. Hartog, From top to bottom: 0.0%, 0.5%, 1.0%, 1.5% and 2.0% of additional cable lowered down the borehole, Recorded signal by the DAS system with increasing tension release, p.96, 2014.

U. In-livingston, From top to bottom: (1) corresponds to minimal tension release) 0.5% (3) 1.0% and (4) 2.0% of cable slack In (a) seismic data acquired by the DAS system are shown. Numerical results are presented in (b) and (c), where in (b) the position of the cable is shown after each stage of cable slack and in (c) the corresponding contact force is plotted along the entire borehole length, The same analysis as shown in Figure 4, p.106, 2016.

K. Ainslie, C. Beales, J. Day, and . Rush, Interplay of design parameters and fabrication conditions on the performance of monomode bers made by MCVD, pp.854-857, 1981.

K. Aki and P. G. Richards, Quantitative Seismology, Cit. on pp. 2, 32, and 73, 1980.

. Aki, Scattering and Attenuation of Seismic Waves, Part II, 1989.

D. Arney and J. Flaherty, An adaptive mesh-moving and local refinement method for time-dependent partial differential equations, ACM Transactions on Mathematical Software, vol.16, issue.1, pp.48-71, 1990.
DOI : 10.1145/77626.77631

URL : http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA268425&Location=U2&doc=GetTRDoc.pdf

J. Arroyo, P. Breton, S. Dingwall, R. Guerra, R. Hope et al., Superior seismic data from the borehole, Cit. on pp. 6, 93, and 105, pp.2-23, 2003.

R. J. Astley, Finite Elements in Solids and Structures: An Introduction, 1992.

I. Babuska and B. Guo, The h, p and h-p version of the nite element method: basis theory and applications Advances in Engineering Software, pp.159-174, 1992.

I. Babu?ka, B. Szabó, and I. Katz, -Version of the Finite Element Method, SIAM Journal on Numerical Analysis, vol.18, issue.3, pp.515-545, 1981.
DOI : 10.1137/0718033

M. Baines, M. Hubbard, and P. Jimack, A moving mesh finite element algorithm for the adaptive solution of time-dependent partial differential equations with moving boundaries, Applied Numerical Mathematics, vol.54, issue.3-4, pp.450-469, 2005.
DOI : 10.1016/j.apnum.2004.09.013

A. Balch and M. Lee, Vertical Seismic Prooling: Technique, Applications and Case Histories, 1984.

C. Barberan, C. Allanic, D. Avila, J. Hy-billiot, A. Hartog et al., Multi-ooset seismic acquisition using optical ber behind tubing, pp.24-42
DOI : 10.3997/2214-4609.20148798

U. Basu and A. K. Chopra, Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.11-12, pp.1337-1375, 2003.
DOI : 10.1016/S0045-7825(02)00642-4

U. Basu and A. K. Chopra, Perfectly matched layers for transient elastodynamics of unbounded domains, International Journal for Numerical Methods in Engineering, vol.59, issue.8, pp.156-157, 2004.
DOI : 10.1002/nme.896

URL : http://ftp.lstc.com/anonymous/outgoing/ubasu/website/papers/basu-tdpml.pdf

K. Bathe, Finite Element Procedures, 1996.

M. Batzle and Z. Wang, Seismic properties of pore fluids, GEOPHYSICS, vol.57, issue.11, pp.1396-1408, 1992.
DOI : 10.1190/1.1443207

O. A. Bauchau and J. I. Craig, Solid mechanics and its applications, Euler- Bernoulli beam theory chapter Structural Analysis, pp.173-221, 2009.

K. Beales, C. Day, W. Duncan, A. Dunn, P. Dunn et al., Low loss graded index ber by double crucible technique, 5th European Conference on Optical Fibre Communications, 1979.

J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, issue.2, pp.185-200, 1994.
DOI : 10.1006/jcph.1994.1159

P. Bettinelli and B. Frignet, Optical ber seismic acquisition for well-toseismic tie at the Ketzin pilot site (CO2storage), 85th SEG Annual Meeting, p.2015

M. A. Biot, Propagation of Elastic Waves in a Cylindrical Bore Containing a Fluid, Journal of Applied Physics, vol.23, issue.9, pp.997-1005, 1952.
DOI : 10.1063/1.1702365

URL : https://hal.archives-ouvertes.fr/hal-01368657

J. Blackledge, Digital Signal Processing: Mathematical and Computational Methods, Software Development and Applications, 2006.
DOI : 10.1533/9780857099457

J. Blanco, G. S. Knudsen, and F. X. Bostick, Timelapse VSP eld test for gas reservoir monitoring using permanent ber optic seismic system, 76th SEG Annual Meeting, 2006.
DOI : 10.1190/1.2370250

N. Bleistein, J. Cohen, and W. Stockwell, Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion, 2001.
DOI : 10.1007/978-1-4613-0001-4

J. Bunch and J. Hopcroft, Triangular factorization and inversion by fast matrix multiplication, Mathematics of Computation, vol.28, issue.125, pp.231-236, 1974.
DOI : 10.1090/S0025-5718-1974-0331751-8

URL : http://ecommons.cornell.edu/bitstream/1813/6003/1/72-152.pdf

C. Chapman, Fundamental of seismic waves propagation, Cit. on pp. 2, 32, and 73, 2004.
DOI : 10.1017/CBO9780511616877

C. H. Cheng and M. N. Toksöz, Elastic wave propagation in a fluid???filled borehole and synthetic acoustic logs, GEOPHYSICS, vol.46, issue.7, pp.1042-1053, 1981.
DOI : 10.1190/1.1441242

C. H. Cheng and M. N. Toksöz, Generation, propagation and analysis of tube waves in a borehole, Vertical Seismic Prooling. Part B: Advanced Concepts, 1984.

S. Chopra, L. Lines, D. Schmitt, and M. Batzle, 1. Heavy-Oil Reservoirs: Their Characterization and Production, Heavy Oils, pp.1-69, 2012.
DOI : 10.1190/1.2793064

URL : https://hal.archives-ouvertes.fr/in2p3-00008075

M. Clark and D. Mackie, Portable Airgun Tank - A New Approach to Land BHS using Airguns, Borehole Geophysics Workshop II, 2013.
DOI : 10.3997/2214-4609.20142578

A. Constantinou, A. Farahani, T. Cuny, and A. H. Hartog, Improving DAS acquisition by real-time monitoring of wireline cable coupling, SEG Technical Program Expanded Abstracts 2016
DOI : 10.1016/j.optlastec.2015.09.013

B. Cox, B. Wills, D. Kiyashchenko, J. Mestayer, S. B. Lopez et al., Distributed acoustic sensing for geophysical measurement, monitoring, and veriication, CSEG Recorder, vol.37, issue.2, pp.7-13

J. Cressler and H. Mantooth, Extreme Environment Electronics, 2012.
DOI : 10.1201/b13001

R. Crickmore and D. Hill, Fibre optic cable for acoustic/seismic sensing, 2014.

T. Daley, B. Freifeld, J. Ajo-franklin, S. Dou, R. Pevzner et al., Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring, The Leading Edge, vol.4, issue.6, pp.699-706
DOI : 10.1364/AO.37.005600

A. T. De-hoop, A modification of cagniard???s method for solving seismic pulse problems, Applied Scientific Research, Section B, vol.34, issue.1, pp.349-356, 1960.
DOI : 10.1007/BF02920068

J. Dean, Introduction to the Finite Element Method (FEM) University of Cambridge, 2016.

T. Dean, T. Cuny, and A. H. Hartog, Determination of the Optimum Gauge Length for Borehole Seismic Surveys Acquired Using Distributed Vibration Sensing, 77th EAGE Conference and Exhibition 2015
DOI : 10.3997/2214-4609.201412740

T. Dean, T. Cuny, A. Constantinou, P. Dickenson, C. Smith et al., Depth calibration of bre-optic distributed vibration sensing measurements, 78th EAGE Conference and Exhibition, p.2016
DOI : 10.3997/2214-4609.201601600

J. D. Boer, A. Mateeva, J. G. Pearce, J. Mestayer, W. Birch et al., Detecting broadside acoustic signals with a ber optical distributed acoustic sensing (DAS), 2013.

J. Diaz and A. Ezziani, Analytical Solution for Waves Propagation in Heterogeneous Acoustic/Porous Media. Part I: The 2D Case, Communications in Computational Physics, vol.7, issue.1, pp.171-194, 2010.
DOI : 10.4208/cicp.2009.08.148

URL : https://hal.archives-ouvertes.fr/inria-00404224

G. Drijkoningen, The usefulness of geophone ground???coupling experiments to seismic data, GEOPHYSICS, vol.65, issue.6, pp.1780-1787, 2000.
DOI : 10.1190/1.1443713

K. F. Eldridge, O. W. Dillon, and W. Y. Lu, Thermo-viscoplastic nite element modelling of machining under various cutting conditions, Journal of Manufacturing Science and Engineering, vol.181, issue.4, pp.162-169, 1991.

F. Englich and A. H. Hartog, Fiber optic array having densely spaced, weak reeectors, 2016.

M. Farhadiroushan, D. Finfer, D. Strusevich, S. Shatalin, and T. Parker, Nonisotropic acoustic cable, 2015.

E. I. Galperin, Vertical Seismic Prooing. Society of Exploration Geophysicists, 1974.

E. I. Galperin, Vertical Seismic Prooling and its Exploration Potential, 1985.
DOI : 10.1007/978-94-009-5195-2

URL : https://link.springer.com/content/pdf/bfm%3A978-94-009-5195-2%2F1.pdf

J. E. Gentle, Numerical Linear Algebra for Applications in Statistics, p.61, 1998.
DOI : 10.1007/978-1-4612-0623-1

G. Green, An essay on the application of mathematical analysis to the theories of electricity and magnetism, 1828.

B. A. Hardage, An examination of tube wave noise in vertical seismic profiling data, GEOPHYSICS, vol.46, issue.6, pp.892-903, 1981.
DOI : 10.1190/1.1441228

B. A. Hardage, Vertical Seismic Prooling. Part A: Principles, 1983.

A. Hartog, O. I. Kotov, and L. Liokumovich, The optics of distributed vibration sensing. Second EAGE Workshop on Permanent Reservoir Monitoring - Current and Future Trends, Cit. on pp, vol.4, issue.145, p.10

A. Hartog, B. Frignet, D. Mackie, and M. Clark, Vertical seismic optical profiling on wireline logging cable, Geophysical Prospecting, vol.2011, issue.4, pp.693-701, 2014.
DOI : 10.3997/2214-4609.20148799

A. H. Hartog, An Introduction to Distributed Optical Fibre Sensors, pp.13-14, 2017.

A. H. Hartog and K. Kader, Distributed bre optic sensor system with improved linearity, 2012.

A. H. Hartog, L. Liokumovich, A. Ushakov, O. Kotov, T. Dean et al., The use of multi-frequency acquisition to signiicantly improve the quality of bre-optic distributed vibration sensing, 78th EAGE Conference and Exhibition, p.2016

M. Hayes, Statistical Digital Signal Processing and Modeling, 1996.

P. Healey, Fading in heterodyne OTDR Electronic Letters, pp.30-32, 1984.
DOI : 10.1049/el:19840022

H. Hertz, Ueber die Beruehrung fester elasticher Koerper, Journal für reine und angewandte Mathematik, vol.92, pp.156-171

K. Hornman, Field trial of seismic recording using distributed acoustic sensing with broadside sensitive fibre-optic cables, Geophysical Prospecting, vol.62, issue.11, pp.35-46, 2017.
DOI : 10.1111/1365-2478.12116

URL : http://onlinelibrary.wiley.com/doi/10.1111/1365-2478.12358/pdf

K. Hornman, B. Kuvshinov, P. Zwartjes, and A. Franzen, Field trial of a broadside-sensitive distributed acoustic sensing cable for surface seismic. 75th EAGE Conference and Exhibition
DOI : 10.3997/2214-4609.20130383

J. Houbolt, A Recurrence Matrix Solution for the Dynamic Response of Elastic Aircraft, Journal of the Aeronautical Sciences, vol.9, issue.1, pp.540-550, 1950.
DOI : 10.2514/8.11882

T. J. Hughes and W. K. Liu, Nonlinear nite element analysis of shells: Part 1, three-dimensional shells, Computer Methods in Applied Mechanics and Engineering, vol.87, issue.26, pp.331-362, 1981.
DOI : 10.1016/0045-7825(81)90121-3

K. Iwata, K. Osakada, and Y. Terasaka, Process Modeling of Orthogonal Cutting by the Rigid-Plastic Finite Element Method, Journal of Engineering Materials and Technology, vol.106, issue.2, pp.132-138, 1984.
DOI : 10.1115/1.3225687

. Jeunhomme, Single-mode fiber design for long haul transmission, IEEE Journal of Quantum Electronics, vol.18, issue.4, pp.727-732, 1982.
DOI : 10.1109/JQE.1982.1071563

K. L. Johnson, Contact Mechanics, p.47, 1985.

P. Kelly, Solid Mechanics Part I: An Introduction to Solid Mechanics, 2013.

M. Kittur and R. Huston, Mesh reenement in nite element analysis by minimization of the stiiness matrix trace, 1989.

K. Klem-musatov, H. Hoeber, T. Moser, and M. Pelissier, Seismic Diiraction. Society of Exploration Geophysicists, p.32, 2016.

D. Komatitsch and J. Tromp, A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation, Geophysical Journal International, vol.66, issue.1, pp.146-153, 2003.
DOI : 10.1109/22.554601

URL : https://hal.archives-ouvertes.fr/hal-00669060

C. Krohn, Geophone ground coupling, GEOPHYSICS, vol.49, issue.6, pp.722-731, 1984.
DOI : 10.1190/1.1441700

B. Kuvshinov, Interaction of helically wound fibre-optic cables with plane seismic waves, Geophysical Prospecting, vol.25, issue.20, pp.671-688, 2016.
DOI : 10.1121/1.1907217

H. Lamb, On the propagation of tremors over the surface of an elastic solid, Philosophical Transactions of the Royal Society of London, vol.204, issue.81, pp.1-42, 1904.

M. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation , and Applications, 2013.
DOI : 10.1007/978-3-642-33287-6

R. Lee and A. Cangellaris, A study of discretization error in the nite element approximation of wave solutions, IEEE Transactions on Antennas and Propagation, vol.40, issue.5, pp.541-549, 1992.

A. R. Levander, seismograms, GEOPHYSICS, vol.53, issue.11, pp.1425-1436, 1988.
DOI : 10.1190/1.1442422

G. R. Liu, Meshfree Methods Moving Beyond the Finite Element Method, 2005.

D. Lumley, Time???lapse seismic reservoir monitoring, GEOPHYSICS, vol.66, issue.1, pp.50-53, 2001.
DOI : 10.1190/1.1442884

K. Madsen, T. Parker, and G. Gaston, A VSP eld trial using distributed acoustig sensing in a producing well in the North sea, p.2012

L. Malvern, Introduction to the Mechanics of a Continuous Medium. Pearson, 1977.

J. Martin, D. Donno, B. Papp, and A. H. Hartog, Fiber optic distributed vibration sensing with directional sensitivity, 2013.

A. Mateeva, J. Mestayer, B. Cox, D. Kiyashenko, S. Wills et al., Distributed acoustic sensing (DAS) for reservoir monitoring with VSP, 2013.
DOI : 10.3997/2214-4609.20142556

A. Mateeva, J. Lopez, H. Potters, J. Mestayer, B. Cox et al., Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling, Geophysical Prospecting, vol.27, issue.1, pp.679-692
DOI : 10.2118/140561-PA

S. M. Maughan, Distributed bre sensing using microwave heterodyne detection of spontaneous brillouin backscatter, 2001.
DOI : 10.1117/12.2302285

URL : https://eprints.soton.ac.uk/16915/1/2053.pdf

J. Mauro, R. Loucks, and P. Gupta, Fictive Temperature and the Glassy State, Journal of the American Ceramic Society, vol.63, issue.[3], pp.75-78, 2009.
DOI : 10.1111/j.1551-2916.2008.02851.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1551-2916.2008.02851.x/pdf

J. Mestayer, G. S. Karam, B. Cox, P. Wills, A. Mateeva et al., Distributed Acoustic Sensing for Geophysical Monitoring, 74th EAGE Conference and Exhibition incorporating EUROPEC 2012, p.2012
DOI : 10.3997/2214-4609.20148800

. Moaveni, Finite Element Analysis Theory and Application with ANSYS, 2007.

D. Molteni, M. J. Williams, and C. Wilson, Comparison of Microseismic Events Concurrently Acquired with Geophones and hDVS, 78th EAGE Conference and Exhibition 2016, p.2016
DOI : 10.3997/2214-4609.201601260

K. Morton and D. Mayers, Numerical Solution of Partial Diierential Equations: An Introduction, 2005.
DOI : 10.1017/cbo9780511812248

J. Munn, T. Coleman, B. Parker, M. Mondanos, and A. Chalari, Novel cable coupling technique for improved shallow distributed acoustic sensor VSPs, Journal of Applied Geophysics, vol.138, issue.112, pp.72-79, 2017.
DOI : 10.1016/j.jappgeo.2017.01.007

N. Newmark, A method of computation for structural dynamics, ASCE Journal of Engineering Mechanics Division, vol.85, issue.3, pp.67-94, 1959.

M. Nixon and A. Aguado, Feature Extraction and Image Processing, 2002.

B. Papp, Rock--ber coupling in distributed vibration sensing Master's thesis, pp.22-145

B. Papp, D. Donno, J. Martin, and A. H. Hartog, A study of the geophysical response of distributed bre optic acoustic sensors through laboratory-scale experiments, 2017. (Cit. on pp. 4

J. A. Pickhaver, Numerical modelling of building response to tunnelling Master's thesis, 2006.

F. Poletto, D. Finfer, P. Corubolo, and B. Farina, Dual wavefields from distributed acoustic sensing measurements, GEOPHYSICS, vol.32, issue.6, pp.585-597
DOI : 10.1190/1.1801943

V. Popov and M. Hess, Method of Dimensionality Reduction in Contact Mechanics and Friction, p.47, 2015.
DOI : 10.1007/978-3-642-53876-6

J. Reddy, An Introduction to the Finite Element Method, 2005.

R. Reinsch, J. Henninges, J. Götz, P. Jousset, D. Bruhn et al., Distributed acoustic sensing technology for seismic exploration in magmatic geothermal areas, Proceedings World Geothermal Congress, p.2015

J. A. Robertsson and C. H. Chapman, An efficient method for calculating finite???difference seismograms after model alterations, GEOPHYSICS, vol.62, issue.3, pp.907-918, 2000.
DOI : 10.1007/BF00882053

S. Schilke, D. Donno, A. Hartog, A. Faharani, Y. Pico et al., Numerical evaluation of sensor coupling of distributed acoustic sensing systems in vertical seismic prooling, 86th SEG Annual Meeting, p.2016

M. Schoenberg, Fluid and solid motion in the neighborhood of a fluid???filled borehole due to the passage of a low???frequency elastic plane wave, GEOPHYSICS, vol.51, issue.6, pp.1191-1205, 1986.
DOI : 10.1190/1.1442174

M. Schoenberg, Attenuation of acoustic modes due to viscous drag at the borehole wall, GEOPHYSICS, vol.52, issue.11, pp.1566-1569, 1987.
DOI : 10.1190/1.1442274

T. Schonhoo and A. Giordano, Detection and Estimation Theory. Pearson, 2007.

J. Schroeder, R. Morh, P. Macedo, and C. Montrose, Rayleigh and Brillouin scattering in K2OP-SiO2 glasses, volume = 56, year = 1973, Journal of the American Chemical Society, issue.10, pp.510-514

G. S. Sekhon and J. L. Chenot, NUMERICAL SIMULATION OF CONTINUOUS CHIP FORMATION DURING NON???STEADY ORTHOGONAL CUTTING, Engineering Computations, vol.24, issue.1, pp.31-48, 1993.
DOI : 10.1002/nme.1620241107

R. E. Sherii and L. P. Geldart, Exploration Seismology, Cit. on pp. 2, 6, and 93, 1995.

T. Shirakashi and E. Usui, Simulation analysis of orthogonal metal cutting mechanism, Proceedings of the International Conference on Production Engineering, p.88, 1974.

P. ?olín, K. Segeth, and I. Dole?el, Higher-order nite element methods, p.62, 2003.

T. H. Tan, Reciprocity theorem applied to the geophone???ground coupling problem, GEOPHYSICS, vol.52, issue.12, pp.1715-1717, 1987.
DOI : 10.1190/1.1442288

T. Tezduyar, Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces, chapter 17, Encyclopedia of Computational Mechanics, vol.3, 2004.
DOI : 10.1002/0470091355.ecm069

S. P. Timoshenko, On the correction factor for shear of the diierential equation for transverse vibrations of bars of uniform cross-section, Philosophical Magazine, vol.41, issue.87, pp.744-746, 1921.

S. P. Timoshenko, On the transverse vibrations of bars of uniform crosssection, Philosophical Magazine, vol.43, issue.87, pp.125-131, 1922.
DOI : 10.1080/14786442208633855

S. P. Timoshenko, Strength of Materials -Part 1. D, 1957.

M. Verliac, V. Lesnikov, and C. Euriat, The Rousse-1 DAS VSP experiment ??? Observations and comparisons from various optical acquisition systems, SEG Technical Program Expanded Abstracts 2015
DOI : 10.1111/1365-2478.12116

J. Virieux, SH-wave propagation in heterogeneous media: velocity-stress nite-diierence method, Geophysics, issue.11, pp.491933-1942, 1984.

J. Virieux, wave propagation in heterogeneous media: Velocity???stress finite???difference method, GEOPHYSICS, vol.51, issue.4, pp.889-901, 1986.
DOI : 10.1190/1.1442147

J. Virieux, H. Calandra, and R. Plessix, A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging, Geophysical Prospecting, vol.136, issue.5, pp.794-813, 2011.
DOI : 10.1111/j.1365-246X.1999.tb07129.x

URL : https://hal.archives-ouvertes.fr/insu-00681794

J. Vos, G. Drijkoningen, and J. Fokkema, A theoretical and experimental approach to the geophone???ground coupling problem based on acoustic reciprocity, SEG Technical Program Expanded Abstracts 1995, p.45, 1995.
DOI : 10.1190/1.1887644

URL : https://repository.tudelft.nl/islandora/object/uuid%3Aed02ccfd-e8c7-4ba6-b3cc-622f64850584/datastream/OBJ/download

W. Wall and E. Ramm, Fluid-structure interaction based upon a stabilized (ALE) nite element method. Computational Mechanics, New Trends and Applications, 1998.

E. Wilson, I. Farhoomand, and K. Bathe, Nonlinear dynamic analysis of complex structures, Earthquake Engineering & Structural Dynamics, vol.4, issue.3, pp.241-252, 1973.
DOI : 10.1002/eqe.4290010305

W. Wood, Practical Time-stepping Schemes, 1990.

P. Wriggers, Nonlinear nite element methods, p.61, 2008.

J. S. Wu, O. W. Dillon, and W. Y. Lu, Thermo-viscoplastic modeling of machining process using a mixed nite element method, Journal of Manufacturing Science and Engineering, vol.118, issue.4, pp.428-470, 1996.
DOI : 10.1115/1.2831056

Ö. Yilmaz, Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data. Society of Exploration Geophysicists, 2001.
DOI : 10.1190/1.9781560801580

Y. Zhu and A. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, 2006.
DOI : 10.1002/0471786381

O. Zienkiewicz, The Finite Element Method in Engineering Science, 1971.

M. Zoback, Reservoir Geomechanics, 2009.
DOI : 10.1017/CBO9780511586477