging to the inter-regressive process are located inside the same
hyperplane.

3.4 Blind source extraction of the sparsest source

In this section, we discuss necessary and sufficient conditions, on the sources only,
to use the ℓ0 pseudo-norm as a contrast function in linear BSE problems, for both
instantaneous and convolutive mixtures. In other words, we discuss the conditions
under which the solution of the ℓ0 pseudo-norm minimization problem

{wl}∗ = arg min
{wl}

∥
∥
∥
∥
∥
u[x] =

L∑

l=0

wT
l x[x− l]

∥
∥
∥
∥
∥

0

, (3.19)

extracts a signal y∗ ∈ S1 corresponding to the recovery of the sparsest source.

Assumption 4. Without loss of generality, we consider that the sources are sorted in
order of decreasing sparsity such that

‖s1‖0 < ‖s2‖0 ≤ · · · ≤ ‖sN‖0 . (3.20)

We emphasize that ‖s1‖0 < ‖si‖0 , ∀i 6= 1, to avoid any competition between the
extraction of the sparsest source s1 and another source.

Because only the ℓ0 pseudo-norm is considered in the following developments, there is
no way to distinguish between two sources that have the same ℓ0 pseudo-norm. This
is the reason why we need to consider ‖s1‖0 < ‖si‖0 , ∀i 6= 1. If this condition is not
valid, then the following theorems fails. For the sake of clarity, the instantaneous case
is treated first and then the generalization to the convolutive case is presented. Both
proofs are similar.
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3.4.1 Instantaneous mixtures

Theorem 9. The ℓ0 pseudo-norm is a contrast function for the extraction of the
sparsest source s1 if and only if the sources do not have any inter-regressive process of
order 0 with a length higher than or equal to the size of the inactive support of s1.

Proof. From definitions 23 and 24, the ℓ0 pseudo-norm is a contrast function for the
extraction of s1 if and only if

‖s1‖0 < ‖u‖0 ∀u /∈ S1,

i.e. if and only if

‖s1‖0 < #{u[x] = hT s[x] : u[x] 6= 0} ∀h /∈ G1,

‖s1‖0 < N −#{u[x] = hT s[x] : u[x] = 0} ∀h /∈ G1,

N − ‖s1‖0 > #{u[n] = hT s[x] : u[x] = 0} ∀h /∈ G1,

N − ‖s1‖0 > E∗,

where we defined

E∗ = max
[
#{u[x] = hT s[x] : u[x] = 0}, h /∈ G1

]
.

N − ‖s1‖0 is the number of null values of s1. E∗ is the maximum length of an
inter-regressive process of order 0 among the sources. �

From theorem 9, one can re-derive the sufficiency of the condition proposed by Duarte
et al. [2011] (see appendix 8.3 for details).

3.4.2 Convolutive mixtures

Theorem 10. The ℓ0 pseudo-norm is a contrast function for the extraction of the
sparsest source s1 if and only if the sources do not have any inter-regressive process of
order J = K + L with a length higher than or equal to the size of the inactive support
of s1.

Proof. From definitions 23 and 24, the ℓ0 pseudo-norm is a contrast function for the
extraction of s1 if and only if

‖s1‖0 < ‖u‖0 ∀u /∈ S1,

i.e. if and only if

‖s1‖0 < #{u[x] =
J∑

j=0

hT
j s[x− j] : u[x] 6= 0} ∀h /∈ G1,

‖s1‖0 < N −#{u[x] =
J∑

j=0

hT
j s[x− j] : u[x] = 0} ∀h /∈ G1,

N − ‖s1‖0 > #{u[x] =
J∑

j=0

hT
j s[x− j] : u[x] = 0} ∀h /∈ G1,

N − ‖s1‖0 > E∗,
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where we defined

E∗ = max



#{u[x] =
J∑

j=0

hT
j s[x− j] : u[x] = 0}, h /∈ G1



 .

N − ‖s1‖0 is the number of null values of s1. E∗ is the maximum length of an
inter-regressive process of order J = K + L among the sources. �

In both theorems 9 and 10, the assumption of W-disjoint orthogonality of the sources
is not necessary and the sources can overlap. This will be shown in the next section.
SCA is often presented as a method able to separate signals violating the independence
assumption. We emphasis here that this assertion is true below the limit defined
by theorems 9 and 10: the limit for SCA-based BSE is one kind of strong linear
dependency among the sources, named an inter-regressive process.

3.5 Blind source separation of sparse sources

In the previous sections, we focused on the blind extraction of the sparsest source
in both instantaneous and convolutive mixtures. Our analysis was based on the
minimization of the ℓ0 pseudo-norm and we discussed the conditions under which
this pseudo-norm can be used as a contrast function for a correct blind extraction.
Delfosse and Loubaton [1995] show that a BSS problem can be solved as a sequence
of BSE problems in which each source is extracted after the other [Papadias, 2000].
However, this method can be sensible to the noise level because each step supposes a
perfect extraction.

It is valuable to specify an objective function that is a contrast function for the
separation. A first idea is to build a function such that

min
W

∑

i

‖ui‖0 + ǫ φr(u1,u2, . . . ), (3.21)

where the term φr guaranties that the same source cannot be extracted twice. Without
such a term, the sparsest source is extracted several time. This term could be a
robust measure of the rank of the matrix W . It could be also a penalized function
of the correlation of the separated sources making sure that two sources are not too
correlated. In practice, this term may be difficult to specify, especially the trade-off
parameter ǫ.

The Hadamard product given by u = u1⊙u2 is defined such that u[x] = u1[x]×u2[x].
We propose a different objective function based on the Hadamard products of the
extracted sources. We define

Υ =






‖ū1 ⊙ ū1‖0 ‖ū1 ⊙ ū2‖0 · · ·
‖ū2 ⊙ ū1‖0 ‖ū2 ⊙ ū2‖0 · · ·

...
. . .




 . (3.22)

The diagonal of the matrix Υ contains the ℓ0 pseudo-norm as we have

Υii = ‖ūi ⊙ ūi‖0 = ‖ūi‖0 , (3.23)

and the off-diagonal terms are the cross-Hadamard-products between any pair of
extracted vectors. Equation 3.21 mainly considers the trace of Υ. We propose to
build an objective function based on the off-diagonal terms such as

min φΥ =
N∑

i

N∑

j=i+1

Υij . (3.24)
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This method is also known as disjoint component analysis (DCA) [Anemüller, 2007;
Mei and Mertins, 2008; Nose-Filho, 2015].

The function φΥ is the sum of the off-diagonal terms. The second sum is made such
that only the upper or lower part of the matrix is considered because Υ is symmetric.

We start with the trivial case of disjoint orthogonal sources and propose a sufficient
condition. The general case is discussed in hereafter.

Proposition 1. We consider the set of global mapping vectors. The following equiva-
lence holds

hi ⊙ hj = 0 ∀i, j 6= i ⇔ {hi} ∈ G. (3.25)

Theorem 11. The function φΥ (defined in equation 3.24) is a contrast function for
the blind separation of disjoint orthogonal sources.

Proof. For disjoint orthogonal sources, we have φ∗
Υ = 0 as all the off-diagonal terms

of Υ vanish. Any other set of extracted vectors is a linear combination of at least two
sources. We have

φΥ =
∑

i

∑

j

‖ūi ⊙ ūj‖0 =
∑

i

∑

j

∥
∥hT

i S ⊙ hT
j S
∥
∥

0
. (3.26)

Because the sources are disjoint orthogonal, all the cross-products vanish and only the
auto-products remain. We can write

φΥ =
∑

i

∑

j

∥
∥
∥

[
hi ⊙ hj

]T [
S ⊙ S

]
∥
∥
∥

0
. (3.27)

By using proposition 1, we see that at least one term must be non-zero and we have
φΥ > φ∗

Υ = 0. The sufficiency of the disjointness condition is proved. �

Conjecture 1. The necessary and sufficient conditions for the separation of sources
with DCA are the same as the necessary and sufficient conditions for the extraction of
all sources in SCA.

In appendex 8.4, we prove this conjecture for the case with N = 2 sources and M = 2
observations. However, we have not been able to find a proper proof for the general
case. We have performed tests on synthetic data, that seem to show that the presence
of an inter-regressive process is a theoretical limit. In the next section, we will present
an evolutionary algorithm for solving equations 3.19 and 3.24.

3.6 Differential evolution algorithm

The two contrast functions presented in equations 3.19 and 3.24 (respectively for BSE
and BSS) are both using the ℓ0 pseudo-norm. Therefore, they are non robust to the
presence of noise in the observation or the extraction (separation) of almost sparse
signal. Solving these problems is combinatorial and intractable in practice with large
data. However, different approximations of the ℓ0 pseudo-norm exist. In this work,
we do not use the equivalence between the ℓ0 pseudo-norm and the ℓ1-norm, because
the desired signal may not be sufficiently sparse to validate the sparsity assumption
needed for an equivalence (see, for instance, the example in the introductory chapter 1).
Instead, we use the smooth version proposed by Naini et al. [2007] and named SL0
(smooth ℓ0). It is defined for a vector u ∈ R

N with Gaussian kernel such that

‖u‖0,σ = N −
∑

x

e−ū[x]2/2σ2

, (3.28)
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Figure 3.5: Shape of several norms in R
2. The first two lines shows the ℓp-norms

for different values of p. The third line shows the smooth ℓ0 pseudo-norm for different
values of the shaping parameter σ.

Parameter Notation Value
Mutation F [0.4, 1]
Crossover Cr [0, 1]
Number of individuals Npop 10× N ×M × Z

Table 3.1: Key parameters of the DE algorithm.

where σ is a shaping parameter and the vector u is normalized to have unit ℓ2 norm.
We have

lim
σ→0
‖u‖0,σ = ‖u‖0 , (3.29)

showing that we can play with the parameter σ in order to adapt the contrast function
to be more robust to the noise. Nevertheless, the approximation of the functions
described in equations 3.19 and 3.24 with SL0 are still highly non-convex and a lot of
local minima exist. In this section, we propose a differential evolution (DE) algorithm
[Das and Suganthan, 2001] for solving the approximations of equations 3.19 and 3.24.
We use this algorithm to show the veracity of our previous theorems. Compared
to other evolutionary algorithm [Zhou et al., 2011], DE has really few number of
parameters (see table 3.1). Figure 3.5 shows the shape of several ℓp-norms for both
p ≥ 2 and p < 2, as well as the shape of the SL0 approximation.
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3.6.1 Generalities about DE

Differential evolution (DE) is a stochastic evolutionary optimization algorithm initially
proposed by Storn and Price [1997]. As any other stochastic algorithm, DE is
particularly efficient for optimizing non-convex and multi-modal functions for which
traditional gradient-based methods can only provide local optima.

A lot of evolutionary meta-heuristics have been developed in the last decades [Deb,
2001]. Basically, they are all based on a population of individuals. Each individual
represents a candidate solution. At each generation, individuals are perturbed, mixed
and selected until a convergence criterion is reached. The basic DE algorithm (as for
most evolutionary scheme) can be summarized as

Initialization;
while DE not converged do

Mutation;
Crossover;
Selection

end

The number of individual is denoted Npop. In the initialization step, the full parameter
space should be uniformly covered. The following notation is used for designating DE
algorithms: DE/a/b/c, where a refers to the mode of selection of individual to be
perturbated (best or random), b is an integer that refers to the number of differences
used (see equation 3.31 hereafter) and c refers to the cross-over method (exp, bin or
dir) [Storn and Price, 1997; Yang et al., 2015].

Diversity in evolutionnary meta-heuritstics

The diversity of the population is a key property in all evolutionary algorithms. A
population with high diversity means that the individual are far away from each other,
in average. If all individuals are concentrated in a local area of the parameter space,
we say that the population has lost its diversity. If this happen, the mutation and
crossover processes are not effective any more to create new original individuals. This
means that there is low chance to be able to cover the entire parameter space. When
the population has lost its diversity, we observe a high “consanguinity” between the
parents and the children. In other terms, the population is stuck in a local minima.
Several measures exist for monitoring the diversity of the population and a lot of
procedures exist to re-inject diversity in the population [Yang et al., 2015].

3.6.2 DE for blind source extraction

In the DE algorithm for instantaneous BSE, each individual is an extracting vector w

acting on the observations and giving an extracted vector u[x] = wT d[x]. There is a
fixed number of Npop individuals at each generation. The upper script indicates the
arbitrary index of the individual as

population:













w1

w2

...
wk

...
wNpop













. (3.30)
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For each individual wk, a mutant vector rk is created by combining three randomly
selected other individuals in the population such that

rk = wik
1 + F × (wik

3 −wik
2 ), ik1 , i

k
2 , i

k
3 6= k. (3.31)

For each individual wk, the mutant vector rk is used to create a trial vector uk such
that

uk[x] =

{

rk[x] with probability Cr,
wk[x] with probability 1− Cr.

(3.32)

For convolutive BSE, each individual represents an extracting system, i.e. a set of
vectors

population:













{w1
l }L

l=0

{w2
l }L

l=0
...

{wk
l }L

l=0
...

{wNpop

l }L
l=0













. (3.33)

Constraining the search space

When based on sparsity, instantaneous BSE problems have a scale ambiguity and
convolutive BSE problems also have a shift ambiguity. Those ambiguities are taken
into account in the formulation of the solution spaces Sn corresponding to a correct
extraction. We can also use these ambiguities to reduce the search space of the DE
algorithm and improve performance. In particular, this avoids the population to
identify twice the same solution.

Vectors wk are systematically projected back on half of the unit hypersphere. For
instance in R

2, the lower arc can be discarded, and in R
3 the half lower semi-sphere

can also be discarded. We see that the size of the search space is divided by 2. The
spherical coordinates in R

N gives a parametrization

w1 = cos θ1

w2 = sin θ1 cos θ2

w3 = sin θ1 sin θ2 cos θ3

...

wN−1 = sin θ1 sin θ2 · · · cos θN−1

wN = sin θ1 sin θ2 · · · sin θN−1,

(3.34)

where θN−1 ∈ [0, 2π] and θ1 · · · θN−2 ∈ [0, π] are given by

θ1 = arccos
w1

‖[w1 . . . wN ]‖2

θ2 = arccos
w2

‖[w2 . . . wN ]‖2

...

θN−2 = arccos
wN−2

‖[wN−2 . . . wN ]‖2

θN−1 =

{

arccos wN−1

‖[wN−1 wN ]‖
2

wn ≥ 0,

2π − arccos wN−1

‖[wN−1 wN ]‖
2

wn < 0.

(3.35)
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We can simply constrain the search by limiting θN−1 in the interval [0, π]. Once the
vector w has been normalized, we have to find its correct sign inside the limited search
space.

The shift ambiguity is more tricky to handle, especially for keeping similar solutions
close to each other in the search space. For instance the two following extracting
systems

w[z] =





1 0 0 0
1 0 0 0
1 0 0 0



 and w[z] =





0 1 0 0
0 1 0 0
0 1 0 0





are equivalent as they extract the same signal, but shifted by one index. Our
parametrization does not take into account the shift ambiguity. This problem that
we identify as a topological problem is out of our scope but we want to give here an
idea of the problem. It is important to notice that as we do not tackle the shifting
ambiguity, the search space may be redundant and we loose the unicity of the solution.
For instance, let us take the shifting ambiguity in R

3. First the three points should be
connected. The vector [0, 1, 1] should be close to [1, 1, 0]. In other word, two exact
same solutions belonging to S can be far away from each other.

Stoping convergence criterion for DE

A simple convergence criterion could be a maximum number of iteration, i.e. the DE
algorithm stops after Nite generations. However, this approach can lead to unnecessary
computations, as the population could have reached the minimum before. Finding an
adequate criterion for stoping the DE algorithm is not trivial.

A first idea can be to say that the individuals of a DE algorithm converge with high
probability to the same location after a certain time. This aspect can be useful for
proposing a convergence criterion. For instance, we could measure the average distance
between all individuals and stop the algorithm when this value is small. However, this
approach is computationally costly because it needs the computation of half a square
distance matrix at each generation, containing all the distances

∥
∥wk1 −wk2

∥
∥

2
for all

couple k1, k2 ∈ [1, Npop].

Also, the population could have reached several minimum location and the individuals
are not necessarily close to each other. We prefer to use a simple criterion, easy to
compute, which is the stationary of the best element in the population. If the value of
the fitness of the best element is constant over N∆ generations, we say that the DE
has converged.

A simple gradient step

The DE algorithm is efficient for computing efficiently a good approximation of the
solution. To increase performance, we add a gradient descent step to the best individual.
The gradient of the objective function with respect to a parameter is given by

∂ ‖u‖0,σ

∂wz[m]
=

1
σ2

X∑

x=1

dm[x− z]u[x]e−u[x]2/2σ2

. (3.36)

The best individual is updated in opposite direction of the gradient until convergence.

Comments on initialization

For a blind problem, no assumption is made on the mixing model and by consequence
no assumption can be made on the extracting vector (or the separation matrix). The
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Figure 3.6: a) A uniform initialization of the population over the unit cube. b) The
projection of this initialization on the ℓ2 unit-sphere.

initial population should uniformly cover the parameter space with all the individuals.
A naive idea is to cover the parameter space by taking each parameter from a uniform
distribution, for instance in the interval [−1,+1]. However this naive method leads to
an incorrect initialization.

For instance, the extraction is done by a vector w ∈ R
3 that can be parametrized

in spherical coordinates by 2 parameters θ1 and θ2 in order to get rid of the scale
ambiguity. Then, the uniform initialization must be done on the unit-sphere and
not on the unit cube. Figure 3.6a shows an uniform initialization of the population
in a R

3 parameter space. Figure 3.6b displays the projection of this initialization
after projection on the ℓ2 unit-sphere. Clearly, we see areas in which the density of
individuals is higher than elsewhere. This initialization is not correct.

The correct way to initialize uniformly the vector over the unit sphere has been
proposed by Muller [1959]. Let all wn be independent Gaussian random variables,
then w/‖w‖2 is uniform over the unit sphere.

3.6.3 DE for blind source separation

In the DE algorithm for instantaneous BSS, each individual is an extracting matrix W

acting on the observations and giving a set of extracted vector u[x] = W T d[x]. There
is a fixed number of Npop individuals at each generation. The upper script indicates
the arbitrary index of the individual as

population:













W 1

W 2

...
W k

...
W Npop













. (3.37)

For convolutive BSS, each individual represents a separating system, i.e. a set of
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vectors

population:













{W 1
l }L

l=0

{W 2
l }L

l=0
...

{W k
l }L

l=0
...

{W Npop

l }L
l=0













. (3.38)

3.6.4 A strategy for dealing with noisy data

In the previous sections, we mainly considered the noiseless mixture model d[x] = As[x]
of equation 2.35, where the sparse sources were containing a lot of exact zero coefficients.
However, in practice, observations may be contaminated with independent noise and
the sources may not be perfectly sparse.

We model the noisy data by the following equation

d[x] = As[x] + n[x], (3.39)

where n[x] is the noise vector. This additive noise can be, for instance, a random
Gaussian vector with zero mean vector µ1 = 0 and a diagonal variance matrix
Σ = σT I representing uncorrelated components. Almost sparse sources contain a lot
of small values and we consider the following model

s[x] = s0[x] + δ[x], (3.40)

where s0[x] is a perfectly sparse source vector containing a lot of exact zero-values
and δ[x] contains all the small perturbations.

The separation of sources is performed by a separating matrix W as in equation 2.37.
It gives with the two precedent models

u[x] = W T d[x] = W T (A (s0[x] + δ[x]) + n[x]) (3.41)

= W T As0[x] + W T Aδ[x] + W T n[x]
︸ ︷︷ ︸

e1[x]+e2[x]

, (3.42)

where the two terms e1[x] = W T Aδ[x] and e2[x] = W T n[x] are two residual terms
due to the almost sparsity of the sources and the noise, respectively.

Both terms lead to a deviation from the perfect sparse model. The hyperplanes due to
the presence of zeros are not crossing at a unique point anymore, but are approximating
each other around a small area, as we saw in figure 2.1 with the noisy inverse problem.
The smooth ℓ0 pseudo-norm is particularly useful to handle noisy observation via the
shaping parameter σ. If the level of noise is known, Naini et al. [2007] propose to use
a fixed value of σ. Unfortunately, the level of noise is not always known a priori. We
propose a strategy for identifying the presence of noise in the data or in the model by
the analysis of a Pareto curve [Kim and Weck, 2005; Campigotto et al., 2014].

Ideally, we want to take a small value for σ to be as close as possible from the exact
ℓ0 pseudo-norm estimate. However, the presence of noise or almost sparse sources
requires to relax and increase this value. If σ is taken too high, the solution is close to
the ℓ2 norm solution and is not accurate enough. We propose to evaluate the best σ
via the analysis of the function

φ∗
0(σ), (3.43)

where φ∗
0 is the value of the global minimum estimated by the DE algorithm for a

fixed σ.
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With a perfectly sparse and noiseless model, the function φ∗
0(σ) presents a continuous

sigmoid shape. For small values of σ, φ∗
0 tends to be close to ‖s1‖0 because only the

coefficient closed to zero are contributing to the computation. For high values of σ,
all values contribute and the φ∗

0 is closed to zero.

When noise is present in the observation, the Pareto curve of φ∗
0 changes its shape

into a specific form. Instead of presenting a single stair, it shows two stairs. For low
σ, φ∗

0 is close to the number of indexes, i.e. to the length of the signals. The two stair
shapes are typical of noisy data. The best σ can be evaluated by

σ∗ = min
σ

φ∗
0(σ) + ǫ log σ. (3.44)

This second optimization problem must be carefully addressed because the Pareto
curve is not convex. In particular, the search must be limited to an interval of small
σ values. This method is expensive as several runs of the DE algorithm must be
achieved.

3.7 Synthetic examples for BSE and BSS

In this section, we develop and analyze several synthetic examples. Basic examples
help to understand the structure of the cost functions defined in equation 3.19 and 3.24,
especially the location of local and global minima. They are also of useful help for
understanding the behavior of the DE algorithm. Subsection 3.7.1 gives the first
example with N = 2 sources and M = 2 observations in instantaneous mixture.
This simple example is particularly appreciable because both the BSE and the BSS
objective functions can be displayed. Subsection 3.7.2 considers N = 3 sources and
M = 3 observations in instantaneous mixture. Only the BSE objective function can
be displayed. Subsection 3.7.3 present a problem with N = 2 sources and M = 3 in a
convolutive mixture. These examples will confirm our theorems.

3.7.1 2× 2 instantaneous mixture

Sources and mixtures. The first example is a simple instantaneous BSS problem
with N = 2 sources and M = 2 sources. The two sources are 1D signals with
‖s1‖0 = 56% and ‖s2‖0 = 75%. Sparsity is expressed in percentage, as the ratio
of the number of active coefficients over the size of the signal. In particular, they
are not disjoint orthogonal and share a common support of 30% in which a 12.5%
inter-regressive process is added. An IR process is added by randomly choosing the
coefficients [c1, c2] of the process and constraining c1s1[x] + c2s2[x] = 0. Figure 3.7a
displays the two signals and figure 3.7b shows their cross-plot. In the cross-plot, the
samples are aligned along lines corresponding to the silent zone of s1 (vertical) and
s2 (horizontal). The third line corresponds to the inter-regressive process, where
s2[x] ∝ s1[x].

The mixing system is set such that

A =
[
2 −1
1 1

]

. (3.45)

Extracting and separating systems. The extraction is obtained by optimizing
the following extracting vector

wT =
[
w1 w2

]
=
[
cos θ1 sin θ1

]
, (3.46)
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Figure 3.7: First synthetic example with N = 2 sources. a) s1 and s2 are sparse
signals but not disjoint. b) Cross-plot of s1 and s2.
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Figure 3.8: The SL0 objective function defined in equation 3.19 for the BSS of sparse
sources with different shaping parameter σ.

where the amplitude ambiguity is used to reduce the number of parameter from 2 to 1.
The parameter space can be limited to [0 π[. The separation is obtained by optimizing
the following separating matrix

W =
[
wT

1

wT
2

]

=
[
cos θ1 sin θ1

cos θ2 sin θ2

]

, (3.47)

where each extracting vector can be parametrized by a single parameter θi. The
parameter space can be limited to [0 π[×[0 π[.

Results and discussion. Figure 3.8 shows the contrast function 3.19 for the ex-
traction of the sparsest sources, for different values of the shaping parameter σ. Three
local minima exist: two are associated to the extraction of each source and one is due
to the presence of an inter-regressive process. When σ is really small, the objective
function becomes closer to the exact ℓ0 contrast function and a lot of small parasitic
minima appear. All those parasitic local minima are due to the cancellation of at
least one coefficient in the extracted vector. Strong local minima correspond to the
cancellation of several coefficients: each corresponds to the extraction of a sparse
source. Also, when σ is too large, the exact minimum corresponding to the extraction
of s2 is merged with the parasitic minima.

The challenge of BSS compared to BSE is the direct recovery of all sources at the
same time. As we explained before, we could try to identify all the local minima
of the BSE contrast function. It will require a multimodal optimization scheme for
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Figure 3.9: a) The naive BSS objective function based on the ℓ0 pseudo norm
(equation 3.21). b) The correct BSS objective function for the separation of sparse
sources as defined in equation 3.24.
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Figure 3.10: The SL0 objective function defined in equation 3.24 for the BSS of
sparse sources with different shaping parameters σ.

identifying the two local minima. The use of a contrast function for the separation is
a valuable approach as it simplify the optimization. The naive BSS objective function
(equation 3.21) is the sum of the ℓ0 pseudo-norm of the two extracted vectors. The
result is presented in figure 3.9-a). Clearly, this function is symmetric with respect
to the main diagonal. One can observes several vertical and horizontal lines, each
corresponding to the cancellation of one coefficient in the extracted vector. Two strong
lines correspond to the extraction of s1 and s2. Without any regularization term
as proposed in equation 3.24, we see that the global minimum correspond to the
extraction of twice the sparsest source (in that case twice s1).

In figure 3.9-b), the contrast function φΥ is shown for the same BSS problem. Clearly,
the global minimum has been removed from the main diagonal and corresponds to
the separation of the two desired sources. Figure 3.10 shows φΥ for different values
of the σ parameter. For small values of σ, the twice-the-same parasitic minima are
still local minima, but not global minima. As σ increases, the function get closer to
the ℓ2 norm contrast function, and the twice-the-same parasitic minima become local
maxima. However, in the presence of strong correlation in the common support (i.e. a
strong inter-regressive process), the ℓ2 norm fails to recover the correct sources, and
small values of σ must be used.
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3.7.2 3× 3 instantaneous mixture

Sources and mixtures. The case with 3 sources and 3 observations is also conve-
nient for displaying the BSE objective function. As before, the mixing matrix A is
constrained to be well-conditioned. We consider at first the following arbitrary mixing
matrix

A =





2 1 1
−2 2 −2
−1 2 1



 (3.48)

and three one-dimension sources (N = 128) with the following sparsity:

‖s1‖0 = 25%, ‖s2‖0 = 50%, ‖s3‖0 = 50%. (3.49)

Results and discussion. The BSE contrast function is shown in figure 3.11 for
different values of the shaping parameter σ. For small values of σ, the function is
almost equal to the size of the signals N everywhere, except on some lines. Three lines
with lower values appear. They cross on a single point between each other and create
three strong local minima. Each of these local minima corresponds to the extraction
of a sparse source. In this case, the contrast function for blind separation cannot be
displayed.

The effect of having an inter-regressive process among the sources is shown in figure 3.12.
Coefficients verifying equation 3.18 were added among the sources. We see that a
parasitic minimum appears. The minima corresponding to the extraction of the
sources are at the crossing point of three main “lines”. The minimum related to the
inter-regressive process is at the crossing point of several lines.

We add some Gaussian noise to the observations for the BSE problem and we observe
the behavior of the objective function with different shaping parameters (figure 3.13).
The variance of the noise for each observation is fixed to be a percentage of the variance
of the observations. The contrast function is shown in figure 3.13 for different values
of shaping parameters and different variances of noise. We see that as the noise level
increases, the lines are not crossing on a single point anymore, but are passing nearby
a point. The shaping parameter σ is then useful to open the valley of each line and
for determining a unique crossing point.

Our strategy for dealing with noisy observations is presented in figure 3.14. The same
mixing system of equation 3.48 is used. The same amount of sparsity is used for
the three sources. In particular, the number of active coefficients of s1 is given by
‖s1‖0 = 0.25× 512 = 128. We perturb the observation with a level of noise Rn and
we compute the curve φ0(σ) by using the DE algorithm for different value of σ.

When there is no noise (figure 3.14a), the curve φ0 is mainly flat with a constant
value of ‖s1‖0 = 128 until σ ≈ .1. This is the range where the approximation by SL0
is accurate enough. After this value, the curve decreases to 0. When some noise is
added (figure 3.14b), we see perturbations on the left hand side part of the curve.
This behavior is due to instabilities of the DE algorithm for dealing with really small
values of σ. For higher values of noise (figures 3.14c to e), we see that the curve φ0(σ)
presents a typical shape of two sigmoids. The starting point of the second sigmoid
(indicated by red arrows) indicates the correct value for σ. This value correspond to a
correct trade-off.
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Figure 3.11: The SL0 objective function defined in equation 3.19 for the BSS of
sparse sources with different shaping parameter σ.
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Figure 3.12: Effect of the presence of an increasing inter-regressive process on the
SL0 objective function defined in equation 3.19 for the BSS of sparse sources. The
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Figure 3.13: Magnification of the SL0 objective function defined in equation 3.19 for
the BSS of sparse sources with different level of noise Rn and shaping parameter σ0.

3.7.3 3× 2 convolutive mixture

Sources and mixtures. For a convolutive problem, the noiseless convolutive mix-
ture model (equation 2.36) can be written such that

d[x] =
Y∑

y=0

A[y]s[x− y].

where the mixing system is a set of matrices {A[y]}Y
y=0. Our first example considers

M = 3 sources and N = 2 observations. The mixing system is of length Y = 4 and is
explicitly given by

A[0] =





0 4
1 −4
0 5



 ,

A[1] =





8 −2
4 −1
9 −4



 , A[2] =





−4 −4
2 2
2 2



 , A[3] =





2 −2
1 1
−1 −1



 , A[4] =





−1 0
0 0
1 1



 .
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Figure 3.14: Strategy for identifying the level of noise in a BSS problem based
on sparsity. The outsider points are due to the fact that the DE algorithm did not
converged. Red arrows indicates the typical curvature due to the presence of noise in
the observations.
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For this system, an inverse system exists (see section 2.4.1 for the invertibility of
FIR-MIMO systems). The blind extraction is achieved by

u[x] =
Z∑

z=0

wT [z]d[x− z].

Invertibility ensures that an inverse exists, but it does not ensure that the solution
is unique: two solution may exist and so two local minima associated. It is worth
mentioning that the sources and the observations are zero-padded. Otherwise, one
may loose coefficients at the edges of the observations.

Results and discussion. Figure 3.15 displays the result of our algorithm for ex-
tracting a sparse source, with an extracting system of length L = 7. This example
shows a perfect recovery of the sparse source, for the case of sources verifying the
assumption of theorems 9 and 10. We emphasize, here again, that the conditions
described by the proposed theorems are necessary and sufficient. If the condition
is not valid, then the minimum of the objective function does not correspond to a
correct sparse source recovery. Instead, a parasitic vector having a lot of zeros but not
corresponding to any of the original source is extracted. If the condition is valid then
the minimum of the objective function correspond to the correct source extraction.

However, even if the condition is valid, the DE algorithm may fail to recovery the correct
source. This is due to the random nature of evolutionary algorithms. A necessary
trade-off exists for choosing the correct value of σ for an accurate approximation of the
ℓ0 pseudo-norm by SL0. If this value is too small, then the “lines” objective function
(see figure 3.11) are really tiny valleys that are difficult to reach for an individual. The
DE algorithm will need a lot of generations to converge. On the other size, if the value
of σ is too high, then the minimum is slightly shifted from its original position and
does not correspond to an accurate sparse source recovery.

One can notice that the conditions proposed by theorems 9 and 10 are actually quite
weak. In practice, for random signals, the conditions are easy to satisfy and the
probability of presence of an inter-regressive process is small.

When the signal has some coherence, the probability of having an inter-regressive pro-
cess increases. This is quite interesting because coherency is a structured relationship
inside the signal itself. It is actually equivalent to some kind of dependency. The limit
of SCA and DCA is, indeed, the presence of a strong dependency among the source,
named an inter-regressive process. In chapter 6, this aspect will be discussed in the
particular case of primaries and multiples.

In figure 3.16, we add a really strong inter-regressive process among the source. It
is a simple strict correlation between several coefficients. The condition is not valid
anymore and the minimum of the objective function corresponds to a vector containing
a lot of zeros, but it is not the desired sparse source.

3.8 Conclusion

In this chapter 3, we have analyzed the necessary and sufficient conditions for the
extraction and the separation of sparse sources in determined linear mixtures. We
have introduced the definition of inter-regressive processes, in a similar fashion as
auto-regressive processes are already defined in the literature. In summary, an inter-
regressive process denotes the presence of a correlation cluster among the sources.
We have used a deterministic framework for counting the number of samples present
in each inter-regressive process. Sparse sources can be extracted and separated by
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SCA and DCA if no strong inter-regressive process exists between the sources. If an
inter-regressive process does exist, it will create a strong parasitic minimum in the SCA
and DCA objective functions. When a strong correlation exists among the sources,
such as an inter-regressive process, classical convex sparse measures (for instance the
ℓ1-norm) are perturbed by the presence of the inter-regressive process. Here comes the
need for finer objective functions such as SL0 to distinguish between the true minimum
and the parasitic minimum. We presented a DE algorithm for optimizing the set
of extracting and separating coefficients. We have focus in particular on convolutive
mixtures.
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Résumé du chapitre [français]

Le chapitre 4 donne une vue d’ensemble des méthodes d’élimination des réflexions
multiples pour les données sismiques. En effet, la plupart des méthodes d’imagerie
sismique font l’hypothèse que seuls les événements primaires sont présents dans les
données et donc que les événements multiples sont indésirables.

Après une classification succincte des multiples dans la section 4.2, les techniques
d’éliminations sont divisées en deux groupes. La section 4.3 présente les méthodes
ne faisant pas de prédiction des multiples. Il s’agit principalement de techniques
de filtrage a priori dans divers domaines mathématiques, tels que le filtrage FK ou
le filtrage Radon. En effet, après transformation dans ces domaines, l’énergie des
primaires et l’énergie des multiples se concentrent dans des régions différentes. Il est
alors plus facile d’y atténuer les réflexions multiples puis de réaliser la transformation
inverse vers le domaine d’origine.

La section 4.4 présente les méthodes qui modélisent et calculent une prédiction des
multiples. Essentiellement, les données peuvent être auto-corrélées afin de générer des
échos proches cinétiquement des multiples enregistrés. Ce modèle des multiples sera
ensuite soustrait aux données pour avoir une estimation des primaires. Les méthodes
SRME et EPSI sont fondées sur cette idée. Elles peuvent être étendues à la prédiction
des multiples internes.

Comme nous l’avons évoqué, les méthodes du second groupe ne prédisent jamais
parfaitement les multiples, et l’on doit ajouter une étape d’adaptation pour que le
modèle corresponde aux vrais multiples. La section 4.5 est dédiée à cette étape
appelée filtrage adaptatif. Plusieurs méthodes y sont décrites succinctement, telles
que les méthodes basées sur les normes ℓp ou les méthodes basées sur l’indépendance
statistique.
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Resumo do capítulo [português]

O capitulo 4 apresenta um conjunto de vários métodos de eliminação de reflexões
múltiplas para dados sísmicos. A maior parte dos métodos de imagens sísmicas, de
fato, baseiam-se na hipótese que apenas os eventos primárias são presentes nos dados
e que, portanto, os eventos múltiplos são indesejáveis.

Depois de uma classificação sucinta das múltiplas na seção 4.2, as técnicas de eliminação
são divididas em dois grupos. A seção 4.3 apresenta os métodos que não fazem previsões
de múltiplas. Tratam-se principalmente de técnicas de filtragem a priori dentro de
diversos domínios matemáticos, como a filtragem FK ou a filtragem Radon. Após
transformações dentro desses domínios, a energia das primárias e a energia das múltiplas
concentram-se em regiões diferentes. Portanto, torna-se mais fácil atenuar as reflexões
múltiplas depois de realizar a transformação inversa em direção ao domínio de origem.

A seção 4.4 apresenta os métodos que modelam e calculam uma previsão de múltiplas.
Os dados podem ser basicamente auto correlacionados a f́ım de gerar ecos próximos
cineticamentes de múltiplas registradas. Esse modelo de múltiplas será, em seguida,
subtraído dos dados para poder-se estimar as primárias. Os métodos SRME e EPSI
são baseados nessa idéia. Eles podem ser estendidos às múltiplas internas.

Como foi mencionado anteriormente, os métodos do segundo grupo nunca prevêem
perfeitamente as múltiplas, e nós devemos adicionar uma etapa de adaptação para que
o modelo corresponda às verdadeiras múltiplas. A seção 4.5 é dedicada a essa etapa
chamada “filtragem adaptativa”. Vários métodos são aqui descritos de maneira sucinta,
como os métodos baseados nas normas ℓp e os métodos baseados na independência
estatística.
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4.1 Introduction

As introduced in chapter 1, the data recorded in seismic acquisitions can be considered
as the superposition of primary and multiple events such as

d[x] = p0[x] + m0[x], (4.1)

where d, p0 and m0 are the data, the true primaries and the true multiples, and the
index x indicates the location in the data cube. However, most of the conventional
imaging and processing techniques developed by the exploration community consider
that the data are multiple free. This is the case, for instance, for reverse time migration
(RTM) or velocity analysis. Therefore, it is crucial to adequately remove the multiple
energy which is considered, here, as a noise. An effective way to have an overview of
the importance of multiples in seismic acquisition is to refer to the four special section
editions of the international journal The Leading Edge, in 1999, 2005, 2011 and 2015,
dedicated to multiples.

In this chapter 4, section 4.2 is dedicated to a rapid classification of multiples. In
sections 4.3 and 4.4 we develop the different methods existing to eliminate multiples.
A first class of methods (section 4.3) considers some mathematical transformations
of the data able to make primaries and multiples almost disjoint orthogonal. This
kind of strategy allows for filtering the multiples in the transformed domain. A second
class of methods (section 4.4) based on the feedback model, allows estimating the
kinematic of the multiples. These methods generally need an adaptive subtraction
step to adequately remove the noise (section 4.5). Adaptive subtraction of multiples
will be the core subject of chapter 5. To finish, section 4.6 briefly presents some recent
considerations about using multiples as a signal and not as a noise. As for the previous
chapters, we will focus on the objective functions and the optimization scheme of the
presented methods.

4.2 Classification of multiples

Several classifications exist for multiples. These classifications are motivated by the
different methods able to tackle the problem of multiple elimination. Each method is
indeed able to tackle only part of the multiples. Hence, there is no single definition of
multiples. We start with the definition proposed by Weglein et al. [1997]: “a multiple
is a seismic event that has experienced two or more upward reflections”. More details
can be found in Yilmaz [2001] or Verschuur [2013b]. Moreover, in table 4.1 inspired
by Wong [2012], we present the various types of multiples and the most suitable
methods to tackle their removal.

Source ghost and receiver ghost

Source ghosts and receiver ghosts are due to the location of seismic sources and
receivers, respectively. Those devices are indeed not exactly located at the free surface,
but deeper for practical reasons. On the source side, the energy will propagate in all
direction and reflect rapidly on the free surface. On the receiver side, the receiver
records the upward energy and the downward energy reflected by the free surface. The
ray paths of one source ghost and one receiver ghost are presented in figure 4.1-a) and
b).

Depending on the definition of multiples, ghosts may be not classified within the
multiple category (see for instance the definition by Weglein et al. [1997]). Also,
dedicated methods are used to eliminate ghosts and their signature can be easily
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implemented in forward modeling (see e.g. Verschuur [2013a]). As multiples, ghosts
create small repetitions in the data, but without the periodicity specific to multiples.

Surface related multiples

Surface-related multiples refer to the presence of one strong reflector [Yilmaz, 2001;
Verschuur, 2013b]. All multiples that are removed if this reflector disappears are said
to be related to this surface. Generally, the strong reflector is the free-surface, and one
speak about free-surface-related multiples. The order indicates the number of time
the energy has been reflecting on the surface. One speaks about first order multiples,
second order multiples, etc. The ray paths of a first order and a second order surface
related multiple are presented in figure 4.1-d) and e).

Internal multiples

Internal multiples are due to one or two strong reflectors below the free surface [Yilmaz,
2001]. They are often referred to as short period multiples because they create close
duplicated events. Intrabed multiples refer to reflections created inside a single layer.
Interbed multiples refer to reflections created between two different layers.

Pegleg multiples may refer to different kind of multiples. They are due to two different
reflectors acting at two different depths. The ray paths of internal multiples are
presented in figure 4.1-f) to h).

4.3 Removal methods based on filtering (no prediction)

When they reach a receiver, multiples have generally travelled shallower than the
primaries arriving at the same time, as the wave propagation velocities generally
increase with depth. The apparent velocities of multiples are then lower than the ones
for primaries and they present different dips (more horizontal) in common midpoint
gathers (CMP) [Yilmaz, 2001]. In other words, primaries have less move-out than
multiples. Move-out correction can enhance this effect. Stacking CMPs after normal
move-out (NMO) correction can reduce the presence of multiples in the stacked trace,
but more advanced methods exist to filter the multiples before stacking and increasing
the signal to noise ratio for imaging process.

Assumption 5. Multiples have a smaller move-out compared to primaries.

Assumption 5 is the foundation for many methods, mainly based on some kind of
filtering. These techniques are often non-adaptive and use prior informations on the
mapping of multiples and primaries in a transformed domain.

4.3.1 Stacking and fancy stacking

Multi-offset surveys allow a lot of different processing for enhancing the signal to noise
ratio. Perhaps the most simple one is the sum of several traces after NMO correction,
called stacking. If the noise from trace to trace is not correlated, stacking has shown
to be effective for removing noise. However, if the noise is correlated in space, i.e.
from trace to trace, the assumption fails. After NMO correction we can write the
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a )
⋆

b)

⋆

c)
⋆

d)

⋆

e)
⋆

f )

⋆

g )
⋆

h)

Figure 4.1: (a) source ghost ; (b) receiver ghost ; (c) Primary ray path ; (d) first
order multiple ray path ; (e) second order multiple ray path ; (f) intrabed multiple ray
path ; (g) peg-leg multiple ray path ; (h) deeper surface related multiple. The red star
indicates the seismic source position.

stacking operation as:

p[t] =
∑

x

dNMO[x, t] =
∑

x

pNMO[x, t] +
∑

x

nNMO[x, t]

︸ ︷︷ ︸

≈0

. (4.2)

Under assumption 5, part of the multiples should be removed.

4.3.2 Pre-stack FK filtering

The 2D Fourier domain is commonly called FK domain in seismic (where F denotes
the temporal frequency ω and K denotes the spatial frequency or wavenumber k). The
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continuous 2D Fourier transform is defined as

Fd(k, ω) =
∫∫

d(x, t)ei(ωt−kx)dtdx, (4.3)

where the minus sign is used for conveniency. The discrete Fourier transform (see
figure 4.2b) is defined as

Fd[k, ω] =
1

NxNt

∑∑

d[x, t]ei( ωt
Nt

− kx
Nx

.). (4.4)

After NMO correction, the primaries should be flat (i.e. not depend on the receiver
position) and the multiples should be over-corrected and go upward. Hence primaries
and multiples map into different areas of the FK domain. Muting can be done in the
FK domain such as

Fp = Fw ⊙FdNMO. (4.5)

This distinction is not valid at near offset, as both primaries and multiples are usually
horizontal in this region, whatever the velocity used for NMO correction.

4.3.3 Pre-stack Radon filtering

The Radon transform (also called slant-stack transform) is a popular transform for
seismic processing. It aims at identifying curves inside an image. In the continuous
case, it is defined as [Durrani and Bisset, 1984; Verschuur, 2013b] (see figure 4.2c)

Rd(q, τ) =
∫

d(x, t = ψ(q, τ))dx with







ψ = τ + qx linear,
ψ = τ + qx2 parabolic,

ψ =
√

τ2 + x2

q2 hyperbolic,

(4.6)

where the curve ψ gives the name of the transform. The parameter q is linked to
velocity (to the shape of the curve) while τ gives the travel-time at a specific spatial
position. Under assumption 5, primaries and multiples map into different areas
and a muting approach is well-suited. Parabolic Radon filtering is often applied
after NMO correction while hyperbolic Radon filtering can be applied before or after
NMO correction. Because of limited offsets, high-resolution versions are used but
the inverse of those transforms can lead to artifacts. Inversion and regularization
schemes are therefore needed for a more precise inverse transform [Sacchi and Ulrych,
1995; Maeland, 2003; Abbad et al., 2011]. The main drawback of these techniques is
the difficulty to separate of primaries and multiples at near offsets, as they are both
horizontal in this area.

4.3.4 Post-stack filtering

The previous methods for filtering multiple events are applied before stacking, and
generally after move-out correction. However, it is also possible to perform multiple
attenuation on stacked sections. The multiples have a tendency to create events flatter
than the primary events [Verschuur, 2013a].

Assumption 6. In a stacked section, multiples may have a different dip compared to
primaries.

Assumption 6 can be used in the image domain. For instance, strategies based on FK
or curvelet filtering may be used to get rid of this parasitic energy.
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Figure 4.2: a) a common shot gather, b) its 2D Fourier transform (only the ampli-
tude), c) its linear Radon transform. Red color indicates positive values and blue color
indicates negative values.

4.4 Removal methods with prediction

In this section, we discuss several methods that have been developed for removing
multiples, either surface-related multiples or internal multiples. Those methods are
referred to as prediction methods because they create a model (a prediction) of the
multiple events [Verschuur, 2013a]. As we will see, due to acquisition limitations, those
methods cannot perfectly predict the multiple events and an adaptive subtraction step
is needed to adapt the prediction to the data.

4.4.1 Predictive deconvolution

Multiples are echos of the original primaries and they appear with a certain regularity,
or periodicity. By exploiting this specific property, one can remove part of the multiples.

Assumption 7. The multiples are periodic.

The mixing model based on assumption 7 can be written as

d[t] = (a ∗ p)[t], (4.7)

where a can be modeled as a sum of Dirac delta functions, with lags between the
Dirac functions defining the periodicity and with amplitude coefficients defining the
attenuation (see figure 4.3). Deconvolution of the data can be designed as

p[t] = (w ∗ d)[t], (4.8)

where constraints are required on the filter w, based on the model. The deconvolution
parameters can be obtained by least-square inversion [Peacock and Treitel, 1969] or
ℓ1-norm minimization [Li et al., 2016]. Multichannel predictive deconvolution can
improved the results by exploiting the spatial coherence of adjacent traces [Porsani
and Ursin, 2007].

4.4.2 Surface related multiple elimination (SRME)

Two main methods extensively used today for predicting multiples have emerged in
the 90’s, both around the same time. At Delft University, Berkhout and Verschuur
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p(t)ad(t)

= ∗

t = 0

Figure 4.3: Mixing model of multiples generation for classical predictive deconvolution
technique.

have developed the popular surface related multiple elimination (SRME) method
([Verschuur et al., 1992; Berkhout and Verschuur, 1997]). Weglein developed the
inverse-scattering series (ISS) method ([Weglein et al., 1997]). Levin [2008] discusses
how they differ in some practical aspect but shows that they are theoretically really
close.

The introduction of the surface related multiple elimination (SRME) method has been
a breakthrough in the processing of multiples generated by a specific surface. This
method is fully data-driven, meaning that no velocity model is needed for creating an
accurate model of the multiples. The core of SRME lives in the observation that the
3D data cube d[x] allows us to generate multiples by auto-convolution of the seismic
data, where the index x = [h, t, xs] contains the offset h, the time t and the source
position xs. As we will see, those auto-convolutions lead to a filter indetermination that
will need to be addressed by adaptive filtering. In practice, this filter indetermination
is not the only reason why one needs the adaptive subtraction, as we shall discuss late.
We present here the SRME fundamental equation.

As we defined before, a surface related multiple is due to the presence of a strong
reflector that literally reflects downward part of the energy. If we consider the point
at which the seismic ray has been reflected, we see that multiples are the kinematic
concatenation of several hypothetical primaries (figure 4.4). By hypothetical primaries,
we mean here a primary that could have been generated by placing the seismic source
at the reflection point. The strategy of seismic surveys is to move the source and
the receivers along the desired profile, such that at the end, those primaries are not
hypothetical but actually recorded at another moment. If we are able to identify
where this “multiple recorded as a primary’ is located in the data, then we have our
prediction of the multiples.

For a zero-offset acquisition, the prediction equation is even easier to obtain: the
multiples have been recorded as primaries in the same trace. For a linear system,
the recorded primaries are p[t] = (a ∗ sp)[t] where a is the seismic source and sp the
primary Green’s function1. If the strong reflector is at the position of the source and
receiver, any energy recorded at some instant will be re-injected downward in the
same system (having the same Green’s function). We can write the trace such that

d[t] = p[t]
︸︷︷︸

primaries

−(p ∗ sp)[t]
︸ ︷︷ ︸

1st order
multiple

+(p ∗ sp ∗ sp)[t]
︸ ︷︷ ︸

2nd order
multiple

− . . . , (4.9)

where a factor −1 is included because of the reflection from the perfect water free

1Our notation changes from conventional notations in SRME works. This choice is motivated by
the precedent part on blind source separation with which we want to make the link. In particular,
the seismic source is generally unknown and can be seen as the mixing system, while the Green’s
function is the signal we want to recover. The reflectivity is generally considered as sparse.
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surface. We can verify that the primaries can be obtained by [Weglein et al., 1997]

p[t] = d[t]
︸︷︷︸

data

−
(

(w ∗ d ∗ d)[t]
︸ ︷︷ ︸

1st order
multiple

−(w ∗w ∗ d ∗ d ∗ d)[t]
︸ ︷︷ ︸

2nd order
multiple

+ . . .

)

, (4.10)

where we defined w such that (w ∗ a)[t] = −δ[t]. We see that each order of multiple
can be predicted by auto-convolution of the data. A filter indetermination remains
with the surface operator.

In 2D acquisition, the structure of the 3D data cube must be used to carefully generate
multiples. In particular, the prediction is generally done in the frequency domain
which also makes the SRME equation more readable. Similarly to equation 4.10, we
can write in the frequency domain

Pω = Dω −W (ω)D2
ω +W 2(ω)D3

ω − . . . , (4.11)

where the lines of the matrices contain monochromatic receiver gathers and the columns
of the matrices contain monochromatic shot gathers. Clearly, an adaptive step is
needed to adapt the prediction to the data, if the source is unknown. Also, because
of acquisition geometry, the prediction is not perfect and the perturbations must be
tackled by the adaptive subtraction step. SRME can be generalized to 3D modern
acquisitions [Pica et al., 2005; Reshef et al., 2006; Dragoset et al., 2010].

a)

p 1 p 2

b)

p 1 p 2

p 3

Figure 4.4: Principle of surface related multiple prediction. a) For free surface
multiple, the ray path can be decomposed into the superposition of two primary ray
paths. b) For an internal multiple, the ray path can be decomposed with three ray path,
one of them (magenta) having a negative contribution.

4.4.3 Estimation of primaries by sparse inversion (EPSI)

The estimation of primaries by sparse inversion (EPSI) method has been proposed
by van Groenestijn [2010] and applied in diverse contexts [van Groenestijn and
Verschuur, 2009, 2010]. EPSI is a continuation of the Delft University method. EPSI
is an iterative full waveform inversion based on the exact same prediction model as
SRME. Hence, EPSI tries to avoid any adaptive subtraction step by using what they
called a sparse inversion. The EPSI formula can be express in the frequency domain
with the matrix notation such as

Dω = Sp,ω [Faω −Dω] . (4.12)

where Dω and Sp,ω are monochromatic matrices and Faω is the Fourier transform
of the seismic source at frequency ω (a scalar in that case). The minus sign is used
because a perfect reflection is considered at the surface. The optimization problem for
EPSI is set as

find Sp,ω and a(ω) such that Dω ≈ Ŝp,ω [â(ω)−Dω] . (4.13)
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Because this problem is highly underdetermined, some prior must be added. EPSI
makes the assumption that the reflectivity is sparse. By looking at equation 4.12, we
see that EPSI is a bilinear inverse problem for which the primary Green’s function
Sp and the seismic source a must be iteratively estimated until convergence. In the
original work by van Groenestijn and Verschuur [2009], the operator imposing the
reflectivity sparse is a simple threshold. Verschuur [2013a] includes ghosts in the EPSI
framework. Savels et al. [2011] shows application on real data. It is worth mentioning
that EPSI does not need a near-offset interpolation pre-processing, compared to SRME.

Lin and Herrmann [2013] improved the robustness and the stability of the original
algorithm by formulating EPSI in a biconvex optimization scheme. As in the original
algorithm, the Green’s function and the source are updated sequentially. The seismic
source is the result of a ℓ2 optimization scheme while the Green’s function is the result
of a LASSO optimization scheme written as

min
∥
∥
∥D − D̂

∥
∥
∥

2
+ ǫ
∥
∥
∥Ŝp

∥
∥
∥

1
. (4.14)

Feng et al. [2013] include a similar strategy in the curvelet domain. Recently, EPSI
has received a lot of attention for dimension reduction [Jumah and Herrmann, 2014;
Tu and Herrmann, 2015].

4.4.4 Wave field extrapolation

The beauty and usefulness of SRME and related techniques is the fact that they are
fully data driven. In other words, no velocity model is needed to make the prediction
of the multiples. However, if we know some information about the subsurface such
as the position of a strong reflector, the multiples can be predicted by wave field
extrapolation. Historically, this method has proceeded SRME. The data recorded at
the surface are extrapolated to the position of identified strong reflector. This step
constructs the data at the position of virtual sources. Then, the extrapolated wavefield
can be used to construct a prediction of the multiples [Wiggins, 1999].

4.4.5 Internal multiples

Jakubowicz [1998] has described a method for predicting interbed multiples. His
approach is a generalization of SRME prediction (proposed by Verschuur et al. [1992]
and Verschuur and Berkhout [1997]). We saw in section 4.4.2 that water-surface
related multiples can be predicted by decomposing the ray path of each multiple into
several primaries. Each primary is merged in a positive manner to contribute to the
full ray path. In a similar way, an internal multiple can also be decomposed into
several primaries, but some of them must be merged in a negative manner to remove
some paths (figure 4.4). In the first formulation of the method, the surface acting as
a strong reflector must be identified. Hung and Wang [2012] use ideas from ISS to
improve the Jakubowicz’s approach such that the strong reflector does not need to be
identified.

4.5 Adaptive multiple subtraction [quick overview]

Multiple attenuation is crucial for improving the quality of seismic images, especially
in marine acquisitions. As shown in section 4.4, several techniques exist to provide a
prediction of these multiples. Unfortunately, none of these prediction-based methods
can provide a perfect prediction of the multiples because of phase, wavelet or space-
shift errors [Abma et al., 2005]. Therefore, a second step, usually referred to as
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adaptive multiple subtraction, is required to accommodate the prediction to the actual
multiples before the subtraction. The most common solutions are based on matching-
filter approaches [Verschuur and Berkhout, 1997; Rickett et al., 2001; Guitton and
Verschuur, 2004] and on prediction-error filters either in the frequency [Spitz, 1999] or
in the time domain [Guitton, 2005]. Table 4.2 aims at giving a list of these methods
with their main properties.

4.5.1 Generalities about adaptive subtraction

Most of adaptive multiple subtraction schemes rely on a linear convolutive model to
reshape the predicted multiples. However they may differ in the following aspects:

• the objective function to be optimized,
• the domain to perform the optimization,
• the strategy to overcome the non-stationarity of the filter,
• and the strategy to exploit the space-time coherence of the seismic signal.

Often, non-stationarity and space-time coherence are handled with a common strategy.
However it is important to keep in mind that non-stationarity is a difficulty to overcome
whereas the space-time coherence is an asset to capitalize on.

Because of its computational efficiency, the ℓ2-norm is the most commonly employed
objective function in adaptive multiple subtraction. The resulting filter, which is
known as least-squares or Wiener filter, works under the assumption that primaries
and multiples are orthogonal in the considered domain [Verschuur, 2013b]. However
in practice, and in particular in the time-offset domain, this assumption fails and it
may lead to an over-attenuation of the estimated primaries. For this reason, some
works consider some ℓ1-norm based filters that seem to overcome the problem by
promoting a sparser solution of the estimated primaries [Guitton and Verschuur, 2004].
Interestingly, ℓq-norms have been considered as a regularization term [Costagliola
et al., 2011]. Moreover, a Bayesian framework has also been investigated by Saab et al.
[2007a].

More recently, other works proposed to use independent component analysis (ICA) [Comon
and Jutten, 2010] to separate primaries and multiples. This approach has led to the use
of new objective functions associated with methods such as geometric-based ICA [Lu,
2006], FastICA [Kaplan and Innanen, 2008], kurtosis-based methods [Donno, 2011],
Infomax [Liu and Dragoset, 2013], negentropy maximization [Li and Lu, 2013]. The
first works [Lu, 2006; Kaplan and Innanen, 2008; Donno, 2011] on ICA-based adaptive
multiple subtraction operate in a two-step fashion. They comprise an estimation of
the shape of the filter using a classic ℓ2-norm matching filter or a histogram method
to correct for time delay, followed by a more precise adjustment of its amplitude using
ICA. More recent works [Liu and Dragoset, 2013; Li and Lu, 2013] have proposed to
directly rely on a convolutive modeling with objective functions based on statistical
independence.

The domain in which the matching filter is performed is decisive in adaptive multiple
subtraction and a lot of effort has been done to search for domains where primaries and
multiples do not overlap. Usually, the adaptive multiple subtraction procedure is carried
out in the time-offset domain where the orthogonal assumption fails. Other domains
have been proposed such as dip-domain [Donno, 2011], wavelet-domain [Ahmed, 2007;
Ventosa et al., 2012], curvelet-domain [Herrmann et al., 2007, 2008; Donno et al., 2010],
Radon domain [Li and Lu, 2014], frequency domain [Spitz, 1999], adjoint domains
(the first derivative along with the Hilbert transform and its first derivative) [Wang,
2003]. In this paper we only consider the space-time domain but our conclusions hold
for other domains.
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After defining a proper objective function and a suitable domain to perform the adaptive
multiple subtraction procedure, the last issue to overcome is the non-stationarity of the
primaries and the multiples [Guitton, 2005; Fomel, 2007b, 2009]. This means that the
statistical features of the data are not steady with respect to the time or the offset and
so neither the filter we aim to recover [Velis, 2003]. However, the spatial and temporal
coherence of the seismic signal prevents from drastic changes, and smooth variations
can be assumed. Hence, most of the time, the signal is considered as stationary in a
small data window in which a unique filter can be obtained. This operation is then
repeated on several over-lapping windows to complete the full data length. Finally
we would like to mention that one, two or three dimensional data windows – and
so filters – can be considered [Wang, 2003; Donno, 2011], since the seismic signal is
locally coherent in the full data cube.

We consider the following linear model for adaptive multiple subtraction
{

d = p + m,

m̂ = w ∗m,
(4.15)

where a hat ·̂ indicates a final estimation and ∗ denotes the convolution product that
can be either 1D, 2D or 3D, according to the dimension of w and m. The estimate of
the primaries is then given by

p̂ = d− m̂ = d−w ∗m. (4.16)

The model described by equations 4.15 and 4.16 will be used in chapters 5 and 6.

4.5.2 Toy synthetics for adaptive multiple subtraction

Crossing events

Figure 4.5 shows a synthetic gather in which the primary and the multiple events are
crossing. The two events have different dips. This situation can occur in gathers at far
offsets. Multiples present a different move-out because their apparent velocity is lower
(they have travelled shallower). This kind of situation can also occur in post stack.

In this example, we use the exact multiple (figure 4.5b) as the prediction. This
strategy helps us to underline the limit of the least-squares filtering. A filter of 16 ms
is computed in the least-squares sense and applied on the prediction for each trace.
As result, we see that the primary estimated has been damaged where the multiple
is crossing. This is what is called over-attenuation. Because the ℓ2-norm approach
tends to minimize the energy of the primary events, a solution full of zeros is a perfect
solution. The matching filter does not adapt the prediction to the multiple event, but
to the primary event.

Parallel events

Figure 4.6 shows a synthetic gather in which the primary and the multiple are parallel.
This situation can occur at near offset. Parallel events are also visible at far offsets
when considering a small window.

In this example, we use the actual multiple (figure 4.6b) as the prediction. A filter of 68
ms is computed in the least-squares sense and applied on the prediction for each trace.
As result, we see that the primary estimated has been damaged where the primary is
close enough to the multiple, within the filter length. Here again, over-attenuation
occurs. The filter is not adapting the prediction to the multiple event in the data, but
to the primary event.
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Figure 4.5: Synthetic example of crossing events. a) Primary event. b) Multiple
event. c) Data. d) Result of the least-squares estimation with a filter of 16 ms for each
trace.
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Figure 4.6: Synthetic example of parallel events. a) Primary event. b) Multiple
event. c) Data. d) Result of the least-squares estimation with a filter of 68 ms for each
trace.

4.6 Imaging with multiples

In the previous sections, we introduced methods for removing multiples from the data.
In the last years, a lot of efforts have been done for using multiples as a signal. The
main reason is that multiples could better illuminate some parts of the sub-surface
and enforce resolution [Berkhout and Verschuur, 2006]. For instance, the missing short
offsets can be recovered [Curry and Shan, 2010], or the cross line resolution can be
improved. It is out of our scope to describe all existing methods, but we want to
give to the reader some perspectives on using multiples in seismic imaging. A good
starting point is the 2015 special edition of The Leading Edge entitled “Multiples from
attenuation to imaging”.

4.6.1 Full waveform inversion

Commonly in seismic imaging there exists a distinction between large scale imaging
(tomography) and fine scale imaging (migration). Differently from that, full waveform
inversion (FWI) consists, as its name suggests, of the inversion of the whole seismic data
set [Tarantola, 1987; Brossier et al., 2009; Virieux and Operto, 2009]. Theoretically,
the multiples are embraced in the forward modeling operator L and the objective
function minimizes the distance between the data d and the modeled data Lθ, where
θ are the parameters of the model. However it is well known that this objective
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function contains a lot of local minima due among other to cycle skipping or the
presence of multiples. The initial model is crucial for a good result [Bunks et al., 1995].
Compared to classical tomography approaches, FWI does not need any pointing of
primaries to get a macro-model but this method is really sensitive to the presence of
low frequencies in the data [Pratt et al., 1996]. Today, a lot of efforts are done in the
forward modeling (e.g. for including visco-elastic equations by Brossier [2011]) and in
the use of alternative objective functions [Métivier et al., 2016].

4.6.2 Migration with multiples

Classical migration is a linearization of forward modeling and considers that only the
primaries are present in the data. When multiples are added, the problem becomes
non-linear and multiples have to be handled with a lot of good care [Wong et al., 2015].
Currently, efforts are done for including multiples in the migration velocity analysis
(MVA) framework for retrieving large scales [Cocher et al., 2015] that can lead to a
better initialization of the macro-model for FWI [Diaz and Sava, 2013].

4.6.3 Marchenko approach

From the reciprocity theorem, seismic interferometry estimates the Green’s functions
between receivers by cross-correlation of their respective traces. In particular, this
process can be performed with passive noise, without any active source. If one cross-
correlated one trace at location x with other traces, a virtual source and its associated
virtual wave-field is created coming from this location x [Snieder et al., 2006]

In presence of random noise, interferometry can create a virtual source at any receiver
by cross-correlation with other receivers. As a step forward, Marchenko imaging can
create any virtual source in the subsurface [Wapenaar et al., 2014; Meles et al., 2015].
Marchenko imaging uses internal multiples, but surface related multiples must be
removed from the data [van der Neut et al., 2015].

4.7 Conclusion

In this chapter 4, we have discussed the definition of multiples as well as the two
main classes of multiple attenuation techniques. Methods from the first class are
based on non-adaptive filtering techniques and are refereed to as methods without
prediction. Methods from the second class are based on a prediction of the multiple
events. Variations on the feed-back model are used to produce the prediction that
can be fully data-driven or based on a physical model. For methods belonging to
the second class, a second step, namely the adaptive subtraction step, is needed to
better accommodate the noise to the data. This step is of crucial importance, as
illustrated in figures 4.5 and 4.6. If the subtraction is not performed in a correct
manner, even a perfect prediction could damage primaries and part of the signal could
be lost. Adaptive filtering is the subject of the next two chapters 5 and 6, with the
incorporation of ideas from chapters 2 and 3.
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Chapter 5

Inside the wildlife of multiple
subtraction methods
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Most of the results of this chapter have been published in Batany et al. [2016b] and
presented at the 78th EAGE Conference and Exhibition in Vienna [Batany et al.,
2016c]. The content of these articles is renewed and a few ideas are added in order to
make links with the other chapters.
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Résumé du chapitre [français]

Le chapitre 5 présente les c ontributions concernant la soustraction adaptative des
multiples. Plusieurs méthodes sont développées dans le but de pouvoir les unifier.
Grâce à cette étape, leur comparaison sera par la suite plus aisée.

La section 5.2 présente les méthodes basées sur la minimisation de normes ℓq. Ces
méthodes sont certainement les plus populaires. La méthode de minimisation des
moindres carrés (norme ℓ2) a l’avantage de posséder une solution analytique. La
minimisation de la norme ℓ1 propose quant à elle une estimation des primaires plus
parcimonieuse et plus proche de la distribution statistique des réflexions primaires.

La section 5.3 concerne les méthodes venant de l’analyse en composante indépendante
(méthodes ICA) et de la séparation aveugle de sources. Dans le cadre de la soustraction
adaptative, l’hypothèse principale est que les réflexions primaires et multiples peuvent
être modélisées comme des variables aléatoires statistiquement indépendantes. Les
méthodes basées sur la néguentropie, Infomax et le kurtosis sont décrites.

Les méthodes de reconnaissance de forme ne sont pas incluses dans l’unification
proposée. Il semble important de les évoquer pour avoir une meilleure perspective de
leurs différences avec les méthodes de filtrage évoquées précédemment. La section 5.4
est dédiée à ces méthodes.

La contribution principale est développée dans la section 5.5. L’ensemble des méthodes
basées sur les normes et sur l’indépendance statistique sont analysées, en considérant
les fonctions objectives minimisées dans chaque cas. Cette façon de faire permet
de séparer d’un côté la fonction optimisée et de l’autre la stratégie de fenêtrage
(évoquée ensuite). Il est montré que l’ensemble des méthodes cherchent à minimiser
une corrélation non-linéaire entre les primaires estimés et les multiples prédits. La
non-linéarité est portée par un opérateur agissant comme un compresseur sur les
primaires. On montre ainsi que certaines méthodes présentent de fortes similarités.

La dimension du filtre et sa zone d’application sont des paramètres essentiels, regroupés
sous le terme de stratégies de fenêtrages. Elles sont présentées dans la section 5.6.
Finalement, la section 5.7 présente plusieurs expériences faites sur des données réelles
afin de valider l’analyse des méthodes et confirmer les similarités théoriques démontrées.
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Resumo do capítulo [português]

O capitulo 5 apresenta as contribuições que dizem respeito à subtração adaptativa
de múltiplas. Vários métodos são desenvolvidos tendo como objetivo unificá-los. A
comparação deles será facilitada graças a essa etapa.

A seção 5.2 apresenta métodos baseados na minimização de normas ℓq. Esses métodos
são definitivamente os mais populares. O método de minimização dos mínimos
quadrados (norma ℓ2) tem a vantagem de possuir uma solução analítica. A minimização
da norma ℓ1 sugere uma estimação das primarias mais esparsas e mais próximas da
distribuição estatística de reflexões primárias.

A seção 5.3 diz respeito aos métodos provenientes da análise de componentes inde-
pendentes (método ICA) e da separação cega de fontes. No contexto da subtração
adaptativa, a hipótese principal é de que as reflexões primárias e múltiplas podem ser
modelizadas como variáveis aleatórias estatisticamente independentes. Os métodos
baseados na negentropia, Infomax e kurtosis são descritos.

Os métodos de reconhecimento de forma não são inclusos na unificação sugerida. É
importante mencionar estes métodos para se ter uma melhor perspectiva de suas
diferenças em comparação aos métodos de filtragem mencionados anteriormente. A
seção 5.4 é dedicada a estes métodos.

A contribuição principal é desenvolvida na seção 5.5. O conjunto dos métodos baseados
nas normas e na independência estatística são analisados considerando as funções
objetivo minimizadas em cada um dos casos. Essa ação permite separar de um lado a
função otimizada e do outro a estratégia de janelamento (mencionada em seguida).
Será demonstrado que o conjunto dos métodos procura minimizar uma correlação
não-linear entre as primarias estimadas e as múltiplas previstas. A não-linearidade
é realizada por um operador agindo como um compressor sobre as primarias. Será
demonstrado igualmente que certos métodos apresentam fortes similaridades.

A dimensão do filtro e de sua zona de aplicação são os parâmetros essenciais reagrupados
sob o termo de estratégias de janelamento. Elas são apresentadas na seção 5.6. Por
fim, a seção 5.7 apresenta varios experimentos feitos utilizando dados reais com a
intenção de validar a análise teórica dos métodos e confirmar as similaridades teóricas
demonstradas.
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5.1 Introduction

It is of prime importance to accurately remove multiples in seismic data set for most of
the imaging methods (see the previous chapter 4). As explained before, some methods
for multiple attenuation are based on a prediction of the multiples (e.g. SRME) and
require an adaptive subtraction step. Those methods are often refereed to as two-step
methods (the two steps being the prediction and the adaptive subtraction). The
subtraction step not only removes the filter ambiguity due to the method itself (e.g.
auto-convolutions of the data for SRME) but also tackles errors (amplitude, phase,
kinematic) coming from an imperfect acquisition geometry. We quote Spitz [1999]:

[. . . ] elimination of the multiples should be seen as a two-step process.
These two steps are independent and equally important.

The terminology of adaptive subtraction comes from the idea that the multiples must be
slightly modified before being removed from the data. Most of the methods accurately
predict the kinematic of multiple events, but fail to recover the correct amplitude and
phase. This slight modification of the prediction can be done by a filter. Within a
linear model, the coefficients of a linear filter are optimized. Some other methods
directly optimize the full waveform of the data and are called separation method. In
that case, the coefficients of the primaries and the multiples are optimized. Adaptive
subtraction methods are cheaper in term of computation, as the filters are generally
small.

There is a wildlife of methods in the literature for adaptive subtraction (see table 4.2).
The first objective of this chapter is to make a distinction between them with a
unifying framework easier to catch, with an emphasis on methods based on statistical
independence. In particular, some authors claimed that ICA based methods could
overcome the overlapping problem in adaptive subtraction. Verschuur [2013a] even
writes about ICA based methods

[. . . ] In this method multiples and primaries are not separated via
matching filters, but via independent component analysis, which drops
the orthogonality requirement of primaries and multiples in standard
least-squares subtraction.

In this chapter, we will see the limit of this assertion and we will be able to answer
the second question proposed in chapter 1: in which manner ICA methods do really
improve adaptive filtering? Are they different? We will focus on the optimization
problem for each method.

5.2 Methods based on ℓq-norm matching filters

Matching filter methods are parameter estimation problems solved via optimization
approaches. They consider that the prediction m of the multiples must be adapted to
better match the data d and so better remove the noise. We consider the following
linear model

{

d = p0 + m0,

m̂ = w ∗m,
(5.1)

where m are the predicted multiples, p0 and m0 are the true primaries and multiples
respectively. A hat ·̂ indicates an estimation and the symbol ∗ denotes a consistent
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convolution product that can be either 1D, 2D or 3D, according to the dimension of
w and m. The estimate of the primaries is then given by

p̂ = d− m̂ = d−w ∗m. (5.2)

To find a filter, we need to formulate an optimization problem of the form

find w such that φ(p̂(w)) is minimum, (5.3)

where φ(w) is an objective function to be defined. The most common objective
functions are based on the ℓp-norm as we defined previously in equation 2.3 which is
defined for a vector s as

‖s‖p =

(
∑

x

|sx|p
)1/p

. (5.4)

The ℓ2-norm refers to the classical Euclidean distance, whereas the ℓ1-norm is simply
the sum of the absolute values of the vector components (see equations 2.4).

5.2.1 Least-squares filtering

In multiple subtraction, the most commonly adopted approach is based on the ℓ2-norm
such as

φℓ2
= ‖d−w ∗m‖2 . (5.5)

This norm is quite convenient from a mathematical point of view because it admits an
analytical solution when a linear model is considered [Haykin, 2013]. The objective
function in equation 5.5 can be written in matrix form

φℓ2
= ‖d−Mw‖2 , (5.6)

where M and w are respectively a matrix and a vector constructed such that Mw =
w ∗m. This construction can be done for the 1D, 2D or 3D convolutional product
according to the dimension of w and m. For instance, if a 1D filter with three
coefficients is computed for a trace, the Toeplitz matrix is constructed as

m̂ =










m̂1

m̂2

...
m̂Nt−1

m̂Nt










=










0 m1 m2

m1 m2 m3

...
...

...
mNt−2 mNt−1 mK

mNt−1 mNt
0














w1

w2

w3



 = Mw. (5.7)

The damped least-squares solution gives

wℓ2
= (MT M + ζI)−1MT d, (5.8)

where the term ζI regularizes the inversion of MT M if necessary (see subsection 2.2.2).

5.2.2 ℓp-norm filtering

It is well known that the ℓ2-norm filter, also known as Wiener or least-squares filter,
may lead to over-attenuation issues when primaries and multiples overlap, as shown
in subsection 4.5.2 [Abma et al., 2005]. Guitton and Verschuur [2004] analyzed the
use of the ℓ1-norm objective function

φℓ1
= ‖d−w ∗m‖1 , (5.9)
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and they have shown that it may lead to a sparser estimate of the primaries. Unfortu-
nately, a direct analytic solution does not exist for the ℓ1-norm. Guitton and Verschuur
[2004] proposed to use the Iterative Reweighted Least Squares (IRLS) algorithm to
approximate the ℓ1-norm solution by using the objective function

φℓ1/2
= ‖F (d−w ∗m)‖2 , (5.10)

where F is a diagonal matrix depending on the estimated primaries p̂ and iteratively
updated with the least-squares solution given by equation 5.8. By using a specific F ,
they have shown that their method is equivalent to consider the following objective
function

φℓ1/2
= E

{√

1 + (p̂/ǫ)2 − 1
}

, (5.11)

where E{·} is the expectation operator and ǫ a positive constant. Their analysis
suggests to use a constant ǫ = max |d|/100.

More generally, it is also possible to consider formulations based on the minimization
of a ℓq-norm objective function

φℓq
= ‖d−w ∗m‖q , (5.12)

with q ≥ 1. This formulation was adopted, for instance, by Costagliola et al. [2011]
for regularization purposes. Pang et al. [2009] studied a constrained approach for
ℓ1 minimization. Pham et al. [2014] also proposed a more general framework able
to introduce different kinds of norms for both the estimated primaries and the filter
coefficients.

5.3 Methods based on statistical independence

More recently, some authors considered that primaries and multiples can be modeled
as statistical independent variables [Kaplan and Innanen, 2008; Lu and Liu, 2009;
Donno, 2011; Li and Lu, 2013]. On the same fashion as the problem in equation 5.3,
we can write the optimization problem as

find w such that p̂ and m are independent. (5.13)

As we described in chapter 2, a lot of metrics exist for measuring the statistical
independence of variables, and have been developed with independent component
analysis (ICA). As for ℓp-norms (except for p = 2) no analytic solution exists for
this problem and lot of algorithms can be found [Hyvärinen et al., 2001; Comon and
Jutten, 2010] (see also chapter 2). While all these methods have in common to try
to solve the problem in equation 5.13, they differ by their objective function. For
instance, Donno [2011] uses a kurtosis based function, Liu and Dragoset [2013] use
an information maximization (Infomax) objective function and Li and Lu [2013] use
a negentropy maximization objective function. Also, some of those method are used
after a classical least-squares filtering, and used only for amplitude recovery.

5.3.1 Infomax

Liu and Dragoset [2013] propose to use an Infomax framework for adaptive subtraction.
Let consider the neural network in figure 5.1b, which represents the matching filter
approach as proposed by the linear convolutive model presented in equations 4.15
and 4.16. The difference between this network and the classical formulation of a BSS
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Figure 5.1: (a) Neural network of Infomax algorithm with two mixtures and two
sources, corresponding to the formulation of a BSS problem. (b) Adaptive multiple
subtraction (equation 4.16) described as a neural network. In the image, a line indicates
a convolution with the specified filter.

problem (figure 5.1a) is that only one filter w is required to perform the separation for
adaptive multiple subtraction. This network could be considered as a special case of
the BSS network. Therefore, the objective function of equation 2.52 also holds for the
network of figure 5.1b. In this case, the statistical independence is required between
the estimated primaries p̂ and the predicted multiples m.

For this specific network, the Jacobian given by equation 2.53 simplifies and becomes

JIM =
∂y1

∂d

∂y2

∂m
=
∂y1

∂p̂

∂p̂

∂d

∂y2

∂m
= G′

0(p̂)G′
0(m). (5.14)

Because the prediction m does not change in the network, after substituting equa-
tion 5.14 in equation 2.52, the term E{log |G′

0(m)|} is constant and the objective
function to be minimized becomes

φIM = −E{log |G′
0(p̂)|}. (5.15)

As discussed in chapter 2, the function G0(·) can be seen as an estimate of the CDF
of the desired signals and the function G′

0(·) represents an estimate of their PDF. We
can assume that the primaries follow a generalized Gaussian distribution that can
either be super- or sub-Gaussian, so that its PDF is given by

G′
0(p̂) ∝ exp(−|p̂|p). (5.16)

The objective function to be minimized in this case becomes

φIM ∝ +E{|p̂|p}, (5.17)

that is equivalent to the minimization of the ℓq-norm of the primaries as in equa-
tion 5.12.

In particular, if we assume that the primaries follow a Laplacian distribution, we
can choose G′

0(p̂) ∝ exp(−|p̂|) and so φIM ∝ +E{|p̂|} which is equivalent to the
minimization of the ℓ1-norm of the primaries as in equation 5.9. In the same way, if
we assume that the primaries follow a Gaussian distribution, we can choose G′

0(p̂) ∝
exp(−p̂2) and so φIM ∝ +E{p̂2} which is equivalent to the minimization of the ℓ2-norm
of the primaries as in equation 5.5.

5.3.2 Negentropy maximization

Li and Lu [2013] propose to use the negentropy to perform adaptive subtraction. In
the case of adaptive multiple subtraction, they have shown that the objective function
in equation 2.54 can be written as

φQ = +E {gi (p̂/σp̂)} , (5.18)
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where σ2
p̂ is the variance of the estimated primaries. As they already pointed out,

the use of the function g3(·) in adaptive multiple subtraction leads to a formulation
identical to the IRLS algorithm described in equation 5.11. Therefore, in the following
we will focus on the two first non-quadratic functions g1 and g2 by keeping in mind
that for a zero-mean signal, the normalization by σp̂ is equivalent to a normalization
by the ℓ2-norm of the estimated primaries.

In particular, if the non-quadratic function g2 is used, we can write

φQ = −E
{

log
1

cosh(p̂/σp̂)

}

, (5.19)

that is equivalent to the objective function of the Infomax matching filter in equa-
tion 5.15 with G′

0(s) = 1/ cosh(s). Also, if the non-quadratic function g1 is used, we
have

φQ = −E
{

exp

(

− p̂2

2σ2
p̂

)}

, (5.20)

that is equivalent to the objective function of the Infomax matching filter with
G′

0(s) = exp
[
exp

(
−s2/2

)]
. Interestingly, it can also be seen as using the Infomax

objective function after removing the log operator, such that φ = −E{G′
0(p̂)} with a

Gaussian prior distribution G′
0.

5.3.3 Kurtosis

The method proposed by Donno [2011] is a two steps adaptive filtering method. First,
a least-square adaptive filter is applied to the prediction such that m ← wℓ2

∗m.
Then an ICA step is added to improve the amplitude recovery of the primaries. This
step is done by a separating matrix W on the whitened observations, such that it
depends only on a single parameter θ ∈ [0, π]

[
p̂T

m̂T

]

= W

[
˘̄dT

˘̄mT

]

=
[

cos θ sin θ
− sin θ cos θ

][ ˘̄dT

˘̄mT

]

. (5.21)

A kurtosis based function is proposed as optimization scheme

min
θ

φk = − |kurt(p̂)| , (5.22)

and the correct amplitude for the separated primaries is found by correlation with the
data.

5.4 Methods based on pattern recognition

Pattern recognition methods are based on the assumption that primaries and multiples
can be represented as auto-regressive processes in space. This property is often referred
to as predictability of events in the literature [Spitz, 1999]. Indeed, the amplitude
and phase (time shift) of seismic events evolve smoothly in space from one trace to
another, especially if we consider a local window. Instead of predictability, one could
also speak about the spatial coherency of seismic events. Comparing with the previous
methods, one can see pattern recognition as an extension of matching filters with
different constraints on the primaries or the multiples. These constraints are given by
prediction-error filters (PEFs).
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Definition 28. Let s = s[x] be a discrete signal and cs = cs[y] a non zero FIR filter.
The prediction-error vector is given by

r = r[x] = cs ∗ s =
∑

y

cs[y]s[x− y]. (5.23)

We call cs the prediction-error filter (PEF) of s with respect to an objective function φ
if and only if φ(r) is minimized at cs. We say that a signal s is predictable by the
PEF cs if r = cs ∗ s ≈ 0.

From the definition, we see that the prediction-error vector is just the residual vector
associated to assuming a signal as an auto-regressive process. The PEF contains the
coefficients of the AR process and is computed by minimizing an objective function.
In order to avoid the trivial solution c = 0, one can force the vector c to have a unit
norm. Also, we can force the first coefficient of the PEF to be equal to one. The PEF
is computed by solving

cs = arg min
c
‖c ∗m‖, such that c[0] = 1. (5.24)

In the literature, the term pattern refers to the sequence of amplitude and time shift
function of space that can be extracted from the PEF

cs =
[
1 A2eiφ2 A3eiφ3 . . .

]
, (5.25)

Associated with an appropriate initial time function v[x = 0, t], the signal s[x] can be
restored over a small window. For instance, the PEF of an horizontal constant event
(a perfect up-going plane wave with no angle) is given by [+1,−1]. A plane wave with
an angle is given by [+1, A2eiφ2 ]. From the PEF, the pattern can be reconstructed
and the correct wavelet is found by ℓ2 minimization. Figure 5.2 shows basic seismic
events that are perfect auto-regressive processes.

In adaptive subtraction, it is assumed that the pattern extracted from the prediction
is the same as the pattern of the true multiples in the data. In other terms cm = cm0

,
and if ‖cm ∗m‖ is minimized, then ‖cm ∗m0‖ is minimized too. In particular, the
pattern should be invariant to the change of waveform caused by an incorrect multiple
prediction.

Assumption 8. The PEF of the prediction is equal to the PEF of the true multiples.

In the original form proposed by Spitz [1999], the PEF of the prediction cm and the
PEF of the data cd are used to obtain the PEF of the primaries. If primaries and
multiples are uncorrelated, the PEF of the primaries can be expressed as the data’s
PEF deconvolved by the multiple’s PEF as

cp = c−1
m ∗ cd. (5.26)

As we should have cp ∗p ≈ 0, the choice of the objective function is less important com-
pared to a matching filter approach. The primaries can be obtained by solving [Spitz,
2000]

min
w
‖cp ∗ (d−w ∗m)‖2, (5.27)

where the first convolution is in space (for the PEF) while the second convolution is
in time (for a 1D matching filter). The least-squares solution gives [Guo, 2003]

ŵ =
(

MT Cp
T CpM

)−1

MT CT
p Cpd. (5.28)
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Figure 5.2: Basic examples of predictable event (a) horizontal plane-wave, (b) plane-
wave, (c) pane-wave with attenuation.

Based on the original idea proposed by Spitz, different refinements have emerged to
better tackle the signal recovery. Guitton and Cambois [1999] extended the idea in 3D
to build PEFs in offset and mid-point gathers (see also [Guitton, 2003] and [Guitton,
2006]). Guitton et al. [2001] change the optimization scheme by considering the
following objective function

min ‖d− d̂‖ℓ2
. (5.29)

The same approach has been used by Luo et al. [2003]. Guo [2003] slightly expanded
the original idea of Spitz by adding what he calls the projection signal filter. From this
early paper, not much work and improvement have been done on pattern-recognition
methods. Liu and Lu [2016] recently proposed a new method based on pattern coding.

5.5 Unification by primary operators

It is not easy to see the difference between all the previous methods. In this section,
we will unifying them, driven by the will of understanding what kind of solution we
end-up with. We will make a clear distinction between the theory behind a method,
the objective function and the algorithm.

All the described objective functions are convex. The first stationary condition states
that the gradient should be null at the solution such that:

∇φ(p̂⋆) = 0. (5.30)

For a matching filter, the parameters are the coefficients of the filter {wy} and we
write

∂φ(w)
∂wy

=
∂φ

∂p

∂p

∂wy
, (5.31)

and
p[x] = d[x]−

∑

y

wym[x− y], (5.32)

so
∂p

∂wy
= −m[x− y]. (5.33)
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Least-squares. We consider the objective function proposed by Verschuur et al.
[1992] and based on the ℓ2-norm (see equation 5.5). We have

∂φℓ2

∂p
=

p

‖p‖2

. (5.34)

ℓ1-norm. We consider the objective function proposed by Guitton and Verschuur
[2004] and based on the ℓ1-norm (see equation 5.9). If we consider that the derivative
exists, we have

∂φℓ1

∂p
= −sign{p}. (5.35)

ℓ1/2-norm. We consider the objective function proposed by Guitton and Verschuur
[2004] and based on the hybrid ℓ1/2-norm (see equation 5.11). We have

∂φℓ1/2

∂p
= p⊙ 1

ǫ2
√

1 + p2

ǫ2

. (5.36)

ℓp-norm. We consider the objective function proposed by Costagliola et al. [2011]
or Pham et al. [2014] and based on the ℓp-norm (see equation 5.12). We have

∂φℓp

∂p
=

p⊙ |p|p−2

‖p‖p−1
p

. (5.37)

Infomax. We consider the objective function proposed by Liu and Dragoset [2013]
and based on Information maximization (see equation 5.15). We have

∂φIM

∂p
= G′′

0(p)⊙ 1
G′

0(p)
. (5.38)

Negentropy. We consider the objective function proposed by Li and Lu [2013] and
based on negentropy maximization (see equation 5.18). We have

∂φQ

∂p
= G′

q(p). (5.39)

Kurtosis. We consider the objective function originally proposed by Donno [2011]
for amplitude recovery and based on Kurtosis maximization (see equation 5.22). We
have for a convolutive filter

∂φk

∂p
=

4p⊙
(
p2µ2 − µ4

)

µ3
2

. (5.40)

Primary enhancer operator for matching filter approaches

The cross-correlation product between two signals s1[x] and s2[x] is denoted (s1⊗s2)[x].
It is defined such that

(s1 ⊗ s2)[y] =
∑

y

s1[x]s2[y + x] (5.41)

where the sum over y can be chosen to be finite over a limited support.
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We propose to unify the previous conditions by introducing the operator G(·), that we
call primary enhancer, which allows writing the first derivative condition as

G(p̂⋆)⊗m = 0 , (5.42)

where ⊗ denotes the cross-correlation product, defined to be consistent with the filter
size.

Figure 5.3 shows the analyzed primary enhancer operators and their application on
a small seismic data window. In this context, the result of the ℓ1-norm matching
filter can be seen as the limit of the hybrid ℓ1/ℓ2-norm matching filter when ǫ → 0
or also as the limit of the Infomax matching filter when λ → ∞. Between those
extreme values, the Infomax and the hybrid ℓ1/ℓ2-norm primary enhancer operators
share strong similarities as they provide a smooth transition from the ℓ1-norm to the
ℓ2-norm solution. From our observation, they are the most similar when a relation
λ = 1/ǫ is kept. Figure 5.4 also shows how the Infomax and the hybrid ℓ1/2-norm
objective functions make a smooth transition between the ℓ2-norm and the ℓ1-norm
objective function depending on the value of their shaping parameter.

It is already known that the least-squares filter aims at canceling the cross-correlation
between the estimated primaries and the predicted multiples in a vicinity defined by
the dimensions of the filter. Equation 5.42 unifies the methods analyzed in this paper
in a same fashion. They can all be seen as canceling the cross-correlation between
the enhanced primaries and the predicted multiples. As we indicated in the two
previous subsections, it exist equivalences between certain methods if specific shaping
parameters or non-linear functions are used. In those cases, the enhanced operators
are equal. Otherwise, the methods are similar and their practical differences will be
discussed in the next section.

Primary annihilator operator for pattern recognition approaches

Let us first consider the effect of a PEF on its associated signal:

∂

∂cj

∑

x

g(rx) =
∑

x

∂g(rx)
∂rx

∂

∂cj

(
∑

y

cysx−y

)

. = g′(rx)sx−j (5.43)

A PEF is canceling the correlation between the signal and the residual, eventually
enhanced by an operator. We can write

cp ∗ p̂⋆ ⊗ cp ∗m = 0 , (5.44)

where ⊗ denotes the cross-correlation product. Pattern recognition methods are not
considered in the following analysis and tests. We wanted to make their associated
objective functions more clear, compared to matching filters.

5.6 Comments about windowing

5.6.1 Windowing strategies

The regression model described in equation 5.1 is actually not stationary and the
coefficients of the filter depend on the position in the data. It is more accurate to
write {

d = p0 + m0,

m̂[x] =
∑

y w[x, y]m[x− y],
(5.45)
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Figure 5.3: The primary enhancer operators G(·), analyzed in equations 5.34 to 5.40,
are applied on the same small window of seismic data, supposedly the estimated
primaries. The mean and the variance of the data have been respectively normalized
to zero and one. A scaling factor have been applied for the operator of the hybrid ℓ1/2

method and the Infomax method in order to bound their value range between -1 and 1.
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Figure 5.4: Contour plots in R
2 of: a) the ℓ2-norm and the ℓ1-norm objective

functions, b) the hybrid ℓ1/2-norm objective function with ǫ = 10 and ǫ = 0.1, c) the
Infomax based objective function with λ = 0.1 and λ = 10.

where the coefficients depend on x. Fomel [2007a, 2009] describe quite well the
problem of designing non-stationary regression in geophysical problem. In particular,
he presents a shaping regularization method and compares it with the common
Tikhonov regularization.

Because the seismic signal is not stationary neither in space and time, windowing
strategies are usually used. A common approach is to divide the data into several
windows in which the stationary assumption is used. In each window, eventually
overlapping between each other, a filter is computed. A window can be a piece of
trace, a 2D local window, or a 3D local window. The space-time coherence of the
seismic signal can be used to smooth the variations of the filter and avoid drastic
changes in both space and time.

Until now, in the formulation of the methods presented in this chapter, we mainly
considered the 1D–1D strategy (1D filter, 1D data window) for which one wants to
recover a single 1D matching filter of length Kt for a segment of seismic trace of length
Ft. However, this 1D–1D strategy does not avoid drastic change in space, but only in
time. That is the reason why any matching filter based on ℓq-norm or independence
applied trace by trace with the 1D–1D strategy may lead to over-attenuation of the
primaries if they do overlap with multiple events.

To overcome the over-attenuation problem, the 1D-2D strategy (1D filter, 2D data
window) uses adjacent traces to find a 1D filter. The result of using adjacent traces
in term of statistical diversity is shown in figure 5.5 in the case of crossing events.
In this toy example, the prediction of the multiples is equal to the true multiples.
Figure 5.5b and 5.5d respectively show the scatter plot of the primary versus the
multiple (figure 5.5a) and the data versus the predicted multiple (figure 5.5c) at a
single offset (in black) and in a small window (in white). We see that if a single trace
containing the crossing event (in black) is considered, the primary and the multiple
are highly correlated and so highly statistically dependent. Hence, any strategy
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Figure 5.5: Synthetic toy example of two crossing events. a) The synthetic data
set containing one primary and one multiple that are overlapping at traces 20 to 30.
b) Scatter plot of the primary and the multiple at trace 25 only (in black) and at traces
20 to 30 (in white). c) The prediction of the multiple that is equal, in this example, to
the true multiple. d) Scatter plot of the data and the prediction of the multiple at trace
25 only (in black) and at traces 20 to 30 (in white).

trying to make them uncorrelated (least-squares) or independent (e.g. Infomax) will
systematically fail. In other words, over-attenuation will systematically happen with
the 1D–1D strategy. However, when adjacent traces are used (in white), the primaries
and the multiples became statistically independent events and a strategy forcing
the independence may work. We emphasize here again that considering primaries
and multiples as independent events does not help if they overlap. It is the use of
adjacent traces that help overcoming the over-attenuation problem in adaptive multiple
subtraction.

The 2D–2D strategy (2D filter, 2D data window) explicitly uses the coherence of the
seismic signals in both space and time. It is expressed as finding a 2D matching filter
of size Kt ×Kh, over a data window of size Ft × Fh. In this case, the convolutional
product is defined in two dimensions. Most of the time, we have Kt < Ft and Kh < Fh

in order to solve a well-posed problem. A 3D strategy can also be considered using
the shot number as the third dimension; the convolutional product will be defined this
time on three dimensions.
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Figure 5.6: Curve of objective function for a training set and a validation set with
increasing complexity. The validation set is used to avoid over-fitting. The complexity
has to be understood as the number of parameters, here the size of the filter.

5.6.2 Training and validation sets

A necessary trade-off between a good fit and an over fit of the data exists in most of
inverse problems [Arlot, 2010]. The same is true for adaptive subtraction. It exists a
necessary trade-off between removing the predicted noise and preserving the underlying
signal. In machine learning, it is common to distinguish a training set and a validation
set of data. The training set is used to learn a model, while the validation set is used
to monitor over-fitting. Most of the time, the same objective function is used for both
sets (see figure 5.6).

In adaptive subtraction, the training set is the local patch of data d[x0] for which we
want to remove the noise. The validation set is the data d[x1] around this local patch.
For a classical least-squares adaptive subtraction, the objective function is simply

‖p[x0]‖2 + κ ‖p[x1]‖2 , (5.46)

where the trade-off parameter κ weighs the importance of the validation set. If κ = 0,
the noise is locally adapted to minimise the energy of the primaries on the training
set only. This may lead to over-attenuation of the primaries. If κ→∞, the weight is
put on the validation set and the noise is not locally adapted anymore. This may lead
to a poor noise removal.

As we discussed in the introduction, over-attenuation is the main issue in adaptive
multiple subtraction. To overcome this issue, several strategies exist that can be seen
as different definitions of the validation set. For instance in one dimension, we can use
adjacent traces of the current trace as the validation set. In two dimensions, we may
use a small window around the local patch.

5.7 Experiments and comparison

Shape of objective functions

Both figures 5.7a and 5.7b show the same toy example. They differ only in the
temporal size of the filter that we aim to recover: 0.125 s in figure a and 0.35 s in
figure b. A primary event p◦ is surrounded by two multiple events m◦ and a perfect
prediction m̆ = m◦ is used to find the ℓ2-norm solution wℓ2

(first row, last column).
The theoretical filter wth is known and is a perfect Dirac at t = 0. In the second row,
we plot the value of each objective function (ℓ2, ℓ1 and Infomax) on the line passing
through these two solutions of the “filter space”.
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For both figure a) and b), the ℓ2-norm objective function has its minimum at wℓ2
,

which is normal by construction. The main difference between the two examples is
the location of the minimum of the ℓ1-norm objective function.

In the case of a small filter kt = 0.125 s, the ℓ1-norm has its minimum at the theoretic
solution. In that case, the ℓ1-norm is a better strategy. Depending on the value of λ,
Infomax can retrieve the ℓ2 or the ℓ1 solution. The primaries estimated by Infomax
are shown in the third row of each figure.

However, when we increase the size of the filter to kt = 0.35 s, the ℓ1-norm has
its minimum really close to the ℓ2-norm solution: the ℓ1-norm is no longer a better
strategy. Once again, depending on the value of λ, Infomax makes a smooth transition
between ℓ2 and ℓ1.

5.7.1 Results on real data set

We compare the results of matching filter methods on a 2D real marine data set. The
common shot gather is presented in figures 5.8a and 5.9a and the 2D SRME prediction
in figures 5.8b and 5.9b. The spatial sampling is 25 m and the time sampling is 2
ms. Minimum and maximum offsets are 225 and 4700 m, respectively. The 2D SRME
prediction is realized with 600 m aperture around source and receivers to reduce
aliasing. Some primary events surrounded by multiple events are clearly identifiable.
A global time shift correction of 40 ms is pre-applied on the prediction but no spatial
correction is necessary. Hence, the matching filter we are seeking for should mainly
compensate for the surface operator due to the auto-convolutions of the data during
the prediction process. In a first test we use the ℓ2-norm matching filter with different
windowing strategies. In a second test we use the same windowing strategy with
different objective functions.

The negentropy maximization matching filter is performed with the non-linear func-
tion g1 (see equation 2.55) and the IRLS algorithm proposed by Li and Lu [2013]. The
hybrid ℓ1/2-norm (IRLS) has one parameter ǫ which is estimated for each window by
the relation proposed by Guitton and Verschuur [2004]. Finally, our formulation of
the Infomax matching filter needs the estimation of the parameter λ that is related to
the prior CDF of the primaries we tend to estimate. We propose here to use a fixed
value of λ, but an adaptive scheme could also be used to take better into account the
non-stationarity of the signal. As one assumes that the multiples should be removed
from the signal, the primaries should have a more spiky PDF compared to the data.
First, an optimum parameter λd is determined to fit the data and then the value for
the primaries is over-evaluated by λ ≈ 5λd.

The hybrid ℓ1/2-norm and negentropy methods are implemented by using the IRLS
algorithm. If an identity matrix is chosen for the initialization of the matrix of weights
F in equation 5.10), they have the advantage to give the ℓ2-norm solution at the first
iteration [Guitton and Verschuur, 2004]. A gradient method is used for the Infomax
method [Liu and Dragoset, 2013] and has the advantage to actually compute the
non-linear correlation between the estimated primaries and the predicted multiples
for the gradient update rule. However, Infomax is generally more time consuming
compared to the IRLS methods for a small matrix M .

The results of the ℓ2-norm objective function with four windowing strategies are shown
in figure 5.10 and figure 5.11. A 50% window overlapping strategy is used for all tests.
In all these tests, five adjacent traces are used to compute a one dimensional filter. As
expected, the increase of the temporal length of the filter leads to more attenuation of
the multiples, with an eventual over-attenuation of the primaries.

The results of the objective functions described in this chapter with the same windowing
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Figure 5.7: Adaptive subtraction performed on synthetic example with two filter sizes.
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strategy are shown in figure 5.12 and figure 5.13. In all these tests, five adjacent traces
are used to compute a one dimensional filter. In this example, fewer differences are
visible, which is consistent with the previous theoretical analysis showing the similarities
between the analyzed objective functions. The observation of fewer dissimilarities
between the primaries estimated by different objective functions is also valid for other
windowing strategies. This suggests that the windowing strategy has more impact on
the results than the choice of an objective function. In this context, Liu and Kostov
[2015] recently focused on a criterion to find a proper filter size for a given data set.

5.7.2 Discussion

Fundamentally, adaptive multiple subtraction is an underdetermined problem that
consists of the joint recovery of a filter w ∈ W and the primary signal p̂ ∈ P from
the data d. Hence, for the problem to become determined in this form, it always
misses a number of equations equal to the size of the filter, at least. By setting p̂ ≈ 0,
the problem can become virtually overdetermined and w can be estimated with an
outnumber of linear constraints. Because the primaries (what we could see as the
“noise” in Wiener filtering) are not zeros (it is indeed the signal), an objective function
must weight the contribution of each constraint to be able to specify which solution is
the best and unique estimate p̂.

Most of adaptive multiple subtraction schemes consider ℓq-norm matching filters for
which it is assumed that the estimated primaries have minimum energy in the ℓq-norm
sense (equation 5.4). However, the desired geophysical solution may not coincide with
the optimized solution by ℓq-norms. In particular, ℓq-norm objective functions have
their minimum at p̂ = 0, leading to over-attenuation problems if the outnumbered
constraints in P are actually verifying this solution. To overcome this inherent problem,
some authors recently proposed to use objective functions based on the statistical
independence of primaries and multiples. However, as we have shown in this chapter,
there is an equivalence between them and ℓq-norm objective functions, if the right
non-linear function (or parameter) is chosen to approximate independence (via Infomax
or negentropy maximization). Hence, independence based objective functions share
the same issue as ℓq-norm objective functions because their minimum is obtained for
p̂ = 0.

From a statistical point of view, the least-squares solution (ℓ2-norm) assumes that
primaries and multiple are uncorrelated and we must remind that correlation is a
measure of linear statistical dependence. When primaries and multiples overlap,
they are actually correlated and so dependent. Hence, considering primaries and
multiples as independent events is not a better strategy if they do overlap. In fact,
as demonstrated in this chapter, it is the use of adjacent traces that increases the
statistical diversity of primaries and multiples in a given window, thus allowing to
overcome the over-attenuation problem as we pointed out in figure 5.5. Moreover,
we have shown that forcing the independence between the predicted multiples and
the estimated primaries can be seen as a non-linear de-correlation between the same
predicted multiples and the estimated primaries enhanced by a chosen operator. This
operator has to be chosen to respect an a priori information about the PDF of the
desired primaries.

All the methods analyzed in this chapter can be seen as adding a prior information
about the statistical distribution of the primaries, so that the underdetermined adaptive
multiple subtraction problem can be virtually overdetermined. If a sigmoid function
is used, the Infomax method becomes really similar to the hybrid ℓ1/2-norm method
as they both make a smooth transition between the ℓ2 and the ℓ1-norm solution
that respectively assume a Gaussian and a Laplacian distribution. Other non-linear
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Figure 5.8: a) Input common shot gather from real marine data set and b) SRME
predicted multiples.
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functions could be used in the Infomax network, for instance an asymmetric distribution.
Unfortunately, the true distribution is not known and its estimation is a difficult task.
Hence, parametric methods, such as Infomax and the hybrid ℓ1/2-norm, may be
challenging in practice at choosing the appropriate parameter. On the other hand,
non parametric methods, such as ℓq-norm or negentropy methods, are easier to use
and to interpret but less flexible.

If the ℓ1 and the ℓ2 solutions are close in the parameter space W, all the methods
are expected to give similar results. It is well known that a subtle balance exists
between the use of a short filter underestimating the noise and the use of a long filter
overestimating it. The use of shorter filters may lead to more significant differences
between two methods such as ℓ1 and ℓ2-norm, and we noticed the same behavior
with the analyzed methods on synthetic examples. However, on our real data set, the
statistical diversity of the windows and the need of longer filters to well attenuate
the noise seem to bring closer ℓ1 and ℓ2-norm solutions, leading to fewer significant
differences between the analyzed methods.

5.8 Conclusion

In this chapter 5, we have shown that ICA-based methods for adaptive subtraction
are some kind of matching filter, with different windowing strategies. In particular,
Infomax, negentropy maximization and hybrid ℓ1/ℓ2-norm based matching filters
share strong similarities. All these techniques aim at minimizing the cross-correlation
between the predicted multiples and the estimated primaries enhanced by a chosen
operator. It is this operator that links all the analyzed filtering techniques. As
correlation is a particular case of linear statistical dependence, the primary and
multiple of a crossing event are statistically dependent. Then, forcing their statistical
independence does not lead to a better solution. However, the windowing strategy,
increasing the statistical diversity around the crossing event by the use of adjacent
traces, is decisive as it actually allows to model primaries and multiples as independent
events. In the next chapter 6, we will discuss the recovery of the FIR filter directly in
the curvelet domain.
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Résumé du chapitre [français]

Le chapitre 6 présente une méthodologie pour calculer des filtres à réponses impul-
sionnelles finies dans le domaine des curvelets. En effet, les méthodes de soustraction
adaptative dans ce domaine se sont principalement concentrées sur des filtres unitaires
(un coefficient réel ou complexe).

La section 6.2 présente la transformée en curvelets. Il s’agit d’une transformation
redondante basée sur un découpage du domaine fréquentiel du signal. Elle a l’avantage
de décrire adéquatement les événements sismiques présents dans les données et de
pouvoir représenter ces données de façon parcimonieuse. La section 6.3 se consacre à
la littérature autour du filtrage adaptatif dans le domaine des curvelets.

Il existe plusieurs définitions et méthodes pour calculer une transformée en curvelets.
La section 6.4 présente la transformée en curvelet discrète et uniforme. En utilisant
cette définition, une méthodologie est présentée à la section 6.5 pour réduire le coût de
calcul des éléments nécessaire à l’obtention d’un filtre à réponse impulsionnelle finie.
Des tests simples sont proposés à la section 6.6.

Resumo do capítulo [português]

O caṕıtulo 6 apresenta uma metodologia para calcular os filtros feitos em resposta aos
impulsos finitos no domínio das curvelets. Os métodos de subtração adaptativa dentro
desse domínio são principalmente concentrados nos filtros unitários (um coeficiente
real ou complexo).

A seção 6.2 apresenta a transformada em curvelets. Trata-se de uma transformada
redundante baseada em uma segmentação do domínio das freqüências do sinal. Essa
transformação tem a vantagem de descrever adequadamente os eventos sísmicos
presentes nos dados e de poder representar esses dados de maneira esparsa. A seção
6.3 é dedicada à literatura envolvendo filtragem adaptativa no domínio das curvelets.

Existem várias definições e métodos para calcular uma transformada em curvelets. A
seção 6.4 apresenta a transformada em curvelets discreta e uniforme. Utilizando essa
definição, uma metodologia é apresentada na seção 6.5 para reduzir o custo do cálculo
dos elementos necessários para à obtenção de um filtro em resposta ao impulso finito.
Testes simples são propostos na seção 6.6.
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6.1 Introduction

As we discussed in the previous two chapters, adaptive subtraction is of prime impor-
tance for prediction-based multiple attenuation methods. Compared to separation
methods, matching filter techniques have the advantages to be able to tackle larger
shifts of the prediction and to be cheaper, computationally speaking. We also em-
phasized that some matching filter techniques require to be split into hierarchical
sub-steps, from larger kinematic lag to exact amplitude recovery.

In order to perform an accurate adaptive subtraction, several choices can be made
in the wide range of proposed methods. They differ essentially on: i) the objective
function to be optimized, ii) the way to tackle the non-stationarity of the estimated
parameters and iii) the transformed domain to choose for estimating the parameters.
The previous chapter 5 has been dedicated to the objective function. We have discussed
why the choice of the objective function can be less crucial than the other degrees of
freedom, such as the filter size or the window size. The present chapter 6 is dedicated
on the transformed domain.

The curvelet transform [Candès et al., 2006a] has shown to be efficient for a sparse
representation of seismic data [Herrmann and Moghaddam, 2004; Candès and De-
manet, 2005]. It has been used for adaptive subtraction in different manners, but
mainly for retrieving the correct amplitude or small shifts between primaries and
multiples [Herrmann et al., 2007; Neelamani et al., 2010; Wu and Hung, 2015]. In
this kind of scheme, the adaptive subtraction process itself is divided into two steps:
first a global filter is found and then the correct amplitudes are recovered. We believe
that there is a gap to be fulfilled: FIR matching filters can be obtained directly
in the curvelet domain, by promoting sparsity. Also, the curvelet transform allows
for much more flexibility. For instance, gathers can be separated in direction or in
scale and several filters can be computed. Donno [2011] had a similar approach by
splitting gathers in different dips. In this context, Pham et al. [2015] propose a method
for retrieving 2D FIR filters with dual-tree wavelets and they focus on optimization
schemes (see also Pham [2015]).

In this chapter, we discuss a method to perform the search of a convolutive FIR
filter directly in the curvelet domain, while limiting the computational time. Our
objective is to obtain a method that is more robust in term of filter size and window
size. This method is also more flexible, as several filters can be obtained by splitting
scales or directions. In section 6.2 we give a description of the curvelet transform.
The section 6.3 is dedicated to a review of the existing methods using curvelets for
adaptive subtraction. It is important to note that several definitions and algorithms
exist for the curvelet transform. The uniform discrete curvelet transform (UDCT) is
presented in section 6.4. Our contribution for adaptive subtraction is explained in
section 6.5. Examples are provided and discussed in section 6.6.

6.2 The curvelet transforms

6.2.1 A few words about the WNKS theorem

The Whittaker-Nyquist-Kotelnikov-Shannon (WNKS) theorem is fundamental in
signal processing, and at the core of the limited redundancy of the curvelet transform.
It says that any band-limited signal can be reconstructed from a finite number of
samples [Mitra and Kaiser, 1993].

Theorem 12. Let s(t) be a band-limited signal with Fs[ω] = 0, ∀ω /∈ [−1/T,+1/T ].
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Then, this signal can be perfectly reconstructed by

s(t) =
∞∑

n=−∞

s[nT ] · sinc
(
t− nT
T

)

. (6.1)

The quantity fN = 2/T is called the Nyquist rate.

This theorem means that we can reduce the number of samples needed to fully
describe any signal if we know its support in the frequency domain. In other words, it
is sufficient to sample the signal at the Nyquist rate. If the signal is sampled bellow the
Nyquist rate, aliasing effects may appear. It means that the frequencies higher than
the Nyquist frequency (the sampling frequency divided by 2) are folded back into low
frequencies. The WNKS theorem can be generalized in several dimensions [Prosser,
1966].

As we will see hereafter, the curvelet transform splits the frequency domain into
several band-limited signals. Without any subsampling or decimation of each band,
the redundancy of the curvelet transform should be equal to the number of band-
limited filters. The WNKS theorem sets that we can actually use less coefficients if we
know the limit of the band, and still be able to perfectly recover the signal in each
band. This ensures the feasibility of an inverse transform and reduces the redundancy
of the curvelet transform.

6.2.2 General considerations about curvelets

The curvelet transform is a convenient and theoretically supported way to represent
seismic data, as Herrmann and Moghaddam [2004] point out. Candès and Demanet
[2005] show that it is able to optimally represent wave propagators, at least for short
propagation times. With a more practitioner-oriented approach, the curvelet transform
locally decomposes the seismic signal (or actually any image) into band-limited local
plane waves named curvelets. Each of these curvelets has a direction, a limited
frequency content and a central position. Somehow, the curvelet transform performs
what a human interpreter intuitively do when seeing seismic data: he localizes the
seismic events in space and time and orders them depending on their direction and
frequency content. It also corresponds to the common plane-wave approximation in
small local windows taken from seismic data (see figures 6.1 and 6.2 and explanations
hereafter).

The curvelet transform of a 2D signal (an image) has three parameters: the scale
j ∈ [0, 1, . . . , J ], the direction l ∈ [1, 2, . . . Lj ] and the translation k = [k1, k2]. It
is common to index those three parameters by a single one µ = {j, l, k} to make
notations simpler. The curvelet transform of a signal s[x] is denoted Cs[µ], or just Cs
if no ambiguity exists. A single curvelet coefficient is denoted Csµ and is given by the
following inner product

Csµ = 〈s[x],ϕµ[x]〉, (6.2)

where ϕµ[x] is a curvelet function. From the set of curvelet coefficients, the original
signal can be reconstructed by summing all the curvelet functions weighted by the
associated curvelet coefficient such that

s[x] =
∑

µ

Csµϕµ[x]. (6.3)

As Candès et al. [2006a] point out, the curvelet functions ϕµ are never explicitly
computed in the image domain. Only their Fourier transform are specifically defined
and used to perform the transform. In the Fourier domain, the curvelet transform
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corresponds to a decomposition by a set of curvelet filters denoted ψj,l[ω]. To be clear
we have

ψj,l[ω] = Fϕµ[x], (6.4)

so that the curvelets are defined in the frequency domain. However, in the image
domain, any curvelet follows a parabolic scaling rule such that its length is almost
equal to the square of its width (the width being the direction of oscillation). The
figure 6.1 shows a tilling of the frequency domain for a rectangular image.

The beauty of the curvelet transform comes from a downsampling operator S ↓ which is
applied after filtering by a curvelet. This downsampling operator is allowed according
to the WNKS sampling theorem such that no information is lost and reconstruction is
possible without aliasing effect. A curvelet transform can be roughly summarized in
the two following equivalent ways

Csj,l[k] = S
↓
j,l

(
F

−1 (ψj,l · Fs)
)
, (6.5)

or Csj,l[k] = S
↓
j,l (ϕj,l ∗ s) , (6.6)

where Csj,l[k] contains all the curvelet coefficients at scale j and direction l, S
↓
j,l

denotes the downsampling operator at scale j and direction l and F −1 is the inverse
Fourier transform. Equations 6.5 and 6.6 are built upon the fact that convolution can
be obtained as a multiplication in the frequency domain.

The curvelet functions can be defined either real-valued or complex-valued, even if
the original signal is real-valued. This is simply done by splitting the two sides of the
curvelet filter function ψj,l. It results into two complex-valued curvelet functions in
the original domain, instead of a single real-valued one [Neelamani et al., 2010].

Unlike the discrete Fourier transform, they are several discrete curvelet transforms
(DCTs). For instance, Candès and Demanet [2005] proposed two algorithms namely
DCT via wrapping and DCT via UFFT. Nguyen and Chauris [2010] proposed the
uniform DCT (UDCT) by using filter banks. They essentially differ on two aspects:
the exact definition of the filtering functions ψj,l used to tile the frequency domain
(i.e. the curvelets themselves) and the downsampling operators S

↓
j,l reducing the

redundancy of the transform.

It is out of our scope to give a full description of the Candès’s transform. However,
we give a rapid idea of its transform in the following paragraph in order to better
clarify the differences with the used UDCT. The description of the UDCT is done in
section 6.4.

To our point of view, the main drawback of the FDCT for practical use is the down-
sampling operator. This operator changes at each scale j and direction l. Also,
as Nguyen and Chauris [2010] point out, the curvelets are not necessarily located
on the exact same grid, as the original image. For practical applications, as for
instance convolution (see section 6.5), this aspect leads to an unnecessary complication
of computation. Even if the down-sampling operator is defined to optimize the
redundancy of the transform, we will prefer to increase redundancy and work on a
predefined grid by the use of the UDCT. We believe that this reason explains why the
community has been using the curvelet transform for amplitude recovery only, and
not for a complete convolutive filter recovery in adaptive subtraction.

6.3 Review of adaptive subtraction with curvelets

Historically, Herrmann and Moghaddam [2004] have imported the curvelet transform
into the geophysics community, as well as most of the ideas from sparse recovery and
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compressive sensing. They have shown the usefulness of this particular transform for
several applications, and especially for adaptive subtraction. Herrmann et al. [2007],
Saab et al. [2007a] and Herrmann et al. [2008] expand the method, firstly based on
thresholding of some curvelet coefficients, into a non-linear optimization promoting
sparsity. Wang et al. [2007] apply the method on real data. As Neelamani et al. [2010]
point out, those methods are not only computationally expensive but they also cannot
correct for high shift error.

Neelamani et al. [2010] propose to use the curvelet transform in its complex form,
by splitting the real and the imaginary part. With a similar approach to Fourier
transform, complex-valued filter coefficients are defined by an amplitude and a phase.
The phase is able to slightly shift the curvelet atom perpendicular to its main direction.
The proposed algorithm for adaptive subtraction holds in two steps. First, a classical
ℓ2-norm approach globally adapt the prediction. Then, the correct complex-valued
coefficients are found by locally minimizing the ℓ1-norm of the residuals. Donno [2011]
proposed an approach closed to the concept of the curvelet transform, by splitting the
data into dips in the f − k domain. Set of filters are computed separately for each dip
and the results are merged to give the final estimated primaries.

6.4 The uniform discrete curvelet transform (UDCT)

6.4.1 A few words about filter banks

A filter bank is a system of several band-pass filters followed by down-sampling
operators. In other words, a filter bank performs a splitting of a signal into several
frequency sub-bands. This process is often referred to as the analysis of the signal,
while the reconstruction is referred to as the synthesis of the signal [Mitra and Kaiser,
1993].

With the previous definition, it is easy to see that the curvelet transform can be seen
as a filter bank. The curvelet decomposition being the analysis (equation 6.5) and the
reconstruction being the synthesis (equation 6.3). Nguyen and Chauris [2010] define
the curvelet transform as a filter bank.

6.4.2 Using filter bank for the curvelet transform

The uniform discrete curvelet transform (UDCT) proposed by Nguyen and Chauris
[2010] implements the curvelet transform by cascading J multi-band filter banks. Each
filter bank consists of one smooth low-pass filter around half the Nyquist frequency
and Lvert.

j + Lhoriz.
j directional smooth high-pass filters. The resulting filtered signals

are decimated by factors of 2 following the WNKS theorem. Hence, sequentially, a
sub-level filter bank is applied on the low-frequency signal of the precedent filter bank.
The number of directional high-pass filters Lj at each scale is determined in order to
follow the parabolic rule. The synthesis filters implementing the inverse transform are
the same as the analysis filters.

Compared to the two FDCT proposed by Candès et al. [2006a], the UDCT has the
great advantage to use a simpler down-sampling operator, that is a decimation by a
power of 2. Hence, the translation coefficients k ∈ Z at all scales and directions are
subsets of the original signal grid (see also figure 6.3). As we will see in hereafter, this
property is helpful for a fast and easy computation of convolutions with the UDCT
coefficients.

In the frequency domain, the curvelet filter at scale J = 0 is defined as an inner
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coarse rectangle. The curvelet filters at higher scales are defined as the product of a
rectangular band pass and a directional band-pass filter(see figure 6.1). Each function
is smoothed at the edges to avoid oscillations in the image domain. This tilling is a
squared version of the continuous curvelet transform [Candès et al., 2006a]. The non
sub-sampled DCT is given by

Csj,l[x] = (s ∗ϕj,l)[x]. (6.7)

In the UDCT, a difference is made between the mostly horizontal curvelets and the
mostly vertical curvelets. At the end of the sequence of filter banks performing the
entire curvelet transform, the decimation ratios are simply powers of 2. They depend
on the scale j and the main dip (vert. or horiz.) of the curvelet associated to the
direction l. We can concatenate the decimation ratios in a matrix ∆j,l such as

∆horiz.
j = 2J−j

[
2 0
0 1

3 2Lhoriz.
j

]

, (6.8)

and

∆vert.
j = 2J−j

[
1
3 2Lvert.

j 0
0 2

]

. (6.9)

Finally, the UDCT can be constructed following

Csj,l[k] = (s ∗ϕj,l)[∆jx] , (6.10)

where the convolution is actually performed in the frequency domain.

6.5 Convolution in the curvelet domain

6.5.1 Convolution theorem with curvelets

The convolution theorem associated to the Fourier transform is well-known and
massively used in common applications. It sets that a convolution in the original
domain is equivalent to a multiplication in the Fourier domain. We consider two
signals a(x) and s(x). Their Fourier transforms are denoted Fa(ω) and Fs(ω). From
the convolution theorem, we can write

F(a ∗ s)(ω) = Fa(ω) · Fs(ω). (6.11)

For the curvelet transform, such a theorem may not be obvious at first sight. Rajendran
and Rajakumar [2014] propose an analysis and a convolution theorem of the curvelet
transform1.

Theorem 13. Convolution theorem for curvelet transform (Rajendran and Rajakumar
[2014]: theorem 18 page 274). We consider two signals a(x) and s(x), x ∈ R

2. We
denote Ca(µ) the continuous curvelet transform of a(x). Two convolutional products
are defined such that

(a ∗ s)(x) =
∫

R2

a(x− y)s(y)dy, (6.12)

(Ca ⋄ s)(µ) =
∫

R2

Cs(j, l, k − y)s(y)dy. (6.13)

We can write:
C(a ∗ s)(µ) = (Ca ⋄ s)(µ). (6.14)

1The mathematical details of this reference are not within the competence of the author of the
present thesis. This article is cited because it explicitly suggests a convolution theorem related to
the curvelet transform.
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Figure 6.3: The black dots indicate the original grid, as well as the position of
the non subsampled curvelet coefficients. The blue circles indicate the location of the
samples taken after decimation. The red circles indicates which samples must be taken
for evaluating the curvelet transform of the shifted signal, for the coefficient w−1,−1.

In words, the curvelet transform of a convolution remains a convolution. This result
actually justifies our analysis of blind source separation of sparse sources in convolutive
mixtures, presented in chapter 3. Convolutional mixtures cannot be tackled in the
frequency domain with the instantaneous model if the sparsity of the signal occurs in
the curvelet domain.

6.5.2 Fast construction of the convolutional matrix

We consider the adaptive subtraction problem in the curvelet domain for which the
estimated primaries are given by

C(p̂[x]) = C(d[x])−
∑

y

w[y]C(m[x− y]). (6.15)

In this formulation, the key point is the computation of C(m[x− y]), i.e. the curvelet
transform of each shifted version of the prediction.

A naive way to construct all shifted version of the prediction is to actually shift the
original image and compute the curvelet transform. By repeating this operation for
each shift, we can build the convolutional matrix M . This method is computationally
expensive, because it requires Y times the cost of the curvelet transform.

A second approach makes use of the interpolation formula. Once the curvelet transform
of the image has been computed, the interpolation filter h can be used to compute the
shifted version of the curvelet transform for the size of the filter. However, the main
drawback of this method is the infinite sum in the interpolation formula. Truncated
version could be used, for instance with Lanczos kernel, but the accuracy of the method
will be injured. This approach has been used for instance by Chauris and Nguyen
[2008].

We propose to capitalize on the useful property of the UDCT that we emphasized
in the previous section: the curvelet coefficients Cj,ls[k] are localized on the original
image grid denoted [x]. Hence, from the non sub-sampled curvelet transform, we can
construct the curvelet transform of any shifted image. This approach has the advantage
to be exact. The figure 6.3 shows the non sub-sampled grid and the sub-sampling
approach corresponding to the construction of the convolutive matrix M .
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Figure 6.4: Synthetic example of two crossing events (on the left). The prediction
(on the right) is perfect. The red rectangle indicates the local window where the filter
is computed.

6.5.3 Implementation details of the convolution matrix

Our method computes a convolutive matrix M containing the curvelet coefficients of
each shifted version of the prediction such that the final multiple estimate is given by
Cm̂ = ŵT M . The number of lines is given by the size of the filter. The number of
columns is given by the size of the considered local window and the redundancy of the
curvelet transform. The advantage of the UDCT is that the number of coefficients to
be actually stored can be reduced, and so the needed memory .

Our algorithm can be summarized step-by-step as:

• consider a 2D gather;
• compute the non sub-sampled DCT (equation 6.7);
• consider a local window;
• shift the window and apply sub-sampling for each filter coefficient (equation 6.10);
• store the vectorized results in the convolutive matrix M .

The described pseudo-algorithm can be applied for each µ = {j, l, k}, independently
from the others. Hence, the needed memory is limited, as the full non sub-sampled
DCT is never stored completely.

6.6 Experiments

The main differences between the matching filter methods are i) the objective function,
ii) the parameters handling non-stationnarity and iii) the transformed domain. In this
section, we use the Infomax objective function and compare the results between the
image domain (here, a CSG) and the curvelet domain. This function can, indeed, be
use to make a transition between the ℓ2-norm and the ℓ1-norm solutions (see chapter 5).
The objective function is explicitly given by

φIM,C = −E {log |G′
λ(Cp)|} , (6.16)
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where G′
λ is the derivative of the sigmoid function with a shaping parameter λ. The

objective function is minimized with a gradient-based approach.

6.6.1 Adaptive search of λ.

As we explained in chapter 5, the parameter λ used in the Infomax framework can be
adapted to better match the estimate of the CDF (equivalently PDF) of the desired
signal (here the primaries). Previously, we used a rough estimate of this parameter.
In the results shown in this chapter, we adapt this parameter locally to the data by
maximum likelihood estimation (MLE). The log-likelihood is

L(λ) =
∑

x

log g0(dx) (6.17)

=
∑

x

log λ− λdx − 2 log
(
1 + e−λdx

)
, (6.18)

for which the gradient is

∂L(λ)
∂λ

=
∑

x

1
λ
− dx +

2dxe−λdx

1 + e−λdx
. (6.19)

For each local window, the best λ∗ fitting the data is found by line search (see
appendix 8.2) such that

λ∗ = arg maxL(λ). (6.20)

The obtained value λ∗ is the best parameter for explaining the data with a sigmoid
CDF. However, the primaries are not supposed to have the same distribution. The
primaries are, indeed, more likely to have a more spiky distribution compared to the
data, because the multiples must be removed from the data. In order to have an
estimate of the shaping parameter of the primaries, the obtained value λ∗ is over
shifted by a factor OF ≈ 2 to 5 such that L = OF × λ∗. This value is used in the
Infomax network.

6.6.2 Example on synthetics

Figure 6.4 shows a synthetic example in which the primary and the multiple events
are crossing. The red rectangle indicates the considered local window centered around
the crossing point. The filter is computed over this small window. In this example, the
prediction is correct, except for a time shift. The shaping parameter λ is computed
and over-fitted with OF = 2.

Figure 6.5 shows the results of matching filter approaches computed in the original
image domain and in the curvelet domain. The Infomax objective function is optimized
in both cases. The curvelet method has a better amplitude recovery, compared to the
image approach and seems to better preserve the primary event. Figure 6.6 shows the
errors between the true primaries and the estimated primaries for different filter sizes.
The error in the image domain increases rapidly with respect to the filter size. In the
curvelet domain, the method is more robust.

6.6.3 Discussion: IR processes between primaries and multiples

From the work presented in this thesis, an interesting question arises: does inter-
regressive processes have high probability to occur between primaries and multiples?
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The proposed definition of inter-regressive processes (see section 3.3) involves a par-
ticular kind of strict clustering, i.e. the presence of source coefficients exactly in
the hyperplane defined by the IR process. The strict definition imposing a perfect
cancellation of the coefficients (see equation 3.18) has been motivated by the use of
the ℓ0 pseudo-norm in our theoretical analysis of SCA and DCA. However, in practice,
the sparsity of signals is measured by some smooth functions. Hence, our definition
of inter-regressive processes can be relaxed to adapt to the sparsity measure. An IR
process for the ℓ0 pseudo-norm is also an IR process for other sparsity measure.

Another question arises when considering the curvelet transform. If the primaries and
multiples yield an inter-regressive process in the original domain (e.g. CSG or COG),
does the curvelet transform make it disappear? The correlation cannot disappear
completely, but the curvelet transform may be sufficient to reduce the number of
points in the cluster and emphasize at the same time the disjointness of the signals.
Also, the curvelet transform is defined as a tight frame, meaning that C−1C = I, where
I is the identity operator. However, we generally have CC−1 6= I and several curvelet
representations may exist for the same signal. Among them, some representations can
be sparser than others. The existence of several representations for the desired signal
can be investigated. It is possible that for some of them, the condition of theorem 10
is valid.

6.7 Conclusion

In this chapter 6, we show that matching filter approaches for multiple attenuation
can be fully performed in the curvelet domain. With this approach, there is no need
for splitting the adaptive multiple subtraction step into several sub-steps, such as
proposed in the literature. Instead of using the classical discrete curvelet transform,
we use the uniform discrete curvelet transform that allows for a better repartition
of the memory and a convenient location of curvelet coefficients. In particular, FIR
convolution can be well defined. Yet, the method has been used only on synthetics in
order to demonstrate the feasibility. More effort must be done on real data.
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Figure 6.5: a) Magnification of the red window in figure 6.4. b) The estimated
primary and the estimated multiple computed in the image domain. c) The estimated
primary and the estimated multiple computed in the curvelet domain. d) The central
trace for the true primary (black), the estimated primary in the image domain (blue)
and the estimated primary in the curvelet domain (magenta).
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In this chapter, section 7.1 draws the final conclusions. Sections 7.2 and 7.3 propose
some perspectives and ideas for research direction in sparse component analysis
(following our developments in part II) and adaptive subtraction of seismic multiples
(following our developments in part III), respectively.
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7.1 General conclusions

The present thesis has been motivated by the problem of adaptive subtraction of
multiple events in seismic acquisition. This specific problem can be seen as a particular
case of blind source separation (BSS) for which the sources are the primaries and the
multiples, and the observations are the recorded data and the multiple prediction.
In order to better understand the BSS framework, we have been concerned with the
extraction and the separation (i.e. the recovery) of sources (i.e. signals) in convolutive
mixtures, with a focus on sparse signals. In this problem, the separation of sources
can be performed by optimizing some unknown finite impulse response (FIR) filter.
With seismic data, sparsity can be enhanced in the curvelet domain, in which the
original convolution is maintained as a convolution after curvelet transform.

Independent contributions have been obtained in sparse component analysis (SCA)
and adaptive subtraction. The framework used for BSS and SCA has been chosen
because it is general enough to give insights for adaptive subtraction.

7.1.1 Blind extraction and separation of sparse sources

When a specific contrast function (i.e. objective function) is used, such as a sparsity-
based function, an underlying model is assumed. In BSS problems, this underlying
model may refer to some prior information about the sources. It is of fundamental
matter to question the limit of such a model in order to know exactly the conditions
for which any approach is valid.

We have analyzed this topic with the ℓ0 pseudo-norm for determined BSS problems. In
particular, we have investigated the necessary and sufficient conditions on the sources
for which the ℓ0 pseudo-norm is a contrast function. By discussing the link between
clustering and sparsity, we have shown that the ℓ0 pseudo-norm acts as an indicator
of the presence of clusters in the observations.

(1) We have shown that the ℓ0 pseudo-norm can be used for the extraction of sparse
sources, as long as no inter-regressive process bigger than the inactive parts of the
sources exists. In summary, an inter-regressive process is a correlation cluster present
in the original signals and can be seen as an expansion of auto-regressive processes.
Combined with a multi-population evolutionary algorithm, each minimum of the
contrast function can be identified. They correspond to the extraction of each source.
The presence of an inter-regressive process creates a parasitic minimum in the contrast
function.

(2) We have shown that the separation of sources can be obtained by disjoint component
analysis (DCA) under the same conditions, at least for the determined case with N = 2
sources. We have conjectured that this result can be generalized for N > 2. DCA is a
valid method for the separation of sparse sources and can be seen, at least with the ℓ0

pseudo-norm, as the correct extension of SCA for the blind separation.

(3) We have proposed a Differential Evolution algorithm, able to perform the non-
convex optimization of the smooth ℓ0 pseudo-norm. This algorithm can be used for
both SCA and DCA. Also, an adaptive search for the shaping parameter is able to
deal with an unknown presence of additive noise.

7.1.2 Adaptive subtraction based on matching filter techniques

Adaptive subtraction is crucial for properly removing the multiple events with predic-
tion based method. If not, the signal can be damaged because of an over-attenuation.
Matching filter techniques are commonly used for retrieving a missing FIR filter,
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underlined by the mixing model. The problem of adaptive subtraction of multiple
events can be seen as a particular case of blind source separation problems. This
is the main reason why we investigated sparse component analysis in the part II
(chapters 2 and 3). We have identified the limit of sparse component analysis, which
can help to also understand to limit and the differences with other approaches, such
as independent component analysis.

The choice of the objective function is a natural question for adaptive subtraction.
Recently, it has been proposed to use different metrics for adaptive subtraction. In
particular, new methods based on ICA have been released. As underlined before,
knowing the limit of the model underlying an objective function is of prime importance,
and knowing the property of the solution, independently from the algorithm, helps.

(1) We have shown the limit of ICA-based method for adaptive subtraction. In
particular, the methods lead to a minimization of a non-linear cross-correlation pattern
between the primaries and the multiples. This non-linearity depends on the method
and acts as a compressor on the estimated primaries. The assertion that ICA-based
method could separate correlated signals is false.

(2) In order to become closer to the disjoint assumption, one may use the curvelet
transform. In the literature, the curvelet transform has been used mainly for amplitude
recovery. This method has the disadvantage to need a pre-determined FIR filter
recovering step in order to estimate a big shift of the prediction. We believe that
this limit is a consequence of the very large propagation of the discrete curvelet
transform proposed by Candès et al. [2006a]. This method is indeed optimal for
reducing the redundancy of the transform but not for other applications, such as the
convolution. We have shown how the uniform discrete curvelet transform (UDCT)
proposed by Nguyen and Chauris [2010] is a good candidate. Hence, the search of
a FIR filter can be done directly in the curvelet transform, with a limited number
of calculation. This is an advantage from an operator point of view. Compared to
classical approaches, less tuned parameters have to be determined. Also the method
shows more robustness.

7.2 Perspectives for sparse component analysis

7.2.1 Complex-valued data and under-determined problems

We only considered real-valued sources in chapter 3 dedicated to SCA and DCA. To
go further, the seek of necessary and sufficient conditions can be explored for complex-
valued sources (original signals). This naturally arises when signals are transformed
into the frequency domain but it may occur in other fields such as in radar or magnetic
resonance [Adali et al., 2011; Yang et al., 2014]. However, the ℓ0 pseudo-norm is only
sensitive to the amplitude of a complex-valued coefficient because it is defined as the
number of non-zero coefficients [Mohimani et al., 2008]. This might also be the case
for other measures of sparsity (see others definitions proposed by Hurley and Rickard
[2009]).

Nevertheless, for some problems, retrieving the phase is not of prime importance and
the focus can be restricted to the modulus only [Fiori, 2001]. In that case, a phase
ambiguity can be added to the previous known ambiguities and the definition of the
solution set S can be easily modified. The global mapping H at the solution should be
the product of a permutation matrix and a diagonal (complex) matrix. Two concepts
must be investigated with a specific care about property and circularity [Adali et al.,
2011].

Table 7.1 summarizes those aspects and the direction where to go. Instantaneous
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R-valued C-valued
instantaneous chapter 3 ?
convolutive chapter 3 ?

Table 7.1: Table of achieved theoretical results and perspective of future works for
sparse component analysis, depending on the mixing model and the value of coefficients.
An interrogation mark indicates possible direction.
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Figure 7.1: a) An inter-regressive process between two sources for a real-valued
problem. The parameter is c = 0.5. b) An inter-regressive process between two sources
for a complex-valued problem. The parameter is c = 0.8 exp(iπ/8).

mixtures can be investigated first and then expanded to convolutive mixtures. In
order to give a first idea of this direction, we consider a simple 2× 2 BSS problem in
C and we try to expand the concept of inter-regressive process for seeking necessary
and sufficient conditions. We consider the mixing model

[
d1[x]
d2[x]

]

=
[
a11 a12

a21 a22

] [
s1[x]
s2[x]

]

, (7.1)

for which all coefficients are complex-valued. In this simple case, an inter-regressive
process can be defined as the number of coefficients such that s1[x] = cs2[x] where
c ∈ C. Figure 7.1 compares the definition for real- and complex-valued signals in this
simple 2× 2 BSS problem. An amplitude and a rotation phase are relating the two
sources for an inter-regressive process. If such a structure exists among the sources, a
parasitic minimum appears in the objective function.

7.2.2 Inter-regressive process in different applications

In chapter 3 we defined inter-regressive process as an expansion of auto-regressive
process with several signals. However, we have not discussed much their physical
meaning in different contexts (see for 6.6.3 primaries and multiples). We believe
additional efforts should be dedicated to the understanding of such a clustering for
different contexts, and particularly in remote sensing for which SCA is of particular
use. For instance, a probabilistic framework could be suited in order to determine the
following probability:

Pr(cT S = 0 | c) (7.2)

for exact inter-regressive process recovery, or:

Pr(cT S < ǫ | c) (7.3)

for a more robust analysis of the presence of data near a defined cluster.



7.3. Perspectives for adaptive multiple subtraction 161

R-valued C-valued
instantaneous Herrmann et al. [2008] Neelamani et al. [2010]
convolutive chapter 6 ?

Table 7.2: Application of the theoretical results exposed in table 7.1 for adaptive
subtraction. An interrogation mark indicates not known work.

7.3 Perspectives for adaptive multiple subtraction

7.3.1 Dealing with several orders of multiples

The multiples present in a gather are made of several orders (see figure 1.2) and we
can write

m0[x] = m
(1)
0

[x] + m
(2)
0

[x] + . . . (7.4)

In the present work, we considered the problem of adaptive subtraction for which
orders of multiples are not overlapping. In order term, the subsets of indices in
which each order is active are disjoints. Hence, in each small window that has been
considered, the mixing model is given by

{

d[x] = p0[x] + m0[x]
m[x] = (a ∗m0)[x].

(7.5)

However, if several orders of multiples are overlapping, this assumption is not valid
anymore. We must consider the following model

{

d[x] = p0[x] + m0[x]

m[x] = (a1 ∗m
(1)
0

)[x] + (a2 ∗m
(2)
0

)[x] + . . .
(7.6)

in which each order of multiple has a different mixing filter. In a more BSS-like
formulation, and with abuse of notations we have

[
d

m

]

=
[
1 1 1 . . .
0 a1∗ a2∗ . . .

]








p

m
(1)
0

m
(2)
0

...







. (7.7)

This model has been considered by Lu [2006] but only for amplitude recovery. Using
this model for FIR filter recovery is a direction for investigations. Also, the recovery
conditions for this problem must be investigated. Figures 7.2 and 7.3 show two
examples in which the number of orders can be found by clustering in the observation
space along axes with different angles. In the first, only one order is present and so
two pics are visible in the histogram of the clustered values. In the second, three pics
indicate the presence of two orders of multiples in the prediction.

From a BSS point of view, the mixing system described by equation 7.7 is an underde-
termined BSS problem. In such a case, the inverse mixing system cannot be directly
estimated as for determined and overdetermined problems because such an inverse
does not exist. Instead, the mixing model must be identified from the data only. Then
the sources are recovered by, for instance, sparse signal recovery. It is well known that
if the sources are sparse enough in the considered domain, the mixing system can be
identified. The observations will be indeed aligned along axes in the observation space.

However, most of the work about under-determined SCA has mainly been focussed
on the instantaneous mixing model. Here again, the convolutive model has been
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considered in the frequency domain, in which convolutions become multiplications. As
we already explained, we expect the seismic data to be sparse in the curvelet domain.
To our knowledge, no work has been done for considering sparsity in the domain where
the convolution needs to be considered. This aspect is actually the continuity of the
previous section 7.2. As for the present thesis, a complete work could be done with
the theoretical aspects considering a fully blind problem, then it could be applied to
adaptive subtraction.

7.3.2 Over-attenuation detection using SCA

Two assumptions are important when considering an adaptive subtraction problem:
un-correlation and disjointness of primaries and multiples. Considering two random
variables, the first implies E{s1s2} = 0 while the second implies s1s2 = 0, which is a
particular case (or a subgroup) of un-correlation.

Disjointness of the primaries and multiples (the sources) leads to clustering of the
observations along two main directions. Identifying those two directions is a valid
method for recovering the sources. This is in essence what SCA based on the ℓ0

pseudo-norm performs. Previously, we discussed how this clustering can be used for
under-determined problems in order to retrieve, blindly, the mixing system. The
recovery of the sources needs an efficient second step (e.g. sparse signal recovery).

We believe that clustering can be used, associated with a quantitative marker, for
detecting the areas in a gather where over-attenuation may occur. In other term, SCA
could be used for detecting problematic small windows. If the number of observations
clustered along specific axes is larger than two, the test indicates a potential problematic
area.

Based upon such a detection, the window size and the filter size could be adjusted
until the data and the prediction present some kind of clustering, meaning that enough
diversity is present in the observations. This method could be an alternative to the
work initiated by Liu and Kostov [2015] for determining the optimal filter size.

7.3.3 Filters estimation from Pareto sets of filters

As discussed in chapter 5, the filter size and the window size are crucial parameters for
adaptive subtraction, and their values influence the results of the estimated primaries.
Liu and Kostov [2015] propose to use the Akaike information criterion (AIC) defined
such that

AIC = log ‖p‖2 + κ ‖w‖0 (7.8)

for determining the correct filter size ‖w‖0. This method is a classical regularization
method, but it defines a discrete Pareto set instead of a continuous one. In this
method, the parameter κ has a large influence and it must be pre-determined by the
operator with a series of trial values.

With this method, the operator does not have to give the filter size, but still has
to find the correct regularization parameter κ. We believe that the method can be
improved by examining the Pareto set of filter solutions and some clustering techniques.
Figure 7.4 shows a synthetic example in which two different classes of filters can be
identified in the AIC/Pareto curve: in each side of the drop, there is one group of filters
clustered around the same filter. This information is the relevant one for this example.
The barycenter of each cluster could be used as an optimal filter and proposed to the
decision maker.
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Figure 7.2: Synthetic example for a single-order estimation in adaptive subtraction.
a) The data contain several events, with one order of multiples. b) The prediction
is good, except for the amplitude that must be recovered. c) The cross-plot between
the observations and the prediction. d) The clustering measure, function of one angle
parameter θ, shows the number of orders. In this case, the inverse can be directly
estimated.
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7.3.4 Pattern-recognition and matching filter combined

As discussed in chapter 5, two main methods exist for adaptive subtraction: matching
filter and pattern recognition techniques. Both have their pros and cons and one could
try to use both in a classical form such as

min
w
‖C(d−w ∗m)‖ℓ1

s. t. cp ∗ p < ǫ. (7.9)

Because pattern recognition often fails at near offset, one could use higher values of ǫ
at near offset and smaller values at far offset. This way, the over-attenuation issue of
the main ℓ1-norm term could be compensated by the constraints of the auto-regressive
process obtained from the prediction. With LASSO approach, this scheme could be
efficient.

7.3.5 SCA for adaptive subtraction and the limit of dimensionality

We believe ICA and SCA are not contradictory, but complementary. Let us think
one more time about the adaptive subtraction problem for multiple removal. For the
sake of conciseness, we can think about ICA-based matching filter techniques as an
englobing approach of all the methods using convex optimization (we could, indeed,
always find a Bayesian framework associated).

In the perspective section 7.3, we propose to use SCA for checking the clustering of
the data and the observations. If primaries and multiples are disjoint orthogonal (they
cluster perfectly along two lines in the example of figure 7.3a), we have shown that
ICA can be used for the separation (see section 3.2). There is no need for SCA in
that case. However, if two clusters appear along with a diffuse correlation, then ICA
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methods may fail. Actually, one could also keep only the data and observations points
present in the clusters and perform ICA on this subsets only.

When ICA methods give satisfactory results, there is no need for other methods.
Convex optimization is fast, and the methods can be used with more dimensions. In
particular, using 3D data set (the data cube in standard 2D acquisitions) and 5D data
set (the data 5-cube in modern 3D acquisitions) allow for more statistical diversity
and more robust filter estimation. Using genetic algorithm for SCA with 5-cube may
be limited by the computer memory, as the size of the population will be quite large
to give accurate results. Also, curvelet transforms have been defined for 3D data
cube, but not for more dimensions. In particular, the redundancy of the transform
may explode and our limit of computer memory may be reached. A perfect curvelet
transform may be difficult to use, but a filter-bank strategy, with a limited number of
scales and directions may reduce the need of memory.
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Chapter 8

Appendices

8.1 Some definitions related to norms

In this section, we would like to precise our use of the terms norm, quasi-norm and
pseudo-norm in the manuscript. In particular, the term pseudo-norm is often used for
referring to the ℓ0 pseudo-norm. However, strictly speaking, it is not a pseudo-norm.
Several definitions are given in table 8.1. We consider a vector space V with u,v ∈ V
and λ,K ∈ R.
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Figure 8.1: Backtracking line search principle for obtaining the correct step α in
gradient-based methods.

8.2 Backtracking line search

We describe in this section a method for finding a correct step in gradient-based
optimization methods. For non-quadratic functions, the quadratic approximation is
not valid and an exact line search is impossible. Inexact line search such as backtracking
has proven to be efficient in many cases [Boyd and Vandenberghe, 2004]. We consider
a function φ(w) to be minimized with respect to the parameter w. We consider that at
the point w we have a direction of minimization d (for instance the opposite direction
of the gradient). The line search problem is formulated as an optimization problem

min
α

ψ(α) = φ(w + αd), (8.1)

and backtracking search adaptively searches for a correct value α. It starts with a
fixed value α0 (generally small) that can be decreased if necessary by a factor ρ ∈ [0, 1].
The algorithm can be written as

α← α0

while φ(w + αd) > φ(w) + c1α∇φT d do
α← ρα

end

When the line search ends, the new current solution is obtained such that w ← w +αd.
A new direction of descent is computed and the line search can be used again. This
process is applied iteratively until convergence.

8.3 Sufficient condition for BSE

We want to retrieve the sufficient condition proposed by Duarte et al. [2011], starting
from our theorem 9. We consider two sources s1, s2 ∈ R

Nx . We divide the support
of indices such that E = E1 ∪ E2 ∪ Ec. Only s1 is active on E1, only s2 is active
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Figure 8.2: Explanation of supports for a BSS problem with two sources. The
coefficients of the sources are sorted without loss of generality.

on E2 and both sources are active on Ec (see figure 8.2). The two sources s1 and
s2 are respectively active on N1 + Nc and N2 + Nc indices. From the definition of
inter-regressive processes, we have necessarily E∗ < Nc.

Theorem 14 (Sufficient condition). Let us consider two sources s1 and s2 for which
E2 and Ec are of size N2 and Nc. If

N2 > Nc, (8.2)

then ℓ0 pseudo-norm is a contrast for the extraction of s1, no matter the size of E1.

Proof. From the condition we have N2 > Nc > E∗. Also, if Nc = 0, then we have
E∗ = 0. Hence Nc−N2 ≤ −1 is a sufficient condition. It can be written N2 > Nc. �

If ‖s1‖0 < 0.5 ‖s2‖0, as proposed in Duarte et al. [2011], then

2(N1 +Nc) < N2 +Nc (8.3)

2N1 +Nc < N2, (8.4)

and so we have N2 > Nc. The sufficiency is proved.

8.4 Separation 2× 2

We want to proof our conjecture 1 for the case N = M = 2. We consider two sources
s1, s2 ∈ R

Nx . We divide the support of indices such that E = E1 ∪ E2 ∪ Ec. Only
s1 is active on E1, only s2 is active on E2 and both sources are active on Ec (see
figure 8.2). We consider the following global mapping

[
u1

u2

]

=
[
h11 h12

h21 h22

] [
s1

s2

]

. (8.5)
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By definition, we denote the size of the support where the sources are active such that

‖s1‖0 = N1 (8.6)

‖s2‖0 = N2 (8.7)

‖s1 ⊙ s2‖0 = N12. (8.8)

The value of the objective function is

‖u1 ⊙ u2‖0 = ‖h1S ⊙ h2S‖0 . (8.9)

For most H , the precedent equation is equal to N . We distinguish three cases leading
to parasitic minima.

• An inter-regressive process of length L on the support where both sources are active
leads to a parasitic minimum. In the worse cases for which two inter-regressive
processes exist (with arbitrarily L1 > L2), we have

‖u1 ⊙ u2‖0 = Nx − L1 − L2, (8.10)

and we end-up with the following condition

N12 < Nx − L1 − L2. (8.11)

• One of the extracted vector can extract s1, while the other extracts a linear
combination of the two sources. In the worse case with an existing inter-regressive
process we have

‖u1 ⊙ u2‖0 = Nx − (Nx −N1)− L = N1 − L, (8.12)

leading to the following necessary and sufficient condition

N12 < N1 − L ⇔ L < (N1 −N12). (8.13)

The scalar N1 −N12 represents the size of the inactive support of s2.

• The symmetric case of the precedent one occurs when one of the extracted vector
extracts s2, while the other extract a linear combination of the two sources. In the
same way, we end up with

N12 < N2 − L ⇔ L < (N2 −N12). (8.14)

The scalar N2 −N12 represents the size of the inactive support of s1.

Without lost of generality, we can assume that s1 is sparser than s2, i.e. N1 < N2 and
so (N1 −N12) < (N2 −N12) . This means that the inactive support of s1 is larger
than the one of s2 and equation 8.14 is verified if equation 8.13 is true. Also

L1 + L2 < L1 + L1 < (N1 −N12) + (N2 −N12) = Nx −N12, (8.15)

and equation 8.11 is verified if equation 8.13 is true. Our conjecture is proved for the
case N = M = 2.
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Résumé

La séparation de signaux corrélés à
partir de leurs combinaisons linéaires
est une tâche difficile et possède
plusieurs applications en traitement du
signal. Nous étudions deux problèmes,
à savoir la séparation aveugle de
sources parcimonieuses et le filtrage
adaptatif des réflexions multiples en
acquisition sismique. Un intérêt parti-
culier est porté sur les mélanges con-
volutifs : pour ces deux problèmes,
des filtres à réponses impulsionnelles
finies peuvent être estimés afin de
récupérer les signaux désirés.
Pour les modèles de mélange instan-
tanés et convolutifs, nous donnons les
conditions nécessaires et suffisantes
pour l’extraction et la séparation ex-
actes de sources parcimonieuses en
utilisant la pseudo-norme ℓ0 comme
une fonction de contraste. Des
équivalences entre l’analyse en com-
posantes parcimonieuses et l’analyse
en composantes disjointes sont ex-
aminées.
Pour la soustraction adaptative
des réflexions sismiques, nous
discutons les limites des méthodes
basées sur l’analyse en composantes
indépendantes et nous soulignons
l’équivalence avec les méthodes
basées sur les normes ℓp. Nous
examinons de quelle manière les
paramètres de régularisation peuvent
être plus décisifs pour l’estimation des
primaires. Enfin, nous proposons une
amélioration de la robustesse de la
soustraction adaptative en estimant
les filtres adaptatifs directement dans
le domaine des curvelets. Les coûts
en calcul et en mémoire peuvent
être atténués par l’utilisation de la
transformée en curvelet discrète et
uniforme.

Abstract

The recovery of correlated signals from
their linear combinations is a challeng-
ing task and has many applications in
signal processing. We focus on two
problems that are the blind separation
of sparse sources and the adaptive
subtraction of multiple events in seis-
mic processing. A special focus is
put on convolutive mixtures: for both
problems, finite impulse response fil-
ters can indeed be estimated for the re-
covery of the desired signals.
For instantaneous and convolutive mix-
ing models, we address the necessary
and sufficient conditions for the ex-
act extraction and separation of sparse
sources by using the ℓ0 pseudo-norm
as a contrast function. Equivalences
between sparse component analysis
and disjoint component analysis are in-
vestigated.
For adaptive multiple subtraction, we
discuss the limits of methods based on
independent component analysis and
we highlight equivalence with ℓp-norm-
based methods. We investigate how
other regularization parameters may
have more influence on the estimation
of the desired primaries. Finally, we
propose to improve the robustness of
adaptive subtraction by estimating the
extracting convolutive filters directly in
the curvelet domain. Computation and
memory costs are limited by using the
uniform discrete curvelet transform.

Mots Clés

traitement sismique • réflexions mul-
tiples • filtrage adaptatif • séparation
aveugle de sources • analyse en
composantes parcimonieuses • trans-
formée en curvelet

Keywords

seismic processing • seismic multi-
ples • adaptive filtering • blind source
separation • sparse component analy-
sis • curvelet transform
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