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Résumé

Cette thèse comporte deux volets indépendants mais tous deux motivés par la mo-
délisation mathématique et la simulation numérique de procédés photovoltaïques.

La Partie I traite de systèmes d'équations aux dérivées partielles de di�usion croi-
sée, modélisant l'évolution de concentrations ou de fractions volumiques de plusieurs
espèces chimiques ou biologiques. Nous présentons dans lechapitre 1 une introduction
succincte aux résultats mathématiques connus sur ces systèmes losqu'ils sont dé�nis sur
des domaines �xes. Nous présentons dans lechapitre 2 un système uni-dimensionnel
que nous avons introduit pour modéliser l'évolution des fractions volumiques des di�é-
rentes espèces chimiques intervenant dans le procédé de déposition physique en phase
vapeur (PVD) utilisé pour la fabrication de cellules solaires à couches minces. Dans ce
procédé, un échantillon est introduit dans un four à très haute température où sont
injectées les di�érentes espèces chimiques sous forme gazeuse, si bien que des atomes
se déposent petit à petit sur l'échantillon, formant une couche mince qui grandit au
fur et à mesure du procédé. Dans ce modèle sont pris en compte à la fois l'évolution
de la surface du �lm solide au cours du procédé et l'évolution des fractions volumiques
locales au sein de ce �lm, ce qui aboutit à un système de di�usion croisée dé�ni sur
un domaine dépendant du temps. En utilisant une méthode récente basée sur l'entro-
pie, nous montrons l'existence de solutions faibles à ce système et nous étudions leur
comportement asymptotique dans le cas où les �ux extérieurs imposés à la surface du
�lm sont supposés constants. De plus, nous prouvons l'existence d'une solution à un
problème d'optimisation sur les �ux extérieurs. Nous présentons dans lechapitre 3
comment ce modèle a été adapté et calibré sur des données expérimentales.

La Partie II est consacrée à des questions reliées au calcul de la structure élec-
tronique de matériaux cristallins. Nous rappelons dans lechapitre 4 certains résultats
classiques relatifs à la décomposition spéctrale d'opérateurs de Schrödinger périodiques.
Dans lechapitre 5 , nous tentons de répondre à la question suivante : est-il possible de
déterminer un potentiel périodique tel que les premières bandes d'énergie de l'opérateur
de Schrödinger associé soient aussi proches que possible de certaines fonctions cibles ?
Nous montrons théoriquement que la réponse à cette question est positive lorsque l'on
considère la première bande de l'opérateur et des potentiels uni-dimensionnels apparte-
nant à un espace de mesures périodiques bornées inférieurement en un certain sens. Nous
proposons également une méthode adaptative pour accélérer la procédure numérique de
résolution du problème d'optimisation. En�n, le chapitre 6 traite d'un algorithme glou-
ton pour la compression de fonctions de Wannier en exploitant leurs symétries. Cette
compression permet, entre autres, d'obtenir des expressions analytiques pour certains
coe�cients de tight-binding intervenant dans la modélisation de matériaux 2D.

9



Abstract

This thesis includes two independent parts, both motivated by mathematical mod-
eling and numerical simulation of photovoltaic devices.

Part I deals with cross-di�usion systems of partial di�erential equations, modeling
the evolution of concentrations or volume fractions of several chemical or biological
species. We present inChapter 1 a succinct introduction to the existing mathematical
results about these systems when they are de�ned on �xed domains. We present in
Chapter 2 a one-dimensional system that we introduced to model the evolution of
the volume fractions of the di�erent chemical species involved in the physical vapor
deposition process (PVD) used in the production of thin �lm solar cells. In this process,
a sample is introduced into a very high temperature oven where the di�erent chemical
species are injected in gaseous form, so that atoms are gradually deposited on the
sample, forming a growing thin �lm. In this model, both the evolution of the �lm
surface during the process and the evolution of the local volume fractions within this
�lm are taken into account, resulting in a cross-di�usion system de�ned on a time-
dependent domain. Using a recent method based on entropy estimates, we show the
existence of weak solutions to this system and study their asymptotic behavior when
the external �uxes are assumed to be constant. Moreover, we prove the existence of a
solution to an optimization problem set on the external �uxes. We present inChapter
3 how was this model adapted and calibrated on experimental data.

Part II is devoted to some issues related to the calculation of the electronic structure
of crystalline materials. We recall inChapter 4 some classical results about the spectral
decomposition of periodic Schrödinger operators. InChapter 5 , we try to answer the
following question: is it possible to determine a periodic potential such that the �rst
energy bands of the associated periodic Schrödinger operator are as close as possible
to certain target functions? We theoretically show that the answer to this question is
positive when we consider the �rst energy band of the operator and one-dimensional
potentials belonging to a space of periodic measures that are lower bounded in a certain
sens. We also propose an adaptive method to accelerate the numerical optimization
procedure. Finally, Chapter 6 deals with a greedy algorithm for the compression
of Wannier functions into Gaussian-polynomial functions exploiting their symmetries.
This compression allows, among other things, to obtain closed expressions for certain
tight-binding coe�cients involved in the modeling of 2D materials.
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Solar Cells

A solar cell converts solar energy into an electric current, using semiconducting mate-
rials. The e�ciency of a solar cell therefore relies on the electronic properties of the
semiconducting material. A semiconductor is characterized by a band gap : the di�er-
ence between the energy of the conduction band and the energy of the valence band.
Two types of semiconducting materials can be distinguished: semiconductors of type
p, which contain acceptor-type defects leading to the creation of an excess of holes in
the valence band; and semiconductors of type n, which are doped with donor defects,
leading to to the creation of an excess of electrons in the conduction band.

Most photovoltaic (PV) cells consist in a p-type layer (which will be in contact with
the light source) on top of a n-type layer leading to a p-n junction. Thus, the excess holes
(positively charged) of the p-type layer and the excess electrons (negatively charged)
of the n-type layer are attracted to each other. The electronic movement results in
an electric �eld and forms a depletion zone between the two layers. This region plays
the role of a barrier and prevents the electrons and holes from recombining. When
the sunlight strikes the cell, the photons excite the electrons on the n-type top layer.
Therefore, the electrons leave their original state and become mobile and extra holes
are created. Because of the electric �eld, the mobile electrons stay in the n-layer but
the holes move to the p-layer. As a consequence, the n-layer contains an extra negative
charge and the p-layer an extra positive charge. Finally, the electrical current is obtained
by connecting the two sides with a circuit. A schematic representation of the working
principle of a solar cell is given in Figure 1. The reader may refer to [PU+ 16] for further
details on the physics of solar cells.



Figure 1 � Schematic representation of a solar cell, showing the n-type and p-type layers,
with a close-up view of the depletion zone around the junction between the n-type and p-type
layers. Source : Online article of the American Chemical Society: How a Solar Cell Works.
https://www.acs.org/content/acs/en/education/resources/

The most commercially available PV technologies are: the ones based on crystalline
or multi-crystalline silicon technologies (c-Si) and the ones using thin �lm technologies
(among which the cadmium-telluride (CdTe), amorphous silicon (a-Si) and copper in-
dium gallium diselenide (CIGS) modules). The CIGS-based cells are less e�cient than
the c-Si cells. However, this technology still presents several competitive advantages :
a lower production cost, a lower ecological footprint and a better adaptability to light-
weight and �exible substrates [Mol16]. This motivate the many recent e�orts for the
study and development of CIGS based solar cells [Kli15, Mol16, PWJ+ 14, JHW+ 15,
JWH+ 16].

The standard CIGS solar cell structure is shown in Figure 2. The cell is basically
composed of a p-type Cu(In,Ga)Se2 layer, which acts as the main light absorber, in
contact with a n-type CdS layer to form a p-n junction. At the frontside, a transparent
electrode generally based on a ZnO/ZnO:Al bilayer, collects the electrons. At the rear-
side, a molybdenum electrode collects the holes. The roles and properties of each layer
are discussed in [Kli15, Mol16]. Let us focus here in the CIGS absorber layer, which
is the object of interest in this thesis. The Cu(In,Ga)Se2 material is a semiconductor
material with a tetragonal chalcopyrite crystalline structure (see Figure 3).

Two main methods are used for the production of the CIGS layer: the selenization
of vacuum-deposited metallic precursors and co-evaporation using the Physical Vapor
deposition (PVD) [Kli15, Mat10]. In the co-evaporation approach, the four constituents
of the absorber layer are simultaneously evaporated in a high temperature vacuum
chamber. As the injected atoms deposit on the substrate, an heterogeneous solid grows
upon it forming thus the CIGS layer. Di�erent evaporation senarii, distinguished by
di�erent evaporation rates and substrate temperatures, have been developed. The three-
stages process (schematically illustrated in Figure 4) allows one to achieve very high
cell e�ciencies 20% [Kli15].
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Figure 2 � Typical composition of a standard CIGS based solar cell. Source: [Mol16]

Figure 3 � Unit cell of chalcopyrite Cu(In,Ga)Se2. Source: [Kli15]

Figure 4 � Evaporation and temperature pro�le for the 3-stage process. The deposition rates
� a;i for every componenta = Cu; In; Ga; Se and the temperature of the substrateTi are given
for the three regimesi = 1 ; 2; 3. Source: [Kli15]

Outline of the Thesis

This thesis was originally motivated by a collaboration between the CERMICS lab14 and
the IRDEP lab 15 aiming to present mathematical approaches for the optimization of the

14 CERMICS is the research center in applied mathematics at Ecole des Ponts ParisTech, France
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photovoltaic e�ciency of CIGS based solar cells. The last part of the thesis is motivated
by a collaboration with physicists from the physics department of Harvard University
working on the study of the electronic properties of heterogeneous 2D materials.

This manuscript is organized in two parts. The �rst part concerns cross-di�usion
systems and the second part treats some issues related to electronic structure calcula-
tions.

The �rst contribution of the present thesis concerns the optimization of the co-
evaporation production process of the CIGS layer. We propose a one-dimensional math-
ematical model for the Physical Vapor Deposition process in which two main phenomena
are taken into account: the evolution of the surface of the layer and the di�usion of the
various species in the bulk, due to the high temperature of the chamber. The proposed
model writes under the form of a system of cross-di�usion PDEs de�ned on a moving
domain. We present inChapter 1 an introduction to the well-known results about clas-
sical cross-di�usion systems on �xed domains.Chapter 2 gathers the results of [BE16]
and is dedicated to the analysis of our proposed model. We show a global-in-time ex-
istence of weak solution to the system and investigate their long-time behavior in the
case of constant external �uxes. We also formulate an optimization problem set on the
external �uxes, for which we prove the existence of a solution. From a numerical point
of view, we suggest a numerical scheme for the discretization of the model and present
a gradient-based numerical procedure to solve the optimization problem. We �nally
present in Chapter 3 some practical improvements of our model and its calibration on
experimental measures.

In the second part of the thesis, we consider periodic Schrödinger operators of the
form A = � � + V where V is a real-valued periodic potential. We brie�y present in
Chapter 4 the standard mathematical tools used in electronic structure calculations.
We introduce in particular the Bloch-Floquet transform that allows one to characterize
the spectrum of A as the reunion of the spectra of a family of selfadjoint compact
resolvent operatorsAq indexed by an elementq 2 Rd called quasi-momentum. The
function that maps q 2 Rd with the mth eigenvalue ofAq is the so-calledmth energy
band associed toA. Then, we focus on the following question: is it possible to determine
a periodic potential V such that the lowest energy bands associated to the periodic
Schrödinger operatorA = � �+ V are close to some target functions? InChapter 4 , we
gather the results of [BEG17] where we formulate the above question as an optimization
problem set on the space of one-dimensional periodic potentials that are measure-valued
and lower bounded in a certain sense. Moreover, we present an adaptive optimization
method which is faster than the standard gradient-based procedures.

Lastly, we consider Wannier functions, which are localized-in-space functions con-
structed from the Bloch eigenstates of the periodic Schrödinger operatorA = � � + V .
These functions are used in tight-binding models for heterogeneous 2D materials and
thus play an essential role in the study of the electronic properties of such structures.
In Chapter 6 , we report present some results of [BCC+ 17] where we propose a greedy
procedure for the compression of Wannier functions into symmetry-adapted Gaussian-
polynomials functions. Such a compression has two advantages: i) it allows one to

15 IRDEP (Institut de recherche et développement sur l'énergie photovoltaïque) is a research lab
of Chimie ParisTech, CNRS, EDF R&D, France, working on the new generations of photovoltaic
technologies.

20



characterize a Wannier function by a small number of parameters rather than by its
values on a (possibly large) gird, ii) it allows one to accelerate the parametrization of
tight-binding Hamiltonians since closed formulas can be obtained for the tight-binding
matrix elements.
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Part I

Cross-di�usion





CHAPTER1

CROSS-DIFFUSION SYSTEMS ON FIXED DOMAINS

Cross-di�usion models are systems of Partial Di�erential Equations (PDEs) describing
the time evolution of multicomponent systems. Such models arise naturally in biology,
physics and chemistry. In Section 1.1, we give the general form of cross-di�usion sys-
tems considered in this thesis along with some classical examples. Some mathematical
challenges arising from their analysis are commented in Section 1.2. Section 1.3 will
be devoted to the entropy structure admitted by some cross-di�usion systems which is
a key-ingredient in the proof of the existence of global-in-time solutions. Three main
methods used in the literature to analyze cross-di�usion systems, namelygradient �ow
theory, the boundedness-by-entropymethod and the duality method are discussed re-
spectively in Section 1.3.1, Section 1.3.2 and Section 1.3.3. Remarks on the uniqueness
of weak solutions to such systems are reported in Section 1.4. Section 1.5 is dedicated
to the long time behavior of the solutions. The contributions of the present thesis to
the study of cross-di�usion systems are summarized in Section 1.6.
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1.1 General Form of Cross-di�usion Systems

Let d 2 N� and let 
 � Rd be a bounded domain with smooth boundary@
 . We denote
by n(x) the exterior unit normal vector at x 2 @
 . Let T > 0 denote a �nal time. We
are interested in the dynamics of a multicomponent systems evolving in the domain

during the time [0; T]. We consider two di�erent cases, which we present separately, but
which lead to similar PDE systems, namely thenon-volume �lling case and thevolume
�lling case.

Non-volume Filling Case:

Let n 2 N� denote the number of components in the system and letu1; � � � ; un be real-
valued functions de�ned on [0; T] � 
 such that for all 1 � i � n, t 2 [0; T], x 2 
 ,
ui (t; x ) describes the local concentration of the speciesi at time t and point x. In the
sequel, we denote byu := ( u1; � � � ; un )T the vector-valued function de�ned on [0; T]� 
 .
We assume that the evolution ofu is ruled by a system of PDEs of the form

@t u � div ( A(u)r u) = f (u); for (t; x ) 2 [0; T] � 
 ; (1.1)

u(0; �) = u0 in 
 ; (1.2)

(A(u)r u) � n = 0 ; on [0; T] � @
 ; (1.3)

where A : Rn 7! Rn� n is a matrix-valued application, f : Rn ! Rn is a vector-valued
application and the initial condition u0 : 
 ! Rn is a su�ciently smooth vector-valued
function. A system of the form (1.1)-(1.2)-(1.3) is called hereafter across-di�usion
system. The application A (respectively f ) is called the di�usion matrix (respectively
the reaction term). The boundary condition (1.3) is a no-�ux boundary condition whose
justi�cation stems from the fact the system is assumed to be isolated.

For all t 2 [0; T], x 2 
 and 1 � i � n, ui (t; x ) represents the local concentration
of the i th species, it is naturally expected to be non-negative. Thus, the values ofu are
expected to lie in Dnon� vf where

Dnon� vf := f z = ( z1; � � � ; zn ); zi > 0; 1 � i � ng = ( R�
+ )n : (1.4)

Volume Filling Case:

In some applications, the quantities of interest may be the volume fractions of the
di�erent components of the system. We refer to this situation as avolume-�lling case.
We assume here that the system is composed onn + 1 di�erent species and denote
respectively by u0(t; x ); � � � ; un (t; x ) their local volume fractions at time t 2 [0; T] and
point x 2 
 . The evolution of u0; � � � ; un can be modeled by a set of PDEs of the
following form : for all 0 � i � n,

@t ui � div

0

@
nX

j =0

Gij (u0; � � � ; un )r uj

1

A = gi (u0; � � � ; un ); (1.5)
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where for all 0 � i � n, gi : Rn+1 ! R and for all 0 � j � n, Gij : Rn+1 ! R, along
with appropriate initial and no-�ux boundary conditions.

As u0; � � � ; un represent the volume fractions of the di�erent species, it is naturally
expected that they satisfy the following constraints

80 � i � n; 0 � ui (t; x ) � 1 and
nX

i =0

ui (t; x ) = 1 8(t; x ) 2 (0; T) � 
 ; (1.6)

In this case, the following hods

u0(t; x ) = 1 �
nX

i =1

ui (t; x ); for almost all (t; x ) 2 [0; T] � 
 :

Thus, the evolution of the system with unknown u := ( u1; � � � ; un )T reads under the
form (1.1)-(1.2)-(1.3) where for all u 2 Rn , the di�usion matrix A(u) = ( A ij (u))1� i;j � n

and the reaction term f (u) = ( f i (u))1� i � n are de�ned as follows : for all1 � i; j � n,

A ij (u) = Gi;j

 

1 �
nX

r =1

ur ; u1; � � � ; un

!

� Gi; 0

 

1 �
nX

r =1

ur ; u1; � � � ; un

!

;

f i (u) = gi

 

1 �
nX

r =1

ur ; u1; � � � ; un

!

:

It is thus expected that the values ofu lie in the set Dvf where

Dvf :=

(

(z1; � � � ; zn ) 2 (R�
+ )n ;

nX

i =1

zi < 1

)

� [0; 1]n : (1.7)

1.1.1 Examples of Cross-di�usion Systems

Let us give some examples of cross-di�usion systems stemming from several applications.
Unless it is speci�ed, all the systems presented in this section are written under the form
(1.1)-(1.2)-(1.3). The di�erence between the models lies mainly in the expression of the
di�usion matrix and the reaction term.

Example from population dynamics (non volume �lling case)

The most standard example of cross-di�usion systems was introduced by Shigesada,
Kawasaki and Teramoto [SKT79] to study the spatial segregation of two interacting
biological species. In this model of non volume �lling type,n = 2 and the evolution
of u = ( u1; u2)T is given by the system (1.1)-(1.2)-(1.3) where the di�usion matrix and
the reaction term are respectively given by

A :

8
<

:

Dnon� vf ! R2� 2

(u1; u2) 7!
�

d1 + 2k11u1 + k12u2 k12u1

k21u1 d2 + k21u1 + 2k22u2

�
(1.8)

and

f :

8
<

:

Dnon� vf ! R2

(u1; u2) 7!
�

� 1 � b11u1 � b12u2

� 2 � b21u1 � b22u2

�
; (1.9)
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where for every 1 � i; j � 2, di ; kij ; � j and bij are non-negative parameters. For a
given u 2 Dnon� vf , the di�usion matrix A(u) is in general neither positive de�nite
nor symmetric. Existence of non-negative global-in-time solutions to the SKT system
remained an open question for many years. Nevertheless, several works investigated
the existence of a solution under suitable assumptions on the di�usion matrix and the
reaction terms.

We cite for example the article [Kim84] where the existence of global-in-time non-
negative weak solutions was shown under the assumptionk11 = k22 = 0 and k12 =
k21 = k > 0 and where the initial condition was assumed to satisfyku0kH 1 � M for
some �xed M > 0. Another assumption k21 = 0 was made in [DT15] and allowed to
show existence of global-in-time non-negative weak solutions with initial data satisfying
u0

i � 0, for i = 1 ; 2 and u0
1 2 L p(
) for some p > 1 and u0

2 2 L 1 (
) \ H 1+ p=d(
) .
When the cross-di�usion coe�cients satisfy k12 < 8k11; k21 < 8k22; k12 < 8k21, then
the matrix A(u) is positive semi-de�nite for any u 2 D non� vf . This latter case was
studied in [Yag93] where the existence and uniqueness of non-negative global-in-time
weak solutions were proved for initial data satisfyingu0 2 H 1+ " (
) with " > 0. Using a
suitable change of variables (entropy variables), Chen and Jüngel showed in [CJ04, CJ06]
a global-in-time existence result for two-components SKT systems under the assumption
that kij > 0 for 1 � i; j � 2. The initial condition was assumed to lie in an Orlicz space
(see the appendix of [CJ04] for a rigorous a de�nition of the considered Orlicz space)
which corresponds to a bounded entropy initial condition.

Several generalizations of the SKT system have been introduced [ZJ15, Lep17] bring-
ing more di�culties in the existence analysis.

Example From Medical Biology (volume �lling case)

In the article [JB02], the authors derived a one-dimensional continuous mechanical
model for the growth of symmetric avascular tumors. This model describes the evolution
of volume fractions of the tumor cellsu1, the extracellular matrix u2 and the water
phasesu3 = 1 � u2 � u1. The model reads under the form (1.1)-(1.2)-(1.3) where the
di�usion matrix and the reaction term are given by

A :

8
<

:

Dvf ! R2� 2

(u1; u2) 7!
�

2u1(1 � u1) � �� 2u1u2
2 � 2�u 1u2(1 + �u 1)

� 2u1u2 + ��u 2
2(1 � u2) 2�u 2(1 � u2)(1 + �u 1)

�
(1.10)

and

f :

8
<

:

Dvf ! R2

(u1; u2) 7!
�

� 1u1(1 � u1 � u2) � � 2u1

� 3u1u2(1 � u1 � u2)

�
; (1.11)

where �; � > 0 are some positive parameters. The solutions to this system, called
the Jackson Byrne tumor growth model, are assumed to satisfy the volume �lling con-
straints (1.6). Yet, proving the existence of a global weak solution satisfying these
constraints is not an easy task since the di�usion matrix is in general not positive def-
inite and no maximum/minimum principle applies. The model has nevertheless been
studied in [JS12] where existence of global-in-time bounded weak solutions satisfying

28



the volume �lling constrains (1.6) were shown under the assumption that0 � � � 4=
p

�
and with an initial condition u0 2 L 1(
) satisfying the constraints (1.6).

Example from Physics (volume �lling case)

Developed independently by James Clerk Maxwell [Max66] for dilute gases and Josef
Stefan [Ste71] for �uids, the Stefan-Maxwell equations model the di�usive transport of
multicomponent systems such as a mixture of gases. This model is in particular able
to predict the experimental results of Duncan and Toor [DT62] on the uphill di�usion
phenomena. The Stefan-Maxwell equations foru0; � � � ; un are given by

@t ui + div J i = f (ui ); r ui = �
X

i 6= j

uj J i � ui J j

kij
; for 0 = 1; � � � ; n: (1.12)

where kij = kji > 0 are the cross-di�usion coe�cients between componentsi and j
and where

P n
i =0 ui = 1 . The system is usually supposed to be physically isolated,

thus the reaction term is f = 0 . Equations (1.12) can be rewritten under the general
from (1.1)-(1.2)-(1.3). For instance, the di�usion matrix in the case n = 2 is given by

A :

8
<

:

Dvf ! R2� 2

(u1; u2) 7!
1

a(u)

�
k22 + ( k11 � k22)u1 (k11 � k12)u1

(k11 � k22)u2 k12 + ( k11 � k12)u2

�
(1.13)

with a(u) = k12k22(1 � u1 � u2) + k11(k12u1 + k22u2). Also, in this system, the di�usion
matrix is in general neither symmetric nor positive de�nite. Thus, it is not obvious to
derive suitable a priori bounds for the solutions.

Giovangigli proved in [Gio12] the existence and uniqueness of global-in-time bounded
smooth solutions but only when the initial datum u0 is su�ciently close to the constant
equilibrium state u1 : when ku0 � u1 kH 1 (
) is su�ciently small. Some results on the
existence and uniqueness of local-in-time classical solutions (in theL p sense) are given
in [Bot11, HMPW17] for more general initial condition u0 2 H 2� 2=p; p > (d + 2) =2
satisfying the volume �lling constraints (1.6). A three components Stefan-Maxwell
system was considered in [BGS12] where it was assumed that the di�usion coe�cients
are equal, reducing the system to a heat equation for the �rst componentu1 and an
advection-di�usion equation for the second oneu2. In this (simple) situation, existence
and uniqueness of global-in-time classical solutions were proved. These solutions were
moreover shown to satisfy the volume �lling constraints (1.6) and the mass conservation
property ku(t; �)kL 1 (
) = ku0kL 1 (
) for t 2 [0; T]. Based on entropy methods, the �rst
global-in-time existence result of bounded weak solutions (without strong assumptions)
was proved in [JS13] for a multi-component Stefan-Maxwell system with general initial
condition (measurable functions) satisfying the volume �lling constraints (1.6).

Example from Chemistry (volume-�lling case)

Let us assume that we are interested in the dynamics of the local concentrations of
di�erent chemical species evolving in a cristalline lattice. A model for such a phenomena
can be derived from the formal hydrodynamic limit of a stochastic lattice hopping model
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(see the appendix of Chapter??) resulting in a cross-di�usion system of the form (1.1)-
(1.2)-(1.3) with zero reaction term. In the casen = 2 , the di�usion matrix is given
by

A :

8
<

:

Dvf ! R2� 2

(u1; u2) 7!
�

(k12 � k10)u2 + k10 � (k12 � k10)u1

� (k21 � k20)u2 (k21 � k20)u1 + k20

�
(1.14)

where kij > 0 for all 0 � i 6= j � 2. The global-in-time existence of bounded weak
solutions to this system is proved in [JZ14] forn = 2 and generalized in [BE16] for
systems with an arbitrary number n � 2 of components with initial condition u0 2
L 1(
) satisfying the volume �lling constraints (1.6).

1.2 Limits of Amann's Theory

In this section, we brie�y present and comment the main challenges raising from the
mathematical analysis of cross-di�usion systems of the form (1.1)-(1.2)-(1.3). Some
results that are reported in this section can also be found in [Lep17]. Let us �rst give
some de�nitions that are useful in our context.

Let n 2 N� and let A 2 Rn� n .

De�nition 1.1 (Normal ellipticity) . The matrix A is said to beelliptic if the determi-
nant of its symmetric part is positive:

�
�
�
�
1
2

(A + AT )

�
�
�
� > 0:

The matrix A is said to benormally elliptic if its eigenvalues have positive real part:

� (A) � f z 2 C; Re(z) > 0g

where � (A) denotes the spectrum ofA.

In the sequel, letD denote the domain where the solutions of the considered systems
are assumed to lie. In the non volume �lling caseD = Dnon� vf and in the volume �lling
caseD = Dvf .

De�nition 1.2 (Normal parabolicity) . A system of the form (1.1) is said to beparabolic
if its di�usion matrix A is elliptic:

8u 2 D;

�
�
�
�
1
2

(A(u) + AT (u))

�
�
�
� > 0

and said to benormally parabolic if its di�usion matrix A is normally elliptic:

8u 2 D; � (A(u)) � f z 2 C; r (z) > 0g:

The analysis of cross-di�usion systems is a challenging task from a mathematical
point of view [LPR12, Ali79, Kue96, Red89, CJ04, CJ06, DFR08, Jue15a, ZJ15, GR10,
Pie10, JS13, Lep17] for the following reasons:
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� The equations arestrongly nonlinearly coupled. As a consequence, standard tools
such as the maximum/minimum principle do not apply in general. Besides, there is
no regularity theory as in the scalar case. Nice counterexamples are given in [SJ95]:
there exist Hölder continuous solutions to certain cross-di�usion systems which are
not bounded, and there exist bounded weak solutions which develop singularities
in �nite time.

� The di�usion matrix is in general not elliptic and may be degenerate. Thus, even
the local-in-time existence of solutions is not guaranteed. Consider for instance,
the two-species SKT system (1.8) withd1 = d2 = 1 and k11 = k22 = 0 and
k12 = k21 = k and consideru1; u2 � 0. The determinant of the symmetric part of
A(u) given by

�
�
�
�
1
2

(A + AT )

�
�
�
� = (1 + ku1)(1 + ku2) �

k2

4
(u1 + u2)2

may be negative (e.g.u1 = 0 , u2 = 1 and k = 5 ) which means that A(u) is not
elliptic. One can easily check that the SKT di�usion matrix (1.8) satis�es

8u 2 D ; Tr( A(u)) > 0 and jA(u)j > 0

which ful�lls the condition of De�nition 1.2. The same veri�cation can be made
for the tumor growth and the Stefan-Maxwell models [Jue15b]. This normal
parabolicity property is exploited in Amann's works [Ama88, A+ 90] to prove the
existence and uniqueness of local-in-time classical solutions. Yet, the existence of
global-in-time solutions still represents a challenge.

� The solution u models concentrations, mass fractions, densities,... thusupper
and/or lower bounds must be shown to be satis�ed. But, as already mentioned,
the standard tools as maximum/minimum principle do not apply in general.

Several attempts have been proposed to overcome these di�culties and prove global-in-
time existence.

Amann developed a theory of parabolic systems in [Ama88, A+ 90, Ama89] where
he used the normal parabolicity property to prove existence of local-in-time classical
solutions for initial conditions in W 1;p. He also showed that the existence of global-in-
time solutions is reduced to deriving suitableW 1;p bounds for the local solutions. In
particular, the following alternative holds : either the W 1;p norm of the local-in-time
solutions explodes in �nite time, or the global-in-time solutions exist. In several works
on the SKT system, the global-in-time existence is obtained under assumptions on the
cross-di�usion coe�cients (kij )1� i;j � n . A typical example is to consider lower or upper
triangular di�usion matrices. This gives raise to so-calledtriangular systems. This kind
of approach is adpoted for instance in [CLY04, Deu87, HNP15, Kim84, LW15, LZ05,
VT08, Wan05].

The question of regularity of the solutions is also a di�cult problem. As remarked
in [SJ95, Dun00] and unlike the scalar case, one cannot expect in general that bounded
weak solutions to cross-di�usion systems are Hölder continuous everywhere. For some
particular systems with smooth di�usion matrices, partial regularity results were es-
tablished in [GS82]. The everywhere Hölder continuity was investigated in [JS98] for
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only low dimensional systemsd � 2 and in [Wie92] for an arbitrary space dimension
d 2 N� but with rather restrictive structural conditions. The everywhere regularity
of the weak solutions to possibly degenerate systems of the form (1.1)-(1.2)-(1.3) was
investigated in [LN06]. Su�cient conditions for the everywhere Hölder continuity of the
solutions are given for arbitrary space dimension under several structural assumptions
of the di�usion matrix. We refer the reader to [LN06] for the details of these assump-
tions. Roughly speaking, the strategy of the proof consists in introducing for each weak
solution u : (0; T) � 
 ! Rn a set

�( u) :=

(

(t; x ) 2 (0; T) � 
 : liminf
R! 0

�

QR (t;x )
ju(�; y ) � u(t; x )j2dyd� > 0

)

with

u(t; x ) =
1

jQR (t; x )j

�

QR (t;x )
u(�; y )dyd�:

where QR (t; x ) = ( t � R2; t) � BR (x) with BR (x) being the ball centered at x with
radius R > 0 and then proving that the d� dimensional Hausdor� measure of the set
�( u) is zero for every solution u. Roughly speaking, the set�( u) contains points
(t; x ) 2 (0; T) � 
 where the spread of the solutionu is positive for arbitrary small
neighborhood of(t; x ) meaning that the solution is not continuous at that point.

1.3 Entropy Structure

It appears that several cross-di�usion systems of the from (1.1)-(1.2)-(1.3) admit an
entropy structure that can be exploited to prove existence of global-in-time bounded
weak solutions. Let us �rst give here a suitable de�nition of the notion of entropy
in our context. Let D = Dvf if the considered system is of volume �lling type and
D = Dnon� vf if the considered system is of non volume �lling type.

De�nition 1.3 (Entropy) . We call a function h : D ! R an entropy density associated
to the system (1.1)-(1.2)-(1.3) if

1. h 2 C2(D; R),

2. h is convex onD,

3. the derivative Dh : D ! Rn and the HessianD 2h : D ! Rn� n are well de�ned
and invertible,

4. the matrix D 2h(u)A(u) is positive semide�nite for every u 2 D .

In this case, we de�ne theentropy functional E of the system as follows

E :
�

L 1 ((0; T) � 
; D) ! R
u 7!

�

 h(u)dx

(1.15)

and we introduce theentropy variablesw1; � � � ; wn as follows

(w1; � � � ; wn ) = w := Dh(u): (1.16)
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If there exists an entropy functional in the sense of De�nition 1.3, then the system under
consideration can be formally rewritten with a gradient �ow structure of the form

@t u � div ( B (w)r w) = f (u); t > 0; u(0; �) = u0 in 
 (1.17)

where the matrix B : Rn 7! Rn� n is called the mobility matrix of the system and is
de�ned for every w 2 Rn as B (w) = A(u(w))( D 2h) � 1(u(w)) with, by de�nition of the
entropy variables, u(w) = Dh � 1(w). The terminology "gradient �ow" will be justi�ed
in Section 1.3.1.

Systems admitting such a formal gradient �ow formulation are said to have an
entropy structure. We will see in the next sections how this property can be exploited
to prove the existence of global-in-time weak solutions and to investigate their long time
behavior. At this point, let us make the following remark: formally, if one assumes in
addition that

8u 2 D ; f (u) � Dh(u) � 0; (1.18)

then the entropy functional E is necessarily a Lyapunov functional for the system.
Indeed, a simple calculation using (1.18) and the positivity of the mobility matrix B
leads to the conclusion:

d
dt

E(u) = �
�


 r u � D 2h(u)A(u) � r udx +
�


 f (u) � Dh(u)dx

= �
�


 r w � B (w) � r wdx +
�


 f (u) � Dh(u)dx

� 0:

(1.19)

This entropy dissipation inequality is a key-point in the analysis of most of the cross-
di�usion systems.

The reader is certainly concerned at this point with the following question: how
can one a priori determine if a system of the from (1.1)-(1.2)-(1.3) admits en entropy
structure and how to identify an associated entropy densityh? This adds actually one
more item to our list of mathematical challenges. It is not obvious in the general case to
answer this question. Nevertheless, it is observed that many systems modeling tumor-
growth, gases mixtures, and ion transport with volume �lling constraints (1.6) have an
entropy structure induced by the entropy density

u 2 D vf 7! h(u) =
nX

i =1

ui logui � ui + � u log � u � � u ; with � u = 1 �
nX

i =1

ui : (1.20)

Note that this function is equvalent (up to the sign minus) to the statistical Boltzmann-
Shannon notion of entropy [Jay57]. In this case, the entropic variableswi can be written
and inverted explicitly for all 1 � i � n:

wi (u) = log
�

ui

� u

�
; ui (w) =

ewi

1 +
P n

j =1 ewj
: (1.21)

We shall now describe three di�erent methods that exploit the entropy structure
to prove the existence of global-in-time weak solutions. Namely, gradient �ow theory,
boundedness-by-entropy and duality approach.
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1.3.1 Elements of Gradient Flow Theory

Let us �rst mention that a short introduction to gradient �ows in the general setting of
metric spaces is given in the appendix for the reader's convenience. The results gathered
in the appendix are mainly extracted from [LAS08, San17].

In summary, one can see the notion of gradient �ow as the generalization, to the
framework of metric (functional) spaces, of an ordinary di�erential equation of the
form u0(t) + rE (u(t)) = 0 , where E : Rn ! R is a functional de�ned on an Euclidian
space, sayRn . Indeed, under suitable smoothness assumptions onrE (Lipschitz), the
associated Cauchy problem, with initial condition u(t = 0) = u0 2 Rn :

(
u0(t) = �rE (u(t)) for t > 0;

u(0) = u0:
(1.22)

admits a unique solution u : [0; T] ! Rn . Moreover, this solution can be constructed
from a discretization scheme such as theimplicit Euler scheme.

It is shown in [LAS08], that existence and uniqueness results can also be obtained
for Cauchy problems of type (1.22) where the Euclidian spaceRn endowed with the
Euclidian distance is replaced by an arbitrarycomplete metric spaceM endowed with
a distance dM . In this case, the classical notion of gradientrE which can not be
rigorously de�ned (unlessM is a vector space) is replaced by the notion ofdescending
slope. When a (the) curve u 2 [0; T] ! M solution to the gradient system (1.22) in the
metric space(M ; dM ) exists, we call it a (the) gradient �ow associated to the functional
E.

The authors in [LAS08] proposed three di�erent characterizations of gradient �ows
in metric spaces. Namely,gradient �ows in the EDE sense, gradient �ows in the EVI
senseand gradient �ows in the GMM sense (see De�nitions 1.16, 1.17 and 1.15 of the
appendix).

Without giving details, the main point of gradient �ow theory developed in [LAS08]
is that the existence and uniqueness are, in several cases, consequences of thegeodesic
� � convexity, for some� 2 R, of the functional E : M ! R with respect to the distance
dM .

Let us now consider a cross-di�usion system of the form (1.1)-(1.2)-(1.3) withf = 0
and assume that it admits an entropy structure given by an entropy functionalE de�ned
as in (1.15) and thus reads under the form (1.17). It was observed [LM13, ZM15]
that such a system is a formal gradient �ow. In other words, a solution u to the
problem (1.17) may be seen as a curve of steepest descent, starting from the initial
datum u0, on a manifold M endowed with a metricdM induced by the mobility matrix
B . More precisely, consider the manifoldM de�ned by

M = f v 2 H 1(
; Rn ); v(x) 2 D; for almost all x 2 
 g (1.23)

and for everyu; v 2 M , let us de�ne the set of smooth parametric curves that linku to
v as follows

C(u; v) :=
�


 2 C1 ([0; 1];M ) ; 
 : [0; 1] ! M ; 
 (0) = u; 
 (1) = v
	

: (1.24)
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Following the same steps as in [LM13], one can introduce the metric induced by the
mobility matrix B using the Benamou-Brenier formulation as follows: for allu 2 M ,
let G(u) : H 1(
; Rn ) ! H 1(
; Rn ) be the linear operator de�ned by

8v 2 H 1(
; Rn ); hG(u)v; vi = inf
� �



r 	 : B � 1(u)r 	 T dx; div 	 = v on 


�
:

(1.25)
The associatedoptimal transport metric dM is therefore given by

dM (u; v) :=
�

inf
� � 1

0
hG(
 (t)) 
 0(t); 
 0(t)i dt; 
 2 C(u; v)

�� 1=2

: (1.26)

The existence/uniqueness of a solution to the cross-di�usion system (1.1)-(1.2)-
(1.3) admitting such an entropy structure is then formally equivalent to the exis-
tence/uniqueness of a gradient �owu : [0; T] ! M associated to the Cauchy problem

(
u0(t) = � div ( B (u)r Dh(u)) for t > 0;

u(0) = u0:
(1.27)

de�ned on the metric space(M ; dM ). Thus, the existence/uniqueness of such a solu-
tion can be obtained, in several cases, from the geodesic� � convexity of the entropy
functional E : M ! R with respect to the metric dM .

In the case of scalar problem (whenn = 1 ), the geodesic� � convexity can be char-
acterized in terms of optimal transport problems of Monge-Kantorovitch type [LAS08,
OW05, DS08]. Such a tool is no longer at hand in the case of systems (whenn � 2). Nev-
ertheless, other approaches based on the di�erential characterization of the geodesic con-
vexity property were developed in [LM13, DS08]. Several su�cient conditions (mainly
based on the EVI property) are given forE to be geodesically� � convex for some� 2 R.
The analysis carried in [LM13] and later in [ZM15] allows one to handle several exam-
ples. We quote for instance the case of a volume �lling type cross di�usion system ofn
components proposed in [BDFPS10] that reads under the form (1.17) with a mobility
matrix given by

B (u) =

0

B
B
B
@

u1 � u2
1 � u1u2 � � � � u1un

� u1u2 u2 � u2
2 � � � � u2un

...
. . .

...
� u1un � u2un � � � un � u2

n

1

C
C
C
A

(1.28)

driven by the entropy (1.20). The following result is obtained for this system:

Theorem 1.4 (Theorem 4.8 of [LM13]). If 
 � Rd is bounded, convex and has smooth
boundary @
 . Then, the entropy functional E : M ! R de�ned in the metric space
M (1.23) and given for everyu 2 M by E(u) =

�

 h(u) whereh is de�ned in (1.20) is

geodesically0� convex with respect to the distancedM de�ned in (1.26).

Several other results of this type are given in [LM13] for scalar problems and weakly
coupled reaction-di�usion systems. Proposition 5.3 of [ZM15]1 gives more general con-
ditions on the mobility matrix B for the entropy E to be geodesically convex, allowing

1Proposition 5.3 of [ZM15] is a generalization to the case of systems (n � 2) of the MacCann's
condition that characterizes the � � convexity in scalar problems [McC97].
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one to treat other systems. However, it is noticed2 that these conditions are rather
restrictive. Unfortunately, most of the cross-di�usion systems with arbitrary di�usion
coe�cients do not satisfy these assumptions and the geodesic convexity property is not
clear in general. To overcome the lack of geodesic convexity, an alternative method
was proposed in [ZM15]. The idea is to use the GMM de�nition of gradient �ows. The
authors showed in particular that the existence of weak solutions (as limits of the GMM
scheme) can still be obtained even ifE is not geodesically convex.

In the sequel, we present two recent alternative approaches to show global-in-time
existence of bounded weak solutions:the duality approach and the boundedness-by-
entropy technique. Both methods make use of the entropy structure described below
and allow to handle more general cases than the ones covered by the classical results of
gradient �ow theory.

1.3.2 Boundedness-by-Entropy Method

The main idea of the boundedness-by-entropy method is to use the entropy variablesw
introduced in (1.21) instead of the classical variablesu. To the best of my knowledge, the
�rst introduction of entropy variables in the context of nonlinear coupled systems was
in [KS88]. Later, the authors of [DGJ97] used the entorpy variblaes to study a coupled
parabolic system describing a multicomponent mixture of charged gases exposed to an
electrical �eld (modeling the electronic transport in semiconductors). The mathematical
change of variablesu 7! Dh(u) is closely motivated by the physical notion of electro-
chemical potentials. Later, this entropic transformation was used in [CJ04, CJ06] to
analyze the SKT system. The authors in [BDFPS10] employ the entropy structure for
the analysis of a continuum model describing the transport of two types of particles
u1; u2 under the in�uence of electrical �elds V and W :

@t u1 = div ( k1(1 � u2)r u1 + k1u1r u2 + k1u1(1 � u1 � u2)r V )
@t u2 = div ( k2(1 � u1)r u2 + k2u2r u1 + k2u2(1 � u1 � u2)r W )

(1.29)

They proved in particular the existence and uniqueness of strong solutions when the ini-
tial data are su�ciently close (in the H 2 norm sense) to the constant steady state. More-
over, they proved existence of global-in-time weak bounded solutions for general initial
data (in L 2(
) ). The method was later analyzed, extended and namedboundedness-by-
entropy method by Jüngel in [Jue15a].

Let us also point out here that the alternative approach, mentioned in the previous
section, proposed in [ZM15] to overcome the lack of geodesic convexity can be seen
as a particular case of the boundedness-by-entropy method. Indeed, the proofs follow
similar arguments in both cases.

We �rst present in this section the main result of the boundedness-by-entropy ap-
proach and make some comments on the assumptions together with a brief sketch of the
proof. Then, we discuss some advantages of the approach through the second result of
the method which is more adapted to volume �lling cases. We will lastly underline some
limitations and pathological cases where the method is not helping enough. The reader
will �nd further details in the original paper [Jue15a] and in Chapter 4 of [Jue15b].

2as summarized by the following sentence taken from [ZM15] : "� � convexity in transportation
metrics is a very rare property"
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Theorem 1.5 (Theorem 2 of [Jue15a]). Let D = ( a; b) � Rn be the domain de�ned
in (1.7) if the considered system is of volume �lling type and in(1.4) if the considered
system is of non volume �lling case. LetA : u 2 D 7! A(u) := ( A ij (u))1� i;j � n 2 Rn� n

be a matrix-valued functional de�ned onD satisfying A 2 C0(D; Rn� n ) and let f : u 2
D 7! (f i (u))1� 1� n 2 Rn satisfying f 2 C0(D; Rn ). Assume in addition that

(HE1) there exists a bounded from below convex functionh 2 C2(D; R) such that its
derivative Dh : D ! Rn is invertible on Rn ;

(HE2) for all 1 � i � n, there exist � �
i > 0 and 1 � mi > 0 such that for all z =

(z1; � � � ; zn )T 2 Rn and u = ( u1; � � � ; un )T 2 D ,

zT D 2h(u)A(u)z �
nX

i =1

� i (ui )z2
i ;

where either � i (ui ) = � �
i (ui � a)m i � 1 or � i (ui ) = � �

i (b� ui )m i � 1.

(HE3) there existsa� > 0 such that for all u 2 D and 1 � i; j � n for which mj > 1,

jA ij (u)j � a� j� j (uj )j:

(HE4) there exists a constantCf > 0 such that

f (u) � Dh(u) � Cf (1 + h(u)) ; 8u 2 D :

Let u0 2 L 1(
; D) so that w0 := Dh(u0) 2 L 1 (
; Rn ). Then, there exists a weak
solution u with initial condition u0 to (1.1)-(1.2)-(1.3) such that for almost all (t; x ) 2
R�

+ � 
 , u(t; x ) 2 D with

u 2 L 2
loc((0; T); H 1(
 ; Rn )) and @t u 2 L 2

loc((0; T); (H 1(
; Rn ))0):

Assumptions (HE1) and (HE2) mean that the system under consideration admits
an entropy structure (in the sense of De�nition 1.3). This implies in particular that
the matrix D 2h(u)A(u) is positive semi-de�nite for any u 2 D . Hypothesis (HE3) is
needed to derive uniform bounds for the time derivative@t u. Jüngel observed in [Jue15b]
that (HE3) is only technical and not restrictive. The latter assumption (HE4) used
to control the reaction term and guarantee the entropy inequality (1.19) is a common
assumption in the analysis of reaction-di�usion phenomena.

The strategy of the proof follows the following steps:

S1. A regularization term of the form "(( � �) m + I d) is added to equation (1.17)
where " > 0; m > d=2. This allows one in particular to work in the Sobolev space
H m (
; Rn ) which is embedded inL 1 (
; Rn ).

S2. The weak formulation of the regularized problem is discretized in time using an
implicit Euler scheme with a time step � = T=N for someN 2 N� and T > 0.

S3. The existence of a discrete regularized weak entropy solutionwk
";� to the following

iterative implicit scheme is proved : w0
";� = Dh(u0) and for all 1 � k � N and

any test function  2 H m (
; Rn ),
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2

6
6
6
6
6
4

�



u(wk
";� ) � u(wk� 1

";� )

�
 +

�

 r  B (wk

";� )r wk
";�

+ "
�




 
P

j � j= m
D � wk

";� � D �  + wk
";�  

!

3

7
7
7
7
7
5

=
�



f (u(wk

";� )) �  (1.30)

This is done in two steps: First, equation (1.30) is linearized, i.e. the termB (wk
";� )

is replaced byB (g) for someg 2 H m (
; Rn ). The Lax-Millgram lemma is then
su�cient to obtain the existence of a unique solution wk

";� (g) to the linearized
weak problem. Second, an operatorS : H m (
; Rn ) ! H m (
; Rn ) mapping any
function g to the solution wk

";� (g) is introduced. The operatorS is shown to satisfy
the assumptions of the Leray-Shauder �xed point theorem, which allows one to
conclude the existence of the weak solutionwk

";� to the original problem (1.30).

S4. Let w";� denote the piecewise constant-in-time interpolation of the sequence
(wk

";� )1� k� N . Suitable uniform bounds for the weak solutionsu(w";� ) are derived
using the assumptions(HE2) ,(HE3) and (HE4) . Typically, the two following
quantities are controlled uniformly in � and " :

kr u(w";� )kL 2 ((0 ;T );L 2 (
; Rn )) and k� � 1 (u(w";� ) � u(w";� )) kL 2 ((0 ;T );(H m (
; Rn )) 0)

S5. The �nal step consists in passing to the limit �; " ! 0. The main tool to perform
this limit is a version of the Aubin-Lions lemma proposed in [DJ12].

Remark 1.6. Burger and co-authors adopted another strategy in [BDFPS10]. The
key ingredients are basically the same : regularization, discretization, uniform bounds
using the entropy dissipation property and passing to the limit. The main di�erence lies
in the discretization step. Indeed, Burger and coauthors left the system continuous in
time and considered space Galerkin discretization instead. This reduces the problem to
proving existence of a solution to a system of ordinary di�erential equations.

The boundedness-by-entropy method has been successfully used in several works.
In his original paper [Jue15a], Jüngel discussed the applicability of the technique to
several examples. We mention here for instance the tumor growth model (1.10) with
� = � = 1 which possesses an entropy structure withh de�ned in (1.20). Moreover, in
this case, assumptions (HE1)-(HE2)-(HE3) are automatically satis�ed. Indeed,

zT D 2h(u)A(u)z = z1
1 + (1 + u1)z2

2 + u1z1z2

�
1
2

z2
1 +

�
1 + u1 �

u2
2

2

�
z2

2

� � 1(u1)z2
1 + � 2(u2)z2

2

with � 1(u1) = 1 =2 and � 2(u2) = (1 � u2)=2. The existence is a direct corollary of
Theorem 1.5 as soon as the assumption (HE4) on the reaction term is satis�ed. The
same remarks may be made for the Stefan-Maxwell system. For instance, it is veri�ed for
the casen = 2 that assumption (HE2) is satis�ed with m1 = m2 = 0 . The generalization
to the casen � 3 is done in [JS13]. It seems that the boundedness-by-entropy method is
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very favorable to the volume �lling case. This remark has been explored deeply in [ZJ15]
where generalizations of Theorem 1.5 were proposed to cover more general systems with
di�usion matrices of the form

A(u) :=

8
<

:

81 � i � n; A ii (u) = ai (u)bi (u0) + ui ai (u)b0
i (u0) + ui bi (u0)@i ai (u)

81 � i 6= j � n; A ij (u) = ui ai (u)b0
i (u0) + ui bi (u0)@j ai (u)

(1.31)
whereu = ( u1; � � � ; un )T and u0 = 1 �

P n
i =1 ui . They showed in particular that if there

exists functions � : [0; 1] ! R, 
 : D ! R and a real number � > 0 such that for all
1 � i � n,

� (s) := bi (s) > 0; for s 2 [0; 1]
� 0(s) � �� (s); for s 2 [0; 1]

� (0) = 0 ;
� 2 C3([0; 1];R)

(1.32)

and
ai (u) = exp( @u i 
 (u)) ; for u 2 D ;


 convex onD;

 2 C3(D; R);

(1.33)

then the system (with zero reaction termf = 0 ) admits a global-in-time weak solution
u : (0; T) � 
 ! D satisfying in addition

u 2 L 1 ((0; T); L 1 (
 ; Rn )) and @t u 2 L 2((0; T); (H 1(
; Rn ))0):

The proof of this result follows the same strategy as above with the modi�ed entropy
density

h(u) =
nX

i =1

ui (log ui � 1) +
� u0

a
log(� (s))ds + 
 (u) + ( n � 1): (1.34)

where a 2 (0; 1] given by

a =
�

1 if � (1) � 1
� � 1(1) if � (1) > 1

Note that the SKT system (1.8) is a particular case of (1.31) whereai (u) = kii +
ki 1u1 + ki 2u2 and bi (u3) = 1 for 1 � i � 2. Additional progress was made in [CDA16]
for multicomponent systems of non volume �lling type having di�usion matrices of the
form

A ij (u) = � ij ai (u) + ui @i aj (u); ai (u) = ki 0 +
nX

r =1

kir um
r (1.35)

where ki 0; kij � 0 and m > 0. The main idea of [CDA16] is to introduce the entropy

E(u) =
�




nX

i =1

� i hm (ui )

where � i > 0 are some well chosen numbers and wherehm has the form

hm (z) =

8
<

:

z logz � z + 1 if m = 1
zm � mz

m � 1
+ 1 if s 6= 1

(1.36)
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The system admits an entropy structure (in the sense of De�nition 1.3) with the func-
tional E(u) as soon as the numbers� i satisfy the detailed balanceproperty:

� i kij = � j kji ; 81 � i; j � n: (1.37)

Moreover, the mobility matrix is symmetric in this case. The authors observed in partic-
ular that there is a relation between condition (1.37) and the symmetry of the mobility
matrix. This, together with a positiveness assumption on the diagonal coe�cientskii

allowed to prove two global-in-time existence results: the �rst result concerning lin-
ear di�usion rates m = 1 and the second one treats nonlinear di�usion rates when
m > max(0; 1 � d=2).

Despite the success of the method, the entropy may sometimes fail to provide the
right gradient estimates. Let us try to clarify this point through an example following
the arguments of [Lep17]. Let us consider a two species system with a di�usion matrix

u 2 D non� vf 7! A(u) =
�

k1 + a2(u2) u1a0
2(u2)

u2a0
1(u1) k2 + a1(u1)

�
; (1.38)

where the coe�cients ki and the di�usion rates ai : R+ ! R satisfy the condition

ki > 0; a0
i > 0

8(u1; u2) 2 D non� vf ; a1(u1)a2(u2) � u1u2a0
1(u1)a0

2(u2) � 0
(1.39)

This condition ensures in particular that the di�usion matrix A is normally elliptic
and allows to show existence of local-in-time solutions. Let us introduce the functions
� 1; � 2 : R+ ! R as follows

z 2 R+ 7! � i (z) =
� z

0

� x

0

a0
i (y)
y

dydx

with

� 0
i (z) =

� z

0

a0
i (y)
y

dy + C; � 00
i (z) =

a0
i (z)
z

+ C

Thus, a possible choice for the entropy densityh associated to the di�usion matrix (1.38)
is given by

h(u) = � 1(u1) + � 2(u2):

Introducing the entropy variables

wi = Du i h(u) = � 0
i (ui ) =

� u i

0

a0
i (y)
y

dy =
� u i

0
� 00

i (y)dy

allows one to write the system under the gradient �ow structure

@t u = div ( B (u(w)) r w)

where the mobility matrix is explicitly given by

B (u) =

0

B
B
@

� 1u1 + a2(u2)u1

a0
1(u1)

u1u2

u1u2
� 2u2 + a1(u1)u2

a0
1(u1)

1

C
C
A
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and where the gradient of the entropy variables are

r wi = r

 � u i (x)

1
� 00

i (y)dy

!

= � 00
i (ui )r ui :

The entropy dissipation term
�


 (r w)T B (w)r w involves gradient terms of the type
�




a0
i (ui )
ui

jr ui j2: (1.40)

As mentioned previously in the strategy of the proof, the entropy dissipation property
is an essential ingredient to derive uniform estimates for the discrete solutions allowing
one to pass to the limit. It becomes clear that the e�ciency of the method is subject to
the control of the terms (1.40) which depend on the expression of the di�usion ratesai .
This remark has been explained by Lepoutre in [Lep17]. In particular, he distinguished
between three main forms of entropy densities and reported the expression of the entropy
variables and the typical gradient terms (1.40) that need to be controlled in theL 2 norm.
For the sake of completeness, we report in Table 1.1 the examples given in [Lep17].

case 1 case 2 case 3
ai (ui ) ui um

i with m > 0 1 � exp(� ui )

� i (ui ) ui (log ui � 1) + 1
um� 1

i � mu i + m � 1
m � 1

� � a0
i (y)
y

dydui

wi (ui ) logui
um� 1

i � 1
m � 1

� a0
i (y)
y

dy

Gradient term
1
ui

jr ui j2
1

um� 2
i

jr ui j2
exp(� ui )

ui
jr ui j2

Table 1.1 � Three main cases of entropy structures reported from the literature of population
dynamics models. Case 1 corresponds to the classical SKT system (1.8) where the di�usion
rates are linear [SKT79, Kim84, Jue15a, ZJ15, JZ14, DT15, LM17]. Case 2 corresponds to the
generalized SKT system (1.38) studied in [DLMT15, LM17].

This observation shows the limits of the entropy structure to derive the suitable
gradient estimates adding one more di�culty to the list of mathematical challenges.
This di�culty is not present in several articles using the boundedness-by-entropy tech-
nique because of the logarithmic form of the entropy density (1.20). In the more general
setting such as cases 2 and 3 of Table 1.1, one needs to invoke additional tools. That
brings us to the second method based onduality estimates.

1.3.3 Duality method

The main idea of the duality method is to adapt the a priori duality estimates proved
in [PS00] in order to obtain L 2 uniform bounds in addition to the entropy bounds
stemming from the entropy dissipation property. This method was mainly developed
by Desvillettes, Lepoutre, Moussa and collaborators in order to analyze generalized
SKT systems. It is therefore more adapted to the non volume �lling case. Let then
D = Dnon� vf in this section whereDnon� vf is de�ned in (1.4).

Let us assume that system (1.1) can be written under thelaplacian formulation

@t u � �( Q(u)) = R(u); t > 0; u(0; �) = u0 in 
 (1.41)
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with the boundary condition

(r Q(u)) � n = 0 in @
 (1.42)

where the di�usion term Q and the reaction term R are given respectively by

Q :
�

D ! Rn
+

u 7! Q(u) = ( qi (u)ui )1� i � n
(1.43)

R :
�

D ! Rn
+

u 7! R(u) = ( r i (u)ui )1� i � n
(1.44)

with some measurable functionsqi ; r i for 1 � i � n whose regularity will be made more
precise later in the assumptions of the existence result.

Note that all the systems of the form (1.1) cannot in general be written under the
laplacian formulation (1.41). However, this is the case for the SKT system which is
treated in [ZJ15, CDA16] with the divergence-gradient formulation (1.1) and in [LM17,
Lep17] with the laplacian formulation (1.41).

The method presented in this section is mainly based on the duality estimates shown
by Pierre and Schmitt in [PS00] for reaction di�usion systems. We give here a version
of their result that is suitable to our context.

Lemma 1.7 (Duality estimate, [PS00, LM17]). Let � � 0 and let ' 0 : 
 ! R+ be
a measurable nonnegative function and denote by' 0 its average on
 . Consider an
integrable function a : (0; T) � 
 ! R satisfying a(t; x ) � � > 0 for every (t; x ) 2
[0; T] � 
 . Let ' be a smooth solution to the inequation

@t ' � � [ a' ] � �' on (0; T) � 

' (0; �) = ' 0 on 


@x (a' ) � n = 0 on [0; T] � @
 :
(1.45)

Then, the following estimate holds
� T

0

�



a' 2 � e2�T

�
k' 0 � ' 0k(H 1 (
; R)) 0 + ' 0

� T

0

�



a
�

(1.46)

where (H 1(
; R))0 denotes the dual space ofH 1(
; R).

The original proof of Pierre and Schmitt is based on a dual formulation of the
problem. Nevertheless, Lepoutre suggests another proof in [Lep17] based on direct
computations: multiply equation (1.45) by a' and integrate �rst in space and then
integrate in time. This direct calculation can be discretized, which is useful in the proof
of the global-in-time existence result that will be stated later.

Roughly speaking, Lemma 1.7 tells us that the solution' can be controlled if we have
suitable controls on the terms involving the functiona. This property is employed in the
cross-di�usion system (1.41) as follows. For the sake of simplicity, let us (temporarily)
consider that r i = 0 for all 1 � i � n. Then, summing up all the equations of the
system yields to

@t ' � �[ a' ] = 0 ; with ' :=
nX

i =1

ui and a :=
P n

i =1 qi (u)ui

'
:
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Thus, in virtue of Lemma 1.7 and since' � 0 by construction, the following estimate
holds � T

0

�



a' 2 � C

�
1 +

� T

0

�



a
�

where the constant C is given by C := e2�T max
�

k' 0 � ' 0k(H 1 (
 ;R)) 0; ' 0
�

. The im-
portant point is that C does not depend on the solution' but only on the parameters
T; � and the initial condition ' 0. If we assume in addition that the di�usion terms are
continuous, i.eqi 2 C0(D) for any 1 � i � n, then the following control in obtained (see
the appendix of [LM17]) for the solution u = ( ui )1� i � n to (1.41):

� T

0

�




 
nX

i =1

ui

!  
nX

i =1

qi (u)ui

!

� C (1.47)

where the constantC depends on
 , T, u0, � and the di�usion rates qi . This (formal)
estimate is a key-point in the proof of the global-in-time existence of weak solutions to
systems of the form (1.41).

Let us state here a version of the main existence result of the duality method pro-
posed in [LM17]. We comment on the assumptions and give the main arguments of the
proof right after.

Theorem 1.8 (Existence by duality approach, [LM17]). Consider a cross-di�usion
system of the form (1.41)-(1.42) and letD = Dnon� vf be the non volume �lling domain
de�ned in (1.4). Assume that the di�usion rates qi and the reaction termsr i satisfy the
following assumptions:

(HD1) For every 1 � i � n,

qi 2 C0(D; R+ ) \ C 1(D; R+ ); r i 2 C0(D; R):

(HD2) There exist positive constants�; � > 0 such that for every0 � i � n,

pi � �; and r i � �:

(HD3) Q is a self-homeomorphism3 on D.

(HD4) There exists an entropy densityh (in the sense of De�nition 1.3). In addition,

(HD4)' there exists continuous functions� i : R�
+ ! R�

+ such that for everyz 2 Rn

and everyu 2 D ,

zt D 2h(u)r Q(u)z � zt Diag(� i (ui ))z:

(HD4)� for some CR > 0 and any Z 2 D , Dh(z) � R(z) � CR (1 + h(z)) :

(HD5) The reaction term R satis�es4

R(z) = o

  
nX

i =1

qi (z)zi

!  
nX

i =1

zi

!

+ h(z)

!

as kzk ! 1

3A homeomorphism Q : E ! F between two topological spacesE and F is a continuous bijection
with a continuous inverse. When E = F , Q is called self-homeomorphism

4All the norms being equivalent in Rn , it su�ces to choose an arbitrary norm k � k.
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Then, for any integrable initial condition u0 : 
 ! D , such that h(u0) 2 L 1(
) ,
there exists a weak solutionu 2 L 1([0; T] � 
; D) to the system (1.41)-(1.42) such
that Q(u); R(u) 2 L 1([0; T] � 
; D). Moreover, for every t 2 [0; T],

�



h(u(t; �))+

� t

0

�



(r u(t; �))T (D 2h(u(t; �)) r Q(u(t; �)))( r u(t; �)) � (1+e2CR T )

�



h(u0)

Let us make some brief comments on the assumptions of the theorem before we give
the main ideas of the proof. First, the continuity assumption (HD1) is essential in the
proof and the result may fail if this assumption is removed. The bounds in(HD2) allow
one to invoke Lemma 1.7 and it was remarked by the authors that they probably can be
weakened. Hypothesis(HD3) , which seems restrictive at a �rst sight, was investigated
in Section 4 of [LM17] and shown to be a consequence of the entropy structure in several
cases. The structural assumptions(HD4) ,(HD4)' and (HD4)� are of the same family
as (HE2) ,(HE3) and (HE4) appearing in Theorem 1.5. Lastly, hypothesis(HD5) is
a technical assumption that can probably be weakened as well.

The proof of Theorem 1.8 is structured in three main steps : an implicit time
discretization is �rst introduced, for which existence of (discrete) solutions is shown.
Then, the entropy dissipation property and the duality a priori estimate are exploited
to derive suitable uniform bounds. Lastly, the weak solutions to the continuous system
are obtained as the limit of the discrete ones when the time step goes to zero. More
precisely, The following implicit scheme is introduced. LetN 2 N� and let � = T=N
and consider the iterative problem, for1 � k � N

uk
� � uk� 1

�

�
� �[ Q(uk

� )] = R(uk ) on 
 ; (1.48)

r Q(uk
� ) � n = 0 on @
 ; (1.49)

with the initialization u0
� , which is a suitably chosen approximation of the continuous

initial condition u0. The semi-discrete system (1.48)-(1.49) was studied in [DLMT15].
It is proven in Theorem 2.2 of [DLMT15] that, under the assumptions(HD1) -HD2) -
(HD3) , there exists a nonnegative sequence(uk

� )1� k� N � 1 belonging the spaceL 1 (
)
solving (1.48)-(1.49). Moreover, the a priori duality estimate (1.47) is preserved in the
discrete level : there exists a constantC > 0 depdending on
 ; u0; Q; �; N such that

N � 1X

k=0

�
�




 
nX

i =1

uk
�;i

!
�

qi (uk )uk
�;i

�
� C; 81 � i � n: (1.50)

Using the convex character of the entropy densityh and the assumption(HD4)� allows
to obtain a discrete version of the entropy dissipation :

�



(h(uk

� ) � h(uk� 1
� )) + �

�



(r uk

� )T D 2h(uk
� )r Q(uk

� )( r uk
� ) � �C

�
1 +

�



h(uk

� )
�

which, together with the assumption(HD4)' , provide suitable L 2 uniform bounds. The
passing to the limit is rather technical and uses a non linear variant of the Aubin-Lions
lemma proposed in Proposition 3 of [Mou16].
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1.4 Uniqueness of Solutions

The methods presented in the previous sections do not allow one to obtain uniqueness
of solutions. Other approaches must be employed. Only few uniqueness results can be
found in the literature. To the best of my knowledge, a general uniqueness result, -or
at least a robust method of investigating uniqueness- still remains an open question.
We report in this section some particular cases where uniqueness of the global-in-time
weak solutions can be shown.

1.4.1 Fully Decoupled Systems

The easiest scenario is obviously the fully decoupled case. More precisely, we consider
here systems of the form (1.1)-(1.2)-(1.3) having diagonal di�usion matricesA(u) =
diag[ai (ui )]1� i � n and decoupled reaction termsf (u) = ( f i (ui ))1� i � n where ai : R ! R
and f i : R ! R are smooth (enough) functions. In this case, the system is reduced to
a set of decoupled reaction di�usion scalar equations

@t ui = div( ai (ui )r ui ) + f i (ui ); 1 � i � n: (1.51)

The analysis of such scalar equations has a much longer history. The reader may refer
for example to [Eva98, BCL99, EG02]. As already mentioned in Section 1.3, fully
decoupled cross-di�usion systems having an entropy structure may also be treated with
the gradient �ow theory tools [ZM15].

1.4.2 H � 1 Method

Consider an isolated (f = 0 ) cross-di�usion system of the form (1.1)-(1.2)-(1.3) to which
the existence of a global-in-time solutionu is proved. Uniqueness of the solution can be
shown if we assume that there exists a function	 : Rn ! Rn satisfying the monotony
property

8w; v 2 D ; (	( w) � 	( v)) � (w � v) � 0 (1.52)

and such that for every solutionu to (1.1)-(1.2)-(1.3), A(u)r u = 	( u). Indeed, consider
two weak solutionsu and v with the same initial data u0 and let � 2 L 2(0; T; H 1(
; Rn ))
be the weak solution to the Neumann Poisson problem

� � � = u � v on 
 ;
r � � n = 0 on @
 ;

(1.53)

which is unique (up to an additive constant). Then, we formally have,

d
dt

�



jr � j2dx = h@t (� � � ); � i

= h@t (u � v); � i

= hdiv ( r 	( u) � r 	( v)) ; � i

= �hr 	( u) � r 	( v); r � i

= �h 	( u) � 	( v); � � � i

= �h 	( u) � 	( v); u � vi

� 0

45



This allows to conclude that � is constant and thus necessarilyu = v. This structural
assumption is rather strong and in general not satis�ed. If the cross-di�usion system
admits en entropy structure and reads under the form (1.17), then the following slightly
weaker assumption allows to obtain the uniqueness of the weak solutions using the
same arguments : assume that there exists a function� : Rn ! Rn such that the
composition 	 � Dh satis�es the monotony property (1.52) and such that for every
entropy solution w = Dh(u) to (1.1)-(1.2)-(1.3), B (w)r w = r �( w). Unfortunately,
even this assumption is rather restrictive in practice.

1.4.3 Gajewski Method

In the volume �lling case where the di�usion matrix has the form (1.31) with assump-
tions (1.32)-(1.33) andf = 0 , uniqueness can also be shown when the di�usion ratesai

are supposed to be constant and equal to one, i.e. for all0 � 0 � n, ai = 1 . In this
case, every componentui for 0 � i � n solves the equation

@t ui = div( � (u0)r ui � ui r � (u0)) ;

where � is the function coming from assumption (1.32). Summing up all the equations
for i = 1 ; � � � ; n yields to a simple di�usion equation for the last componentu0 which,
we recall that from the volume �lling constraint, is given by u0 = 1 �

P n
i =1 un :

@t u0 = � @t

 
nX

i =1

ui

!

= �
nX

i =1

div ( � (u0)r ui � ui r � (u0))

= � div ( � � (u0)r u0 � (1 � u0)r � (u0))

= div ( � (u0)r u0 + (1 � u0)r � (u0))

= div ( r 	( u0))

where the non linear function	 : [0 ; 1] ! R is by construction de�ned for every z 2 [0; 1]
by 	( z) =

� z
0 � (x) + (1 � x)r � (x)dx. Moreover, It follows from assumption (1.32) that

	 is non decreasing on[0; 1]. Thus, the uniqueness ofu0 can immediately be obtained
using the arguments of theH � 1 method presented previously.

The uniqueness of the remaining solutionsu1; � � � ; un is shown by theE-monotonicity
method5 proposed �rstly by Gajewski in [Gaj94b, Gaj94a] in the context of drift dif-
fusion models for semiconductors and then developed in [ZJ15] for volume �lling cross-
di�usion systems. Brie�y speaking, let � > 0 be a positive parameter and introduce a
semi-metric6 d� on the spaceL 1 ([0; T] � 
; Dvf ) (denoted simply by L 1 to shorten the

5using the terminology of [Jue15b]
6A semi-metric is a function that satis�es the positiveness, the positive de�niteness and the sym-

metry properties but not necessarily the triangular inequality.

46



notation) as follows

d� :

8
<

:

L 1 � L 1 ! R+

u; v 7! d� (u; v) =
nP

i =1

�



�
h� (ui ) + h� (vi ) � 2h�

�
ui + vi

2

��
dx

(1.54)
where h� is a regularized entropy de�ned also onX as follows

h� :
�

L 1 ! R
u 7! h� (u) = ( u + � ) log(u + � ) � (u + � ) + 1 :

(1.55)

The regularization parameter� > 0 is necessary for the termlog ((ui + vi )=2) to be well
de�ned when the solutions ui and vi vanish. Note �rst that thanks to the convexity of
the entropy h� , it follows that

d� (u; v) � 0; 8u; v 2 X:

Furthermore, using Taylor expansions and the fact that the function[0; 1] 3 z 7! h00
� (z)

is bounded from below by1=2 allows one to obtain the following estimate for every
1 � i � n,

h� (ui ) + h� (vi ) � 2h�

�
ui + vi

2

�
�

1
8

(ui � vi )2: (1.56)

Moreover, some elementary algebraic manipulations (we do not report all the details
here but the reader may refer to [ZJ15]) yields:

d� (u; v) = � 4
� T

0

nX

i =1

�




�
jr

p
ui + � j2 + jr

p
vi + � j2 � jr

p
ui + vi + 2 � j2

�
� (un+1 )dxdt

+ 2
� T

0

nX

i =1

�




�
ui

ui + �
�

ui + vi

ui + vi + 2 �

� p
� (u0)r

p
� (u0)r ui dxdt

+ 2
� T

0

nX

i =1

�




�
ui

vi + �
�

ui + vi

ui + vi + 2 �

� p
� (u0)r

p
� (u0)r vi dxdt:

The �rst integral of the right hand side can be shown to be nonnegative thanks to the
subadditivity property of the Fischer information F (u) :=

�

 jr

p
uj2 (see Lemma 9 of

[ZJ15]). Furthermore, the two remaining integrals of the right hand side tend to zero as
� goes to0 via the dominated convergence theorem since all the terms of the integrands
are bounded. Hence, it holds that for every1 � i � n,

h� (ui ) + h� (vi ) � 2h�

�
ui + vi

2

�
! 0 a.e. in (0; T) � 
 : (1.57)

Finally, estimate (1.56) together with the limit (1.57) allow to infer (u1; � � � ; un ) =
(v1; � � � ; vn ) which concludes the proof of uniqueness. Details of this proof can be found
in [ZJ15]. Unfortunately, the assumption ai = 1 is rather strong and this strategy does
not seem to apply for weaker assumptions on the di�usion rates.

Let us �nally mention that other non-general uniqueness results can be obtained in
some particular cases. We mention for example [Bot11, HMPW17] where the uniqueness
of local-in-time solutions to the Stefan-Maxwell system were proved. In [Gio12] and
[BDFPS10] the uniqueness of the global-in-time weak solutions is obtained for initial
condition that is su�ciently close to the constant steady states.
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1.5 Long-time Behavior

The long-time behavior of the solutions is also an important feature in the study of
cross-di�usion systems of the form (1.1)-(1.2)-(1.3). Let us assume in this section that
f = 0 . The steady states of such systems are usually given by the constant pro�les

u1
i =

1
j
 j

�



u0

i (x)dx; 81 � i � n: (1.58)

Neverthless, di�erent steady states may co-exist for the same system. This phe-
nomenon is particularly observed in the (di�erent variants of the) SKT system where
several works investigated the question [GQZQXL08, CP04, Wen13, BLMP09]. The
formation of patterns (called Turing patterns and corresponding to non-constant equi-
librium pro�les) is for example theoretically studied and numerically characterized in
[BLMP09]. Additional conditions on the cross-di�usion coe�cients that lead to the
existence of non-constant steady states bifurcating from the constant ones were given
in [LM14] and assessed numerically.

The authors in [BDFPS10] investigated the convergence of the solutions of the two
species ion transport model (1.29) to the constant steady states (1.58). They showed
in particular a strong L 1 convergence but did not give a rate for it. Later, Jüngel and
Zamponi investigated in [ZJ15] the long-time behavior of volume �lling systems having
di�usion matrices of the form (1.31) with assumptions (1.32)-(1.33) andf = 0 . They
were able to prove an exponential convergence for all the species under the additional
assumptions that � 0 is strictly positive and �=� 0 is concave on(0; 1).

The mathematical arguments used in [BDFPS10, ZJ15, JS12] are standard argu-
ments in the asymptotic analysis of PDEs solutions. We can summarize the strategy of
the proof by the following points.

� Introduce a suitable relative entropy E(u; u1 ) for the system. A suitable choice
of E for cross-di�usion systems that have logarithmic entropy density (1.20) is

E(u; u1 ) = E
� u

u1

�

and di�erent forms may be more convenient in other cases.

� Estimate from below the entropy dissipation term by means of the relative en-
tropy.i.e. �nd � > 0 such that,

�



r wB(w)r w � � E(u; u1 ); with � > 0; (1.59)

which is equivalent to
�



r uD 2h(u)A(u)r u � � E(u; u1 ):

Obtaining such estimate is subject to the assumptions made for the di�usion
matrix. For instance, when A(u) satis�es hypotheses (HE2) of Theorem 1.5 with
� �

i = mi = 1=2 then the question is reduced to prove that
nX

i =1

�



jr

p
ui j2dx � �

nX

i =1

�



ui log

�
ui

u1
i

�
dx

which can be easily done via a Logarithmic Sobolev inequality [ABL00].
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� Exploiting the entropy dissipation inequality

d
dt

E(u) +
�



r wB(w)r w � 0

satis�ed by the system allows to obtain

d
dt

E(u) + � E(u; u1 ) � 0:

Thus, the Gronwall lemma leads to the exponential convergence of the relative
entropy

E(u; u1 ) � E(u0; u1 ) exp (� �t )

� The Csizár Kullback inequality [ABL00] allows to conclude the proof

ku � u1 kL 1 (
) � C exp
�

�
�
2

t
�

:

1.6 Contributions of the Thesis

This section is a summary of our main contributions related to the study of cross-
di�usion systems.

A one-dimensional cross-di�usion system in a moving domain

Consider a multicomponent system composed ofn +1 di�erent species (n � 2) and con-
sider functions(� 0; � � � ; � n ) belonging toL 1

loc(R+ ; Rn+1
+ ), which we refer to in the sequel

as external �uxes. Let e0 > 0 and for every t 2 R+ , let e(t) := e0 +
� t

0

P n
i =0 � i (s) ds.

For every 0 � i � n, denote by ui (t; x ) the volume fraction of the speciesi at time t
and point x 2 (0; e(t)) . Consider an initial condition given by the integrable functions
u0

0; � � � u0
n satisfying the volume �lling constraints (1.6). For every 0 � i 6= j � n, let

K ij = K ji > 0 denote the cross-di�usion coe�cient between speciesi and j . Consider
the matrix A : [0; 1]n ! Rn� n de�ned for every u 2 D vf by

(
81 � i � n; A ii (u) =

P

1� j 6= i � n
(K ij � K i 0)uj + K i 0;

81 � i 6= j � n; A ij (u) = � (K ij � K i 0)ui :
(1.60)

Let us lastly denote by u = ( u1; � � � ; nn )T and by ' = ( � 1; � � � ; � n )T . The system
that we mainly analyze in the �rst part of this thesis reads

8
>>>><

>>>>:

e(t) = e0 +
� t

0

P n
i =0 � i (s) ds; for t 2 R�

+ ;
@t u � @x (A(u)@xu) = 0 ; for t 2 R�

+ ; x 2 (0; e(t)) ;
(A(u)@xu) ( t; 0) = 0 ; for t 2 R�

+ ;
(A(u)@xu) ( t; e(t)) + e0(t)u(t; e(t)) = ' (t); for t 2 R�

+ ;
u(0; x) = u0(x); for x 2 (0; e0):

(1.61)

Let us mention that we initially introduced this system to model the PVD process used
in the production of thin �lm solar cells. The function R+ 7! e(t) models the thickness
of the thin �lm and the functions R+ 7! � i (t) model the external atomic �uxes injected
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in the chamber during the process. A formal derivation of the di�usive term from a
stochastic lattice hopping model is given in Section 2.7 of Chapter 2.

For all 0 � i � n, t � 0 and y 2 (0; 1), we denote byvi (t; y) := ui (t; e(t)y). Thus, u
is a solution to (1.61) if and only if v is a solution to the following system:

8
>>>>><

>>>>>:

e(t) = e0 +
� t

0

P n
i =0 � i (s) ds; for t 2 R�

+ ;
@t v � 1

e(t )2 @y (A(v)@yv) � e0(t )
e(t ) y@yv = 0 ; for (t; y) 2 R�

+ � (0; 1);
1

e(t ) (A(v)@yv)( t; 1) + e0(t)v(t; 1) = ' (t); for (t; y) 2 R�
+ � (0; 1);

1
e(t ) (A(v)@yv)( t; 0) = 0 ; for (t; y) 2 R�

+ � (0; 1)
v(0; y) = v0(y) := u0(e0y); for y 2 (0; 1):

(1.62)

This rescaled version, which is equivalent to (1.61) allows to get rid of the moving
boundary. But, the drawback is the presence of the advection terme0(t )

e(t ) y@yv. The sys-
tem (1.62) is across-di�usion-advection system with mixed boundary conditionswhich
does not fall in the classical framework (1.1)-(1.2)-(1.3). To the best of my knowledge,
the presence of such drift terms and boundary conditions has never been considered for
strongly coupled cross-di�usion systems.

Note that in the case where the external �uxes vanish, the system perfectly falls
in the general framework (1.1)-(1.2)-(1.3) and writes in an arbitrary (smooth enough)
domain 
 � Rd; d � 1, as follows

8
<

:

@t u � div ( A(u)r u) = 0 ; for t 2 R�
+ ; x 2 
 ;

(A(u)r u) � n = 0 ; for t 2 R�
+ ; x 2 @
 ;

u(0; x) = u0(x); for x 2 
 :
(1.63)

Existence

As a �rst preliminary result, we show that the zero-�uxes system (1.63) with the di�u-
sion matrix (1.60) satis�es the assumptions of Theorem 1.5 and admits thus global-in-
time bounded weak solutions. Then, our main result concerns one-dimensional non-zero
�uxes systems of the form (1.62) with an arbitrary di�usion matrix A. The existence
theorem is proved in Section 2.4.2 of Chapter 2.

Long-time Behavior for Constant �uxes

When the external �uxes ' are constant-in-time and the entropy densityh associated to
the system (1.62) is of the logarithmic form (1.20), we show that the weak solutions to
the system converge (for theL 1-norm) in the long-time limit to constant steady pro�les
at a rate inversely proportional to the square root of time. This asymptotic result is
proved in Section 2.4.3 of Chapter 2.

Optimization of the external �uxes

Our initial motivation for studying system (1.61) is the control of the external atomic
�uxes injected during a PVD process in order to achieve a certain thickness and cer-
tain �nal concentration pro�les. To this aim, we formulate the following optimization
problem:
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Let T > 0 denote the time duration of the process. Moreover, letF > 0 and
denote by � :=

�
� 2 L 1 ((0; T); Rn+1

+ ); k� kL 1 � F
	

the set of admissible external
�uxes pro�les. For each pro�le � := ( � 0; � � � ; � n ) 2 � , denote by e� : t 2 [0; T] 7!
e0 +

� t
0

P n
i =0 � i (s) ds the time-dependent thickness of the �lm, and by v� a solution

to (1.62) associated with� . Let eopt > e0 and vopt 2 L 2((0; 1); D) denote respectively
the target thickness and the target �nal concentration pro�les for the di�erent chemical
species and consider the cost functionJ : � ! R de�ned by

8� 2 � ; J (�) := je� (T) � eopt j2 + kv� (T; �) � vopt k2
L 2 (0;1) : (1.64)

The optimization problem of interest reads

� � 2 argmin
� 2 �

J (�) : (1.65)

If we assume that for any � 2 � there exists a unique global weak solutionv� to
system (1.62), thenJ is well-de�ned and there exists a minimizer � � 2 � to (1.65).
The proof of this result is detailed in Section 2.4.4 of Chapter 2.

Numerical Results

From a numerical point of view, we propose a fully implicit unconditionally stable
scheme for the discretization of the system (1.62) and an iterative procedure based
on an adjoint formulation associated to the discretization scheme for the optimization
problem.

As part of the collaboration work with IRDEP lab, we also propose a few practical
improvements for the model (1.61) taking into account the temperature evolution of
the system and the surface absorption rates of the di�erent chemical species. Then, we
calibrate the adapted model on experimental measures. Details of this work along with
some numerical results are presented in Chapter 3.
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1.7 Appendix: Brief Introduction to Gradient Flows

We give in this appendix a very short introduction to the theory of gradient �ows in
metric spaces. For the reader's convenience, we �rst recall in Section 1.7.1 some basic
notions of metric spaces that are essential to the remaining sections. We present in
Section 1.7.2 the well-known case of Euclidian spaces. Then, we report in 1.7.3 three
characterizations for gradient �ows in metric spaces generalizing the properties satis�ed
in the Euclidian case. We mention that all the notions an results gathered in this
appendix are extracted from [LAS08, San17].

1.7.1 Basic Notions in Metric Spaces

Let X be metric space endowed with a distanced. A curve 
 : [0; 1] ! X is a continuous
function de�ned on [0; 1] and valued in the considered metric space(X; d ). Note that
the derivative of a curve 
 0(t) can be de�ned only if X is a vector space. Nevertheless,
one can de�ne the modulusj
 0j(t) instead .

De�nition 1.9 (Metric derivative, [LAS08]-1.1). The metric derivative of a curve 
 :
[0; 1] ! X at time t, is denoted byj
 0j(t) and de�ned as

j
 0j(t) := lim
h! 0

d(
 (t + h); 
 (t))
jhj

;

provided this limit exists.

De�nition 1.10 (Absolute continuous curve [LAS08]-1.1). A curve 
 : [0; 1] ! X is
said to be absolutely continuous whenever there exists a functiong 2 L 1([0; 1];R) such
that d(
 (t0); 
 (t1)) �

� t1
t0

g(s)ds for every 0 � t0 < t 1 � 1. The set of absolutely
continuous curves de�ned on[0; 1] and valued inX is denoted byAC( X ).

The length of an absolute continuous curve
 is denoted by Length(
 ) and de�ned as
follows:

De�nition 1.11 (Length of a curve [LAS08]-1.1). For a curve 
 : [0; 1] ! X ,

Length(
 ) := sup

(
n� 1X

k=0

d(
 (tk ); 
 (tk+1 )) : n � 1; 0 = t0 < t 1 < � � � < t n = 1

)

:

Some notions involving geodesics are gathered in the following de�nition:

De�nition 1.12 (Geodesics [LAS08]-1.1). A curve 
 : [0; 1] ! X is said to be a
geodesicbetweeny0 and y1 2 X if 
 (0) = y0, 
 (1) = y1 and

Length(
 ) = min f Length(! ) : ! (0) = y0; ! (1) = y1g:

A space(X; d ) is said to be alength spaceif for every y and z we have

d(y; z) = inf f Length(
 ) : 
 2 AC( X ); 
 (0) = y; 
 (1) = zg:

A space(X; d ) is said to be ageodesic spaceif for every y and z we have

d(y; z) = min f Length(
 ) : 
 2 AC( X ); 
 (0) = y; 
 (1) = zg;

In a length space, a curve
 : [0; 1] ! X is said to be a constant-speed geodesic
between
 (0) and 
 (1) 2 X if it satis�es

d(
 (t); 
 (s)) =
jt � sj
t1 � t0

d(
 (t0); 
 (t1)) for all t; s 2 [t0; t1]:
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1.7.2 Gradient �ows in Euclidean spaces

Let n 2 N� and let us consider the Euclidean spaceRn endowed with the standard
Euclidian metric. Let E : Rn ! R be a di�erentiable functional de�ned on Rn and let
u0 2 Rn and T > 0. We consider the following Cauchy problem

(
u0(t) = �rE (u(t)) for t > 0;

u(0) = u0:
(1.66)

In virtue of the Cauchy Lipschitz theorem, the classical Cauchy problem (1.66) admits
a unique solution if r F is Lipschitz continuous. A de�nition of a gradient �ow in this
case is simply given by

De�nition 1.13 (Gradient �ow as solution of an ODE) . We call a (the) gradient �ow
associated toE, a (the) solution to the Cauchy problem (1.66). In other words, it is the
curve u : [0; T] ! Rn starting at time t = 0 from a point u0, which moves along the
steepest descentdirection.

Let us now relax the di�erentiability assumption and replace the classical gradient
rE by the sub-di�ertiential of E denoted @E and de�ned as follows: for everyy 2 Rn ,

@E(y) := f p 2 Rn : E(z) � E (y) + p � (z � y) for all z 2 Rng: (1.67)

Consider, instead of the classical Cauchy problem (1.66), the following di�erential in-
clusion: search for an absolutely continuous curveu : [0; T] ! Rn such that

(
u0(t) 2 � @E(u(t)) for a.e. t > 0;

u(0) = u0;
(1.68)

In this case, existence and uniqueness of a solution to (1.68) can be shown undercon-
vexity assumptions onF . For instance, whenE is supposed to beconvex. Indeed, if
we consider two solutionsy1 and y2 of (1.68), it su�ces to di�erentiate the quantity
1
2 jy1(t) � y2(t)j2 with respect to t and use the convexity ofE to obtain jy1(t) � y2(t)j �
jy1(0) � y2(0)j for every time t 2 [0; T] which implies in particular the uniqueness of the
solution [San17]. A second, more general case is whenE is assumed to be� -convex for
some� 2 R. We recall that E is said to be� -convex if the function Rn 3 y 7! E(y)� �

2 jyj2

is convex. Also in this case and using the same arguments, one can deduce uniqueness
of the solution to (1.68). [San17]. Then, we can immediately extend the De�nition 1.13
of gradient �ows to the di�erential inclusion (1.68).

Let us now present (at a formal level) three properties satis�ed by gradient �ows in
the sense of De�nition 1.13. The reader may refer to [San17, LAS08] for rigorous justi�-
cation of the calculations. The interest of these properties is that they involve quantities
that have counterparts in metric spaces. The generalization of these properties serves
as characterizations of the notion of gradient �ows in metric spaces.

Minimizing Movement

Let us �x a small time step � > 0 and look for a sequence(u�
k )k2 N� de�ned through the

iterative Minimizing Movement scheme:

u�
k+1 2 argminu2 Rn

�
E(u) +

ju � u�
k j2

2�

�
: (1.69)
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It results, in particular, from the �rst optimality condition that for every k 2 N,

u�
k+1 2 argmin

�
E(u) +

ju � u�
k j2

2�

�
) rE (u�

k+1 ) = �
u�

k+1 � u�
k

�
;

which is equivalent to discretize the Cauchy problem (1.66) using anEuler scheme.
Thus, one can interpret the sequence(u�

k )k2 N� as the values of the curveu(t) at the
discrete times t = 0 ; �; 2�; : : : ; k�; : : : ; T . This gives a constructive way to obtain the
gradient �ow u. Moreover, in this case, even weaker assumptions ofE allow to show
the existence of solutions for small enough� . It su�ces for example to suppose that E
is lower semi-continuous and is lower bounded : for everyy 2 Rn , E(y) � C1 � C2jyj2

for someC1; C2 2 R. See [San17].

Energy Dissipation Equality

Let E : Rn ! R be a di�erentiable functional de�ned on Rn and let u : [0; T] ! Rn be
a di�erentiable curve. For every t 2 [0; T], we have d

dt E(u(t)) = u0(t)r F (u(t)) . Thus,
for any 0 � s < t � T , the following holds 7

E(u(s)) � E (u(t)) = � (E(u(t)) � E (u(s)))

=
� t

s
�rE (u(r )) � u0(r ) dr

�
� t

s
jrE (u(r )) jju0(r )j dr

�
� t

s

�
1
2

ju0(r )j2 +
1
2

jrE (u(r )) j2
�

dr:

Note that the �rst inequality is an equality if and only if there exists � < 0 such that
u0(r ) = � � rE (u(r )) for almost every r , and the second inequality is an equality if and
only if jrE (u(r )) j = ju0(r )j for almost every r . Consequently, whenu is a solution to
the Cauchy problem (1.66), the following condition, called EDE (Energy Dissipation
Equality), is satis�ed.

E(u(s)) � E (u(t)) �
� t

s

�
1
2

ju0(r )j2 +
1
2

jrE (u(r )) j2
�

dr; 80 � s < t � T: (1.70)

Evolution Variational Inequality

Let E : Rn ! R be a functional de�ned on Rn (not necessarily di�erentiable) and let
u : [0; T] ! Rn be di�erentiable curve. Let � 2 R and assume thatE is � -convex. In
the one hand, for anyy 2 Rn , from the de�nition of the sub-di�erential of E(y), the
following holds for everyp 2 @E(y),

E(z) � E (y) +
�
2

jy � zj2 + p � (z � y) for all z 2 Rn ;

which implies

p � (z � y) � E (z) � E (y) �
�
2

jy � zj2 for all z 2 Rn : (1.71)

7Young inequality is used in the last line : 2ab � a2 + b2 , for any a; b 2 R+ which is an equality if
a = b.
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In the other hand, the following holds for any curveu(t) and any vector z 2 Rn ,

d
dt

1
2

ju(t) � zj2 = ( u0(t)) � (u(t) � z) = ( z � u(t)) � (� u0(t)) : (1.72)

As a result, if u is a solution to the di�erential inclusion Cauchy problem (1.68), then
(1.71) and (1.72) imply the following property, called Evolution Variational Inequality ,

d
dt

1
2

ju(t) � zj2 � E (z) � E (u(t)) �
�
2

ju(t) � zj2; 8z 2 Rn (1.73)

1.7.3 Gradient Flows in Metric Spaces

Let (X; d ) be a metric space endowed with a distanced. Let us consider a functional
F : X ! R [ f + 1g de�ned on X and a point u0 2 X . We would like to give a suitable
sense to the following formal Cauchy problem

(
u0(t) = �rE (u(t)) for t > 0;

u(0) = u0:
(1.74)

whose solutionu : [0; T] ! X is a curve valued in the metric spaceX . Note �rst, that
unlessX is a vector space (which is not assumed to be true in general) the classical
notion of the gradient rE must be adapted. We call upper gradient every function
g : X ! R such that, for every Lipschitz curve u : [0; 1] ! R, we have

jE(u(0)) � E (u(1)) j �
� 1

0
g(u(t)) ju0j(t)dt:

A suitable choice of the upper gradient which is adapted to lower semi-continuous
functionals is the descending slope8 proposed in [LAS08, San17] and abusively denoted
by rE :

rE (u) := lim sup
z! u

[E(u) � E (z)]+

d(u; z)
(1.75)

Let us now give a suitable generalization to the notion of� � convexity in order to
be able to reproduce the arguments of the Euclidian case. The appropriate notion in
metric spaces is thegeodesic convexitywhich can only be de�ned in a geodesic metric
spaces. On such a space, we have the following de�nition:

De�nition 1.14 (Geodesic convexity [LM13]). Let � 2 R. A functional E : X !
R [ f + 1g is said to begeodesically� -convexwith respect to the metricd if an only if :
for every geodesic
 : [t0; t1] ! X with constant speed and every� 2 [0; 1], the following
holds

E(
 ((1 � � )t0 + �t 1)) � (1 � � )E(
 (t0)) + � E(
 (t1)) � �
� (1 � � )

2
d2(t0; t1): (1.76)

where0 � t0 < t 1 � T .
8Other choices are possible if we assume more regularity onE. For instance, if the functional E is

assumed to be Lipschitz continuous, then a possible choice fo the upper gradient is the local Lipschitz
constant [San17]. Nevertheless, the notion of descending slope o�ers the "most" general framework
since the only assumption on E is a lower semi continuity.
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We have now all the ingredients needed to "de�ne" or characterize the notion of
gradient �ows in metric spaces. In the theory, mainly developed in [LAS08], three main
characterizations are proposed to de�ne a gradient �ow in a metric space : gradient
�ow as a limit (when the time step goes to 0) of the discrete solutions to a minimizing
movement scheme of the form (1.69), gradient �ow as a curve satisfying the Energy Dis-
sipation Equality (1.70), gradient �ow as a curve satisfying the Evolutional Variational
Inequality (1.73). Let us give a brief description and comments for each case.

Gradient Flow as a Generalized Movement Scheme

Let E : X ! R [ f + 1g be a functional de�ned on the metric space(X; d ) and assume
that E is lower semi-continuous. Letu0 2 X and consider the iterative problem

u�
k+1 2 argminu2 X

�
E(u) +

d(u; u�
k )2

2�

�
(1.77)

together with the piecewise constant interpolation

u� (t) := u�
k for every t 2](k � 1)�; k� ]: (1.78)

This approximation scheme was introduced by De Giorgi [DG93] as a generalization
of the minimizing movement (1.69). In particular, the limit of u� (when the time
step � goes to 0) is shown [LAS08, San17] to solve the gradient system (1.74). Thus,
a �rst de�nition of gradient �ows in metric spaces is given thorough the Generalized
Minimizing Movement (1.77) as follows:

De�nition 1.15 (Gradient Flow in the GMM sense, [San17, DG93]). Let E : X !
R [ f + 1g be a lower semi-continuous functional on the metric space(X; d ). A curve
u : [0; T] ! X is called Generalized Minimizing Movements(GMM) associate to E if
there exists a sequence of time steps� j ! 0 such that the sequence of curvesu� j de�ned
in (1.78) using the iterated solutions of (1.77) uniformly converges tou in [0; T]. In
this case we say thatu is a gradient �ow associated toE.

Gradient Flow in the EDE Sense

Let E : X ! R [ f + 1g be a functional de�ned on the metric space(X; d ) and as-
sume that E is lower semi-continuous and letu0 2 X . Consider the formal Cauchy
problem (1.74) whererE is de�ned by the descending slope (1.75). A second de�nition
of gradient �ows in metric spaces can be obtained from the formal equality (that was
shown to be satis�ed in the Euclidian case): ifu : [0; T] ! X solves (1.74) then

E(u(s)) � E (u(t)) �
� t

s

�
1
2

ju0(r )j2 +
1
2

jrE (u(r )) j2
�

dr; 80 � s < t � T: (1.79)

De�nition 1.16 (Gradient Flow in the EDI sense). Let E : X ! R [ f + 1g be a lower
semi-continuous functional on the metric space(X; d ). A curve u : [0; T] ! X is called
gradient �ow in the EDE sense starting at u0 2 X if u 2 AC (X ) and u satis�es the
EDE property (1.79) with jr F j de�ned in (1.75).
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Gradient Flow in the EVI Sense

If we assume in addition that the entropy is geodesically� � convex for some� 2 R, then
we can give an additional characterization to the associated gradient �ow in terms of the
foraml inequality (that was shown to be satis�ed in the Euclidian case): ifu : [0; T] ! X
solves (1.74) then

d
dt

1
2

ju(t) � zj2 � E (z) � E (u(t)) �
�
2

ju(t) � zj2; 8z 2 Rn (1.80)

De�nition 1.17 (Gradient Flow in the EVI sense, ). Let E : X ! R [ f + 1g be a
lower semi-continuous functional on the metric space(X; d ). A curve u : [0; T] ! X is
called gradient �ow in the EDE sense starting at u0 2 X if y 2 AC (X ) and u satis�es
the EVI property (1.80) with jr F j de�ned as in (1.75).
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CHAPTER2

CROSS-DIFFUSION SYSTEMS IN A MOVING DOMAIN

We report in this chapter the results of [BE16] obtained with Virginie Ehrlacher.

Abstract. We propose and analyze a one-dimensional multi-species cross-di�usion
system with non-zero-�ux boundary conditions on a moving domain, motivated by the
modeling of a Physical Vapor Deposition process. Using the boundedness by entropy
method introduced and developped in [BDFPS10, Jue15a], we prove the existence of a
global weak solution to the obtained system. In addition, existence of a solution to an
optimization problem de�ned on the �uxes is established under the assumption that the
solution to the considered cross-di�usion system is unique. Lastly, we prove that in the
case when the imposed external �uxes are constant and positive and the entropy density
is de�ned as a classical logarithmic entropy, the concentrations of the di�erent species
converge in the long-time limit to constant pro�les at a rate inversely proportional to
time. These theoretical results are illustrated by numerical tests.
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2.1 Introduction

The aim of this work is to propose and analyze a mathematical model for the description
of a Physical Vapor Deposition (PVD) process, the di�erent steps of which are described
in details for instance in [Mat10]. Such a technique is used in several contexts, for
instance for the fabrication of thin �lm crystalline solar cells. The procedure works as
follows: a wafer is introduced in a hot chamber where several chemical elements are
injected under a gaseous form. As the latter deposit on the substrate, an heterogeneous
solid layer grows upon it. Two main phenomena have to be taken into account: the �rst
is naturally the evolution of the surface of the �lm; the second is the di�usion of the
various species in the bulk, due to the high temperature conditions. Experimentalists
are interested in controlling the external gas �uxes that are injected into the chamber,
so that, at the end of the process, the spatial distributions of the concentrations of the
diverse components inside the new layer are as close as possible to target pro�les.

In this article, a one-dimensional model which takes into account these two factors is
studied. We see this work as a preliminary step before tackling more challenging models
in higher dimensions, including surfacic di�usion e�ects for instance. This will be the
object of future work. Our main motivation for the study of such a model concerns the
optimization of the external �uxes injected in the chamber during a PVD process.

More precisely, let us assume that at a timet � 0, the solid layer is composed of
n +1 di�erent chemical species and occupies a domain of the form(0; e(t)) � R+ , where
e(t) > 0 denotes the thickness of the �lm. The evolution ofe(t) is determined by the
�uxes of atoms that are absorbed at the surface of the layer. At timet > 0 and point
x 2 (0; e(t)) , the local volumic fractions of the di�erent species are denoted respectively
by u0(t; x ); � � � ; un (t; x ). Let us point out that if the molar volume of the solid is uniform
in the thin �lm layer and constant during all the process, then ui (t; x ) is also equal (up
to a multiplicative constant) to the local concentration of the i th species at timet > 0
and point 0 � x � e(t). Up to some renormalization condition, it is natural to expect
that these functions are non-negative and satisfy a volumic constraint which reads as
follows:

80 � i � n; u i (t; x ) � 0 and
nX

i =0

ui (t; x ) = 1 : (2.1)

Because of the constraint (2.1), it holds thatu0(t; x ) = 1 �
P n

i =1 ui (t; x ) for all t > 0 and
x 2 (0; e(t)) . Thus, the knowledge of then functions u1; � � � ; un is enough to determine
the dynamics of the whole system. Replacingu0 by 1�

P n
i =1 ui , and denoting by u the

vector-valued function (u1; � � � ; un ), the evolution of the concentrations inside the bulk
of the solid layer is modeled through a system of cross-di�usion equations of the form

@t u � @x (A(u)@xu) = 0 ; for t > 0; x 2 (0; e(t)) ; (2.2)
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with approriate boundary and initial conditions, where A : [0; 1]n ! Rn� n is a matrix-
valued function encoding the cross-di�usion properties of the di�erent species.

Such systems have received much attention from the mathematical community in the
case when no-�ux boundary conditions are imposed on a �xed domain [LS67, Ama89,
LN06, GR10]. Then, in arbitrary dimension d 2 N� , the system reads

@t u � divx (A(u)r xu) = 0 ; for t > 0; x 2 
 ;

for some �xed bounded regular domain
 � Rd and boundary conditions

(A(u)r xu) � n = 0 on @
 and t � 0;

where n denotes the outward normal unit vector to 
 .
Such systems appear naturally in the study of population's dynamics in biology, and

in chemistry, for the study of the evolution of chemical species concentrations in a given
environment [Pai09, HP09]. The analysis of these systems is a challenging task from a
mathematical point of view [LPR12, Ali79, Kue96, Red89, CJ04, CJ06, DFR08]. Indeed,
the obtained system of parabolic partial di�erential equations may be degenerate and the
di�usion matrix A is in general not symmetric and/or not positive de�nite. Besides, in
general, no maximum principle can be proved for such systems. Nice counterexamples
are given in [SJ95]: there exist Hölder continuous solutions to certain cross-di�usion
systems which are not bounded, and there exist bounded weak solutions which develop
singularities in �nite time.

It appears that some of these cross-di�usion systems have a formal gradient �ow
structure. Recently, an elegant idea, which consists in introducing an entropy density
that appears to be a Lyapunov functional for these systems, has been introduced by
Burger et al. in [BDFPS10]. This analysis strategy, which was later extended by Jüngel
in [Jue15a] and namedboundedness by entropytechnique, enables to obtain the existence
of global in time weak solutions satisfying (2.1) under suitable assumptions on the
di�usion matrix A. It was successfully applied in several contexts (see for instance [JS13,
JS12, ZJ15, JZ14]).

However, there are very few works which focus on the analysis of such cross-di�usion
systems with non zero-�ux boundary conditions and moving domains. To our knowl-
edge, only systems containing at most two di�erent species have been studied, so that
n = 1 and the evolution of the concentrations inside the domain are decoupled and
follow independent linear heat equations [PP08].

The one-dimensional model (2.2) we propose and analyze in this paper describes the
evolution of the concentration ofn+1 di�erent atomic species, with external �ux bound-
ary conditions, in the case when the di�usion matrix A satis�es similar assumptions to
those needed in the no-�ux boundary conditions case studied in [Jue15a].

The article is organized as follows: the results of [Jue15a] in the case of no-�ux
boundary conditions in arbitrary dimension are recalled in Section 2.2. We illustrate
them on a prototypical example of di�usion matrix A, which is introduced in Sec-
tion 2.2.1.

Our results in the case of a one-dimensional moving domain with non-zero �ux
boundary conditions are gathered in Section 2.3. We prove the existence of a global
in time weak solution to (2.2) with appropriate boundary conditions and evolution law
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for e(t) in Section 2.3.2. The long time behaviour of a solution is analyzed in the case
of constant external absorbed �uxes in 2.3.2 and an optimization problem is studied
in 2.3.2. The proofs of these results are gathered in Section 5.3.

A numerical scheme used to approximate the solution of such systems is described
in Section 5.4 and our theoretical results will be illustrated by several numerical tests.

2.2 Case of no-�ux boundary conditions in arbitrary di-
mension

In Section 2.2.1, a particular cross-di�usion model on a �xed domain with no-�ux bound-
ary conditions is presented. The latter is a prototyical example of the systems of equa-
tions considered in this paper. Its formal gradient �ow structure is highlighted in Sec-
tion 2.2.1. Using slight extensions of results of [ZJ15, JZ14], it can be seen that this sys-
tem can be analyzed using the theoretical framework developped in [Jue15a, BDFPS10],
which is recalled in Section 2.2.2.

Throughout this section, let us denote byd 2 N� the space dimension,
 � Rd the
regular bounded domain occupied by the solid. The local concentrations at timet > 0
and position x 2 
 of the n + 1 di�erent atomic species entering in the composition of
the material are respectively denoted byu0(t; x ); � � � ; un (t; x ). We also denote byn the
normal unit vector pointing outwards the domain 
 .

2.2.1 Example of cross-di�usion system

Presentation of the model

As mentioned above, we have one particular example of system of cross-di�usion equa-
tions in mind, which is used to illustrate more general theoretical results. This system,
with no-�ux boundary conditions, reads as follows : for any0 � i � n,

8
>>>><

>>>>:

@t ui � divx

 
P

0� j 6= i � n
K ij (uj r xui � ui r xuj )

!

= 0 ; for (t; x ) 2 R�
+ � 
 ;

 
P

0� j 6= i � n
K ij (uj r xui � ui r xuj )

!

� n = 0 ; for (t; x ) 2 R�
+ � @
 ;

(2.3)

where for all 0 � i 6= j � n, the positive real numbersK ij satisfy K ij = K ji > 0.
They represent the cross-di�usion coe�cients of atoms of type i with atoms of type j .
This set of equations can be formally derived from a discrete stochastic lattice hopping
model, which is detailed in the Appendix.

The initial condition (u0
0; � � � ; u0

n ) 2 L 1(
; Rn+1 ) of this system is assumed to satisfy:

80 � i � n; u0
i (x) � 0;

nX

i =0

u0
i (x) = 1 and ui (0; x) = u0

i (x) a.e. in 
 : (2.4)

The relationship
P n

i =0 u0
i (x) = 1 is a natural volumic constraint which encodes the fact

that each site of the crystalline lattice of the solid has to be occupied (vacancies being
treated as a particular type of atomic species).

62



Summing up then+1 equations of (2.3), we observe that a solution(u0; � � � ; un ) must
necessarily satisfy@t (

P n
i =0 ui ) = 0 . It is thus expected that the following relationship

should hold:

80 � i � n; u i (t; x ) � 0;
nX

i =0

ui (t; x ) = 1 ; a.e. in R�
+ � 
 : (2.5)

Plugging the expressionu0(t; x ) = 1 �
P n

i =1 ui (t; x ) in (2.3), it holds that for all
1 � i � n,

0 = @t ui � divx

2

4
X

1� j 6= i � n

K ij (uj r xui � ui r xuj )

3

5

� divx

2

4K i 0

0

@

0

@1 �
X

1� j 6= i � n

uj � ui

1

A r xui � ui r x

0

@1 �
X

1� j 6= i � n

uj � ui

1

A

1

A

3

5

= @t ui � divx

2

4
X

1� j 6= i � n

(K ij � K i 0) (uj r xui � ui r xuj ) + K i 0r xui

3

5 :

Thus, the system can be rewritten as a function ofu := ( u1; � � � ; un )T as follows
8
<

:

@t u � divx (A(u)r xu) = 0 ; for (t; x ) 2 R�
+ � 
 ;

(A(u)r xu) � n = 0 ; for (t; x ) 2 R�
+ � @
 ;

u(0; x) = u0(x); for x 2 
 ;
(2.6)

where u0 := ( u0
1; � � � ; u0

n )T and the matrix-valued application

A :
�

[0; 1]n ! Rn� n

u := ( ui )1� i � n 7! (A ij (u))1� i;j � n

is de�ned by

(
81 � i � n; A ii (u) =

P

1� j 6= i � n
(K ij � K i 0)uj + K i 0;

81 � i 6= j � n; A ij (u) = � (K ij � K i 0)ui :
(2.7)

Despite their importance in chemistry or biology, it appears that the mathematical
analysis of systems of the form (2.6), taking into account constraints (2.5), is quite
recent [BDFPS10, GR10, Jue15a, LM13]. Let us point out here that the non-negativity
of the solutions to (2.6) through time is a mathematical issue, linked to the absence of
a maximum principle for such systems.

At least up to our knowledge, the �rst proof of existence of global weak solutions
of (2.6) satisfying constraints (2.5) with non-identical cross-di�usion coe�cients is given
in [BDFPS10] for n = 2 with coe�cients K ij such that K i 0 > 0 for i = 1 ; 2 and
K 12 = K 21 = 0 . These results were later extended in [JZ14] to a general number of
speciesn 2 N� with cross-di�usion coe�cients satisfying K i 0 > 0 and K ij = 0 for all
1 � i 6= j � n; the authors of the latter article proved in addition the uniqueness
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of such weak solutions. In [ZJ15], the casen = 2 with arbitrary positive coe�cients
K ij > 0 is covered, though no uniqueness result is provided. The main di�culty of
the mathematical analysis of such equations relies in the bounds (2.5), which are not
obvious since no maximum principle can be proved for these systems in general. In
all the articles mentioned above, the analysis framework used by the authors is the
so-calledboundedness by entropy method. The main idea of this technique is to write
the above system of equations as a formal gradient �ow and derive estimates on the
solutions (u0; � � � ; un ) using the decay of some well-chosen entropy functional. We
present in Section 2.2.1 the formal gradient �ow structure of (2.6) and recall the results
of [Jue15a] in Section 2.2.2.

Remark 2.1. This model is linked to the so-calledStefan-Maxwell model, studied
in [JS13, BGS12]. Indeed, the model considered in the latter paper reads

8
<

:

@t u � divx
�
A(u) � 1r xu

�
= 0 ; for (t; x ) 2 (0; T] � 
 ;

(A(u)r xu) � n = 0 ; for (t; x ) 2 (0; T] � @
 ;
u(0; x) = u0(x); for x 2 
 ;

(2.8)

whereA is de�ned by (2.7).

Formal gradient �ow structure of (2.6)

We detail in this section the formal gradient �ow structure of the system (2.6).
Let D � Rn be de�ned by

D :=

(

(u1; � � � ; un ) 2 (R�
+ )n ;

nX

i =1

ui < 1

)

� (0; 1)n : (2.9)

Let us introduce the classicalentropy density h (see for instance [BDFPS10], [Jue15a],
[JZ14] and [LM13])

h :

8
<

:

D �! R

u := ( ui )1� i � n 7�! h(u) =
nP

i =1
ui logui + (1 � � u) log(1 � � u); (2.10)

where � u :=
P n

i =1 ui . Some properties ofh can be easily checked:

(P1) the function h belongs toC0(D) \ C 2(D); consequently,h is bounded onD;

(P2) the function h is strictly convex on D;

(P3) its derivative

Dh :

(
D �! Rn

(ui )1� i � n 7!
�

log u i
1� � u

�

1� i � n
;

is invertible and its inverse is given by

(Dh) � 1 :

(
Rn �! D

(wi )1� i � n 7! ew i

1+
P n

j =1 ew j :
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In the following, we denote by D 2h the Hessian ofh. The entropy functional E is
de�ned by

E :
�

L 1 (
; D) �! R
u 7�! E (u) :=

�

 h(u(x)) dx:

(2.11)

Throughout the article, for all u 2 L 1 (
; D), we shall denote byDE(u) the measurable
vector-valued function de�ned by

DE(u) :
�


 ! Rn

x 7! Dh(u(x)) :

The system (2.6) can then be formally rewritten under the following gradient �ow
structure

8
<

:

@t u � divx (M (u)r xDE(u)) = 0 ; for (t; x ) 2 R�
+ � 
 ;

(M (u)r xDE(u)) � n = 0 ; for (t; x ) 2 R�
+ � @
 ;

u(0; x) = u0(x); for x 2 
 ;
(2.12)

where M : D ! Rn� n is the so-calledmobility matrix of the system de�ned for all
u 2 D by

M (u) := A(u)(D 2h(u)) � 1:

More precisely, it holds that for all u 2 D, M (u) = ( M ij (u))1� i;j � n where for all
1 � i 6= j � n,

M ii (u) = K i 0(1 � � u)ui +
X

1� j 6= i � n

K ij ui uj and M ij (u) = � K ij ui uj : (2.13)

2.2.2 Existence of global weak solutions by the boundedness by en-
tropy technique

The formal gradient �ow formulation of a system of cross-di�usion equations is a key
point in the boundedness by entropy technique. In the example presented in Sec-
tion 2.2.1, it implies in particular that E is a Lyapunov functional for the system
(2.6) [BDFPS10, Jue15a]. However, the mobility matrix obtained for these systems
is not a concave function of the densities, so that standard gradient �ow theory ar-
guments (such as the minimizing movement method) cannot be applied in this con-
text [ZM15, DNS09, JKO98, LM13]. However, the existence of a global weak solu-
tion to (2.6) can still be proved. Let us recall here a simpli�ed version of Theorem 2
of [Jue15a] which is adapted to our context.

Theorem 2.2 (Theorem 2 of [Jue15a]). Let D � Rn be the domain de�ned by (2.9).
Let A : u 2 D 7! A(u) := ( A ij (u))1� i;j � n 2 Rn� n be a matrix-valued functional de�ned
on D satisfying A 2 C0(D; Rn� n ) and the following assumptions:

(H1) There exists a bounded from below convex functionh 2 C2(D; R) such that its
derivative Dh : D ! Rn is invertible on Rn ;

(H2) There exists � > 0, and for all 1 � i � n, there exist 1 � mi > 0; such that for
all z = ( z1; � � � ; zn )T 2 Rn and u = ( u1; � � � ; un )T 2 D ,

zT D 2h(u)A(u)z � �
nX

i =1

u2m i � 2
i z2

i :
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Let u0 2 L 1(
; D) so that w0 := Dh(u0) 2 L 1 (
; Rn ). Then, there exists a weak
solution u with initial condition u0 to

�
@t u = divx (A(u)r xu); for (t; x ) 2 R�

+ � 
 ;
(A(u)r xu) � n = 0 ; for (t; x ) 2 R�

+ � @
 ;
(2.14)

such that for almost all (t; x ) 2 R�
+ � 
 , u(t; x ) 2 D with

u 2 L 2
loc(R+ ; H 1(
 ; Rn )) and @t u 2 L 2

loc(R+ ; (H 1(
; Rn ))0):

Lemma 2.3 states that the prototypical example presented in Section 2.2.1 falls into
the framework of Theorem 2.2. The proof of the latter is given Section 2.4.1 for the
sake of completeness, and relies on ideas introduced in [JZ14].

Lemma 2.3. Let D � Rn be the domain de�ned by (2.9) andA : u 2 D 7! A(u) :=
(A ij (u))1� i;j � n 2 Rn� n be the matrix-valued function de�ned by (2.7). Then, A 2
C0(D; Rn� n ) and satis�es assumptions (H1)-(H2) of Theorem 2.2, with h given by
(2.10), � = min 1� i 6= j � n K ij and mi = 1

2 for all 1 � i � n.

The existence of global weak solutions to (2.6) is then a direct consequence of The-
orem 2.2 and Lemma 2.3.

Let us point out that the uniqueness of solutions to general systems of the form
(2.14) remains an open theoretical question, at least up to our knowledge. It can be
obtained in some particular cases. When the di�usion matrixA is de�ned by (2.7) and
when all the di�usion coe�cients K ij are identically equal to some constantK > 0, the
uniqueness of the solution can be trivially obtained since the system boils down to a set
of n decoupled heat equation for the evolution of the density of each species.

2.3 Case of non-zero �ux boundary conditions and moving
domain

In the sequel, we restrict the study to the case whend = 1 . In this section, we propose
a model for the description of a PVD process and present theoretical results whose
proofs are postponed to Section 5.3. The global existence of a weak solution is proved.
The long-time behaviour of such a solution is studied in the case of constant external
�uxes. Lastly, under the assumption that the coe�cients K ij are chosen so that there is
a unique solution to the system, we prove the existence of a solution to an optimization
problem.

2.3.1 Presentation of the model

For the sake of simplicity, we assume that non-zero �uxes are only imposed on the
right-hand side of the domain occupied by the solid. At some timet > 0, this domain
is denoted by
 t := (0 ; e(t)) where e(t) > 0 models the thickness of the layer. Initially,
we assume that the domain
 0 occupied by the solid at timet = 0 is the interval (0; e0)
for some initial thicknesse0 > 0.

The evolution of the thickness of the �lm e(t) is determined by the external �uxes of
the atomic species that are absorbed at its surface. More precisely, let us assume that
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Figure 2.1 � Illustration of the composition of the �lm layer at time t in the casen = 2

there aren + 1 di�erent chemical species composing the solid layer and let(� 0; � � � ; � n )
belong to L 1

loc(R+ ; Rn+1
+ ). For all 0 � i � n, the function � i (t) represents the �ux of

the speciesi absorbed at the surface at timet > 0 and is assumed to be non-negative.
In this one-dimensional model, the evolution of the thickness of the solid is assumed to
be given by

e(t) := e0 +
� t

0

nX

i =0

� i (s) ds: (2.15)

In the following, we will denote by ' := ( � 1; � � � ; � n )T (see Figure 2.1).

For all t � 0 and 0 � i � n, the local concentration of speciesi at time t and point
x 2 (0; e(t)) is denoted by ui (t; x ). The evolution of the vector u := ( u1; � � � ; un ) is
given by the system of cross-di�usion equations

@t u � @x (A(u)@xu) = 0 ; for t 2 R�
+ ; x 2 (0; e(t)) ; (2.16)

where A : D ! Rn� n is a well-chosen di�usion matrix satisfying (H1)-(H2).

We consider that for every t > 0, the system satis�es the following conditions on
the boundary @
 t :

(A(u)@xu) ( t; 0) = 0 and (A(u)@xu) ( t; e(t)) + e0(t)u(t; e(t)) = ' (t): (2.17)

An easy calculation shows that these boundary conditions, in addition to (2.15)
and (2.16), ensure that, for all 0 � i � n,

d
dt

� �


 t

ui (t; x ) dx
�

= � i (t):
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Indeed, it holds that

d
dt

� �


 t

u(t; x ) dx
�

=
� e(t )

0
@t u(t; x ) dx + e0(t)u(t; e(t)) ;

=
� e(t )

0
@x (A(u)@xu) + e0(t)u(t; e(t)) ;

= ( A(u)@xu)( t; e(t)) + e0(t)u(t; e(t)) � (A(u)@xu)( t; 0);

= ' (t):

The calculation for the 0th species reads:

d
dt

� �


 t

u0(t; x ) dx
�

=
d
dt

 

j
 t j �
nX

i =1

�


 t

ui (t; x ) dx

!

= e0(t) �
nX

i =1

d
dt

� �


 t

ui (t; x ) dx
�

=
nX

i =0

� i (t) �
nX

i =1

� i (t) = � 0(t):

To sum up, the �nal system of interest reads:
8
>>>><

>>>>:

e(t) = e0 +
� t

0

P n
i =0 � i (s) ds; for t 2 R�

+ ;
@t u � @x (A(u)@xu) = 0 ; for t 2 R�

+ ; x 2 (0; e(t)) ;
(A(u)@xu) ( t; 0) = 0 ; for t 2 R�

+ ;
(A(u)@xu) ( t; e(t)) + e0(t)u(t; e(t)) = ' (t); for t 2 R�

+ ;
u(0; x) = u0(x); for x 2 (0; e0);

(2.18)

whereu0 2 L 1(0; e0) is an initial condition satisfying u0(x) 2 D for almost all x 2 (0; e0).
We assume in addition that w0 := Dh(u0) belongs toL 1 ((0; e0); Rn ).

Rescaled version of the model

We introduce here a rescaled version of system (2.18). For all0 � i � n, t � 0 and
y 2 (0; 1), let us denote byvi (t; y) := ui (t; e(t)y). It holds that

@t v(t; y) = @t u(t; e(t)y) + e0(t)y@xu(t; e(t)y) and @yv(t; y) = e(t)@xu(t; e(t)y);

where v := ( v1; � � � ; vn ). Thus, u is a solution of (2.18) if and only if v is a solution to
the following system:

8
>>>>>>>><

>>>>>>>>:

e(t) = e0 +
� t

0

nX

i =0

� i (s) ds; for t 2 R�
+ ;

@t v � 1
e(t )2 @y (A(v)@yv) � e0(t )

e(t ) y@yv = 0 ; for (t; y) 2 R�
+ � (0; 1);

1
e(t ) (A(v)@yv)( t; 1) + e0(t)v(t; 1) = ' (t); for (t; y) 2 R�

+ � (0; 1);
1

e(t ) (A(v)@yv)( t; 0) = 0 ; for (t; y) 2 R�
+ � (0; 1)

v(0; y) = v0(y); for y 2 (0; 1);

(2.19)
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where v0(y) := u0(e0y).
Proving the existence of a global weak solution to (2.18) is equivalent to proving the

existence of a global weak solution to (2.19).

Actually, it can be seen that the entropy of the system (2.19) satis�es a formal
inequality at the continuous level which is at the heart of the proof of our existence
result. Indeed, let us denote by

E(t) :=
� 1

0
h(v(t; y)) dy;

where v is a solution to (2.19). Then, formal calculations yield that

dE
dt

(t) =
� 1

0
@t v(t; y) � Dh(v(t; y)) dy

=
1

e(t)2

� 1

0
@y (A(v(t; y))@yv(t; y)) � Dh(v(t; y)) dy

+
e0(t)
e(t)

� 1

0
y@yv(t; y) � Dh(v(t; y)) dy

= �
1

e(t)2

� 1

0
@yv(t; y) � D 2h(v(t; y))A(v(t; y))@yv(t; y) dy

+
1

e(t)2 (A(v(t; 1))@yv(t; 1)) � Dh(v(t; 1)) +
e0(t)
e(t)

� 1

0
y@y(h(v(t; y))) dy

= �
1

e(t)2

� 1

0
@yv(t; y) � D 2h(v(t; y))A(v(t; y))@yv(t; y) dy

+
1

e(t)

�
' (t) � e0(t)v(t; 1)

�
� Dh(v(t; 1))

+
e0(t)
e(t)

h(v(t; 1)) �
e0(t)
e(t)

� 1

0
h(v(t; y)) dy:

Denoting by f (t) := ' (t )
e0(t ) , it holds that f (t) 2 D for all t > 0. Besides, using assumption

(H2), we obtain that

�
� 1

0
@yv(t; y) � D 2h(v(t; y))A(v(t; y))@yv(t; y) dy � 0;

which yields that

dE
dt

(t) �
e0(t)
e(t)

�
h(v(t; 1) + Dh(v(t; 1)) �

�
f (t) � v(t; 1)

�
�

� 1

0
h(v(t; y)) dy

�
:

Using the convexity of h, we obtain that h(v(t; 1) + Dh(v(t; 1)) �
�
f (t) � v(t; 1)

�
�

h(f (t)) , so that
dE
dt

(t) �
e0(t)
e(t)

�
h(f (t)) �

� 1

0
h(v(t; y)) dy

�
: (2.20)

Inequality (2.20) is not an entropy dissipation inequality in the sense that the quantity
E(t) may increase with time. However, using the facte0 2 L 1

loc(R+ ; R+ ) and assumption
(H3), it implies that the quantity E(t) cannot blow up in �nite time, which is su�cient
for our purpose.
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2.3.2 Theoretical results

Global in time existence of weak solutions

Our �rst result deals with the global in time existence of bounded weak solutions to
(2.19) (and thus to (2.18)).

Theorem 2.4. Let D := f (u1; � � � ; un )T 2 (R�
+ )n ;

P n
i =1 ui < 1g � (0; 1)n . Let A :

D ! Rn� n be a matrix-valued functional satisfyingA 2 C0(D; Rn� n ) and assumptions
(H1)-(H2) of Theorem 2.2 for some well-chosen entropy densityh : D ! R. We assume
in addition that

(H3) h 2 C0(D).

Let e0 > 0, u0 2 L 1((0; e0); D) so that w0 := ( Dh) � 1(u0) 2 L 1 ((0; e0); Rn ) and
(� 0; � � � ; � n ) 2 L 1

loc(R+ ; Rn+1
+ ). Let us de�ne for almost all y 2 (0; 1), v0(y) := u0(e0y)

and ' := ( � 1; � � � ; � n )T . Then, there exists a weak solutionv with initial condition v0

to (2.19) such that for almost all (t; y) 2 R�
+ � (0; 1), v(t; y) 2 D. Besides,

v 2 L 2
loc(R+ ; H 1((0; 1); Rn )) and @t v 2 L 2

loc(R+ ; (H 1((0; 1); Rn ))0):

In particular, v 2 C0(R+ ; L 2((0; 1); Rn )) .

Let us point out that the example described in Section 2.2.1 satis�es all the assump-
tions of Theorem 2.4 since the entropy densityh de�ned by (2.10) belongs to C0(D).
Let us also point here that the form of (2.19) is di�erent from the system considered
in [Jue15a] through i) the boundary conditions and ii) the existence of the drift term
e0(t )
e(t ) y@yv.

The strategy of proof developped in [BDFPS10, Jue15a] is still adapted to our
case though, because a discrete entropy inequality can still be obtained. The proof of
Theorem 2.4 is given in full details in Section 2.4.2.

Long-time behaviour for constant �uxes

In the case when the �uxes are constant in time, we obtain long-time asymptotics for
the functions vi , provided that the entropy density h is given by (2.10). More precisely,
the following result holds:

Proposition 2.5. Under the assumptions of Theorem 2.4, let us make the following
additional hypotheses:

(T1) for all 0 � i � n, there exists� i > 0 so that � i (t) = � i , for all t 2 R+ ;

(T2) for all u 2 D , the entropy densityh can be chosen so thath(u) =
P n

i =1 ui logui +
(1 � � u) log(1 � � u), where � u = 1 �

P
1� i � n ui .

For all 0 � i � n, let us de�ne f i := � iP n
j =0 � j

and by f := ( f i )1� i � n 2 D . Let us also

denote by

h :
�

D 7! R
u 7! h(u) � h(f ) � Dh(f )(u � f )
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the relative entropy associated toh and f . Then, there exists a global weak solutionv
to (2.19) and a constantC > 0 such that

� 1

0
h (v(t; y)) dy �

C
t + 1

; (2.21)

and

81 � i � n; kvi (t; �) � f i kL 1 (0;1) �
C

p
t + 1

and



 �

1 � � v(t; �)
�

� f 0






L 1 (0;1)
�

C
p

t + 1
:

(2.22)

The proof of Proposition 2.5 is given in Section 2.4.3. Numerical results presented in
Section 5.4 illustrate the rate of convergence of the rescaled concentrations to constant
pro�les in O

� 1
t

�
.

Let us comment here on assumption (T2). For the sake of simplicity, we chose to
restrict ourselves to the case of logarithmic entropy density in Proposition 2.5. Actually,
Proposition 2.5 can be easily generalized provided that the relative entropy densityh
satis�es a generalized Csizar-Kullback type inequality [AUT00].

The central ingredient of the proof is the following formal entropy inequality. In
the case whenh is given by (2.10), it can be easily seen thath is also a valid entropy
density for the di�usion coe�cient A in the sense that h also satis�es assumptions
(H1)-(H2)-(H3). Thus, inequality (2.20) holds with h instead of h so that

dE
dt

(t) �
e0(t)
e(t)

�
h(f ) �

� 1

0
h(v(t; y)) dy

�
=

e0(t)
e(t)

�
h(f ) � E(t)

�
;

where for all t > 0, E(t) :=
� 1

0 h(v(t; y)) dy. Denoting by V :=
P n

i =0 � i , it holds that
e0(t) = V and e(t) = e0 + V t for all t � 0. Finally, using the fact that h � 0 and that
h(f ) = 0 , we obtain that

� e0

V
+ t

� dE
dt

(t) + E(t) =
d
dt

�� e0

V
+ t

�
E(t)

�
� 0:

This inequality implies that there exists a constant C > 0 such that for all t � 0,

E(t) �
C

t + 1
:

The rates on theL 1 norm of the solutions are then obtained using the Csizàr-Kullback
inequality.

Let us �nally point out that the quantity
� 1

0 h(v(t; y)) dy = 1
e(t )

� e(t )
0 h(u(t; x )) dx

can be seen as an average entropy. In particular, the result of Propositon 2.5 does not
imply in general the convergence ofu(t; x ) to a constant vector L 1

loc(R+ ) for instance.
Whether such a convergence may hold true remains an open question.
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Optimization of the �uxes

As mentioned in the introduction, our main motivation for studying this system is the
control of the gazeous �uxes injected during a PVD process. It is assumed here that
the wafer remains in the hot chamber where the di�erent atomic species are injected
during a time T > 0. The cross-di�usion phenomena occur in the bulk of the thin
�lm layer because of the high temperatures that are imposed during the process. Once
the wafer is taken out of the chamber, the composition of the �lm is freezedand no
di�usion phenomena take place anymore. The pro�les of the local volumic fractions of
the di�erent chemical species in the �lm thus remain unchanged after the timeT. It is
of practical interest to adapt the �uxes through time so that these �nal concentration
pro�les are as close as possible to target functions chosen a priori.

Let e0 > 0 be the initial thickness of the solid. In practice, the maximal value
of the �uxes which can be injected is limited due to device constraints. LetF > 0
and let us then denote by� :=

�
� 2 L 1 ((0; T); Rn+1

+ ); k� kL 1 � F
	

. For all � :=
(� 0; � � � ; � n ) 2 � , we denote by e� : t 2 [0; T] 7! e0 +

� t
0

P n
i =0 � i (s) ds the time-

dependent thickness of the �lm, and by v� a solution to (2.19) associated with the
external �uxes � .

Let us point out here the uniqueness of a solution to (2.18) (or (2.19)) remains
an open problem in general. When the di�usion matrix A is de�ned by (2.7), the
only case for which uniqueness of a global solution can be obtained is the trivial case
where the cross-di�usion coe�cients K ij are identical to some constantK > 0 for all
0 � i 6= j � n. Indeed, in this case, it can be seen that the system (2.19) can be
written as a set of n independent advection-di�usion PDEs on each of the rescaled
concentration pro�les vi (1 � i � n). Thus, we will have to make some assumption on
the cross-di�usion coe�cients (K ij )0� i 6= j � n in the general case.

We make the following assumption on the di�usion matrix A:

(C1) For any � 2 � , there exists a unique global weak solutionv� to system (2.19) so
that for almost all (t; y) 2 R�

+ � (0; 1), v� (t; y) 2 D.

The goal of the optimization problem consists in the identi�cation of optimal time-
dependent non-negative functions� 2 � so that the �nal thickness of the �lm e� (T)
and the (rescaled) concentration pro�les for the di�erent chemical speciesv� (T; �) at
the end of the fabrication process are as close as possible to desired targets denoted by
eopt > e0 and vopt 2 L 2((0; 1); D).

The real-valued functional J : � ! R de�ned by

8� 2 � ; J (�) := je� (T) � eopt j2 + kv� (T; �) � vopt k2
L 2 (0;1) ; (2.23)

is the cost function we consider here. More precisely, we have the following result, which
is proved in Section 2.4.4.

Proposition 2.6. Under the assumptions of Theorem 2.4, let us make the additional
assumption (C1). Then, the functional J is well-de�ned and there exists a minimizer
� � 2 � to the minimization problem

� � 2 argmin
� 2 �

J (�) : (2.24)

Of course, uniqueness of such a solution� � is not expected in general.
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2.4 Proofs

2.4.1 Proof of Lemma 2.3

Let us prove that the matrix-valued function A de�ned in (2.7) satis�es the assumptions
of Theorem 2.2 with the entropy functional h given by (2.10).

As mentioned in Section 2.2.1, the entropy densityh belongs toC0(D; R) \ C 2(D; R)
(thus is bounded on D), is strictly convex on D, and its derivative Dh : D ! Rn is
invertible. As a consequence,h satis�es assumption (H1) of Theorem 2.2.

Let us now prove that assumption (H2) of Theorem 2.2 is satis�ed withmi = 1
2

for all 1 � i � n. To this aim, we follow the same strategy of proof as the one used
in [JZ14]. Let us prove that there exists� > 0 such that for all u 2 D ,

H (u)A(u) � � �( u); (2.25)

where H (u) := D 2h(u); �( u) := diag

 �
1
ui

�

1� i � n

!

and � := min
0� i 6= j � n

K ij :

This inequality implies (H2) with � = � and mi = 1
2 for all 1 � i � n.

Let u 2 D. We have for all 1 � i; j � n,

H ii (u) =
1
ui

+
1

1 � � u
and H ij (u) =

1
1 � � u

if i 6= j:

Introducing P(u) := ( Pij (u))1� i;j � n , where for all 1 � i; j � n,

Pii (u) = 1 � ui and Pij (u) = � ui if i 6= j;

it holds that H (u)P(u) = �( u). Thus, H (u)A(u) � � �( u) = H (u)(A(u) � �P (u)) .
It can be easily checked thatA(u) � �P (u) = eA(u) + �D (u), where eA(u) has the
same structure asA(u) but with di�usion coe�cients K ij � � instead of K ij , and
D(u) := ( D ij (u))1� i;j � n where D ij (u) = ui for all 1 � i � n.

On the one hand, H (u)D(u) = 1
1� � u

Z where Z is the n � n matrix whose all
coe�cients are identically equal to 1. Since the matrix Z is a semi-de�nite positive
matrix, so is H (u)D(u).

On the other hand, sinceh is strictly convex on D, H (u) eA(u) is semi-de�nite positive
if and only if fM (u) := eA(u)H (u) � 1 is semi-de�nite positive. Indeed, for all z 2 Rn ,

we have zT H (u) eA(u)z = ( H (u)z)T
�

eA(u)H (u) � 1
�

(H (u)z). It can be observed that

fM (u) = ( fM ij (u))1� i;j � n , where for all 1 � i; j � n,

fM ii (u) = ( K i 0� � )(1� � u)ui +
X

1� j 6= i � n

(K ij � � )ui uj and fM ij (u) = � (K ij � � )ui uj if j 6= i:

For all z = ( z1; � � � ; zn )T 2 Rn , we have

zT fM (u)z =
nX

i =1

(K i 0 � � )(1 � � u)ui z2
i +

nX

i =1

X

1� j 6= i � n

(K ij � � )ui uj (z2
i � zi zj );

=
nX

i =1

(K i 0 � � )(1 � � u)ui z2
i +

X

1� i 6= j � n

(K ij � � )ui uj

�
1
2

z2
i +

1
2

z2
j � zi zj

�
;

� 0:
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The matrix fM (u) is indeed a semi-de�nite positive matrix. Hence we have proved
inequality (2.25), which yields the desired result.

2.4.2 Proof of Theorem 2.4

For the sake of simplicity, we will prove the existence of a solutionv on the �nite time
interval [0; T] whereT > 0 is an arbitrary positive constant. Actually, the proof can be
easily adapted to obtain the existence of a global solution for an in�nite time horizon.

The proof follows similar lines as the proof of Theorem 2 of [Jue15a] and is divided
in three main steps. Firstly, an approximate time-discrete problem is introduced for
which uniform bounds are proved in a second step. Lastly, passing to the limit in this
approximate problem using the obtained bounds enables to obtain the existence of a
weak solution.

Step 1 : Approximate time-discrete problem

Let us �rst assume at this point that � 0; � � � ; � n belong to C0([0; T]).

Let N 2 N, � = T
N and � > 0. For all k 2 N� so that k� � T , let us denote by

ek := e(k� ), e0
k := e0(k� ) and ' k = ( � 1;k ; � � � ; � n;k )T := ' (k� ). Let us also de�ne

f k :=

(
' k
e0

k
if e0

k > 0;

0 otherwise;
(2.26)

so that f k 2 D and ' k = e0
k f k .

By assumption, w0(y) := Dh(v0(y)) belongs to L 1 ((0; 1); Rn ). In the rest of the
proof, for any w 2 Rn , we denote by v(w) := ( Dh) � 1(w) = ( vi (w))1� i � n and by
B (w) := M (v(w)) .

Let us already mention at this point that the (formal) weak formulation of (2.19)
reads as follows: for all 2 L 2((0; T); H 1((0; 1); Rn )) ,

� T

0

� 1

0
@t v �  +

� T

0

� 1

0
@y

1
e2  � (A(v)@yv)+

� T

0

� 1

0

e0

e
(v �  + yv�@y  ) =

� T

0

1
e

' �  (�; 1):

Let us �rst prove the following lemma.

Lemma 2.7. Assume that � 0; � � � ; � n 2 C0([0; T]). Then, for all k 2 N� such that
k� � T , there existswk 2 H 1((0; 1); Rn ) solution of

1
�

� 1

0

�
v(wk ) � v(wk� 1)

�
�  +

1
e2

k

� 1

0
@y  � (B (wk )@ywk ) + �

� 1

0
(@ywk � @y  + wk �  )

(2.27)

+
e0

k

ek

� 1

0
(v(wk ) �  + yv(wk ) � @y  ) =

1
ek

' k �  (1);
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for all  2 H 1((0; 1); Rn ). Besides, the following discrete inequality holds for allk 2 N�

such that k� � T ,

1
�

� 1

0
h(v(wk )) + �

� 1

0

�
j@ywk j2 + jwk j2

�
+

1
e2

k

� 1

0
@ywk � (B (wk )@ywk ) (2.28)

�
1
�

� 1

0
h(v(wk� 1)) +

e0
k

ek

�
h(f k ) �

� 1

0
h(v(wk ))

�
:

The proof of this lemma is postponed until Section 2.4.2. Let us point out the
following fact: from (2.28), we obtain

�
1
�

+
e0

k

ek

� � 1

0
h(v(wk )) + �

� 1

0
(j@ywk j2 + jwk j2) +

1
e2

k

� 1

0
@ywk � B (wk )@ywk (2.29)

�
1
�

� 1

0
h(v(wk� 1)) +

e0
k

ek
khkL 1 (D ) ;

which implies

1
�

� 1

0
h(v(wk )) + �

� 1

0
(j@ywk j2 + jwk j2) +

1
e2

k

� 1

0
@ywk � B (wk )@ywk (2.30)

�
1
�

� 1

0
h(v(wk� 1)) + 2

e0
k

ek
khkL 1 (D ) :

Step 2: Uniform bounds

For all 0 � i � n, let (� i;p )p2 N be a sequence of non-negative functions ofC0([0; T])
which weakly-* converges to� i in L 1 (0; T) as p goes to in�nity, and for all p 2 N,

k� i;p kL 1 (0;T ) � k � i kL 1 (0;T ) :

Let us de�ne

' p := ( � 1;p; � � � ; � n;p )T ; and ep(t) := e0 +
� t

0

nX

i =0

� i;p (s) ds:

It holds that (ep)p2 N� strongly converges toe in L 1 (0; T). Indeed, let " > 0. Since
e is continuous on [0; T], it is uniformly continuous, and there exists � > 0 so that
for all t; t 0 2 [0; T] satisfying jt � t0j � � , then je(t) � e(t0)j � "=2. Let M 2 N� and
0 = s0 < s 1 < � � � < s M = T so that for all 0 � j � M � 1, jsj � sj +1 j � � . Then, it
holds that

max
0� j � M

jep(sj ) � e(sj )j �!
p! + 1

0;

because of the weak-* convergence inL 1 [0; T] of (� i;p )p2 N� to � i for all 0 � i � n.
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Thus, there exists p0 2 N� large enough such that for allp � p0, max
0� j � M

jep(sj ) �

e(sj )j � "=2. Besides, the non-negativity of the functions� i and � i;p implies that e and
ep are non-decreasing functions, so that for all0 � j � M � 1 and all p 2 N� ,

8s 2 [sj ; sj +1 ]; e(sj ) � e(s) � e(sj +1 ) and ep(sj ) � ep(s) � ep(sj +1 ):

As a consequence, for allp � p0, all 0 � j � M � 1 and all s 2 [sj ; sj +1 ],

je(s) � ep(s)j � max (je(sj +1 ) � ep(sj )j; jep(sj +1 ) � e(sj )j)

� max (je(sj +1 ) � e(sj )j + je(sj ) � ep(sj )j; jep(sj +1 ) � e(sj +1 )j + je(sj +1 ) � e(sj )j)

� ":

Hence, for all p � p0, ke � epkL 1 (0;T ) � " , which yields the strong convergence of the
sequence(ep)p2 N� to e in L 1 (0; T).

For all k 2 N� such that k� � T , we denote bywk;p a solution to (2.27) associated
to the �uxes (� i;p )0� i � n . The time-discretized associated quantities are denoted (using
obvious notation) by ' k;p, ek;p and e0

k;p.

Let us de�ne the piecewise constant in time functionsw(�;�;p ) (y; t), v(�;�;p ) (y; t),
� � v(�;�;p ) (y; t), e(�;p ) (t) and ed

(�;p ) (t) as follows: for all k � 1 such that k� � T ,
(k � 1)� < t � k� and almost all y 2 (0; 1),

w(�;�;p ) (y; t) := wk;p(y); v(�;�;p ) (y; t) := Dh(wk;p(y)) ; � � v(�;�;p ) (y; t) = Dh(wk� 1;p(y)) ;

e(�;p ) (t) = ek;p; ed
(�;p ) (t) := e0

k;p; ' (�;p ) := ' k;p:

Besides, let us setw(�;�;p ) (0; �) = Dh(v0) and v(�;�;p ) (0; �) = v0. Let us also denote by
(v(�;�;p )

1 ; � � � ; v(�;�;p )
n ) the n components ofv(�;�;p ) .

Then, the following system holds for all piecewise constant in time functions :
(0; T) ! H 1((0; 1); Rn ),

1
�

� T

0

� 1

0

�
v(�;�;p ) � � � v(�;�;p ) )

�
�  dy dt +

� T

0

1
e2

(�;p )

� 1

0
@y  � (B (w(�;�;p ) )@yw(�;�;p ) ) dy dt

(2.31)

+ �
� T

0

� 1

0
(@yw(�;�;p ) � @y  + w(�;�;p ) �  ) dy dt +

� T

0

ed
(�;p )

e(�;p )

� 1

0
v(w(�;�;p ) ) �  

+ yv(w(�;�;p ) ) � @y  ) dy dt

=
� T

0

1
e(�;p )

' (�;p ) �  (1) dt:

The set of piecewise constant functions in time : (0; T) ! H 1((0; 1); Rn ) is dense in
L 2((0; T); H 1((0; 1); Rn )) , so that (2.31) also holds for any 2 L 2((0; T); H 1((0; 1); Rn )) .
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Using the fact that A satis�es assumption (H2) of Theorem 2.2 and the fact that
@ywk;p = D 2h(vk;p)@yvk;p, we obtain for all k 2 N� such that k� � T ,
� 1

0
@ywk;p � (B (wk;p)@ywk;p) =

� 1

0
@yv(wk;p) �

h
D 2h(v(wk;p))A(v(wk;p))@yv(wk;p)

i
dy

�
nX

i =1

� 1

0
�

�
�
�vi (wk;p)

�
�
�
2m i � 2

j@yvi (wk;p)j2 dy

=
nX

i =1

� 1

0
j@yGi (vi (wk;p)) j2 dy

=
� 1

0
j@yG(v(wk;p)) j2 dy;

where Gi (s) :=
p

�
m i

jsjm i for all s 2 (0; 1) and G(z) = ( Gi (zi ))1� i � n for all z :=
(zi )1� i � n 2 (0; 1)n . It follows from (2.30) that for all k 2 N� such that k� � T ,

� 1

0
h(v(wk;p)) + �

� 1

0
j@y e� (v(wk;p)) j2

+ ��
� 1

0

�
j@ywk;p j2 + jwk;p j2

�
� 2� khkL 1 (D )

e0
k;p

ek;p
+

� 1

0
h(v(wk� 1;p)) :

Summing these inequalities yields, fork 2 N� so that k� � T ,

� 1

0
h(v(wk;p)) + �

kX

j =1

� 1

0
j@yG(v(wj;p )) j2 + ��

kX

j =1

� 1

0
(j@ywj;p j2 + jwj;p j2) (2.32)

� 2� khkL 1 (D )

kX

j =1

e0
j;p

ej;p
+

� 1

0
h(v0);

� 2khkL 1 (D )
1
e0

kX

j =1

�e0
j;p +

� 1

0
h(v0);

� 2khkL 1 (D )

(n + 1) k� kL 1 (0;T )

e0
T +

� 1

0
h(v0):

In the sequel, C will denote an arbitrary constant, which may change along the
calculations, but remains independent on� , � , p and � . We are deliberately keeping
here the explicit dependence of the constants onk� kL 1 (0;T ) in view of the proof of
Proposition 2.6. It then holds that

ked
(�;p )kL 1 (0;T ) � Ck� kL 1 (0;T ) and 0 < e0 � k e(�;p )kL 1 (0;T ) � Ck� kL 1 (0;T ) :

We also obtain from (2.32) and the fact that kGi kL 1 (0;1) �
p

�
m i

for all 1 � i � n that

kG(v(�;�;p ) )kL 2 ((0 ;T );H 1 (0;1)n ) � C
�
1 + k� kL 1 (0;T )

�
(2.33)
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and p
� kw(�;�;p )kL 2 ((0 ;T );H 1 (0;1)n ) � C

�
1 + k� kL 1 (0;T )

�
: (2.34)

Since for all 1 � i � n, mi � 1, this implies that

k@yv(�;�;p )
i kL 2 ((0 ;T );L 2 (0;1)) =
















�
�
�v(�;�;p )

i

�
�
�
1� m i

mi
@y

�
jv(�;�;p )

i jm i

�















L 2 ((0 ;T );L 2 (0;1))

(2.35)

=
















�
�
�v(�;�;p )

i

�
�
�
1� m i

p
�

@yGi (v
(�;�;p )
i )
















L 2 ((0 ;T );L 2 (0;1))

� Ck@yGi (v
(�;�;p )
i )kL 2 ((0 ;T );L 2 (0;1)) � C

�
1 + k� kL 1 (0;T )

�
:

Besides,





 A(v( �;�;p ) @y v( �;�;p )








2

L 2 ((0 ;T ); L 2 (0 ;1) n )
�






 A(v( �;�;p ) )








2

L 1 ((0 ;T ); L 1 (0 ;1) n � n )






 @y v( �;�;p )








2

L 2 ((0 ;T ); L 2 (0 ;1) n )

(2.36)

� C
�
1 + k� kL 1 (0 ;T )

�
;

using the fact that A 2 C0(D; Rn� n ).

This yields that for all  2 L 2((0; T); H 1((0; 1); Rn )) ,

1
�

�
�
�
�
�

� T

�

� 1

0
(v( �;�;p ) � � � v( �;�;p ) ) �  dy dt

�
�
�
�
�

�
1
e2

0
kA(v( �;�;p ) @y v( �;�;p ) kL 2 ((0 ;T ); L 2 (0 ;1) n ) k@y  kL 2 ((0 ;T ); L 2 (0 ;1) n )

+ � kw( �;�;p ) kL 2 ((0 ;T ); H 1 (0 ;1) n ) k kL 2 ((0 ;T ); H 1 (0 ;1) n )

+ 2
ked

( �;p ) kL 1 (0 ;T )

e0
kv( �;�;p ) kL 2 ((0 ;T ); H 1 (0 ;1) n ) k kL 2 ((0 ;T ); H 1 (0 ;1) n )

+
1
e0

k� kL 1 (0 ;T ) k kL 2 ((0 ;T ); H 1 (0 ;1) n ) ;

� C
�

1 + k� kL 1 (0 ;T )

�
k kL 2 ((0 ;T ); H 1 (0 ;1) n ) :

This last inequality shows that

1
�

kv(�;�;p ) � � � v(�;�;p )kL 2 (( �;T );( H 1 (0;1)n )0) � C
�

1 + k� kL 1 (0;T )

�
: (2.37)

Step 3: The limit p ! + 1 and �; � ! 0

For all p 2 N� , the functions e0
p and ep are continuous on[0; T], and hence are uniformly

continuous. As a consequence, there exists� p > 0 small enough so that for anyt; t 0 2
[0; T] satisfying jt � t0j � � p, then je0

p(t) � e0
p(t0)j � 1

p and jep(t) � ep(t0)j � 1
p . This

implies in particular that

ked
(� p ;p) � e0

pkL 1 (0;T ) �
1
p

and ke(� p ;p) � epkL 1 (0;T ) �
1
p

:
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These inequalities, together with the fact that (e0
p)p2 N� weakly-* converges toe0 in

L 1 (0; T) (respectively that (ep)p2 N� strongly converges toe in L 1 (0; T)), imply that

the sequence
�

ed
(� p ;p)

�

p2 N�
(respectively

�
e(� p ;p)

�
p2 N� ) also weakly-* converges toe0 in

L 1 (0; T) (respectively strongly converges toe in L 1 (0; T)).

In the following, we consider such a subsequence(� p)p2 N� . The uniform estimates
(2.37) and (2.35) allow us to apply the Aubin lemma in the version of Theorem 1
of [DJ12]. Up to extracting a subsequence which is not relabeled, there existsv =
(vi )1� i � n 2 H 1((0; T); (H 1((0; 1); Rn ))0) \ L 2((0; T); H 1((0; 1); Rn )) so that asp goes to
in�nity and � goes to0,

v(�;� p ;p) �!
p! + 1 ;� ! 0

v;

8
<

:

strongly in L 2((0; T); L 2((0; 1); Rn )) ;
weakly in L 2((0; T); H 1((0; 1); Rn )) ;
and a.e. in (0; T) � (0; 1);

1
� p

�
v(�;� p ;p) � � � p v(�;� p ;p)

�
*

p! + 1 ;� ! 0
@t v weakly in L 2((0; T); (H 1((0; 1); Rn ))0):

Because of the boundedness ofv(�;� p ;p) in L 1 ((0; T); L 1 ((0; 1); Rn )) , the convergence
even holds strongly in L q((0; T); L q((0; 1); Rn )) for any q < + 1 , which is a conse-
quence of the dominated convergence theorem. The latter theorem, together with
A 2 C0(D; Rn� n ) implies also that the convergenceA(v(�;� p ;p) ) �! A(v) holds strongly
in L q((0; T); L q((0; 1); Rn� n )) . Moreover, using (2.36) and (2.34), up to extracting an-
other subsequence, there existsV 2 L 2((0; T); L 2((0; 1); Rn )) so that

A(v(�;� p ;p) )@yv(�;� p ;p) * V weakly in L 2((0; T); L 2((0; 1); Rn )) ;

�w (�;� p ;p) �! 0 strongly in L 2((0; T); H 1((0; 1); Rn )) :

The strong convergence ofA(v(�;� p ;p) ) in L q((0; T); L q((0; 1); Rn )) and the weak conver-
gence of@yv(�;� p ;p) in L 2((0; T); L 2((0; 1); Rn )) implies necessarily thatV = A(v)@yv.

We are now in position to pass to the limit � ! 0 and p ! + 1 in (2.31) with
� = � p and  2 L 2((0; T); H 1((0; 1); Rn )) . Let us recall that

�
e(� p ;p)

�
p2 N� (respec-

tively
�

ed
(� p ;p)

�

p2 N�
) converges strongly (respectively weakly-*) toe (respectively e0) in

L 1 (0; T). We obtain that v is a solution to
� T

0

� 1

0
@t v �  dy dt +

� T

0

1
e(t)2

� 1

0
@y  � (A(v)@yv) dy dt (2.38)

+
� T

0

e0(t)
e(t)

� 1

0
(v �  + yv � @y  ) dy dt =

� T

0

1
e(t)

' �  (1) dt;

yielding the result.

Proof of Lemma 2.7

Proof of Lemma 2.7. We prove Lemma 2.7 by induction using the Leray-Schauder �xed-
point theorem. Let z 2 L 1 ((0; 1); Rn ) and � 2 [0; 1]. We consider the following linear
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problem: �nd w 2 H 1((0; 1); Rn ) solution of

8 2 H 1((0; 1); Rn ); az(w;  ) = l �;z ( ); (2.39)

where

az(w;  ) :=
1
e2

k

� 1

0
@y  � B (z)@yw + �

� 1

0
(@yw � @y  + w �  )

and

l �;z ( ) := �
�
�

� 1

0
(v(z) � v(wk� 1)) �  +

�
ek

' k �  (1) � �
e0

k

ek

� 1

0
(v(z) �  + yv(z) � @y  ):

As a consequence of (H2), the matrixB (z) is positive semi-de�nite for any z 2 Rn .
Thus, the bilinear form az is coercive and continuous onH 1((0; 1); Rn ), and it holds
that

8 2 H 1((0; 1); Rn ); az( ;  ) � � k k2
H 1 (0;1) : (2.40)

Sincev(z) 2 L 1 ((0; 1); Rn ) and kv(z)kL 1 (0;1) � 1, the linear form l �;z is continuous.
From the Agmon inequality, there exists C > 0 independent of � := ( � 0; � � � ; � n ), � or
� such that for all  2 H 1((0; 1); Rn ),

jl �;z ( )j �
�

2
�

+ C k� kL 1 (0;T )

�
k kH 1 (0;1) ; (2.41)

where k� kL 1 (0;T ) = max
i =0 ;��� ;n

k� i kL 1 (0;T ) . It immediately follows from the Lax-Milgram

theorem that there exists a unique solutionw 2 H 1((0; 1); Rn ) to (2.39).

We de�ne the operator S : [0; 1]� L 1 ((0; 1); Rn ) ! L 1 ((0; 1); Rn ) as follows. For all
� 2 [0; 1] and � 2 L 1 ((0; 1); Rn ), S(�; � ) is the unique solution w 2 H 1((0; 1); Rn ) ,!
L 1 ((0; 1); Rn ) of (2.39). We are going to prove that there exists a �xed-point wk 2
H 1((0; 1); Rn ) of the equation S(1; wk ) = wk using the Leray-Schauder �xed-point the-
orem (Theorem 2.8 in the Appendix). This will end the proof of Lemma 2.7 since such
a �xed-point wk is a solution of (2.27).

Let us check that all the assumptions of Theorem 2.8 are satis�ed:

(A1) For all � 2 L 1 ((0; 1); Rn ), S(0; � ) = 0 ;

(A2) Let us prove that S is a compact map. To this aim, let us �rst prove that it is
continuous. Let (� n )n2 N and (� n )n2 N be sequences in[0; 1] and L 1 ((0; 1); Rn )
respectively, � 2 [0; 1] and � 2 L 1 ((0; 1); Rn ) so that � n �!

n! + 1
� and � n �!

n! + 1
�

strongly in L 1 ((0; 1); Rn ). For all n 2 N, let wn := S(� n ; � n ). From assump-
tion (H1) and the global inversion theorem, h : D ! Rn is a C2-di�eomorphism.
Thus, together with the fact that A 2 C0(D; Rn� n ), it holds that the applications
z 2 Rn 7! v(z) = ( Dh) � 1(z) and z 2 Rn 7! B (z) = A(v(z))D 2h((Dh) � 1(z)) =
A(v(z)D

�
Dh � 1

�
(z) are continuous. Hence,v(� n ) �!

n! + 1
v(� ) and B (� n ) �!

n! + 1
B (� )

strongly in L 1 ((0; 1); Rn ) and L 1 ((0; 1); Rn� n ) respectively.

Besides, the uniform coercivity and continuity estimates (2.40) and (2.41) im-
ply that (wn )n2 N is a bounded sequence inH 1((0; 1); Rn ). Thus, up to the
extraction of a subsequence which is not relabeled,(wn )n2 N weakly converges
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to some w in H 1((0; 1); Rn ). Passing to the limit n ! + 1 in (2.39) implies
that w = S(�; � ). The uniqueness of the limit yields that the whole sequence
(wn )n2 N weakly converges toS(�; � ) in H 1((0; 1); Rn ). The convergence thus holds
strongly in L 1 ((0; 1); Rn ) because of the compact embeddingH 1((0; 1); Rn ) ,!
L 1 ((0; 1); Rn ). This proves the continuity of the map S and its compactness
follows again from the compact embeddingH 1((0; 1); Rn ) ,! L 1 ((0; 1); Rn ).

(A3) Let � 2 [0; 1] and w 2 L 1 ((0; 1); Rn ) so that S(�; w ) = w. It holds that (taking
 = w as a test function in (2.39) with � = w),

1
e2

k

� 1

0
@yw � (B (w)@yw) + �

� 1

0
(j@ywj2 + jwj2) = (2.42)

�
�
�

� 1

0
(v(w) � v(wk� 1)) � w +

�
ek

' k � w(1) � �
e0

k

ek

� 1

0
(v(w) � w + yv(w) � @yw):

(2.43)

Let us consider separately the di�erent terms appearing in (2.43). First, by con-
vexity of h, and using the fact that w = Dh(v(w)) , it holds that

�
�

� 1

0
(v(w)� v(wk � 1)) �w =

�
�

� 1

0
(v(w)� v(wk � 1)) �Dh(v(w)) �

�
�

� 1

0
(h(v(w)) � h(v(wk � 1))) :

(2.44)
Besides, using an integration by parts,

�
e0

k

ek

� 1

0
(v(w) � w + yv(w) � @yw) = �

e0
k

ek

�
v(w)(1) � w(1) �

� 1

0
yw � @yv(w)

�
;

= �
e0

k

ek

�
v(w)(1) � Dh(v(w)(1)) �

� 1

0
yDh(v(w)) � @yv(w)

�
;

= �
e0

k

ek

�
v(w)(1) � Dh(v(w)(1)) �

� 1

0
y@y(h(v(w)))

�
;

= �
e0

k

ek

�
v(w)(1) � Dh(v(w)(1)) � h(v(w)(1)) +

� 1

0
h(v(w))

�
: (2.45)

Using (2.26), we obtain

�
ek

' k � w(1) = �
e0

k

ek
f k � Dh(v(w)(1)) : (2.46)

Finally, using (2.43), (2.44), (2.45) and (2.46), and again the convexity ofh, we
obtain

�
�

� 1

0
h(v(w)) + �

� 1

0
(j@y wj2 + jwj2) +

1
e2

k

� 1

0
@y w � (B (w)@y w) (2.47)

�
�
�

� 1

0
h(v(wk � 1)) + �

e0
k

ek

�
(f k � v(w)(1)) � Dh(v(w)(1)) + h(v(w)(1)) �

� 1

0
h(v(w))

�

=
�
�

� 1

0
h(v(wk � 1)) +

e0
k

ek

�
h(f k ) �

� 1

0
h(v(w))

�
:
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This inequality implies that

� kwk2
H 1 ((0 ;1);Rn ) �

�
2
�

+ Ck� kL 1 (0;T )

�
khkL 1 (D ) ;

for some constantC > 0 independent of � , � of � .
All the assumptions of the Leray-Schauder �xed-point theorem are thus satis�ed.

This yields the existence of a �xed-point solutionwk 2 H 1((0; 1); Rn ) to S(1; wk ) = wk .
Besides, using (2.47) with� = 1 , we have the discrete entropy inequality (2.28).

2.4.3 Proof of Proposition 2.5

Let us de�ne by V :=
P n

i =0 � i 2 R�
+ , ' := ( � 1; � � � ; � n )T and f := '

V . From (T1), the
vector f :=

�
f i

�
1� i � n obviously belongs to the setD.

If h de�ned by (2.10) is an entropy density for which A satis�es assumptions (H1)-
(H2)-(H3), then A satis�es the same assumptions with the entropy density

h :
�

D ! R
u 7! h(u) � h(f ) � Dh(f )(u � f ):

Indeed, for all u 2 D , Dh(u) = Dh(u) + g, whereg := Dh(f ) is a constant vector inRn

and D 2h(u) = D 2h(u). Moreover, the entropy density h has the following interesting
property: f is a minimizer of h on D so that h(u) � h(f ) = 0 for all u 2 D. In the rest
of the proof, for all w 2 Rn , we will denote by v(w) = ( vi (w))1� i � n := ( Dh) � 1(w) =
Dh � 1(w � g).

Let
�
w�;k

�
k2 N be a sequence of solutions to the regularized time-discrete problems

(2.27) de�ned in Lemma 2.7 with the constant �uxes (� 0; � � � ; � n ) and the entropy
density h. The entropy inequality (2.28) then reads

1
�

� 1

0
h(v(w�;k )) + �

� 1

0
(j@yw�;k j2 + jw�;k j2) +

1
e2

k

� 1

0
@yw�;k � B (w�;k )@yw�;k (2.48)

�
1
�

� 1

0
h(v(w�;k � 1)) +

e0
k

ek

�
h(f ) �

� 1

0
h(v(w�;k ))

�
:

In our particular case, for all k 2 N, e0
k = V , ek = e0 + V k� and h(f ) = 0 , so that we

obtain
e0 + V(k + 1) �

�

� 1

0
h(v(w�;k )) �

e0 + V k�
�

� 1

0
h(v(w�;k � 1)) � 0:

This implies that for all k 2 N and � > 0,

(e0 + V(k + 1) � )
� 1

0
h(v(w�;k )) � (e0 + V � )

� 1

0
h(v(w0)) : (2.49)

Let us denote by w(�;� ) : R�
+ ! H 1((0; 1); Rn ) the piecewise constant in time function

de�ned by

for a.a. y 2 (0; 1); w(�;� ) (t; y) = w�;k (y) if (k � 1)� < t � k�:
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Let T > 0 and � 2 L 1(0; T) such that � � 0 a.e. in (0; T). Inequality (2.49) and Fubini's
theorem for integrable functions implies that

� T

0

� 1

0

h
(e0 + V(k + 1) � )h(v(w(�;� ) )) � (e0 + V � )h(v(w0))

i
� (t) dy dt � 0:

From the proof of Theorem 2.4, we know that up to the extraction of a subsequence
which is not relabeled,

�
v(w(�;� ) )

�
�;�> 0 converges strongly inL 2

loc(R�
+ ; L 2((0; 1); Rn ))

and a.e. in R�
+ � (0; 1) as � and � go to zero to a global weak solutionv to (2.19).

Using Lebesgue dominated convergence theorem, and passing to the limit�; � ! 0 in
the above inequality yields

� T

0

� 1

0

�
(e0 + V t)h(v) � e0h(v(w0))

�
� (t) dy dt � 0;

which implies that there exists C > 0 such that for almost all t > 0,

(e0 + V t)
� 1

0
h(v) � C; (2.50)

which yields inequality (2.21). In the rest of the proof, C will denote an arbitrary
positive constant independent on the timet > 0.

Furthermore, sincev 2 H 1((0; T); (H 1((0; 1); Rn ))0) \ L 2((0; T); H 1((0; 1); Rn )) ,
it holds that v 2 C0((0; T); L 2((0; 1); Rn )) from [LM12], and the Lebesgue dominated
convergence theorem implies thatt 2 R�

+ 7!
� 1

0 h(v(t; y)) dy is a continuous function.
Inequality (2.50) then holds for all t > 0.

For all 0 � i � n, let us denote byvi (t) :=
� 1

0 vi (t; y) dy. By convention, we de�ne
v0(t; y) := 1 � � v(t;y ) and f 0 := 1 � � f . It can be checked from the weak formulation of
(2.27) that

� 1

0
vi

�
w�;k

�
=

k� i � + e0
� 1

0 v0
i

e0 + V(k + 1) �
:

Passing to the limit �; � ! 0 using the Lebesgue dominated convergence theorem, we
obtain that for almost all t > 0,

vi (t) =
e0

� 1
0 v0

i (y) dy + t� i

e0 + V t
;

so that jvi (t) � f i j �
C

e0 + V t
. The continuity of vi implies that this equality holds for

all t > 0.
The Csizàr-Kullback inequality states that for all t > 0,

kvi (t; �) � vi (t)k
2
L 1 (0;1) � 2

� 1

0
vi (t; y) log

vi (t; y)
vi (t)

dy

= 2
� 1

0
vi (t; y) log

vi (t; y)

f i
dy + 2

� 1

0
vi (t; y) log

f i

vi (t)
dy:
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Thus,

nX

i =0




 vi (t; �) � f i






L 1 (0;1) �
nX

i =0

kvi (t; �) � vi (t)kL 1 (0;1) + jf i � vi (t)j

�

s

2
� 1

0
h(v) +

nX

i =0

" s

2

�
�
�
� log

vi (t)

f i

�
�
�
� + jf i � vi (t)j

#

�

r
C

e0 + V t
:

Hence inequality (2.22) and the result.

2.4.4 Proof of Proposition 2.6

Let (� m )m2 N � � be a minimizing sequence forJ i.e such that

lim
m! + 1

J (� m ) = inf
� 2 �

J (�) :

By de�nition of the set � , the sequence(� m )m2 N is bounded inL 1 (0; T). Thus, up to
a non relabeled extraction, it weakly-* converges to some limit� � 2 � in L 1 (0; T). As
a consequence,

� d
dt e� m

�
m2 N (respectively (e� m )m2 N) converges weakly-* (respectively

strongly) in L 1 (0; T) to d
dt e� � (respectively e� � ).

For eachm 2 N, let v� m be the unique global weak solution to (2.19) associated to
the �uxes � m . Its uniqueness is a consequence of assumption (C1). From the bounds
obtained in the proof of Theorem 2.4 and the boundedness of(� m )m2 N in L 1 (0; T),
it holds that the sequencesk@t v� m kL 2 ((0 ;T );( H 1 (0;1)) 0, kA(v� m )@yv� m kL 2 ((0 ;T );L 2 (0;1)) and
k@yv� m kL 2 ((0 ;T );L 2 (0;1)) are also uniformly bounded inm.

Thus, up to the extraction of a subsequence which is not relabeled, using
the compact injection of L 2((0; T); H 1((0; 1); Rn )) \ H 1((0; T); (H 1((0; 1); Rn ))0) into
C((0; T); L 2((0; 1); Rn )) (see [LM12]), there exists v� 2 L 2((0; T); H 1((0; 1); Rn )) \
H 1((0; T); (H 1((0; 1); Rn ))0) and V� 2 L 2((0; T); L 2((0; 1); Rn )) so that

v� m * v � weakly in L 2((0; T); H 1((0; 1); Rn )) \ H 1((0; T); (H 1((0; 1); Rn ))0);

v� m �! v� strongly in C((0; T); L 2((0; 1); Rn )) and a.e. in (0; T) � (0; 1);

A(v� m )@yv� m * V � weakly in L 2((0; T); L 2((0; 1); Rn )) :

Using similar arguments as in the proof of Theorem 2.4, we also obtain thatV� is
necessarily equal toA(v� )@yv� . Passing to the limit m ! + 1 , we obtain that for all
 2 L 2((0; T); H 1((0; 1); Rn )) ,

� T

0

� 1

0
@t v� �  dt dy +

� T

0

� 1

0

1
e� � (t)2 @y  � (A(v� )@yv� ) dt dy

+
� T

0

d
dt e� � (t)
e� � (t)

� 1

0
(v� �  + yv� � @y  ) dt dy =

� T

0

1
e� � (t)

' � (t) �  (1) dt:
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Assumption (C1) yields v� = v� � . The above convergence results then imply that

J (� m ) �!
m! + 1

J (� � );

and hence� � is a minimizer of problem (2.24). Hence the result.

2.5 Numerical tests

In this section, we present some numerical tests illustrating the results of Section 2.3
on the prototypical example of Section 2.2.1. In Section 2.5.1, we present the numerical
scheme used in our simulations to compute an approximation of a solution of (2.19). In
Section 2.5.2 and Section 2.5.3, some numerical tests which illustrate Proposition 2.5
and Proposition 2.6 are detailed.

2.5.1 Discretization scheme

In view of the optimization problem (2.24) we are aiming at, it appears that a fully
implicit unconditionally stable scheme is needed to allow the use of reasonably large
time steps.

We present here the numerical scheme used for the discretization of (2.19), for the
particular model presented in Section 2.2.1. We do not provide a rigorous numerical
analysis for this scheme here.

Let M 2 N� and � t := T
M . We de�ne for all 0 � m � M , tm := m� t. The discrete

external �uxes are characterized for every0 � i � n by vectors b� i :=
�

b� m
i

�

1� m� M
2

RM
+ , where b� m

i =
� tm

tm � 1
� i (s) ds. For every 1 � m � M , the thickness of the thin �lm

and it derivative at time tm are approximated respectively by

em := e0 +
mX

p=1

nX

i =0

b� p
i � t � e(tm ); and ed

m :=
nX

i =0

b� m
i � e0(tm ):

In addition, let Q 2 N� and � y := 1
Q and yq := ( q � 0:5)� y. For all 0 � i � n,

1 � q � Q and 0 � m � M , we denote byvm;q
i the �nite di�erence approximation of vi

at time tm and point yq 2 (0; 1). Here again, we use the convention thatv0 = 1 � � v .

We use a centered second-order �nite di�erence scheme for the di�usive part of the
equation, and a �rst-order upwind scheme for the advection part, together with a fully
implicit time scheme. Assuming that the approximation

�
vm� 1;q

i

�

0� i � n;1� q� Q
is known,

one computes(evm;q
i )0� i � n; 1� q� Q as solutions of the following sets of equations.
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For all 0 � i � n and 2 � q � Q � 1,
�

evm;q
i � vm� 1;q

i

�

� t
=

ed
m

em
yq

 
evm;q+1

i � evm;q
i

� y

!

(2.51)

+
X

0� j 6= i � n

K ij

e2
m

evm;q
j

 
evm;q+1

i + evm;q� 1
i � 2evm;q

j

2� y2

!

�
X

0� j 6= i � n

K ij

e2
m

evm;q
i

 
evm;q+1

j + evm;q� 1
j � 2evm;q

j

2� y2

!

together with boundary conditions which reads for all0 � i � n,

X

0� j 6= i � n

K ij

em

"

evm;1
j

 
evm;2

i � evm;1
i

� y

!

� evm;1
i

 
evm;2

j � evm;1
j

� y

!#

= 0 ; (2.52)

X

0� j 6= i � n

K ij

em

"

evm;Q
j

 
evm;Q � 1

i � evm;Q
i

� y

!

� evm;Q
i

 
evm;Q � 1

j � evm;Q
j

� y

!#

= � ed
m evm;Q

i + b� m
i :

(2.53)

The nonlinear system of equations (2.51)-(3.6)-(2.53), whose unknowns are(evm;q
i )0� i � n;1� q� Q

is solved using Newton iterations with initial guess
�

vm� 1;q
i

�

0� i � n;1� q� Q
. The obtained

solution does not satisfy in general the desired non-negativeness and volumic constraints.
This is the reason why an additional projection step is performed. For all0 � i � n
and 1 � q � Q, we de�ne

vm;q
i :=

[evm;q
i ]+P n

j =0 [evm;q
j ]+

;

so that

vm;q
i � 0 and

nX

j =0

vm;q
j = 1 :

We numerically observe that this scheme is unconditionally stable with respect to
the choice of discretization parameters� t and � y.

A standard practice in the production of thin �lm CIGS (Copper, Indium, Gallium,
Selenium) solar cells by means of PVD process is to consider piecewise-constant external
�uxes. In the following numerical tests, we consider time-dependent functions of the
form

� i(t) =

8
<

:

� i
1 0 < t � � i

1;
� i

2 � i
1 < t � � i

2;
� i

3 � i
2 < t � T;

(2.54)

where 0 < � i
1 < � i

2 < T and (� i
1; � i

2; � i
3) 2 (R+ )3 are non-negative constants for all

0 � i � n. Besides, we consider initial condition of the form

v0
i (y) =

wi (y)
P n

j =0 wj (y)
80 � i � n; (2.55)
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wherewi : [0; 1] ! R+ are functions which will be precised below. In the whole section,
system (2.19) is simulated with four species (i.e.n = 3 ).

In Figure 2.2 are plotted the results obtained for the simulation of (2.19) with the
following parameters :

� T = 200, M = 200, Q = 100, � t = 1 , � y = 0 :01, e0 = 1 .

� Cross-di�usion coe�cients K ij

j = 0 j = 1 j = 2 j = 3
i = 0 0 0:1141 0:0776 0:0905
i = 1 0:1141 0 0:0646 0:0905
i = 2 0:0776 0:0646 0 0:0905
i = 3 0:0905 0:0905 0:0905 0

� External �uxes of the form (2.54) with � i
1 = 66 and � i

2 = 132 for every 0 � i � n
and with

i = 0 i = 1 i = 2 i = 3
� i

1 0:9 2 0:2 0:7
� i

2 1:4 1:5 1:2 0:3
� i

3 0:9 2 0:2 0:7

� Initial concentrations v0
i of the form (2.55) with w0(y) = y, w1(y) = 2 y, w2(y) =

p
y and w3(y) = 0 .

The pro�le of the external �uxes is plotted in Figure 2.2-(a). In Figure 2.2-(b) and
Figure 2.2-(c) are given respectively the the initial and the �nal concentrations of the
four species.

2.5.2 Long-time behaviour results

In this section is given a numerical illustration of Proposition 2.5. We consider time-
dependent functions of the form

� i (t) = � i ; 80 � t � T: (2.56)

where (� i )0� i � n 2 (R�
+ )n+1 . In Figure 2.3 are plotted the results obtained for the the

simulation of (2.19) with the following parameters :

� T = 2000, M = 2000, Q = 100, � t = 1 , � y = 0 :01, e0 = 1 .

� Cross-di�usion coe�cients K ij

j = 0 j = 1 j = 2 j = 3
i = 0 0 0:1141 0:0776 0:0905
i = 1 0:1141 0 0:0646 0:0905
i = 2 0:0776 0:0646 0 0:0905
i = 3 0:0905 0:0905 0:0905 0
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Figure 2.2 � Simulation of (2.19).

� External �uxes of the form (2.56) with

i=0 i=1 i=2 i=3
� i 0:9 0:8 1:7 0:5

� Initial concentrations v0
i of the form (2.55) with

w0(y) = exp
�

�
(y � 0:5)2

0:04

�
; w1(y) = y2; w2(y) = 1 � w0(y); w3(y) = j sin(�y )j:

For all 0 � i � n, let �vi := � i =
P n

j =0 � j . We consider the time-dependent quantity


 (t) =
1

h(v(t; �))

where the relative entropy h is de�ned in (2.21). We also consider the quantities

� i (t) =
1

kvi (t; �) � �vi k2
L 1 (0;1)
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and
� (t) =

1
nP

i =0
kvi (t; �) � �vi k2

L 1 (0;1)

In Figure 2.3-(a) and 2.3-(b) are plotted respectively the initial and the �nal con-
centration pro�les.

The evolution of (� i (t))0� i � n (respectively � (t) and 
 (t)) with respect to t is shown
in Figure 2.3-(c) (respectively 2.3-(d) and 2.3-(e)). We numerically observe that these
quantities are a�ne functions of t in the asymptotic regime which illustrates the theo-
retical result of Proposition 2.5.

2.5.3 Optimization of the �uxes

The optimization problem (2.24) is solved in practice using an adjoint formulation
associated to the discretization scheme described in Section 2.5.1. We refer the reader
to Chapter 3 for more details and comparisons between our model and experimental
results obtained in the context of thin �lm CIGS solar cell fabrication. To illustrate
Proposition 2.6, we proceed as follows: �rst, we perform a simulation of (2.19) with
external �uxes � sim for a duration T to obtain a �nal thickness e� sim (T) and �nal
concentrations v� sim (T; �), then, we solve the minimization problem (2.24) to obtain
optimal �uxes � � where the target concentrations are

vopt (y) = v� sim (T; y) 8 y 2 (0; 1)

and the target thickness is
eopt = e� sim (T):

Lastly, we perform another simulation of (2.19) with the obtained optimal �uxes � �

and compare the �nal concentrations v� � and the �nal thickness e� � to the target
concentrationsvopt and the target thicknesseopt .

In Figures 2.4-(a), 2.5-(a), 2.6-(a) and 2.7-(a) are plotted the �nal concentration
pro�les v� sim (T; �) resulting from the simulation of (2.19) with the following parameters
:

� T = 120, M = 120, Q = 100, � t = 1 , � y = 0 :01, e0 = 1 .

� Cross-di�usion coe�cients K ij

j = 0 j = 1 j = 2 j = 3
i = 0 0 0:1141 0:0776 0:0905
i = 1 0:1141 0 0:0646 0:0905
i = 2 0:0776 0:0646 0 0:0905
i = 3 0:0905 0:0905 0:0905 0

� External �uxes � sim of the form (2.54) with

i = 0 i = 1 i = 2 i = 3
� i

1 0:9 2 0:2 0:7
� i

2 1:4 1:5 1:2 0:3
� i

3 0:9 2 0:2 0:7
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(a) (b)

(c) (d)

(e)

Figure 2.3 � Long-time behavior in the case of non negative constant external �uxes.
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� Initial concentrations v0
i of the form (2.55) with w0(y) = y, w1(y) = 2 y, w2(y) =

p
y and w3(y) = 0 .

We use a quasi-Newton iterative gradient algorithm for the resolution of the minimiza-
tion problem. At each iteration of the algorithm, the approximate hessian is updated
by means of a BFGS procedure and the optimal step size is the solution of a line search
subproblem. More details on the numerical optimization algorithms can be found in
[JBS06]. The initial guess� 0 is taken of the form (2.56) where� i = 1 for all 0 � i � n.

The algorithm is run until one of the following stopping criterion is reached : either
(J (�) � " ) or (kr � J (�) kL 2 � � ) with " = 10 � 5 and � = 10 � 5.

(a) (b)

Figure 2.4 � Reconstruction of the �nal concentration of the species i = 0 .

(a) (b)

Figure 2.5 � Reconstruction of the �nal concentration of the species i = 1 .

In Figure 2.8-(a) we plot the evolution of the value of the costJ (�) with respect
to the number of iterations.

We numerically observe that all the concentrations are well reconstructed and that
the value of the optimal thicknesse� � = 483:4022is close to the target thicknesse� sim =
483:4. Unlike the external �uxes � sim, the optimal �uxes � � are not piecewise constant.
These tests show that the uniqueness of a solution to the optimization problem (2.24)
can not be expected in general.
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(a) (b)

Figure 2.6 � Reconstruction of the �nal concentration of the species i = 2 .

(a) (b)

Figure 2.7 � Reconstruction of the �nal concentration of the species i = 3 .

Figure 2.8 � Convergence of the BFGS gradient descent algorithm for the minimization prob-
lem (2.24).
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2.6 Conclusion

In this work, we propose and analyze a one-dimensional model for the description of a
PVD process. The evolution of the local concentrations of the di�erent chemical species
in the bulk of the growing layer is described via a system of cross-di�usion equations
similar to the ones studied in [BDFPS10, Jue15a]. The growth of the thickness of the
layer is related to the external �uxes of atoms that are absorbed at the surface of the
�lm.

The existence of a global weak solution to the �nal system using the boundedness
by entropy method under assumptions on the di�usion matrix of the system close to
those needed in [Jue15a] is established. In addition, the entropy densityh is required
to be continuous (hence bounded) on the setD =

�
u = ( ui )1� i � n 2 Rn

+ ;
P n

i =1 ui � 1
	

.
We prove the existence of a solution to an optimization problem under the assump-

tion that there exists a unique global weak solution to the obtained system, whatever
the value of the external �uxes.

Lastly, in the case when the entropy density is de�ned byh(u) =
P n

i =1 ui logui +
(1 � � u) log(1 � � u), we prove in addition that, when the external �uxes are constant
and positive, the local concentrations converge in the long time to a constant pro�le at
a rate which scales likeO

� 1
t

�
.

A discretization scheme, which is observed to be unconditionnaly stable, is intro-
duced for the discretization of (2.19). This scheme enables to preserve constraints (2.5)
at the discretized level.

We see this work as a preliminary step before tackling related problems in higher
dimension, including surfacic di�usion e�ects. Besides, the proof of assumption (C1)
remains an open question in general at least to our knowledge. Lastly, a nice theoretical
question which is not tackled in this paper, but will be the object of future research, is
the characterization of the set of reachable concentration pro�les.
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2.7 Appendix

2.7.1 Formal derivation of the di�usion model (2.3)

We present in this section a simpli�ed formal derivation of the cross-di�usion model
(2.3) from a one-dimensional microscopic lattice hopping model with size exclusion, in
the same spirit than the one proposed in [BDFPS10].
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We consider here a solid occupying the whole spaceR and discretize the domain
using a uniform grid of step size� x > 0. At any time t 2 [0; T], we denote byuk;t

i the
number of atoms of typei (0 � i � n) in the kth interval [k� x; (k + 1)� x) (k 2 Z). Let
� t > 0 denote a small enough time step. We assume that during the time interval� t,
an atom i located in the kth interval can exchange its position with an atom of typej
(j 6= i ) located in one of the two neighbouring intervals with probability pij = pji > 0.
In average, we obtain the following evolution equation foruk;t

i :

uk;t +� t
i � uk;t

i =
X

0� j 6= i � n

pij

�
uk+1 ;t

i uk;t
j + uk� 1;t

i uk;t
j � uk;t

i uk+1 ;t
j � uk;t

i uk� 1;t
j

�

=
X

0� j 6= i � n

pij

h
uk;t

j

�
uk+1 ;t

i + uk� 1;t
i � 2uk;t

i

�
� uk;t

i

�
uk+1 ;t

j + uk� 1;t
j � 2uk;t

j

�i
:

This yields that

uk;t +� t
i � uk;t

i

� t
=

2� x2

� t

X

0� j 6= i � n

pij

"

uk;t
j

uk+1 ;t
i + uk� 1;t

i � 2uk;t
i

2� x2 � uk;t
i

uk+1 ;t
j + uk� 1;t

j � 2uk;t
j

2� x2

#

:

Choosing� t and � x so that these quantities satisfy a classical di�usion scaling2� x2

� t =
� > 0, denoting by K ij := �p ij and letting the time step and grid size go to0, we
formally obtain the following equation for the evolution of ui on the continuous level:

@t ui =
X

0� j 6= i � n

K ij (uj � xui � ui � xuj ) ;

which is identical to the system of equations (2.3) introduced in the �rst section. Of
course, this formal argument can be easily extended to any arbitrary dimension.

2.7.2 Leray-Schauder �xed-point theorem

Theorem 2.8 (Leray-Schauder �xed-point theorem). Let B be a Banach space and
S : B � [0; 1] ! B be a continuous map such that

(A1) S(x; 0) = 0 for each x 2 B ;

(A2) S is a compact map;

(A3) there exists a constantM > 0 such that for each pair (x; � ) 2 B � [0; 1] which
satis�es x = S(x; � ), we havekxk < M .

Then, there exists a �xed-point y 2 B satisfying y = S(y; 1).
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CHAPTER3

SIMULATION OF CIGS LAYER PRODUCTION PROCESS

In this chapter, we report some results of our collaboration work with the IRDEP lab.

Abstract. The one-dimensional model proposed and theoretically analyzed in
Chapter 2 is extended to take into account the evolution of the temperature during
the production process of CIGS thin �lm layer. An Arrhenius law is introduced in or-
der to take into account the temperature dependence of the cross-di�usion coe�cients
and additional surface absorption rates are introduced in order to have a more realistic
simulation of the co-evaporation process. Lastly, an inverse problem is proposed for
the calibration of the values of the di�usion coe�cients and the absorption rates from
experimental measures. The numerical method used to solve the inverse problem is
described and some numerical results are presented.

Contents
3.1 Présentation du modèle . . . . . . . . . . . . . . . . . . . . . . 95

3.2 Discrétisation du système d'EDP . . . . . . . . . . . . . . . . 99

3.3 Post-traitement des données expérimentales . . . . . . . . . 101

3.4 Calibration du modèle . . . . . . . . . . . . . . . . . . . . . . 102

3.4.1 Formulation du problème inverse. . . . . . . . . . . . . . . . . 102

3.4.2 Calcul du gradient par approche duale . . . . . . . . . . . . . 102

3.4.3 Résultats numériques . . . . . . . . . . . . . . . . . . . . . . 105

3.1 Présentation du modèle

Rappelons d'abord de manière succincte, le procédé de déposition de la couche CIGS par
le procédéPhysical Vapor Deposition [Mat10]. Une couche de molybdène est d'abord
déposée sur un substrat de verre. Le "wafer" obtenu est ensuite introduit dans un four
plasma dans lequel sont injectées sous forme gazeuse les di�érentes entités atomiques qui
vont former la couche de CIGS (à savoir le Cuivre, l'Indium, le Gallium et le Sélénium).
Voir la Figure 3.1.



Figure 3.1 � Le procédé de co-évaporation pour la fabrication de cellules solaires à couches
minces de type CIGS. En haut, une vraie image du four plasma (photos prise lors d'une
visite à l'IRDEP en juin 2015). En bas, un schéma explicatif du procédé. Source :
https://www.azonano.com

Le �lm mince de CIGS croît au fur et à mesure que les atomes des di�érentes es-
pèces chimiques injectées se déposent sur le substrat. De plus, comme la température
de l'échantillon est maintenue au cours du procédé à un niveau très élevé, les atomes
des di�érentes espèces chimiques di�usent à l'intérieur du �lm ainsi formé. Les deux
phénomènes suivants doivent donc être pris en compte : la di�usion inter-espèce due à
la température élevée du système et la croissance du �lm due à la déposition des atomes
au cours du temps. Notre modèle proposé et analysé théoriquement dans le Chapitre 2
permet de prendre en compte ces deux phénomènes mais sous les hypothèses simpli-
�catrices suivantes : la di�usion inter-espèce est indépendante de la température et
toutes les espèces sont absorbées par le �lm de la même manière. Ces deux hypothèses
ne permettent pas de reproduire �dèlement les résultats des expériences. Rappelons,
pour mémoire, les équations de notre modèle avant de présenter les extensions qui per-
mettront de l'améliorer et ainsi reproduire plus �dèlement les résultats expérimentaux
obtenus par l'IRDEP.

On note T > 0 la durée totale du procédé de fabrication etA l'ensemble des dif-
férentes espèces chimiques mises en présence lors de la croissance du �lm, qui sont dans
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notre cas : le cuivre (Cu), l'indium (In), le gallium (Ga), le sélénium (Si) et le molyb-
dène (Mo). Les atomes de sélénium sont situés sur un sous sous-réseau cristallin et
ne di�usent pas avec les autre espèces chimiques. Aussi, on peut considérer seulement
l'ensembleA := f Cu; In; Ga; Mo g. Pour tout t 2 (0; T), nous notonse(t) l'épaisseur

Figure 3.2 � Schéma simpli�é du procédé PVD pour la fabrication de la couche CIGS.

du �lm mince à l'instant t. De plus, pour tout x 2 (0; e(t)) et tout A 2 A , nous notons
cA (x; t ) la concentration en l'espèceA à l'instant t et à la profondeurx de l'échantillon.

On suppose qu'à l'instantt = 0 (correspondant au début du procédé), le �lm occupe
un domaine (0; e0) avece0 > 0 (typiquement e0 = 1 �m représente la couche de molyb-
dène déposée en début de fabrication), et que les pro�ls de concentration à l'instant
initial sont connus. Pour tout x 2 (0; e0) et A 2 A , c0

A (x) désigne la concentration à
l'instant t = 0 en l'entité A localement au point x 2 (0; e0). On suppose de plus que
ces pro�ls initiaux véri�ent les conditions suivantes:

8x 2 (0; e0); cA (0; x) = c0
A (x) avecc0

A (x) � 0 et
X

A2A

c0
A (x) = 1 :

Pour tout t 2 (0; T), et pour tout A 2 A , on note � A (t) la valeur du �ux de l'espèce
A imposé à l'instant t lors de la croissance du �lm. On suppose que� A : (0; T) ! R+

est à valeurs positives. En�n, notons K AB le coe�cient de di�usion des atomes de
l'espèceA avec les atomes de l'espèceB pour chaque couple d'espèce(A; B ) 2 A 2.
L'ensemble des équations qui régissent la dynamique de notre système, en fonction des
�ux, de l'épaisseur initiale et des pro�ls de concentrations est donnée par

8
>>>><

>>>>:

e(t) = e0 +
� t

0 � A2A � A (s) ds; t 2 (0; T);
@t cA = divxJA (t; x; c); (t; x ) 2 (0; T) � (0; e(t)) ;
JA (t; 0; c) = 0 ; t 2 (0; T);
JA (t; e(t); c) + e0(t)cA (t; e(t)) = � A (t); t 2 (0; T);
cA (0; x) = c0

A (x); x 2 (0; e0);

(3.1)

où le �ux JA : (0; T) � (0; e(t)) 7! R est dé�ni par

JA (t; x; c) =
X

B 2A ; B 6= A

K AB (cB r xcA � cA r xcB ) (3.2)
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Introduisons maintenant les trois extensions que nous ajoutons au modèle (3.1) a�n
qu'il soit plus descriptif.

1. La température : Notons par � : (0; T) 7! R�
+ le pro�l de température à l'intérieur

du �lm au cours du temps, que l'on suppose homogène pour simpli�er.

2. Les coe�cients de di�usion : Considérons que la dépendance des coe�cients de
di�usion inter-espèces en la températeure est donnée par une loi d'Arrhénius.
Plus précisément, la valeur du coe�cient K AB entre l'espèceA et l'espèceB en
fonction de la température � (t) de l'échantillon est supposée être de la forme

K AB (� (t)) = DAB exp
�

�
EAB

�� (t)

�

où � est la constante de Boltzmann1, DAB et EAB sont des constantes positives
à déterminer pour chaque couple(A; B ) 2 A 2.

3. Les taux d'absorption : Lors du procédé d'évaporation, les taux d'absorption des
di�érentes espèces chimiques par la surface le �lm en formation ne sont pas for-
cément égaux (les atomes de cuivre sont par exemple mieux absorbés que ceux
de l'indium ou du gallium). On introduit donc pour chaque espèceA 2 A un
paramètre � A 2 R+ qui modélise le taux d'absorption des atomes de typeA à la
surface du �lm en cours de formation. Ceux-ci, pour simpli�er, sont supposés être
indépendats de la tempéréture de l'échantillon.

Le nouveau système d'équations prenant en comptes ces extensions s'écrit alors:
8
>>>><

>>>>:

e(t) = e0 +
� t

0 � A2A � A � A (s) ds; t 2 (0; T);
@t cA = divxJA (t; x; c); (t; x ) 2 (0; T) � (0; e(t)) ;
JA (t; 0; c) = 0 ; t 2 (0; T);
JA (t; e(t)c) + e0(t)cA (e(t); t) = � A � A (t); t 2 (0; T);
cA (0; x) = c0

A (x); x 2 (0; e0)

(3.3)

avec le �ux JA donné par

JA (t; x; c) =
X

B 2A ; B 6= A

K AB (� (t)) ( cB r xcA � cA r xcB ) (3.4)

Bien que les résultats produits par ce modèle simple soient satisfaisants, il est im-
portant de signaler ici quelques limitations de ce modèle.

D'une part, les e�ets de géométrie 3D (rugosité de surface, inhomogénéités lon-
gitudinales,...) ne sont pas pas pris en compte dans ce modèle 1D. D'autre part, la
formation et la propagation de défauts dans la structure cristalline du �lm ne sont pas
prises en compte. Toutefois, l'évolution des défauts de types lacunes ou impuretés peut
être décrite par ce modèle en considérant ces défauts comme des espèces chimiques
supplémentaires. En�n, lors du dépôt des atomes dans le four à haute température,
il se trouve que des réactions chimiques peuvent avoir lieu entre les di�érentes espèces
comme par exemple la réaction CuInSe2 � Cu + In + 2Se. Ces éventuelles réactions
chimiques sont également ignorées.

1 � = 1 ; 38064852� 10� 23 m2kgs� 2K � 1 .
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3.2 Discrétisation du système d'EDP

Cette section est dédiée au schéma numérique utilisée pour lé résolution du système (3.3).
Le schéma présenté ici a déjà été partiellement décrit dans la Section 2.5.1 du chapitre
précédent. Cela dit, pour des raisons de clarté et dans le but de �xer les notations
qu'on utilisera dans la suite, nous allons rappeler brièvement la dérivation du schéma.
A l'aide du changement de variablesy = x

e(t ) , les équations (3.3) sont reformulées a�n
de se ramener à un domaine de référence(0; 1) qui ne dépend plus du temps. Le système
suivant d'inconnues uA : (0; T) � (0; 1) 3 (t; y) 7! uA (t; y) 2 R pour A 2 A est ainsi
obtenu

8
>>>>><

>>>>>:

e(t) = e0 +
� t

0 � A2A � A � A (s) ds; t 2 (0; T);
@t uA = e0(t )

e(t ) y@yuA + 1
e2 (t ) divyJA (t; y; u); (t; y) 2 (0; T) � (0; 1);

1
e(t ) JA (t; 0; u) = 0 ; t 2 (0; T);

1
e(t ) JA (t; 1; u) + e0(t)uA (t; 1) = � A � A (t); t 2 (0; T);
uA (0; y) = u0

A (y); y 2 (0; 1);

(3.5)

A�n de résoudre numériquement le système (3.5)-(3.4), on introduit les grilles de
discrétisation uniformes en temps et en espace suivantesf 0 = t0; t1; � � � ; tN = Tg et
f 0 = y0; y1; � � � ; yI = 1g où tn := n� t pour 1 � n � N et yi := i � y pour 1 � i � I
avec �t = T

N et �y = 1
I pour des valeursN; I 2 N� choisies. Le pro�l de température

ainsi que les �ux sont discrétisés comme suit

� n
A �

� tn

tn � 1

� A (s)ds; � n �
� tn

tn � 1

� (s)ds; 8A 2 A ; 81 � n � N:

Notons e0 = e0 l'épaisseur initiale de l'échantillon. Pour tout 1 � n � N , l'épaisseur de
la couche ainsi que sa dérivée sont approchées respectivement par

en = e0 +
nX

k=1

X

A2A

� A � k
A � t � e(tn ); ed

n =
X

A2A

� A � n
A � e0(tn ):

L'approximation par des di�érences �nies de la solution continue uA à l'instant
tn 2 (0; T) au point yi 2 (0; 1) sera notéeui;n

A . On approche le terme de di�usion
par une di�érence �nie d'ordre deux et le terme d'advection par une di�érence �nie
d'ordre un décentrée en les pointsy1 � yi � yI � 1 et centrée en le point yI . On
utilise un schéma d'Euler implicite pour la discrétisation en temps. Supposons que
l'approximation (ui;n � 1

A )A2A soit connue, alors(~ui;n
A )A2A est obtenue comme solution

du système suivant : Pour tout A 2 A et 2 � i � I � 1,

�
eui;n

A � ui;n � 1
A

�

� t
=

ed
n

en
yi

 
eui +1 ;n

A � eui;n
A

� y

!

+
X

B 6= A

K AB (� n )
e2

n
eui;n

B

 
eui +1 ;n

A + eui � 1;n
A � 2eui;n

A

2� y2

!

�
X

B 6= A

K AB (� n )
e2

n
eui;n

A

 
eui +1 ;n

B + eui � 1;n
B � 2eui;n

B

2� y2

!
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avec des conditions au bords qui s'écrivent pour toutA 2 A comme

X

B 6= A

K AB (� n )
en

 

eu1;n
B

 
eu2;n

A � eu1;n
A

� y

!

� eu1;n
A

 
eu2;n

B � eu1;n
B

� y

!!

= 0 (3.6)

X

B 6= A

K AB (� n )
en

 

euI;n
B

 
euI � 1;n

A � euI;n
A

� y

!

� euI;n
A

 
euI � 1;n

B � euI;n
B

� y

!!

= � ed
n euI;n

A + � A � n
A :

(3.7)

L'ensemble de ces équations peut s'écrire de manière équivalente sous forme matricielle:
pour tout A 2 A et tout 1 � n � N :

�
eun

A � un� 1
A

�

� t
=

ed
n

en
Mu n

A + Pn
A +

X

B 6= A

K AB (� n )
e2

n
(eun

B � D eun
A � eun

A � D eun
B ) (3.8)

où pour chaque1 � n � N et chaqueA 2 A , on pose~un
A = (~u1;n

A ; � � � ; ~uI;n
A ) et où les

matrices Pn
A 2 RI , M 2 RI � I et D 2 RI � I sont données par

81 � i � I; (Pn
A ) i = � iI

� n
A

2� yen

81 � j � I ; 1 � i � I � 1; (M ) i;j = � i;j
� yi

� y
+ � i +1 ;j

yi +1

� y
;

(M )I;I � 1 =
� yi

� y
;

(M )I;I =
yi

� y
�

yi

� y
et

81 � i; j � I � 1; (D ) i;j = � i;j
� 2

2� y2 + � i +1 ;j
1

2� y2 + � i;j +1
1

2� y2 ;

(D )1;1 = ( D)I;I =
� 1

2� y2 ;

(D )1;2 = ( D)I � 1;I =
1

2� y2 :

Le produit de Hadamard noté� étant dé�ni pour toutes matrices A; B 2 Rm� n comme
suit

81 � i � m , 1 � j � n; (A � B ) i;j := ( A) i;j (B ) i;j :

Le système non linéaire (3.8) d'inconnus(eun
A )1� i � I , pour A 2 A est en pratique

résolu par une méthode itérative de Newton prenantun� 1
A comme point initial. Cepen-

dant, les solutions obtenues ne satisfont en général pas les contraintes de positivité et de
renormalisation souhaitées. Aussi, on applique une étape de projection pour garantir
l'obtention de concentration comprises entre 0 et 1, dont la somme vaut 1. Pour tout
A 2 A et 1 � i � I , on pose

ui;n
A =

f (eui;n
A )

P
B 2A f (eui;n

B )
; où f :

�
R ! [0; 1]
x 7! f (x) = max(0 ; min(1; x)) :

Cette dernière étape du schéma numérique permet d'assurer que pour tout1 � i � I ,
pour tout 1 � n � N et pout tout A 2 A

0 � ui;n
A � 1 et

X

A2A

ui;n
A = 1 :
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3.3 Post-traitement des données expérimentales

Dans cette étude nous avons considéré un ensemble deM pro�ls expérimentaux fournis
par l'équipe de l'IRDEP. A chacune desM expériences, une cellule photovoltaïque de
type CIGS a été fabriquée selon le procédé de co-évaporation. Les concentrations �nales
des di�érentes entités chimiques ont été ensuite mesurées pour chaque cellule.

Pour chaque expérience1 � m � M , on récupère l'épaisseur �nale de la cellule
em (Tm ) et les valeurs des concentrations en des points spéci�ques sur une grille uniforme
e1 = y1 < y 2 < y 3 < ::: < y I = em (Tm ) où e1 = 85nm. Les mesures ne peuvent pas être
faites sur toute l'épaisseur du �lm en raison de contraintes techniques.

L'évaporation des atomes s'e�ectue en plusieurs étapes : d'abord, l'Indium et le
Gallium sont évaporés sous une températureT1 pendant un tempst1 ensuite le Cuivre
sous une températureT2 pendant un tempst2, et après un temps de repos� � , l'Indium
et le Gallium sont évaporés de nouveau sous la températureT3 = T2 et pendant un
temps t3. Le solide est �nalement retiré du four et laissé (refroidir) à la température
ambiante pendant un tempst4. Voir le schéma à la Figure 3.3.

Figure 3.3 � Pro�ls de température et des �ux utilisés dans le production des couches minces
de CIGS pour cette étude. Le protocole expérimental est détaillé dans la thèse [Kli15]

Pour chaque expérience1 � m � M , les duréesf tm
1 ; tm

2 ; tm
3 ; tm

4 ; � � m g et les tem-
pératuresf � m

1 ; � m
2 ; � m

3 g de chaque régime ainsi que les valeursf � In;m ; � Ga;m ; � Cu;m g des
�ux injectés au cours du temps sont récupérés. Comme les mesures de concentrations
sont faites seulement à partir de l'épaisseure1 et que le sélénium n'est pas considéré
dans le modèle, on renormalise les �ux de sorte que la relation de conservation de masse
suivante soit véri�ée

NX

n=1

Tm

N
(� Ga;m + � In;m + � Cu;m ) = em (Tm ) � em (0) (3.9)

où Tm := ( tm
1 + tm

2 + tm
3 + t4 + � � m )=N est le temps total de l'expérience. L'épaisseur

initiale e0 = 1 � m est la même pour chaque expérience car le substrat est recouvert
initialement d'une couche de1� m de Molybdène pur.
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3.4 Calibration du modèle

Nous expliquons dans cette section, comment les valeurs optimales pour les pré-facteurs
DAB , les énergies d'activationEAB et les taux d'absorption � A sont identifées à partir
de données expérimentales. Il s'agit de résoudre un problème inverse de calibration de
paramètres.

3.4.1 Formulation du problème inverse.

Pour chacune des expériences1 � m � M , on note (zi
A;m )1� i � I =: zA;m 2 RI le pro�l

mesuré de concentration �nale de l'espèceA. On note Tm le temps total de l'expérience
et em (Tm ) l'épaisseur �nale du �lm produit.

Pour alléger les notations, on introduit l'ensemble
 := R2jAj � R2jAj � [0; 1]jAj .
Considérons la fonctionJ : 
 3 (D; E; � ) 7! J (D; E; � ) =

P M
m=1 J m ((D; E; � )) 2 R+

avec pour chaque1 � m � M ,

J m (D; E; � ) :=
X

A2A

IX

i =1

� y
�

ui;N
A � zi

A;m

� 2

où uN
A;m := ( ui;N

A;m )1� i � I est la solution au temps �nal tN du système (3.3) par le schéma
numérique décrit dans la Section 3.2 avec les valeurs(D; E; � ). L'objectif est donc de
résoudre le problème d'optimisation sous contraintes suivant

(D � ; E � ; � � ) 2 argmin(D;E;� )2 
 J (D; E; � ); (3.10)

1 � m � M; e0 +
X

A2A

NX

k=1

� A � k
A;m = em (Tm ): (3.11)

Ce problème est en pratique résolu par une méthode de gradient itérative adaptée
aux problèmes d'optimisation sous contraintes: l'optimisation quadratique successive
(SQP)[NW06, GMSW17].

Remarque. La même expression de la fonction de coût est utilisée pour trouver le pro�l
de température optimal ainsi que les pro�ls de �ux optimaux permettant d'atteindre
des concentrations �nales cibles. De plus, les arguments théoriques présentés dans le
Chapitre 2 pour prouver l'existence de solutions au problème d'optimisation des �ux
sont applicables au problème d'optimisation du pro�l de température.

3.4.2 Calcul du gradient par approche duale

Dans cette section, nous présentons le calcul du gradient de la fonctionnelle de coût par
rapport aux di�érentes variables � 2 f (DAB ; EAB ; � A g 2 
 . L'indice m sera omis dans
la suite a�n d'alléger les notations.

D'abord, une simple application des règles de dérivations donne

@� J (� ) = 2
X

A2A

� yhuN
A � zA ; @� uN

A i
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où la notation hzN
A ; zA i désigne le produit scalaire usuel

P I
i =1 ui;N

A zi
A entre les vecteur

uN
A 2 RI et zA 2 RI . Le terme @� un

A est calculé par approche duale comme suit :

Etape 1: dynamique de @� un
A . En dérivant les termes de l'équation (3.8) par

rapport à la variable � , on obtient la dynamique suivante véri�ée par @� ~un
A pour tout

1 � n � N .

@� eun
A = @� un� 1

A

+ � t@� Pn
A

+ � t@�

�
ed

n

en

�
M eun

A + � t
�

ed
n

en

�
M@� eun

A

+ � t
X

B 2A ;B 6= A

@�

�
K AB (� n )

e2
n

�
(eun

B � D eun
A � eun

A � D eun
B )

+ � t
X

B 2A ;B 6= A

�
K AB (� n )

e2
n

�
(@� eun

B � D eun
A )

+ � t
X

B 2A ;B 6= A

�
K AB (� n )

e2
n

�
(eun

B � D@� eun
A )

+ � t
X

B 2A ;B 6= A

�
K AB (� n )

e2
n

�
(� eun

A � D@� eun
B )

+ � t
X

B 2A ;B 6= A

�
K AB (� n )

e2
n

�
(� @� eun

A � D eun
B ) :

Reformulé autrement,

@� eun
A = @� un� 1

A + H n
A +

X

B 2A

Gn
AB @� eun

B (3.12)

où pour tout A; B 2 A , les matricesHA 2 RI et GAB 2 RI � I sont données par

H n
A = @� Pn

A + � t@�

�
ed

n

en

�
M eun

A + � t
X

B 2A ;B 6= A

@�

�
K AB (� n )

e2
n

�
(eun

B � D eun
A � eun

A � D eun
B ) :

et

Gn
AB =

8
>><

>>:

� t
�

ed
n

en
M

�
+ � t

P

B 02A ;B 06= A

�
K AB 0( � n )

e2
n

�
(	 n

B 0 � diag(D eun
B 0)) ; si A = B;

� t
�

K AB ( � n )
e2

n

�
(diag(D eun

A ) � 	 n
A ) ; si A 6= B

avec les matrices(	 A )A2A 2 RI � I dé�nies pour tous 1 � i; j � I par (	 n
A ) i;j = D i;j eui;n

A .

Notons maintenant par eUn := ( eun
A )A2A 2 RI �jAj et par H n := ( H n

A )A2A 2 RI �jAj

et dé�nissons par blocs la matriceOn 2 R(I �jAj )� (I �jAj ) comme suit

On
AB =

8
<

:

I � Gn
AA ; si A = B;

� Gn
AB ; si A 6= B:
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La dynamique (3.12) s'écrit alors de manière équivalente comme

@� eUn = ( On ) � 1@� Un� 1 + ( On ) � 1H n (eu):

Rajoutons maintenant l'étape de projection. Pour ce faire on introduit la matrice
W n 2 R(I �jAj )� (I �jAj ) de sorte à obrenir la relation

W n@� eUn = @� Un :

Pour tout 1 � n � N , la matrice W n 2 R(I �jAj )� (I �jAj ) est dé�nie par blocs :

W n :=

0

B
B
@

� n
AA � n

AB � n
AC � � �

� n
BA � n

BB � n
BC � � �

� n
CA � n

CB � n
CC � � �

� � � � � � � � � � � �

1

C
C
A :

Finalement, la dynamique de@� Un s'écrit

@� Un � @� Un� 1

� t
=

(I � W n (On ) � 1)
� t

@� Un� 1 +
W n (On ) � 1H n

� t
=: L n@� Un� 1 + X n :

Etape 2: problème dual. On cherche la solutionQn 2 RI �jAj pour 1 � n � N
au problème suivant

QN
A = 2

X

A2A

� y(uN
A � zA ) (3.13)

Qn� 1 = Qn + � t(L n )T Qn : (3.14)

Les equations (3.13) et (3.14) dé�nissent un problème adjoint (car il fait intervenir les
solutions un

A du problème direct) et backward en temps car la solution à chaque instant
n � 1 est donnée en fonction de la solution à l'instantn. Il faut donc d'abord résoudre
le problème direct pour obtenir les solutionsun

A , ensuite résoudre le problème dual par
récurrence inversée.

Etape 3: l'expression du gradient. On a maintenant tous les ingrédients néces-
saires pour évaluer le gradientr � J à l'aide du calcul suivant :

NX

n=1

h
� Qn + Qn� 1

� t
; @� Un� 1i =

NX

n=1

h(L n )T Qn ; @� Un� 1i

=
NX

n=1

hQn ; L n@� Un� 1i

=
NX

n=1

hQn ;
@� Un � @� Un� 1

� t
i �

NX

n=1

hQn ; X n i :
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Ainsi

NX

n=1

hQn ; X n i =
NX

n=1

hQn ;
@� Un � @� Un� 1

� t
i �

NX

n=1

h
� Qn + Qn� 1

� t
; @� Un� 1i

=
1

� t

NX

n=1

hQn ; @� Un i � h Qn ; @� Un� 1i + hQn ; @� Un� 1i � h Qn� 1; @� Un� 1i

=
1

� t
hQN ; @� UN i � h Q0; @� U0i

=
2

� t

X

A2A

� yh(uN
A � zA ); @� uN

A i :

En conclusion, on a

@� J (� ) = � t
NX

n=1

hQn ; X n i :

3.4.3 Résultats numériques

Dans cette section nous présentons quelques résultats numériques obtenus en utilisant
le logiciel de calcul scienti�queMATLAB .

Les valeurs optimales obtenues pour les pré-facteursD �
AB , les énergies d'activation

E �
AB ainsi que les taux d'absorption � �

A sont données respectivement dans les Ta-
bles 3.2, 3.1 et 3.3. Les paramètres numériques utilisés sont les suivants :

� Les données :M = 12 (calibration sur 12 pro�ls expérimentaux).

� Point initial de la minimisation : pour tout A; B 2 f Cu; In; Ga; Mog,

D 0
AB = 10 � 3 � (1 � � AB ) � m2min � 1;

E 0
AB = 10 � 1 � (1 � � AB ) eV;
� 0

A = 1 :

� Taille des grilles en temps et en espace :� t = 0 :5 et I = 50.

Pour illustrer le résulat de la calibration, nous prenons une desM expériences dont
les pro�ls de �ux et de température au cours du temps sont tracés sur la Figure 3.4. Les
concentrations �nales des espèces chimiques mesurées expérimentalement ainsi que les
concentrations �nales obtenue comme solution du système (3.3) en utilisant les valuers
optimales des Tables 3.2, 3.1, 3.3 sont tracées sur la Figure 3.5.

Cu In Ga Mo
Cu 0 1.03 0.99 1.11
In 1.03 0 1.01 1.00
Ga 1.11 1.01 0 1.00
Mo 1.11 1.00 1.00 0

Table 3.1 � Valeurs optimales des énergies d'activationE � [10� 1eV]

105



Cu In Ga Mo
Cu 0 8.243 2.837 0.012
In 8.243 0 0.016 0.010
Ga 2.837 0.016 0 0.010
Mo 0.012 0.010 0.010 0

Table 3.2 � Valeurs optimales des préfacteursD � [10� 2cm2s� 1]

Cu In Ga Mo
1.20 0.44 0.90 0

Table 3.3 � Valeurs optimales des paramètres(� A )A 2A .

(a) Flux

(b) Température

Figure 3.4 � Pro�ls de �ux et de température associés à l'une desM expériences utilisées pour
la calibration.
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Figure 3.5 � Comparaison entre les concentrations issues des mesures expérimetales de l'une des
M expériences et les concentrations �nales associées au �ux de la Figure 3.4 obtenues comme
solution du système (3.3) en utilisant les valeurs optimales des Tables 3.2, 3.1 et 3.3.
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Part II

Electronic Structure





CHAPTER4

ELECTRONIC STRUCTURE OF PERFECT CRYSTALS

Abstract. Many electrical and optical properties of crystalline materials can be ex-
plained in terms of their electronic structures . The aim of this chapter is to present
a concise overview of the standard mathematical tools used in electronic structure cal-
culations.
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A perfect crystal is a solid material composed of an in�nite number of nuclei that
are periodically arranged in space (see the schematic representation in Figure 4.1). Let
d 2 N� denote the space dimension of the crystal and letR denote the associated
periodic lattice on Rd. In quantum mean-�eld models, the electronic structure of the
considered crystal is characterized by the spectral properties of a periodic Schrödinger
operator (called the Hamiltonian of the crystal) of the form

A = � � + V

acting on L 2(Rd; C) where V is a real-valuedR� periodic potential. In Density Func-
tional Theory (DFT), the potential V is obtained as a solution of some nonlinear self-
consistent equation [CLBM06].



Figure 4.1 � A schematic representation of a perfect crystal in 3D.

Under some assumptions on the potentialV , the operator A is self-adjoint and its
spectral decomposition can be characterized using the so-called Bloch-Floquet transform
presented hereafter. This chapter is organized as follows: Section 4.1 is dedicated to
classical results concerning direct integrals of Hilbert spaces, Bloch-Floquet theory and
the spectral decomposition of periodic Schrödinger operators. Inverse spectral problems
are discussed in Section 4.2 together with a summary of our contributions to these
problems. Section 4.3 is devoted to the presentation of classical results on Wannier
functions along with a brief summary of our contribution.

4.1 Spectral Properties of Periodic Schrödinger Operators

4.1.1 Direct Integrals of Hilbert Spaces

The notion of direct integrals of Hilbert spaces was �rst introduced in 1949 by John
Von Neumann in his paper on ring operators [Neu49] and has later become a key-tool
in the Bloch-Floquet theory. Only the main de�nitions and results are gathered in this
section. The reader is referred to [RS78b, Pan, Wil70] for a deeper analysis. Letd 2 N�

denote the space dimension and consider a Borelian setM � Rd.

De�nition 4.1 (Direct integral [RS78b] ŸIII.16). Let (H q)q2M be a family of separable
Hilbert spaces. The vector space denoted by

� �
M H qdq and de�ned as follows

� �

M
H qdq :=

n
 = (  q)q2M

�
� 8q 2 M ;  q 2 H q;

�
M k qk2

H q
dq < 1

o
(4.1)

is called thedirect integral of the spaces(H q)q2M . A vector of this space is denoted
by  =

� �
M  qdq.

Endowed with the inner product

8�;  2 H ; h� j i :=
�

M
h� qj qi H q dq;

the space
� �

M H qdq is a Hilbert space.
Let us recall here some well-known notions about the decomposition of operators on

Hilbert spaces that are isomorphic to direct integrals of �ber spaces.
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De�nition 4.2 (Direct decomposition of operators [RS78b] ŸIII.16). Let H be a separa-
ble Hilbert space and let

� �
M H qdq be the direct integral of the family(H q)q2M . Consider

an isometric isomorphism1 U : H !
� �

M H qdq. Then,

1- a bounded operatorT 2 L (H) is said to be decomposable byU if for almost all
q 2 M there exists a bounded operatorTq 2 L (H q) and with essup

q2M
kTqkL (H q ) < 1

such that, for all � 2 H , (U(T � ))q = Tq(U� )q.

2- a self-adjoint operatorT is said to be decomposable byU if the (bounded) operator
(T � i) � 1 is decomposed byU.

The notation T = U� 1
� � �

M Tqdq
�

U is used whenT 2 L (H) is decomposable byU

and the operators(Tq)q2M are sometimes called the�bers of T. Moreover, the following
holds

kTkL (H ) = ess sup
q2M

kTqkL (H q ) :

The characterization given in Proposition 4.3 is used to decompose self-adjoint opera-
tors, which are of particular interest in our context.

Proposition 4.3 (Decomposition of self-adjoint operators [RS78b] ŸIII.16). A self-
adjoint operator T acting on the separable Hilbert spaceH with domain D(T) is decom-
posed byU if and only if for almost all q 2 M , there exists a self-adjoint operatorTq

acting on H q with domain D(Tq) such that:

1. the function q 2 M 7! k (Tq + i ) � 1kL (H q ) is measurable;

2. D(T) =
n

� 2 H
�
� (U� )q 2 D (Tq) a:e and

�
M kTq(U� )qk2

H q
dq < 1

o
;

3. for all � 2 D (T), T � = U� 1
� �

M Tq(U� )qdq
�
.

We conclude this section by a major result on the characterization of the spectrum of a
self-adjoint decomposable operator using the spectra of its �bers. This characterization
used in conjunction with the Bloch-Floquet decomposition discussed in Section 5.2.1,
is an essential tool for the characterization of the spectrum of periodic Schrödinger
operators.

Proposition 4.4 (Spectrum of decomposed self-adjoint operators [RS78b] ŸIII.16). Let

T = U� 1
� � �

M Tqdq
�

U be a self-adjoint operator onH decomposed byU. We denote by

� (T) the spectrum ofT and by � p(T) � � (T) its point spectrum. Then, the following
statements hold

� 2 � (T) , jf q 2 M ; (� � "; � + " ) \ � (Tq) 6= ;gj > 0; 8" > 0;
� 2 � p(T) , jf q 2 M ; � 2 � p(Tq)gj > 0:

1We use the same terminology as in [RS78a]. See Chapter III, page 71.
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4.1.2 Bloch-Floquet Transform

The Bloch-Floquet transform was �rst introduced by the mathematician Gaston Floquet
[Flo83] for the study of di�erential equations with periodic coe�cients and then by the
physicist Felix Bloch [Blo29] in the context of electronic structure. This transform is
strongly linked to the symmetry properties of the crystalline materials. Let us �rst
recall some basic notions of crystallography. Let(a1; � � � ; ad) be a basis ofRd. The
Bravais lattice R associated to the basis(a1; � � � ; ad) is de�ned by

R :=

8
<

:
R 2 Rd; R =

dX

j =1

nj aj j nj 2 Z; 1 � j � d

9
=

;
: (4.2)

An admissible unit cell of R is given by

� :=

8
<

:

dX

j =1

� j aj ; � 1=2 � � j < 1=2; 1 � j � d

9
=

;
: (4.3)

Let (a�
1; � � � ; a�

d) be the dual basis associated to(a1; � � � ; ad). These vectors are uniquely
de�ned through the relations

a�
j � ai = 2 �� ij ; 81 � i; j � d:

The dual lattice R � of R is then de�ned by

R � :=

8
<

:
K 2 Rd; K =

dX

j =1

mj a�
j j mj 2 Z; 1 � j � d

9
=

;
: (4.4)

The �rst Brillouin zone � � of the lattice R is de�ned as the Wigner-Seitz cell of the
dual lattice R � , that is the set of points of Rd that are closer to the origin than to any
other point of R � . More precisely,

� � :=
n

q 2 Rd; jqj � j q � K j; 8K 2 R �
o

: (4.5)

In the remaining sections, unless there is an ambiguity, we use the notationL 2 for
the Hilbert space L 2(Rd; C). The Bloch-Floquet decomposition relies on the theory of
direct integrals. There are two equivalent versions of the Bloch-Floquet decomposition
(Theorem 4.5 and Theorem 4.6) that show how to decomposeL 2 into a direct inte-
gral of two di�erent families of �ber spaces. Before we state the two versions of the
decomposition, let us introduce the de�nition of the involved spaces. Lets 2 N� ,

L 2
per :=

�
u 2 L 2

loc j u is R-periodic
	

;
H s

per := f u 2 H s
loc j u is R-periodicg:

(4.6)

It is classically known that the spacesL 2
per and H s

per endowed respectively with the
inner products

8v; w 2 L 2
per; hv; wi L 2

per
=

�
� vw;

8v; w 2 H s
per; hv; wi H s

per
=

P

� 2 Nd ;j� j� s
h@� v; @� wi L 2

per
(4.7)
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are Hilbert spaces. Moreover, we de�ne for everyq 2 � � the following spaces

L 2
q :=

�
 2 L 2

loc j Rd 3 x 7!  (x)e� iq�x 2 L 2
per

	
;

H s
q :=

�
 2 H s

loc j Rd 3 x 7!  (x)e� iq�x 2 H s
per

	
;

(4.8)

which, respectively endowed with the following inner products,

8 ; � 2 L 2
q; h ; � i L 2

q
:=

�

�
 �;

8 ; � 2 H s
q; h ; � i H s

q
:=

X

� 2 Nd ;j� j� s

h@�  ; @� � i L 2
q

are also Hilbert spaces. We are now in position to give the two versions of the Bloch-
Floquet decomposition.

Theorem 4.5 (First Bloch-Floquet decomposition, [RS78b]). We consider the direct
integral spaceH given by

H =
1

j� � j

� �

� �
L 2

qdq:

Then,

1. the linear map eB from C1
c (Rd; C) to H de�ned for every � 2 C1

c (Rd; C) by :

8(q; x) 2 � � � � ; ( eB� )q(x) :=
X

R 2R

� (x + R )e� iq�R (4.9)

can be continuously extended to a unique isometric isomorphism fromL 2 onto H.

2. the inverse of eB is given for all  2 L 2 by:

( eB� 1 )(x) =
1

j� � j

�

� �
 q(x)dq; for a.e x 2 � : (4.10)

Theorem 4.6 (Second Bloch-Floquet decomposition, [RS78b]). We consider the direct
integral H given by

H =
1

j� � j

� �

� �
L 2

perdq:

Then,

1. the linear map B from C1
c (Rd; C) to H de�ned for every � 2 C1

c (Rd; C) by :

8(q; x) 2 � � � � ; (B� )q(x) = ( eB� )q(x)e� iq�x =
X

R 2R

� (x + R )e� iq�(R + x)

can be continuously extended to a unique isometric isomorphism fromL 2 onto H.

2. the inverse ofB is given for all  2 L 2 by :

(B� 1 )(x) =
1

j� � j

�

� �
 q(x)eiq�xdq; for a.e x 2 � :
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A proof of Theorem 4.5 is presented in [Pan]. Theorem 4.6 is a direct corollary of
Theorem 4.5. However, the second decomposition is more advantageous in the context
of periodic Schrödinger operators. Indeed it leads to a family of �ber operators with
the same domain unlike the �rst decomposition where the domains depend onq.

Let us �nally underline the close link between the symmetries of the latticeR and
the Bloch-Floquet decomposition. To this aim, let us de�ne for each lattice vector
R 2 R , a translation operator � R de�ned by

� R :
�

L 2 ! L 2

� 7! � (� + R )
: (4.11)

Proposition 4.7 (Link between the symmetries of the lattice and Bloch-Floquet trans-
form, [RS78b]). Any linear bounded operatorT 2 L (L 2) which commutes with� R for
every R 2 R is decomposed byB and ~B. Similarly, any self-adjoint operator acting on
L 2 which commutes with� R for every R 2 R is also decomposed byB and ~B.

4.1.3 Spectral Decomposition of Periodic Schrödinger Operators

Let V be a real-valued periodic potential belonging to the spaceL p
per with p = 2 if

d � 3 and p > d=2 if d � 4. Then, the periodic Schrödinger operatorA = � � + V on
L 2 is selfadjoint with domain H 2(Rd; C) and is bounded from below. Furthermore, the
following properties are satis�ed (proofs can be found in [RS78b, Pan]):

1. The operator A is decomposed byB and by eB.

2. Furthermore,

A = B� 1
� � �

� �
Aq

1
j� � j

dq
�

B and A = eB� 1
� � �

� �

~Aq
1

j� � j
dq

�
eB

where for everyq 2 � � ,

� the operator eAq acting on L 2
q with domain D( eAq) = H 2

q is de�ned by

8 q 2 D ( eAq); eAq q = � �  q + V  q;

� the operator Aq acting on L 2
per with domain D(Aq) = H 2

per is de�ned by

8uq 2 D (Aq); Aquq = j � ir + qj2uq + V uq:

3. For eachq 2 � � , both operators Aq and eAq are bounded from below, self-adjoint,
have compact resolvent and are unitary equivalent. Therefore, they share the
same spectrum. Thus, for eachq 2 � � , there exists

� a non-decreasing sequence("V
q;n)n2 N� going to + 1 ;

� an orthonormal basis( V
q;n)n2 N� of L 2

q and an orthonormal basis(uV
q;n)n2 N�

of L 2
per,

such that for all n 2 N� ,

eAq q;n = "V
q;n q;n; Aquq;n = "V

q;nuq;n; uq;n(x) =  q;n(x)e� iq�x :
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4. For all n 2 N� , the function q 7! "V
q;n can be extended to a continuousR � -periodic

function on Rd, so that

� (A) =
1[

n=1

[min
q2 � �

"V
q;n; max

q2 � �
"V

q;n]:

5. The spectrum ofA is absolutely continuous real spectrum

� (A) = � ac(A); and � sg(A) = � p(A) = ; :

The function Rd 3 q 7! "V
q;n is called the nth energy band associated to the potential

V . The term dispersion relation is sometimes used to refer to the complete set of
energy bands. Let us mention that the energy bands (in arbitrary dimensiond) satisfy
the following symmetry properties for everyn 2 N� , every q 2 � � and every K 2 R �

"V
q;n = "V

� q;n and "V
q+ K ;n = "V

q;n: (4.12)

For the sake of completeness, we present in the appendix one of the most popular
methods for the numerical approximation of the energy bands, namely the plane-wave
discretization method.

4.2 Inverse Spectral Problems

Inverse spectral problems consist in recovering operators from their spectral charac-
teristics. Such problems often appear in mathematics, physics and materials science
[FY01].

4.2.1 Classical Inverse Problems

One of the most studied situations is the inverse Sturm-Liouville problem. The aim
in this problem is to recover the potential function V 2 L 2(0; 1) appearing in the one-
dimensional elliptic eigenvalue problem

� u00(x) + V (x)u(x) = "u (x); for 0 � x � 1;

with the impedance boundary conditions

u0(0) � lu(0) = 0 ; and u0(1) + Lu (1) = 0 ; (4.13)

where l and L are given real numbers, from the knowledge of some spectral data. It is
known that the complete spectrum("V

n )n2 N� is not su�cient to reconstruct (uniquely)
the potential V ; additional data are needed [PT87]. Let us quote from the literature a
few versions where existence and uniqueness of a solution to the inverse Sturm-Liouville
problem were proved and refer the reader to [W.R92, FY01, PT87] for a more com-
plete introduction to the subject. There are two cases where the (only) knowledge of
("V

n )n2 N� is si�cient to the unique reconstruction of V : i) when V is assumed to have
the symmetry V (x) = V (1 � x) for 0 � x � 1 and ii) when some a priori informa-
tion on V is provided (for instance, whenV is known on half of the interval [0; 1])
[PT87, G.B46, H.H76]. Besides, the unique recovery is also possible if, in addition to
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("V
n )n2 N� , a second complete spectrum(� V

n )n2 N� is provided corresponding to di�erent
boundary conditons (the value ofL is changed toL 0 6= L) [G.B46]. Several numerical
techniques were suggested to solve these questions [W.R92]. In most of the methods,
the Sturm-Liouville operator is discretized using �nite di�erences, �ntie elements or
Numerov's scheme [And04]. The inverse (continuous) problem is then transformed to
an inverse (discrete) eigenvalue problem. Asymptotic correction terms are usually in-
troduced to reduce the discretization error [GCH13].

The periodic framework also attracted mathematician's attention for decades. In
this case, the aim is to recover the real-valuedR-periodic potential V appearing in
the periodic Schrödinger operatorA = � � + V from the knowledge of the dispersion
relation (the set of energy bands). Several partial answers were proposed. One of the
�rst contributions in the one-dimensional case is due to Borg [G.B46] where necessary
and su�cient conditions were given on the dispersion relation for the potential V to be
constant.

Let us introduce the complex Bloch variety B (V ) containing all points that can
possibly be reached by analytic continuation of any energy band. In particular, the
graph of any energy bandq 2 Rd 7! "V

q;n is a subset ofB (V ). The generalization of
Borg's result to arbitrary dimension gives raise to the following conjecture:

Conjecture 4.8 (Borg's conjecture, [AS78, Kuc16]). The potential V is constant if and
only if there exists an entire function f : Cd ! C such that the Bloch varietyB (V ) is
the union of the graph off and its translates underR � .

One can think of the dispersion relation associated to the2� Z-periodic potential
V � 0 which is given by Z� translations of the graph of the function R 3 q 7! q2 (see
Figure 4.2).

Figure 4.2 � Dispersion relation of the one-dimensional periodic Schrödinger operator� d=dx2 +
V with the lattice R = 2 � Z and whereV � 0.

This conjecture was proved ford = 2 by Knörrer and Trubowitz [KT90] and to the
best of my knowledge, the proof in higher dimension is still an open question.
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Another point of view consists in the characterization of theisospectral sets which
are the sets of potentials associated to the same energy bands. Two real-valued poten-
tials V and W are said to beFloquet isospectral when

� (AV
q ) = � (AW

q ); 8q 2 � � ;

where � (AV
q ) denotes the discrete spectrum of the Bloch operatorAV

q at q 2 � � (see
Section 4.1.3). The potentialsV and W are said to beisospectral if � (AV

0 ) = � (AW
0 ).

Some particular cases can be immediately determined. It is clear for instance that
any potential V is Floquet isospectral to all its translated versionsV (� � � ); � 2 Rd.
The question of interest in the general case is : what is the set of potentials that
are isospectral to a given real-valued peridodic potentialV ? Numerous results can
be found in [PT87] for the one-dimensional setting. The multi-dimensional case was
investigated in [Esk89, ERT84a, ERT84b]. The authors showed in particular that if
two one-dimensional smooth periodic potentialsR 3 x 7! ~V (x) and R 3 x 7! ~W (x) are
isospectral and if � 2 Rd is a vector such that � � R 2 Z for every R 2 R then, the
d-dimensional periodic potentialsRd 3 x 7! V (x) := ~V(x � R ) and Rd 3 x 7! W (x) :=
~W (x � R ) are also isospectral. Another interesting result that we report from the review

[Kuc16] is the following:

Theorem 4.9 (Floquet Isospectrality). Assume that the latticeR satis�es the following
property for every R 1; R 2 2 R :

(jR 1j = jR 2j) ) (R 1 = � R 2) :

Consider two R� periodic potentials V; W 2 C1
per. If there exists q0 2 � � such that

cos(2�q 0 � R ) 6= 0 for all R 2 R and � (AV
q0

) = � (AW
q0

), then the potentialsV and W
are Floquet isospectral.

This result points out that, when the potential is smooth, the spectrum of one Bloch
operator at a particular q-point q0 2 � � holds the complete information on the whole
dispersion relation. Furthermore, the following (strong) property is conjectured to hold,
which allows one to focus only on one open branch of a single energy band :

Conjecture 4.10 (Conjecture 5.17 [Kuc16]). Let V be a real valuedR-periodic potential
belonging toL p

per with p = 2 if d � 3 and p > d=2 if d � 4. Then, for any level n 2 N�

and any open set
 � Rd, the branch 
 3 q 7! "q;n of the nth energy band determines
uniquely the full energy band dispersion.

This conjecture is proven in the one and two dimensional cases in [KT90]. To the
best of my knowledge, the proof in higher dimension still remains open.

Let us �nally mention the works by Veliev gathered in [Vel15] concerning smooth
potentials. In the same spirit as [ERT84a, ERT84b], Veliev introduced a family of
quantities (that he called spectral invariants) which can be constructed using the given
energy bands. Then, explicit expressions relating these invariants to the Fourier co-
e�cients of the unknown potential are provided. The class of potentials that can be
recovered by Veliev's method is shown to be dense inH s

per with s � 6(3d(d + 1) 2) + d.
This density argument allows to conclude that: a smooth potentialV 2 H s

per can be
uniquely determined (up to translations x 7! x + � with � 2 Rd and inversionsx 7! � x)
from the knowledge of the whole set of its associated energy bands� � 3 q ! "V

q;n for
n 2 N� .
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4.2.2 Contributions of the Thesis (Inverse Hill's problem)

The approaches presented above use the knowledge of the asymptotic behavior of the
high-energy bands for the reconstruction of the potential, and therefore are unsuitable
for practical purpose. Indeed, in practice only the low-energy bands of the crystal
(more precisely, the conduction and the valence bands for physicists) are of interest.
For applications, it is therefore interesting to know how to construct a potential such
that only its lowest energy bands are close to some given target functions without
additional information on the high energy bands. We adopt in this thesis a viewpoint
which is di�erent from the classical inverse problems presented above : we recast the
problem as anoptimization problem. More precisely, the following question is considered
: given a family of M functions b1; � � � ; bM : � � ! Rd, does there exist a real-valued
R-periodic potential V such that the associated �rst energy bands"V

q;1; � � � ; "V
q;M ; are as

close as possible (in some sense) to the target functionsb1; � � � ; bM ?. In Chapter 5,
we report the results of [BEG17] obtained with Virginie Ehrlacher (Université Paris
Est, CERMICS (ENPC), Inria, Paris, France ) and David Gontier (Université Paris-
Dauphine, CEREMADE, France), where a theoretical answer to the above question
is given for one target function M = 1 in the one-dimensional space and where an
algorithm is proposed to answer the question numerically for an arbitrary number of
target functions M 2 N � .

More precisely, in the cased = 1 , we consider the space of non-negative2� � periodic
regular Borel measures onR that we denote by M +

per. It holds in particular that M +
per

is compactly embedded in the setH � 1
per and that to each � 2 M +

per corresponds a unique
real-valued potential V� 2 H � 1

per de�ned by duality. Then, for a �xed constant B 2 R,
we consider the set ofB -bounded from below potentials

VB :=
�

V 2 H � 1
per jV is real-valued; 9� 2 M +

per; V = V� � B
	

:

The following partial result is proved in Section 5.3.2 of Chapter 5:

Proposition 4.11. Let B 2 R and let (Vn )n2 N� � V B . For all n 2 N� , let � n 2 M +
per

such that Vn := V� n � B and such that � n (�) �!
n! + 1

+ 1 . Assume that the sequence
�

"Vn
q=0 ;1

�

n2 N�
is bounded. Then, up to a (non relabeled) subsequence, there exists" �

1
4 � B such that

max
q2 [0;1=2]

�
�
�"Vn

q;1 � "
�
�
� ���!

n!1
0: (4.14)

Conversely, for all " � 1
4 � B , there is a sequence(Vn )n2 N� � V B such that (4.14) holds.

Roughly speaking, this result indicates that the �rst energy band associated to a
unbounded sequence of potentials inVB becomes �at.

Introduce now the set

T :=
�

b 2 C0(� � ); b is even andb is increasing on[0; 1=2]
	

(4.15)

of admissible target functions. Note that the �rst energy band of any real-valued peri-
odic potential V 2 VB belongs to the setT . For eachb 2 T , we consider the functional
J b : VB ! R de�ned by

8V 2 VB ; J b(V ) :=
� 1=2

0
jb(q) � "V

q;1j2 dq: (4.16)
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The quantity J b(V ) measures the error (in theL 2-norm) between the �rst energy band
"V

q;1 associated to the potentialV and the target function b 2 T . Note that by virtue
of the symmetry property "V

q;1 = "V
� q;1, it is possible to consider the problem in half of

the Brillouin zone only.

Our main theoretical result is the following

Theorem 4.12. Let b 2 T , and denote byb� :=
�

� � b(q) dq 2 R. Then, for all B >
1=4 � b� , there exists a solutionVb;B 2 VB to the minimization problem

Vb;B 2 argminV 2V B
J b(V ): (4.17)

The proof of this theorem is based on the Proposition 4.11 and is reported in Sec-
tion 5.3.3 of Chapter 5.

From a numerical point of view, the problem is addressed with several target func-
tions b1; � � � ; bM de�ned on [0; 1=2] that are assumed to be continuous and such that
bm is increasing whenm is odd and decreasing whenm is even. A uniform grid � �

Q of

sizeQ is considered on the interval[0; 1=2] and the Bloch eigenvalues("V;s
q;m)1� m� M are

computed for everyq 2 � �
Q by the plane-wave method (see the appendix) in a Fourier

space of dimension2s + 1 for some cuto� value s 2 N� . Moreover, for p 2 N� , a set
Yp of real-valued periodic potentials having2p + 1 Fourier coe�cients in their Fourier
series is introduced to approximate the search space. Eventually, the following discrete
minimization problem is considered

V s;p := argmin V 2 Yp

0

@1
Q

X

q2 � �
Q

MX

m=1

jbm (q) � "V;s
q;m j2

1

A :

A standard gradient iterative procedure is �rst proposed to solve the problem. In this
(naive) method, the numerical parametersp and s are chosen a priori at the beginning
of the algorithm and kept �xed throughout the procedure. Although the method gives
satisfactory numerical optimizers, it presents a major limitation: the computational
time grows quickly with the values of the parametersp and s. In order to improve
the e�ciency of the numerical optimization procedure, an adaptive search algorithm is
proposed. The idea of the adaptive approach is to start the optimization with small
values ofp and s and increase them (if necessary) during the optimization process. The
adaptive search algorithm relies on the use of

i) an a posteriori error estimator for the approximation of the eigenvalues, which
rules the choice of the discretization parameters,

ii) a heuristic criterion used to determine the choice of the parameterp.

The numerical tests revealed that the adaptive approach is usually faster (in terms
of the computational time) than the naive one even if it requires more iterations to
converge. A detailed description of the algorithms along with several numerical tests
are presented in Section 5.4 of Chapter 5.

Let us �nally mention that the a posteriori error estimator used in the adaptive
algorithm is based on a work done in collaboration with Damiano Lombardi (INIRA
Paris, France) aiming to develop a certi�ed and sharp a posteriori estimator for (more
general) Hermitian eigenvalue problems. A preliminary version of this work can be
found in [BL17].
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4.3 Wannier functions

Wannier functions (WF) were introduced in 1937 by Gregory Wannier [Wan37] and have
become a powerful tool in solid state physics. They arelocalized -in-space functions
constructed from the eigenfunctions of the Bloch operators(Aq)q2 � � . Thus, Wannier
functions can be seen as the solid-state equivalent of localized molecular orbitals. They
provide intuition on the chemical bonding and play an essential role for several approx-
imations such as the tight binding Hamiltonians [MSV03].

4.3.1 Theoretical Aspects

Let f Rd 3 q 7! "q;ngn� 1 be the energy bands associated to the periodic Shcrödinger
operator A = � �+ V on L 2, whereV is an R-periodic potential belonging to the space
V 2 L p

per with p = 2 if d � 3 and p > d=2 if d � 4.

De�nition 4.13 (Isolated bands). The periodic Schrödinger operatorA is said to have
a set ofN � 1 bands isolated from the rest of the spectrum if there exist two continuous
R-valued R-periodic functions q 7! � � (q) and q 7! � + (q) such that � � (q) < � + (q),
� � (q) =2 � (Aq) and tr

�
1[� � (q);� + (q)] (Aq)

�
= N for all q 2 Rd.

To lighten the notation, we denote by "q;1; � � � ; "q;N the eigenvalues ofAq lying in
the energy window[� � (q); � + (q)] for eachq 2 Rd. The reader should keep in mind that
these bands do not necessarily correspond to the lowestN bands of the operator.

We recall from the Bloch Floquet theory (see Section 5.2.1) that, for eachq-point
q 2 Rd, there exists an orthonormal basis(uq;n)n2 N� of L 2

per such that

Aquq;n := j � ir + qj2uq;n + V uq;n = "q;nuq;n; 8n 2 N� :

Assume that the periodic Schrödinger operatorA has an isolated set ofN � 1
bands and consider a transformationU, which we refer to in the sequel as agauge
transformation, that associates a unitary matrix Uq to each q-point:

U :
�

Rd ! U N

q 7! Uq (4.18)

where UN � CN � N denotes the space of complex-valued unitary matrices. For each
q 2 Rd and each1 � n � N , we introduce the following generalized Bloch wave

e q;n =
NX

m=1

Uq
mn uq;n: (4.19)

We denote byG = f U : Rd ! U N g the set of gauge transformations.

De�nition 4.14 (Composite Wannier Functions). Composite Wannier functionsf wR ;n gR 2R ;1� n� N

associated to an isolated set ofN bands are obtained by the following formula

8x 2 Rd; w0;n (x) =
1

j� � j

�

� �

e q;n(x)eiq�xdq (4.20)

and
8(x; R ) 2 Rd � R ; wR ;n (x) = w0;n (x � R ):
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The Wannier functions f wR ;n gR 2R ;1� n� N form a complete orthonormal basis of
the subspace ofL 2 associated to the isolated set of bands. Note that there is agauge
freedom in De�nition 4.14 meaning that the Wannier functions are not uniquely deter-
mined. This originates form the arbitrary choice of the unitary transformation U in the
de�nition of the generalized Bloch waves (4.19).

Let us now brie�y discuss a few questions related to the construction of Wannier
functions and give some relevant references.

The �rst question concerns the possibility of building Wannier functions that are ex-
ponentially decaying. As discussed in [Kun, MMY+ 12, MSV03], the localization of the
Wannier functions is determined by the periodicity and the regularity of the generalized
Bloch waves e q;n as functions of q 2 Rd. It turns out, in dimension d � 2, that the
existence or non-existence of exponentially localized Wannier functions is a topological
characteristic of the bands [Kun]. The �rst answer to the question of existence of expo-
nentially localized Wannier functions was given by Kohn [Koh73] for one-dimensional
systems in the case of a single isolated band for a centrosymmetric potential. A proof of
existence of exponentially localized Wannier functions in higher dimensions (also in the
case of a single isolated band) is given in [DC64b, DC64a, Nen83]. The generalization
to multiple bands is not straightforward. This has been investigated in [BPC+ 07] for
two-dimensional and three-dimensional insulators (i.e, systems having a set of isolated
bands). The authors �rst observed that the Chern numbers (see [BPC+ 07] for their rig-
orous de�nition) vanish for insulators with a real-valued potential. Then the following
equivalence is proven :exponentially decaying Wannier functions can be constructed if
and only if all of the Chern numbers are zero. Roughly speaking, the di�erence between
single and multiple bands lies in the Abelian (commutative multiplication of numbers)
or non-Abelian (non-commutative multiplication of matrices) character of the respective
gauge transformations [MSV03, BPC+ 07].

The generalized Bloch waves are in general complex-valued functions. What about
Wannier functions? A simple criterion to ensure existence of real-valued Wannier func-
tions is given in [BPC+ 07]. The Wannier functions are real-valued if the gauge trans-
formation U satis�es [U � q]� = Uq for every real q 2 Rd. Moreover, it is conjectured
in [MV97] that the Wannier functions of real Hamiltonians obtained by the spread-
minimization method (presented in Section 4.3.2) are real-valued up to some general
phase. To the best of my knowledge, the theoretical proof of this conjecture remains an
open question.

Another interesting question is : is there any link between the symmetry of the
crystal and the properties of the Wannier functions ? This question was �rst discussed by
des Cloizeaux [DC63] from the view point of group theory. Basically, a Wannier function
centered at some pointA 2 � can be chosen to satisfy the symmetries of an irreducible
representation of the point-group GA (which is a subgroup of the total space group
of the crystal) that leaves A invariant. There have been numerous other theoretical
and numerical works considering symmetry-adapted Wannier functions [DC63, Koh73,
VBC79, Krü87, SB94, SE05, PBMM02, CZWP06].
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4.3.2 Numerical Construction

Let us now describe brie�y the Marzari-Vanderbilt (MV) method proposed in [MV97]
for the practical construction of maximally localized Wannier functions (MLWF). The
MV procedure searches (iteratively) for a gauge transformation that leads to Wannier
functions with minimal spreads around their centers. More precisely, assume that the
periodic Schrödinger operator has an isolated set ofN bands (in the sense of De�ni-
tion 4.14) and consider the functional


 :

8
<

:

G ! R

U 7! 
( U) =
NP

n=1

�
R3 jxw0;n (x)j2 dx �

� �
Rd w0;n (x)xdx

� 2 (4.21)

which measures the quadratic spreads of the Wannier functions around their centers.
Recall that the dependence on the transformationU is hidden in the de�nition of w0;n

(see (4.19) and (4.20)). The functional
 can be decomposed into a sum of a gauge-
dependent part 
 ] (U) and a gauge-independent part
 ? where


 ] (U) =
NX

n=1

X

R 2R

NX

m=1

�
�
�
�

�

Rd
xwR ;m (x)w0;n (x)dx

�
�
�
�

2

:

Given a set of Bloch waves associated to the isolated energy bands, the aim in the MV
algorithm is to �nd the choice of U that minimizes the value of 
 ] (U). An expres-
sion for the gradient of 
 with respect to an in�nitesimal variation �U of the gauge
transformation is provided. We refer the reader to the original paper [MV97] and to
[MSV03, Kun] for further details of the computation. Finally, the functional 
 ] can be
minimized by a sequence of gauge transformations obtained from an iterative gradient
procedure. The MV algorithm is theoretically analyzed in [PP13] where it was proven
that the minimizers of 
 do exist for d � 3. Moreover, under the assumption that the
system has an isolated set ofN bands, which together with the assumption that the
potential is real-valued imply that the Chern numbers vanish, the exponential decay of
the MV minimizers is shown in three di�erent cases: i)N = 1 and 1 � d � 3, ii) N � 1
and 1 � d � 2, iii) 2 � N � 3 and d = 3 .

The MV algorithm has become a standard tool for Wannier functions construction
since its implementation asWannier90 computer program. However (like any local
optimization approach) it su�ers from two problems : how to determine a good initial
guess ? and how to avoid non-global minima? Finding a good initial guess for the MV
algorithm requires to �nd a continuous gauge transformation, which is a mathematically
non-trivial task. The authors in [CLPS17] showed that the issue of �false local minima�
occurs when the initial guess corresponds to a gauge transformation with vortex-like
discontinuities, which may prevent the convergence of the MV optimization algorithm.
Moreover, they proposed an algorithm based on the theoretical works [CHN16, FMP16]
which is easy to implement. Supported by numerical tests, the algorithm in [CLPS17]
is conjectured to produce continuous gauge transformation, but no theoretical proof
of this conjecture is available yet. Moreover, the resulting Wannier functions are only
algebraically decaying (and not exponentially). Nevertheless, in practice, the algorithm
of [CLPS17] provides a good initial guess for the MV procedure.

Let us lastly point out that the MV algorithm does not exploit the symmetries of
the crystal [SMV01, THJ05]. A constructive procedure to obtain symmetry-adapted
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MLWFs has been proposed by Sakuma [Sak13], based on the theoretical works by
des Cloizeaux. Sakuma's procedure consists in minimizing the functional
 under
suitable symmetry constraints on the transformation U. This algorithm was recently
implemented in Wannier90 .

4.3.3 Applications

The Wannier functions are widely used in several contexts. We discuss here brie�y
some aspects related to their use in tight-binding approximations and refer the reader
to [MMY + 12] for an exhaustive list of applications.

The tight-binding method (TB) is an approximation method to calculate electronic
band structures and other interesting properties. It is similar to the "classical" method
of Linear Combination of Atomic Orbitals (LCAO) used by chemists to construct molec-
ular orbitals. It often produces accurate results for complicated structures for which
the �rst-principles calculations are too costly.

From a physical point of view, the main assumption in TB models is that electrons
are tightly bound to the atomic sites. From a mathematical point of view, a TB model
can be seen as the approximation of the Bloch states by a combination of localized
functions. One particular choice for these localized functions is Wannier functions.

One particular example of application of Wannier functions is the study of the en-
ergy bands of heterogenuous structures composed of multiple (stacked) layers of 2D
materials as shown in Figure 4.3. Due to the loss of periodicity caused by the twist
angles between the di�erent layers, the Bloch Floquet theory does not apply in general.
Other methods involving super cells may require large calculation times. A reasonable
TB approximation was recently proposed in [FK16] to study the electronic structure
of such heterogeneous stacked layers. The idea is to consider each monolayer inde-
pendently : build its Wannier functions and compute the TB matrix elements. Then,
explicit expressions are proposed to model the interlayer couplings. These expressions
involve empirical parameters and depend on geometrical parameters such as the dis-
tance between the layers and twist angles. This model allows one to study the variation
of the energy bands (and other physically interesting quantities) as a function of the
geometrical parameters.

The TB matrix elements are obtained from the evaluation of integrals involving
Wannier functions. It is crucial to rapidly and e�ciently compute these integrals in
order to be able to investigate a large number of con�gurations (varying the number of
layers, the types of materials, the relative distances and the twist angles). In practice,
these integrals are approximated numerically since the Wannier functions (generated
by Wannier90 ) are provided on grids. The computation cost of such a numerical
integration is of order M 3 where M is the number of grid points.

4.3.4 Contribution of the Thesis (Wannier Compression)

Our contribution consists in the development of a greedy algorithm for the compression
of Wannier functions into Gaussian-polynomials type orbitals. Our procedure takes into
account the symmetry of the Wannier function (if any) and allows one to store only a
small number of parameters instead of storing all theM values of the Wannier function
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Figure 4.3 � Visualization of a 2D heterostructure. From top to bottom : hBN, Graphene,
Graphene, MoS2, Phosphorene. Courtesy of Paul Cazeaux (Department of Mathematics, Uni-
versity of Kansas, Lawrence, USA).

on a grid, whereM is the number of grid points. A second added value of the compres-
sion using Gaussian-type functions is to allow one to derive closed formulas for several
quantities that involve Wannier functions such as tight-binding matrix elements. This
aims in particular at accelerating electronic structure calculations for 2D heterogeneous
layers, and thus allowing one to explore a larger number of con�gurations.

More precisely, we consider that we are given a real-valued Wannier functionW :
R3 ! R centered at a pointA 2 � and assume thatA corresponds to a one-dimensional
representation of a symmetry point-groupGA leaving A invariant. Thus, W satis�es
the property

8� 2 GA ; (� W )( r ) = � (�) W (r ); 8r 2 R3 (4.22)

where � is the character of this one-dimensional representation. Consider symmetry-
adapted Gaussian-type orbitals (SAGTO) of the form

� SA
� ;�; � (r ) =

1
jGA j

X

� 2 GA

� (�) (� ' � ;�; � )( r ) =
1

jG1j

X

� 2 G1

� (�) ' � ;�; � (� � 1r ); (4.23)

where jGA j is the order of the groupGA , and where

' � ;�; � (r ) =

0

@
X

(nx ;ny ;nz )2I

� nx ;ny ;nz (r x � � x )nx (r y � � y)ny (r z � � z)nz

1

A exp
�

�
1

2� 2 jr � � j2
�

is a Gaussian-polynomial function centered at� 2 R3 with standard deviation � > 0.
The set I is a subset of

�
(nx ; ny ; nz) 2 N3 j nx + ny + nz � L; L 2 N�

	
determined

by the symmetries ofW .
The goal is to approximate the Wannier function W by a function fW which is a

�nite sum of SAGTOs fW (r ) =
P p

n=1 � SA;(n)
� ;�; � (r ) so that the H s error kW � fW kH s (R3 )

is minimized. To do so, we use a greedy algorithm that allows us to (iteratively) con-
struct a sequence of approximationsfW0, fW1, fW2; � � � such that the error kW � fWpkH s

tends to 0 as p goes to + 1 . We implemented our algorithm in the Fourier space
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so that we can minimize the H s error for any value of s. This work is the topic of
the paper [BCC+ 17] written in collaboration with Eric Cancès (Université Paris Est,
CERMICS (ENPC), INRIA Paris ), Paul Cazeaux (Department of Mathematics, Uni-
versity of Kansas, Lawrence, USA), Shiang Fang and Efthimios Kaxiras (Department
of Physics, Harvard University, Cambridge, USA). As a preview result, we show in
Figure 4.4 a comparison between a Wannier function obtained withWannier90 and
its approximation by a �nite sum of SAGTOs where the H 1 error is minimized. The
content of [BCC+ 17] is reported in Chapter 6.

Figure 4.4 � Wannier function of single-layer hBN generated by Wannier90 (top), and its com-
pression into SAGTOs (bottom). Positive and negative iso-surfaces corresponding to15% of
the maximum value are plotted. Visualization using VESTA [MI08].
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4.4 Appendix : Numerical Approximation of the Band
Structure

We present here one of the most popular numerical methods for the approximation of
the spectrum of periodic Schrödinger operators: theplane-wave discretization . The
periodic Schrödinger operatorA = � � + V on L 2 is characterized by the spectra of
the Bloch operatorsAq = � (i r + q)2 + V for q 2 � � acting on L 2

per with domain H 2
per

and form domain H 1
per. Each operatorAq is self-adjoint and has compact resolvent and

thus admits only discrete eigenvalues. The goal of this appendix is to show how to
numerically solve the family of eigenvalue problems

Aquq = "V
q uq; and kuqkL 2

per
= 1 ; q 2 � � (4.24)

For every q 2 � � , the eigenvalue problem (4.24) can be written under the variational
form : �nd (uq; "V

q ) 2 H 1
per � R such that

aq(w; uq) = "V
q hw; uqi 8 w 2 H 1

per and kuqkL 2
per

= 1 : (4.25)

where the bilinear form aq is de�ned for every w; v 2 H 1
per � H 1

per by

aq(w; v) =
�

�

h
(r + i q)w

i
� [(r + i q)v] +

�

�
Vwv:

The plane-wave method is a Galerkin approximation of the variational problem (4.25)
in the Fourier space. More precisely, for allk 2 R � , let ek (x) := j� j � 1=2eik�x denote the
plane-wave associated with the wave-vectork 2 R � . For a given s > 0, let us de�ne the
�nite dimensional space X s � H 1

per as follows

X s := Span
�

ek j k 2 R � ; jkj2 � s
	

(4.26)

and denote byNs its dimension and by � X s : L 2
per ! X s the L 2

per orthogonal projector
onto X s.

Problem (4.25) is approximated by the discrete version : �nd(us
q; "V;s

q ) 2 X s � R
such that

aq(w; us
q) = "V;s

q hw; us
qi 8 w 2 X s and kus

qkL 2
per

= 1 : (4.27)

where for everyx 2 Rd,

us
q(x) = (� X s uq)(x) :=

X

k2 Zd ;jkj2 � s

ûs
q;n;k ek (x) with

X

k2 Zd ;jkj2 � s

jûs
q;n;k j2 = 1 :

We denote by Us
q 2 CN s the vector of Fourier coe�cients (ûs

q;n;k ) jkj2 � s and introduce
the Hamiltonian matrix H s

q 2 CN s � N s as follows

�
H s

q

�
k;l

:= ap
q(el ; ek ) =

�
jk + qj2 + V̂0 if k = l;
V̂k� l if k 6= l:

(4.28)

Finally, Problem (4.27) can be written as the matrix eigenvalue problem: �nd(Us
q ; "V;s

q ) 2

CN s � R such that
H s

qUs
q = "V;s

q Us
q kus

qk2 = 1 (4.29)
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It su�ces lastly to compute the eigenvalues "V;s
q;n and normalized eigenvectorsUs

q;n for
1 � n � Ns of the Hermitian matrix H s

q. Several numerical methods allow to do
this e�ciently [Saa03]. To illustrate the method, let us calculate the low-energy bands
associated to a two-dimensional real-valued2� Z2� periodic potential. The result is
given in Figure 4.5.

(a) Potential V

(b) Lowest energy bands of � � + V

Figure 4.5 � Numerical computation of a 2D band structure with the plane-wave discretization.
The �rst Brillouin zone [� 1

2 ; 1
2 ]2 is uniformly discretized using 41 � 41 points. The dimension

of the used approximation spaceX s is Ns = 81.
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CHAPTER5

RECONSTRUCTION OF THE FIRST BAND(S) IN AN
INVERSE HILL'S PROBLEM

We report in this chapter the results of [BEG17] obtained with Virginie Ehrlacher and
David Gontier.

Abstract. This paper concerns an inverse band structure problem for one dimen-
sional periodic Schrödinger operators (Hill's operators). Our goal is to �nd a potential
for the Hill's operator in order to reproduce as best as possible some given target bands,
which may not be realisable. We recast the problem as an optimisation problem, and
prove that this problem is well-posed when considering singular potentials (Borel mea-
sures). We then propose di�erent algorithms to tackle the problem numerically.

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2 Spectral decomposition of periodic Schrödinger operators,
and main results . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2.1 Bloch-Floquet transform . . . . . . . . . . . . . . . . . . . . . 133

5.2.2 Hill's operators with singular potentials . . . . . . . . . . . . 134

5.2.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3 Proof of Theorem 5.3 and Proposition 5.4 . . . . . . . . . . 137

5.3.1 Preliminary lemmas . . . . . . . . . . . . . . . . . . . . . . . 137

5.3.2 Proof of Proposition 5.4 . . . . . . . . . . . . . . . . . . . . . 138

5.3.3 Proof of Theorem 5.3 . . . . . . . . . . . . . . . . . . . . . . 140

5.4 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4.1 Discretised inverse band structure problem . . . . . . . . . . 142

5.4.2 Algorithms for optimisation procedures . . . . . . . . . . . . 143

5.4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.5 Appendix: A posteriori error estimator for the eigenvalue
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



5.1 Introduction

The aim of this article is to present new considerations on an inverse band structure
problem for periodic one-dimensional Schrödinger operators, also called Hill's oper-
ators. A Hill operator is a self-adjoint, bounded from below operator of the form
AV := � d2

dx2 + V , acting on L 2(R), and where V is a periodic real-valued potential.
Its spectrum is composed of a reunion of intervals, which can be characterised using
Bloch-Floquet theory as the reunion of the spectra of a family of self-adjoint compact
resolvent operatorsAV

q , indexed by an elementq 2 R called the quasi-momentumor
k-point (see [?, Chapter XIII] and Section 5.2.1). The mth band function associated to a
periodic potential is the function which mapsq 2 R to the mth lowest eigenvalue ofAV

q .
The properties of these band functions are well-known, especially in the one-dimensional
case (see e.g. [RS78b, Chapter XIII]).

The inverse band structure problem is an interesting mathematical question of prac-
tical interest, which can be roughly formulated as follows:is it possible to �nd a potential
V so that its �rst bands are close to some target functions?

A wide mathematical literature answers the question when the target functions are
indeed the bands of some Hill's operator, corresponding to someVref . In this case, we
need to recover a potential V that reproduces the bands ofVref . We refer to [Esk89,
ERT84a, ERT84b, PT87, FY01, Vel15] for the case whenVref is a regular potential,
and to [HM03a, HM04a, HM04b, HM03b, HM06] whenVref is singular (see also the
review [Kuc16]). The main ideas of the previous references are as follows. First, the
band structure of a Hill's operator can be seen as the transformation of an analytic
function. In particular, the knowledge of any band on an open set is enough to recover
theoretically the whole band structure. A potential is then reconstructed from the high
energy asymptotics of the bands.

The previous methods use the knowledge of the behaviour of the high energy bands,
and therefore are unsuitable for practical purpose (material design) since we usually
have no accurate and numerically stable information about these high energy bands.
Moreover, in practice, only the low energy bands are usually of interest. The fact that
there exists no explicit characterisation of the set of the �rst band functions associated
to a given admissible set of periodic potentials is an additional numerical di�culty. For
applications, it is therefore interesting to know how to construct a potential such that
only its �rst bands are close to some given target functions, which may not be realisable
(for instance not analytic). In this present work, we therefore adopt a di�erent point
of view, which, up to our best knowledge, has not been studied: we recast the inverse
problem as an optimisation problem.

The outline of the paper is as follows. In Section 5.2, we recall basic properties about
Hill's operators with singular potentials. and we state our main result (Theorem 5.3).
Its proof is given in Section 5.3. Finally, we present in Section 5.4 some numerical tests
and propose an adaptive optimisation algorithm, which is observed to converge faster
than the standard one. This adaptive algorithm relies on the use of an a posteriori
error estimator for discretised eigenvalue problems, whose computation is detailed in
the Appendix.
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5.2 Spectral decomposition of periodic Schrödinger opera-
tors, and main results

In this section, we recall some properties of Hill's operators with singular potentials. El-
ementary notions on the Bloch-Floquet transform [RS78b] are gathered in Section 5.2.1.
The spectral decomposition of one-dimensional periodic Schrödinger operators with sin-
gular potentials is detailed in Section 5.2.2, building on the results of [Kat72, HM01,
GZ06, MM08, DJP16]. We state our main results in Section 5.2.3.

5.2.1 Bloch-Floquet transform

We need some notation. LetD0 denotes the Schwartz space of complex-valued distri-
butions, and let D0

per � D 0 be the space of distributions that are2� -periodic. In the
sequel, the unit cell is� := [ � �; � ), and the reciprocal unit cell (or Brillouin zone) is
� � := [ � 1=2; 1=2]. For u 2 D 0

per and k 2 Z, the kth normalised Fourier coe�cient of u
is denoted by bu(k). For s 2 R, we denote by

H s
per :=

(

u 2 D 0
per; kuk2

H s
per

:=
X

k2 Z

(1 + jkj2)sjbu(k)j2 < + 1

)

the complex-valued periodic Sobolev space, which is a Hilbert space when endowed with
its natural inner product. We write H s

per;r for the real-valued periodic Sobolev space,
i.e.

H s
per;r :=

n
u 2 H s

per; 8k 2 Z; bu(� k) = bu(k)
o

:

We also let L 2
per := H s=0

per . From our normalisation, it holds that

8v; w 2 L 2
per; hv; wi L 2

per
=

�

�
vw and 8v; w 2 H 1

per; hv; wi H 1
per

=
�

�

dv
dx

dw
dx

+
�

�
vw:

Lastly, we denote by C0
per the space of2� -periodic continuous functions, and byC1

c
the space ofC1 functions over R, with compact support.

To introduce the Bloch-Floquet transform, we let H := L 2(� � ; L 2
per). For any ele-

ment f 2 H , we denote byf q(x) its value at the point (q; x) 2 � � � � . The spaceH is
an Hilbert space when endowed with its inner product

8f; g 2 H ; hf; g i H :=
�

� �

�

�
f q(x)gq(x)dx dq:

The Bloch-Floquet transform is the map B : L 2(R) ! H de�ned, for smooth functions
' 2 C1

c (R), by
� q(x) := ( B' )q (x) :=

X

R2 Z

' (x + R)e� iq(R+ x) :

It is an isometry from L 2(R) to H , whose inverse is given by

�
B� 1�

�
(x) :=

�

� �
� q(x)eiqx dq = ' (x):

The Bloch theorem states that if A is a self-adjoint operator on L 2(R) with domain
D(A) that commutes with Z-translations, then BAB� 1 is diagonal in the q-variable.
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More precisely, there exists a unique family of self-adjoint operators(Aq)q2 � � on L 2
per

such that for all ' 2 L 2(R) \ D (A),

(A' )(x) =
�

� �
(Aq� q)(x) dq:

In this case, we write

A =
� �

� �
Aqdq:

5.2.2 Hill's operators with singular potentials

Giving a rigorous mathematical sense to a Hill's operator of the form� d2

dx2 + V on
L 2(R), when the potential V is singular is not an obvious task. In the present paper,
we considerV 2 H � 1

per;r , which is a case that was �rst tackled in [Kat72] (see also [HM01,
DJP16, GZ06, MM08] for recent results).

The results which are gathered in this section are direct corollaries of results which
were proved in these earlier works, particularly in [HM01].

Proposition 5.1. [Theorem 2.1 and Lemma 3.2 of [HM01]] For allV 2 H � 1
per;r , there

exists � V 2 L 2
per and � V 2 R such that

V = � 0
V + � V in D0

per: (5.1)

Moreover, if aV : H 1(R) � H 1(R) ! C is the sesquilinear form de�ned by

8v; w 2 H 1(R); aV (v; w) =
�

R

dv
dx

dw
dx

+
�

R
� V vw �

�

R
� V

�
dv
dx

w + v
dw
dx

�
; (5.2)

then aV is a symmetric, continuous sesquilinear form onH 1(R) � H 1(R), which is closed
and bounded from below. Besides,aV is independent of the choice of� V 2 L 2

per and
� V 2 R satisfying (5.1).

Remark 5.2. The expression (5.2) makes sense wheneverv; w 2 H 1(R). This can be
easily seen with the Cauchy-Schwarz inequality, and the embeddingH 1(R) ,! L 1 (R).
It is not obvious how to extend this result to higher dimension.

A direct consequence of Proposition 5.1 is that one can consider the Friedrichs
operator onL 2(R) associated toaV , which is denoted byAV in the sequel. The operator
AV is thus a densely de�ned, self-adjoint, bounded from below operator onL 2(R), with
form domain H 1(R) and whose domain is dense inL 2(R). Formally, it holds that

AV = �
@2

@x2
+ V:

The spectral properties of the operatorAV can be studied (like in the case of regular
potentials) using Bloch-Floquet theory.

The previous result, together with Bloch-Floquet theory, allows to study the oper-
ator AV via its Bloch �bers

�
AV

q

�
q2 � � . For q 2 � � , it holds that AV

q is the self-adjoint
extension of the operator �

�
�
� � i

d
dx

+ q

�
�
�
�

2

+ V:
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It holds that AV
q is a bounded from below self-adjoint operator acting onL 2

per, whose
form domain is H 1

per, and with associated quadratic formaV
q , de�ned by (recall that

H 1
per is an algebra)

8v; w 2 H 1
per; aV

q (v; w) :=
�

�

" �
� i

d
dx

+ q
�

v
�

� i
d

dx
+ q

�
w

#

+ hV;vwi H � 1
per ;H 1

per
:

(5.3)
In other words, we have

AV =
� �

� �
AV

q dq:

The fact that L 2
per is compactly embedded inH 1

per implies that AV
q is compact-

resolvent. As a consequence, there exists a non-decreasing sequence of real eigenvalues�
"V

q;m

�
m2 N� going to + 1 and a corresponding orthonormal basis(uV

q;m)m2 N� of L 2
per

such that
8m 2 N� ; AV

q uV
q;m = "V

q;muV
q;m: (5.4)

The map � � 3 q 7! "V
q;m is called the mth band. Since the potential V is real-valued,

it holds that AV
� q = AV

q , so that "V
� q;m = "V

q;m for all q 2 � � and m 2 N� . This implies
that it is enough to study the bands on [0; 1=2]. Actually, we have

� (AV ) =
[

q2 [0;1=2]

[

m2 N�

f "V
q;mg:

In the sequel, we mainly focus on the �rst band. We write"V
q := "V

q;1 for the sake of
clarity. Thanks to the knowledge of the form domain ofAV

q , we know that

"V
q := min

v2 H 1
per

kvkL 2
per

=1

aV
q (v; v): (5.5)

This characterisation will be the key to our proof. When the potential V is smooth
(say V 2 L 2

per), then the map � � 3 q 7! "V
q;m is analytic on (� 1=2; 1=2). Besides, it is

increasing on[0; 1=2] if m is odd, and decreasing ifm is even (see e.g. [RS78b, Chapter
XIII]).

5.2.3 Main results

The goal of this article is to �nd a potential V so that the bands of the corresponding
Hill's operator are close to some given target functions. In order to do so, we recast the
problem as a minimisation one, of the form

V � 2 argminV 2V J (V ):

Unfortunately, we were not able to consider the full setting where the minimisation
set V is the whole setH � 1

per;r . The problem was that we were unable to control the
negative part of V . To bypass this di�culty, we chose to work with potentials that
are bounded from below. Such a distribution is necessary a measure (see e.g. [LL01]).
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Hence measure-valued potentials provide a natural setting for band reconstruction. We
recall here some basic properties about measures.

We denote by M +
per the space of non-negative2� � periodic regular Borel measures

on R, in the sense that for all � 2 M +
per, and all Borel set S 2 B(R), it holds that

� (S) = � (S + 2 � ) � 0, and � (�) < 1 . For all � > 0, from the Sobolev embedding
H 1=2+ "

per ,! C0
per, we deduce thatM +

per ,! H � 1=2� "
per ,! H � 1

per, where the last embedding is
compact. For � 2 M +

per, we denote byV� 2 H � 1
per;r the unique corresponding potential,

which is de�ned by duality through the relation:

8� 2 H 1
per;

�

�
�d� = hV� ; � i H � 1

per ;H 1
per

:

For B 2 R, we de�ne the set ofB -bounded from below potentials

VB :=
�

V 2 H � 1
per;r j 9� 2 M +

per; V = V� � B
	

� H � 1
per;r :

This will be our minimisation space for our optimisation problem. Note that VB 1 � V B 2

for B1 � B2.

We now introduce the functional J to minimise. First, we introduce the set T of
allowed target functions:

T :=
�

b 2 C0(� � ); b is even andb is increasing on[0; 1=2]
	

: (5.6)

Of course, for all V 2 H � 1
per;r , it holds that � � 3 q 7! "V

q 2 T . Finally, in order to
quantify the quality of reconstruction of a band b 2 T , we introduce the error functional
J b : H � 1

per;r ! R de�ned by

8V 2 H � 1
per;r ; J b(V ) :=

1
2

�

� �
jb(q) � "V

q j2 dq =
� 1=2

0
jb(q) � "V

q j2 dq: (5.7)

The main result of the present paper is the following.

Theorem 5.3. Let b 2 T , and denote byb� :=
�

� � b(q) dq 2 R. Then, for all B >
1=4 � b� , there exists a solutionVb;B 2 VB to the minimisation problem

Vb;B 2 argminV 2V B
J b(V ): (5.8)

The proof of Theorem 5.3 relies on the following proposition, which is central to our
analysis. Both the proofs of Theorem 5.3 and Proposition 5.4 are provided in the next
section.

Proposition 5.4. Let B 2 R and let (Vn )n2 N� � V B . For all n 2 N� , let � n 2 M +
per

such that Vn := V� n � B . Let us assume that the sequence
�

"Vn
0

�

n2 N�
is bounded and

such that � n (�) �!
n! + 1

+ 1 . Then, up to a subsequence (still denotedn), the functions

q 7! "Vn
q converge uniformly to a constant function" 2 R, with " � 1

4 � B . In other
words, there is" � 1

4 � B such that

max
q2 [0;1=2]

�
�"Vn

q � "
�
� ���!

n!1
0: (5.9)

Conversely, for all " � 1
4 � B , there is a sequence(Vn )n2 N� � V B such that (5.9)

holds.
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This result implies that the �rst band of the sequence of operators
�
AVn

�
n2 N� , where

(Vn )n2 N� satis�es the assumptions of Proposition 5.4,becomes �at.

Remark 5.5. Here we have a sequence of �rst bands
�
"Vn

q

�
n2 N� that converges uni-

formly to a constant function. However, as the �rst band of any Hill's operator must be
increasing and analytic, the limit is not the �rst band of a Hill's operator.

5.3 Proof of Theorem 5.3 and Proposition 5.4

5.3.1 Preliminary lemmas

We �rst prove some intermediate useful lemmas before giving the proof of Proposi-
tion 5.4 and Theorem 5.3. We start by recording a spectral convergence result.

Proposition 5.6. [Theorem 4.1 [HM01]] Let (Vn )n2 N� � H � 1
per;r be a sequence such that

(Vn )n2 N� converges strongly inH � 1
per to someV 2 H � 1

per;r . Then,

8m 2 N� ; max
q2 [0;1=2]

�
�"Vn

q;m � "V
q;m

�
� ���!

n!1
0:

In our case, since we are working with potentials that are measures, we deduce the
following result.

Proposition 5.7. Let B 2 R and (Vn )n2 N� � V B be a bounded sequence, in the sense

sup
n2 N

hVn ; 1 � i H � 1
per ;H 1

per
< 1 :

For all n 2 N� , let � n 2 M +
per such thatVn = V� n � B . Then, there exists� 2 M +

per such
that, up to a subsequence (still denotedn), (� n )n2 N converges weakly-* to� in M per,
and (Vn )n2 N� converges strongly inH � 1

per to V := V� � B 2 VB . Moreover, it holds that

8m 2 N� ; max
q2 [0;1=2]

�
�"Vn

q;m � "V
q;m

�
� ���!

n!1
0:

Proof. The fact that we can extract from the bounded sequence(� n )n2 N� a weakly-*
convergent sequence inM +

per is the Prokhorov's theorem applied in the torus� � . The
second part comes from the compact embeddingM per ,! H � 1

per. The �nal part is the
direct application of Proposition 5.6.

Remark 5.8. This proposition explains our choice to consider measure-valued poten-
tials. Note that a similar result does not hold in theL 1

per setting for instance.

We now give a lemma which is standard in the case of regular potentialsV (see [Eva98]).

Lemma 5.9. Let V 2 VB for some B 2 R. The �rst eigenvector uV
q=0 2 H 1

per of AV
q=0

is unique up to a global phase. It can be chosen real-valued and positive.

Proof. We use the min-max principle (5.5), and the fact that, foru 2 H 1
per, the following

holds �
�
�
�

d
dx

juj

�
�
�
� �

�
�
�
�

d
dx

u

�
�
�
� a.e:
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We see that if u is an eigenvector corresponding to the �rst eigenvalue, then so isjuj.
We now consider a non-negative eigenvectoru � 0, and prove that it is positive. The
usual argument is Harnack's inequality. However, it is a priori unclear that it works
in our singular setting. To prove it, we write V = V� � B for � 2 M +

per, and consider
the repartition function F� of � : F� (x) := � ((0; x]). This function is not periodic,
but the function f � (x) := F� (x) � � (�) x

j� j is. Since F� is an non decreasing, right-

continuous function, we deduce thatf � 2 L 1
per. Moreover, it holds, in the H � 1

per sense,
that f 0

� = V� � j � j � 1� (�) = V + B � j � j � 1� (�) . As a result, we see thatu is solution
to the minimisation problem

u 2 argmin v2 H 1
per ;r

kvkL 2
per

=1

( �

�

�
�
�
�
dv
dx

�
�
�
�

2

+
�

� (�)
j� j

� B
�

� 2
�

�
f �

�
v

dv
dx

� )

:

There exists � 2 R so that the corresponding Euler-Lagrange equations can be written
in the weak-form:

div F (x; u; u0) + B (x; u; u0) = 0 ;

with
F (x; u; p) = p � f � u and B (x; u; p) = f � p + �u:

We are now in the settings of [Tru67, Theorem 1.1], and we deduce thatu > 0. The
rest of the proof is standard.

5.3.2 Proof of Proposition 5.4

We now prove Proposition 5.4. LetB 2 R and let Vn = V� n � B 2 VB with � n 2 M +
per,

be a sequence such that the sequence
�

"Vn
q=0

�

n2 N�
is bounded and� n (�) goes to+ 1 .

Since
�

"Vn
0

�

n2 N�
is bounded, then up to a subsequence (still denoted byn), there exists

" 2 R such that "Vn
0 converges to" . Our goal is to prove that the convergence also holds

uniformly in q 2 � � .

Let uVn
0 2 H 1

per be the L 2
per-normalised positive eigenvector ofAVn

0 associated to the
eigenvalue"Vn

0 (see Lemma 5.9). We denote by� n := min x2 � uVn
0 (x) > 0. Let us �rst

prove that the following convergences hold:

� n

�

�
uVn

0 d� n �����!
n! + 1

0 and � 2
n � n (�) �����!

n! + 1
0: (5.10)

From the equality
�

�

�
�
�
�

d
dx

�
uVn

0

� �
�
�
�

2

+
�

�
juVn

0 j2d� n = "Vn
0 + B;

we get

� 2
n � n (�) � � n

�

�
uVn

0 d� n �
�

�
juVn

0 j2d� n � "Vn
0 + B: (5.11)

As the right-hand side is bounded, and� n (�) ! + 1 by hypothesis, this implies� n ! 0.
Moreover, we have

0 �
�

�
uVn

0 d� n = aVn
0 (uVn

0 ; 1 � ) + B
�

�
uVn

0 = ( "Vn
0 + B )

�

�
uVn

0 � ("Vn
0 + B )j� j1=2;

138



where we used the Cauchy-Schwarz inequality for the last part. As a result, we deduce
that the sequence

� �
� uVn

0 d� n

�

n2 N�
is bounded. The �rst convergence of (5.10) follows.

The second convergence is a consequence of the �rst inequality in (5.11).

Let xn 2 � = [0 ; 2� ) be such that � n = uVn
0 (xn ). The fact that � n ! 0 implies that

ln := kuVn
0 (xn + �) � � nk2

L 2
per

! 1 and we can thus de�ne forn large enough

vn :=
uVn

0 (xn + �) � � n

kuVn
0 (xn + �) � � nkL 2

per

:

It holds that vn 2 H 1
per, kvnkL 2

per
= 1 . Besides, it holds that vn (0) = 0 . For q 2 � � , we

introduce the function vq;n de�ned by:

8x 2 R; vq;n(x) := vn (x)e� iq[x]; where we set [x] := x mod 2�:

Thanks to the equality vn (0) = 0 , it holds that vq;n 2 H 1
per, and that kvq;nkL 2

per
= 1 .

This function is therefore a valid test function for our min-max principle1.

From the min-max principle (5.5) and the expression (5.3), we obtain

B + "Vn
q � B + aVn

q (vq;n; vq;n)

=
�

�

�
�
�
�

�
� i

d
dx

+ q
�

vq;n

�
�
�
�

2

+
�

�
jvq;nj2 d� n =

�

�

�
�
�
�
dvn

dx

�
�
�
�

2

+
�

�
jvn j2 d� n

=
1
ln

 �

�

�
�
�
�

d
dx

�
uVn

0 (xn + �)
� �

�
�
�

2

+
�

�
juVn

0 (xn + �) � � n j2 d� n

!

=
1
ln

 �

�

�
�
�
�

d
dx

�
uVn

0

� �
�
�
�

2

+
�

�
juVn

0 j2 d� n � 2� n

�

�
uVn

0 d� n + � 2
n � n (�)

!

=
1
ln

�
B + "Vn

0 � 2� n

�

�
uVn

0 d� n + � 2
n � n (�)

�
:

We infer from these inequalities, and from (5.10) that

0 � max
q2 � �

�
�
�"Vn

q � "Vn
0

�
�
� �

�
B + "Vn

0

� �
1
ln

� 1
�

+
1
ln

�
� 2� n

�

�
uVn

0 d� n + � 2
n � n (�)

�
�����!
n! + 1

0:

This already proves the convergence (5.9).

To see that " � 1
4 � B , we write, for V = V� � B with � 2 M +

per that

8q 2 [� 1=2; 1=2]; AV
q =

�
�
�
� � i

d
dx

+ q

�
�
�
�

2

+ V� � B �

�
�
�
� � i

d
dx

+ q

�
�
�
�

2

� B � q2 � B;

where we used the fact that the lowest eigenvalue of

�
�
�
� � i

d
dx

+ q

�
�
�
�

2

is q2 for q 2 [� 1=2; 1=2]

(this can be seen with the Fourier representation of the operator). As a consequence,
for q = 1

2 , we obtain that for all V 2 VB , "V
q=1 =2 � 1

4 � B . The result follows.

1This construction only works in one dimension. We do not know how to construct similar test
functions in higher dimension.
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To prove the converse, we exhibit an explicit sequence of measures(� n )n2 N� � M +
per

such that "V� n
q ! 1

4 . The general result will follow by taking sequences of the form
Vn = V� n +

�
" � 1

4

�
� B . We denote by � x the Dirac mass at x 2 R, and consider, for

� > 0, the measure
� � := �

X

k2 Z

� 2�k 2 M +
per: (5.12)

From the �rst part of the Proposition, it is enough to check the convergence forq = 0 .
We are looking for a solution to (we denote by! 2

� := "
V� �
0 � 0 for simplicity)

� u00+ �� 0u(0) = ! 2
� u; u � 0; u(2� ) = u(0): (5.13)

On (0; 2� ), u satis�es the elliptic equation � u00= ! 2
� u, hence is of the form

u(x) = Cei! � x + De� i! � x ;

for someC; D 2 R. The continuity of u at 2� implies Ce2i�! � + De� 2i�! � = C + D.
Moreover, integrating (5.13) between0� and 0+ leads to the jump of the derivative
� u0(0) + u0(2� ) + �u (0) = 0 , or

i! � (D � C) + i! �
�
Ce2i�! � � De� 2i�! �

�
+ � (C + D) = 0 :

We deduce that (C; D) is solution to the 2 � 2 matrix equation
�

1 � e2i�! � 1 � e� 2i�! �

� i! �
�
1 � e2i�! �

�
+ � i! �

�
1 � e� 2i�! �

�
+ �

� �
C
D

�
=

�
0
0

�
:

The determinant of the matrix must therefore vanish, which leads to

1 = cos(2�! � ) +
�
2

sin(2�! � )
! �

:

As � ! 1 , one must have! � ! 1=2, or equivalently "
V� �
0 ! 1=4. The result follows.

5.3.3 Proof of Theorem 5.3

We are now in position to give the proof of Theorem 5.3. Letb 2 T and B > 1=4 � b�

where b� :=
�

� � b(q) dq. Let Vn = V� n � B � V B be a minimising sequence associated
to problem (5.8).

Let us �rst assume by contradiction that � n (�) ! 1 . Then, according to Proposi-
tion 5.4, up to a subsequence (still denoted byn), there exists " � 1

4 � B such that "Vn
q

converges uniformly inq 2 � � to the constant function " . Also, from the second part of
Proposition 5.4, the fact that B > 1

4 � b� and the fact that b� is the unique minimiser
to

inf
c2 R

Kb(c); (5.14)

where Kb(c) :=
�

[0;1=2] jb(q) � cj2 dq for all c 2 R, it must hold that " = b� .

We now prove that

inf
V 2V B

J b(V ) 6= inf
c2 R

Kb(c) = Kb(b� ):
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To this aim, we exhibit a potential W 2 VB such that J b(W ) < Kb(b� ). Since b is
continuous and increasing on[0; 1=2], there exists a uniqueq� 2 (0; 1=2) such that
b(q� ) = b� . We choose� > 0 small enough such that0 < q � � � < q � + � < 1=2, and set

� ext :=
� q� � �

0
jb(q) � b� j2 dq+

� 1=2

q� + �
jb(q) � b� j2 dq and � int :=

� q� + �

q� � �
jb(q) � b� j2 dq;

so that Kb(b� ) = � ext + � int . Sinceb is increasing and continuous, it holds that� int > 0
and � ext > 0, and that b(q� � � ) < b � < b(q� + � ).

We now choose a constant� > 0 such that

0 < � < min
�

� int

8�
; B + b� �

1
4

; b� � b(q� � � ); b(q� + � ) � b�
�

:

Let � n be the measure de�ned in (5.12) for� = n 2 N, and let

fWn := V� n + b� �
1
4

:

Since" fWn
q converges tob� uniformly in � � , there existsn0 2 N� large enough such that

8q 2 � � ;

�
�
�
�"

fWn 0
q � b�

�
�
�
� < �= 2:

We then de�ne

W := fWn0 + b� � "
fWn 0
q� = V� n +

��
B + b� �

1
4

�
�

�
"

fWn 0
q� � b�

��
� B:

Since� < B + b� � 1=4, it holds that W 2 VB . Moreover, it holds that b� � � < " W
q <

b� + � for all q 2 � � . Finally, for q = q� , we have"W
q� = b� .

Let us evaluateJ b(W ). We get

J b(W ) =
� q� � �

0
jb(q) � "W

q j2 dq+
� q� + �

q� � �
jb(q) � "W

q j2 dq+
� 1=2

q� + �
jb(q) � "W

q j2 dq:

For the �rst part, we notice that for 0 � q < q� � � , we have

b(q) < b(q� � � ) < b � � � < " W
q < " W

q� = b� :

This yields that

8 0 � q < q� � �; jb(q) � "W
q j = "W

q � b(q) < b � � b(q) = jb(q) � b� j:

Integrating this inequality leads to
� q� � �

0
jb(q) � "W

q j2 dq <
� q� � �

0
jb(q) � b� j2 dq:

Similarly, we obtain that
� 1=2

q� + �
jb(q) � "W

q j2 dq <
� 1=2

q� + �
jb(q) � b� j2 dq:
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Lastly, for the middle part, we have

� q� + �

q� � �
jb(q) � "W

q j2 dq < 2�
�
"W

q� + � � "W
q� � �

�
� 4�� �

� int

2
<

� q� + �

q� � �
jb(q) � b� j2 dq:

Combining all these inequalities yields that J b(W ) < Kb(b� ). This contradicts the
minimising character of the sequence(Vn )n2 N� .

Hence the sequence(� n (�)) n2 N� is bounded. The proof of Theorem 5.3 then follows
from Proposition 5.7.

5.4 Numerical tests

In this section, we present some numerical results obtained on di�erent toy inverse
band structure problems. We propose an adaptive optimisation algorithm in which
the di�erent discretisation parameters are progressively increased. Such an approach,
although heuristic, shows a signi�cant gain in computational time on the presented test
cases in comparison to a naive optimisation approach.

In Section 5.4.1, we present the discretised version of the inverse band problem for
multiple target bands. We present the di�erent optimisation procedures used for this
problem (direct and adaptive) in Section 5.4.2. Numerical results on di�erent test cases
are given in Section 5.4.3. The reader should keep in mind that although the proof
given in the previous section only works for the reconstruction of the �rst band, it is
possible to numerically look for methods that reproduce several bands.

5.4.1 Discretised inverse band structure problem

For k 2 Z, we let ek (x) := 1p
2�

eikx be the k-th Fourier mode. For s 2 N� , we de�ne by

X s := Spanf ek ; k 2 Z; jkj � sg (5.15)

the �nite dimensional space ofL 2
per consisting of theNs := 2s+1 lowest Fourier modes.

We denote by � X s : L 2
per ! X s the L 2

per orthogonal projector onto X s. In prac-
tice, the solutions of the eigenvalue problem (5.4) are approximated using a Galerkin
method in X s. We denote by "V;s

q;1 � � � � � "V;s
q;Ns

the eigenvalues (ranked in increasing

order, counting multiplicity) of the operator AV;s
q := � X s AV

q � �
X s

. We also denote by

(uV;s
q;1 ; � � � ; uV;s

q;Ns
) an orthonormal basis of X s composed of eigenvectors associated to

these eigenvalues so that

81 � j � Ns; AV;s
q uV;s

q;j = "V;s
q;j uV;s

q;j : (5.16)

An equivalent variational formulation of (5.16) is the following:

81 � j � Ns; 8v 2 X s; aV
q

�
uV;s

q;j ; v
�

= "V;s
q;j

D
uV;s

q;j ; v
E

L 2
per

:

As s goes to+ 1 , it holds that "V;s
q;m �!

s! + 1
"V

q;m.

142



In order to perform the integration in (5.7), we discretise the Brillouin zone. We
use a regular grid of sizeQ 2 N� , and set

� �
Q :=

�
�

1
2

+
j
Q

; j 2 f 0; � � � ; Q � 1g
�

:

We emphasise that since the mapsq 7! "q;m are analytic and periodic, the discretisation
error coming from the integration will be exponentially small with respect to Q. In
practice, we �x Q 2 N� .

Let M 2 N� be a desired number of targeted bands andb1; � � � ; bM 2 C0
per be real-

valued even functions, and such thatbm is increasing whenm is odd and decreasing
when m is even. Our cost functional is thereforeJ : H � 1

per;r ! R, de�ned by

8V 2 H � 1
per;r ; J (V ) :=

1
Q

X

q2 � �
Q

MX

m=1

jbm (q) � "V
q;m j2:

Its discretised version, when the eigenvalues problems are solved with a Galerkin ap-
proximation, is

8s 2 N� ; 8V 2 H � 1
per;r ; J s(V ) :=

1
Q

X

q2 � �
Q

MX

m=1

jbm (q) � "V;s
q;m j2:

Recall that our goal is to �nd a potential V 2 H � 1
per;r which minimise the functional

J s. In practice, an element V 2 H � 1
per;r is approximated with a �nite set of Fourier

modes. Forp 2 N� , we denote by

Yp := Span

8
<

:

X

k2 Z; jkj2 � p

bVkek ; 8k 2 Z; jkj � p; bV� k = bVk

9
=

;
: (5.17)

Altogether, we want to solve

V s;p := argmin V 2 Yp
J s(V ):

5.4.2 Algorithms for optimisation procedures

Naive algorithm

We �rst present a naive optimisation procedure, using a gradient descent method, where
the parameters s and p are �xed beforehand. We tested three di�erent versions of
the gradient descent algorithm: steepest descent (SD), conjugate gradient with Polak
Ribiere formula (PR ) and quasi Newton with the Broyden-Fletcher-Goldfarb-Shanno
formula (BFGS ). We do not detail here these classical descents and corresponding line
search routines for the sake of conciseness and refer the reader to [?, NW06].

For all V 2 H � 1
per;r , there exists real-valued coe�cients

�
cV

k

�
k2 N and

�
dV

k

�
k2 N� such

that

V (x) = cV
0 +

X

k2 N�

cV
k cos(kx)+ dV

k sin(kx); and
X

k2 N�

(1+ jkj2) � 1 �
jcV

k j2 + jdV
k j2

�
< + 1 :
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For all k 2 N (respectively k 2 N� ), we can express the derivative@cV
k

J s(V ) (respec-

tively @dV
k

J s(V )) exactly in terms of the Bloch eigenvectorsuV;s
q;m. Indeed, it holds

that

@cV
k

J s(V ) =
1
Q

X

q2 � �
Q

MX

m=1

2
�
"V;s

q;m � bm (q)
�

@cV
k

�
"V;s

q;m

�
:

On the other hand, from the Hellman-Feynman theorem, it holds that

@cV
k

�
"V;s

q;m

�
=

D
uV;s

q;m; @cV
k

AV
q ; uV;s

q;m

E
= huV;s

q;m; cos(k�)uV;s
q;m i L 2

per
:

Similarly, for all k 2 N� ,

@dV
k

�
"V;s

q;m

�
=

D
uV;s

q;m; @dV
k

AV
q ; uV;s

q;m

E
= huV;s

q;m; sin(k�)uV;s
q;m i L 2

per
:

In the rest of the article, for all p 2 N� , we will denote by rJ s(V )jY p the 2p + 1 -
dimensional real-valued vector so that

rJ s(V )
�
�
Y p =

�
@dV

p
J s(V ); @dV

p� 1
J s(V ); � � � ; @dV

1
J s(V ); @cV

0
J s(V ); @cV

1
J s(V ); � � � ; @cV

p
J s(V )

�
:

In order for the reader to better compare our adaptive algorithm with this naive
one, we provide its pseudo-code below (Algorithm 1).

Input:
p; s 2 N� ;
W0 2 Yp : initial guess;
" > 0: prescribed global precision;
� > 0: tolerance for the norm of the gradient;

Output:
W� 2 Yp such that krJ s(W� )

�
�
Yp

k � � ;

Instructions:
n = 0 , W = W0;
while krJ s(W )

�
�
Yp

jk > � do

compute a descent directionD 2 Yp at J s(W ) (using SD / PR / BFGS );
chooset 2 R so that t 2 argmin

t2 R
J s(W + tD );

set W  W + tD ;
end
return W� = W .

Algorithm 1: Naive optimisation algorithm
Although this method gives satisfactory numerical optimisers as shown in Sec-

tion 5.4.3, its computational time grows very quickly with the discretisation parameters
p and s. Besides, it is not clear how these parameters should be chosen a priori, given
some target bands. This motivates the design of an adaptive algorithm.
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Adaptive algorithm

In order to improve on the e�ciency of the numerical optimisation procedure, we propose
an adaptive algorithm, where the discretisation parameterss or p are increased during
the optimisation process. To describe this procedure, we introduce two criteria to
determine whethers or p need to be increased during the algorithm.

As the parameter s is increased, the approximated eigenvalues"V;s
q;m becomes more

accurate, and the discretised cost functionalJ s gets closer to the true oneJ . Our
criterion for s relies on the use of an a posteriori error estimator for the eigenvalue
problem (5.16). More precisely, assume we can calculate at low numerical cost an
estimator � V;s

q;m 2 R+ such that

j"V
m;q � "V;s

m;q j � � V;s
q;m;

(see Appendix 5.5), then we would have that

jJ (V ) � J s(V )j =

�
�
�
�
�
�

1
Q

X

q2 � �
Q

MX

m=1

�
jbm (q) � "V

q;m j2 � j bm (q) � "V;s
q;m j2

�
�
�
�
�
�
�

=

�
�
�
�
�
�

1
Q

X

q2 � �
Q

MX

m=1

�
2bm (q) � "V

q;m � "V;s
q;m

� �
"V;s

q;m � "V
q;m

�
�
�
�
�
�
�

�
1
Q

X

q2 � �
Q

MX

m=1

�
2

�
�bm (q) � "V;s

q;m

�
� + � V;s

q;m

�
� V;s

q;m =: Ss
V :

The quantity Ss
V estimates the error betweenJ (V ) and J s(V ) and therefore gives

information on the necessity to adapt the value of the discretisation parameters.

We now derive a criterion for the parameterp. When this parameter is increased, the
minimisation spaceYp gets larger. A natural way to decide whether or not to increase
p is therefore to consider the gradient ofJ s, at the current minimisation point W 2 Yp,
but calculated on a larger subspaceYp0 � Yp with p0 > p .

In practice, the natural choice p0 = p + 1 is ine�cient. This is not a surprise, as
there is no reason a priori to expect a sudden change at exactly the next Fourier mode.
We therefore took the heuristic choicep0 = 2p. More speci�cally, we de�ne

Pp
V :=






 r V J s(V )

�
�
Y2p






 :

Note that this estimator needs to be computed only whenV is a local minimum of
J s on Yp. When this estimator is larger than some threshold, we increasep so that
the new spaceYp contains the Fourier mode which provides the highest contribution in
(r V J s(V ))

�
�
Y2p

.

145



The adaptive procedure we propose is described in details in Algorithm 2:

Input:
p0; s0 2 N� : initial discretisation parameters;
W0 2 Yp0 : initial guess;
� > 0: global discretisation precision;
� > 0: gradient norm precision;

Output:
p � p0, s � s0 : �nal discretisation parameters;
W� 2 Yp such that krJ s(W� )

�
�
Yp

k � � , Ss
W �

� � and Pp
W �

� � ;

Instructions:
n = 0 , W = W0;
while krJ s(W )

�
�
Yp

k > � or Ss
W > � or Pp

W > � do

while krJ s
p (W )

�
�
Yp

k > � do
compute a descent directionD 2 Yp at J s(W ) (using SD / PR /
BFGS );

chooset 2 R so that t 2 argmint2 R J s(W + tD );
set W  W + tD ;

end
if Ss

W > � then
set s  s + 1 ;

end
else if Pp

W > � then

set p  argmaxp< p� 2p max
� �

�
�@dV

p
J s(W )

�
�
� ;

�
�
�@cV

p
J s(W )

�
�
�
�

;

end
end
return W� = W .

Algorithm 2: Adaptive optimisation algorithm

5.4.3 Numerical results

In this section, we illustrate the di�erent algorithms presented above.

We consider the case where the target functions come from a target potentialVt 2
Ypt , whose Fourier coe�cients are randomly chosen for somept 2 N� . We therefore take
bm (q) := "Vt ;st

q;m , and try to recover the �rst M functions bm . The numerical parameters
are M = 3 , Q = 25, � = 10 � 5, � = 10 � 6 and st = 20. The initial guess isW0 = 0 . The
naive algorithms are run with s = st and p = pt , while the adaptive algorithms start
with s0 = p0 = 1 . In addition, the a posteriori estimator is obtained with sref = 250 and
� = 0 :01 (see Appendix 5.5). All tests are done with the naive and adaptive algorihms,
with steepest descent (SD), conjugate gradient with Polak Ribiere formula (PR ) and
quasi Newton with the Broyden-Fletcher-Goldfarb-Shanno formula (BFGS ).

In our �rst test, we try to recover a simple shifted cosine function (i.e. pt = 1 ).
Results are shown in Figure 5.1. We observe that the bands and the potential are
well reconstructed. We also notice that the adaptive algorithm takes more iterations to
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converge. However, as we will see later, most iterations are performed for low values
of the parameterss and p, and therefore are usually faster in terms of CPU time (see
Table 5.1 below).
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(a) Potentials (b) Bands

(c) Evolution of s (d) Evolution of p

(e) Convergence of the algorithms

Figure 5.1 � Recovery of the cosine potential.

In the second test case, we try to recover a more complex potential withpt = 8 (see
Figure 5.2). In this case, all the algorithms reproduce well the �rst bands, but fail to
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recover the potential. Actually, we see how di�erent methods can lead to di�erent local
minima for the functional J . This re�ects the complex landscape of this function.

(a) Potentials (b) Bands

(c) Evolution of s (d) Evolution of p

(e) Convergence of the algorithms

Figure 5.2 � Recovery of an oscillating potential.
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We end this section by reporting results obtained with the di�erent algorithms, and
for di�erent target potential Vt 2 Ypt with pt = 1 ; 4; 8; 12 (see Table 5.1). In this table,
N denotes the number of iterations,sN and pN are the values of the parameterss and
p at the last iteration (in particular, for the naive algorithms, we have sN = st = 20
and pN = pt ). Lastly, for each algorithm algo , we de�ne a relative CPU time

� algo =
talgo

tSD
;

where talgo is the CPU time consumed by the algorithmalgo and tSD is the CPU time
consumed by the classical steepest descent. In particular,� SD = 1 .

pt
- BFGS PR SD
- naive adaptive naive adaptive naive adaptive

1
� 0.259 1.176 0.929 1.320 1 1.255
N 8 31 21 154 24 90
sN 20 3 20 4 20 3
pN 1 3 1 2 1 3

4
� 0.070 0.009 0.464 0.281 1 0.259
N 54 1424 1927 7091 8453 19095
sN 20 8 20 7 20 5
pN 4 5 4 3 4 3

8
� 0.470 0.151 1.090 0.144 1 0.519
N 553 1041 1023 1515 7326 26783
sN 20 6 20 7 20 6
pN 8 4 8 4 8 4

12
� 0.007 0.001 0.054 0.004 1 0.044
N 765 2474 2413 2727 50312 34865
sN 20 9 20 9 20 9
pn 12 8 12 8 12 8

Table 5.1 � Results for recovery test with di�erent algorithms. Red values are reference values.

We notice that although the adaptive approach requires more iterations to converge,
it is usually faster than the naive one. As we already mentioned, this is due to the fact
that most of the iterations are performed with small values ofp and s, and are therefore
faster. Moreover, we notice that the adaptive algorithms tend to �nd an optimised
potential which pN � pt , i.e. a less oscillatory potential than the target one.
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5.5 Appendix: A posteriori error estimator for the eigen-
value problem

We present in this appendix the a posteriori error estimator for eigenvalue problems
that we use in Section 5.4.3. More details about this estimator are given in [BL17].

Let H be a �nite dimensional space of sizeN ref and let A be a self-adjoint operator
on H. In our case,H is someX sref (see de�nition (5.15)) for some largesref � 1, and
A = AV;sref

q . The eigenvalues ofA, counting multiplicities are denoted by "1 � "2 �
� � � � "N ref .

For N � N ref , we considerX N a �nite dimensional subspace ofH . We denote by
� X N the orthogonal projection on X N , and by AN := � X N A� �

X N
. The eigenvalues

of AN are denoted by "N
1 � "N

2 � � � � � "N
N . Let us also denote by

�
uN

m

�
1� j � N a

corresponding orthogonal basis ofX N , so that

81 � m � N; A N uN
m = "N

m uN
m :

We recall that, from the min-max principle, it holds that "m � "N
m . A certi�ed a

posteriori error estimator for the m-th eigenvalue is a non-negative real number� N
m 2

R+ such that
"N

m � "m � � N
m :

We also require that the expression of� N
m only involves the approximated eigenpair"N

m
and uN

m (and not "m ).

Proposition 5.10. Assume that "m (resp. "N
m ) is a non-degenerate eigenvalue ofA

(resp. AN ), and that

0 < " N
m � "m < dist

�
"N

m ; � (A) n f "m g
�

: (5.18)

Let � m < " m . Then there exists� m > 0 such that, for all 0 � � < � m , we have

"N
m � "m �

D
r N

m ; (A � c� ) � 1 (A � d� ) (A � c� ) � 1 r N
m

E
; (5.19)

where we setc� := "N
m + � , d� := � m + � , and wherer N

m :=
�
A � "N

m

�
uN

m is the residual.

Proof. Assumption (5.18) implies that "N
m =2 � (A), so that

�
A � "N

m

�
is invertible. From

the fact that huN
m ; AuN

m i = "N
m , and the de�nition of the residual, it holds that

"N
m � "m =

D
r N

m ;
�
A � "N

m

� � 1
(A � "m )

�
A � "N

m

� � 1
r N

m

E
: (5.20)

Thus, a su�cient condition for (5.19) to hold is that

(A � c� ) � 1 (A � d� ) (A � c� ) � 1 �
�
A � "N

m

� � 1
(A � "m )

�
A � "N

m

� � 1
:

Thanks to the spectral decomposition ofA, this is the case if and only if,

81 � em � N ref ;
" em � d�

(" em � c� )2 �
" em � "m

(" em � "N
m )2 :

Denoting by � := dist
�
"N

m ; � (A) n f "m g
�

�
�
"N

m � "m
�
, this holds true as soon as� �

� m := min ( "m � � m ; � ). The result follows.
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In order to use the left-side of (5.19) as an a posteriori estimator, we need to choose
� m < " m and � m > 0. For the choice of� m , we follow [WS80], and notice that

"m � � m := � �
�

N ref � m � 1
m + 1

� 1=2

�;

where we set
� :=

1
N ref

Tr A and � 2 :=
1

N ref
Tr A2 � � 2:

For the choice of� m , we chose the simple rule

� m = �
�
"N

m � �
�

with 0 < � � 1 and � 2 R independent ofm:

The real number � is chosen to be an a priori lower bound of the lowest eigenvalue"1 of
A. This choice is heuristic in the sense that we cannot guarantee that the assumptions
of Proposition 5.10 are satis�ed. However, the encouraging numerical results we obtain
below motivated our choice to use such an estimator (see Section 5.5).

Numerical test To illustrate the e�ciency of our heuristic, we tested it to compute
the �rst bands of the Hill's operator AV with

V (x) =
3X

k= � 3

V̂kek ; where V̂0 = 2 and V̂� 1 = V̂� 2 = V̂1 = V̂2 = 1 + 0 :5 i:

The reference operator isA := AV;sref
q with sref = 250, and the �rst three bands are

computed on the spaceX s de�ned in 5.15 with s = 6 . We plot in Figure 5.3 the true
error "V;s

q;m � "V;sref
q;m for m = 1 ; 2; 3, and the corresponding a posteriori error with� = 0

and di�erent values of � (namely � = 0 :1; 0:5; 1). We observe that our estimator is sharp
for a large range of� .
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(a) Potential V (b) m = 1

(c) m = 2 (d) m = 3

Figure 5.3 � Numerical validation of the a posteriori error estimator proposed in Appendix 5.5.
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CHAPTER6

COMPRESSION OF WANNIER FUNCTIONS INTO
GAUSSIAN-TYPE ORBITALS

The work presented in this chapter is done in collaboration with Eric Cancès, Paul
Cazeaux, Shiang Fang and Efthimios Kaxiras. It is part of the article [BCC+ 17]

Abstract. We propose a greedy algorithm for the compression of Wannier functions
into Gaussian-polynomials orbitals. The so-obtained compressed Wannier functions can
be stored in a very compact form, and can be used to e�ciently parameterize e�ective
tight-binding Hamiltonians for multilayer 2D materials for instance. The compression
method preserves the symmetries (if any) of the original Wannier function. Algorithmic
details are provided, and the performance of our implementation are illustrated on
several examples (graphene, hexagonal boron-nitride, single-layer FeSe, diamond-phase
silicon)
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6.1 Introduction

Since their introduction in 1937 [Wan37], Wannier functions have become a widely used
tool in solid state physics and materials science. Theses functions provide insights on



chemical bonding in crystalline material [MMY+ 12], they play an essential role in the
modern theory of polarization [KSV93], and they can be used to parametrized tight-
binding Hamiltonians for the calculation of electronic properties [FKDS+ 15]. Other
applications of Wannier functions are presented in the review paper [MMY+ 12].

Maximally localized Wannier functions (MLWFs) were introduced by Marzari and
Vanderbilt [MV97] and are obtained by minimizing some spread functional [MV97,
SMV01, MMY + 12]. Several algorithms for generating MLWFs are implemented in the
Wannier90 computer program [MYL+ 08]. In the general case, MLWFs obtained by
the standard Marzari-Vanderbilt procedure are not centered at high-symmetry points
of the crystal (typically atoms or centers of chemical bonds), and do not ful�ll any
symmetry properties [SMV01, THJ05], which complicates their physical interpreta-
tion. Symmetry-adapted Wannier functions (SAWFs) are Wannier functions centered
at high-symmetry points and are associated with irreducible representations of a non-
trivial subgroup of the space group of the crystal (precise de�nitions are given in Ap-
pendix). They can be seen as the solid-state counterparts of symmetry-adapted molec-
ular orbitals [Lad16] fruitfully used in quantum chemistry. SAWFs were investigated
in [DC63, Koh73, VBC79, Krü87, SB94, ES12, SU01, SE05, PBMM02, CZWP06] from
both theoretical and numerical points of view. An algorithm for generating maximally-
localized SAWFs was recently proposed by Sakuma [Sak13]; it allows one to enforce
the center and symmetries of the Wannier functions during the spread minimization
procedure. It is now implemented in the Wannier90 computer program.

In this work, we propose a numerical method for compressing Wannier functions into
a �nite sum of Gaussian-polynomial functions (referred to as Gaussian-type orbitals -
GTOs - in the sequel), which preserves the centers and the possible symmetries of the
original Wannier functions. Such compressed representations enable the characteriza-
tion of a Wannier function by a small number of parameters (the shape parameters of
the Gaussians and the polynomial coe�cients) rather than by its values on a poten-
tially very large grid. In addition, they can be used to accelerate the parameterization
of tight-binding Hamiltonians or more advanced reduced models from Wannier func-
tions computed from Density Functional Theory. Indeed, matrix elements of e�ective
Hamiltonians can be computed very e�ciently for GTOs; this fundamental remark by
Boys [Boy50] was instrumental for the development of numerical methods for quantum
chemistry. Gaussian-type approximate Wannier functions should be particularly use-
ful for simulating multilayer two-dimensional materials [JM13, FK16], especially when
Fock exchange terms are considered, which is the case for hybrid functionals.

This article is organized as follows. In Section 6.2, we describe our approach for
compressing a given symmetry-adapted Wannier functionW into a �nite sum of GTOs
fWp sharing the same center and symmetries asW . Note that our procedure is also valid
if the Wannier function has no symmetry (in the case, the symmetry group is reduced to
the identity matrix). The main idea is to construct a sequencefW0; fW1; fW2; � � � of better
and better approximations of W (for the relevant metric, see Section 6.2.1), by means
of an orthogonal greedy algorithm [Tem08, TZ11]. The basics of greedy algorithms and
symmetry-adapted Wannier functions are brie�y recalled in Sections 6.2.2 and 6.2.3
respectively. An overall description of our algorithm is given in Section 6.2.4 and im-
plementation details are provided in Section 6.2.5. We strongly believe that greedy
methods are very well adapted to the compressing problem under consideration; on the
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other hand, we do not claim that our implementation is optimal: many variants of the
numerical scheme described in Section 6.2.5 can be considered, and there is clearly room
for improvement to reduce the number of GTOs necessary to reach a given accuracy.
The purpose of this contribution is to assess the e�ciency of greedy methods in this
setting, and to stimulate further work in this direction. The performance of our current
implementation is illustrated in Section 6.3 on four examples: three two-dimensional
materials, namely graphene, hexagonal boron-nitride (hBN), and FeSe, and bulk silicon
(in the diamond phase).

6.2 Theory

6.2.1 Error control

Consider a real-valued Wannier functionW : R3 ! R, which we would like to approx-
imate by a �nite sum of well-chosen Gaussian-polynomial functions. First, we have to
specify the norm with which the error betweenW and its approximation fW will be
measured. We will consider here theL 2 and H 1 norms respectively de�ned by

kukL 2 =
� �

R3
ju(r )j2 dr

� 1=2

and

kukH 1 =
� �

R3
ju(r )j2 dr +

�

R3
jr u(r )j2 dr

� 1=2

: (6.1)

Requesting that kW � fW kH 1 is small is far more demanding than simply requesting that
kW � fW kL 2 is small, since in the former case, bothkW � fW kL 2 and kr W � r fW kL 2

must be small. In the perspective of using approximate Wannier functions to calibrate
tight-binding models, it is important to request kW � fW kH 1 to be small. Indeed, while
the errors on the overlap integrals can be controlled byL 2-norms:
�
�
�
�

�

R3
Wi (r )Wj (r ) dr �

�

R3

fWi (r ) fWj (r ) dr

�
�
�
� � k Wi kL 2 kWi � fWi kL 2 + kfWi kL 2 kWj � fWj kL 2 ;

the errors on the kinetic energy integrals appearing in e�ective one-body Hamiltonians
matrix elements

hWi jH jWj i =
1
2

�

R3
r Wi (r ) � r Wj (r ) dr +

�

R3
V(r )Wi (r )Wj (r ) dr

are controlled by theL 2-norms of the gradients, hence by theH 1-norms of the functions.
The H 1-norm also allows one to control the errors on the potential integrals, even in
presence of Coulomb singularities.

Note that the L 2 and H 1-norms are particular instances of the Sobolev normsH s,
s 2 R, de�ned on the Solobev spaces

H s(R3) =
�

u : R3 ! R s.t.
�

R3
(1 + jk j2)sjbu(k)j2 dk < 1

�
;

where bu is the Fourier transform of u, by

kukH s :=
� �

R3
(1 + jk j2)sjbu(k)j2 dk

� 1=2

: (6.2)
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The L 2-norm corresponds tos = 0 , due to the isometry property of the Fourier trans-
form: �

R3
jbu(k)j2 dk =

�

R3
ju(r )j2 dr :

Likewise, de�nition (6.2) agrees with de�nition(6.1) for s = 1 since
�

R3
jk j2jbu(k)j2 dk =

�

R3
ji k bu(k)j2 dk =

�

R3

�
�
� cr u(k)

�
�
�
2

dk =
�

R3
jr u(r )j2 dr :

It can be useful to consider other kinds of Sobolev norms in some particular applications.
For instance, kW � fW kH 1 being small does not guarantee that the pointwise values of
the function (W � fW ) are small. On the other hand, if kW � fW kH 2 is small, then
jW (r ) � fW (r )j is small for eachr 2 R3.

Our greedy algorithm has been implemented in the Fourier representation, and can
therefore minimize the error between the Wannier functionW and its GTO represen-
tation for any value of the Sobolev exponents. In the numerical examples reported in
Section 6.3, we will consider the casess = 0 and s = 1 .

6.2.2 Greedy algorithms in a nutshell

Greedy algorithms [Tem08, TZ11] are iterative algorithms allowing one, among other
things, to construct sequences of approximationsfW0, fW1, fW2, ... of some target function
W 2 H s(R3), with the following properties:

� each approximate functionfWp is a sum ofp "simple" functions belonging to some
prescribeddictionary D � H s(R3):

fWp(r ) =
pX

j =1

� (p)
j (r );

with � (p)
j 2 D . In our case, D will be a set of symmetry-adapted Gaussian-

polynomial functions;

� the errors kW � fWpkH s decay to 0 when p ! 1 .

Greedy algorithms therefore provide systematic ways to approximate a given function
W 2 H s(R3) by a �nite sum of simple functions with an arbitrary accuracy. Of course,
the setD of elementary functions cannot be any subsetH s(R3) (for instanceD cannot be
chosen as the set of radial functions since only radial functions can be well approximated
by �nite sums of radial functions). The convergence property kW � fWpkH s ! 0 is
guaranteed provided the setD is a dictionary of H s(R3), that is a family of functions
H s(R3) satisfying the following three conditions:

1. D is a cone, that is if � 2 D , then t� 2 D for any t 2 R;

2. Span(D) is dense in the Sobolev spaceH s(R3). This means that any function
W 2 H s(R3) can be approximated with an arbitrary accuracy � > 0 by a �nite
linear combination of functions of D, and therefore by a �nite sum of functions
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of D sinceD is a cone: for any� > 0, there exists a �nite integer p 2 N� , and p
functions � (p)

1 , ... � (p)
p in D such that













W �

0

@
pX

j =1

� (p)
j

1

A














H s

� �:

Greedy algorithms provide practical ways to construct such approximations;

3. D is weakly closed inH s(R3). This technical assumption ensures the convergence
of the greedy algorithm [Tem08].

Given a dictionary D, the greedy method then consists in

� initializing the algorithm with (for instance) fW0 = 0 ;

� constructing iteratively a sequencefW1; fW2; fW3; � � � of more and more accurate
approximations of the target Wannier function W of the forms

fWp(r ) =
pX

j =1

� (p)
j (r ); (6.3)

where � (p)
j are functions of the dictionary D;

� stopping the iterative process whenkW � fWpkH s � � , where � > 0 is the desired
accuracy (for the chosenH s-norm).

We will use here the so-called orthogonal greedy algorithm for constructingfWp+1 from
fWp, which is de�ned as follows.

Algorithm 6.1 (Orthogonal greedy algorithm).

Step 1: Compute the residual at iterationp:

Rp(r ) = W (r ) � fWp(r );

Step 2: �nd a local minimizer � p+1 to the optimization problem

min
� 2D

Jp(� ); where Jp(� ) := kRp � � k2
H s ; (6.4)

Step 3: solve the unconstrained quadratic optimization problem

(c(p+1)
j )1� j � p+1 2 argmin

8
<

:













W �

0

@
p+1X

j =1

cj � (p)
j + cp+1 � p+1

1

A














2

H s

; (cj )1� j � p+1 2 Rp+1

9
=

;
;

(6.5)

Step 4: set � (p+1)
j = c(p+1)

j � (p)
j , 1 � j � p, and � (p+1)

p+1 = c(p+1)
p+1 � p+1 .

Note that Step 3 is easy to perform since (6.5) is nothing but a least square problem
in dimension (p+ 1) (p is of the order of10 to 103 in practice). Step 2 will be described
in detail in Sections 6.2.4 and 6.2.5. The next section is concerned with the choice of
the dictionary D.
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6.2.3 Symmetry-adapted Wannier functions and Gaussian-type or-
bitals

For the reader's convenience, the basics of the theory of symmetry-adapted Wannier
functions we make use of in this section are recalled in Appendix.

We assume from now on that we are dealing with a periodic material with space
group G = R o Gp, where R is a Bravais lattice embedded inR3, and Gp a �nite
point group (a �nite subgroup of the orthogonal group O(3)). The Bravais lattice R is
two-dimensional for 2D materials such as graphene or hBN, and three-dimensional for
usual 3D crystals.

We also assume that we are given a symmetry-adapted Wannier functionW centered
at a high-symmetry point q 2 R3 of the crystalline lattice, and corresponding to a one-
dimensional representation of the subgroup

G0
q := f � 2 Gp j � q 2 q + Rg

of Gp. Note that our method can straightforwardly be extended to the case of two-
dimensional irreducible representations ofG0

q . We now translate the origin of the
Cartesian frame to point q. Setting G0 := G0

q to simplify the notation, the function W
satis�es in this new frame the invariance property

8� 2 G0; (� W )( r ) = W (� � 1r ) = � (�) W (r ); (6.6)

where � is the character of this one-dimensional representation.

Our goal is to approximate the Wannier function W by a �nite sum of GTOs. In
order to reduce the number of GTOs necessary to obtain the desired accuracy, while
enforcing the symmetries of the approximate Wannier functionsfWp, we use a dictionary
consisting of symmetry-adapted Gaussian-type orbitals (SAGTOs) of the form

� SA
� ;�; � (r ) =

1
jG0j

X

� 2 G0

� (�) (� ' � ;�; � )( r ) =
1

jG0j

X

� 2 G0

� (�) ' � ;�; � (� � 1r ); (6.7)

where jG0j is the order of the groupG0, and where

' � ;�; � (r ) =

0

@
X

(nx ;ny ;nz )2I

� nx ;ny ;nz (r x � � x )nx (r y � � y)ny (r z � � z)nz

1

A exp
�

�
1

2� 2 jr � � j2
�

is a Gaussian-polynomial function centered at� 2 R3 with standard deviation � >
0. The set I is a carefully chosen subset of

�
(nx ; ny ; nz) 2 N3 j nx + ny + nz � L

	

(total degree lower or equal toL) determined by the symmetries of the SAWF. Note
that for 2D materials laying in the xy plane, it is more appropriate to choseI ��

(nx ; ny ; nz) 2 N3 j nx + ny � L k; nz � L ?
	

.

Any function � SA
� ;�; � of the dictionary thus satis�es the same symmetry property

8� 2 G0; (� � SA
� ;�; � )( r ) = � SA

� ;�; � (� � 1r ) = � (�) � SA
� ;�; � (r )

as the Wannier function W to be approximated.

160



6.2.4 A greedy algorithm for compressing SAWF into SAGTO

It can be shown that the set

DSA :=
�

� SA
� ;�; � ; � 2 R3; � 2 [� min ; � max ]; � 2 RI �

	
; (6.8)

where 0 < � min < � max < 1 are given parameters (chosen by the user), andI � is a
carefully chosen nonempty subset ofN3 depending on the center� of the SAGTO, is a
dictionary for the closed subspace

H s;SA(R3) :=
�

f 2 H s(R3) j 8� 2 G0; (� f )( r ) = f (� � 1r ) = � (�) f (r )
	

of H s(R3) for any s 2 R+ .
For example, in the case of Graphene and hBN (see Section 6.3), we use the same

set for each� 2 R3:

I � = f (0; 0; 1); (0; 0; 3); (0; 0; 5)g; 8� 2 R3:

More re�ne strategies will be considered in future works.

The main practical di�culty in Algorithm 6.1 is the computation of a local minimum
to Problem (6.4). This problem can be formulated in our case as

min
� 2 R3 ; � 2 [� min ;� max ]; � 2 RI

J p(� ; �; �) ; where J p(� ; �; �) := kRp � � � ;�; � k2
H s : (6.9)

The above minimization problem can in turn be written as:

min
� 2 R3 ; � 2 [� min ;� max ]

eJ p(� ; � ); (6.10)

where
eJ p(� ; � ) = min

� 2 RI
J p(� ; �; �) : (6.11)

Since the map� 7! J p(� ; �; �) is quadratic in � , problem (6.11) can be solved explicitly
at a very low computational cost, and the gradient of eJ p(� ; � ) with respect to both �
and � can be easily computed from the solution of problem (6.11) by the chain rule.

We can then use an o�-the-shelf constrained optimization solver to �nd a local
minimizer to the four-dimensional optimization problem (6.10).

6.2.5 Algorithmic details

Construction of MLWFs

The Wannier functions considered in this work are MLWFs constructed using VASP [KF96a,
KF96b] and Wannier90 [MYL + 08]. Let us brie�y describe the construction procedure.

First, the Bloch energy bands and wave-functions of the periodic Kohn-Sham Hamil-
tonian are obtained using VASP with pseudo-potentials of the Projector Augmented
Wave (PAW) type [Blö94], the PBE exchange-correlation functional [PBE96], a plane-
wave energy cuto� Ec and a grid Q of the Brillouin zone � � . For 2D materials, the
height � of the supercell is chosen su�ciently large to eliminate the spurious interactions
between the material and its periodic images.
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Next, the Bloch eigenfunctions belonging to the energy bands of interest are com-
bined into a basis of MLWFs using the Marzari-Vanderbilt algorithm [MV97] as imple-
mented in the Wannier90 computer program [MYL+ 08]. The �nal output is a set of
Wannier functions which are known to be localized at a certain point and exponentially
decaying for materials which suitable topological properties such as the ones considered
in Section 6.3 (see [PP13]). In practice, one chooses a su�ciently large rectangular box,


 := [ xmin ; xmax ] � [ymin ; ymax ] � [zmin ; zmax ] � R3;

such that we can safely neglect the exponentially vanishing values of the Wannier func-
tion under consideration outside the box. The numerical values of the Wannier function
W are given on a Cartesian gridM spanning the box and containingM = M xM yM z

points.
Note that the Wannier functions obtained in this manner are in general not perfectly

symmetry-adapted. Indeed, the classical Marzari-Vanderbilt algorithm does not take
symmetries into account. The current implementation of Sakuma's method inWan-
nier90 being not compatible with the outputs of VASP, we were not able to use it for
our simulations. However, in practice, the MLWFs we generated are close enough to
SAWFs so that it was possible to identify a high-symmetry center and an associated
point group. To test our compression method, we symmetrize the MLWFs according to
the identi�ed point group before applying the greedy procedure.

Optimization Procedure in the Discrete Setting

Let us now focus on the practical implementation of the second step of the greedy
algorithm presented above. We present in this section the discrete formulation of prob-
lem (6.11). The discrete data representing the Wannier functionW centered atq 2 R3

are composed of: i) the symmetry groupG0 and ii) the point values (W (r )) r 2M at each
point of the cartesian grid M .

Because we seek to minimize in particular theH 1-norm of the residual, we introduce
an auxiliary Fourier representation of the data. Indeed, computing gradients is a fast
(diagonal) operation in momentum space. The Fast Fourier Transform algorithm (FFT)
can be used to e�ciently transform data from position to momentum space. In partic-
ular, we obtain the unnormalized discrete representation of the Fourier transformbu of
any function u as point values(bu(k)) k 2K on a secondary Cartesian momentum-space
grid that we denote by K, containing the same number of points as the real-space grid,
i.e jKj = jMj = M . Let us recall that the FFT algorithm requires M x , M y and M z to
be even numbers so that the momentum gridK is centered at zero. TheH s�norm (6.2)
of u then has a discrete approximation given by

kuk2
H s �

j
 j
M 2

X

k 2K

�
1 + jk j2

� s
jbu(k)j2 : (6.12)

At every greedy iteration p � 0, the exact cost functional J p is approximated in the
discrete setting by the functional J M

p de�ned as:

J M
p (� ; �; �) :=

j
 j
M 2

X

k 2K

�
1 + jk j2

� s
�
�
� cRp(k) � \� � ;�; � (k)

�
�
�
2

; (6.13)
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where we recall that the residualRp is computed from the approximation fWp at step p
of the target Wannier function W ,

Rp(r ) = W (r ) � fWp(r ):

Note that while the Fourier transform of the SAGTO function � � ;�; � which appears in
this expression can be analytically computed, it is faster and more consistent to evaluate
directly the Fourier transform of the residual numerically using the FFT algorithm.

Let us now focus on the implementation of the minimization problem (6.10) with the
discrete error functional (6.13). As mentioned above, we use an o�-the-shelf constrained
optimization solver to �nd a local minimizer to the non-convex minimization problem

min
� 2 
 ; � 2 [� min ;� max ]

eJ M
p (� ; � ); (6.14)

the minimization over the coe�cients � of the SAGTO being performed explicitly for
�xed � ; � by solving the least-square problem

eJ M
p (� ; � ) = min

� 2 RI
J M

p (� ; �; �) : (6.15)

We tested both the Sequential Quadratic Programming(SQP) and the Interior-Point
(IP) specializations of the fmincon optimization routine implemented in the Matlab
Optimization Toolbox [MAT16]. To accelerate the computation, the gradient (but not
the Hessian matrix) is also provided to the optimizer routine. Note that it is straight-
forward to compute explicitely the gradient by the chain rule in the case of the discrete
error functional in (6.14) from the solution of the inner problem in (6.15); however its
expression is quite cumbersome and will be omitted here for the sake of conciseness.
The iterative procedure is stopped when one of the following two convergence criteria
is met: (i) the norm of the gradient is smaller than � = 10 � 10; (ii) the relative step
size between two successive iterations is smaller than� min = 10 � 12. In practice, our nu-
merical tests show that both optimization routines (SQP or IP) provide similar results,
with the IP method being slightly faster.

As usual with non-convex optimization problems, it is very important to provide
a suitable initial guess for the parameters, namely here the center of the Gaussian
� 0 2 
 and its variance � min � � 0 � � max . We propose here the following initialization
procedure. First, the initial center position � 0 is chosen as a maximizer of the absolute
value of the residualRp:

� 0 2 argmax
r 2 


jRp(r )j: (6.16)

Next, two di�erent heuristic guesses are proposed to determine a suitable initial value
� 0, assuming that the function jRpj resembles locally a Gaussian function centered at
� 0,

jRp(r )j � j Rp(� 0)j exp
�

�
jr � � 0j2

2� 2

�
: (6.17)

A �rst guess for � 0 is obtained by a local data �t,

� 0
1 = argmin

�> 0

X

r 2M\ B (� 0 )

�
1

2� 2

�
�r � � 0

�
�2

+ log

�
�
�
�

Rp(r )
Rp(� 0)

�
�
�
�

� 2

;
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where B (� 0) is a cubic box centered at� 0 of side length 2r cuto� , with r cuto� a user-
de�ned parameter. This is in fact a linear least-squares �t, yielding the explicit formula:

� 0
1 =

0

B
B
B
B
@

X

r 2M\ B (� 0 )

�
�r � � 0

�
�4

� 2
X

r 2M\ B (� 0 )

�
�r � � 0

�
�2

log

�
�
�
�

Rp(r )
Rp(� 0)

�
�
�
�

1

C
C
C
C
A

1=2

: (6.18)

A second guess is provided by a property linking the variance of the standard nor-
malized Gaussiang(r ) = (2 �� 2) � 1=2 exp

�
� 1

2� 2 jr j2
�

to its full width at half maximum,
denoted ! h:

! h[g]
�

= 2
p

2 log 2:

The full width at half maximum is not well de�ned for arbitrary (non-radial) functions.
We choose here to sample the full-width at half maximum along one-dimensional slices
in all three directions x; y; z around � 0 and retain the smallest value. For an arbitrary
function u assumed to have its maximum magnitude at the origin, we let:

! h [u] := min
d2f x;y;z g

inf
�

j
 + � 
 � j : 
 � < 0 < 
 + and

�
�
�
�
u (
 � ed)

u (0)

�
�
�
� �

1
2

�
;

where ed is the standard unit vector in the direction d 2 f x; y; zg. This leads to a
second initial guess for the variance:

� 0
2 =

! h
�
Rp(� � � 0)

�

2
p

2 log 2
: (6.19)

In practice, we project the values� 0
1 given by (6.18) and � 0

2 given by (6.19) on the
interval [� min ; � max ] and choose

� 0 = argmin
i =1 ;2

J p(� 0; � 0
i ; � 0): (6.20)

Again, we do not claim that this procedure is optimal; it however gives satisfactory
results for all the test cases we ran.

6.3 Numerical results

Our greedy algorithm allows us to compress a SAWF de�ned on a cartesian grid with
M = M xM yM z points into a sum of SAGTOs parameterized byp(4+ jIj ) real numbers,
where p is the number of SAGTOs in the expansion

fW SA
p (r ) =

pX

j =1

� SA
� j ;� j ;� j

(r );

and where each� SA
� j ;� j ;� j

is characterized by(4+ jIj ) real parameters. The compression
gains for the four numerical examples detailed below, namely three 2D materials (single-
layer graphene, hBN, and FeSe), and one bulk crystal (diamond-phase silicon), are
collected in Table 6.1. The numerical parameters used in the construction of the original
Wannier functions (as described in Section 6.2.5) are given in Table 6.2 for the sake of
completeness.
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Material M jIj � p p(4 + jIj ) Compression ratio

Graphene 3237696 3
0:1 115 805 4022
0:02 1036 7252 446

hBN 4021248 3
0:1 137 959 4193
0:03 1500 10500 383

Si 110592 3
0:1 424 2968 38
0:02 1500 10500 10

FeSe 4032000 2
0:1 133 798 5052
0:02 1610 9660 417

Table 6.1 � Compression gains obtained with our implementation of the orthogonal greedy
minimizing the H 1-norm of the residual for Wannier functions of graphene, hBN, FeSe, and
bulk silicon, for di�erent tolerance levels � .

Material Ec[eV] Q � [Å] M
Graphene 500 25� 25� 1 20 168� 132� 146

hBN 500 25� 25� 1 20 192� 154� 136
FeSe 500 19� 19� 1 25 120� 120� 280

Si 300 7 � 7 � 7 � 48� 48� 48

Table 6.2 � Numerical parameters used for the construction of the original Wannier functions
using VASP and Wannier90.

6.3.1 Graphene and single-layer hBN

The space groups of graphene and single-layer hBN are respectively

G = Dg80 := R o D6h ; (space group of graphene);

G = P6m2 := R o D3h ; (space group of single-layer hBN);

where R is the 2D Bravais lattice embedded inR3 de�ned as

R = Za

0

@

p
3=2

1=2
0

1

A + Za

0

@
0
1
0

1

A ; (6.21)

where a > 0 is the lattice parameter (which takes di�erent values for graphene and
hBN). The group D6h is a group of order 24, and has 12 irreducible representations,
while the group D3h is a group of order 12, and has 6 irreducible representations.

The points O, A, B and C represented in Figure 6.1 are high-symmetry points of
graphene (left) and hBN (right); their symmetry groups are respectively

GO � D 6h ; GA � D 3h ; GB � D 3h ; GC � D 2h ; (graphene);

GO � D 3h ; GA � D 3h ; GB � D 3h ; GC � D 1h ; (single-layer hBN):

Let � h be the re�ection operator with respect to the horizontal plane containing the
graphene sheet. The two irreducible representations of the subgroupCs = ( E; � h) of
D 6h and D 3h give rise to the decomposition ofL 2(R3) as

L 2(R3) = L 2
+ (R3) � L 2

� (R3);
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Figure 6.1 � The honeycomb lattices of graphene (left) and hBN (right). The black dots
represent carbon atoms, the red dots boron atoms, and the green dots nitrogen atoms. The
blue dots O, A, B , and C represent some high-symmetry points.

D 3h E 2C3 (z) 3C0
2 � h (xy) 2S3 3� v linear quadratic cubic

functions functions functions
A00

2 +1 +1 -1 -1 -1 +1 z - z3, z(x2 + y2)

Table 6.3 � Character of the A� 2 representation of the groupD 3h

where
L 2

+ (R3) = Ker(� h � 1); L 2
� (R3) = Ker(� h + 1) :

The bands associated withL 2
+ (R3) are the � bands, the ones associated withL 2

� (R3)
the � bands. The bands of interest for graphene and single-layer hBN are the valence
and conduction bands closer to the Fermi level. For graphene, these are the� bands
originating from the 2pz orbitals of the carbon atoms.

The SAWF functions for graphene and single-layer hBN considered here are centered
at point A and are transformed according to the (one-dimensional) A00

2 representation
of D 3h , whose character is given in Table 6.3.

Graphical representations of the original Wannier functions generated by Wannier90
and of their compressions into Gaussian orbitals obtained with the VESTA visualization
package [MI08], are displayed in Figures 6.2 (graphene) and 6.3 (hBN). The decays of
the L 2 and H 1-norms of the residuals along the iterations of our implementation of
the orthogonal greedy algorithm aiming at minimizing the H 1-norm of the residual, are
plotted in Figure 6.4.

6.3.2 Single-layer SeFe

The space group of single-layer FeSe is

G = P4/nmm := R o D4h ;

where R is the 2D square lattice ofR3 de�ned as

R = Za

0

@
1
0
0

1

A + Za

0

@
0
1
0

1

A ; (6.22)
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Figure 6.2 � Wannier function of graphene generated with VASP and Wannier90 (left), and its
compression into Gaussian orbitals (right). Positive and negative iso-surfaces corresponding to
15% of the maximum value are plotted. .

(a) (b)

Figure 6.3 � Wannier function of single-layer hBN generated with VASP and Wannier90 (left),
and its compression into Gaussian orbitals (right). Positive and negative iso-surfaces corre-
sponding to 15% of the maximum value are plotted.

wherea > 0 is the lattice parameter. The groupD 4h is of order 16 and has 10 irreducible
representations. The symmetry group of the high-symmetry pointA represented in
Figure 6.5 isGA = C2v .

The Wannier function considered here corresponds to a d� type orbital on an Fe
atom centered at point A and is transformed according to the one-dimensional A1
representation ofC2v , whose character is given in Table 6.4. Graphical representations
of the original Wannier function and of its compression into Gaussian orbitals are given
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Figure 6.4 � Decays of the L 2 and H 1-norms of the residual for our implementation of the
orthogonal greedy algorithm minimizing the H 1-norm of the residual (left: graphene, right:
hBN)

(a) side view (b) top view

Figure 6.5 � Crystalline structure of FeSe (2D layer with a �nite thickness). The brown balls
represent Fe atoms and the green balls represent Se atoms. The spotted pointA corresponds
to the high-symmetry point at which the Wannier function is centered.

in Figure 6.6. The decays of theL 2 and H 1-norms of the residual along the iterations
of our implementation of the orthogonal greedy algorithm minimizing the H 1-norm of
the residual are plotted in Figure 6.9.

6.3.3 Diamond-phase silicon

The space group of diamond-phase silicon is

G = Fd3m := R o Oh

where R is the Bravais lattice of R3 de�ned as

R = Za

0

@
1
0
1

1

A + Za

0

@
1
1
0

1

A + Za

0

@
0
1
1

1

A ; (6.23)
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C2v E C2 (z) � v (xz) � v(yz) linear quadratic cubic
functions functions functions

A1 +1 +1 +1 +1 z x2, y2, z2 z3, x2z, y2z

Table 6.4 � Character of the A 1 representation of the groupC2v .

(a) (b)

Figure 6.6 � Wannier function of single-layer FeSe generated with VASP and Wannier90 (left),
and its compression into Gaussian orbitals (right). Positive and negative iso-surfaces corre-
sponding to 12% of the maximum value are plotted.

wherea > 0 is the lattice parameter. The groupOh is of order48 and has10 irreducible
representations. The Wannier function considered here corresponds a py � type orbital
centered at the high-symmetry pointA represented in Figure 6.7 whose symmetry group
is GA = C2v .

It is transformed according to the one-dimensional irreducible representation A1
of the group C2v . Let us mention the following point : since the basisx̂ = (1 ; 0; 1),
ŷ = (1 ; 1; 0) and ẑ(0; 1; 1) is not orthonormal in R3, the symmetry operators C2(z),
� v(xz) and � v(yz) must be adapted to this geometry. Indeed, the two-fold rotationC2

is about the axis of direction (0; 1; 1) and the two re�exions � v are de�ned with respect
to the planes P1 and P2 of cartesian equationsx + z = 0 and y + z = 0 respectively.
Graphical representations of the original Wannier function and of its compression into
Gaussian orbitals are given in Figure 6.8. The decays of theL 2 and H 1-norms of the
residual along the iterations of our implementation of the greedy algorithm aiming at
constructing H 1-norm approximations of the Wannier function are plotted in Figure 6.9.
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Figure 6.7 � Crystalline structure of Silicon. The brown balls represent Si atoms and the spotted
point A corresponds to the high-symmetry point where the Wannier function is centered.

(a) (b)

Figure 6.8 � Wannier function of bulk Silicon (diamond phase) generated by Wannier90 (left),
and its compression into Gaussian orbitals (right). Positive and negative iso-surfaces corre-
sponding to 10% of the maximum value are plotted.

Appendix: symmetry-adapted Wannier functions

A.1 Space group of a periodic material

Consider a periodic material with M nuclei of chargesz1; � � � ; zM per unit cell. The
nuclear charge distribution in the material is of the form

� =
X

R 2R

MX

m=1

zm � R m + R ;

where R is the Bravais lattice of the crystal (embedded inR3 if the material is a 2D
material), � a the Dirac mass at point a 2 R3, and R 1; � � � ; R M 2 R3 the positions of
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Figure 6.9 � Decays of the L 2 and H 1-norms of the residual for our implementation of the or-
thogonal greedy algorithm minimizing the H 1-norm of the residual (left: FeSe, right: diamond-
phase sillicon)

the nuclei laying in the unit cell. The space groupG = R o Gp of the crystal is the
semidirect product of R and a �nite point group Gp (a �nite subgroup of O(3)). Recall
that the composition law in R o Gp is de�ned as

8g1 = ( R 1; � 1); g2 = ( R 2; � 2); g1g2 = (� 1R 2 + R 1; � 1� 2);

and that the natural representation of G in R3 is given by

8g = ( R ; �) 2 G; 8r 2 R3; ĝr = \(R ; �) r = � r + R :

Note that

8g = ( R ; �) 2 G; g� 1 = ( � � � 1R ; � � 1) and 8r 2 R3; ĝ� 1r = � � 1(r � R ):

The space group of the crystal is the largest group (for an optimal choice of the origin
of the Cartesian frame) leaving� invariant:

8g 2 G; bg� :=
X

R 2R

MX

m=1

zm � bg(R m + R ) = �:

The group G has a natural unitary representation � = (� g)g2 G on L 2(R3) de�ned
by

8g = ( R ; �) 2 G; (� g )( r ) =  (ĝ� 1r ) =  (� � 1(r � R )) :

Denoting by E the identity matrix of rank 3, and by � = ( � a)a2 R3 the natural unitary
representation onR3 on L 2(R3) de�ned by

8a 2 R3; 8� 2 L 2(R3); (� a� )( r ) = � (r � a);

we have� (R ;E ) = � R for all R 2 R , so that (� R )R 2R is an abelian subgroup of� .
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A.2 Bloch transform

Let us now recall the basics of Bloch theory. We denote by� a unit cell of the Bravais
lattice R, by

L 2
per(�) :=

�
u 2 L 2

loc(R3; C); u R-periodic
	

; hujvi L 2
per

:=
�

�
u(r ) v(r ) dr ;

the Hilbert space of locally square-integrableR-periodic functionsC-valued functions on
R3, by R � the dual lattice of R and by � � the �rst Brillouin zone. The Bloch transform
associated withR (seee.g. [RS78c, Section XIII.16]) is the unitary transform

L 2(R3; C) 3 � 7! (� k )k 2 � � 2 H =
 �

� �
L 2

per(�) dk

where
�

� � is a notation for the normalized integral j� � j � 1
�

� � , whereH is endowed with
the inner product

h(� k )k 2 � � j( k )k 2 � � i H =
 

� �
h� k j k i L 2

per
dk;

and where, for a smooth fast decaying function� , the periodic function � k is given by

� k (r ) =
X

R 2R

� (r + R )e� i k �(r + R ) :

The original function � is recovered from its Bloch transform using the inversion formula

� (r ) =
 

� �
� k (r ) ei k �r dk:

Consider a one-body Hamiltonian

H = �
1
2

� + Vper; Vper 2 L 2
per(�) ;

describing the electronic properties of the material (we ignore spin for simplicity). In
the absence of symmetry breaking,H commutes with all the unitary operators in � =
(� g)g2 G. In particular, H commutes with the translations � R , R 2 R , and is therefore
decomposed by the Bloch transform:

H =
 

� �
Hk dk;

meaning that there exists a family (Hk )k 2 � � of self-adjoint operators onL 2
per(�) such

that for any � in the domain of H , � k is almost everywhere in the domain ofHk and

(H� )k = Hk � k :

It is well-known that

Hk =
1
2

(� i r + k)2 + Vper = �
1
2

� � i k � r +
1
2

jk j2 + Vper:
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The operator Hk can in fact be de�ned for any k 2 R3, and it holds

8k 2 R3; 8K 2 R � ; Hk + K = VK Hk V �
K ; (6.24)

where VK is the unitary operator on L 2
per(�) de�ned by

8u 2 L 2
per(�) ; (VK u)( r ) = e� i K �r u(r ):

As a consequence, for allk 2 R3 and K 2 R � , Hk and Hk + K are unitary equivalent, and
therefore have the same spectrum. Not every� g a priori commutes with the translation
operators � R , R 2 R . The operator � g is therefore not in general decomposed by the
Bloch transform. On the other hand, denoting by U = ( U� ) � 2 Gp the natural unitary
representation ofGp in L 2

per(�) de�ned by

8� 2 Gp; 8u 2 L 2
per(�) ; (U� u)( r ) = u(� � 1r );

the Bloch representation of the operator� g, g = ( R ; �) 2 G, has a simple form:

[� (R ;�) ]k ;k 0 = e� i k �R U� � k 0;� � 1k ;

that is:
[� (R ;�) � ]k (r ) = e� i k �R � � � 1k (� � 1r ):

SinceH commutes with all the � g's, this implies that the family (Hk )k 2 � � satis�es the
covariance relation

8k 2 Rd; 8� 2 Gp; H � k = U� Hk U �
� :

For each k 2 R3, the operator Hk is self-adjoint on L 2
per(�) and is bounded below. If

R is a three-dimensional lattice (3D crystal), then Hk has a compact resolvent and its
spectrum is purely discrete. IfR is a two-dimensional lattice (2D material), then the
essential spectrum ofHk is a half-line [� k ; + 1 ).

A.3 Symmetry-adapted Wannier functions

We assume here thatH has a �nite number n � 1 of bands isolated from the rest
of the spectrum, that is that there exist two continuous R-valued R-periodic func-
tions k 7! � � (k) and k 7! � + (k) such that � � (k) < � + (k), � � (k) =2 � (Hk ) and
tr

�
1[� � (k );� + (k )] (Hk )

�
= n for all k 2 R3. We denote by � 1;k � � 2;k � � � � � � n;k

the eigenvalues ofHk laying in the range [� � (k); � + (k)] (counting multiplicities). The
functions k 7! � n;k are Lipschitz continuous, and, in view (6.24), are alsoR-periodic.

A generalized Wannier function associated to thesen bands is a function of the form

8r 2 R3; W (r ) =
 

� �
uk (r ) ei k �r dk; uk 2 Ran(1[� � (k );� + (k )] (H )) ; kuk kL 2

per
= 1 :

Let q be a site of the unit cell of the crystalline lattice1. We denote by

Gq = f g = ( R ; �) 2 G j ĝq = � q + R = qg

1Here the lattice is not in general a Bravais lattice. For graphene and hBN, this is a honeycomb
lattice.
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the �nite subgroup of G leaving q invariant. The point q is called a high-symmetry
point if Gq is not trivial. Setting R � = q � � q, we have

Gq =
�

g = ( R � ; �) ; � 2 G0
q

	
;

where G0
q is a subgroup ofGp.

A symmetry-adapted Wannier function centered at a high-symmetry point q is a
Wannier function W such that

1. the �nite-dimensional space

H W;q := Span(� gW; g 2 Gq )

is � g-invariant for any g 2 Gq ;

2. (� gjH W; q )g2 Gq de�nes an irreducible unitary representation � of Gq .

Let n� := dim(H W;q ) be the dimension of this representation and(W (� )
i; 1 )1� i � n � be a

basis of H W;q such that W (� )
1;1 = W . Let (d� (�)) � 2 G0

q
2 (Cn � � n � )nq be the matrix

representation of the groupG0
q in

H 0
W;q := Span

�
� � � � qW; � 2 G0

q

�
; where � � := � (0;�) :

We therefore have

8� 2 G0
q ; � �

�
� � qW (� )

i; 1

�
=

n �X

i 0=1

d(� )
i 0;i (�)

�
� � qW (� )

i 0;1

�
;

so that

8(R � ; �) 2 Gq ; � (R � ;�) W (� )
i; 1 =

n �X

i 0=1

d(� )
i 0;i (�) W (� )

i 0;1 :

If the representation � is one-dimensional (n� = 1 ), then (d� (�)) � 2 G0
q

is the character
of the corresponding representation ofG0

q � Gp in H 0
W;q .

Let J = jGp j=jGq j 2 N� . Then, there exist (gj )1� j � J 2 GJ such that

G =
JX

j =1

X

R 2R

(R jE )gj Gq :

More precisely, there exist(gj )1� j � J 2 GJ such that

� for each1 � j � J , q j := ĝj q 2 � ;

� any g 2 G can be decomposed in a unique way as

g = ( R jE)gj gq

for a unique triplet (R ; j; gq ) 2 R � j [1; J ]j � Gq .

174



For each1 � i � n� , 1 � j � J and R 2 T, we set

W (� )
i;j; R = � (R jE )gj W (� )

i; 1 ;

and we then de�ne

H W = Span
�

W (� )
i;j; R ; 1 � i � n� ; 1 � j � J; R 2 R

o
:

In other words, H W is the closure of the vector space generated by the mother SAWF
W and all the SAWFs obtained by letting the elements ofG act on W .

The spaceH W � H 2(R3) is both H -invariant and � -invariant, and for any g 2 G,
the action of � g on W (� )

i;j; R can be computed as follows. Let(R 0; j 0; g0
q ) the unique

element ofR � j [1; J ]j � Gq such that g(R jE)gj = ( R 0jE )gj 0g0
q . We have

� gW (� )
i;j; R = � g� (R jE )gj W (� )

i; 1 = � g(R jE )gj W (� )
i; 1 = � (R 0jE )gj 0g0

q
W (� )

i; 1

= � (R 0jE )gj 0� g0
q
W (� )

i; 1 = � (R 0jE )gj 0

 n �X

i 0=1

d(� )
i 0;i (� 0

q)W (� )
i 0;1

!

=
n �X

i 0=1

d(� )
i 0;i (� 0

q)W (� )
i 0;j 0;R 0:

The index j 0 is the unique integer in the rangej[1; J ]j such that

ĝ(q j + R ) 2 q j 0 + R:

The explicit expressions ofR 0 and � 0
q as functions of (R ; j ) and g = ( R ; �) are the

following
� 0

q = � � 1
j 0 �� j ; R 0 = ĝq j � q j 0 + � R :

Constructing a basis of SAWFs for then bands de�ned by the functions � � and � +

amounts to �nding s 2 N� high-symmetry points q1; � � � ; qs, and s SAWFs Wannier
functions W1; � � � ; Ws respectively centered at the pointsq1; � � � ; qs, such that

 �

� �
Ran

�
1[� � (k );� + (k )] (H )

�
dk = H W1 � � � � � H Ws :

This is the purpose of the numerical method introduced in [Sak13].
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