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Chapter 1

Introduction

The context of the present dissertation is that of Geophysical Fluid Dynamics (GFD).
GFD is a branch of fluid mechanics that is concerned with the dynamics of atmospheric
and oceanic flows such as cyclones, jets, or streams for example.

1.1 Geophysical flows

1.1.1 Structure and classification
The atmosphere and the oceans both consist of shallow layers of fluid: their thickness
is small relative to their horizontal extent. For example, hurricanes generally exhibit
a diameter of the order of 100 km. In the vertical direction however, they remain
confined to the bottom layer of the atmosphere, i.e. the troposphere whose thickness is
about 10 km. Therefore, their aspect ratio is of the order of 0.1 and is thus well below
unity. As for oceans, their maximum depth is reached in the Mariana Trench, and is
also 10 km approximately. Since they extend over more than hundreds of kilometers
in the horizontal, it is clear that their aspect ratio is small as well.

A direct consequence is that geophysical flows are classified in terms of their hori-
zontal length scale. Hurricanes are planetary scale flows, whereas tornadoes for instance
are much more local eddies. This variety of scales is illustrated in figure 1.1, which
is a satellite image of the Oyashio Current that displays multiple eddies of various
diameters.

The notion of coherent structures is also quite frequently mentioned in GFD. In
most cases, these coherent structures refer to vortices, because they are ubiquitous
components of geophysical flows as indirectly suggested previously.

1.1.2 Central physical effects
As underlined in many books about GFD (Gill, 1982; Pedlosky, 1987; Vallis, 2006;
Cushman-Roisin and Beckers, 2011), the dynamics of atmospheric and oceanic flows is
constrained by two physical effects, namely the ambient stable stratification and the
rotation of the Earth.

The stratification is the result of density variations along the vertical. These changes
in the density arise from fluctuating temperature and pressure in the atmosphere, and
from varying temperature and salinity in the oceans. In general, the density decreases
upwards, resulting in a configuration where lighter layers of fluid are located above
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Figure 1.1: Photograph taken from space in March, 1992, of eddies in the Oyashio
Current. Sea-ice allows visualizing the flow. It is reproduced from Vallis (2006).

the heavier fluid. Thus, the stratification is usually stable. If we consider a stratified
flow at rest, then the isopycnals - i.e. the lines of constant density - are rigorously
horizontal. Under the effect of any disturbance, the parcels of fluid will depart from
their equilibrium position by oscillating vertically around this mean position, at a
typical frequency called Brunt-Väisälä frequency. These oscillations are due to the fact
that the stratification acts like a spring, whose stiffness would be the equivalent of the
intensity of the stratification. A strong stable stratification therefore tends to inhibit
vertical motions of large amplitude.

The dynamics of geophysical flows is also affected by the Earth’s rotation through
the existence of a Coriolis force. How influential stratification and rotation are actually
depends on the length scale of the flow. Indeed, they are both significant at the largest
geophysical scales. In contrast, there exist length scales where stratification prevails
over the Earth’s rotation, namely the atmospheric mesoscales, comprised between 1
km and 100 km globally, and the oceanic sub-mesoscales that range from 10 m to 10
km approximately. The present dissertation deals with the stratified regime only.

1.2 Notion of turbulence
Geophysical flows exhibit a large length scale even in the purely stratified regime. Thus,
their Reynolds number is very large as well. In other words, inertia effects largely
dominate the viscous dissipation. Such conditions are conducive to the generation of
turbulence (Lesieur, 2008), which is why we briefly discuss this concept in the following.
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Figure 1.2: Generation of turbulence by a grid. The turbulent part of the flow, visible
in the downstream region, is chaotic, disordered, without any clear trend in the motion
of the fluid parcels in strong contrast with the far field laminar flow of the upstream
region. Reproduced from Van Dyke (1982).

1.2.1 Global features

Turbulent motions share a variety of typical features. First, they are disordered: the
motion of the fluid does not exhibit any clear trend because the fluid parcels, since they
move erratically, cannot be clearly distinguished from each other. This is illustrated in
figure 1.2, which shows a turbulent motion generated by a grid. In the upstream region
at the left of the grid, the incident flow is uniform and laminar: the streamlines can
be clearly distinguished. In contrast, in the downstream region, the streamlines are
tightened. There is a first sub-region where they still can be identified, but the fact that
they are closer to each other implies the existence of shear layers. Their destabilisation
ultimately leads to a transition towards turbulence, after which the flow no longer
exhibits any clear structure.

Then, turbulence is a chaotic phenomenon. For example, it is very sensitive to the
conditions imposed at the onset of the motion. More generally, the local evolution of
any turbulent flow is not deterministic and is therefore not predictable from the classical
Navier-Stokes equations. For this reason, the dynamics is preferentially characterized
on the basis of statistical averages.

Finally, turbulent flows are generally seen as complex flows made of a flurry of
vortices of various sizes that interact with each other. This is at the origin of energy
and enstrophy - the vorticity squared - transfers. The dynamics of these exchanges
will be discussed in the following, because it actually depends on the nature of the
turbulent motions.
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1.2.2 Three- and two-dimensional turbulence
Three-dimensional isotropic homogeneous turbulence

Isotropic homogeneous turbulence is the model case of reference. It has been considered
at the origin by Kolmogorov (1941), who derived a number of theoretical results regard-
ing its spectral properties. In particular, Kolmogorov has demonstrated the famous law
which states that the kinetic energy spectrum E(k) varies like k−5/3, where k ∼ 1/l is
the wavenumber associated with the length scale l of the turbulent motion.

It is worth stressing that this spectrum is in fact very robust in the sense that
it accounts for the dynamics of a wide variety of turbulent flows. Notably, stratified
turbulence, which will be extensively discussed further, is characterized by this spec-
trum, although it is strongly anisotropic in sharp contrast with isotropic homogeneous
turbulence.

In isotropic homogeneous turbulence, the energy is transferred from the largest
towards the finest scales through a so-called direct energy cascade. The acting process
is referred to as vortex stretching. Basically, the largest structures provide some part
of their energy to smaller structures through non-linear inertial mechanisms and so
on until the so-called Kolmogorov scale, where the energy is ultimately dissipated by
viscosity. Indeed, this scale is defined as the scale at which the Reynolds number is
of order unity. To put it another way, inertial effects are balanced by viscous effects
below this threshold. Statistically, the turbulent motion is evenly distributed along the
three dimensions.

Two-dimensional turbulence

Besides three-dimensional isotropic turbulence, another essential concept in turbulence
is that of two-dimensional turbulence (Kraichnan, 1967, 1971; Lilly, 1969), first for its
strong theoretical interest, and then because geophysical turbulence resembles bidi-
mensional turbulence in a certain regime (Charney, 1971).

From a theoretical point of view, this kind of turbulence clearly departs from its
three-dimensional counterpart in that the stretching of the vorticity is no longer possible
geometrically. This is at the origin of the conservation of the vorticity and enstrophy
in the inviscid limit. As a result, the energy transfers are tremendously affected, since
a forward cascade (towards small scales as in three-dimensional turbulence) can no
longer settle. A simple demonstration is provided by Augier (2011), which is essentially
based on the fact that the enstrophy is proportional to the energy in spectral space.
It therefore turns out that two-dimensional turbulence is characterized by an inverse
energy cascade, namely from the smallest towards the largest scales.

1.2.3 Geophysical turbulence
Global issues

The early work by Lumley (1964) dealt with the nature of stratified turbulence. This
investigation as well as others (Kraichnan, 1967, 1971; Lilly, 1969) participated in
motivating a flurry of subsequent studies regarding the dynamics of turbulence in the
atmosphere and the oceans.

In particular, Charney (1971) focused on the dynamics of quasi-geostrophic tur-
bulence, which takes place in atmospheric and oceanic flows whose horizontal length
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scale is large enough to ensure that the stratification as well as the Earth’s rotation
are strongly influential in determining the motion of the flow. In his paper, Charney
underlined that quasi-geostrophic turbulence, although not rigorously bidimensional,
resembles two-dimensional turbulence, hence the importance of this model case. This
finding has naturally suggested that the energy cascades towards large scales in a cer-
tain range of length scales in the atmosphere and the oceans, thus asking the question
of how energy can be dissipated at smaller scales. A global concern has therefore been
to identify the nature and mechanisms of the energy cascades in geophysical media,
i.e. to understand the physical processes that characterize purely stratified turbulence
on one hand and stratified-rotating turbulence on the other hand.

Stratified turbulence

Gage (1979) argued that the atmospheric mesoscale kinetic energy spectrum results
from an inverse energy cascade through two-dimensional turbulence as described by
Kraichnan (1967). Lilly (1983) supported this analysis. Atmospheric mesoscales cor-
respond to length scales that are essentially influenced by a strong stratification. It has
been conjectured that stably stratified flows exhibit a two-dimensional dynamics when
the stratification is strong, notably because vertical motions are then inhibited (Riley
et al., 1981; Lilly, 1983; Lilly et al., 1998; Riley and Lelong, 2000). Thus, stratified
turbulence is strongly anisotropic, and mainly concentrated in the horizontal direction.
The latter result effectively tends to indicate that the dynamics of the energy and en-
strophy transfers at atmospheric mesoscales can be properly explained on the basis of
two-dimensional turbulence.

Nevertheless, considering the two-dimensional limit is valid only if vertical gradients
are not too intense. For this reason, several authors have questioned the hypothesis
that strongly stratified flows behave as nearly two-dimensional flows. Indeed, Her-
ring and Métais (1989); Métais and Herring (1989); Park et al. (1994); Godeferd and
Staquet (2003); Waite and Bartello (2004); Lindborg and Brethouwer (2007) report that
strongly stratified turbulence is made of thin horizontal layers, hence implying the ex-
istence of strong vertical variations. This layering is clearly visible in figure 1.3, which
shows vertical cross-sections of typical turbulent velocity fields in presence of a strong
stratification. Billant and Chomaz (2001) clearly confirmed the idea of strong vertical
variations. This result has therefore motivated additional studies in order to clarify the
nature of the energy cascade that is characteristic of stratified turbulence. Notably,
Lindborg (1999) and Cho and Lindborg (2001) invalidated Gage’s (Gage, 1979) and
Lilly’s proposal (Lilly, 1983) that the mesoscale range of the atmosphere is the seat
of an inverse energy cascade due to bidimensional turbulence. Indeed, by studying
structure functions, Lindborg (1999) and Cho and Lindborg (2001) have demonstrated
that the energy is actually transferred downscale. Evidence supporting this theory
have been brought in more recent papers such as Lindborg (2006), Brethouwer et al.
(2007), and Riley and Lindborg (2008). Besides, this result has been extended in the
presence of a background rotation since Lindborg (2005) has shown that this energy
cascade can actually prevail as long as the Rossby number, which is the ratio of inertial
to Coriolis effects, is larger than ∼ 0.1.
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Figure 1.3: Vertical cross-sections of horizontal velocity fields taken from Direct Numer-
ical Simulations of stratified turbulence. The snapshots are reproduced from Lindborg
and Brethouwer (2007).

Stratified-rotating turbulence

Stratified-rotating turbulence is influenced by rotation besides stratification. It there-
fore takes place beyond the mesoscale and sub-mesoscale ranges in the atmosphere
and the oceans respectively. Thus, quasi-geostrophic scales are the seat of a stratified-
rotating turbulence. As already mentioned, Charney (1971) discussed the similarities
between quasi-geostrophic turbulence and bidimensional turbulence, hence suggesting
the existence of an inverse cascade of energy in quasi-geostrophic turbulence as in
two-dimensional turbulence.

More generally, stratified-rotating turbulence is characterized by an inverse cascade
of energy (Métais et al., 1996), from smaller towards larger scales. This is due to
the existence of a competition between stratification and rotation, in the sense that
they have antagonistic effects. Although they both tend to inhibit vertical motions,
the vertical scale of the flow depends on their respective strengths: the stratification
tends to diminish vertical scales whereas the rotation tends to stretch them. For
example, applying a background rotation to three-dimensional turbulence generates
vertical coherence (Bartello et al., 1994). More precisely, the dynamics of the energy
transfers accross the different scales is complex in that downscale and upscale energy
cascades coexist (Pouquet and Marino, 2013). Numerical studies of stably stratified and
rotating turbulence have led to the conclusion that the amount of energy transferred
downscale is dependent upon the magnitude of the rotation: a larger stratification
enhances downscale transfers while a larger rate of rotation inhibits downscale transfers
of energy (Vallgren et al., 2011; Deusebio et al., 2013). Deusebio et al. (2014) supported
these results by showing that the rotation strengthens upscale transfers at the expense
of the direct energy cascade, and that this is achieved through the suppression of the
enstrophy production, i.e through the reduction of the dissipation. Interestingly, their
results indicated that even in the presence of a rapid rotation, the inverse cascade of
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energy may eventually vanish when the vertical scale of the flow is large enough relative
to the forcing scale at which the energy is injected, hence underlining the complexity
of systems influenced by a strong stratification as well as a rapid rotation.

1.3 Routes to dissipation
A global paradox

To briefly sum things up, the previous discussion has shown that:

1. Stratified rapidly rotating turbulence is the seat of an inverse cascade of energy,
i.e. from smaller to larger scales. In the atmosphere and the oceans, this beha-
viour typically occurs at the largest scales.

2. Purely stratified turbulence is in contrast characterized by a forward cascade
of energy as in three-dimensional turbulence: the energy is transferred from the
largest to the smallest scales. This cascade takes place in an intermediate range of
length scales in geophysical media, namely the mesoscale range in the atmosphere
and the sub-mesoscale range in the oceans.

Thus, the dynamics is complex in that the energy is not directly transferred downscale
throughout the whole range of geophysical scales as is the case in three-dimensional
isotropic turbulence. Identifying the mechanisms responsible for the dynamical trans-
ition from a 2D-like turbulence at large scales and a more isotropic 3D-like turbulence
at small enough scales actually remains a central question in the study of GFD (Mole-
maker et al., 2005; Müller et al., 2005; Ferrari and Wunsch, 2009).

Since quasi-geostrophic turbulence behaves like bidimensional turbulence as indic-
ated by Charney (1971), a transfer of energy towards small scales is possible only
through so-called ageostrophic, i.e. unbalanced motions. Precisely, recent numer-
ical simulations of stratified rotating turbulence (Bartello, 2010; Vallgren et al., 2011;
Deusebio et al., 2013; Pouquet and Marino, 2013) have proved that an ageostrophic cas-
cade of energy towards small scales exists. Although this mechanism seems promising
to account for the dynamical transition between the large and small scale turbulent
regimes, the nature of the non-linearities that are involved in this process remains
unclear.

The zigzag and Kelvin-Helmholtz instabilities

Stratified fluids are the seat of three-dimensional instabilities, which are good candid-
ates for the generation of small scales since they typically intervene in the transition
towards turbulence.

A central instability that develops in the presence of an ambient stratification is the
so-called zigzag instability. To briefly explain its principle, this instability acts on a
pair of vertical vortices. It bends the pair as a whole in a zigzag as illustrated in figure
1.4. It is antisymmetric with respect to the plane that separates the two vortices. An
important feature is that this instability does not saturate and results in the slicing of
the pair in independent pancake dipoles (Beckers et al., 2001) in the ultimate stages of
its evolution.

It has been discovered experimentally by Billant and Chomaz (2000a) and then
studied theoretically and numerically (Billant and Chomaz, 2000b,c) in the case of
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Figure 1.4: Illustration of the development of the zigzag instability in the case of a pair
of counter-rotating vortices. Reproduced from the experiments presented in Billant
and Chomaz (2000a).

counter-rotating vortices. These preliminary investigations have then been extended
to the case of co-rotating vortices (Otheguy et al., 2006, 2007). These analyses were
finally reconciled and extended to the stratified-rotating case by Billant (2010); Billant
et al. (2010).

Interestingly, Deloncle et al. (2008) have shown, by means of a numerical analysis,
that the zigzag instability transfers the energy from large to small dissipative scales,
and as such represents a contributor of the direct energy cascade that characterizes
strongly stratified turbulence. Along with the fact that it slices vortices into smaller
pancake-like vortices, and as such may explain the layering which is typical of stratified
turbulence, this suggests that the zigzag instability is actually an essential mechanism
in stratified flows.

Another major characteristic of this instability is that it is at the origin of an
intense growth of the vertical shear. In fact, this intensification can even be sufficient
to trigger the Kelvin-Helmholtz (KH) instability (Thorpe, 1968; Drazin, 1970) as a
secondary instability, as reported by Deloncle et al. (2008); Augier and Billant (2011);
Augier et al. (2012).

The KH instability is typically generated at the interface between two flows moving
with constant and opposite velocities. Depending on the conditions, the interface
can be destabilized and be the seat of roll-up events referred to as KH billows. A
model experiment where this instability is studied is described in Thorpe (1968). An
illustration of the billows resulting from the KH instability is provided in figure 1.5. In
practice, the KH instability is likely to be triggered as soon as the vertical shear of the
horizontal velocity of the flow is large enough according to Miles & Howard criterion
(Miles, 1961; Howard, 1961). As such, it can occur in any vertically sheared flow a
priori.

Vertical decorrelation of a structure by an environmental shear flow

Amechanism of generation of small scales has been proposed by Lilly (1983) for strongly
stratified flows. It consists in a process of vertical decorrelation of a structure by an
environmental, vertically sheared flow. Under the assumptions that the horizontal ve-
locity of the structure is purely advected by the shear flow and that no vertical velocity
arises, Lilly demonstrated that the vertical shear of the horizontal velocity grows al-
gebraically as time evolves. Hence, on the grounds of Miles & Howard criterion (Miles,



17

Figure 1.5: Example of experiment showing the KH instability of an interface between
two fluids of equal depth and different densities in relative motion. Reproduced from
Thorpe (1968).

1961; Howard, 1961), one would expect the shear instability to be triggered uncondi-
tionally after a certain time that notably depends on the intensity of the advection due
to the shear flow. This analysis suggests that stratified turbulence should be rapidly
turned into three-dimensional turbulence via the shear instability.

Several studies have revealed that the KH instability effectively exists in strongly
stratified turbulence, as predicted by Lilly (1983). More precisely, Smyth and Moum
(2000); Riley and deBruynKops (2003); Godoy-Diana et al. (2004); Brethouwer et al.
(2007); Bartello and Tobias (2013) indicate that the so-called buoyancy Reynolds num-
ber is crucial for characterizing the dynamics of stratified turbulence, and especially for
discriminating whether conditions are conducive to the onset of the shear instability
or not. Indeed, Brethouwer et al. (2007) report the existence of KH billows in their
simulations when this quantity is larger than the unit. On the contrary, they observe
that the shear instability leaves place to wave-like localized disturbances as the buoy-
ancy Reynolds number is lessened below the unit. These findings are consistent with
Riley and deBruynKops (2003), who argued that the local Richardson number scales
as the inverse of the buoyancy Reynolds number. Thus, if the buoyancy Reynolds
number is large enough, then the local Richarsdon number can be smaller than the
critical threshold 1/4 below which the KH instability is likely to develop (Miles, 1961;
Howard, 1961). Note that Riley and deBruynKops (2003) also report the presence of
a KH instability in their numerical simulations. Aside from these papers, numerous
complementary studies have testified of the occurrence of shear instabilities in strongly
stratified flows, such as Deloncle et al. (2008) and Augier and Billant (2011). In these
cases, the shear instability manifested itself as a secondary instability on the zigzag
instability. These advances suggest that, apart from the zigzag instability previously
described, the KH instability is a central mechanism of the direct energy cascade that
is characteristic of strongly stratified turbulence, as pointed out by Waite (2013). In-
deed, it generates small scales by making the flow transition into three-dimensional
turbulence locally.

Therefore, an open question is: does the process of vertical decorrelation imagined
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by Lilly always result in the trigger of the shear instability and ultimately in the
generation of small scales via this mechanism ?

1.4 Goals of the dissertation

1.4.1 Dynamics of a vortex embedded in an environmental
shear flow

The dynamics of the process of vertical decorrelation considered by Lilly (1983) has
been the subject of a variety of other investigations (Marshall and Parthasarathy, 1993;
Jones, 1995; DeMaria, 1996; Smith et al., 2000; Vandermeirsch et al., 2002; Jones, 2004)
that dealt with the case of a cyclone-like vortex subjected to an environmental shear
flow. The underlying motivation of these works was to understand the different facets
of the resiliency of the vortex to the external shear flow.

Although the conclusions of these papers are not directly transposable to the purely
stratified case (Lilly, 1983) because a background rotation is taken into account, they
have not only shown that a vertical velocity exists due to the tilting of the vortex, but
that it actually represents a major component of the global dynamics (Jones, 1995;
Frank and Ritchie, 1999; Jones, 2000b). Hence, the fact that Lilly (1983) ignores the
vertical velocity in his analysis appears debatable.

This is not the only objection that can be raised regarding the interpretation of
Lilly. Indeed, Marshall and Parthasarathy (1993) have studied the dynamics of an
initially aligned vortex embedded in a current difference in a two-layer quasigeostrophic
flow. Their investigation has led to the conclusion that two distinct regimes exist:
when the intensity of the current is weak enough compared to the vortex strength, the
vortex is simply advected while remaining coherent along the vertical. This regime
has been called non-tearing regime by the authors. In contrast, when the advection
by the current is strong relative to the vortex, this one is progressively torn apart
into two smaller vortices. This regime is called tearing regime. Hence, discriminating
whether the vortex will be torn or not by the current is possible only by examining
the competition between the external advection and the strength of the vortex, which
is measured by its ability to remain coherent vertically. We stress that the analysis
by Marshall and Parthasarathy (1993) is valid in the presence of a rapid background
rotation. However, this competition still exists in purely stratified flows. Therefore,
neglecting the vertical coupling as done by Lilly (1983) may not be appropriate in
general.

1.4.2 Global problem
In light of the previous discussions, an important issue is to be able to state whether the
vertical decorrelation of a flow structure by an environmental shear flow is a relevant
and efficient mechanism of generation of small scales via the shear instability in strati-
fied fluids or not. To say things more simply, the problem is to test Lilly’s hypothesis.
Hence, the concern of the present dissertation is the investigation of the dynamics of an
initially vertical vortex in a stratified shear flow. Indeed, although Lilly (1983) cleverly
predicted the possibility of encountering shear instabilities in strongly stratified flows,
recent findings (Jones, 1995; Riley and deBruynKops, 2003; Brethouwer et al., 2007)
have demonstrated that his reasoning is insufficient to predict their occurrence in so
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far as it neglects important physical effects - including the vertical velocity and the
vertical coupling of the velocity field - on one hand and that, on the other hand, the
development of the instability is not unconditional, which directly contradicts Lilly’s
predictions.

1.4.3 Outline of the thesis
In the aim of testing Lilly’s conjecture for the growth of the vertical shear, we will
investigate the dynamics of a Lamb-Oseen vortex in a shear flow uniform in the hori-
zontal and sinusoidally sheared along the vertical. We will rely on the full Navier-Stokes
equations under the Boussinesq approximation to perform Direct Numerical Simula-
tions (DNS) as well as theoretical asymptotic analyses of the dynamics of the vortex.

Before explaining the concrete results of the thesis, the chapter 2 is dedicated to
the description of the numerical method. Some hints regarding the numerical simula-
tions are also briefly given.

Then, in chapter 3, we investigate the volume-integrated budgets of kinetic energy
and enstrophy. The goal of this study is to understand how the control parameters
affect the saturation of the enstrophy. Indeed, when vertical gradients are large, the
enstrophy is equivalent to the vertical shear of the horizontal velocity, which is a cru-
cial quantity to predict the onset of the shear instability. It will be shown that the
analysis of these global budgets is actually insufficient to account for the effect of the
stratification on the variations of the enstrophy. This has therefore motivated local
analyses.

These local analyses are carried out in chapter 4. The first analysis will consist
in an asymptotic expansion for small times starting from the initial conditions. It
will be shown that the initial response of the vortex is non-hydrostatic whatever the
magnitude of the stratification. The second asymptotic analysis is conducted for long
vertical wavelength following a similar approach as used by Billant (2010) to describe
the unstable interaction between columnar vortices in stratified-rotating fluids. This
analysis will provide the governing equations for the displacements of the vortex center
and its structure evolution due to the shear flow. We shall see that the vortex is not
only advected in the direction of the shear flow but also in the orthogonal direction
owing to its self-induced motion. In addition, it will be demonstrated that the vertical
vorticity of the vortex decreases with time owing to dynamic and viscous effects. The
initial non-hydrostatic regime evidenced in the first asymptotic analysis will be related
to the transient excitation of internal waves at the start-up of the motion.

These theoretical results will eventually be discussed against numerical results from
the DNS in chapter 5. A very good agreement will be observed. Hence, on the basis
of these results, an estimation of the minimum local Richardson number will be derived
in terms of the control parameters in the limit of strong stratification. This will allow
concluding regarding the possibility of encountering the shear instability in strongly
stratified fluids via the process of vertical decorrelation suggested by Lilly (1983).

A general conclusion as well as perspectives will be given ultimately in chapter 6.
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Chapter 2

Numerical method

The numerical program, called NS3D, that allowed us to perform direct numerical
simulations (DNS) on parallel computers is presented in this chapter. Another post-
processing program has been developed in order to compute a variety of quantities that
derive from the fields computed by NS3D. This Data Analysis Program (DAP) works
on parallel architectures as well. It is described in a second time.

2.1 Governing equations
The dynamics of any flow in a stably stratified fluid is governed by the incompressible
Navier-Stokes equations under the Boussinesq approximation. In dimensional form,
they read

∇ · u = 0, (2.1)
∂u

∂t
= u× ω −∇

[
p

ρ0
+ u2

2

]
+ bez + ν∇2u, (2.2)

∂b

∂t
+ u · ∇b+N2w = ν

Sc
∇2b, (2.3)

with u = (u, v, w) being the velocity field, ω its curl, p the pressure, b the buoyancy, ez
the vertical unit vector oriented upwards, ν the viscosity, and Sc the Schmidt number.
The total density field ρt has been decomposed as ρt (x, t) = ρ0 + ρ̄(z) + ρ (x, t),
ρ0 being a constant reference density, ρ̄ a linear mean density profile varying with
the vertical coordinate z, and ρ (x, t) a perturbation density which is related to the
buoyancy b by b = −gρ/ρ0. The Brunt-Väisälä frequency N measuring the ambient
stable stratification is

N =
√
− g

ρ0

dρ̄
dz . (2.4)

2.2 Direct Numerical Simulations

2.2.1 Global features
NS3D integrates the equations (2.1-2.3) in a parallelepipedic domain of dimensions
lx × ly × lz with nx × ny × nz collocation points. Triply periodic boundary conditions
are implemented, i.e.:

q(x+ lx, y + ly, z + lz, t) = q(x, y, z, t), (2.5)
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where the vector q = (u, v, w, p, b) gathers the unknowns of the problem. Since peri-
odic boundary conditions are used, pseudo-spectral methods are particularly suited for
resolving the problem numerically. Their principle is addressed in the following.

2.2.2 Formulation of the equations in spectral space
Let ϕ be a scalar periodic quantity, hence satisfying (2.5). Its three-dimensional Fourier
transform F̂ is given by:

F̂(ϕ)(kx, ky, kz, t) =
∫ lz

0

∫ ly

0

∫ lx

0
ϕ(x, y, z, t) e−i(kxx+kyy+kzz) dxdydz, (2.6)

where k = (kx, ky, kz) is the total wavenumber and i2 = −1. Thanks to the periodicity,
a fundamental property of the Fourier transform is

F̂
(
∂ϕ

∂xj

)
= ikjF̂(ϕ), (2.7)

with xj being any space variable and kj the corresponding component in k. This
property is essential for formulating the Boussinesq equations in spectral space. In
the following, we derive the spectral form of the momentum equation (2.2) so as to
illustrate some subtle aspects of pseudo-spectral methods. The spectral form of the
thermodynamic equation will be given directly since it is based on a similar reasoning.

First, applying the 3D Fourier transform to (2.1) yields:

k · F̂(u) = 0. (2.8)

Thus, in spectral space, the velocity field is orthogonal to the wave vector.
Then, by taking the divergence of (2.2), the dynamic pressure per unit mass p∗ =

p/ρ0 + u2/2 is found to satisfy the following Poisson equation:

∇2p∗ =∇ ·
[
u× ω + bez + ν∇2u

]
. (2.9)

As a result, we have
F̂(p∗) = −i k

k2 · F̂(a), (2.10)

where the acceleration a is defined as a = u× ω + bez.
Finally, the Fourier transform is applied to the momentum equation (2.2). By

introducing the unit vector ek such that

ek = k

||k||
, (2.11)

where ||k|| is the norm of k, and by taking advantage of the previous results, we find:[
∂

∂t
+ νk2

]
F̂(u) = F̂(a)−

[
ek · F̂(a)

]
ek. (2.12)

The right-hand side of (2.12) can be rewritten

F̂m(a)em −
[
F̂n(a) kn

||k||

]
km
||k||

em =
[
δmn −

kmkn

k2

]
F̂n(a)en = P⊥(F̂(a)), (2.13)
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where the tensor P⊥(k) represents the projection on the space of solenoidal fields
D(ek)⊥:

P⊥(k) =
[
δmn −

kmkn

k2

]
16m,n63

, (2.14)

where δmn = 0 if m 6= n and δmn = 1 if m = n. These results are not valid when the
total wavenumber is zero. However, the incompressibility condition is automatically
satisfied in this case, thus resolving the problem.

It eventually turns out that we can formulate (2.2) and (2.3) in spectral space in
the form

∂F̂(u) eνk2t

∂t
= P⊥

(
F̂(a)

)
eνk2t, (2.15)

∂F̂(b) eνk2t/Sc

∂t
= −

[
ik · F̂(bu) +N2F̂(w)

]
eνk2t/Sc . (2.16)

The central features of the method are summarized below:

(i) In spectral space, the incompressibility imposes that the wave vector is orthogonal
to the velocity field.

(ii) A projection operator, which appears in the form of a second-order tensor in the
spectral formulation of the momentum equation, enforces the incompressibility.

(iii) The introduction of this projector is at the origin of the disappearance of the pres-
sure field in the spectral formulation (2.15) of the momentum equation. There-
fore, computing the pressure is actually not necessary for determining the re-
maining unknowns. However, it can be directly deduced from u and b if needed.

2.2.3 Time integration and pseudo-spectral method
Equations (2.15) and (2.16) are integrated in time using a fourth-order Runge-Kutta
scheme. The core of the program is the algorithm implemented for computing the
nonlinear terms found in these two equations. The procedure is the following:

1. The vorticity is calculated in spectral space, i.e. F̂(ω) = ik × F̂(u).

2. Backward Fourier transforms are applied to F̂(u), F̂(ω), and F̂(b). In this way,
the fields u, ω, and b are found in physical space.

3. u× ω and bu are computed in the physical space.

4. F̂(u × ω) and F̂(bu) are deduced from the previous quantities by applying a
forward Fourier transform. This yields the nonlinear terms found in (2.15) and
(2.16).

5. The time advancement is performed.

This algorithm makes an extensive use of Discrete Fourier Transforms. They are cal-
culated with a Fast-Fourier Transform (FFT) algorithm. The parallelization of NS3D
and the assessment of its performances have been performed by Deloncle (2007, 2014),
which offers a comprehensive description of the optimization of the whole program. The
most limiting tasks in terms of computations are precisely the FTTs, which consume
from 70 to 95% of the total computational time.
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2.2.4 Aliasing
The Discrete Fourier Transform of a periodic field is responsible for the existence of so-
called aliasing errors. They arise when nonlinear quantities are computed. To be more
specific, the aliasing affects the accuracy of high-order modes by polluting their top
one-third, as pointed out by Orszag (1971). Delbende (1998) illustrates how aliasing
errors are produced in a single dimension space.

Therefore, NS3D offers the possibility to truncate high order modes. Formally,
we introduce the truncation radii Rxs, Rys, and Rzs and the maximum wavenumbers
max (kx), max (ky), and max (kz) along the three spectral directions. We apply an
elliptic aliasing removal. Mathematically, this means that spectral quantities are set
to zero for the wavenumbers (kx, ky, kz) that satisfy the condition

[
kx

Rxs max (kx)

]2

+
[

ky
Rys max (ky)

]2

+
[

kz
Rzs max (kz)

]2

> 1. (2.17)

All the simulations presented in this dissertation have been performed using a classical
two-third rule: Rxs = Rys = Rzs = 2/3.

2.3 Specificities of the present DNS

2.3.1 Initial state
The version of NS3D described in Deloncle (2014) has been adapted in order to simulate
the dynamics of an isolated columnar vortex subjected to a vertically sheared flow.

More precisely, the initial state comprises a columnar Lamb-Oseen vortex embedded
in a sinusoidal shear flow whose velocity field will be denoted U(z)ex with U(z) =
US sin(kzz), ex being the streamwise unit vector. The amplitude US simply sets the
intensity of the advection. The wavenumber kz of the profile U(z) is kz = 2π/lz so that
a single wavelength is simulated. We have opted for a sinusoidal shear flow because
it is straightforward to handle since periodic boundary conditions are implemented in
NS3D. The vortex is purely vertical at t = 0. Initially, its vorticity field, in dimensional
form, reads

ω = ζez = Γ
πa2

0
e−r2/a2

0 ez, (2.18)

where Γ is the circulation, a0 the vortex radius, and r the radial coordinate. Using a
Fast Fourier Transform, this vorticity field is inverted to obtain the corresponding ve-
locity field in the computational domain. If the domain were infinite and non-periodic,
this velocity field would be the Lamb-Oseen profile

uv = uθ(r)eθ = Γ
2πr

[
1− e−r2/a2

0
]

eθ, (2.19)

eθ being the azimuthal unit vector. However, the actual profile differs from this Lamb-
Oseen profile for large radius since the total circulation has to vanish in a periodic
domain (Pradeep and Hussain, 2004).

Therefore, the total velocity field is purely horizontal initially. For this reason, the
vertical velocity w and the buoyancy b are zero at t = 0.
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Figure 2.1: A typical profile of the Brunt-Väisälä frequency in the ocean. The meas-
urement was performed in the North Atlantic ocean, near 28◦ North, 70◦ West. It is
reproduced from Gill (1982).

The Reynolds number Re and the Froude number Fh are based on the initial con-
ditions:

Re = |Γ|
2πν , Fh = |Γ|

2πa2
0N

. (2.20)

This implies that the time and length units are chosen as 2πa2
0/|Γ| and a0 respectively.

Accordingly, US is non-dimensionalized by |Γ|/2πa0 and kz by 1/a0:

U∗S = 2πa0

|Γ| US, k∗z = a0kz. (2.21)

In the following, the stars will be dropped for simplicity. We will no longer consider
dimensional variables unless explicitly mentioned. All dimensionless quantities will be
denoted like their dimensional counterparts for simplicity as well, as done for US and
kz.

The Brunt-Väisälä frequency varies with altitude in the atmosphere and with depth
in the oceans, as illustrated in figure 2.1, which displays a typical vertical profile of
N in the ocean. To simplify things, it will be assumed that N is independent of the
vertical coordinate z throughout this dissertation. Thus, the Froude number will be
varied by simply setting N to the proper constant value.
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It is worth stressing that we focus on flows such that the vortex is stronger than
the external shear flow, i.e. |US| < 1 in dimensionless form. We will also consider that
the vortex circulation is positive, since there is no loss of generality in making this
assumption.

Therefore, the control parameters of the problem are Fh, Re, and the dimensionless
velocity US and wavenumber kz.

2.3.2 On the triply periodic boundary conditions
Periodic boundary conditions are commonly implemented in numerical programs that
aim at investigating the dynamics of vortices beyond the range of parameters reachable
in laboratory experiments. Nevertheless, such boundary conditions can disrupt the
physics, leading to at least partially incorrect numerical results as pointed out by
Pradeep and Hussain (2004).

For example, a pair of interacting vortices in a parallelepipedic box is actually
embedded in a strain field that arises from the existence of an infinite number of
pairs of vortices located in the virtual boxes that are adjacent to the domain which
is simulated. This effect is precisely due to the periodicity constraint. Depending on
the conditions, this strain may exert a strong influence on the pair of vortices under
consideration, and, in turn, make its dynamics depart from the behaviour that should
be observed normally, i.e. without any strain field.

Pradeep and Hussain (2004) also stress that the net circulation of the flow within
the numerical domain should be zero because of the periodic boundary conditions.
The flow considered throughout this dissertation comprises a single vortex, which is
at the origin of the existence of a non-zero circulation at the boundaries. In order
to suppress this effect, Otheguy et al. (2006) have proposed to add the appropriate
background rotation that compensates this net circulation. This background rotation
can be estimated from the mean vertical vorticity uniformly generated by the vortex
in the domain, which is equal to Γ/lxly.

Rennich and Lele (1997) also provided a method to deal with problems related to
periodic boundary conditions.

However, in order to mitigate the effect of periodicity, the simplest solution con-
sists in attributing sufficiently large values to the domain dimensions, as in Deloncle
et al. (2008). Obviously, this requires carrying out a careful preliminary analysis for
identifying the proper values of the different parameters.

We have opted for the latest option for a variety of reasons, and notably because:

1. Implementing a method such as proposed by Rennich and Lele (1997) would have
required to profoundly modify NS3D.

2. The strain due to the artificial images of the flow is inversely proportional to the
square of the horizontal dimension of the numerical domain. As such, it is weak
when lx and ly are large. This is valid also regarding the net circulation.

In the case of the model flow that we focus on in this dissertation, we have observed
that the dimensions of the fluid domain should be adjusted depending on the intensity of
the advection US. This point will be detailed later since, to be explained satisfactorily,
it requires introducing several intermediate notions.
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2.4 Post-processing
NS3D computes the velocity field u = (u, v, w), its curl ω = (ωx, ωy, ζ), and the
buoyancy b. A Data Analysis Program (DAP) has been therefore developed from
NS3D in order to carry out further calculations from these fields. Its architecture is
very similar to that of NS3D.

Since a wide variety of post-processing routines have been implemented, we will not
describe the DAP in details. Instead, we will put the emphasis on the computation
and processing of a crucial quantity for analysing the vortex deformations, namely the
potential vorticity. The other tasks performed by the DAP will be listed and their
subtleties will be briefly pointed out if needed.

2.4.1 Potential vorticity
The potential vorticity Π is an inviscid invariant of the governing equations (2.1-2.3),
i.e.:

DΠ
Dt = 0, D

Dt = ∂

∂t
+ u · ∇. (2.22)

In a stratified fluid, its expression, in dimensional form, is:

Π = ω ·
[
∇b+N2ez

]
. (2.23)

The potential vorticity is one of the most challenging quantities to compute from
the basic fields because it is the sum of three nonlinear terms. As such, it is a priori
sensitive to aliasing errors. For this reason, we have computed this quantity without
introducing any truncation of the high-order modes in the first instance. In a second
time, it has been calculated by applying the same truncation as in NS3D, namely an
elliptic dealiasing following the two-third rule by Orszag (1971).

The comparison of the numerical results has revealed that differences are insigni-
ficant provided that the simulation is properly resolved. In contrast, they can grow
quite significantly when the mesh is coarse, and especially when a shear instability is
under-resolved. In order to illustrate that the computation of the potential vorticity
is largely insensitive to the aliasing removal in properly resolved cases, figure 2.2 re-
ports the evolution of the potential vorticity maxima computed in the horizontal planes
z = lz/4, where the advection is the strongest and the vertical shear of the horizontal
velocity is the weakest, and z = lz/2, where the advection is zero and the vertical
shear of the horizontal velocity reaches its peak. The control parameters are Fh = 0.5,
kz = π/2, US = 0.2, and Re = 6000. The dimensions of the box are lx = ly = 18 and
lz = 4. This run has been performed using nx = ny = 512 and nz = 256 collocation
points. The fact that the curves are collapsed confirms the previous statement. For
this reason, the DAP actually computes the potential vorticity without truncating the
top one-third modes.

2.4.2 Tracking the vortex position
It will be useful to locate the vortex as time evolves. This is done by computing the
position of the vortex center in each horizontal plane, which provides a representation
of the deformations of the vortex axis.

A panel of different methods can be implemented, depending on how we define the
center. In a similar study, Jones (2004) stressed that the outer regions of the vortex
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Figure 2.2: Evolution of the potential vorticity maxima computed in the planes z =
lz/4, without any aliasing removal (solid line) and with a dealiasing (open circles), and
z = lz/2, without any aliasing removal (dashed line) and with a dealiasing (triangles).
The elliptic dealiasing cancels the top one-third modes following Orszag (1971). The
control parameters are Fh = 0.5, kz = π/2, US = 0.2, and Re = 6000.

were more strongly tilted than its inner core, in agreement with former investigations
such as Jones (1995) and Jones (2000a). She emphasizes that, in such cases, defining the
position of the vortex center as that of the maximum vertical vorticity does not provide
reliable indications about the bending of the vortex because of the non-uniformity of
the vortex tilt. This is the reason why we have opted for a similar definition as in
Jones (2004), which is precisely based on the use of the potential vorticity. To be more
specific, the position of the vortex (xc(z, t), yc(z, t)) in each horizontal plane has been
obtained from the potential vorticity centroids:

xc(z, t) = 〈xΠ〉h
〈Π〉h

, yc(z, t) = 〈yΠ〉h
〈Π〉h

, (2.24)

where the brackets denote the horizontal averaging operator:

〈ϕ〉h =
∫

Π>Πc

ϕ(x, y, z, t)dxdy. (2.25)

The horizontal integration is carried out only in the regions where the potential vorticity
is larger than a threshold Πc in order to avoid taking into account the small background
vorticity due to the fact that the total vorticity is zero owing to the use of periodic
boundary conditions. This threshold being defined as Πc = ηmaxt=0(Π), several tests
have been done in order to set the coefficient η properly, that is for ensuring that
the numerical results are independent of the size of the computational domain and of
the particular value of Πc. This investigation has revealed that taking η = 0.05 was
sufficient. Indeed, figure 2.3 displays four trajectories of the vortex center computed
as previously explained, that correspond to four values of the parameter η, namely
η = 0.05, η = 0.1, η = 0.5, and η = 0.9. The control parameters are Fh = 0.5,
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Figure 2.3: Displacement of the vortex with respect to its initial position, in the plane
z = lz/4. Four trajectories are reported, respectively corresponding to η = 90% (black
dash-dotted line), η = 50% (black dashed line), η = 10% (black solid line) and η = 5%
(grey open circles). The sampling times range from t = 0 up to t = 35. The control
parameters are Fh = 0.5, kz = π/2, US = 0.2, and Re = 6000. The horizontal
dimensions of the domain are lx = ly = 18.

kz = π/2, US = 0.2, and Re = 6000. The horizontal dimensions of the box are
lx = ly = 18. The displacements ∆x and ∆y that are plotted are the displacements of
the vortex with respect to its initial position, in the plane z = lz/4 where the advection
is the strongest. They are reported for 0 6 t 6 35. It is seen that the trajectories are
converged for η 6 0.1, hence confirming that η = 0.05 is an optimal choice.

It is worth mentioning that the same method has been also implemented to locate
the vortex on the basis of the vertical vorticity field. This simply consists in replacing Π
by ζ in (2.24). This is different from the method that consists in assimilating the vortex
center to the point where the vertical vorticity is maximum since the horizontal average
will take the potential asymmetries into account and will therefore offer an adequate
representation of the bending of the vortex. This is not the only advantage of such a
method since it will also allow estimating the consistency of such a representation of
the vortex deformations. Indeed, in chapter 5, we will show that apart from an initial
transient stage, this computation of the vortex center provides nearly identical results
whether Π or ζ is used.

2.4.3 Mitigation of the effect of periodic boundary conditions

As already mentioned, we have simulated the dynamics of the flow in a box whose
horizontal dimensions are large enough to significantly weaken the effect of the periodic
boundary conditions.

A careful analysis has revealed that a good indicator of how influential periodic
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Figure 2.4: Displacement of the vortex with respect to its initial position, in the plane
z = lz/4. Three trajectories are reported, respectively corresponding to lx = ly = 18
(triangles), lx = ly = 24 (circles), and lx = ly = 30 (squares). The sampling times range
from t = 0 up to t = 40. The control parameters are Fh = 0.5, kz = π, US = 0.1, and
Re = 6000. The displacements are those of the potential vorticity centroid obtained
with η = 5%.

boundary conditions are is the convergence of the vortex trajectory when lx and ly are
varied, following the same idea as in figure 2.3.

More precisely, to any value US of the advection corresponds a minimal threshold
for lx and ly beyond which the vortex trajectories - as previously computed - are
independent of the box dimensions, i.e. insensitive to the periodic boundary conditions.
Without presenting the whole set of investigations that have been carried out, figure
2.4 shows that for US = 0.1, the horizontal dimensions of the box must be lx,y > 24
to ensure that the vortex trajectory is reasonably converged. Such a large domain
requires introducing a large number of collocation points to properly resolve the finest
scales. These requirements are actually too constraining in terms of computational
resources. Instead, for US = 0.2, setting lx,y > 18 is sufficient and allows using an
affordable number of collocation points to properly resolve the dynamics. The latest
compromise being the best to reconcile numerical issues and the condition |US| < 1,
the vast majority of the simulations presented in this dissertation have been performed
with lx = ly = 18 and US comprised between 0.2 and 0.4.
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2.4.4 Listing of the post-processing routines
To finish, we provide a list of the main routines that have been implemented in the
DAP:

1. The potential vorticity field is computed without applying any dealiasing. Its
maximum is also computed and located in each plane z = cte. Similarly, the
position of its centroid is calculated in each of these planes.

2. The global budgets of kinetic and potential energies, enstrophy and potential
enstrophy are computed from the basic fields determined by NS3D.

3. The total flow is decomposed into a mean component corresponding to a purely
horizontal, vertically sheared flow, and a residual component which is in fact
assimilable to the vortex flow. This is demonstrated in details in the next chapter.

4. The global and local budgets of kinetic energy and enstrophy associated with
these two components are computed.

5. The vertical shear of horizontal velocity is computed for the total flow, the mean
flow, and the vortex flow. The corresponding maxima are also determined in each
plane z = cte. Similarly, the vertical shear of the total horizontal velocity on one
hand, and of the vortex horizontal velocity on the other hand, are determined
at the center of the vortex, in the plane z = lz/2 where the vertical shear is the
most intense. Indeed, it will be shown that this quantity is essential to predict
whether the shear instability can be triggered or not.

6. The vertical buoyancy gradient as well as the local Richardson number (see its
definition further) are computed. A quantity of utmost importance for examining
the onset of the shear instability is the minimum Richardson number, which is
therefore determined in each horizontal plane. We do not apply any dealiasing
to compute the Richardson number.

7. Globally, the DAP allows determining the vertical profiles of the minimum and
maximum values of any field. In particular, this is done for the vertical velocity
and the buoyancy, in addition to the fields already mentioned.

8. The profile of the mean flow velocity is also computed by the program.

2.5 Towards practical numerical simulations
We finish this chapter by giving some preliminary hints regarding the DNS.

As already mentioned, the present investigation aims at discriminating whether
shear instabilities are likely to be triggered or not, depending on the values attributed
to the control parameters. Following Miles (1961) and Howard (1961), a necessary con-
dition for the KH instability to develop in a stratified fluid is that the local Richardson
number falls below 1/4 somewhere in the flow. Recent studies, such as Riley and
deBruynKops (2003), Brethouwer et al. (2007) and Bartello and Tobias (2013), have
shown that the buoyancy Reynolds number ReF 2

h (where Re is the Reynolds num-
ber and Fh the Froude number) is of utmost importance in determining the dynamics
of stratified turbulence. Riley and deBruynKops (2003) and Deloncle et al. (2008),
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besides reporting the existence of shear instabilities in strongly stratified flows, both
proposed that the local Richardson number is inversely proportional to ReF 2

h . Thus,
a large buoyancy Reynolds number is a priori conducive to the occurrence of the KH
instability.

This is important for setting the horizontal Froude number as well as the Reynolds
number in the numerical simulations. On one hand, the fact that the fluid is strongly
stratified imposes Fh < 1, and, if possible, Fh � 1. On the other hand however, since
ReF 2

h must be at least reasonably large to favor the onset of shear instabilities, say
ReF 2

h � 1, decreasing Fh requires increasing Re if ReF 2
h is kept constant. Therefore,

tending to the strongly stratified regime at a constant buoyancy Reynolds number
requires increasing the resolution so as to resolve the finest scales, hence requiring larger
computational resources. Thus, the setting of Fh and Re is a matter of compromises.
A variety of tests have shown that these issues are reconciled by choosing Fh = 0.5 and
increasing Re up to ∼ 7000 for example, whereas with Fh = 0.1 the Reynolds number
can be set up to Re ∼ 10000. With these settings, good but affordable resolutions are
sufficient for properly resolving all the scales.

Note that, due to the Schmidt number Sc, the competition between inertial and
viscous effects is not the same in the thermodynamic equation (2.3) as in the momentum
equation (2.2). This is at the origin of another numerical difficulty. Indeed, for salt in
the oceans for example, we have Sc ∼ 700. The "equivalent" Reynolds number that
intervenes in (2.3) is therefore 700 times larger than in (2.2). Thus, in the DNS, if we
opt for Re = 6000 by keeping Sc = 700 at the same time, then the actual Reynolds
number in (2.3) is ∼ 4.2 × 106. Even with Sc = 7, we would have an equivalent
Reynolds number ∼ 4.2 × 104. Both cases are out of reach numerically if simulated
through DNS. For numerical convenience, we have therefore opted for keeping Sc = 1.



Chapter 3

Preliminary study: global energy
and enstrophy budgets

In this preliminary investigation, we examine the global energy and enstrophy budgets
in order to get some insights on the effects of the control parameters on the dynamics of
the flow. Especially, the present analysis aims at understanding how the enstrophy is
affected when the control parameters vary. Indeed, as this quantity is nearly equivalent
to the vertical shear of the horizontal velocity when vertical gradients are large, this
study is a first step to predict the development of the shear instability.

3.1 Example of a simulation
Before discussing the energy and enstrophy budgets, we show in figure 3.1 the evolution
of the potential vorticity field and the vertical shear of the horizontal velocity for the
parameters Fh = 0.5, kz = π, US = 0.2, and Re = 6000. The purpose is here to just
give a brief idea of the flow evolution. This evolution will be discussed in more details
in chapter 5.

3.2 Decomposition of the flow
In order to understand the mechanisms at work in the flow, it is interesting to decom-
pose the total flow as

u = ū + u∗, (3.1)

where the operator ·̄ denotes the horizontal average which for any quantity q is defined
as

q̄ = 1
lxly

∫ ly

0

∫ lx

0
q(x, y, z, t)dxdy. (3.2)

Thus, ū is a mean flow varying only along the vertical and with time. The horizontal
average of the complementary flow u∗ is zero by definition. At t = 0, we have ū =
U(z)ex and u∗ = uv so that u∗ will be called "vortex flow".

Applying the horizontal average operator to the dimensionless version of (2.1-2.3)
leads to:

∂w̄

∂z
= 0, (3.3)

33
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Figure 3.1: Left column: three-dimensional contours of the potential vorticity at dif-
ferent times for Fh = 0.5, kz = π, US = 0.2, Re = 6000. Right column: corresponding
vertical cross-sections of the shear

√
Sz =

√
(∂u/∂z)2 + (∂v/∂z)2 (color) and of the

total density ρt (black contour lines) in the plane y = 9. The times shown are (a,b)
t = 12, (c,d) t = 24, (e,f ) t = 36. In (a,c,e), the isocontours correspond to 20%
(yellow) and 60% (red) of the initial maximum value.
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Figure 3.2: Vertical profiles of (a) the streamwise velocity component ū and (b) the
spanwise velocity component v̄ of the mean flow. The profiles are shown at four different
times t = 0 (grey dash-dotted line), t = 10 (black dash-dotted line), t = 20 (grey dashed
line) and t = 30 (black dashed line). The control parameters are Fh = 0.5, kz = π/2,
US = 0.2, and Re = 6000. The left picture (a) clearly shows that the departures from
the initial sinusoidal profile are insignificant, whereas the right picture (b) indicates
that a spanwise component grows as time evolves, but remains small relative to the
streamwise flow.

∂ū

∂t
+ ∂w (ū + u∗)

∂z
= −∂p̄

∂z
ez + b̄ez + 1

Re

∂2ū

∂z2 , (3.4)

∂b̄

∂t
+ ∂wb

∂z
= − w̄

F 2
h

+ 1
ReSc

∂2b̄

∂z2 , (3.5)

where the periodicity of (u, p, b) has been used. Equation (3.3) implies w̄ = 0. Indeed,
this equation rigorously indicates that w̄ depends on t only. However, an integration
along the vertical then yields this result. Thus, the mean flow is purely horizontal and
governed by

∂ūh

∂t
= −∂w

∗u∗h
∂z

+ 1
Re

∂2ūh

∂z2 . (3.6)

The equations for u∗ can be obtained by subtracting (3.6) from the dimensionless form
of (2.2).

Interestingly, the analysis of the numerical results indicates that the mean flow
exhibits a velocity field which closely resembles the sinusoidal profile imposed initially.
This is illustrated in figure 3.2, where the vertical profiles of each component ū and v̄ of
the mean flow are reported at four different times t = 0, t = 10, t = 20 and t = 30, for
Fh = 0.5, kz = π/2, US = 0.2, and Re = 6000. It is seen that the departures from the
initial sinusoidal profile are small. Hence, ūh = U(z)ex is an accurate approximation
of the mean flow velocity at any time.
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3.3 Kinetic and potential energies

3.3.1 Definitions
First, we define the volume-integrated kinetic energies of the mean flow on one hand,
and of the vortex on the other hand, following the decomposition of the total flow
introduced previously. The global kinetic energy of the mean flow simply reads:

Ēk = 1
lz

∫
ϑ

ūh
2

2 dϑ, (3.7)

where ϑ stands for the numerical domain. The integral over ϑ is the triple integral over
the fluid domain. The normalisation by lz allows performing comparisons between
cases associated with distinct wavelengths (Deloncle et al., 2008). We also define:

E∗kh = 1
lz

∫
ϑ

u∗h
2

2 dϑ, E∗kz = 1
lz

∫
ϑ

w∗2

2 dϑ, E∗k = E∗kh + E∗kz, (3.8)

where E∗kh is the global horizontal kinetic energy of the vortex and E∗kz its vertical
counterpart. Hence, E∗k is the total kinetic energy of the vortex per vertical length
unit.

In addition, the potential energy per vertical length unit is:

Ep = 1
lz

∫
ϑ

F 2
hb

2

2 dϑ. (3.9)

3.3.2 Volume-integrated budgets
The volume-integrated budgets that describe the variations of the kinetic energies are
found to be

dĒk
dt = −T + D̄ (3.10)

for the mean flow, and

dE∗k
dt = C∗ + T +D∗h +D∗z +Dw (3.11)

for the vortex.
In these budgets, the transfer terms read

T = 1
lz

∫
ϑ

ūh ·
∂w∗u∗h
∂z

dϑ, C∗ = 1
lz

∫
ϑ
w∗bdϑ, (3.12)

and the dissipation terms are

D̄ = − 1
lzRe

∫
ϑ

(
∂ūh

∂z

)2

dϑ, (3.13)

D∗h = − 1
lzRe

∫
ϑ

(∂u∗h
∂x

)2

+
(
∂u∗h
∂y

)2
 dϑ, D∗z = − 1

lzRe

∫
ϑ

(
∂u∗h
∂z

)2

dϑ, (3.14)

Dw = − 1
lzRe

∫
ϑ

(∂w∗
∂x

)2

+
(
∂w∗

∂y

)2

+
(
∂w∗

∂z

)2
 dϑ. (3.15)
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The kinetic energy Ēk of the mean flow varies because of two terms: a transfer term
T from the mean flow to the vortex and the dissipative term D̄ which results from the
vertical shear of the mean flow. The budget of the kinetic energy E∗k of the vortex is
more complex and contains:

1. the transfer term T and the conversion of the potential energy into kinetic energy
C∗.

2. two dissipative terms related to the horizontal shear and the vertical shear of
the vortex horizontal velocity (3.14). We stress that these two contributions
have been distinguished in the total dissipation for convenience in anticipation of
further analyses.

3. the dissipative term (3.15) related to the vertical velocity.

Finally, the total potential energy satisfies:

dEp
dt = −C∗ − F 2

h

lzReSc

∫
ϑ

(∇b)2dϑ. (3.16)

Since this equation only involves the vertical velocity w = w∗, it remains the same
whether the total horizontal velocity field is decomposed into a mean component and
a residual part or not.

3.4 Enstrophy

3.4.1 Definitions
From the velocity field decomposition defined previously, the vorticity ω = ∇ × u of
the global flow can be expressed as:

ω = ω̄ + ω∗, ω̄ =∇× ūh, ω∗ =∇× u∗. (3.17)

As such, ω̄ and ω∗ respectively stand for the vorticities associated with the mean flow
and the vortex.

Hence, we define:

Z̄ = 1
lz

∫
ϑ

ω̄2

2 dϑ, Z∗ = 1
lz

∫
ϑ

ω∗2

2 dϑ, (3.18)

Z̄ being the volume-integrated enstrophy associated with the mean flow and Z∗ the
global enstrophy of the vortex. Note that ω̄ is purely horizontal since ū depends on
z only. The application of the horizontal average to the non-dimensional vorticity
equation gives:

∂ω̄

∂t
+ ∂w∗ω∗

∂z
= ∂ω∗zu

∗

∂z
+ 1
Re

∂2ω̄

∂z2 . (3.19)

The equation for ω∗ can be easily obtained by subtracting (3.19) from the full vorticity
equation.
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3.4.2 Volume-integrated budgets
The global enstrophy budgets can be written in the form

dZ̄
dt = −T + S̄ + D̄ (3.20)

in the case of the mean flow, and

dZ∗
dt = T + S∗ + S̄∗ + B∗ +D∗ (3.21)

regarding the vortex. The different terms read:

T = 1
lz

∫
ϑ

ω̄ · ∂w
∗ω∗

∂z
dϑ, (3.22)

S̄ = 1
lz

∫
ϑ

ω̄ · ∂ω
∗
zu
∗

∂z
dϑ, (3.23)

S∗ = 1
lz

∫
ϑ

ω∗ · [(ω∗ · ∇) u∗] dϑ, S̄∗ = 1
lz

∫
ϑ

ω∗ · [(ω̄ · ∇)u∗ + (ω∗ · ∇)ūh] dϑ,
(3.24)

B∗ = 1
lz

∫
ϑ

ω∗ · (∇b× ez) dϑ, (3.25)

D̄ = − 1
lzRe

∫
ϑ

(
∂2ūh

∂z2

)2

dϑ, D∗ = − 1
lzRe

∫
ϑ

[
(∇ω∗x)2 + (∇ω∗y)2 + (∇ω∗z)2

]
dϑ.

(3.26)
The term T represents a transfer from the enstrophy of the mean flow to the enstrophy
of the vortex. The term S̄ represents the effect of the stretching and tilting of the
vortex on the mean flow. Conversely, S̄∗ is the stretching and tilting of the vortex by
the mean flow. S∗ is the stretching and tilting of the vortex on itself. B∗ is the effect
of the baroclinic torque and, finally, D̄ and D∗ are the dissipations of the mean flow
and vortex enstrophies, respectively.

3.5 Energy and enstrophy evolutions
Figure 3.3 presents typical evolutions of the kinetic and potential energies in (a), and
of the enstrophy in (b), for Fh = 0.5, kz = π, US = 0.2 and Re = 6000. The
vertical kinetic energy is always small relative to its horizontal counterpart. This
remains true throughout this dissertation. This is consistent with the fact that strong
stratification inhibits vertical motions. The kinetic energy of the mean flow is nearly
constant although it increases slightly owing to the transfer term T (see (3.12)). This
is consistent with the fact that the velocity field of the mean flow remains close to the
sinusoidal profile imposed initially (figure 3.2). In spite of the KH instability present
at t ' 24 in this simulation, the global horizontal kinetic energy E∗kh of the vortex
decreases regularly and smoothly, following an approximately linear trend. Since the
mean flow has an almost constant kinetic energy, the resulting variations of the total
horizontal kinetic energy Ekh are very similar to those of the vortex horizontal kinetic
energy.
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Figure 3.3: Evolutions of (a) the total horizontal kinetic energy (black solid line), the
mean flow kinetic energy (black dash-dotted line), the vortex horizontal kinetic energy
(black dashed line), the vertical kinetic energy (grey solid line), and the potential
energy (grey dashed line) and of (b) the total horizontal enstrophy (black solid line),
the enstrophy of the mean flow (black dash-dotted line), the vortex horizontal enstrophy
(black dashed line), and the vertical enstrophy (grey solid line). The parameters are
Fh = 0.5, kz = π, US = 0.2 and Re = 6000.

The potential energy remains small compared to the horizontal kinetic energies.
It exhibits a first regime where it grows regularly. Then, it saturates approximately
when the KH instability develops. In the present case, the instability decays quite
rapidly and disappears at t ' 30. Therefore, the plateau seen in the evolution of the
potential energy persists after the decay of the instability. Ultimately, the potential
energy slowly decays.

Regarding the enstrophy, that of the mean flow is almost constant as expected. In
contrast, the global horizontal enstrophy of the vortex defined as

Z∗h = 1
lz

∫
ϑ

ω∗h
2

2 dτ (3.27)

strongly increases. Since the vertical velocity is small compared to the horizontal
velocity, the horizontal enstrophy ω∗h

2/2 corresponds in very good approximation to
the vertical shear of the horizontal velocity of the vortex:

ω∗h
2 '

(
∂u∗h
∂z

)2

. (3.28)

Therefore, Z∗h is a measure of the vertical shear of the vortex. It grows since the vortex
is progressively bent by the external shear flow. The vortex horizontal enstrophy
saturates at t ' 40, i.e. well after the time t ' 24 when the KH instability is the
most developed. The maximum horizontal enstrophy of the vortex is approximately
twice the horizontal enstrophy of the mean flow. Thus, there is an approximate 200%
increase of the total horizontal enstrophy. In contrast, the vertical enstrophy defined
as

Zz = Z∗z = 1
lz

∫
ϑ

ω∗z
2

2 dτ (3.29)
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Figure 3.4: Source terms in (a) the kinetic energy budget (3.11) and in (b) the enstrophy
budget (3.21). The parameters are the same as in figure 3.3.

decreases continuously.

3.6 Kinetic energy and enstrophy budgets of the
vortex

Figures 3.4a,b show the source terms of the kinetic energy equation (3.11) and of the
enstrophy equation (3.21) of the vortex, for the same run as presented in figure 3.3.

As seen in figure 3.4a, the kinetic energy of the vortex decreases because of three
main effects. There are first a transfer to the potential energy (C∗) and also a transfer
to the shear flow (T ). Later, these two terms decrease while the dissipation due to the
vertical shear of the horizontal velocity (D∗z) increases and saturates at t ' 40. The
other dissipative terms are very small (D∗h +Dw).

Figure 3.4b shows that the enstrophy of the vortex grows because of the stretching
and tilting, first by the shear flow (S̄∗), and then by the vortex on itself (S∗) also. In
contrast, the baroclinic term (B∗), the transfer to the enstrophy of the vortex (T ), and
dissipation (D∗) are all negative. All these terms saturate between t ' 20 and t ' 30.
The dominant terms are the stretching S̄∗ and the dissipation D∗ while the stretching
S∗ contributes also significantly to the budget but grows later and is at best of the
order of S̄∗. Therefore, in order to estimate the maximum enstrophy of the vortex
(figure 3.3a), we can, as a first approach, approximate the enstrophy equation of the
vortex in the form

dZ∗
dt ' S̄

∗ +D∗. (3.30)

The enstrophy of the vortex thus saturates when S̄∗ ' −D∗. The order of mag-
nitude of these two quantities can be estimated by introducing the scaling relations
||ω∗|| ∼ 1/δ where 1/δ ∼ ∂/∂z is the vertical length scale associated to the vertical
shear (non-dimensionalized by a0), ||∂u∗/∂x|| ∼ ||∂v∗/∂x|| ∼ ||∂u∗/∂y|| ∼ ||∂v∗/∂y|| ∼
O(1) since the velocities and lengths have been non-dimensionalized by |Γ|/2πa0 and
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a0, and ||ω̄|| ∼ kzUS. This gives

S̄∗ ∼ lxly
kzUS
δ

, D∗ ∼ −lxly
1

δ4Re
, (3.31)

where the factor lxly comes from the volume integration. Therefore, the relation S̄∗ '
−D∗ yields the order of magnitude

δ ∼ 1
(kzUSRe)1/3 (3.32)

when the enstrophy of the vortex saturates. Hence, the maximum enstrophy of the
vortex is

max (Z∗) ∼ lxly
δ2 ∼ lxly (kzUSRe)2/3 . (3.33)

This scaling is independent of the Froude number Fh as found by Deloncle et al.
(2008). However, the scaling of Deloncle et al. (2008) is different and has been obtained
by balancing S∗ and D∗ since there were no mean shear flow in their case. Since
S∗ ∼ lxly/δ

2, they have obtained δ ∼ 1/
√
Re and max (Z∗) ∝ Re instead of (3.32)-

(3.33).
By assuming that the equation (3.30) holds approximately at any time, we can

further obtain the typical time scale of the evolution of Z∗. Indeed, (3.31) can be
rewritten

S̄∗ ∼
√
lxlykzUS

√
Z∗, D∗ ∼ − Z∗2

lxlyRe
, (3.34)

since Z∗ ∼ lxly/δ
2. Thus, the simplified equation (3.30) for the enstrophy budget of

the vortex can be written
dZ∗
dt '

√
lxlykzUS

√
Z∗ − Z∗2

lxlyRe
. (3.35)

By rescaling the enstrophy and the time as

Z∗ = lxly (kzUSRe)2/3 Ẑ, t = τv t̂, (3.36)

where τv = Re1/3/(kzUS)2/3, (3.35) becomes:

dẐ
dt̂
'
√
Ẑ − Ẑ2. (3.37)

This shows that the enstrophy of the vortex evolves as
Z∗

lxly (kzUSRe)2/3 = Ẑ = ϕ
(
t

τv

)
. (3.38)

If we neglect the transfer terms T and C∗ in the kinetic energy budget (3.11), i.e.
dE∗k
dt ' D∗h +D∗z +Dw ' −

2Z∗
Re

, (3.39)

we see that the kinetic energy should also follow the self-similar law
dE∗k
dt̂
' −2lxlyϕ(t̂) (3.40)

giving
E∗k = lxlyΦ

(
t

τv

)
. (3.41)
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Figure 3.5: Kinetic energy of the vortex E∗k for Fh = 0.5, US = 0.2, Re = 6000, for
kz = π/2 (dash-dotted line), kz = π (dashed line) and kz = 3π/2 (solid line), as a
function of (a) the time t and (b) the rescaled time t/τv.

3.7 Parametric analysis
We now test the self-similar laws (3.38) and (3.41) by varying the control parameters.
We first consider the kinetic energy of the vortex and then the corresponding enstrophy.

3.7.1 Kinetic energy of the vortex
Figure 3.5a shows the temporal evolution of the kinetic energy of the vortex E∗k for
several wavenumbers kz, for Fh = 0.5, US = 0.2 and Re = 6000. The decay is faster as
kz increases. When the time is rescaled by τv (figure 3.5b), the three curves collapse
quite well confirming (3.41).

Similarly, figure 3.6 displays the evolution of the vortex kinetic energy for various
US, for Fh = 0.5, kz = π and Re = 6000. Again, the rescaling of t by τv (figure 3.6b)
leads to a self-similar decay in agreement with (3.41).

The effect of the Reynolds number is tested in figure 3.7 for Fh = 0.5, kz = π and
US = 0.2. It is seen that the evolution of E∗k weakly depends on the Reynolds number,
especially the initial part t . 20. When t is rescaled by τv (figure 3.7b), the collapse of
the three curves remains satisfactory. This is because τv depends on Re with the power
law exponent 1/3. Moreover, the relative variations of Re in figure 3.7 are smaller than
for the two previous parameters.

All these results are consistent with (3.41). Remarkably, this relation is not only
valid for large times but also for short times. This suggests that the transfer terms T
and C∗, although dominant at the beginning, do not have a so important effect.

3.7.2 Enstrophy of the vortex
The self-similar law for the enstrophy of the vortex (3.38) is now checked when the
parameters kz, US, and Re are varied as done for the kinetic energy. Figures 3.8, 3.9,
and 3.10 show that the scaling (3.38) gathers relatively well the different curves. The
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Figure 3.6: Kinetic energy E∗k of the vortex for Fh = 0.5, kz = π, Re = 6000, for
US = 0.2 (dash-dotted line), US = 0.3 (dashed line) and US = 0.4 (solid line), as a
function of (a) the time t and (b) the rescaled time t/τv.
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Figure 3.7: Kinetic energy E∗k of the vortex for Fh = 0.5, kz = π, US = 0.2, for
Re = 4000 (dash-dotted line), Re = 5000 (dashed line) and Re = 6000 (solid line), as
a function of (a) the time t and (b) the rescaled time t/τv.
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Figure 3.8: Enstrophy of the vortex for Fh = 0.5, US = 0.2, Re = 6000, for kz = π/2
(dash-dotted line), kz = π (dashed line) and kz = 3π/2 (solid line). The unscaled
enstrophy Z∗ is plotted against t in (a) and the rescaled enstrophy δ2Z∗ is plotted
against the rescaled time t/τv in (b).

maximum enstrophy of the vortex is approximately max (Z∗) ' 0.3/δ2 and is attained
at t ' 1.6τv.

3.7.3 Effect of the Froude number
Finally, we examine the influence of Fh on the evolutions of E∗k and Z∗. According to
the self-similar laws (3.38) and (3.41), the Froude number should not have any effect.
However, figure 3.11, which reports the evolution of E∗k for different Froude numbers
for kz = π, US = 0.2, and Re = 6000, shows that the decay of E∗k is more rapid at
the beginning when Fh increases. Nevertheless, we can notice that the three curves
are approximately parallel for long times t & 20. This shows that the transfer terms T
and C∗ have, as a matter of fact, a non-negligible effect at the beginning while, after,
the kinetic energy decay is mostly due to viscous effects. Figure 3.11b shows that the
different kinetic energy evolutions collapse approximately if the time is rescaled by
τv/F

1/3
h .

Similarly, figure 3.12 illustrates the effect of Fh on Z∗ for the same parameters
as previously. Again, the Froude number is found to exert a strong influence on the
variations of Z∗, thus invalidating (3.38). The different curves gather if Z∗ is rescaled
by 1/F 1/3

h but not the time (figure 3.12b), suggesting the modified self-similar law:

F
1/3
h δ2Z∗

lxly
= ϕ

(
t

τv

)
. (3.42)

We have not succeeded in obtaining an interpretation for the factor F 1/3
h from the

energy and enstrophy budgets. In particular, concerning the kinetic energy, the transfer
towards potential energy weakens when the Froude number decreases. This explains
qualitatively why the kinetic energy decay is less pronounced at the beginning for small
Froude numbers. However, why this leads to the typical decay time τv/F 1/3

h remains
unknown from the previous analysis of the enstrophy and energy budgets.
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Figure 3.9: Enstrophy of the vortex for Fh = 0.5, kz = π, Re = 6000, for US = 0.2
(dash-dotted line), US = 0.3 (dashed line) and US = 0.4 (solid line). The unscaled
enstrophy Z∗ is plotted against t in (a) and the rescaled enstrophy δ2Z∗ is plotted
against the rescaled time t/τv in (b).
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Figure 3.10: Enstrophy of the vortex for Fh = 0.5, kz = π, US = 0.2, for Re = 4000
(dash-dotted line), Re = 5000 (dashed line) and Re = 6000 (solid line). The unscaled
enstrophy Z∗ is plotted against t in (a) and the rescaled enstrophy δ2Z∗ is plotted
against the rescaled time t/τv in (b).
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3.8 Conclusions
In the present chapter, we have investigated the global budgets of the volume-integrated
kinetic energy and enstrophy in order to get some insight on the effect of the control
parameters. The analysis of the budgets has provided an estimation of the minimum
shear layer thickness δ which governs the maximum enstrophy of the vortex Z∗ ∝
1/δ2. A scaling for the time scale that characterizes the viscous decay has also been
obtained. These results have been shown to account for the influence of all the control
parameters, except the horizontal Froude number. Indeed, the analysis of the budgets
does not predict any dependency with respect to this parameter, although it strongly
influences the variations of E∗k and Z∗. This paradox has therefore motivated an in-
depth investigation of the local dynamics in the next chapters.
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Chapter 4

Evolution of a vortex in a strongly
stratified shear flow. Part 1.
Asymptotic analyses.
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Abstract

In this chapter, we investigate the dynamics of an initially vertical vortex embedded
in a shear flow in a stratified fluid by means of two asymptotic analyses. The ultimate
goal is to determine, whether or not, the Kelvin-Helmholtz instability can develop as
speculated by Lilly (1983). The analyses are mostly performed in the cases of the
Lamb-Oseen vortex profile and a shear flow uniform in the horizontal and varying
sinusoidally along the vertical.

The first asymptotic analysis is performed for small time: t � 1, and shows that
the dynamics is initially non-hydrostatic until t > 1/N , where N is the Brunt-Väisälä
frequency.

The second asymptotic analysis is conducted by assuming a small vertical wavenum-
ber kz rescaled by the horizontal Froude number Fh: kzFh � 1. The results show that
the vortex axis is not only advected in the direction of the shear flow but also in the
perpendicular direction owing to the self-induced motion of the vortex. In addition,
internal waves are transiently excited at the beginning, explaining the non-hydrostatic
regime evidenced in the first asymptotic analysis. Their effects on the displacements
of the vortex axis are weak except at the beginning. The angular velocity of the vortex
decays owing to dynamic and viscous effects. The former effect is due to the squeezing
of isopycnals in the vortex core which implies a decrease of the vertical vorticity to
satisfy potential vorticity conservation. In addition, a horizontal velocity field with
an azimuthal wavenumber m = 2 is generated meaning that the shape of the vortex
becomes slightly elliptical.

These predictions will be tested against Direct Numerical Simulations in chapter 5.

4.1 Introduction
Stratified turbulence is strongly anisotropic with predominantly horizontal motions
but high shear along the vertical (Riley and Lelong, 2000). Such layered structure
inherently promotes the shear instability which breaks down the layers into smaller-
scale turbulence (Lilly, 1983; Riley and deBruynKops, 2003; Lindborg, 2006). This is
one of the main mechanisms that accomplish the direct energy cascade towards small
scales in stratified turbulence (Riley and deBruynKops, 2003; Brethouwer et al., 2007;
Deloncle et al., 2008; Augier and Billant, 2011; Augier et al., 2012; Waite, 2013).

In his pioneering paper on strongly stratified flows, Lilly (1983) has conjectured
a simple mechanism for the growth of the vertical shear. He considered a uniform
horizontal flow directed along a given direction, let us say x, and vertically sheared:
U = U(z)ex where z is the vertical coordinate. If a coherent structure with initial
horizontal velocity uh0(x, y, z) is embedded within this shear flow, it will be advected
differentially depending on the vertical position:

∂uh

∂t
= −U ∂uh

∂x
. (4.1)

Lilly has further assumed that the coupling along the vertical is weak in the limit of
strong stratification. When the vertical coupling is zero, the flow consists in a stack
of horizontal two-dimensional flows evolving independently at each level z. Then, the
solution at any time is simply: uh(x, y, z, t) = uh0(x − U(z)t, y, z). This shows that
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Figure 4.1: (a) Sketch of the flow configuration studied in this dissertation. The
ambient shear flow U(z)ex is represented by the black vectors. The red and yellow
contours show two levels of the potential vorticity of the vortex at t = 0. (b) Potential
vorticity contours at t = 20 obtained from a direct numerical simulation for the Froude
and Reynolds numbers Fh = 0.1, Re = 6000 and the shear flow U = US sin(kzz) with
US = 0.2 and kz = π. See chapter 5 for the definitions of these parameters and the
details of the numerical simulations.

the vertical shear should grow algebraically with time according to

∂uh

∂z
= −dU

dz t
∂uh0

∂x
+ ∂uh0

∂z
. (4.2)

On this basis, Lilly (1983) argued that the Richardson number should reach sooner or
later the critical value 1/4 for the onset of the shear instability (Miles, 1961; Howard,
1961). However, a key assumption behind this conjecture is that there is no vertical
coupling. This derives directly from Lilly’s assumption that the vertical Froude number
tends to zero in the limit of strong stratification. It is now acknowledged that the
vertical Froude number remains of order unity because the typical vertical length scale
scales like the buoyancy length scale in strongly stratified flows (Billant and Chomaz,
2001; Lindborg, 2006).

It is therefore unknown whether or not this mechanism for the growth of the vertical
shear is valid. In order to answer this question, we have considered the particular case
of an initially vertical vortex in an ambient vertically sheared flow in a stratified fluid.
This flow configuration is sketched in figure 4.1 together with the example of a direct
numerical simulation illustrating the vortex evolution. In the present chapter, we
shall study the dynamics of this flow by asymptotic analyses while direct numerical
simulations will be performed in chapter 5.

The dynamics of an isolated vortex in an ambient vertical shear has been studied
before in stratified rotating fluids in order to understand the dynamics of atmospheric
tropical cyclones (Jones, 1995, 2000a,b, 2004; Sutyrin and Morel, 1997; Frank and
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Ritchie, 1999; Reasor et al., 2004; Päschke et al., 2012) or oceanic vortices (Vander-
meirsch et al., 2001, 2002). In particular, Jones (1995), using a three-dimensional con-
tinuous hydrostatic primitive equation model, has shown that an initially barotropic
vortex in a linear shear flow tilts in the shear direction but also executes a cyclonic
rotation about its mid-level center. Päschke et al. (2012) have derived asymptotically
the equations for the motion of the vortex center in the case of a weak shear flow.

The influence of a vertical shear on an initially aligned vortex has been also invest-
igated by means of quasigeostrophic two-layer models (Marshall and Parthasarathy,
1993; DeMaria, 1996; Smith et al., 2000; Vandermeirsch et al., 2001, 2002). Mar-
shall and Parthasarathy (1993) have reported two distinct evolutions depending on the
strength of the vortices compared to the shear. When the advection by the shear is
below a critical value, the vortices in each layer are offset and rotate about each other.
Conversely, when the advection is sufficiently strong, the two vortices are continuously
advected away from each other. These two regimes have been called non-tearing and
tearing regimes, respectively.

In contrast, the dynamics of an isolated vortex subjected to a vertical shear in
stratified non-rotating fluids has been little investigated so far. Boulanger et al. (2007,
2008) have considered the dynamics of a vortex slightly tilted with respect to the
direction of stratification. However, the tilt of the vortex is not created by an external
shear flow but by the method of generation of the vortex. Majda and Grote (1997)
have studied the effect of a vertically sheared mean horizontal flow on a vortex pair
but only by means of the reduced equations of Lilly (1983) which are valid in the
limits of zero vertical and horizontal Froude numbers. Here and in chapter 5, we will
study the dynamics of a Lamb-Oseen vortex in a sinusoidally sheared flow using the
full Navier-Stokes equations under the Boussinesq approximation in the aim of testing
Lilly’s conjecture for the growth of vertical shear.

In the present chapter, two asymptotic analyses will be performed. The first analysis
(§4.3) is an asymptotic expansion for small times starting from the initial conditions.
It will be shown that the initial response of the vortex is non-hydrostatic whatever the
magnitude of the stratification. The second asymptotic analysis (§4.4) is conducted
for long vertical wavelength following a similar approach as used by Billant (2010) to
describe the unstable interaction between columnar vortices in stratified-rotating fluids.
This analysis will provide the governing equations for the displacements of the vortex
center and its structure evolution due to the shear flow. We shall see that the vortex is
not only advected in the direction of the shear flow but also in the orthogonal direction
owing to its self-induced motion. In addition, it will be demonstrated that the vertical
vorticity of the vortex decreases with time owing to dynamic and viscous effects. The
initial non-hydrostatic regime evidenced in the first asymptotic analysis will be related
to the transient excitation of internal waves at the start-up of the motion.

These asymptotic predictions will be compared to Direct Numerical Simulations
(DNS) in chapter 5.
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4.2 Formulation of the problem

4.2.1 Governing equations
We consider the incompressible Navier-Stokes equations written within the Boussinesq
approximation

∇ · u = 0, (4.3)
∂u

∂t
+ (u · ∇)u = −∇

(
p

ρ0

)
+ bez + ν∇2u, (4.4)

∂b

∂t
+ u · ∇b+N2w = κ∇2b, (4.5)

with u = (u, v, w) being the velocity field in cartesian coordinates (x, y, z), p the
pressure, b = −gρ/ρ0 the buoyancy, g the gravity, ez the vertical unit vector oriented
upwards, ν the viscosity, and κ the mass diffusivity. The total density field ρt has
been decomposed as ρt (x, t) = ρ0 + ρ̄(z) + ρ (x, t), ρ0 being a constant reference
density, ρ̄ a linear mean density profile varying with the vertical coordinate z, and
ρ (x, t) a perturbation density. The Brunt-Väisälä frequency measuring the ambient
stratification N =

√
−g/ρ0dρ̄/dz is assumed constant.

4.2.2 Initial condition
The initial flow is made of a columnar vortex embedded in a sinusoidal shear flow of the
form US = U(z)ex, where U(z) = ÛS sin(k̂zz), ex is the unit vector in the x direction,
ÛS the amplitude and k̂z the vertical wavenumber.

The vortex is chosen to have a Lamb-Oseen profile:

uv = Γ
2πr

[
1− exp

(
−r

2

a2
0

)]
eθ, (4.6)

where (r, θ, z) are cylindrical coordinates such that x = r cos(θ) and y = r sin(θ), Γ is
the vortex circulation, a0 its radius, and eθ the unit vector in the azimuthal direction.

The total initial flow is therefore:

u = US + uv. (4.7)

4.2.3 Non-dimensionalization
The equations (4.3-4.5) are non-dimensionalized by the characteristics of the vortex:
the length and time units are taken as the vortex radius a0 and the turnover time scale
2πa2

0/|Γ|. Keeping the same notation for the non-dimensional variables, the dimen-
sionless equations read

∇h · uh + ∂w

∂z
= 0, (4.8)

∂uh

∂t
+ (uh · ∇h) uh + w

∂uh

∂z
= −∇hp+ 1

Re
∇2uh, (4.9)

∂w

∂t
+ uh ·∇hw + w

∂w

∂z
= −∂p

∂z
+ b+ 1

Re
∇2w, (4.10)

∂b

∂t
+ uh ·∇hb+ w

∂b

∂z
= − w

F 2
h

+ 1
ReSc

∇2b, (4.11)
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where uh denotes the horizontal velocity. The Reynolds and Froude numbers are
defined as

Re = |Γ|
2πν , Fh = |Γ|

2πa2
0N

, (4.12)

and Sc = ν/κ is the Schmidt number.
In non-dimensional form, the velocities of the shear flow and the vortex become

US = US sin(kzz)ex, uv = 1− exp(−r2)
r

eθ, (4.13)

where US = ÛS/(|Γ|/2πa0) and kz = k̂za0. Without loss of generality, the vortex cir-
culation has been considered positive. Indeed, a vortex with a negative circulation can
be transformed into a positive one by simply changing the cartesian frame (ex, ey, ez)
into (−ex, ey,−ez).

4.3 Initial dynamics of the vortex

4.3.1 Asymptotic problem
The initial dynamics of the vortex will be derived analytically from the equations (4.8-
4.11) in the inviscid limit Re = +∞ by expanding all the variables q = (u, v, w, p, b)
in power series of t:

q(x, y, z, t) = q0(x, y, z) + tq1(x, y, z) + t2q2(x, y, z) + t3q3(x, y, z) + O(t4). (4.14)

Then, each power of t can be solved successively. In the following, the shear flow and the
vortex will be assumed to have the arbitrary profiles US = U(z)ex and uv = uθ(r)eθ
as long as they do not need to be specified to solve the problem. The fluid domain is
assumed unbounded in the horizontal direction.

Zeroth-order sub-problem

The zeroth-order problem reads

∇ · u0 = 0, (4.15)

uh1 + u0
∂uh0

∂x
+ v0

∂uh0

∂y
+ w0

∂uh0

∂z
= −∇hp0, (4.16)

w1 + u0
∂w0

∂x
+ v0

∂w0

∂y
+ w0

∂w0

∂z
= −∂p0

∂z
+ b0, (4.17)

b1 + u0
∂b0

∂x
+ v0

∂b0

∂y
+ w0

∂b0

∂z
= −w0

F 2
h

. (4.18)

As already explained in section 4.2.2, the initial flow is taken as the sum of the
shear flow and the vortex velocity field, i.e.:

u0 = − sin(θ)uθ(r) + U(z), v0 = cos(θ)uθ(r), w0 = 0, b0 = 0. (4.19)

Although u0 and v0 are the horizontal velocity components in cartesian coordinates, it
is more compact and convenient to express them in terms of the cylindrical coordinates
(r, θ).
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The solution (4.19) satisfies the divergence condition (4.15), and the density equa-
tion (4.18) immediately reduces to b1 = 0. In order to find the remaining fields p0, u1,
v1 and w1, the divergence of (4.16)-(4.17) is taken. This yields

∇2p0 = 2ΩdrΩ
dr , (4.20)

since ∇ · u1 = 0, where Ω = uθ/r is the vortex angular velocity. A solution is

p0 =
∫
ξΩ2(ξ)dξ, (4.21)

which expresses the balance between the centrifugal force and the pressure gradient in
the vortex. This balance is not affected by the presence of the shear flow at leading
order because U is only a function of the vertical coordinate. Using (4.21), (4.16)-(4.17)
yield the velocity field at first order:

u1 = sin(2θ)
2 r

dΩ
dr U(z), v1 = −1

2

[
cos(2θ)rdΩ

dr + ζ

]
U(z), w1 = 0, (4.22)

with ζ the vertical vorticity:
ζ = 1

r

dr2Ω
dr . (4.23)

It is worth mentioning that (4.22) corresponds to a bending of the vortex as a whole
without any deformation of its velocity distribution in the horizontal plane. Indeed,
let us consider the translated vortex velocity

uv(x, t) = uv(x−∆x(z, t), y −∆y(z, t)), (4.24)

with ∆x and ∆y representing the cartesian displacements of the vortex center that are
null at t = 0. For small ∆x and ∆y, we have:

uv(x, t) = uv(x, y)−∆x∂uv

∂x
−∆y∂uv

∂y

+ ∆x2

2
∂2uv

∂x2 + ∆y2

2
∂2uv

∂y2 + ∆x∆y ∂
2uv

∂x∂y
+ ... (4.25)

Since
∂uv

∂x
= −sin(2θ)

2 r
dΩ
dr ex + 1

2

[
cos(2θ)rdΩ

dr + ζ

]
ey, (4.26)

the velocity field at first order (4.22) is identical to the order O(t) of (4.25) with the
displacements ∆x = U(z)t and ∆y = 0. It is important to stress that these results are
valid for any vortex profile uθ(r) and any shear flow profile U(z).

First-order sub-problem

The set of equations at first order reads:

∇h · uh1 = 0, (4.27)

2uh2 + u0
∂uh1

∂x
+ u1

∂uh0

∂x
+ v0

∂uh1

∂y
+ v1

∂uh0

∂y
= −∇hp1, (4.28)

2w2 = −∂p1

∂z
, (4.29)

b2 = 0, (4.30)
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Figure 4.2: Variations of (a) β and (b) kzβ against the radius r for different values
of the vertical wavenumber: kz = 0 (grey solid line), kz = π/6 (grey dashed line),
kz = π/2 (black dash-dotted line), kz = π (black dashed line) and kz = 3π/2 (black
solid line).

since w1 = b1 = 0. Remarkably, (4.27-4.30) are independent of the Froude number.
The divergence equation (4.27) is automatically satisfied. By imposing the divergence
condition at second order ∇ · u2 = 0, we obtain from (4.28)-(4.29):

∇2p1 = −2 cos(θ) d
dr

(
ΩdrΩ

dr

)
U(z). (4.31)

In order to solve this Poisson equation, we now have to specify the profile U(z). In
the following, we consider the sinusoidal shear flow U(z) = US sin(kzz). The case of a
linear shear flow is investigated in appendix A. We look for p1 in the form

p1 = cos(θ)β(r)U(z). (4.32)

Then, (4.31) becomes:

d2β

dr2 + 1
r

dβ
dr −

(
k2
z + 1

r2

)
β = − d

dr

(
1
r

dr2Ω2

dr

)
. (4.33)

The solution is:
β(r) = −rΩ2(r) + βb(r), (4.34)

with

βb(r) = k2
zI1(kzr)

∫ +∞

r
K1(kzξ)ξ2Ω2(ξ)dξ + k2

zK1(kzr)
∫ r

0
I1(kzξ)ξ2Ω2(ξ)dξ, (4.35)

where it has been imposed that β is not singular at r = 0 and vanishes at infinity.
I1 and K1 are the modified Bessel functions of order one of the first and second kind,
respectively. Figure 4.2 displays the function β for different vertical wavenumbers kz in
the case of the Lamb-Oseen profile (4.13). Starting from kz = 3π/2, which corresponds
to a dimensional vertical wavelength slightly larger than the vortex radius a0, it is
observed that β decreases as kz diminishes to 0 (figure 4.2a). In the limit kz = 0, we
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have β = −rΩ2. For finite wavenumbers π/2 6 kz 6 3π/2, figure 4.2b shows that kzβ is
almost independent of kz. These values cover wavelengths ranging approximately from
the vortex radius to four radii. Finally, using (4.34), (4.28)-(4.29) give the second-order
velocities:

u2 =− 1
4

[
dβb
dr + βb(r)

r
+ cos(2θ)

(
dβb
dr −

βb(r)
r

)]
US sin(kzz)

+ sin(θ)
2

[
cos(2θ) d

dr

(
Ω− r

2
dΩ
dr

)
− d

dr

(
r

2
dΩ
dr

)]
U2
S sin2(kzz), (4.36)

v2 =− sin(2θ)
4

[
dβb
dr −

βb(r)
r

]
US sin(kzz)

+ cos(θ)
2

[
cos(2θ) d

dr

(
r

2
dΩ
dr − Ω

)
+ d

dr

(
Ω + ζ

2

)]
U2
S sin2(kzz), (4.37)

w2 =− cos(θ)
2 β(r)kzUS cos(kzz). (4.38)

In contrast to its counterpart at first order, this second order velocity field does not
correspond in general to a bending of the vortex without internal deformation. This
is the case only in the limit kz � 1 for which βb can be neglected at leading order in
(4.36)-(4.37) since

βb = k2
z

[
r

2

∫ +∞

r
ξΩ2(ξ)dξ + 1

2r

∫ r

0
ξ3Ω2(ξ)dξ

]
+ O(k4

z), (4.39)

i.e. βb = O(k2
z). The second order horizontal velocity field (4.36)-(4.37) is then equal

to the order O(t2) of (4.25) with the displacements ∆x = U(z)t and ∆y = 0 since

∂2uv

∂x2 = sin(θ)
[
cos(2θ) d

dr

(
Ω− r

2
dΩ
dr

)
− d

dr

(
r

2
dΩ
dr

)]
ex

+ cos(θ)
[
cos(2θ) d

dr

(
r

2
dΩ
dr − Ω

)
+ d

dr

(
Ω + ζ

2

)]
ey. (4.40)

Second-order sub-problem

At second order, we do not consider all the equations but only the buoyancy equation:

3b3 = −w2

F 2
h

. (4.41)

This yields the first non-zero term in the expansion of the buoyancy:

b3 = kzUS
6F 2

h

cos(θ)β(r) cos(kzz). (4.42)

This shows that w = w2t
2 and b = b3t

3 at leading order. Using (4.41), the ratio of the
vertical acceleration to the buoyancy is therefore∣∣∣∣∣1b Dw

Dt

∣∣∣∣∣ = 6
(
Fh
t

)2
. (4.43)

Hence, for small times such that t � Fh, the buoyancy is negligible relative to the
vertical acceleration, meaning that the dynamics is initially non-hydrostatic. This
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transient non-hydrostatic phase lasts until t = O(Fh) whereas for t� Fh, a hydrostatic
regime is expected to be recovered if Fh < 1. This subsequent hydrostatic regime will
occur for t � 1 as assumed here, only if Fh � 1. We can further remark that
the vertical velocity w2 and the buoyancy b3 are both proportional to kzβ. From
the behaviour of the function β displayed in figure 4.2, we can deduce that these two
quantities are therefore proportional to kz for small kz whereas they are weakly sensitive
to the variation of the vertical wavenumber for π/2 6 kz 6 3π/2.

4.3.2 Summary
The latter analysis shows that at first order in time, the vortex is simply advected
as a whole in the x direction by ∆x = U(z)t. Internal deformation and generation
of vertical motions occur only at order O(t2). At this order, there is no displacement
of the vortex implying that the higher orders in the displacements (∆x,∆y) are at
least O(t3) or higher. This agrees with Jones’ observation (Jones, 1995) in stratified
rotating fluids that the initial effect of the vertical shear is a bending of the vortex in
the streamwise direction only. We can further remark that the flow field at order O(t2)
does not depend on the Froude number but depends only on the vertical wavenumber
kz of the sinusoidal shear flow. In other words, the stratification has no effect on the
initial dynamics of the vortex. We have not determined the flow field at order O(t3) but
it is clear that it would also be independent of the Froude number. The stratification
only intervenes in the buoyancy at order O(t3). These results show the existence of an
initial transient non-hydrostatic regime whose duration scales like the Froude number.

In the next section, we shall conduct an asymptotic analysis for long vertical
wavelengths which is valid for longer times. This investigation will show that the
initial non-hydrostatic phase is due to the generation of internal waves and that the
vortex is also displaced in the y direction for finite times.

4.4 Long-wavelength dynamics of the vortex

4.4.1 Formulation of the problem
In section §4.3, we have studied the initial dynamics of the vortex by means of an
asymptotic expansion in powers of t for any vertical wavenumber. The dynamics of the
vortex can be also described asymptotically for finite time in the limit of small vertical
wavenumber. Indeed, when kz = 0, i.e. in the two-dimensional limit, an exact solution
is

uh = uh0(x− Ut, y) + Uex, (4.44)

which means that the vortex is simply advected at constant speed U . This solution is
expected to remain valid at leading order when ε = k2

zF
2
h is such that ε� 1, i.e. when

the vertical variations ∂/∂z of U(z) rescaled by the Froude number Fh are weak:

√
ε = O

(
Fh

∂

∂z

)
� 1. (4.45)

We consider that kzFh is small and not simply that kz � 1 because of the self-similarity
of strongly stratified fluids (Billant and Chomaz, 2001). Indeed, this self-similarity
implies that the horizontal velocity depends on Fh and kz only through their product
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kzFh when Fh � 1. This means that the condition ε � 1 can be fulfilled either by
having kz � 1 or Fh � 1. In each case, the other parameter Fh or kz can be large
provided that kzFh � 1. We will keep the asymptotic analysis as general as possible
in order to encompass both cases. Nevertheless, some parts of the analysis will assume
Fh � 1 in order to simplify the calculations. Consistently with (4.45), we rescale the
vertical coordinate and wavenumber as follows:

z̃ =
√
ε

Fh
z, k̃z = kzFh√

ε
, (4.46)

so that k̃z = O(1) and ∂/∂z̃ = O(1). Then, we can look for the horizontal velocity in
the form of an asymptotic expansion:

uh = uh0(x− U(z̃)t− δx, y − δy, η̃, τ) + U(z̃)ex + εuh1(x, y, z̃, t, η̃, τ) + O(ε2), (4.47)

where δx(z̃, η̃, τ) and δy(z̃, η̃, τ) are corrections to the displacements of the vortex
center varying along the vertical and with the slow time scale τ = εt. In contrast to
classical multiscale expansions, the fast and slow times t and τ should not be viewed
as completely independent variables. We shall see indeed that the slow time evolution
depends on the fast time. The introduction of τ is simply a convenient way to separate
the dynamics at different orders1. Similarly, a slow vertical length scale η̃ = εz̃ is
introduced. We also define local horizontal cartesian coordinates (x̃, ỹ) centered on the
vortex center at the level z̃:

x̃ = x− U(z̃)t− δx(z̃, η̃, τ), ỹ = y − δy(z̃, η̃, τ). (4.48)

The cylindrical coordinates associated to these new coordinates are denoted with a
tilde (x̃, ỹ) = (r̃ cos(θ̃), r̃ sin(θ̃)). In addition to the horizontal velocity, the other fields
are expanded in the form:

p = p0(x̃, ỹ, η̃, τ) + εp1(x̃, ỹ, z̃, t, η̃, τ) + O(ε2), (4.49)
w =

√
εFh

[
w0(x̃, ỹ, z̃, t, η̃, τ) + εw1(x̃, ỹ, z̃, t, η̃, τ) + O(ε2)

]
, (4.50)

b =
√
ε

Fh

[
b0(x̃, ỹ, z̃, t, η̃, τ) + εb1(x̃, ỹ, z̃, t, η̃, τ) + O(ε2)

]
, (4.51)

where the vertical velocity and the buoyancy have been scaled by
√
εFh and

√
ε/Fh,

respectively, for convenience. These scalings are equivalent to those of Billant and
Chomaz (2001) for strongly stratified flows. Weak viscous effects will be also taken
into account by assuming 1/Re = O(ε). Thus, we write:

1
Re

= ε

R̃e
, (4.52)

where R̃e = O(1).
The expansions (4.47, 4.49, 4.50, 4.51) will be introduced in the governing equations

(4.8-4.11). It will be useful to consider also the equation for the vertical vorticity
ζ = ∂v/∂x− ∂u/∂y:

∂ζ

∂t
+ uh ·∇hζ + w

∂ζ

∂z
= ωh ·∇hw + ζ

∂w

∂z
+ 1
Re
∇2ζ, (4.53)

1However, another possible choice for the scaling of the slow time is discussed at the end in the
light of the final equations.
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where ωh is the horizontal vorticity.
Because of the introduction of the local coordinates (x̃, ỹ) that depend on t, τ , z̃

and η̃ (see (4.48)), the time and vertical derivatives of any quantity Λ in (4.8-4.11) and
(4.53) become:

∂Λ
∂t

=
(
∂Λ
∂t

)
x̃,ỹ,τ

− U(z̃)∂Λ
∂x̃

+ ε

(∂Λ
∂τ

)
x̃,ỹ,t

− ∂δx

∂τ

∂Λ
∂x̃
− ∂δy

∂τ

∂Λ
∂ỹ

 , (4.54)

∂Λ
∂z

=
√
ε

Fh

(∂Λ
∂z̃

)
x̃,ỹ,η̃

− tdUdz̃
∂Λ
∂x̃
−
(
∂δx

∂z̃

)
η̃

∂Λ
∂x̃
−
(
∂δy

∂z̃

)
η̃

∂Λ
∂ỹ


+ ε
√
ε

Fh

(∂Λ
∂η̃

)
x̃,ỹ,z̃

−
(
∂δx

∂η̃

)
z̃

∂Λ
∂x̃
−
(
∂δy

∂η̃

)
z̃

∂Λ
∂ỹ

 . (4.55)

It is important to remark the presence of the term tdU/dz̃ in (4.55). Because of this
term, the long-wavelength assumption (4.45) is expected to be no longer valid when√
εtdU/dz̃ > 1, i.e. when kzFhUSt > 1 for the shear flow profile U = US sin(kzz).

4.4.2 Leading order problem
At zeroth-order, equations (4.8-4.11) reduce to:

∇h · uh0 = 0, (4.56)
(uh0 · ∇h) uh0 = −∇hp0, (4.57)

F 2
h

(∂w0

∂t

)
x̃,ỹ,τ

+ uh0 ·∇hw0

 = −∂p0

∂z̃
+ b0, (4.58)

(
∂b0

∂t

)
x̃,ỹ,τ

+ uh0 ·∇hb0 = −w0, (4.59)

where the operator ∇h is with respect to x̃ and ỹ, or equivalently r̃ and θ̃. Note
that the advection by the shear flow U(z̃)∂/∂x̃ is absent in (4.57-4.59) since it cancels
with the term coming from the time derivative (see (4.54)). The equations (4.56)-
(4.57) are the steady two-dimensional Euler equations. Consistently with the initial
conditions chosen in §4.2.2, we take an axisymmetric vortex at leading order, namely
uh0 = r̃Ω(r̃, η̃, τ)eθ̃. Then, (4.57) reduces to:

∂p0

∂r̃
= r̃Ω2(r̃, η̃, τ), (4.60)

which is the balance between the centrifugal force and the radial pressure gradient as
if the shear flow were absent. Therefore, the vertical pressure gradient is given by

∂p0

∂z̃
= ∂r̃

∂z̃

∂p0

∂r̃
= −

[
cos(θ̃)

(
dU
dz̃ t+ ∂δx

∂z̃

)
+ sin(θ̃)∂δy

∂z̃

]
r̃Ω2 (4.61)

since we have at leading order:

∂r̃

∂z̃
= − cos(θ̃)

(
dU
dz̃ t+ ∂δx

∂z̃

)
− sin(θ̃)∂δy

∂z̃
. (4.62)
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Using (4.61), the equations (4.58) and (4.59) can be written as

F 2
h

[
∂w0

∂t
+ Ω∂w0

∂θ̃

]
= b0 +

[
cos(θ̃)

(
dU
dz̃ t+ ∂δx

∂z̃

)
+ sin(θ̃)∂δy

∂z̃

]
r̃Ω2, (4.63)

∂b0

∂t
+ Ω∂b0

∂θ̃
= −w0, (4.64)

where the fact that the time derivative ∂/∂t is taken at constant x̃, ỹ and τ and the
vertical derivative ∂/∂z̃ at constant x̃, ỹ and η̃ will be no longer mentioned to simplify
the notation. To solve (4.63)-(4.64), w0 and b0 are decomposed into two components:

w0 = wf (r̃, θ̃, z̃, t, η̃, τ) + ws(r̃, θ̃, z̃, η̃, τ), b0 = bf (r̃, θ̃, z̃, t, η̃, τ) + bs(r̃, θ̃, z̃, η̃, τ),
(4.65)

that are solution of

F 2
h

[
∂wf
∂t

+ Ω∂wf
∂θ̃

]
= bf + cos(θ̃)r̃Ω2 dU

dz̃ t, (4.66)

∂bf
∂t

+ Ω∂bf
∂θ̃

= −wf , (4.67)

and

F 2
hΩ∂ws

∂θ̃
= bs +

[
cos(θ̃)∂δx

∂z̃
+ sin(θ̃)∂δy

∂z̃

]
r̃Ω2, (4.68)

Ω∂bs
∂θ̃

= −ws. (4.69)

Deriving the analytic expressions of the slowly evolving components (ws, bs) is straight-
forward:

ws =
[
− sin(θ̃)∂δx

∂z̃
+ cos(θ̃)∂δy

∂z̃

]
CΩ, (4.70)

bs = −
[
cos(θ̃)∂δx

∂z̃
+ sin(θ̃)∂δy

∂z̃

]
C, (4.71)

where
C(r̃, η̃, τ) = r̃Ω2

1− F 2
hΩ2 (4.72)

has no critical point and is well-defined when Fh < 1. Determining the fast components
wf and bf is more difficult. They can be found in the form

wf = wp + ww, bf = bp + bw, (4.73)

where (wp, bp) is a particular solution of (4.66)-(4.67):

wp =
[
cos(θ̃)F − t sin(θ̃)Ω

]
CdU

dz̃ , (4.74)

bp = −
[
2Fh sin(θ̃)G + t cos(θ̃)

]
CdU

dz̃ , (4.75)

with
F(r̃, η̃, τ) = 1 + F 2

hΩ2

1− F 2
hΩ2 , G(r̃, η̃, τ) = FhΩ

1− F 2
hΩ2 , (4.76)
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while (ww, bw) is a homogeneous solution of (4.66)-(4.67) corresponding to internal
waves oscillating at the non-dimensional frequency 1/Fh:

ww = 1
F 2
h

cos(Ωt− θ̃)
[
C1(r̃, z̃, η̃, τ) cos

(
t

Fh

)
+ C2(r̃, z̃, η̃, τ) sin

(
t

Fh

)]
+ 1
F 2
h

sin(Ωt− θ̃)
[
S1(r̃, z̃, η̃, τ) cos

(
t

Fh

)
+ S2(r̃, z̃, η̃, τ) sin

(
t

Fh

)]
, (4.77)

bw = 1
Fh

cos(Ωt− θ̃)
[
C2(r̃, z̃, η̃, τ) cos

(
t

Fh

)
− C1(r̃, z̃, η̃, τ) sin

(
t

Fh

)]
+ 1
Fh

sin(Ωt− θ̃)
[
S2(r̃, z̃, η̃, τ) cos

(
t

Fh

)
− S1(r̃, z̃, η̃, τ) sin

(
t

Fh

)]
, (4.78)

where C1, C2, S1 and S2 are arbitrary functions. They are deduced by imposing that
the vertical velocity and the buoyancy are null at t = τ = 0 since the vortex is strictly
vertical at the start-up of the evolution. This implies that δx(z̃, η̃, 0) = δy(z̃, η̃, 0) = 0
so that ws and bs are zero at τ = 0. Therefore, we have to impose wf = bf = 0 at
t = τ = 0, yielding:

C1 = −F 2
hCF

dU
dz̃ , S1 = 0, C2 = 0, S2 = −2F 2

hCG
dU
dz̃ . (4.79)

Strictly speaking, C1 and S2 are fixed at τ = 0 so that we should set C1 = −F 2
hC(r̃, η̃, τ =

0)F(r̃, η̃, τ = 0)dU/dz̃ and similarly for S2. However, it is also legitimate to impose
(4.79) whatever τ since the evolution over the slow time scale τ is a higher order ef-
fect. Finally, collecting (4.70)-(4.71), (4.74)-(4.75), and (4.77)-(4.78) give the complete
expressions of w0 and b0:

w0 =
[
cos(θ̃)F − t sin(θ̃)Ω−F cos(Ωt− θ̃) cos

(
t

Fh

)
− 2G sin(Ωt− θ̃) sin

(
t

Fh

)]
CdU

dz̃

+
[
− sin(θ̃)∂δx

∂z̃
+ cos(θ̃)∂δy

∂z̃

]
CΩ, (4.80)

b0 =− Fh
[
2 sin(θ̃)G + t

Fh
cos(θ̃) + 2G sin(Ωt− θ̃) cos

(
t

Fh

)
−F cos(Ωt− θ̃) sin

(
t

Fh

)]
CdU

dz̃ −
[
cos(θ̃)∂δx

∂z̃
+ sin(θ̃)∂δy

∂z̃

]
C. (4.81)

The vertical velocity and buoyancy (4.80)-(4.81) contain three types of terms evolving
on three different time scales:

1. the terms corresponding to wp and bp that grow linearly with the fast time t in
response to the shear flow U(z̃),

2. internal waves oscillating at the frequency 1/Fh (i.e. the Brunt-Väisälä frequency
in dimensional units) that are generated at the onset of the motion,

3. the terms coming from ws and bs due to the slow evolution of the displacement
corrections δx and δy.

In the limit t � 1, τ � 1, (4.80)-(4.81) rescaled by
√
εFh and

√
ε/Fh become at

leading order
√
εFhw0 = 1

2 cos(θ)rΩ2 dU
dz t

2 + O(t3, τ), (4.82)
√
ε

Fh
b0 = − 1

6F 2
h

cos(θ)rΩ2 dU
dz t

3 + O(t4, τ), (4.83)
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since δx and δy are at mostO(τ) = O(εt) for τ � 1 because δx(z̃, η̃, 0) = δy(z̃, η̃, 0) = 0.
When U = US sin(k̃z z̃), (4.82) and (4.83) are identical to the expressions (4.38) and
(4.42) obtained for small time in §4.3 in the limit kz � 1 since then β = −rΩ2 +O(k2

z).
It can be concluded that the initial transient non-hydrostatic regime found in §4.3

comes from the generation of internal waves of frequency 1/Fh. Indeed, if the waves
(4.77)-(4.78) were absent in (4.80)-(4.81), the vertical velocity and buoyancy would
mostly grow linearly with time w ∝ F 2

h t and b ∝ t according to (4.74)-(4.75). These
scaling laws fulfill the typical scaling associated to the hydrostatic balance, w = O(F 2

hb)
in contrast to the full solution (4.80)-(4.81). For large time, the amplitude of the waves
ww, bw will become small relative to wp, bp that grow linearly with time. Hence, the
hydrostatic balance will be recovered. In addition, (4.80)-(4.81) show that the waves
are advected differentially by the azimuthal motion in the vortex (terms cos(Ωt − θ̃)
and sin(Ωt − θ̃)). We will see in §4.4.4 that their influence quickly dies out for this
reason.

4.4.3 First-order problem
At first order, it is more convenient to consider the divergence equation and the equa-
tion for the vertical vorticity ζ1 = ∂v1/∂x̃− ∂u1/∂ỹ:

∇h · uh1 = −
[
∂w0

∂z̃
+ ∂r̃

∂z̃

∂w0

∂r̃
+ ∂θ̃

∂z̃

∂w0

∂θ̃

]
, (4.84)

∂ζ1

∂t
+ uh0 ·∇hζ1 + uh1 ·∇hζ0 = −∂ζ0

∂τ
+ cos(θ̃)∂δx

∂τ

∂ζ0

∂r̃
+ sin(θ̃)∂δy

∂τ

∂ζ0

∂r̃

+
[

dU
dz̃ + ∂r̃

∂z̃

∂u0

∂r̃
+ ∂θ̃

∂z̃

∂u0

∂θ̃

]
∂w0

∂ỹ
−
[
∂r̃

∂z̃

∂v0

∂r̃
+ ∂θ̃

∂z̃

∂v0

∂θ̃

]
∂w0

∂x̃

+ ζ0

[
∂w0

∂z̃
+ ∂r̃

∂z̃

∂w0

∂r̃
+ ∂θ̃

∂z̃

∂w0

∂θ̃

]
− w0

∂r̃

∂z̃

∂ζ0

∂r̃

+ ∇
2ζ0

R̃e
, (4.85)

where ζ0 = 2Ω + r̃∂Ω/∂r̃ and

∂θ̃

∂z̃
= sin(θ̃)

r̃

[
dU
dz̃ t+ ∂δx

∂z̃

]
− cos(θ̃)

r̃

∂δy

∂z̃
(4.86)

at leading order while ∂r̃/∂z̃ has been given previously in (4.62). The forcing terms in
the left-hand side of (4.85) correspond to the slow evolution of ζ0 and the displacements
δx, δy (first row), the tilting of horizontal vorticity into vertical vorticity (second row),
the stretching and vertical advection of vertical vorticity (third row), and viscous effects
(last row).

The viscous term in (4.85) reads

∇2ζ0 = ∂2ζ0

∂r̃2 + 1
r̃

∂ζ0

∂r̃
+ ε

F 2
h

∂2ζ0

∂z̃2 . (4.87)

This expression suggests that we should neglect the second term since ε� 1. However,
we will keep it for two reasons: first, the condition ε � 1 can be fulfilled either by
having kz � 1 or Fh � 1. In the latter case, the parameter ε/F 2

h = k2
z can be large
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since a wavenumber kz of order unity or larger can satisfy the condition kzFh � 1.
Secondly, because the vertical shear grows algebraically with time as shown by (4.62)
and (4.86), the second term can become large when ε/F 2

h (tdU/dz̃)2 > 12. Actually,
this is the main reason why this term may have an important effect. Hence, we will
take into account only the terms proportional to tdU/dz̃ in (4.62)-(4.86) and neglect
the others to express the viscous term (4.87). This yields:

∇2ζ0 = ∂2ζ0

∂r̃2 + 1
r̃

∂ζ0

∂r̃
+ ε

2F 2
h

(
∂2ζ0

∂r̃2 + 1
r̃

∂ζ0

∂r̃

)(
dU
dz̃

)2

t2 − ε

F 2
h

cos(θ̃)∂ζ0

∂r̃

d2U

dz̃2 t

+ ε

2F 2
h

cos(2θ̃)
(
∂2ζ0

∂r̃2 −
1
r̃

∂ζ0

∂r̃

)(
dU
dz̃

)2

t2. (4.88)

We emphasize again that the term O(ε/F 2
h ) is taken into account in order to encompass

both cases kz � 1 or Fh � 1. However, in the former case, this term is expected to be
negligible as long as kztdU/dz̃ � 1.

We see that the viscous term contains azimuthal modes m = 0, 1, and 2. In fact,
the other forcing terms in (4.84) and (4.85) can be also decomposed into these three
azimuthal modes. Looking for example at the divergence equation (4.84), we see two
categories of forcing terms. First, the term ∂w0/∂z̃ will produce terms proportional
to cos(θ̃) or sin(θ̃). Secondly, the terms ∂r̃/∂z̃∂w0/∂r̃ and ∂θ̃/∂z̃∂w0/∂θ̃ will give
azimuthal modes of the form cos(mθ̃) and sin(mθ̃) with m = 0 or m = 2. The right-
hand side of (4.85) can be decomposed similarly into the azimuthal modes m = 0,
m = 1, and m = 2. For this reason, (4.84) and (4.85) can be re-written as follows:

∇h · uh1 =− ∂w0

∂z̃
+ δD0 + δD2, (4.89)

∂ζ1

∂t
+ Ω∂ζ1

∂θ̃
+ uh1 ·∇hζ0 =

[
cos(θ̃)∂δx

∂τ
+ sin(θ̃)∂δy

∂τ

]
∂ζ0

∂r̃
+ ζ0

∂w0

∂z̃

− ε

R̃eF 2
h

cos(θ̃)∂ζ0

∂r̃

d2U

dz̃2 t+ δZ0 + δZ2, (4.90)

where δZ0 and δD0 correspond to the axisymmetric forcing terms, while δZ2 and δD2
are the forcing terms proportional to cos(2θ̃) or sin(2θ̃). In contrast, the forcing terms
written explicitly in the right-hand sides of (4.89) and (4.90) are all proportional to
cos(θ̃) or sin(θ̃).

In order to solve (4.89) and (4.90), the horizontal velocity is decomposed into po-
tential and rotational components by introducing a potential Φ1 and a streamfunction
ψ1:

uh1 =∇hΦ1 −∇× ψ1ez. (4.91)
The potential and streamfunction are further decomposed into three components

Φ1 = Φ10 + Φ11 + Φ12, ψ1 = ψ10 + ψ11 + ψ12, (4.92)

corresponding to the azimuthal modes m = 0, m = 1, and m = 2, respectively. They
can be solved separately. We will begin by the components (Φ11, ψ11) which will provide
the governing equations for the displacements (δx, δy). The other components will be
next determined in section 4.4.5.

2As for the slow time scale, another possible choice for the scaling of the Reynolds number is
discussed at the end of the chapter.
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4.4.4 Determination of Φ11 and ψ11

We first determine the potential from (4.89):

∇2
hΦ11 = −∂w0

∂z̃
. (4.93)

Like the vertical velocity (4.80), Φ1 is separated into three potentials evolving with the
different time scales τ , t, and t/Fh (corresponding to internal waves):

Φ11 = Φs(r̃, θ̃, z̃, η̃, τ) + Φp(r̃, θ̃, z̃, t, η̃, τ) + Φw(r̃, θ̃, z̃, t, η̃, τ), (4.94)

with
∇2
hΦs = −∂ws

∂z̃
, ∇2

hΦp = −∂wp
∂z̃

, ∇2
hΦw = −∂ww

∂z̃
, (4.95)

where ws is defined in (4.70), wp in (4.74), and ww in (4.77). The potential varying on
the slow time scale reads

Φs = 1
2

[
sin(θ̃)∂

2δx

∂z̃2 − cos(θ̃)∂
2δy

∂z̃2

]
Φps, (4.96)

with

Φps(r̃, η̃, τ) = r̃
∫ r̃

+∞
Ω(ξ, η̃, τ)C(ξ, η̃, τ)dξ − 1

r̃

∫ r̃

0
ξ2Ω(ξ, η̃, τ)C(ξ, η̃, τ)dξ, (4.97)

where it has been imposed that Φs is not singular at r̃ = 0 and vanishes as r̃ tends to
infinity. The two other potentials Φp and Φw can be derived similarly:

Φp = 1
2
[
− cos(θ̃)Φpc + t sin(θ̃)Φps

] d2U

dz̃2 , (4.98)

Φw = 1
2

[
r̃
∫ r̃

+∞
C(ξ, η̃, τ)F(ξ, η̃, τ) cos(Ω(ξ, η̃, τ)t− θ̃)dξ

− 1
r̃

∫ r̃

0
ξ2C(ξ, η̃, τ)F(ξ, η̃, τ) cos(Ω(ξ, η̃, τ)t− θ̃)dξ

]
cos

(
t

Fh

) d2U

dz̃2

+
[
r̃
∫ r̃

+∞
C(ξ, η̃, τ)G(ξ, η̃, τ) sin(Ω(ξ, η̃, τ)t− θ̃)dξ

− 1
r̃

∫ r̃

0
ξ2C(ξ, η̃, τ)G(ξ, η̃, τ) sin(Ω(ξ, η̃, τ)t− θ̃)dξ

]
sin

(
t

Fh

) d2U

dz̃2 , (4.99)

where

Φpc(r̃, η̃, τ) = r̃
∫ r̃

+∞
C(ξ, η̃, τ)F(ξ, η̃, τ)dξ − 1

r̃

∫ r̃

0
ξ2C(ξ, η̃, τ)F(ξ, η̃, τ)dξ. (4.100)

The potential Φ11 being determined, an equation for the streamfunction ψ11 is
obtained from the equation (4.90) for the vertical vorticity:[

∂

∂t
+ Ω ∂

∂θ̃

]
∇2
hψ11 −

1
r̃

∂ζ0

∂r̃

∂ψ11

∂θ̃
=

[
cos(θ̃)∂δx

∂τ
+ sin(θ̃)∂δy

∂τ
− ∂Φ11

∂r̃

]
∂ζ0

∂r̃

+ ζ0
∂w0

∂z̃
− ε

R̃eF 2
h

cos(θ̃)∂ζ0

∂r̃

d2U

dz̃2 t. (4.101)
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The first two terms in the left-hand side of (4.101) come from the slow evolution of δx
and δy. The third term is the advection of ζ0 by the first order potential flow. The
fourth term is the stretching of ζ0. The last term corresponds to the dominant viscous
effect. In order to solve (4.101), the streamfunction is decomposed as

ψ11 = ψsd(r̃, θ̃, z̃, τ) + ψs(r̃, θ̃, z̃, η̃, τ) + ψp(r̃, θ̃, z̃, t, η̃, τ) + ψw(r̃, θ̃, z̃, t, η̃, τ), (4.102)

where the different streamfunctions are solution of:

Ω∂∇
2
hψsd

∂θ̃
− 1
r̃

∂ζ0

∂r̃

∂ψsd

∂θ̃
=
[
cos(θ̃)

(
∂δx

∂τ
− εt

R̃eF 2
h

d2U

dz̃2

)
+ sin(θ̃)∂δy

∂τ

]
∂ζ0

∂r̃
, (4.103)

Ω∂∇
2
hψs

∂θ̃
− 1
r̃

∂ζ0

∂r̃

∂ψs

∂θ̃
= −∂ζ0

∂r̃

∂Φs

∂r̃
− ζ0∇2

hΦs, (4.104)

[
∂

∂t
+ Ω ∂

∂θ̃

]
∇2
hψp −

1
r̃

∂ζ0

∂r̃

∂ψp

∂θ̃
= −∂ζ0

∂r̃

∂Φp

∂r̃
− ζ0∇2

hΦp, (4.105)[
∂

∂t
+ Ω ∂

∂θ̃

]
∇2
hψw −

1
r̃

∂ζ0

∂r̃

∂ψw

∂θ̃
= −∂ζ0

∂r̃

∂Φw

∂r̃
− ζ0∇2

hΦw, (4.106)

where Φs, Φp and Φw are given in (4.96), (4.98), and (4.99), respectively. The solutions
of (4.103) and (4.104) which are non-singular are

ψsd =
[
− sin(θ̃)

(
∂δx

∂τ
− εt

R̃eF 2
h

d2U

dz̃2

)
+ cos(θ̃)∂δy

∂τ

]
(r̃ + µr̃Ω) , (4.107)

ψs =
[
cos(θ̃)∂

2δx

∂z̃2 + sin(θ̃)∂
2δy

∂z̃2

] (
ψ̃s + αr̃Ω

)
, (4.108)

where µ and α are arbitrary functions of η̃ and τ and

ψ̃s(r̃, η̃, τ) = r̃Ω(r̃, η̃, τ)
∫ r̃

0

1
η3Ω2(η, η̃, τ)

∫ η

0
ξ2Ω2(ξ, η̃, τ)C(ξ, η̃, τ)dξdη

+ r̃Ω(r̃, η̃, τ)
∫ r̃

+∞
C(ξ, η̃, τ)dξ − r̃

2
∂Φps

∂r̃
. (4.109)

The functions µ, α are arbitrary because r̃Ω cos(θ̃) and r̃Ω sin(θ̃) are homogeneous solu-
tions of (4.103) and (4.104). These solutions derive from the translational invariance
(Billant, 2010). In order to set µ and α, we need to use a normalisation condition.
Here, we have chosen to impose that the mean displacement associated to the first
order vorticity ∇2

hψ11 is zero, i.e.∫ 2π

0

∫ +∞

0
x∇2

hψ11r̃dr̃dθ̃ = 0,
∫ 2π

0

∫ +∞

0
y∇2

hψ11r̃dr̃dθ̃ = 0. (4.110)

In this way, only the displacements U(z̃)t+ δx and δy of the leading order vorticity ζ0
will contribute to the mean displacement of the vortex. This will ease the comparison
with the numerical simulations performed in chapter 5 where the vortex displacements
will be computed from vertical vorticity centroids. Hence, to enforce (4.110), we impose〈

∇2
hψsd, r̃

〉
= 0, (4.111)〈

∇2
hψs, r̃

〉
= 0, (4.112)
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where the scalar product is defined as

< f, g >=
∫ +∞

0
fgr̃dr̃ (4.113)

for any functions f and g. Equations (4.111) and (4.112) lead to

µ = 0, α = −

〈
∇2
r̃ψ̃s, r̃

〉
〈
∂ζ0

∂r̃
, r̃

〉 , (4.114)

where the operator ∇2
r̃ is given by

∇2
r̃Λ = ∂2Λ

∂r̃2 + 1
r̃

∂Λ
∂r̃
− Λ
r̃2 (4.115)

for any function Λ. Determining ψp and ψw is more difficult because of the dependence
of the forcings on the fast time t in (4.105)-(4.106). We first derive ψp analytically.
Since the potential Φp evolves linearly with t (see (4.98)), we seek a solution in the
form

ψp = −
[
sin(θ̃) (λ0r̃Ω + λ1r̃ + ψps(r̃, η̃, τ)) + t cos(θ̃) (λ1r̃Ω + ψpc(r̃, η̃, τ))

] d2U

dz̃2 ,

(4.116)
where λ0 and λ1 are arbitrary functions of η̃ and τ . This leads to the following equations
for ψps and ψpc:

Ω∇2
r̃ψpc −

1
r̃

∂ζ0

∂r̃
ψpc = −1

2

[
∂ζ0

∂r̃

∂Φps

∂r̃
+ ζ0∇2

r̃Φps

]
, (4.117)

Ω∇2
r̃ψps −

1
r̃

∂ζ0

∂r̃
ψps = −1

2

[
∂ζ0

∂r̃

∂Φpc

∂r̃
+ ζ0∇2

r̃Φpc

]
−∇2

r̃ψpc, (4.118)

The solutions that are non-singular at r̃ = 0 are:

ψpc =− ψ̃s, (4.119)

ψps(r̃, η̃, τ) = r̃

2
∂Φpc

∂r̃
− r̃

∫ r̃

+∞
C(ξ, η̃, τ)dξ − 2Fhr̃Ω

∫ r̃

0
C(ξ, η̃, τ)G(ξ, η̃, τ)dξ

− 2Fhr̃Ω
∫ r̃

0

1
η3Ω2(η, η̃, τ)

∫ η

0
ξ2Ω2(ξ, η̃, τ)C(ξ, η̃, τ)G(ξ, η̃, τ)dξdη

+ 2r̃Ω
∫ r̃

0

1
η3Ω3(η, η̃, τ)

∫ η

0
ξ2Ω2(ξ, η̃, τ)C(ξ, η̃, τ)dξdη

− r̃
∫ r̃

0

1
η3Ω2(η, η̃, τ)

∫ η

0
ξ2Ω2(ξ, η̃, τ)C(ξ, η̃, τ)dξdη, (4.120)

where ψ̃s is defined in (4.109). The two arbitrary functions λ0 and λ1 in (4.116) come
from the homogeneous solution of (4.105) which is of the form

ψh = r̃Ω
[
cos(θ̃)f + sin(θ̃)g

]
+ r̃

[
sin(θ̃)∂f

∂t
− cos(θ̃)∂g

∂t

]
, (4.121)

where f and g are arbitrary functions of z̃, t, η̃ and τ . In (4.116), we have taken
f(z̃, t, η̃, τ) = −tλ1(η̃, τ)d2U/dz̃2 and g(z̃, η̃, τ) = −λ0(η̃, τ)d2U/dz̃2 in accordance with
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the time dependence of this equation. As before, we impose the normalisation condi-
tions 〈

∇2
r̃ψps, r̃

〉
+ λ0(η̃, τ)

〈
∂ζ0

∂r̃
, r̃

〉
= 0, (4.122)

〈
∇2
r̃ψpc, r̃

〉
+ λ1(η̃, τ)

〈
∂ζ0

∂r̃
, r̃

〉
= 0, (4.123)

which enforce that the mean displacement associated to ∇2
hψp is zero. This sets λ0 and

λ1 to:

λ0 = −〈∇
2
r̃ψps, r̃〉〈
∂ζ0

∂r̃
, r̃

〉 , λ1 = −〈∇
2
r̃ψpc, r̃〉〈
∂ζ0

∂r̃
, r̃

〉 . (4.124)

Similarly, the solution of (4.106) is sought in the form

ψw = −
[
cos(θ̃)

(
ψwc(r̃, t, η̃, τ) + r̃ΩCw(t, η̃, τ)− r̃ ∂Sw

∂t

)

+ sin(θ̃)
(
ψws(r̃, t, η̃, τ) + r̃ΩSw(t, η̃, τ) + r̃

∂Cw
∂t

)]
d2U

dz̃2 , (4.125)

where Cw and Sw are arbitrary functions while ψwc and ψws satisfy

∂∇2
r̃ψwc
∂t

+ Ω∇2
r̃ψws −

1
r̃

∂ζ0

∂r̃
ψws = −∂ζ0

∂r̃

∂Φwc

∂r̃
− ζ0∇2

r̃Φwc, (4.126)

∂∇2
r̃ψws
∂t

− Ω∇2
r̃ψwc + 1

r̃

∂ζ0

∂r̃
ψwc = −∂ζ0

∂r̃

∂Φws

∂r̃
− ζ0∇2

r̃Φws, (4.127)

where the potentials Φwc and Φws are given by:

Φwc(r̃, t, η̃, τ) = 1
2

[1
r̃

∫ r̃

0
ξ2C(ξ, η̃, τ)F(ξ, η̃, τ) cos(Ω(ξ, η̃, τ)t)dξ

− r̃
∫ r̃

+∞
C(ξ, η̃, τ)F(ξ, η̃, τ) cos(Ω(ξ, η̃, τ)t)dξ

]
cos

(
t

Fh

)
+
[1
r̃

∫ r̃

0
ξ2C(ξ, η̃, τ)G(ξ, η̃, τ) sin(Ω(ξ, η̃, τ)t)dξ

− r̃
∫ r̃

+∞
C(ξ, η̃, τ)G(ξ, η̃, τ) sin(Ω(ξ, η̃, τ)t)dξ

]
sin

(
t

Fh

)
,

(4.128)

Φws(r̃, t, η̃, τ) = 1
2

[1
r̃

∫ r̃

0
ξ2C(ξ, η̃, τ)F(ξ, η̃, τ) sin(Ω(ξ, η̃, τ)t)dξ

− r̃
∫ r̃

+∞
C(ξ, η̃, τ)F(ξ, η̃, τ) sin(Ω(ξ, η̃, τ)t)dξ

]
cos

(
t

Fh

)
−
[1
r̃

∫ r̃

0
ξ2C(ξ, η̃, τ)G(ξ, η̃, τ) cos(Ω(ξ, η̃, τ)t)dξ

− r̃
∫ r̃

+∞
C(ξ, η̃, τ)G(ξ, η̃, τ) cos(Ω(ξ, η̃, τ)t)dξ

]
sin

(
t

Fh

)
.

(4.129)
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Because the time and radial dependencies in Φwc and Φws are not separated, it is
not possible to solve (4.126) and (4.127) analytically. We have therefore implemented
a numerical resolution of (4.126)-(4.127). The time advancement is performed by a
forward Euler scheme, spatial derivatives are computed by centered finite differences,
and the Laplacian operator is inverted by means of the tridiagonal algorithm. The
imposed boundary conditions are ψws = ψwc = 0 at r̃ = 0 and that ψws and ψwc vanish
as r̃ → +∞. Since the total streamfunction ψ11 should be zero at t = τ = 0, the initial
condition should be ψw = −ψp because ψs(r̃, θ̃, z̃, η̃, τ = 0) = 0 and ψsd(r̃, θ̃, z̃, τ = 0) =
0 since δx = δy = ∂δx/∂τ = ∂δy/∂τ = 0 at τ = 0. Thus, we impose at t = τ = 0:

ψwc = 0, ψws = − [ψps + λ0r̃Ω + λ1r̃ − ϑ(η̃, τ = 0)r̃] , (4.130)

where ϑ(η̃, τ = 0) is set such that ψws → 0 as r̃ → +∞ initially, as required to integrate
(4.126) and (4.127) numerically. From the expression (4.120) of ψps, we have:

ϑ(η̃, τ) = λ1(η̃, τ)− Fh
∫ +∞

0
ξ2Ω2(ξ, η̃, τ)C(ξ, η̃, τ)G(ξ, η̃, τ)dξ

+ lim
R̃→+∞

2Ω(R̃, η̃, τ)
∫ R̃

0

1
η3Ω3(η, η̃, τ)

∫ η

0
ξ2Ω2(ξ, η̃, τ)C(ξ, η̃, τ)dξdη

− lim
R̃→+∞

∫ R̃

0

1
η3Ω2(η, η̃, τ)

∫ η

0
ξ2Ω2(ξ, η̃, τ)C(ξ, η̃, τ)dξdη. (4.131)

There is no loss of generality in imposing that ψws vanishes as r̃ → +∞ initially because
the function ϑr̃ belongs to the homogeneous solution of (4.106):

ψwh = ϑt cos(θ̃)r̃Ω + ϑr̃ sin(θ̃). (4.132)

In other words, introducing the term ϑr̃ is equivalent to substituting Cw by Cw + ϑt
in (4.125). After the numerical integration, we enforce that the mean displacement
associated to ∇2

hψw is zero, yielding:

Cw(t, η̃, τ) = −〈∇
2
r̃ψwc, r̃〉〈
∂ζ0

∂r̃
, r̃

〉 , Sw(t, η̃, τ) = −〈∇
2
r̃ψws, r̃〉〈
∂ζ0

∂r̃
, r̃

〉 . (4.133)

Figures 4.3 and 4.4 show the streamfunctions ψwc and ψws plotted against r̃ at different
times, for Fh = 0.1 and Fh = 0.5 respectively, at z = lz/4. In the next section, we will
show that the angular velocity Ω does not evolve with τ in this plane. After an initial
transient phase, the streamfunctions globally decay with time in the vortex core.

We have now fully determined the four components of the streamfunction at first
order ψ11. They all satisfy the boundary condition at r̃ = 0. However, for large r̃, we
see directly in (4.107) that ψsd grows like r̃. Similarly, it can be shown that the three
other components behave as

ψs ∼
A
2

[
cos(θ̃)∂

2δx

∂z̃2 + sin(θ̃)∂
2δy

∂z̃2

]
r̃, (4.134)

ψp ∼
[
− sin(θ̃)ϑ+ cos(θ̃)At2

] d2U

dz̃2 r̃, (4.135)

ψw ∼
[
cos(θ̃)∂Sw

∂t
− sin(θ̃)∂Cw

∂t

]
d2U

dz̃2 r̃, (4.136)
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Figure 4.3: Streamfunctions ψwc (a) and ψws (b) plotted against r̃ at t = 0 (grey solid
line), t = 4 (black dash-dotted line), t = 8 (black dashed line) and t = 16 (black solid
line), at z = lz/4 where Ω = [1− exp(−r̃2)] /r̃2 regardless of τ . The Froude number is
Fh = 0.1.
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Figure 4.4: Same as figure 4.3 for Fh = 0.5.
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where A is given by:

A(η̃, τ) =
∫ +∞

0
ξ2Ω2(ξ, η̃, τ)C(ξ, η̃, τ)dξ. (4.137)

Note that we have used the fact that ψwc and ψws tend to zero as r̃ → +∞. In order to
enforce the boundary condition ψ11 → 0 as r̃ → +∞, the sum of the four components
should be zero, giving the governing equations for (δx, δy):

∂δx

∂τ
= A(η̃, τ)

2
∂2δy

∂z̃2 −
[
ϑ(η̃, τ) + ∂Cw

∂t
(t, η̃, τ)

]
d2U

dz̃2 + εt

R̃eF 2
h

d2U

dz̃2 , (4.138)

∂δy

∂τ
=− A(η̃, τ)

2

[
t
d2U

dz̃2 + ∂2δx

∂z̃2

]
− ∂Sw

∂t
(t, η̃, τ)d2U

dz̃2 . (4.139)

When U = 0, these equations are identical to those found by Billant (2010) for the
self-induction of an isolated vortex in stratified non-rotating fluids. Figure 4.5 shows
A and ϑ as functions of Fh at z = lz/4, where the angular velocity remains the same
Ω = [1− exp(−r̃2)] /r̃2 whatever τ (see §4.4.6). They are almost independent of Fh
for Fh . 0.5. The wave forcing terms Cw and Sw are also shown in figure 4.6 for two
Froude numbers Fh = 0.1 and Fh = 0.5, at the same location. In appendix B, it is
shown that they behave for small time as

Cw = −ϑt+ O(t3), Sw = −A4 t
2 + O(t4). (4.140)

Then, they go through oscillations as seen in figure 4.6. These oscillations exhibit two
typical periods: the period of rotation in the vortex core T ∼ 2π and the buoyancy
period T ∼ 2πFh. For Fh = 0.5 (figure 4.6b), these two periods are comparable so that
Cw and Sw exhibit irregular oscillations while for Fh = 0.1 (figure 4.6a), fast oscillations
superimposed on slow oscillations can be clearly distinguished. For large times, Cw and
Sw tend to constant values because the waves are increasingly sheared by the vortex
rotation through the terms cos(Ωt− θ̃) and sin(Ωt− θ̃) in Φw (see (4.99)). As a result,
their contributions ∂Cw/∂t and ∂Sw/∂t to the vortex displacements vanish as t→ +∞.

In order to be able to solve (4.138)-(4.139) in general, we first need to know how
the angular velocity evolves on the slow time τ . This will be determined in the next
two sections while further analyses of (4.138)-(4.139) will be conducted in §4.4.7.

4.4.5 Determination of (Φ10, ψ10) and (Φ12, ψ12)

We now determine (Φ10, ψ10) and (Φ12, ψ12) corresponding to the azimuthal modes
m = 0 and m = 2 of the potential and streamfunction at first order (4.92).

In order to keep the calculations relatively simple, we will assume here that the
Froude number is small so that the hydrostatic approximation is satisfied. The com-
parison with the DNS in chapter 5 will show that this assumption provides accurate
predictions for Fh . 1. In the limit Fh → 0, the vertical velocity and buoyancy
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(4.80)-(4.81) reduce to:

w0 =
[
cos(θ̃)− t sin(θ̃)Ω− cos(Ωt− θ̃) cos

(
t

Fh

)]
r̃Ω2 dU

dz̃

+
[
− sin(θ̃)∂δx

∂z̃
+ cos(θ̃)∂δy

∂z̃

]
r̃Ω3, (4.141)

b0 =− t cos(θ̃)r̃Ω2 dU
dz̃ −

[
cos(θ̃)∂δx

∂z̃
+ sin(θ̃)∂δy

∂z̃

]
r̃Ω2. (4.142)

The only remaining term due to internal waves is the third term in (4.141). However,
if the Froude number Fh were set to zero directly in (4.63)-(4.64), this term would be
absent in (4.141). Furthermore, the previous section has shown that the effects due
to these internal waves are restricted to the beginning of the evolution and are rather
weak (see also chapter 5). For this reason, we will neglect the third term in (4.141) in
the following. This will avoid lengthy calculations. In addition, the equations (4.138)-
(4.139) for the displacement perturbations derived in the previous section show that
(δx, δy) remain small. Therefore, these displacements will be also neglected in (4.141)-
(4.142). Hence, (4.141)-(4.142) are simplified as follows:

w0 =
[
cos(θ̃)− t sin(θ̃)Ω

]
r̃Ω2 dU

dz̃ , (4.143)

b0 =− t cos(θ̃)r̃Ω2 dU
dz̃ . (4.144)

Using (4.143), it is now a simple matter to derive the azimuthal components m = 0
and m = 2 of the forcing terms of (4.89)-(4.90):

δD0 =
[
Ω2 + r̃Ω∂Ω

∂r̃

]
t

(
dU
dz̃

)2

, (4.145)

δD2 =
[
t cos(2θ̃)r̃Ω∂Ω

∂r̃
− 3

2t
2 sin(2θ̃)r̃Ω2∂Ω

∂r̃

](
dU
dz̃

)2

, (4.146)

δZ0 =− ∂ζ0

∂τ
−
[
2tΩ3 + 3tr̃Ω2∂Ω

∂r̃

](
dU
dz̃

)2

+ t

2 r̃Ω
2∂ζ0

∂r̃

(
dU
dz̃

)2

+ εt2

2R̃eF 2
h

[
∂2ζ0

∂r̃2 + 1
r̃

∂ζ0

∂r̃

](
dU
dz̃

)2

, (4.147)

δZ2 =
[
sin(2θ̃)r̃Ω∂Ω

∂r̃
+ t cos(2θ̃)r̃Ω2∂Ω

∂r̃
+ t2 sin(2θ̃)r̃Ω3∂Ω

∂r̃

](
dU
dz̃

)2

+
[
t cos(2θ̃)− sin(2θ̃)Ωt2

] r̃Ω2

2
∂ζ0

∂r̃

(
dU
dz̃

)2

+ εt2

2R̃eF 2
h

cos(2θ̃)
[
∂2ζ0

∂r̃2 −
1
r̃

∂ζ0

∂r̃

](
dU
dz̃

)2

. (4.148)

In (4.147), we have neglected the horizontal dissipation (first two terms in the right-
hand side of (4.88)) and retained only the terms coming from the vertical dissipation
(third term in the right-hand side of (4.88)) because the latter term grows like t2 in
contrast to the former.



74

We first determine the potentials Φ10 and Φ12. They satisfy (see (4.89)):

∇2
hΦ10 = δD0, ∇2

hΦ12 = δD2. (4.149)

The solutions that are not singular at r̃ = 0 and that vanish at infinity are

Φ10 = t

2

∫ r̃

+∞
ξΩ2(ξ, η̃, τ)dξ

(
dU
dz̃

)2

, (4.150)

Φ12 =
[
t cos(2θ̃)Φc2 −

3
2t

2 sin(2θ̃)Φs2

] (dU
dz̃

)2

, (4.151)

where:

Φc2(r̃, η̃, τ) = 1
2r̃2

∫ r̃

0
ξ3Ω2(ξ, η̃, τ)dξ, Φs2(r̃, η̃, τ) = 1

3r̃2

∫ r̃

0
ξ3Ω3(ξ, η̃, τ)dξ. (4.152)

Then, we look for the streamfunctions ψ10 and ψ12. Their equations are directly
obtained from (4.90). Using (4.147), (4.148), (4.150) and (4.151):[

∂

∂t
+ Ω ∂

∂θ̃

]
∇2
hψ10 −

1
r̃

∂ζ0

∂r̃

∂ψ10

∂θ̃
= −∂ζ0

∂τ
−
[
2tΩ3 + 3tr̃Ω2∂Ω

∂r̃

](
dU
dz̃

)2

+ εt2

2R̃eF 2
h

[
∂2ζ0

∂r̃2 + 1
r̃

∂ζ0

∂r̃

](
dU
dz̃

)2

, (4.153)[
∂

∂t
+ Ω ∂

∂θ̃

]
∇2
hψ12 −

1
r̃

∂ζ0

∂r̃

∂ψ12

∂θ̃
= εt2

2R̃eF 2
h

cos(2θ̃)
[
∂2ζ0

∂r̃2 −
1
r̃

∂ζ0

∂r̃

](
dU
dz̃

)2

+ sin(2θ̃)
[
r̃Ω∂Ω

∂r̃
+ t2r̃Ω3∂Ω

∂r̃
− t2

r̃3
∂ζ0

∂r̃

∫ r̃

0
ξ3Ω3(ξ, η̃, τ)dξ

](
dU
dz̃

)2

+ t cos(2θ̃)
[
r̃Ω2∂Ω

∂r̃
+ 1
r̃3
∂ζ0

∂r̃

∫ r̃

0
ξ3Ω2(ξ, η̃, τ)dξ

](
dU
dz̃

)2

. (4.154)

Since ψ10 is axisymmetric, the left-hand side of (4.153) reduces to ∂∇2
hψ10/∂t. In

addition, we should impose that 〈
∇2
hψ10, ζ0

〉
= 0 (4.155)

in order that the vertical vorticity at order 1 is orthogonal to the vertical vorticity at
leading order. Taking the scalar product of (4.153) with ζ0 shows that ∂ 〈∇2

hψ10, ζ0〉 /∂t =
0 only if

∂ζ0

∂τ
= −

[
2tΩ3 + 3tr̃Ω2∂Ω

∂r̃

](
dU
dz̃

)2

+ εt2

2R̃eF 2
h

[
∂2ζ0

∂r̃2 + 1
r̃

∂ζ0

∂r̃

](
dU
dz̃

)2

. (4.156)

The streamfunction ψ12 will be sought in the form

ψ12 = ψ∗12 + ψν12, (4.157)

where ψν12 is the solution forced by the viscous term in the right-hand side of (4.154)
(first term) while ψ∗12 is the solution forced by all the other terms. We will first
determine ψ∗12 in the form

ψ∗12 = 1
2
[
− cos(2θ̃)ψ2b + t sin(2θ̃)ψ2s − t2 cos(2θ̃)ψ2c

] (dU
dz̃

)2

, (4.158)
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where the streamfunctions ψ2b(r̃, η̃, τ), ψ2s(r̃, η̃, τ), and ψ2c(r̃, η̃, τ) are solution of
∇2∗
r̃ ψ2s

2 + Ω∇2∗
r̃ ψ2b −

1
r̃

∂ζ0

∂r̃
ψ2b = r̃Ω∂Ω

∂r̃
, (4.159)

−∇2∗
r̃ ψ2c + Ω∇2∗

r̃ ψ2s −
1
r̃

∂ζ0

∂r̃
ψ2s = r̃Ω2∂Ω

∂r̃
+ 1
r̃3
∂ζ0

∂r̃

∫ r̃

0
ξ3Ω2(ξ, η̃, τ)dξ, (4.160)

Ω∇2∗
r̃ ψ2c −

1
r̃

∂ζ0

∂r̃
ψ2c = r̃Ω3∂Ω

∂r̃
− 1
r̃3
∂ζ0

∂r̃

∫ r̃

0
ξ3Ω3(ξ, η̃, τ)dξ, (4.161)

where ∇2∗
r̃ is defined as:

∇2∗
r̃ ϕ = ∂2ϕ

∂r̃2 + 1
r̃

∂ϕ

∂r̃
− 4ϕ
r̃2 . (4.162)

It can be remarked that the decomposition (4.158) contains a constant term implying
that ψ∗12 does not vanish at t = 0. Yet, the total streamfunction at first order ψ1
(4.92) should be zero at t = 0 since there is no perturbation initially. Because ψ10
and ψ11 already fulfill this condition, it should be the case also for ψ∗12. However,
the simplified expression of the vertical velocity (4.143), which is at the origin of the
inviscid forcing terms in (4.154) (see (4.85)), does not vanish either at t = 0. This
is a direct consequence of the fact that the term cos(Ωt− θ̃) cos(t/Fh), corresponding
to internal waves, has been neglected in (4.143). Nevertheless, if this term had been
kept, the vertical velocity would be zero at t = 0 and ψ1 would contain an additional
contribution ψw12 due to this wave term. This contribution could be computed so that
it cancels ψ∗12 at t = 0, i.e. ψ∗12 + ψw12 = 0 initially. This is the procedure that has been
followed to compute ψ11 in §4.4.4. However, the contribution due to the internal waves
rapidly decays as seen in figure 4.6. This is the reason why we have chosen to neglect
this term here so as to simplify the calculations. However, this implies that w0 and ψ∗12
are not exactly zero at t = 0.

In (4.159-4.161), the angular velocity Ω and vertical vorticity ζ0 evolve on the slow
time according to (4.156). In the next section, it will be shown that this evolution can
be very well accounted for by assuming that the vortex keeps a Lamb-Oseen profile
but with time varying maximum angular velocity Ωc(η̃, τ) and radius ãe(η̃, τ):

Ω = Ωc(η̃, τ)Ω̄(r̄), Ω̄ = 1− exp(−r̄2)
r̄2 , (4.163)

where r̄ = r̃/ãe.
Then, by rescaling ψ2b, ψ2s, and ψ2c as follows:

ψ2b = ã2
eΩcψ̄2b(r̄), ψ2s = ã2

eΩ2
cψ̄2s(r̄), ψ2c = ã2

eΩ3
cψ̄2c(r̄), (4.164)

(4.159-4.161) become

Ω̄
[

d2ψ̄2b

dr̄2 + 1
r̄

dψ̄2b

dr̄ −
4ψ̄2b

r̄2

]
− dζ̄0

dr̄
ψ̄2b

r̄
= r̄Ω̄dΩ̄

dr̄ −
1
2

[
d2ψ̄2s

dr̄2 + 1
r̄

dψ̄2s

dr̄ −
4ψ̄2s

r̄2

]
,

(4.165)

Ω̄
[

d2ψ̄2s

dr̄2 + 1
r̄

dψ̄2s

dr̄ −
4ψ̄2s

r̄2

]
− dζ̄0

dr̄
ψ̄2s

r̄
= d2ψ̄2c

dr̄2 + 1
r̄

dψ̄2c

dr̄ −
4ψ̄2c

r̄2

+ r̄Ω̄2 dΩ̄
dr̄ + 1

r̄3
dζ̄0

dr̄

∫ r̄

0
ξ3Ω̄2(ξ)dξ, (4.166)

Ω̄
[

d2ψ̄2c

dr̄2 + 1
r̄

dψ̄2c

dr̄ −
4ψ̄2c

r̄2

]
− dζ̄0

dr̄
ψ̄2c

r̄
= r̄Ω̄3 dΩ̄

dr̄ −
1
r̄3

dζ̄0

dr̄

∫ r̄

0
ξ3Ω̄3(ξ)dξ. (4.167)
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Figure 4.7: Streamfunctions ψ̄2b (a), ψ̄2s (b), and ψ̄2c (c) rescaled by r̄2 as functions of
r̄. Note that they all rapidly vanish outside the vortex core.

These three equations share the same linear operator which admits a homogeneous
solution behaving as ψ2h = r̄2 for r̄ → +∞ and ψ2h = 2.524r̄2 for r̄ → 0 (Moore and
Saffman, 1975; Le Dizès and Laporte, 2002). By using this homogeneous solution, it
is possible to determine numerically complete solutions that vanish at infinity and are
non-singular at r̄ = 0. They are shown in figure 4.7. For r̄ � 1, they behave as

ψ̄2b = β2r̄
2 + O(r̄4), ψ̄2s = σ2r̄

2 + O(r̄4), ψ̄2c = χ2r̄
2 + O(r̄4), (4.168)

with:
β2 = −0.1506, σ2 = 0.3786, χ2 = −9.830× 10−3. (4.169)

By using (4.164), this implies that the streamfunction ψ∗12 behaves in the vicinity of
the vortex core as

ψ∗12 = r̃2

2
[
−β2Ωc cos(2θ̃) + σ2Ω2

c sin(2θ̃)t− χ2Ω3
c cos(2θ̃)t2

] (dU
dz̃

)2

+ O(r̃4). (4.170)

In chapter 5, this will allow us to determine the evolution of the vertical shear of the
horizontal velocity on the vortex axis. A similar calculation is conducted in appendix
C to determine ψν12. For r̃ � 1, it is of the form:

ψν12 = εr̃2

2R̃eF 2
h

[
βν2
Ωc

sin(2θ̃) + χν2t cos(2θ̃) + σν2Ωct
2 sin(2θ̃)

](
dU
dz̃

)2

+ O(r̃4), (4.171)

where
βν2 = 10.66, χν2 = −5.376, σν2 = −1.524. (4.172)

4.4.6 Evolution of the angular velocity of the vortex

By rescaling the slow time, the vertical coordinate, and the Reynolds number, the
evolution equation (4.156) can be re-written after some manipulations:

∂ζ0

∂t
= −F

2
h

r̃

∂r̃2Ω3

∂r̃
t

(
dU
dz

)2

+ t2

2Re
1
r̃

∂

∂r̃

(
r̃
∂ζ0

∂r̃

)(
dU
dz

)2

. (4.173)
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Figure 4.8: Lines of constant total buoyancy bt near the point x = 0, z = lz/2 at t = 0
(grey dashed lines) and t = t0 (grey solid lines). The bold black solid line represents
the vortex axis at t = t0. δh is the height variation at x = 0 of the iso-buoyancy line
located at z = h+ lz/2 initially.

3Integrating in r̃ leads to an equation for Ω, namely

∂Ω
∂t

=
[
−F 2

h tΩ3 + t2

2Rer̃
∂ζ0

∂r̃

](
dU
dz

)2

. (4.174)

This equation shows that the angular velocity of the vortex decays because of dynamic
and viscous effects (first and second terms of the right-hand side, respectively). A
physical interpretation of the origin of the dynamic effect can be gained by considering
the conservation of potential vorticity near the vortex axis. First, let us consider the
buoyancy at leading order b =

√
εb0/Fh = −tx̃Ω2dU/dz, where b0 is given in (4.144)

and x̃ = x−U(z)t. Figure 4.8 sketches the lines of constant total buoyancy bt = b+z/F 2
h

near the point x = 0, z = lz/2 at two times: t = 0 (grey dashed lines) and t = t0 (grey
solid lines) where t0 is small. At t = t0, the vortex axis x̃ = 0 is inclined towards the
left since x = U(z)t0 ' −kzUSt0(z − lz/2) near z = lz/2. The iso-buoyancy lines are
also no longer horizontal but slanted downward towards the positive x direction. On
the vortex axis x̃ = 0, they remain at the same vertical level while on the line x = 0,
they are displaced by

δh = −F 2
hΩ2ht20

(
dU
dz

)2

(4.175)

where h = z0 − lz/2 with z0 the initial vertical level of the iso-buoyancy line. δh
is therefore negative as clearly seen in figure 4.8. Since the vortex is inclined, the

3From this equation, it can be remarked that an alternative choice for the scaling of the slow time
scale and Reynolds number could be τ =

√
εt, 1/ReF 2

h =
√
ε/R̃eb where R̃eb = O(1). Introducing

these scalings in (4.173) leads to an equation where only the slow time scale τ appears instead of
both τ and t as in (4.156). However, the asymptotic analysis with these scalings would give identical
results as the present one.
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iso-buoyancy lines are indeed displaced towards the vortex axis where the pressure
is minimum. This means that the vortex is squeezed near x = 0, z = lz/2. The
conservation of potential vorticity between the iso-density lines at z = z0 and z = lz/2
(figure 4.8)

ζ

h
= ζ + δζ

h+ δh
, (4.176)

implies that the vertical vorticity at t = t0 will decrease by δζ = ζδh/h. The variation
of vertical vorticity between t = 0 and t = t0 is therefore

∂ζ

∂t
= δζ

t0
= −F 2

hζΩ2t0

(
dU
dz

)2

. (4.177)

This corresponds exactly to (4.174) for Re = ∞ since ζ = 2Ω on the vortex axis.
However, we stress that (4.174) is valid not only on the vortex axis near z = lz/2 but
everywhere. Both the dynamic and viscous decay of Ω are proportional to (dU/dz)2.
Hence, the decay will be maximum at z = 0, lz/2 and will vanish at z = lz/4, 3lz/4 for
the sinusoidal profile U = US sin(kzz).

The equation (4.174) can be solved by a multiple scale analysis when the viscous
effects are small. To do so, we introduce the time t̃ = (Fht|dU/dz|)3. Then, (4.174)
becomes

∂Ω
∂t̃

= − Ω3

3t̃1/3 + γ

6r̃
∂ζ0

∂r̃
, γ = 1

ReF 3
h

∣∣∣∣∣dUdz
∣∣∣∣∣
, (4.178)

where γ is the only remaining control parameter. Assuming γ � 1, the angular velocity
can be expanded as

Ω = Ω0 + γΩ1 + O(γ2) (4.179)
and we introduce a slow time scale υ = γt̃. At leading order, (4.178) becomes

∂Ω0

∂t̃
= − Ω3

0
3t̃1/3 (4.180)

whose solution is
Ω0 = Ωi(r̃, υ)√

1 + t̃2/3Ω2
i (r̃, υ)

, (4.181)

where Ωi is the angular velocity profile at t̃ = 0. It can depend also on the slow time
υ. At next order, we obtain:

∂Ω1

∂t̃
+ ∂Ω0

∂υ
= −Ω2

0Ω1

t̃1/3
+ 1

6r̃
∂ζ0

∂r̃
. (4.182)

After substituting (4.181) in this equation, its general solution is found to be:

Ω1 =
Θ− ∂Ωi

∂υ
+ 1

6r̃
∂ζi
∂r̃
− 1

2

(
∂Ωi

∂r̃

)2 [3 arctan(Ωit̃
1/3)

Ω4
i

− 3t̃1/3
Ω3
i

+ t̃

Ωi

]
(
1 + t̃2/3Ω2

i

)3/2 , (4.183)

where Θ is an arbitrary constant. This constant should be set to zero to ensure that
Ω1 → 0 as r̃ → +∞. In addition, we have to impose that Ω = Ωi initially, implying
that Ω1 = 0 at t̃ = 0. This leads to an equation for Ωi over the slow time υ:

∂Ωi

∂υ
= 1

6r̃
∂ζi
∂r̃
. (4.184)
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Figure 4.9: Angular velocity profile Ω computed numerically from (4.178) (grey solid
lines) and predicted by (4.186) (black dashed lines) at different times for γ = 0.1 (a)
and γ = 1 (b), as a function of r̃. The Lamb-Oseen profile (4.190) is also represented by
black dash-dotted lines. The times shown are: (a) t̃ = 0, t̃ = 2.65, t̃ = 7.50, t̃ = 13.8,
t̃ = 21.2 and (b) t̃ = 0, t̃ = 0.265, t̃ = 0.750, t̃ = 1.38, t̃ = 2.12, from top to bottom.

Since Ωi(r̃, υ = 0) = [1− exp(−r̃2)] /r̃2, the solution of (4.184) is:

Ωi = 1− exp(−r̃2/ã2)
r̃2 , (4.185)

with ã2 = 1 + 2υ/3. Gathering the two orders and rescaling the slow time scale υ give
the total expression of Ω:

Ω = Ωi√
1 + t̃2/3Ω2

i

− γ

2

(
∂Ωi

∂r̃

)2 3 arctan(Ωit̃
1/3)− 3t̃1/3Ωi + t̃Ω3

i

Ω4
i

(
1 + t̃2/3Ω2

i

)3/2 + O(γ2), (4.186)

with
Ωi = 1

r̃2

[
1− exp

(
− r̃2

1 + 2γt̃/3

)]
. (4.187)

Equation (4.186) implies that the angular velocity at the vortex center evolves as

Ωc = 1√(
1 + 2γt̃/3

)2
+ t̃2/3

+ O(γ2), (4.188)

i.e. in terms of t and the original parameters:

Ωc = 1√√√√√
1 + 2t3

3Re

(
dU
dz

)2
2

+ F 2
h t

2

(
dU
dz

)2
. (4.189)

Figure 4.9 compares the asymptotic solution (4.186) to the exact solution of (4.178)
computed numerically at different times t̃. We see that the agreement is excellent for
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Figure 4.10: Evolution of the angular velocity at the vortex center Ωc as a function
of t̃1/3 predicted by (4.188) (black solid lines) and computed numerically from (4.178)
(grey circles) for γ = 0.1, γ = 1, and γ = 10 (top to bottom).

γ = 0.1 (figure 4.9a) and even for γ = 1 (figure 4.9b). There are only some slight
discrepancies in the vortex core r̃ . 1 when t̃ & 1. In practice, the asymptotic solution
(4.186) turns out to be very accurate not only for small values of γ but also for large
values such as γ = 10 (not shown). In figure 4.9, the Lamb-Oseen profile

Ωe = 1− exp(−r̃2/ã2
e)

r̃2 (4.190)

with ã2
e = 1/Ωc, where Ωc is given by (4.188), has been also plotted with black dash-

dotted lines. This profile is close to the asymptotic solution (4.186). This is the reason
why the approximate profile (4.190) has been used to ease the numerical resolution of
the streamfunction ψ12 (4.157).

Figure 4.10 shows the asymptotic angular velocity at the vortex center (4.188) and
the exact solution obtained numerically, for different values of the control parameter
γ. The agreement is very good not only for γ = 0.1 but also for γ = 1 and γ = 10.
Therefore, (4.188) will be used to describe the evolution of Ωc regardless of the value
of γ.

4.4.7 Analysis of the vortex deformations
Having determined the evolution of Ω, we now come back to the study of the equations
(4.138)-(4.139) for the vortex displacements.

Since U = US sin(k̃z z̃), we will look for the perturbation displacements in the form

δx(z̃, η̃, τ) = X̂(η̃, τ) sin(k̃z z̃), δy(z̃, η̃, τ) = Ŷ (η̃, τ) sin(k̃z z̃), (4.191)

where X̂ and Ŷ are amplitudes that vary slowly along the vertical and with time.
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Then, (4.138) and (4.139) become

∂X̂

∂τ
=− k̃2

zA(η̃, τ)
2 Ŷ (η̃, τ) + k̃2

zUS

[
ϑ(η̃, τ) + ∂Cw

∂t
(t, η̃, τ)

]
− εk̃

2
zUSt

R̃eF 2
h

, (4.192)

∂Ŷ

∂τ
= k̃

2
zA(η̃, τ)

2
[
USt+ X̂(η̃, τ)

]
+ k̃2

zUS
∂Sw
∂t

(t, η̃, τ). (4.193)

It is convenient to further rescale the slow time τ and the vertical coordinate η̃ in terms
of the time t and the vertical coordinate z:

∂X̂

∂t
=− ω̂(z, t)Ŷ (z, t) + (kzFh)2US

[
ϑ(z, t) + ∂Cw

∂t
(z, t)

]
− k2

zUSt

Re
, (4.194)

∂Ŷ

∂t
= ω̂(z, t)

[
USt+ X̂(z, t)

]
+ (kzFh)2US

∂Sw
∂t

(z, t), (4.195)

where ω̂ = (kzFh)2A/2.
The solution of (4.194)-(4.195) can be decomposed as

X̂ = X∗ + (kzFh)2US

[
Cw +

∫ t

0
ϑ(z, υ)dυ

]
− k2

zUSt
2

2Re , (4.196)

Ŷ = Y ∗ + (kzFh)2USSw + US

∫ t

0
ω̂(z, υ)υdυ, (4.197)

giving

∂X∗

∂t
=− ω̂Y ∗ + O

[
(kzFh)4

]
, (4.198)

∂Y ∗

∂t
= ω̂X∗ + O

[
(kzFh)4,

k4
zF

2
h

Re

]
. (4.199)

Since (4.194)-(4.195) are valid up to order O [(kzFh)2] and O [k2
z/Re], it is indeed le-

gitimate to neglect the terms O [(kzFh)4, k4
zF

2
h/Re] in (4.198)-(4.199). The general

solution of (4.198)-(4.199) is

X∗ = X∗c (z) cos
(∫ t

0
ω̂(z, υ)dυ

)
+X∗s (z) sin

(∫ t

0
ω̂(z, υ)dυ

)
, (4.200)

Y ∗ = −X∗s (z) cos
(∫ t

0
ω̂(z, υ)dυ

)
+X∗c (z) sin

(∫ t

0
ω̂(z, υ)dυ

)
, (4.201)

where X∗c and X∗s are arbitrary functions of z only. The initial conditions X̂ = Ŷ = 0
at t = 0 impose X∗c = X∗s = 0. Therefore, a solution of (4.194)-(4.195) valid up to
order O [(kzFh)2] and O [k2

z/Re] is

X̂ = (kzFh)2US

[
Cw +

∫ t

0
ϑ(z, υ)dυ

]
− k2

zUSt
2

2Re , (4.202)

Ŷ = (kzFh)2USSw + US

∫ t

0
ω̂(z, υ)υdυ, (4.203)

4These equations show that the vortex axis evolves because of four different effects in
addition to the advection Utex by the shear flow:

4With the alternative scalings proposed previously, τ =
√
εt, 1/ReF 2

h =
√
ε/R̃eb, these solutions

show that δy = O(1) for τ = O(1) as assumed herein, while δx = O(
√
ε). However, the fast time

would be still present in the wave terms.
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1. the displacement due to internal waves (first terms in the right-hand side of
(4.202)-(4.203))

2. the second term in the right-hand side of (4.202) describes a small delay (since
ϑ is negative as seen in figure 4.5b) in the advection by the shear flow due to its
three-dimensional character.

3. viscous effects (last term in the right-hand side of (4.202))

4. the self-induction (last term in the right-hand side of (4.203)). The shear flow
bends the vortex in the x direction and, in turn, this creates a self-induced motion
in the y direction.

Behaviour for small time

By substituting Cw and Sw in (4.194)-(4.195) by their asymptotic expressions (B.21)-
(B.22) derived for small time (see appendix B), we find that the amplitudes of the
perturbation displacements behave for t� 1 and in the inviscid limit as:

X̂ = k2
zUSςt

3 + O(t4), Ŷ = k2
zUSσt

4 + O(t5). (4.204)
Remarkably, the initial evolution of (X̂, Ŷ ) is independent of the Froude number

at leading order. At this order, X̂ and Ŷ vary like t3 and t4 respectively. This implies
that the leading order buoyancy b0 (4.81) varies like t3 for small times consistently with
the short time expansion of b derived in §4.3. However, it is not possible to compare
quantitatively the order k2

zt
3 of the short time expansion to its counterpart in the long-

wavelength expansion. Indeed, (4.204) shows that X̂ and Ŷ are of order k2
z for small

times. Thus, the contribution of the perturbation displacements δx and δy in (4.81) is
one order smaller in k2

z than the other terms. Hence, these contributions are actually
of the same order as the next order term εb1 in the expansion (4.51). Since b1 will not
be computed herein, the determination of the order k2

z of b is therefore incomplete.
It is interesting to compare the predictions (4.204) to those of a simple model where

the advection by the shear flow is directly added to the equations of the self-induced
motion of the single vortex, i.e.:

∂∆X̂
∂t

=− ω̂Ŷ + US, (4.205)

∂Ŷ

∂t
= ω̂∆X̂, (4.206)

where ∆X̂ = USt+X̂ is the total displacement of the vortex in the streamwise direction.
Such phenomenological model can be obtained from (4.194)-(4.195) by assuming Re→
∞ and by setting ϑ = ∂Cw/∂t = ∂Sw/∂t = 0, i.e. by neglecting the waves effect and
the three-dimensional correction of the advection by the base flow. The model (4.205)-
(4.206) has been introduced for example by Marshall and Parthasarathy (1993) for two
layer quasi-geostrophic flows, with constant coefficients. For small times t � 1, the
solution of (4.205)-(4.206) is:

X̂ = − ω̂
2US
6 t3 + O(t4), Ŷ = ω̂US

2 t2 + O(t3). (4.207)

Thus, X̂ is initially of order k4
zF

4
h t

3 instead of k2
zt

3 and Ŷ is of order k2
zF

2
h t

2 instead of
k2
zt

4. This shows that internal waves have a strong effect on the initial dynamics of the
vortex.
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Evolution in the planes z = lz/4, 3lz/4

In the planes z = lz/4, z = 3lz/4, A and ϑ are independent of t because the initial
angular velocity profile does not evolve at these locations since dU/dz = 0 (see (4.174)).
Thus, (4.202)-(4.203) become

X̂ = (kzFh)2US [Cw + ϑt]− k2
zUSt

2

2Re , (4.208)

Ŷ = USω̂t
2

2 + (kzFh)2USSw. (4.209)

For large time t� 1, figure 4.6 shows that Cw and Sw tend to constant values C∞w and
S∞w respectively. Hence, (4.208)-(4.209) become:

X̂ = (kzFh)2US [C∞w + ϑt]− k2
zUSt

2

2Re , (4.210)

Ŷ = USω̂t
2

2 + (kzFh)2USS∞w . (4.211)

4.5 Conclusion
We have carried out two asymptotic analyses of the evolution of a columnar vortex
in an ambient stratified shear flow. The vortex has initially a Lamb-Oseen profile
while the shear flow is horizontally uniform and varies sinusoidally along the vertical:
U(z) = US sin(kzz). The Froude number Fh has been assumed to be lower than unity
so that there is no critical layer where the angular velocity of the vortex is equal to
the buoyancy frequency. The Reynolds number has been considered infinite in the first
analysis and large in the second analysis. These asymptotic analyses highlight different
aspects of the evolution of the vortex.

First, the asymptotic analysis for small time shows that the horizontal flow is in-
dependent of the stratification up to order t3. At order t, the flow consists simply in a
horizontal displacement of the vortex without deformation while at order t2, internal
deformations of the vortex occur for finite vertical wavenumber kz. On the vertical,
the dynamics is non-hydrostatic as long as t < 1/N .

The second asymptotic analysis is a long-wavelength analysis assuming that the
rescaled vertical wavenumber kzFh is small. This particular small parameter derives
from the self-similarity of strongly stratified flows (Billant and Chomaz, 2001) according
to which the vertical wavenumber always appears multiplied by the Froude number Fh
in the Euler equations under the Boussinesq approximation.

This asymptotic analysis provides governing equations for the displacement of the
vortex axis and for its angular velocity. The vortex axis is advected by the shear
flow at leading order ∆x = U(z)t but four different effects influence its trajectory at
order (kzFh)2. First, the vortex axis deviates perpendicularly to the direction of the
shear flow owing to the self-induction of the vortex when it is bent. Secondly, internal
waves, which are generated at the start-up of the motion, influence the initial evolution
of the vortex. These waves oscillate at the buoyancy pulsation N and explain why
the dynamics is initially non-hydrostatic. Later, their effects on the vortex trajectory
quickly decay off. The third and fourth effects are three-dimensional and viscous effects
that slightly reduce the advection in the direction of the shear flow.
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The angular velocity of the vortex decreases with time because of dynamic and
viscous effects. The dynamic effect is due to the squeezing of the isopycnal surfaces
when the vortex is inclined. To conserve potential vorticity, the core vertical vorticity
has therefore to decrease. The viscous decay of the angular velocity is also quickly
enhanced since the vertical shear increases algebraically with time. These two effects
are not uniform along the vertical: they are maximum in the regions of high shear and
vanish at the vertical levels where the shear is zero.

In addition, a horizontal velocity field with an azimuthal wavenumber m = 2 arises
at order (kzFh)2 implying that the vortex becomes slightly elliptical.



Chapter 5

Evolution of a vortex in a strongly
stratified shear flow. Part 2.
Numerical simulations.
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Abstract

We conduct direct numerical simulations of an initially vertical Lamb-Oseen vortex
in an ambient shear flow varying sinusoidally along the vertical in a stratified fluid.
The Froude number Fh and the Reynolds number Re, based on the circulation Γ
and radius a0 of the vortex, have been varied in the ranges: 0.1 6 Fh 6 0.5 and
3000 6 Re 6 10000. The shear flow amplitude ÛS and vertical wavenumber k̂z lie in
the ranges: 0.02 6 2πa0ÛS/|Γ| 6 0.4 and 0.1 6 k̂za0 6 3π/2. The results are analysed
in the light of the asymptotic analyses performed in chapter 4.

The vortex is mostly advected in the direction of the shear flow but also in the
perpendicular direction owing to the self-induction. The decay of potential vorticity
is strongly enhanced in the regions of high shear. The shear instability is triggered
only when the Froude number is moderate Fh = 0.5 and for sufficiently high Reynolds
number and vertical wavenumber k̂z.

The initial non-hydrostatic dynamics is well captured by the short-time asymptotic
analysis of chapter 4. The long-wavelength analysis predicts also very well the deform-
ations of the vortex axis. The evolutions of the vertical shear of the horizontal velocity
of the vortex and of the vertical gradient of the buoyancy at the location of maximum
shear are in good agreement with the asymptotic predictions. These quantities satur-
ate owing to both dynamic and viscous effects. The asymptotic Richardson number is
shown to depend only on the initial Richardson number Ri0 and the buoyancy Reyn-
olds number Reb = ReF 2

h . Its minimum value never goes below the critical value 1/4.
This proves that the vertical shear cannot grow indefinitely in strongly stratified flows,
contradicting the conjecture of Lilly (1983).

The asymptotic analysis is not able to predict the development of the shear instabil-
ity for Fh = 0.5 because of the important effect of internal waves, partially neglected
in the long-wavelength analysis.

5.1 Introduction
In this chapter, we continue the analysis of the evolution of a vortex embedded in a
vertically sheared flow in a strongly stratified fluid. The main purpose is to determine
if the vertical shear can grow indefinitely as speculated by Lilly (1983) and thus leads
to the unconditional development of the shear instability.

This instability is thought to be an important process for the generation of small
scales in stratified flows (Riley and deBruynKops, 2003; Lindborg, 2006; Brethouwer
et al., 2007). In the case of a columnar counter-rotating vortex pair, Deloncle et al.
(2008) and Waite and Smolarkiewicz (2008) have reported that the vertical shear gen-
erated by the zigzag instability can lead to the development of the shear instability.
This occurs when the buoyancy Reynolds number Reb = ReF 2

h (Re is the classical
Reynolds number and Fh the Froude number) is above a threshold since the minimum
Richardson number is inversely proportional to Reb (Riley and deBruynKops, 2003;
Deloncle et al., 2008; Augier and Billant, 2011). The subsequent destabilization of the
Kelvin-Helmholtz billows leads to small-scale turbulence with spectral characteristics
similar to those of randomly forced stratified turbulence (Augier et al., 2012; Waite,
2013).

However, a counter-rotating vortex pair is a particular flow not frequently en-
countered in turbulent flows. Here, we consider the more generic configuration of
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a single vortex in an ambient shear flow. In chapter 4, we have studied such flow by
means of two asymptotic analyses. First, a short-time analysis has evidenced the ex-
istence of an initial non-hydrostatic regime. Secondly, a long-wavelength analysis has
been carried out for kzFh � 1, where kz is the vertical wavenumber of the sinusoidal
shear flow. This analysis provides a complete description of the vortex dynamics: the
evolution of the vortex axis and angular velocity as well as secondary flows created
as the vortex is bent. In the present chapter, we will conduct DNS of this flow and
analyse its dynamics in the light of the asymptotic analyses.

The chapter is organized as follows. The initial conditions, control parameters, and
numerical method are described in §5.2. An overview of two typical simulations is first
given in §5.3. Then, the initial evolution of the flow is compared to the results of the
short-time asymptotic analysis in §5.4. In §5.5, the long-wavelength analysis is first
briefly summarized in §5.5.1 and its predictions for the deformations of the vortex axis
are compared to the numerical simulations in §5.5.2. We then focus on the evolution
of the flow at the vortex center and the mid-vertical level where the vertical shear is
maximum (§5.5.3). Again, the asymptotic analysis is used to rationalize the numerical
results. Finally, section §5.5.4 concentrates on the Richardson number predicted by
the long-wavelength analysis. Section §5.7 summarizes and discusses the results.

5.2 Formulation of the problem

5.2.1 Initial conditions and governing equations
As in chapter 4, the flow at t = 0 is chosen as

u = US + uv, (5.1)

where US is a sinusoidal shear flow and uv a columnar vortex with a Lamb-Oseen
profile:

US = US sin(kzz)ex, uv = 1− exp(−r2)
r

eθ, (5.2)

where (x, y, z) and (r, θ, z) are cartesian and cylindrical coordinates, respectively. The
associated unit vectors are (ex, ey, ez) and (er, eθ, ez).

In (5.2), the length and time have been non-dimensionalized by the vortex radius a0
and the turnover time 2πa2

0/|Γ| of the vortex. The shear amplitude US and wavenumber
kz are therefore non-dimensional: US = ÛS/(|Γ|/2πa0), kz = k̂za0, where ÛS and k̂z
are the corresponding dimensional quantities.

The governing equations are the incompressible Navier-Stokes equations under the
Boussinesq approximation. They read in dimensionless form:

∇h · uh + ∂w

∂z
= 0, (5.3)

∂uh

∂t
+ (uh · ∇h) uh + w

∂uh

∂z
= −∇hp+ 1

Re
∇2uh, (5.4)

∂w

∂t
+ uh ·∇hw + w

∂w

∂z
= −∂p

∂z
+ b+ 1

Re
∇2w, (5.5)

∂b

∂t
+ uh ·∇hb+ w

∂b

∂z
= − w

F 2
h

+ 1
ReSc

∇2b, (5.6)
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Fh Re kz US lz nx ny nz δt

0.1 6000 π 0.2 2 512 512 256 0.005
0.1 10000 2 0.2 3.142 512 512 256 0.005
0.1 6000 2 0.4 3.142 512 512 256 0.005
0.5 6000 0.3 0.2 20.94 384 384 448 0.01
0.5 6000 π 0.2 2 832 832 256 0.005
0.5 6000 3π/2 0.2 1.333 832 832 448 0.005

Table 5.1: Overview of the physical and numerical parameters of some typical simula-
tions. For all simulations, the horizontal dimensions of the domain are lx = ly = 18.

where uh = (u, v) and w are the horizontal and vertical velocities in cartesian coordin-
ates, p the pressure, b the buoyancy, and

Re = |Γ|
2πν , Fh = |Γ|

2πa2
0N

, Sc = ν

κ
(5.7)

are the Reynolds, Froude and Schmidt numbers, with ν the viscosity, κ the diffusivity
and N the Brunt-Väisälä frequency which is assumed constant.

5.2.2 Numerical method

Equations (5.3-5.6) are integrated numerically by means of a pseudo-spectral method
with periodic boundary conditions and a fourth-order Runge-Kutta time advancement
scheme (Deloncle et al., 2008). An elliptic truncation of the top one-third of the modes
is applied. The viscous and diffusive terms are integrated exactly.

The horizontal size of the computational domain is taken large lx = ly = 18 in order
to minimize the effect of the periodic boundary conditions. The vertical size is set to
lz = 2π/kz, so that a single wavelength of the shear flow is simulated.

Table 5.1 lists the parameters of some typical simulations. The number of grid
points in the x and y directions have been varied from nx = ny = 384 to nx = ny = 832
depending on the values of the Reynolds and Froude numbers. The number of grid
points in the vertical direction ranges from nz = 256 to nz = 448 depending on the
values of kz, Re and Fh. Typically, a high resolution is required for the parameters
where the shear instability develops because it generates small billows while a moderate
resolution is sufficient for the other cases. When kz increases, the horizontal and
vertical resolutions have to be increased also since the vertical gradients are larger. The
accuracy of the results has been checked by increasing the resolution or the domain
horizontal sizes in several runs. The time step varies from δt = 0.0025 to δt = 0.01.
All the numerical simulations have been carried out for Sc = 1. The Froude number
has been always kept below unity so as to remain in the strongly stratified regime.
The shear amplitude US is also always kept below unity meaning that the vortex
is stronger than the shear flow. The vertical wavenumber has been varied in the
range 0.1 6 kz 6 3π/2. The Reynolds number has been varied from Re = 3000 to
Re = 10000.
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5.3 Overview of the dynamics

5.3.1 Qualitative description
We first begin by a description of two different simulations in order to give a global
overview of the flow dynamics.

Figures 5.1 and 5.2 display the potential vorticity at different times for kz = π,
Fh = 0.1 and kz = 3π/2, Fh = 0.5, respectively, whereas US and Re are fixed to
US = 0.2 and Re = 6000. The first column shows three-dimensional contours while the
second column represents a corresponding horizontal cross-section at the vertical level
z = lz/4. The vortex is mostly displaced in the direction of the shear flow, but also
slightly in the perpendicular direction as seen in the horizontal cross-sections. Hence,
the vertical plane containing the vortex axis is actually oblique relative to the (x, z)
plane. The displacement in the y direction is weaker in figure 5.1 than in figure 5.2.

A common feature of both simulations is that the potential vorticity decreases faster
in the regions of high shear z = 0, lz/2 than in the regions of weak shear z = lz/4, 3lz/4.
Thus, the vortex seems to be torn apart into two separate pancake vortices (Beckers
et al., 2001) at large times.

Figure 5.3 displays the corresponding total vertical shear of the horizontal velocity√
Sz =

√
(∂u/∂z)2 + (∂v/∂z)2 (color) in the vertical cross-section at y = 9, i.e. passing

through the vortex center at t = 0. The superimposed black lines show the total density
ρt. For kz = π, Fh = 0.1 (left column of figure 5.3), the shear is maximum in the vortex
core at the point xc = 9, zc = 0, lz/2 (note that these coordinates correspond to those
of the computational domain where the vortex center is initially in the middle x = 9,
y = 9). As the vortex is progressively bent, Sz grows monotonically with time and
becomes rapidly much higher than the maximum ambient shear max (S̄z) = k2

zU
2
S

(figure 5.3a,c,e,g). The iso-density lines remain nearly flat since the stratification is
strong for this case.

Figure 5.4 shows that the minimum of the Richardson number (black solid line)

Ri =

1
F 2
h

+ ∂b

∂z

Sz
(5.8)

decreases with time down to min (Ri) = 3.7 at t = 22 and then slowly re-increases.
The quantity min (Ri) thus remains well above the critical value 1/4 necessary for the
development of the shear instability of a steady parallel inviscid shear flow (Miles, 1961;
Howard, 1961).

For kz = 3π/2, Fh = 0.5 (right column of figure 5.3), the growth of the maximum
shear Sz is not monotonic. There is a first stage where the shear is very weak within
the vortex core (see figure 5.3b at t = 4), i.e. the response of the vortex tends to cancel
the ambient shear. Then, the vortex becomes tilted as for kz = π, Fh = 0.1, and the
maximum shear is encountered in the vicinity of xc = 9, zc = 0, lz/2 (figure 5.3d).
The regions of high shear are remarkably thin. Later on, the flow strongly dissipates
in these regions and the shear becomes maximum at points away from (xc, zc) (figure
5.3f,h). During this evolution, the iso-density lines are strongly deformed in contrast
to kz = π, Fh = 0.1. Some overturns can even be seen in the regions of high shear at
t = 26 (figure 5.3f ). As seen in figure 5.4, the minimum Richardson number for this
simulation (grey solid line) decreases below Ric = 0.25 for 11 6 t 6 37. The (y, z)
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Figure 5.1: Left column: three-dimensional contours of the potential vorticity at differ-
ent times for Fh = 0.1, kz = π, US = 0.2 and Re = 6000. Right column: corresponding
horizontal cross-sections in the plane z = lz/4 where the advection is the most intense.
The times shown are (a,b) t = 4, (c,d) t = 13, (e,f ) t = 26. In (a,c,e), the isocontours
correspond to 20% (yellow) and 60% (red) of the initial maximum value.
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Figure 5.2: Same as figure 5.1 except that Fh = 0.5, kz = 3π/2. The times shown are
(a,b) t = 4, (c,d) t = 13, (e,f ) t = 26, (g,h) t = 36.
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Figure 5.3: Vertical cross-sections of the shear
√
Sz (color) and of the total density

ρt (black contour lines) in the plane y = 9, for Fh = 0.1, kz = π (left column) and
Fh = 0.5, kz = 3π/2 (right column), for US = 0.2 and Re = 6000. The times shown
are (a,b) t = 4, (c,d) t = 13, (e,f ) t = 26, (g,h) t = 36.
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Figure 5.4: Minimum Richardson number as a function of time for US = 0.2, Re = 6000,
and Fh = 0.1, kz = π (black solid line) and Fh = 0.5, kz = 3π/2 (grey solid line)
from the DNS. The asymptotic prediction (5.56) has been also plotted for both cases
Fh = 0.1, kz = π (black dashed line) and Fh = 0.5, kz = 3π/2 (grey dashed line). The
horizontal black dash-dotted line shows the critical value Ric = 0.25.

cross-section at x = 9 of the buoyancy at t = 26 (figure 5.5b) confirms the presence of
Kelvin-Helmholtz billows near z = 0, lz/2. In contrast, no billows can be seen in these
regions in the corresponding (x, z) cross-section at y = 9 (figure 5.5a). This means
that the axes of the Kelvin-Helmholtz billows are mostly oriented in the x direction,
i.e. they are parallel to the direction of the ambient shear flow. The black contours in
figure 5.5 delineate the regions where Ri < 0.25. In addition to the unstable regions
near (xc, zc), there exist also other unstable regions above and below each pancake
vortex at z = lz/4 and z = 3lz/4. We can also see some billows in these regions (figures
5.5a and 5.3f ) but in this case, their axes are perpendicular to the direction of the
ambient shear. These unstable regions appear only in a second stage after those near
(xc, zc).

5.3.2 Time evolution of the vertical shear at the center
For kz = π, Fh = 0.1, the Richardson number is always minimum at the center point
(xc = 9, yc = 9, zc = lz/2) and at the symmetric point (xc = 9, yc = 9, zc = 0). For
kz = 3π/2, Fh = 0.5, the Kelvin-Helmholtz instability also develops first at these
points. It is therefore interesting to investigate the evolution of the vertical shear at
these locations.

To this end, we first decompose the flow into a mean flow varying only along the
vertical and with time ū(z, t) and a complementary flow u∗:

u = ū + u∗, (5.9)

where the overbar denotes the horizontal average over the computational domain, which
for any quantity q is defined as

q̄ = 1
lxly

∫ ly

0

∫ lx

0
q(x, y, z, t)dxdy. (5.10)
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Figure 5.5: Vertical cross-sections of the buoyancy b at t = 26 in the planes y = 9 (a)
and x = 9 (b) for Fh = 0.5, kz = 3π/2, US = 0.2, and Re = 6000. The black contours
represent the lines where Ri = 0.25.
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Figure 5.6: Time evolution of ∂ū/∂z (black dash-dotted lines), ∂u∗/∂z (black dashed
lines), and ∂v∗/∂z (black solid lines) at the vortex center xc = 9, yc = 9, zc = lz/2 for
(a) Fh = 0.1, kz = π, and (b) Fh = 0.5, kz = 3π/2 for US = 0.2 and Re = 6000. The
straight grey lines represent the law kzUSt. The symbols show the horizontal vorticity
components −ω∗x (circles) and ω∗y (squares).

At t = 0, we have ū = US and u∗ = uv so that ū and u∗ will be called "shear flow"
and "vortex flow", respectively.

Figure 5.6a shows the evolution of the different shear components ∂ū/∂z, ∂u∗/∂z,
and ∂v∗/∂z at the center (xc = 9, yc = 9, zc = lz/2) for Fh = 0.1, kz = π, US = 0.2 and
Re = 6000. The quantity ∂v̄/∂z is always equal to zero at the center and is not plotted.
More generally, ∂v̄/∂z always remains very small at any vertical position compared to
∂ū/∂z. We see that the mean shear ∂ū/∂z (dash-dotted line) remains almost constant
and equal to −kzUS = −0.6283.

In contrast, the shear component ∂v∗/∂z (solid line) grows first linearly and then
saturates at t ' 22 at the value ∂v∗/∂z = 6.3, i.e. ten times the maximum ambient
shear |kzUS|. The other component ∂u∗/∂z remains very weak up to t = 10 and then
increases up to ∂u∗/∂z ' 1 at t = 30. This quantity therefore saturates at a lower
value and later than its counterpart ∂v∗/∂z.

The initial behaviour of the vertical shear of the vortex ∂u∗/∂z and ∂v∗/∂z can be
simply understood by considering that the vortex is displaced at the velocity U(z) in
the x direction, i.e. uv(x− Ut, y), giving:

∂uv

∂z
= −dU

dz t
∂uv

∂x
. (5.11)

Since uv = (−Ωy,Ωx), where Ω(r) is the angular velocity of the vortex, we have
∂vv/∂x = Ω = 1 and ∂uv/∂x = 0 at the center r = 0. Thus, (5.11) yields

∂uv
∂z

= 0, ∂vv
∂z

= kzUSt (5.12)

at z = lz/2. The straight line in figure 5.6a confirms that ∂v∗/∂z increases initially at
the rate kzUSt. This also explains why ∂u∗/∂z remains very small initially. The sub-
sequent evolutions will be explained later thanks to the asymptotic analysis performed
in chapter 4.
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Figure 5.7: Time evolutions of the global kinetic energy Ēk + E∗kh + E∗kz (black solid
line), the mean flow kinetic energy Ēk (black dash-dotted line), the vortex horizontal
kinetic energy E∗kh (black dashed line), the vortex vertical kinetic energy E∗kz (grey
dashed line) and the potential energy Ep (grey solid line) for (a) Fh = 0.1, kz = π and
(b) Fh = 0.5, kz = 3π/2 for US = 0.2, Re = 6000.

In figure 5.6a, we have also plotted with symbols the horizontal vorticity components
−ω∗x and ω∗y where ω∗ =∇× u∗. They are nearly superposed to ∂v∗/∂z and ∂u∗/∂z,
respectively, because the vertical velocity is very small compared to the horizontal
velocity. In other words, ω∗x ' −∂v∗/∂z and ω∗y ' ∂u∗/∂z.

Similarly, figure 5.6b displays the time evolution of ∂ū/∂z, ∂u∗/∂z, and ∂v∗/∂z at
the center point for Fh = 0.5 and kz = 3π/2, still for US = 0.2 and Re = 6000.

In contrast to the case Fh = 0.1, kz = π (figure 5.6a), ∂v∗/∂z follows the law
(5.12) only at the very beginning t . 2. Instead, both shear components ∂u∗/∂z and
∂v∗/∂z first oscillate with a phase lag and with a period around 2π, i.e. the period
corresponding to the angular velocity on the vortex axis Ω = 1. Because of these
oscillations, we can notice that ∂v∗/∂z goes back to zero around t ' 4 − 5 while
∂u∗/∂z is approximately opposite to ∂ū/∂z. Thus, the total shear Sz is weak at the
center as already observed in figure 5.3b at t = 4.

Then, ∂u∗/∂z and ∂v∗/∂z are both abruptly amplified up to an absolute value
around 10. Remarkably, ∂u∗/∂z becomes now negative and saturates earlier than
∂v∗/∂z. Later on, |∂u∗/∂z| decreases very quickly while |∂v∗/∂z| decays more slowly.
The vorticity components −ω∗x and ω∗y have been also plotted in figure 5.6b. They are
again almost identical to ∂v∗/∂z and ∂u∗/∂z except −ω∗x for 21 6 t 6 35. This cor-
responds to the time interval when the Kelvin-Helmholtz billows exist. They produce
a finite vertical velocity w∗, making the term ∂w∗/∂y in ω∗x no longer negligible. In
contrast, the term ∂w∗/∂x is still negligible in ω∗y, most probably because the axes of
the Kelvin-Helmholtz billows are aligned with the x direction.

5.3.3 Global energy and enstrophy evolutions
Figure 5.7 presents the evolutions of the energies integrated over the whole computa-
tional domain for the two simulations for kz = π, Fh = 0.1, and kz = 3π/2, Fh = 0.5
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Figure 5.8: Time evolutions of the global total enstrophy Z̄+Z∗h+Z∗z (black solid line),
the mean flow enstrophy Z̄ (black dash-dotted line), the vortex horizontal enstrophy
Z∗h (black dashed line) and the vortex vertical enstrophy Z∗z (grey dashed line) for (a)
Fh = 0.1, kz = π and (b) Fh = 0.5, kz = 3π/2 for US = 0.2, Re = 6000.

previously described. The kinetic energies have been decomposed into a mean part and
a vortex part using the decomposition (5.9):

Ēk = 1
lz

∫
V

ū2

2 dV , E∗kh = 1
lz

∫
V

u∗h
2

2 dV , E∗kz = 1
lz

∫
V

w∗2

2 dV . (5.13)

The integral over the computational domain V is divided by lz in order to enable
the comparisons between simulations carried out with distinct vertical wavelengths.
Similarly, the global potential energy per vertical length unit is:

Ep = 1
lz

∫
V

F 2
hb

2

2 dV . (5.14)

The kinetic energy of the mean flow Ēk (black dash-dotted lines) remains approximately
constant even if it increases slightly at the beginning mostly for kz = 3π/2, Fh = 0.5
(figure 5.7b). In contrast, the horizontal kinetic energy of the vortex E∗kh (black dashed
lines) decreases regularly following an approximately linear trend. The vertical kinetic
energy E∗kz (grey dashed lines) and the potential energy Ep (grey solid lines) remain
always very weak compared to the horizontal kinetic energy.

Likewise, figure 5.8 displays the evolutions of the global enstrophies per vertical
length unit, decomposed using (5.9):

Z̄ = 1
lz

∫
V

ω̄2

2 dV , Z∗h = 1
lz

∫
V

ω∗h
2

2 dV , Z∗z = 1
lz

∫
V

ζ∗2

2 dV . (5.15)

The global horizontal enstrophy of the vortex Z∗h (black dashed lines) increases and
then decreases while its vertical counterpart Z∗z (grey dashed lines) continuously decays.
Unexpectedly, the growth of Z∗h is much more pronounced for kz = π, Fh = 0.1 than
for kz = 3π/2, Fh = 0.5 although the vertical wavenumber kz is higher in this second
case. The enstrophy of the mean shear Z̄ remains approximately constant like the
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Figure 5.9: Horizontal cross-sections in the plane z = lz/2 at t = 0.4 of the vertical
velocity (a,b) and buoyancy (c,d) computed asymptotically (a,c) and numerically (b,d).
The contour interval is 0.002 for w and 0.001 for b. The contour at the level zero is not
drawn. The negative iso-contours are colored in grey. The parameters are Fh = 0.5,
kz = π, US = 0.2, and Re = 6000.

mean kinetic energy Ēk. Since the mean enstrophy Z̄ for kz = 3π/2 is more than twice
the one for kz = π, the maximum of the total enstrophy (solid lines) is comparable in
the two simulations even if max (Z∗h) is lower for kz = 3π/2.

5.4 Comparison to the short-time asymptotic ana-
lysis

After this global description of two simulations, we turn to a detailed comparison of
the initial dynamics with the predictions of the asymptotic analysis for small time
performed in chapter 4 in the inviscid limit. The main result of this analysis is that
the buoyancy and vertical velocity should behave initially as

b = t3
kzUS
6F 2

h

β(r) cos(θ) cos(kzz), (5.16)

w = −t2kzUS2 β(r) cos(θ) cos(kzz), (5.17)

where β is a function which depends on r and kz (see (4.34)-(4.35) and figure 4.2 in
chapter 4). The expressions (5.16)-(5.17) imply that the dynamics is non-hydrostatic,
i.e. b < w, as long as t < Fh.

These asymptotic predictions will be first checked against a simulation for the
parameters Fh = 0.5, kz = π, US = 0.2, Re = 6000, and then a parametric study
will be carried out.

5.4.1 A detailed comparison
Figures 5.9 and 5.10 compare the asymptotic predictions for w and b to the observed
fields in the DNS at z = lz/2, at two times t = 0.4 and t = 1.6, respectively. As seen
in (5.16)-(5.17), z = lz/2 is the vertical level where w and b are maximum. There is
a good quantitative agreement between asymptotics and numerics at t = 0.4 both for
the vertical velocity (figure 5.9a,b) and the buoyancy (figure 5.9c,d). We can notice
that the buoyancy is in phase opposition with the vertical velocity. As expected, the
asymptotics depart from the numerical results for t > 1 as can be seen in figure 5.10 at
t = 1.6. Indeed, the wavenumber one pattern of the buoyancy has started to rotate in
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Figure 5.10: Same as figure 5.9 but for t = 1.6. The contour interval is 0.02 for w and
0.05 for b.
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Figure 5.11: Temporal evolutions of wm (a) and F 2
hbm (b) for kz = π, US = 0.2,

and Re = 6000, for Fh = 0.5 (black dashed lines) and Fh = 0.8 (grey dashed lines)
computed from the DNS and predicted asymptotically (black solid lines).

the numerical simulation (figure 5.10d), while such rotation is not reproduced by the
asymptotic solution (figure 5.10c). Moreover, the extremum values predicted by the
asymptotics no longer perfectly match those in the DNS. Nevertheless, the structure
of the vertical velocity (figure 5.10a,b) is qualitatively similar in the asymptotics and
numerics.

In order to estimate the time range of validity of the asymptotics, the evolutions
of the peak values wm and F 2

hbm of the vertical velocity and buoyancy are plotted in
figure 5.11. An excellent agreement between theory (black solid lines) and numerics for
Fh = 0.5 (black dashed lines) is observed for t 6 0.8 approximately. Beyond this time,
the growth of the maximum vertical velocity and buoyancy is slowlier in the numerics
than predicted by the asymptotics.

5.4.2 Effect of the Froude number
Figure 5.11 also shows wm and F 2

hbm from a DNS for the larger Froude number Fh = 0.8
(grey dashed lines). In agreement with the asymptotics, wm and F 2

hbm are independent
of the Froude number for t < 1 whereas they become dependent for larger time.

According to (5.16)-(5.17), the buoyancy becomes larger than the vertical acceler-
ation when t >

√
6Fh, i.e. sooner as the Froude number diminishes. In other words,

the duration of the initial non-hydrostatic regime scales with the Froude number.
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Figure 5.12: Temporal evolutions of (a) wm and (b) bm computed asymptotically (black
lines) and numerically (grey lines) for Fh = 0.5, US = 0.2, and Re = 6000, for kz = π/2
(dash-dotted lines), kz = π (dashed lines) and kz = 3π/2 (solid lines).

5.4.3 Effect of the vertical wavenumber
The effect of the vertical wavenumber kz on the maximum vertical velocity wm and
buoyancy bm is investigated in figure 5.12. Both the asymptotic and the numerical
results are almost distributed on a single curve. This is due to the fact that the
factor kzβ appearing in (5.16)-(5.17) is approximately independent of kz in the range
π/2 6 kz 6 3π/2 as illustrated in figure 4.2 of chapter 4. In contrast, for small kz, wm
and bm are proportional to kz since β is almost independent of the vertical wavenumber
in that limit (not shown).

5.4.4 Effect of the shear flow amplitude US
The influence of the shear amplitude US is considered in figure 5.13. The maximum
vertical velocity and buoyancy are both proportional to US in agreement with the
asymptotic predictions. Even if there is a departure between the asymptotics and the
numerics, it is remarkable that the scaling relations w ∝ US and b ∝ US hold very well
in the DNS over the entire time range investigated.

5.5 Comparison to the long-wavelength asymptotic
analysis

5.5.1 Reminder
In chapter 4, we have performed a long-wavelength asymptotic analysis for kzFh �
1, i.e. for small vertical Froude number Fv = kzFh = |Γ|/(a0lzN). Leading order
viscous effects have been also taken into account. This analysis has provided evolution
equations for the position of the vortex center at each level z:

∆x = U(z)t+ δx(z, t), (5.18)
∆y = δy(z, t), (5.19)
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Figure 5.13: Temporal evolutions of (a) the rescaled maximum vertical velocity wm/US
and (b) the rescaled maximum buoyancy bm/US computed analytically (black lines)
and numerically (grey lines) for Fh = 0.5, kz = π, and Re = 6000, for US = 0.02
(dash-dotted lines), US = 0.1 (dashed lines), and US = 0.2 (solid lines).

where

δx = X̂(z, t) sin(kzz), (5.20)
δy = Ŷ (z, t) sin(kzz). (5.21)

The amplitudes (X̂, Ŷ ) follow the equations

X̂ = (kzFh)2US

[
Cw +

∫ t

0
ϑ(z, υ)dυ

]
− k2

zUSt
2

2Re , (5.22)

Ŷ = (kzFh)2USSw + US

∫ t

0
ω̂(z, υ)υdυ, (5.23)

where Cw and Sw are the effects of internal waves excited at t = 0 and that decay quickly
afterwards. The parameters ω̂ and ϑ correspond to the self-induction of the vortex and
an advection correction, respectively. The last term in the right-hand side of (5.22) is
the leading viscous effect. The expressions of all the parameters in (5.22)-(5.23) are
given in chapter 4.

In addition, the asymptotic analysis has shown that the vortex remains axisymmet-
ric at leading order but its angular velocity evolves according to

∂Ω
∂t

=
[
−F 2

h tΩ3 + t2

2Rer̃
∂ζ0

∂r̃

](
dU
dz

)2

, (5.24)

where ζ0 = (1/r̃)∂r̃2Ω/∂r̃ is the vertical vorticity and r̃ is the local radius with respect
to the center of the vortex at the level z:

r̃2 = (x− U(z)t− δx)2 + (y − δy)2. (5.25)

The associated local angle is denoted θ̃. The first term in the right-hand side of
(5.24) ensures the conservation of potential vorticity while the second term describes
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the leading viscous effect. This effect is proportional to t2 because the vertical shear
grows like tdU/dz at leading order. In chapter 4, the equation (5.24) has been solved
asymptotically when

γ = 1

ReF 3
h

∣∣∣∣∣dUdz
∣∣∣∣∣

(5.26)

is small. In particular, an analytic expression for the angular velocity on the vortex
axis has been obtained:

Ωc = 1√
(1 + 2γT 3/3)2 + T 2

, (5.27)

where T = Fht|dU/dz|. This expression is in very good agreement with the exact result
obtained by numerical integration of (5.24). It will be therefore used in the following.

A last prediction of the asymptotic analysis is that the horizontal velocity of the
vortex at order O[(kzFh)2] is of the form

uh1 =∇hΦ1 −∇× ψ1ez, (5.28)

with
Φ1 = Φ10 + Φ11 + Φ12, ψ1 = ψ11 + ψ12. (5.29)

The potential Φ10 does not depend on θ̃ and thus corresponds to an axisymmetric
velocity field in the local reference frame with origin at the vortex center. In contrast,
(Φ11, ψ11) and (Φ12, ψ12) are contributions with an azimuthal wavenumber m = 1 or
m = 2, respectively. They correspond to a displacement and an elliptic deformation of
the vortex, respectively. All these functions have been determined in chapter 4.

These results will enable us to obtain predictions for the evolution of the vertical
shear of the horizontal velocity in section §5.5.3. Before, we begin by presenting in the
next section a comparison between the asymptotic predictions for the vortex center
(5.18)-(5.19) and the DNS.

5.5.2 Deformations of the vortex axis
In order to estimate the position of the vortex center in the numerical simulations, we
have used two methods: one based on the potential vorticity Π = ω · [∇b+N2ez]
and the other on the vertical vorticity ζ. In each case, the displacements of the vortex
center have been estimated from vorticity centroids:

∆xΠ
c (z, t) = 〈xΠ〉h

〈Π〉h
, ∆yΠ

c (z, t) = 〈yΠ〉h
〈Π〉h

, (5.30)

or
∆xζc(z, t) = 〈xζ〉h

〈ζ〉h
, ∆yζc (z, t) = 〈yζ〉h

〈ζ〉h
, (5.31)

where the brackets denote
〈ϕ〉h =

∫
ϕ>ϕc

ϕdxdy. (5.32)

The horizontal integration is carried out only in the regions where the vorticity is larger
than a critical value Πc, ζc in order to avoid taking into account the small background
vorticity due to the fact that the total vorticity is zero owing to the use of periodic
boundary conditions. The values Πc = 0.05 maxt=0 (Π) and ζc = 0.05 maxt=0 (ζ) have
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been chosen as they provide results almost independent of the size of the computational
domain and the particular values of the thresholds.

The tracking method based on the potential vorticity seems more natural since it
is a transported quantity in the inviscid limit. However, we shall see that the method
based on the vertical vorticity will enable a closer comparison to the asymptotic results.
This is because the condition used to normalize the streamfunction at first order implies

∆xζc = 〈xζ〉h
〈ζ〉h

= 〈xζ0(r̃)〉h
〈ζ0〉h

= ∆x, (5.33)

and, similarly ∆yζc = ∆y, where (∆x,∆y) are the asymptotic displacements (5.18)-
(5.19).

In the next sections, we compare the asymptotic and numerical results for different
parameters.

In-depth analysis of a simulation

Figure 5.14 compares the total displacements ∆x = USt + δx and δy as predicted by
the asymptotics to the positions ∆xc and ∆yc of the vortex estimated from the vertical
vorticity and potential vorticity centroids at the level z = lz/4 for Fh = 0.5, kz = 0.3,
US = 0.2, and Re = 6000. The agreement is excellent even at t = 20. The dominant
displacement is in the x direction (figure 5.14a) and given by USt while the deviations
δx and δy are much smaller.

Figures 5.14b,c display the y displacement of the vortex estimated from the vertical
vorticity, ∆yζc , and from the potential vorticity, ∆yΠ

c , respectively. They are both in
very good agreement with the asymptotic prediction δy even if a small discrepancy
arises after t ' 12. However, if we focus on the initial evolution of ∆yζc and ∆yΠ

c

(figure 5.14d), we see that they are actually different for t 6 4.
The displacement ∆yζc (crosses) is first slightly negative for t 6 2 in excellent agree-

ment with the asymptotic prediction δy (black solid line). In contrast, the y displace-
ment estimated from the potential vorticity ∆yΠ

c (open circles) increases monotonically.
The estimation of the vortex center from the vertical vorticity is in much better agree-
ment with the asymptotics than the estimation from the potential vorticity because
the normalisation condition used in the asymptotic analysis is based on the vertical
vorticity.

Nevertheless, if the effects of the internal waves are neglected (i.e. Cw = Sw = 0),
the asymptotic prediction (black dashed line) is then close to ∆yΠ

c . This confirms that
internal waves play a key role at the start-up of the flow evolution. Because of these
waves, the initial evolution of δy is of the form δy = k2

zUSσt
4, where σ = −3.826×10−3

is a constant, as shown by the grey solid line in figure 5.14d. In contrast, when internal
waves are neglected, δy evolves initially as δy ∝ t2 (black dashed line).

We have also compared the vertical velocity and buoyancy fields predicted by the
asymptotics against their numerical counterparts. Figures 5.15 and 5.16 display ho-
rizontal cross-sections of w and b, respectively, in the plane z = lz/2 where they are
maximum. A very good qualitative and quantitative agreement is observed even at
t = 18 (figures 5.15c,f and 5.16c,f ) apart from the existence of small wave-like disturb-
ances in the DNS that are absent in the asymptotics. We can remark that the vertical
velocity and buoyancy are approximately in phase opposition at t = 2 (figures 5.15a,d
and 5.16a,d) as observed for short times (figures 5.9, 5.10) while for t = 6 and t = 18,
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Figure 5.14: (a,b) Comparison between the vertical vorticity centroids ∆xζc and ∆yζc
(grey dashed lines with crosses) and the asymptotic predictions for the displacements
∆x (a) and δy (b) (black solid lines) in the plane z = lz/4. (c) displays the same
comparison as in (b) except that the grey dashed line marked with open circles now
represents the potential vorticity centroid ∆yΠ

c . (d) displays a close-up view of the
initial evolution of ∆yζc (grey crosses), ∆yΠ

c (grey open circles), and δy (black solid
line). The asymptotic prediction in the absence of internal waves, i.e. by setting
Cw = Sw = 0 in (5.22)-(5.23) has been also reported (black dashed line). The short-
time asymptotic prediction for δy has been plotted as well (grey solid line). The
parameters are Fh = 0.5, kz = 0.3, US = 0.2, and Re = 6000.
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Figure 5.15: Horizontal cross sections in the plane z = lz/2 of (a,b,c) the vertical
velocity calculated asymptotically and (d,e,f ) in the DNS for Fh = 0.5, kz = 0.3,
US = 0.2, and Re = 6000 at t = 2 (a,d), t = 6 (b,e) and t = 18 (c,f ).

Figure 5.16: Horizontal cross sections in the plane z = lz/2 of (a,b,c) the buoyancy
calculated asymptotically and (d,e,f ) in the DNS for Fh = 0.5, kz = 0.3, US = 0.2, and
Re = 6000 at t = 2 (a,d), t = 6 (b,e) and t = 18 (c,f ).
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Figure 5.17: Evolution of the maximum values of (a) the vertical velocity wm and (b)
the buoyancy bm in the DNS (grey dashed lines with open circles) and predicted by
the asymptotics (black solid lines), for Fh = 0.5, kz = 0.3, US = 0.2, and Re = 6000.

they have a π/2 phase difference. The close agreement between the asymptotic and
numerical results can be further seen in the temporal variations of the maximum values
of w and b (figure 5.17). The asymptotic and numerical results begin to slightly depart
from each other only at t ' 10. The slowly growing discrepancy as time increases is
probably due to the fact that the vertical derivative grows like kzUSt at leading order
owing to the shear flow. Hence, the long wavelength assumption Fh∂/∂z � 1 is expec-
ted to be less and less valid as time increases. The maximum values of w and b increase
approximately linearly with oscillations superimposed. These oscillations are due to
the internal waves excited at t = 0. Two periods T = 2πFh = π and T = Ω(r = 0) = 1
are mixed explaining why the oscillations look somewhat irregular, especially for wm
(figure 5.17a).

Parametric study

We now examine the effects of the parameters Fh, kz, and US.
Figure 5.18a presents the evolution of the y displacement for a different Froude

number and wavenumber Fh = 0.1, kz = 1.5 such that the product kzFh = 0.15 is
the same as in figure 5.14. The shear flow amplitude and Reynolds number have been
kept to the same values US = 0.2 and Re = 6000. As expected, the evolution of δy
(black solid line) is similar to the one for kz = 0.3, Fh = 0.5 (shown again by a black
dashed line in figure 5.18a for reference). This confirms that the relevant main control
parameter is kzFh and not kz and Fh, separately. There is a small difference between
the curves for Fh = 0.1, kz = 1.5 and Fh = 0.5, kz = 0.3 because the functions ω̂, ϑ,
Cw and Sw depend on the Froude number. However, this dependence is weak when
Fh . 0.5.

In contrast, if only Fh (figure 5.18b) or only kz (figure 5.18c) are varied relative to
the reference case, the y displacement differs since kzFh has changed. We can notice
that the agreement of the asymptotic predictions δy with the measured y displacement
of the vertical vorticity centroids is slightly better than for the reference case since
kzFh is lower. Finally, lowering the shear flow amplitude to US = 0.1 while keeping the
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Figure 5.18: Comparison between the y displacements of the vertical vorticity centroids
∆yζc (grey dashed lines with crosses) and the asymptotic predictions δy (black solid
lines) in the plane z = lz/4, for Re = 6000, for (a) Fh = 0.1, kz = 1.5, US = 0.2, (b)
Fh = 0.1, kz = 0.3, US = 0.2, (c) Fh = 0.5, kz = 0.1, US = 0.2, and (d) Fh = 0.5,
kz = 0.3, US = 0.1. The black dashed lines represent δy for the reference case Fh = 0.5,
kz = 0.3, US = 0.2 already shown in figure 5.14.
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Figure 5.19: Evolution of the maximum buoyancy bm in the DNS (grey dashed lines
with grey open circles) and from the asymptotic predictions (black solid lines) for
Re = 6000, for (a) Fh = 0.1, kz = 1.5, US = 0.2, (b) Fh = 0.1, kz = 0.3, US = 0.2, (c)
Fh = 0.5, kz = 0.1, US = 0.2, and (d) Fh = 0.5, kz = 0.3, US = 0.1.

other parameters constant (figure 5.18d) reduces the y displacement as expected. The
agreement between the theoretical prediction and the numerical results is as good as
for the reference case (figure 5.14).

Figure 5.19 shows the evolution of the maximum buoyancy for the same four set of
parameters as in figure 5.18. Once again, the asymptotics closely follow the numerics
for all times investigated in the four cases all the more than kzFh is low. We can notice
that the oscillations are strongly reduced when Fh = 0.1 (figure 5.19a,b) compared to
Fh = 0.5 (figure 5.19c,d). This is because the amplitude of the internal waves in the
buoyancy scales as the Froude number. Hence, they vanish in the hydrostatic limit
Fh = 0.

5.5.3 Evolution of the vertical shear
We now investigate the evolution of the flow at the vortex center r̃ = 0 and at the
levels zc = 0, lz/2 where the ambient shear is maximum. As seen in section §5.3, these
are the locations where the Richardson number reaches its minimum or where the
Kelvin-Helmholtz instability first appears.

Using the asymptotic expressions of the velocity and buoyancy fields, it is possible
to obtain simple predictions for the vertical shear of the horizontal velocity and the
buoyancy at these locations. This should enable us to predict the evolution of the
Richardson number and the occurrence of the Kelvin-Helmholtz instability.
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The horizontal velocity of the vortex has been written in the asymptotic analysis
in the general form

uh ≡ uh(x̃, ỹ, z, t), (5.34)
where we recall that (x̃, ỹ) are the local cartesian horizontal coordinates with origin at
the vortex center at the level z. Hence, differentiating with respect to z leads to

∂uh

∂z
= −∂∆x

∂z

∂uh

∂x̃
− ∂∆y

∂z

∂uh

∂ỹ
+
(
∂uh

∂z

)
x̃,ỹ

. (5.35)

At the vortex center x̃ = ỹ = 0 and the level z = lz/2, we have (∂uh/∂z)x̃,ỹ = 0.
In addition, we can assume ∂∆x/∂z ' tdU/dz, ∂∆y/∂z ' 0 since the displacement
corrections (δx, δy) are small compared to U(z)t as seen in the previous section. Hence,
(5.35) reduces to

∂uh

∂z
(r̃ = 0, z = lz/2) = −tdUdz

∂uh

∂x̃
= kzUSt

∂uh

∂x̃
. (5.36)

Therefore, only the x̃ derivatives of the horizontal velocity field are needed to compute
the vertical shear of the vortex at r̃ = 0, z = lz/2. In the asymptotic analysis, its
horizontal velocity has been written in the form

uh = uh0 + (kzFh)2uh1 + O
[
(kzFh)4

]
, (5.37)

with
u0 = −Ω(r̃, z, t)ỹ, v0 = Ω(r̃, z, t)x̃ (5.38)

while uh1 is defined in (5.28). This leads to
∂u

∂x̃
(r̃ = 0, z = lz/2) = (kzFhUS)2

[(3
4 − σ2

)
tΩ2

c −
1

ReF 2
h

(
βν2
Ωc

+ σν2 t
2Ωc

)]
, (5.39)

∂v

∂x̃
(r̃ = 0, z = lz/2) = Ωc − (kzFhUS)2

[
β2Ωc +

(1
4 + χ2

)
t2Ω3

c −
χν2t

ReF 2
h

]
, (5.40)

where Ωc(t) is the angular velocity at the vortex center and σ2, β2, χ2, βν2 , σν2 and χν2
are constants given in chapter 4. Using (5.36), we therefore obtain
∂u

∂z
(r̃ = 0, z = lz/2) = (kzUS)3F 2

h t

[(3
4 − σ2

)
tΩ2

c −
1

ReF 2
h

(
βν2
Ωc

+ σν2 t
2Ωc

)]
, (5.41)

∂v

∂z
(r̃ = 0, z = lz/2) = kzUStΩc − (kzUS)3F 2

h t

[
β2Ωc +

(1
4 + χ2

)
t2Ω3

c −
χν2t

ReF 2
h

]
.

(5.42)
Similarly, the vertical gradient of the buoyancy can be obtained as

∂b

∂z
(r̃ = 0, z = lz/2) = −∂∆x

∂z

∂b

∂x̃
(5.43)

by neglecting (δx, δy) and because (∂b/∂z)x̃,ỹ = 0 at r̃ = 0. Using the leading order
expression of the buoyancy in the hydrostatic limit, we have

∂b

∂x̃
(r̃ = 0, z = lz/2) = kzUStΩ2

c (5.44)

giving therefore
∂b

∂z
= (kzUStΩc)2. (5.45)

We now compare these predictions to the results of the DNS presented in section
§5.3 for Fh = 0.1, kz = π, US = 0.2, and Re = 6000.
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Figure 5.20: Evolution of (a) ∂u/∂x, (b) ∂v/∂x, and (c) ∂b/∂x at r̃ = 0, z = lz/2 from
the DNS (grey solid lines) and predicted from the asymptotics (black solid lines), for
Fh = 0.1, kz = π, US = 0.2, Re = 6000, i.e. γ ' 0.27.
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Figure 5.21: Evolution of (a) ∂u/∂z, (b) ∂v/∂z and (c) ∂b/∂z at r̃ = 0, z = lz/2 from
the DNS (grey solid lines) and predicted from the asymptotics (black solid lines). The
inviscid solutions (black dashed lines) corresponding to Ωc = 1/

√
1 + (kzFhUSt)2 have

been also reported. The parameters are Fh = 0.1, kz = π, US = 0.2, Re = 6000, i.e.
γ ' 0.27.

Detailed comparisons for a reference case

Figure 5.20 compares ∂u/∂x, ∂v/∂x, and ∂b/∂x at the vortex center and at zc = lz/2
predicted by (5.39), (5.40), and (5.44), respectively, to their counterparts from the DNS.
Apart from ∂u/∂x, the agreement is excellent over the entire time range investigated.
In particular, the saturation of the buoyancy gradient is properly accounted for (figure
5.20c). The beginning of the evolution of ∂u/∂x is well predicted by the asymptotics
until t ' 5 but not later. This discrepancy might be due to the fact that the asymptotic
model is not uniformly asymptotic in time, since the long-wavelength assumption is
expected to be no longer valid when kzFhUSt > 1.

Figure 5.21 compares ∂u/∂z, ∂v/∂z and ∂b/∂z at the vortex center and at zc = lz/2
from the DNS and predicted by (5.41), (5.42) and (5.45). Except for ∂u/∂z once again,
a very good agreement is observed at all times. In particular, the times and levels of
saturations of ∂v/∂z and ∂b/∂z are both accurately estimated. Note that ∂v/∂z and
∂b/∂z saturate simultaneously because these two quantities are functions of a unique
arrangement, namely tΩc, except the small viscous term in (5.42). As already seen
in figure 5.6a, the level of saturation of ∂u/∂z is much lower than for ∂v/∂z. From
(5.41)-(5.42), we can see that this is because ∂u/∂z is one order smaller in (kzFh)2
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than ∂v/∂z. This comes from the fact that the leading order velocity is such that
∂u0/∂x̃ = 0 while ∂v0/∂x̃ = Ωc.

In figure 5.21, we have also plotted with black dashed lines the evolution of each
asymptotic quantity in the inviscid limit, i.e. for Re = ∞. In this limit, the angular
velocity at the vortex center follows the law

Ωc = 1√
1 + (kzFhUSt)2

. (5.46)

Remarkably, we see in figure 5.21 that the three quantities grow monotonically but
tend to finite values in the limit t→∞:

lim
Re,t→∞

∂u

∂z
=
(3

4 − σ2

)
kzUS, (5.47)

lim
Re,t→∞

∂v

∂z
= 1
Fh

[
1− β2(kzFhUS)2 −

(1
4 + χ2

)]
, (5.48)

lim
Re,t→∞

∂b

∂z
= 1
F 2
h

. (5.49)

This clearly demonstrates that the vertical shear cannot grow indefinitely in strongly
stratified flows even for Re = ∞, contradicting the conjecture of Lilly (1983). We
will see later whether or not the bounds (5.47-5.49) are sufficiently high to reach the
threshold Ri = 1/4 necessary for the development of the shear instability. Before,
we will conduct a parametric study in order to check if the maxima of the vertical
gradients of u, v and b are always well predicted by the asymptotic formulas (5.41),
(5.42) and (5.45).

As already remarked, ∂v/∂z and ∂b/∂z are one order higher than ∂u/∂z (see figure
5.21 and (5.41), (5.42), (5.45)). Equations (5.42) and (5.45) show that the quantities
∂v/∂z and ∂b/∂z both depend only on the product Λ = tΩc except the viscous term
in (5.42) but which is small. Therefore, they both reach their maxima when

dΛ
dt = 0. (5.50)

The time of saturation is therefore given by Tsat = kzFhUStsat = (3/4γ)1/3 where γ is
defined in (5.26), i.e.

tsat = 1
kzFhUS

(
3

4γ

)1/3

=
(

3Re
4k2

zU
2
S

)1/3

. (5.51)

At this time, the angular velocity is

Ωc = Ωsat = 2

3

√√√√1 +
(

2
9γ

)2/3
. (5.52)

It is then straightforward to obtain the maxima of ∂v/∂z and ∂b/∂z:

max
(
∂v

∂z

)
=Mv = η

Fh

[
1− β2(kzFhUS)2 −

(1
4 + χ2

)
η2
]

+ kzUS
ReF 2

h

χν2

(
3

4γ

)2/3

,

(5.53)

max
(
∂b

∂z

)
=Mb = η2

F 2
h

, (5.54)
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where η is a function of the single parameter γ, namely

η = 2

3

√√√√1 +
(

2
9γ

)2/3

(
3

4γ

)1/3

. (5.55)

In contrast, the viscous term in (5.41) governs the level of saturation of ∂u/∂z as
seen in figure 5.21a. The maximumMu of ∂u/∂z is reached at t∗sat 6= tsat. Since it is
not possible to derive simple analytic expressions for t∗sat andMu, these two quantities
have been determined numerically using the asymptotic formulas (5.27) and (5.41).

Effect of kz

Figure 5.22 shows the evolution of ∂u/∂z, ∂v/∂z, and ∂b/∂z at the vortex center and
z = lz/2 in numerical simulations for different vertical wavenumbers kz, for Fh = 0.1,
US = 0.2, and Re = 6000. As kz increases, these quantities saturate earlier and at a
higher level (figure 5.22a,c,e). The right plots (figure 5.22b,d,f ) show the same curves
when each quantity is rescaled by its asymptotic maximumMu,Mv (5.53),Mb (5.54),
the time t being rescaled by the corresponding saturation time t∗sat or tsat.

The different curves of ∂v/∂z and ∂b/∂z collapse very well with rescaled maxima
close to unity and reached when t/tsat = 1. The time of saturation is thus proportional
to k−2/3

z as seen in (5.51).
Regarding ∂u/∂z (figure 5.22b), the level of saturation is correctly predicted by

the asymptotics and the three rescaled curves reach their respective peaks at the same
time t/t∗sat ' 0.6 different from unity. The fact that the theory does not predict the
exact saturation time is not surprising given the discrepancy observed in figure 5.21a.
However, it is noticeable that the scaling of the saturation time as well as the maximum
of ∂u/∂z are properly estimated.

Effect of US

As for kz, figure 5.23 displays the evolution of ∂u/∂z, ∂v/∂z, and ∂b/∂z at r̃ = 0, z =
lz/2 in numerical simulations for different values of US. Enhancing the shear amplitude
again leads to higher saturation levels that are reached earlier. When rescaled (figure
5.23d,f ), (∂v/∂z)/Mv and (∂b/∂z)/Mb saturate around unity at t/tsat = 1. As seen
in (5.51), the time of saturation thus scales like U−2/3

S . Regarding ∂u/∂z, the rescaling
aligns the peaks around t/t∗sat ' 0.6 and their levels are again close to unity as observed
for kz.

Effect of Re

Figure 5.24 shows that increasing the Reynolds number delays the saturation of ∂u/∂z,
∂v/∂z and ∂b/∂z at r̃ = 0, z = lz/2 and slightly increases the peak values. This is
consistent with (5.51), since this equation shows that tsat is weakly affected by the
Reynolds number because Re intervenes only to the power 1/3 instead of −2/3 for kz
and US.

The rescaling of ∂v/∂z and ∂b/∂z by their asymptotic maxima and of the time by
tsat (figure 5.24d,f ) accurately collapses the evolution and saturation of these quantities.
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Figure 5.22: Evolution of ∂u/∂z (a,b), ∂v/∂z (c,d), and ∂b/∂z (e,f ) at r̃ = 0, z = lz/2,
for Fh = 0.1, US = 0.2, and Re = 6000, for kz = 2 (dash-dotted lines), kz = π (dashed
lines), and kz = 4 (solid lines). The quantities ∂u/∂z, ∂v/∂z, ∂b/∂z are plotted against
the physical time t in (a), (c), (e), respectively, whereas (b), (d), (f ) show (∂u/∂z)/Mu

against t/t∗sat, and (∂v/∂z)/Mv, (∂b/∂z)/Mb against t/tsat, respectively.
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Figure 5.23: Evolution of ∂u/∂z (a,b), ∂v/∂z (c,d), and ∂b/∂z (e,f ) at r̃ = 0, z = lz/2,
for Fh = 0.1, kz = 2, and Re = 6000, for US = 0.2 (dash-dotted lines), US = 0.3
(dashed lines), and US = 0.4 (solid lines). The quantities ∂u/∂z, ∂v/∂z, ∂b/∂z are
plotted against the physical time t in (a), (c), (e), respectively, whereas (b), (d),
(f ) show (∂u/∂z)/Mu against t/t∗sat, and (∂v/∂z)/Mv, (∂b/∂z)/Mb against t/tsat,
respectively.
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Figure 5.24: Evolution of ∂u/∂z (a,b), ∂v/∂z (c,d), and ∂b/∂z (e,f ) at r̃ = 0, z = lz/2,
for Fh = 0.1, kz = 2, and US = 0.2, for Re = 4000 (dash-dotted lines), Re = 6000
(dashed lines), and Re = 10000 (solid lines). The quantities ∂u/∂z, ∂v/∂z, ∂b/∂z
are plotted against the physical time t in (a), (c), (e), respectively, whereas (b), (d),
(f ) show (∂u/∂z)/Mu against t/t∗sat, and (∂v/∂z)/Mv, (∂b/∂z)/Mb against t/tsat,
respectively.
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The prediction of the saturation of ∂u/∂z is less satisfying this time. Indeed,
the curve corresponding to the highest Reynolds number Re = 10000 departs from the
other ones (figure 5.24b). Nevertheless, the two other curves still saturate at t/t∗sat ' 0.6
and their peaks are both close to unity as for kz and US.

Effect of Fh

Eventually, we examine the influence of the horizontal Froude number in figure 5.25.
When Fh is increased, from Fh = 0.1 to Fh = 0.5, ∂v/∂z and ∂b/∂z at the vortex center
at z = lz/2 decrease (figure 5.25c,e) while ∂u/∂z increases (figure 5.25a). In addition,
large oscillations are present for Fh = 0.5. When the curves are rescaled as before,
the collapse is less satisfactory than for the other parameters investigated previously,
especially for the case Fh = 0.5. Two reasons can explain these discrepancies. First,
as Fh increases, the parameter kzFh goes from 0.2 to 1. Thus, the hypothesis of the
long-wavelength analysis, i.e. kzFh � 1, is less and less valid as Fh increases. Secondly,
the law for the evolution of the angular velocity has been derived under the hydrostatic
approximation, i.e. equivalently Fh � 1, in order to simplify the calculations. This
assumption implies, in particular, that the internal waves excited at t = 0 are neglected.
However, it is likely that these internal waves are responsible for the oscillations seen
for Fh = 0.5 in figure 5.25. To test this claim, it could be therefore interesting to derive
the evolution of the angular velocity without making the hydrostatic approximation.

5.5.4 Evolution of the Richardson number

Having validated the asymptotics for the evolution of the vertical shear of the vortex
and the vertical gradient of the buoyancy at the vortex center at z = lz/2, we now
consider the evolution of the asymptotic Richardson number at this location:

Ri =

1
F 2
h

+ ∂b

∂z(
−kzUS + ∂u

∂z

)2

+
(
∂v

∂z

)2 , (5.56)

where ∂u/∂z, ∂v/∂z and ∂b/∂z are given by (5.41), (5.42), and (5.45).
In figure 5.4, we have plotted (5.56) for the two sets of parameters considered in

section §5.3. The agreement with the numerical results is good for kz = π, Fh = 0.1,
while for kz = 3π/2, Fh = 0.5, the initial decrease of the asymptotic Richardson
number is well captured but subsequently, it re-increases instead of decreasing. As
discussed above, this discrepancy comes probably from the oscillations due to internal
waves that are present at Fh = 0.5 in the numerical simulations. These oscillations are
absent in the asymptotics because of the use of the hydrostatic approximation. Hence,
the asymptotics are expected to be valid only if the Froude number is below Fh ' 0.25.

To study the minimum value of (5.56) depending on the control parameters kz, US,
Fh, Re, it can be first remarked that (5.41), (5.42), and (5.45) can be written in the
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Figure 5.25: Evolution of ∂u/∂z (a,b), ∂v/∂z (c,d), and ∂b/∂z (e,f ) at r̃ = 0, z = lz/2,
for kz = 2, US = 0.2, Re = 6000, for Fh = 0.1 (dash-dotted lines), Fh = 0.25 (dashed
lines), and Fh = 0.5 (solid lines). The quantities ∂u/∂z, ∂v/∂z, ∂b/∂z are plotted
against the physical time t in (a), (c), (e), respectively, whereas (b), (d), (f ) show
(∂u/∂z)/Mu against t/t∗sat, and (∂v/∂z)/Mv, (∂b/∂z)/Mb against t/tsat, respectively.
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Figure 5.26: Contours of the minimum Richardson number as a function of its initial
value Ri0 and the buoyancy Reynolds number Reb. The grey domain corresponds to
Ri0 < 0.25 i.e. where the shear flow is unstable by itself. The black solid line shows
the threshold min (Ri) = 0.25.

form
∂u

∂z
= kzUSFu(kzFhUS, Reb, t), (5.57)

∂v

∂z
= 1
Fh
Fv(kzFhUS, Reb, t), (5.58)

∂b

∂z
= 1
F 2
h

Fb(kzFhUS, Reb, t), (5.59)

where Reb = ReF 2
h is the buoyancy Reynolds number. Hence, the Richardson number

can be re-written
Ri = 1 + Fb

(kzFhUS)2 (Fu − 1)2 + F2
v

, (5.60)

meaning that it is a function of only three parameters: kzFhUS, Reb, and t. This
greatly simplifies its study. Thereby, figure 5.26 shows the minimum of the Richardson
number over time as a function of the initial Richardson number Ri0 = 1/(kzFhUS)2

and Reb. Only the domain Ri0 > 0.25 is of interest since below the ambient shear
is unstable by itself. The threshold min (Ri) = 0.25 is indicated by the black solid
line. For Reb ∼ 100, this line is tangent and already very close to the boundary
Ri0 = 0.25. When Reb is increased, it quickly crosses the limit Ri0 = 0.25 meaning
that min (Ri) 6 0.25 only if already initially, Ri0 6 0.25.

The limit for Reb � 1 can be studied by considering the expressions (5.47), (5.48)
and (5.49) of ∂u/∂z, ∂v/∂z and ∂b/∂z when Re→∞ and t→∞. This yields

min (Ri) = 2Ri0(
σ2 + 1

4

)2
+Ri0

(
3
4 − χ2 −

β2

Ri0

)2 . (5.61)

This relation implies that min (Ri) < 0.25 only if Ri0 . 0.12. Therefore, the Richard-
son number will go below the threshold Ri = 0.25 in the inviscid limit only if the initial
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Figure 5.27: Summary of the runs performed at Fh = 0.5, in the plane (Ri0, Reb =
ReF 2

h ). Empty symbols correspond to cases where the Kelvin-Helmholtz does not de-
velop, while filled symbols correspond to unstable runs. The symbols are associated
with constant values of the ambient shear flow amplitude: downward triangles cor-
respond to US = 0.1, open circles to US = 0.2, diamonds to US = 0.3, and upward
triangles to US = 0.4.

Richardson number is already below this critical value, i.e. only if the ambient shear
flow is unstable by itself.

5.6 Occurrence of the shear instability at Fh = 0.5
Since the shear instability has been only observed in the numerical simulations per-
formed at Fh = 0.5, it is worth clarifying when it occurs at this particular Froude
number, depending on the other control parameters kz, US, Re.

To do so, and following the same idea as in §5.5.4, we have plotted in figure
5.27 a map discriminating stable cases from their unstable counterparts in the plane
(Ri0, Reb). For a given US, the instability develops only if the buoyancy Reynolds
number is sufficiently high and Ri0 sufficiently low (see the circles for US = 0.2). How-
ever, this marginal stability line varies with US: it moves towards lower Ri0 as US
increases. Indeed, for Reb = 1500, the instability develops for US = 0.1 even if Ri0 is
as high as Ri0 = 40, while for US = 0.2 and US = 0.3, it occurs only for Ri0 . 10 and
Ri0 . 2, respectively. For US = 0.4, no instability has been observed even at Ri0 ' 1.
Therefore, at this Froude number, the occurrence of the Kelvin-Helmholtz instability
cannot be predicted on the basis of Ri0 and Reb only as suggested by the asymptotics.
Nevertheless, there is no contradiction with the asymptotic predictions because of the
effect of the internal waves in the moderately stratified regime.
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5.7 Conclusion
We have performed direct numerical simulations of the evolution of an initially colum-
nar vortex in an ambient shear flow in a strongly stratified fluid. The numerical results
have been compared to the asymptotic analyses carried out in chapter 4.

The DNS show that the vortex is progressively bent in the direction of the shear flow
but the vortex core also deviates in the orthogonal direction. The decay of its potential
vorticity is enhanced in the regions of high shear. For Fh = 0.5 and sufficiently high
Reynolds number Re and vertical wavenumber kz, the Kelvin-Helmholtz instability is
first triggered in the center of the vortex at the vertical levels where the ambient vertical
shear is maximum. For the lower Froude numbers investigated Fh = 0.1 and Fh = 0.25,
the Kelvin-Helmholtz instability has never been detected but the Richardson number
reaches its minimum at the same location. We have therefore concentrated our efforts
on the understanding of the evolution of the flow at this location thanks to the long-
wavelength asymptotic analysis performed for kzFh � 1 in chapter 4. Besides, we have
first shown that the short-time and the long-wavelength analyses account very well for
the initial non-hydrostatic regime and the deformation of the vortex axis, respectively.

For Fh . 0.25, the long-wavelength asymptotic analysis turns out to predict very
well the evolution of the vertical shear of the vortex in the spanwise direction ∂v/∂z
and of the vertical gradient of the buoyancy ∂b/∂z at the vortex center and z = lz/2
for all the parameters investigated. The prediction for the streamwise shear of the
vortex ∂u/∂z is less accurate but this is not too dramatic since it is one order smaller
in (kzFh)2 than ∂v/∂z and ∂b/∂z.

The long-wavelength asymptotic analysis reveals that the growth of these three
quantities is bounded owing to the conservation of potential vorticity and by viscous
effects. Thereby, the maxima of ∂v/∂z and ∂b/∂z at leading order are of the form
Mv = Fv(γ)/Fh and Mb = Fb(γ)/F 2

h , where γ = 1/(ReF 3
hkzUS) =

√
Ri0/Reb, and

where Reb = ReF 2
h is the buoyancy Reynolds number and Ri0 = 1/(kzFhUS)2 the

initial Richardson number. For small γ (i.e. near the inviscid limit), the functions Fv
and Fb tend to constants close to unity, while for large γ, they behave as

Fv(γ) ∼ 1
γ1/3 ∼ Fh(kzUSRe)1/3, (5.62)

Fb(γ) ∼ 1
γ2/3 ∼ F 2

h (kzUSRe)2/3, (5.63)

at leading order.
The Richardson number at the vortex center and z = lz/2 based on the asymptotic

expressions of ∂u/∂z, ∂v/∂z, and ∂b/∂z is in good agreement with the DNS provided
that the Froude number is small Fh . 0.25. This limitation comes from the fact that
the hydrostatic approximation has been assumed in some parts of the long-wavelength
analysis.

The minimum asymptotic Richardson number depends only on the two parameters
Ri0 and Reb. For large Reb, it can be lower than the critical value 1/4 necessary for the
development of the shear instability only if the initial Richardson number is already
smaller than this value.

This result puts into question the idea that the shear instability is easily triggered
in strongly stratified shear flows. It also demonstrates that the mechanism proposed
by Lilly (1983), according to which the vertical shear should grow algebraically with
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time without bounds, is not valid for the flow studied herein. Because of the vertical
coupling, neglected by Lilly (1983), the flow actually decays in the regions of high
shear, thereby limiting the maximum vertical shear attainable. This is due to potential
vorticity conservation and enhanced viscous effects.

The shear instability has been only observed for Fh = 0.5 and sufficiently high Re
and kz. The role played by oscillations due to the transient internal waves excited at the
start-up of the motion seems crucial for the development of the shear instability in this
case. These oscillations are indeed of particularly large amplitudes for Fh = 0.5 and
high kz. Hence, the development of the shear instability for Fh = 0.5 might be specific
to the particular configuration and initial conditions chosen here. However, in stratified
turbulent flows, although the structures can be continuously vertically sheared, it is
unlikely that a coherent structure will be impulsively sheared at a given time. As
seen in section §5.4, this impulsive start-up leads to a transient non-hydrostatic regime
and to the generation of large internal waves when Fh is not small. In contrast, the
shearing process is expected to be much more continuous and smooth in stratified
turbulent flows, limiting the generation of internal waves.
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Chapter 6

Conclusions and perspectives

The purpose of the present dissertation has been to understand the different facets of
the response of an initially vertical vortex embedded in an environmental vertically
sheared flow, in presence of a strong stratification. To do so, we have considered the
case of a model flow comprising a straight Lamb-Oseen vortex at t = 0 subjected to a
flow uniform in the horizontal but varying sinusoidally along the vertical. Under the
effect of the differential advection due to the shear flow, the vortex is progressively
decorrelated along the vertical, this process being at the origin of the existence of
localized regions of intense vertical shear. This investigation therefore enables testing
Lilly’s conjecture (Lilly, 1983) that the vertical shear should grow algebraically with
time, leading to the generation of small scales through the shear instability for large
enough times. More generally, the present study has aimed at clarifying many facets
of the dynamics of the vortex: its displacements, its structure evolution, and notably
the variations of the density as well as the vertical shear of the horizontal velocity in
the vortex core.

In this regard, a first approach has been based on the analysis of the global budgets
of energy and enstrophy (see chapter 3). We have been able to determine an estimation
of the minimum shear layer thickness that is associated with the peak value attained
by the global enstrophy of the vortex.

Remarkably, the scaling which has been obtained for the maximum enstrophy in
terms of the control parameters indicates that it is proportional to the Reynolds num-
ber to the power 2/3, suggesting that the minimum Richardson number is in turn
inversely proportional to Re2/3. This result questions former estimations stating that
the minimum Richardson number scales as the inverse of the buoyancy Reynolds num-
ber ReF 2

h (Riley and deBruynKops, 2003; Deloncle et al., 2008). In fact, the exponent
2/3 comes from the presence of the ambient shear flow: the dynamics is not the same
as in freely decaying flows.

This is not the only remarkable result of this investigation. Indeed, the theoretical
scalings derived in chapter 3 account for the effect of all the control parameters except
the Froude number: the interpretations presented in this chapter do not predict any
dependency with respect to this parameter although it clearly influences the decay of
the kinetic energy as well as the variations of enstrophy.

In order to overcome this paradox, we have carried out local investigations of the
dynamics based on asymptotic analyses in chapters 4 and 5. First, the study of the
short-time dynamics has shown that the initial response of the vortex to the ambient
shear flow is non-hydrostatic regardless of the level of stratification. After this transient
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stage however, the hydrostatic balance is progressively recovered. The initial non-
hydrostatic regime arises because of the excitation of internal waves at the beginning
of the flow evolution.

Another central result of these analyses is that the core angular velocity of the vortex
decays because of dynamic and viscous effects. Notably, this decay is not uniform
in the vertical: it is maximum in the regions of maximum vertical shear whereas it
cancels at the locations where the vertical shear is close to zero. The decrease of the
angular velocity actually modulates the growth of the vertical shear of the horizontal
velocity which, in turn, cannot grow indefinitely as speculated by Lilly (1983): it has an
upper bound accurately estimated by the asymptotics. A key factor in this process of
modulation is the vertical velocity, which had been ignored by Lilly. The asymptotics
have not only enabled us to obtain analytic predictions regarding the saturation of
the different quantities but also for their global temporal variations, thus providing a
comprehensive description of the dynamics.

Nevertheless, these analytic results have been obtained in the asymptotic limit of
long vertical wavelength and strong stratification, hence allowing to use the hydrostatic
approximation for the sake of simplicity. Their use in the moderately stratified regime
has shown that they still account for the observed dynamics qualitatively, but are no
longer valuable quantitatively. In particular, we have shown that the dependence of
the vertical shear of horizontal velocity with respect to the Froude number is quite
complex. Nevertheless, the effect of this parameter has been understood thanks to
the local analyses presented in chapters 4 and 5, since the formulas derived in these
chapters capture quite well the physics provided that the stratification is strong. Hence,
these advances offer the possibility of explaining the effect of the Froude number on the
variations of the volume-integrated energy and enstrophy, which remained unexplained
in chapter 3, by integrating the local equations obtained via the asymptotics over the
entire fluid domain.

Beyond the effect of the Froude number, the analytic predictions of chapter 4 yield
an accurate expression for the local Richardson number in chapter 5. A major result
is that, for strong stratification, its minimum is a function of time only, and of two
well-identified parameters: the Richardson number associated with the ambient shear
flow only, and the buoyancy Reynolds number. In this case, we have shown that the
shear instability can be triggered only if the ambient shear flow is itself unstable in
the sense of the Miles & Howard criterion (Miles, 1961; Howard, 1961). Thus, our
results prove that the process of vertical decorrelation itself is insufficient to trigger the
shear instability in strongly stratified fluids, in strong contrast with Lilly’s hypothesis.
However, we have shown that the shear instability develops for moderate stratification
and large enough vertical wavenumber even if the advection by the ambient shear flow
is not that strong.

Globally, the present investigations offer a variety of perspectives for future works
on related issues. First, the present long-wavelength analysis could be improved and
probably extended to the moderately stratified case by taking into account the wave
terms that have been neglected herein when tackling the problem of the evolution of
the vortex structure. More generally, the asymptotic method presented in chapter 4
could be replicated to other model cases, for example by assuming that the ambient
shear flow varies linearly along the vertical, or by considering that a rapid background
rotation is present over the stratification. The latter configuration should be interesting
because there would no longer be any excitation of internal waves in this case. Thus,
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the dynamics should be significantly different from that observed in the purely stratified
case. In addition, our results prove that the decay of the core angular velocity is of
utmost importance in order to model the evolution of the vertical shear of horizontal
velocity properly. This could have important implications for two-layer models (or
multi-layer models more generally). Indeed, they usually ignore this effect and, as
such, may elude central physical processes, making them insufficiently representative
of the real physics.
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Appendix A

Study of a linear shear flow

This appendix generalizes the short time asymptotic analysis of chapter 4 (§4.3), to the
case of a linear shear flow. The starting point of the present discussion is the equation
(4.31), since it is valid for any vortex profile uθ(r) and any shear flow profile U(z).

We consider the linear shear flow given by:

U(z) = US
z

lz
. (A.1)

As in §4.3, we look for a solution of (4.31) in the form (4.32). Then, β is found to
satisfy:

1
r

d
dr

(
r

dβ
dr

)
− β(r)

r2 = − d
dr

(
1
r

dr2Ω2

dr

)
. (A.2)

A solution to this equation that is not singular at r = 0 and that vanishes at infinity
is:

β(r) = −rΩ2. (A.3)

Note that this solution has been derived without specifying the profile uθ(r). As in the
case of the sinusoidal shear flow, we have w = w2t

2 and b = b3t
3 at leading order for

t� 1. However, in the present case, the expressions of w2 and b3 are:

w2 = −US2lz
cos(θ)β(r), b3 = US

6F 2
h lz

cos(θ)β(r). (A.4)

Thus, a transient non-hydrostatic regime also exists at the start-up of the motion
when t� Fh. A striking difference with the sinusoidal shear flow (§4.3) is that w and
b are now proportional to 1/lz whatever its value. As for the second-order horizontal
velocities, they read:

u2 = sin(θ)
2

[
cos(2θ) d

dr

(
Ω− r

2
dΩ
dr

)
− d

dr

(
r

2
dΩ
dr

)]
U2(z), (A.5)

v2 = cos(θ)
2

[
cos(2θ) d

dr

(
r

2
dΩ
dr − Ω

)
+ d

dr

(
Ω + ζ

2

)]
U2(z). (A.6)

These expressions can be retrieved by assuming that the vortex is translated by ∆x(z, t) =
U(z)t and ∆y(z, t) = 0. The second-order horizontal velocity field therefore corres-
ponds to a displacement of the vortex as a whole unlike (4.36)-(4.37) for the sinusoidal
shear flow.
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Appendix B

Derivation of the streamfunction ψw
for small time

In this appendix, we derive analytically the streamfunction ψw associated to internal
waves for small time. This will allow us to obtain the asymptotic expressions of Cw
and Sw for t� 1.

It is first useful to rewrite the right-hand side of the equation for ψp (4.105) in the
form

Fp = −
[
cos(θ̃)fpc(r̃) + t sin(θ̃)fps(r̃)

] d2U

dz̃2 , (B.1)

where:

fpc(r̃) =− ζ0CF −
1
2
∂ζ0

∂r̃

[∫ r̃

+∞
CF + 1

r̃2

∫ r̃

0
ξ2CF

]
, (B.2)

fps(r̃) = ζ0CΩ + 1
2
∂ζ0

∂r̃

[∫ r̃

+∞
CΩ + 1

r̃2

∫ r̃

0
ξ2CΩ

]
. (B.3)

In the limit t→ 0, the right-hand side of (4.106) reads

Fw = −Fp +
[
t2 cos(θ̃)f2(r̃)

4F 2
h

+ t3 sin(θ̃)f3(r̃)
12F 2

h

+ O(t4)
]

d2U

dz̃2 , (B.4)

where:

f2(r̃) = 2r̃ζ0Ω2 + ∂ζ0

∂r̃

[∫ r̃

+∞
ξΩ2 + 1

r̃2

∫ r̃

0
ξ3Ω2

]
, (B.5)

f3(r̃) = 2r̃ζ0Ω3 + ∂ζ0

∂r̃

[∫ r̃

+∞
ξΩ3 + 1

r̃2

∫ r̃

0
ξ3Ω3

]
. (B.6)

Accordingly, the solution ψw of (4.106) is expressed as:

ψw = −
[
cos(θ̃)

(
r̃ΩCw(t)− r̃dSw

dt

)
+ sin(θ̃)

(
r̃ΩSw(t) + r̃

dCw
dt

)]
d2U

dz̃2

−
[
sin(θ̃)ψw0(r̃) + t cos(θ̃)ψw1(r̃) + t2 sin(θ̃)ψw2(r̃) + t3 cos(θ̃)ψw3(r̃)

+ t4 sin(θ̃)ψw4(r̃) + O(t5)
] d2U

dz̃2 . (B.7)
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Inserting this expansion in (4.106) yields the sequence of equations:

∇2
r̃ψw1 + Ω∇2

r̃ψw0 −
1
r̃

∂ζ0

∂r̃
ψw0 =− fpc, (B.8)

2∇2
r̃ψw2 − Ω∇2

r̃ψw1 + 1
r̃

∂ζ0

∂r̃
ψw1 =− fps, (B.9)

3∇2
r̃ψw3 + Ω∇2

r̃ψw2 −
1
r̃

∂ζ0

∂r̃
ψw2 =− f2

4F 2
h

, (B.10)

4∇2
r̃ψw4 − Ω∇2

r̃ψw3 + 1
r̃

∂ζ0

∂r̃
ψw3 =− f3

12F 2
h

. (B.11)

These equations can be resolved successively. We first impose

ψw0 = − [ψps + λ0r̃Ω + (λ1 − ϑ)r̃] (B.12)

in order to satisfy the same initial condition (4.130) as for the solution computed
numerically. Note that ψps is defined in (4.120). Then, (B.8) gives

ψw1 = −
[
ψpc + (λ1 − ϑ)r̃Ω + A2 r̃

]
, (B.13)

where ψpc is defined in (4.119) and where it has been also imposed that ψw1 → 0 as
r̃ → +∞. In turn, (B.9) and (B.10) yield

ψw2 = A4 r̃Ω, ψw3 = − ψ̃3

12F 2
h

, (B.14)

with

ψ̃3(r̃) = r̃Ω
∫ r̃

+∞
ξΩ2 + Ω

r̃

∫ r̃

0
ξ3Ω2− r̃

∫ r̃

+∞
ξΩ3− 1

r̃

∫ r̃

0
ξ3Ω3 +4r̃

∫ r̃

+∞

Ω
η3

∫ η

0
ξ3Ω2, (B.15)

where the constants of integration have been chosen so that ψw3 vanishes at infinity.
At fourth order, only ∇2

r̃ψw4 will be needed: it is not necessary to derive ψw4. From
(B.11) and (B.14), we have directly:

∇2
r̃ψw4 = ζw4

48F 2
h

, (B.16)

where
ζw4(r̃) = 1

r̃

∂ζ0

∂r̃
ψ̃3 − Ωf2 − f3. (B.17)

Finally, we impose that the mean displacement associated to ∇2
hψw is zero, giving

Cw(t) = (λ1 − ϑ) t+ 〈∇
2
r̃ψpc, r̃〉〈
∂ζ0

∂r̃
, r̃

〉 t+ ς

F 2
h

t3 + O(t5), (B.18)

and
Sw(t) = λ0 + 〈∇

2
r̃ψps, r̃〉〈
∂ζ0

∂r̃
, r̃

〉 − A4 t2 + σ

F 2
h

t4 + O(t5), (B.19)
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where

ς = 1
12
〈f2, r̃〉〈
∂ζ0

∂r̃
, r̃

〉 = −3.554× 10−2, σ = − 1
48
〈ζw4, r̃〉〈
∂ζ0

∂r̃
, r̃

〉 = −3.826× 10−3 (B.20)

for the Lamb-Oseen profile. Then, using (4.124), (B.18) and (B.19) finally reduce to:

Cw(t) =− ϑt+ ς

F 2
h

t3 + O(t5), (B.21)

Sw(t) =− A4 t
2 + σ

F 2
h

t4 + O(t5). (B.22)
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Appendix C

Determination of ψν12

In this appendix, we compute the streamfunction ψν12 forced by the viscous term in
(4.154).

By writing it in the form

ψν12 = ε

2R̃eF 2
h

[
ψν2b sin(2θ̃) + ψν2ct cos(2θ̃) + ψν2st

2 sin(2θ̃)
] (dU

dz̃

)2

, (C.1)

the viscous part of (4.154) becomes

∇2∗
r̃ ψ

ν
2c + 2Ω∇2∗

r̃ ψ
ν
2b −

2
r̃

∂ζ0

∂r̃
ψν2b = 0, (C.2)

∇2∗
r̃ ψ

ν
2s − Ω∇2∗

r̃ ψ
ν
2c + 1

r̃

∂ζ0

∂r̃
ψν2c = 0, (C.3)

Ω∇2∗
r̃ ψ

ν
2s −

1
r̃

∂ζ0

∂r̃
ψν2s = 1

2

[
∂2ζ0

∂r̃2 −
1
r̃

∂ζ0

∂r̃

]
. (C.4)

Like for the determination of the streamfunction ψ∗12, we assume that the angular
velocity follows the law (4.163). Under this hypothesis, ψν2b, ψν2c and ψν2s are rescaled
as follows:

ψν2b = ψ̄ν2b(r̄)
Ω2
c

, ψν2c = ψ̄ν2c(r̄)
Ωc

, ψν2s = ψ̄ν2s(r̄). (C.5)

Then, (C.2-C.4) yield:

∇2∗
r̄ ψ̄

ν
2c + 2Ω̄∇2∗

r̄ ψ̄
ν
2b −

2
r̄

dζ̄0

dr̄ ψ̄
ν
2b = 0, (C.6)

∇2∗
r̄ ψ̄

ν
2s − Ω̄∇2∗

r̄ ψ̄
ν
2c + 1

r̄

dζ̄0

dr̄ ψ̄
ν
2c = 0, (C.7)

Ω̄∇2∗
r̄ ψ̄

ν
2s −

1
r̄

dζ̄0

dr̄ ψ̄
ν
2s = 1

2

[
d2ζ̄0

dr̄2 −
1
r̄

dζ̄0

dr̄

]
. (C.8)

These three equations admit the same homogeneous solution as (4.165-4.167). The
complete solutions that vanish at infinity and are non-singular at r̄ = 0 have been
computed numerically and are shown in figure C.1. For r̄ � 1, they behave as

ψ̄ν2b = βν2 r̄
2 + O(r̄4), ψ̄ν2c = χν2 r̄

2 + O(r̄4), ψ̄ν2s = σν2 r̄
2 + O(r̄4), (C.9)

with:
βν2 = 10.66, χν2 = −5.376, σν2 = −1.524, (C.10)

leading to (4.171).
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Figure C.1: Streamfunctions ψ̄ν2b (a), ψ̄ν2c (b), and ψ̄ν2s (c) rescaled by r̄2 as functions
of r̄.
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Résumé détaillé de la thèse

Contexte Cette thèse étudie un processus de décorrélation d’un tourbillon initiale-
ment rectiligne par un écoulement externe cisaillé sinusoïdalement selon la verticale,
dans un fluide stratifié. Il a été proposé qu’un tel mécanisme devrait déclencher des
instabilités de cisaillement et ainsi contribuer à la production de petites échelles en tur-
bulence fortement stratifiée, que l’on rencontre dans l’atmosphère et les océans dans
une gamme d’échelles où la force de Coriolis est négligeable.

Plus précisément, Lilly (1983) a émis l’idée qu’en présence d’une forte stratifica-
tion, toute structure cohérente soumise à un champ de cisaillement de la forme U(z),
avec z la coordonnée verticale, devrait présenter un cisaillement vertical de vitesse
horizontale augmentant avec le temps en raison de l’advection différentielle selon la
verticale. En d’autres termes, la forte stratification tend à "scinder" l’écoulement en un
empilement de couches dont les dynamiques sont indépendantes. En effet, la conjecture
de Lilly suppose que la structure est advectée sans génération de vitesse verticale et
que tout éventuel couplage vertical de son champ de vitesse est négligé. L’équation
mathématique modélisant cette dynamique s’écrit :

∂uh

∂t
= −U(z)∂uh

∂x

où l’on a supposé que l’écoulement ambiant est porté par un axe ex associé à la co-
ordonnée x, avec uh le champ de vitesse (horizontal) de la structure considérée. La
solution est

uh(x, y, z, t) = uh0(x− U(z)t, y, z)
avec uh0 le champ de vitesse uh initial, si bien que le cisaillement vertical de vitesse
horizontale

∂uh

∂z
= ∂uh0

∂z
− tdUdz

∂uh0

∂x

croît algébriquement avec le temps t. On s’attend donc à une décroissance continue du
nombre de Richardson, celui-ci étant inversement proportionnel au carré du cisaille-
ment vertical de vitesse horizontale. La transition sous le seuil critique 1/4, condition
nécessaire au déclenchement d’une instabilité de cisaillement, devrait ainsi être incon-
ditionnelle et l’instabilité devrait donc se développer après un certain laps de temps
dépendant notamment de l’intensité de l’advection U .

Ce mécanisme, bien que fréquemment invoqué dans les études de turbulence forte-
ment stratifiée, n’a pourtant jamais été testé en pratique. Cette thèse vise à le cara-
ctériser dans le cas d’un écoulement modèle comprenant un tourbillon de Lamb-Oseen
soumis à un écoulement ambiant de profil de vitesse U(z) = US sin(kzz).

Résultats La première partie est dédiée à l’analyse des évolutions des énergie cinétique
et enstrophie totales du tourbillon calculées au moyen de Simulations Numériques
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Directes (DNS), en fonction des paramètres de contrôle. Cette étude montre que
la dynamique est différente de celle des écoulements libres non cisaillés : du fait
de la présence de l’écoulement ambiant, la condition de saturation entre les termes
d’étirement et de dissipation dans le bilan d’enstrophie globale implique que l’enstrophie
maximale du tourbillon sature comme Re2/3, Re étant le nombre de Reynolds, et non
pas proportionnellement à Re comme pour les écoulements sans cisaillement ambiant.
Néanmoins, cette condition de saturation ne rend pas compte de l’effet observé de la
stratification.

Afin de comprendre cet effet, la dynamique locale du tourbillon a fait l’objet de deux
analyses asymptotiques présentées dans une deuxième partie. Une première étude pour
temps courts prouve que la réponse initiale du tourbillon est non-hydrostatique quelle
que soit la stratification. Il est également démontré que, de manière remarquable, la
stratification n’influence en réalité que très peu la dynamique initiale. Une deuxième
analyse pour grande longueur d’onde fournit les équations qui décrivent l’évolution de
la vitesse angulaire du tourbillon et des déformations de son axe. L’excitation d’ondes
internes au début de l’évolution est à l’origine du régime non-hydrostatique initial.
Le tourbillon est principalement advecté dans la direction du cisaillement ambiant
mais aussi perpendiculairement du fait de son auto-induction. Sa vitesse angulaire
décroît à cause d’effets dynamique et visqueux. La décroissance dynamique est dûe
à un resserrement des lignes isopycnes dans le coeur du tourbillon, qui implique une
atténuation de la vorticité verticale afin que la vorticité potentielle se conserve. Enfin,
un champ de vitesse associé à un mode azimuthal m = 2 est généré, indiquant que le
tourbillon devient légèrement elliptique.

Dans une troisième et dernière partie, des DNS révèlent que l’instabilité de cisaille-
ment se développe seulement lorsque la stratification est modérée et la longueur d’onde
du cisaillement ambiant suffisamment petite. Les résultats numériques sont comparés
aux prédictions asymptotiques. Les déformations du tourbillon sont prédites avec pré-
cision. Les ondes internes influencent fortement le mouvement du tourbillon au début
de l’évolution mais leur effet s’estompe rapidement. L’axe du tourbillon ne se déforme
pas de façon purement sinusoïdale : il subit une torsion verticale. Par ailleurs, les
évolutions du cisaillement vertical de vitesse horizontale et du gradient vertical de flot-
tabilité sont prédites de manière fine et exhaustive par l’analyse asymptotique pour
grande longueur d’onde lorsque le nombre de Froude est petit, c’est-à-dire dans la lim-
ite fortement stratifiée. Le nombre de Richardson asymptotique admet un minimum
qui n’est pratiquement jamais inférieur au seuil critique 1/4 nécessaire au déclenche-
ment de l’instabilité de cisaillement. La saturation du cisaillement vertical est dûe au
déclin accéléré du tourbillon dans les régions où le cisaillement ambiant est maximal.

Conclusions Les résultats asymptotiques dans la limite des grandes longueurs d’onde
permettent d’aboutir à une expression analytique du nombre de Richardson local, qui
permet de le prédire finement lorsque la stratification est forte. On démontre, grâce à
cette expression, que ce nombre ne peut être inférieur au seuil critique 1/4 nécessaire
pour que l’instabilité de cisaillement se développe, à moins que l’écoulement ambiant ne
soit lui-même instable. Ce résultat est cohérent avec les simulations numériques, celles-
ci n’ayant jamais permis d’observer l’instabilité pour de petits nombres de Froude.

Ce comportement est lié à la saturation du cisaillement vertical de vitesse hori-
zontale, qui résulte du déclin accéléré du tourbillon dans les régions où |dU/dz| est
maximal. Cette saturation entre en contradiction directe avec l’hypothèse formulée
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par Lilly. On soulignera que la décroissance dynamique de la vitesse angulaire du
tourbillon suffit à provoquer une saturation des cisaillements verticaux.

Au vu de ces résultats pour un tourbillon, il est conclu que les processus de dé-
corrélation d’une structure cohérente par un champ de cisaillement ambiant semblent
insuffisants, en fluide fortement stratifié, pour déclencher des instabilités de cisaille-
ment, et donc pour participer à la génération de petites échelles, contrairement à la
conjecture de Lilly (1983).
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