L. Ambrosio and H. Frid, Multiscale Young measures in almost periodic homogenization and applications, Archive for Rational Mechanics and Analysis, pp.37-85, 2009.
DOI : 10.1007/s00205-008-0127-3

B. Andreianov, P. Goatin, and N. Seguin, Finite volume schemes for locally constrained conservation laws, Numerische Mathematik, vol.73, issue.115, pp.609-645, 2010.
DOI : 10.1007/s00211-009-0286-7

URL : https://hal.archives-ouvertes.fr/hal-00387806

F. M. Atay, Complex time-delay systems: theory and applications, 2010.
DOI : 10.1007/978-3-642-02329-3

A. Aw, A. Klar, M. Rascle, and T. Materne, Derivation of Continuum Traffic Flow Models from Microscopic Follow-the-Leader Models, SIAM Journal on Applied Mathematics, vol.63, issue.1, pp.259-278, 2002.
DOI : 10.1137/S0036139900380955

A. Aw and M. Rascle, Resurrection of "Second Order" Models of Traffic Flow, SIAM Journal on Applied Mathematics, vol.60, issue.3, pp.916-938, 2000.
DOI : 10.1137/S0036139997332099

M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Physical Review E, vol.11, issue.2, pp.51-1035, 1995.
DOI : 10.1007/BF03167222

M. Bardi and I. Capuzzo-dolcetta, Optimal control and viscosity solutions of Hamilton- Jacobi-Bellman equations, 1997.
DOI : 10.1007/978-0-8176-4755-1

G. Barles, Solutions de viscosité des équations d'Hamilton Jacobi, de mathématiques et applications, 1994.

G. Barles and P. E. Souganidis, On the Large Time Behavior of Solutions of Hamilton--Jacobi Equations, SIAM Journal on Mathematical Analysis, vol.31, issue.4, pp.31-925, 2000.
DOI : 10.1137/S0036141099350869

URL : https://hal.archives-ouvertes.fr/hal-00623000

P. Bernard and J. Roquejoffre, Convergence to Time-Periodic Solutions in Time-Periodic Hamilton???Jacobi Equations on the Circle, Communications in Partial Differential Equations, vol.52, issue.3-4, pp.29-457, 2005.
DOI : 10.1002/(SICI)1097-0312(199907)52:7<811::AID-CPA2>3.0.CO;2-D

URL : https://hal.archives-ouvertes.fr/hal-01251188

A. Besicovitch, Almost Periodic Functions, 1932.

H. Bohr, Almost periodic functions, 1947.

O. Bokanowski and H. Zidani, Méthodes numériques pour la propagation de fronts, Notes de cours, 2014.

M. Brackstone and M. Mcdonald, Car-following: a historical review, Transportation Research Part F: Traffic Psychology and Behaviour, vol.2, issue.4, pp.181-196, 1999.
DOI : 10.1016/S1369-8478(00)00005-X

L. A. Caffarelli, P. E. Souganidis, and L. Wang, Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media, Communications on Pure and Applied Mathematics, vol.45, issue.3, pp.58-319, 2005.
DOI : 10.1007/978-3-642-84659-5

P. Cardaliaguet, Solutions de viscosité d'équations elliptiques et paraboliques non linéaires, 2004.

R. E. Chandler, R. Herman, and E. W. , Traffic Dynamics: Studies in Car Following, Operations Research, vol.6, issue.2, pp.165-184, 1958.
DOI : 10.1287/opre.6.2.165

R. L. Cooke, Almost-periodic functions, The American Mathematical Monthly, pp.515-526, 1981.
DOI : 10.1080/00029890.1981.11995304

G. Costeseque, Contribution to road traffic flow modeling on networks thanks to Hamilton-Jacobi equations, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01119173

G. Costeseque, J. Lebacque, and R. Monneau, A convergent scheme for Hamilton???Jacobi equations on a junction: application to traffic, Numerische Mathematik, vol.24, issue.3, pp.405-447, 2015.
DOI : 10.1137/S1064827501396798

URL : https://hal.archives-ouvertes.fr/hal-01214828

M. G. Crandall, H. Ishii, and P. Lions, User's guide to viscosity solutions of second order partial differential equations, Bulletin of the, pp.1-67, 1992.

M. , D. Francesco, and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Archive for rational mechanics and analysis, pp.831-871, 2015.

L. Díaz and R. Naulin, A set of almost periodic discontinuous functions, Pro Mathematica, vol.20, pp.107-118, 2006.

J. Droniou and C. Imbert, Solutions de viscosité et solutions variationnelles pour EDP nonlinéaires, 2012.

L. C. Evans, Synopsis, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.1248, issue.3-4, pp.359-375, 1989.
DOI : 10.1137/0326063

L. C. Evans and D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics I, Archive for rational mechanics and analysis, pp.1-33, 2001.
DOI : 10.1007/s002050100181

J. Firozaly, Homogenization of a 1D pursuit law with delay, arXiv preprint, 2016.

N. Forcadel, C. Imbert, and R. Monneau, Homogenization of the dislocation dynamics and of some systems of particles with two-body interactions, Discrete and Continuous Dynamical Systems-A, 2007.

N. Forcadel, C. Imbert, and R. Monneau, Homogenization of fully overdamped Frenkel???Kontorova models, Journal of Differential Equations, vol.246, issue.3, pp.1057-1097, 2009.
DOI : 10.1016/j.jde.2008.06.034

URL : https://hal.archives-ouvertes.fr/hal-00266994

N. Forcadel and W. Salazar, A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01097085

N. Forcadel and W. Salazar, Homogenization of second order discrete model and application to traffic flow, preprint, 2014.
DOI : 10.3934/dcds.2017060

URL : https://doi.org/10.3934/dcds.2017060

N. Forcadel and W. Salazar, Homogenization of a discrete model for a bifurcation and application to traffic flow, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01332787

N. Forcadel and W. Salazar, A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01097085

N. Forcadel and W. Salazar, Homogenization of second order discrete model and application to traffic flow, Differential and Integral Equations, pp.1039-1068, 2015.
DOI : 10.3934/dcds.2017060

URL : https://doi.org/10.3934/dcds.2017060

N. Forcadel, W. Salazar, and M. Zaydan, A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01097085

G. Galise, C. Imbert, and R. Monneau, A junction condition by specified homogenization and application to traffic lights, Analysis & PDE, vol.1150, issue.8, pp.1891-1929, 2015.
DOI : 10.1080/00036818108839367

URL : https://hal.archives-ouvertes.fr/hal-01010512

P. G. Gipps, A behavioural car-following model for computer simulation, Transportation Research Part B: Methodological, vol.15, issue.2, pp.105-111, 1981.
DOI : 10.1016/0191-2615(81)90037-0

W. Gottschalk, Almost periodicity, equi-continuity and total boundedness, Bulletin of the, pp.633-636, 1946.
DOI : 10.1090/s0002-9904-1946-08611-5

URL : http://www.ams.org/bull/1946-52-08/S0002-9904-1946-08611-5/S0002-9904-1946-08611-5.pdf

B. Greenshields, W. Channing, and H. Miller, A study of traffic capacity, Highway research board proceedings Highway Research Board, 1935.

J. Guerand, Classification of nonlinear boundary conditions for 1d nonconvex hamilton-jacobi equations, arXiv preprint, 2016.
DOI : 10.1016/j.jde.2017.04.015

J. Guerand and M. Koumaiha, Error estimates for finite difference schemes associated with Hamilton-Jacobi equations on a junction, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01120210

N. Guillen and R. W. Schwab, Neumann homogenization via integro-differential operators, arXiv preprint arXiv:1403, 1980.
DOI : 10.3934/dcds.2016.36.3677

URL : http://www.aimsciences.org/journals/doIpChk.jsp?paperID=12327&mode=full

H. Holden and N. H. Risebro, Continuum limit of Follow-the-Leader models, arXiv preprint, 2017.

S. P. Hoogendoorn and P. H. Bovy, State-of-the-art of vehicular traffic flow modelling, Proceedings of the Institution of Mechanical Engineers, pp.215-283, 2001.
DOI : 10.1002/piuz.1984.2200150304

C. Imbert and R. Monneau, Homogenization of First-Order Equations with (u/?)-Periodic Hamiltonians. Part I: Local Equations, Archive for Rational Mechanics and Analysis, pp.49-89, 2008.
DOI : 10.1007/s00205-007-0074-4

URL : https://hal.archives-ouvertes.fr/hal-00016270

C. Imbert, R. Monneau, H. Zidani, and . Hamilton, Jacobi approach to junction problems and application to traffic flows, ESAIM: Control, Optimisation and Calculus of Variations, pp.129-166, 2013.
DOI : 10.1051/cocv/2012002

URL : http://arxiv.org/pdf/1107.3250

H. Ishii, Almost periodic homogenization of Hamilton-Jacobi equations, International conference on differential equations, p.2, 2000.
DOI : 10.1142/9789812792617_0122

W. Jin and Y. Yu, Asymptotic solution and effective Hamiltonian of a Hamilton???Jacobi equation in the modeling of traffic flow on a homogeneous signalized road, Journal de Math??matiques Pures et Appliqu??es, vol.104, issue.5, pp.982-1004, 2015.
DOI : 10.1016/j.matpur.2015.07.002

W. Jing, P. E. Souganidis, and H. V. Tran, Large time average of reachable sets and Applications to Homogenization of interfaces moving with oscillatory spatio-temporal velocity, 2014.

W. Jing, P. E. Souganidis, and H. V. Tran, Stochastic homogenization of viscous superquadratic Hamilton???Jacobi equations in dynamic random environment, Research in the Mathematical Sciences, p.6, 2017.
DOI : 10.1002/cpa.21674

URL : https://resmathsci.springeropen.com/track/pdf/10.1186/s40687-016-0090-9?site=resmathsci.springeropen.com

E. Kosygina and S. R. Varadhan, Homogenization of Hamilton-Jacobi-Bellman equations with respect to time-space shifts in a stationary ergodic medium, Communications on Pure and Applied Mathematics, vol.8, issue.6, pp.61-816, 2008.
DOI : 10.1007/978-3-662-11281-6

L. Leclercq, J. A. Laval, and E. Chevallier, The Lagrangian coordinates and what it means for first order traffic flow models, in Transportation and Traffic Theory, 2007.

M. J. Lighthill and G. B. Whitham, On Kinematic Waves. II. A Theory of Traffic Flow on Long Crowded Roads, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp.317-345, 1955.
DOI : 10.1098/rspa.1955.0089

P. Lions, G. Papanicolaou, and S. R. Varadhan, Homogenization of hamilton-Jacobi equations, 1986.
URL : https://hal.archives-ouvertes.fr/hal-00667310

P. Lions and P. Souganidis, Well posedness for multi-dimensional junction problems with kirchoff-type conditions, arXiv preprint, 2017.
DOI : 10.4171/rlm/786

URL : http://arxiv.org/pdf/1704.04001

P. Lions and P. E. Souganidis, Viscosity solutions for junctions: well posedness and stability, arXiv preprint, 2016.
DOI : 10.4171/rlm/747

URL : http://arxiv.org/pdf/1608.03682

T. Nagatani, The physics of traffic jams, Reports on progress in physics, p.1331, 2002.
DOI : 10.1088/0034-4885/65/9/203

D. Ngoduy and C. Tampère, Macroscopic effects of reaction time on traffic flow characteristics, Physica Scripta, vol.80, issue.2, p.25802, 2009.
DOI : 10.1088/0031-8949/80/02/025802

D. Pennequin, Contrôle optimal et oscillations, These de l, 2000.

F. Rezakhanlou and J. E. Tarver, Homogenization for Stochastic Hamilton-Jacobi Equations, Archive for rational mechanics and analysis, pp.277-309, 2000.
DOI : 10.1007/s002050050198

P. I. Richards, Shock Waves on the Highway, Operations Research, vol.4, issue.1, pp.42-51, 1956.
DOI : 10.1287/opre.4.1.42

R. Sainct, Étude des instabilités dans les modèles de trafic, 2016.

W. Salazar, Contribution aux équations aux dérivées partielles non linéaires et non locales et application au trafic routier

R. W. Schwab, Stochastic homogenization of Hamilton-Jacobi equations in stationary ergodic spatio-temporal media, Indiana University Mathematics Journal, vol.58, issue.2, pp.537-581, 2009.
DOI : 10.1512/iumj.2009.58.3455

S. Smaili, Modélisation et commande d'un système de trafic multimodal, 2012.

P. E. Souganidis, Stochastic homogenization of Hamilton?Jacobi equations and some applications, Asymptotic Analysis, pp.1-11, 1999.

D. H. Wagner, Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions, Journal of Differential Equations, vol.68, issue.1, pp.118-136, 1987.
DOI : 10.1016/0022-0396(87)90188-4