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Abstract

Active seismic experiments are widely used to characterize the structure of the subsur-
face for the oil and gas industry. Based on the assumption of scale separation, numer-
ous approaches split the velocity model into a smooth background model controlling
the kinematics of wave propagation and a reflectivity model characterizing the rapid
changes of the model parameters. Macro velocity estimation and reflectivity imaging
are formulated as two inverse problems. The macro velocity estimation scheme can be
derived either in the data-domain, where one seeks an optimal fit between modeled and
observed data, or in the image-domain, where one tries to improve the image coherency.

Migration techniques aim at determining the reflectivity in a given macromodel.
Classic migration is the adjoint operator of the forward linearized modeling and suffers
from migration artifacts. Recent studies recast the asymptotic inversion in the context
of reverse time migration. They define a direct way for inverting the Born modeling
operator, which automatically compensates for uneven illuminations and geometrical
spreading losses, removing in practice migration artifacts.

Migration Velocity Analysis (MVA) techniques assess the quality of the estimated
macromodel by observing the migrated images. The analysis is carried out on the panels
called common image gathers. These panels can be built in two manners: the surface-
oriented methods first perform prestack migration on different subsets of input data,
such as the common-shot gathers, and then collect images along the redundant parame-
ter; the depth-oriented methods extend the image volume with an additional parameter,
for example the subsurface-offset as a spatial delay, inserted during the construction of
reflectivity images. Recent investigations propose to couple the direct inversion to MVA
in the subsurface-offset domain, introducing better robustness. This approach is numer-
ically demanding, even in 2D, and cannot be currently extended to 3D. In this thesis,
I propose to transpose this strategy to the more conventional common-shot migration
based MVA.

I first develop an alternative approach to a recent published work, related to the
common-shot true-amplitude reverse time migration. It is a pseudo-inverse of the Born
modeling operator in the asymptotic sense. The method allows producing prestack re-
flectivity images free of migration smiles in a direct way. Then, I propose to couple this
operator to velocity analysis. Inversion Velocity Analysis (IVA) is thus an alternative

il



v Abstract

to MVA consisting of replacing migration by an asymptotic inverse. I analyze how the
approach can deal with complex models, in particular with the presence of low velocity
anomaly zones or discontinuities, better than the classic MVA. Common-shot IVA ben-
efits from the natural parallel implementation, and requires less numerical cost than its
counterpart in the subsurface-offset domain.

I also propose to extend IVA to the data-domain, leading to a more linearized inverse
problem than classic full waveform inversion. It simply consists of applying the model-
ing operator to the images after the application of the annihilator. The new approach is
close to Full Waveform Inversion, in the sense that the optimal model is obtained when
the norm of the data residual is minimum. On the other hand, the new approach is still
based on the coherency criteria for which the inverse problem is known to have a better
convexity, at least for simple models. I compare the new approach to other reflection-
based waveform inversion to establish formal links between data-fitting principle and
image coherency criteria.

The methodologies are analyzed on 2D synthetic data sets from a series of veloc-
ity models, in particular models with the presence of a low-anomaly zone for which
common-shot migration is not necessarily appropriate, and the Marmousi model, to
justify the robustness. The main contribution of this work is (1) the development of
common-shot true-amplitude reverse time migration and, more importantly, the cou-
pling with velocity analysis; (2) the extension of common-shot IVA to the data-domain
and, along this line, the analysis of the links between image-domain and data-domain
methods.



Résumé

Dans le domaine de la prospection pétroliere, les expériences sismiques actives sont lar-
gement utilisées pour caractériser la structure de la subsurface. Avec I’hypothese de la
séparation des échelles, de nombreuses approches divisent le modele de vitesse entre
un modele de grande longueur d’onde qui controle la cinématique de propagation des
ondes, et un modele de réflectivité qui caractérise les changements rapides. Les esti-
mations du macro-modele de vitesse et de la réflectivité sont formulées comme deux
problemes inverses imbriqués. La détermination du macro-modele peut étre obtenue
soit dans le domaine des données, ou est mesurée 1’écart entre les données modélisées
et les données observées, ou dans le domaine image, ou I’ objectif est d’avoir des images
cohérentes.

Les techniques de migration visent a déterminer le modele de réflectivité dans un
macro-modele donné. La migration classique est seulement 1’adjoint de 1’opérateur de
modélisation linéarisé. La méthode est connue pour causer des artefacts de migration.
Récemment, une formule d’inversion au sens asymptotique a été développée pour rem-
placer la migration. C’est une méthode directe sans itération. Elle compense pour I’illu-
mination irréguliere, pour le facteur d’atténuation géométrique et donne des images
beaucoup plus propres en pratique.

L’analyse de vitesse par migration est une technique qui juge de la qualité d’un
macro-modele de vitesse en comparant différentes images issues de sous-ensembles des
données, comme par exemple un point de tir. Des panneaux sont construits en modifiant
la condition d’imagerie soit avec un parametre de surface, soit avec un parametre lié a
la profondeur, comme un délai en espace ou en temps. Des résultats récents proposent
de coupler I’inversion asymptotique avec 1’analyse de vitesse pour la version extension
en profondeur. L’analyse de vitesse est rendue beaucoup plus robuste. Cette approche
cependant demande des capacités de calcul et de mémoire importantes, méme en 2D, et
ne peut actuellement étre étendue en 3D. Dans ce travail, je propose de développer le
couplage entre 1’analyse de vitesse et la migration plus conventionnelle par point de tir.

Je développe dans un premier temps une alternative a un travail récent autour de
la migration quantitative par point de tir. La formule est un pseudo-inverse de 1’opéra-
teur de Born au sens asymptotique. Elle permet d’obtenir des images migrées propres
sans recourir a des itérations. Ensuite, je propose de coupler cet opérateur inverse avec
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I’analyse de vitesse dite par inversion et non plus par migration. La nouvelle approche
permet de prendre en compte des modeles de vitesse complexes, comme par exemple en
présence d’anomalies de vitesses plus lentes ou de réflectivités discontinues. C’est une
alternative avantageuse en termes d’implémentation et de colit numérique par rapport a
la version profondeur.

Je propose aussi d’étendre I’analyse de vitesse par inversion au domaine des don-
nées. Ceci conduit a une approche du probleme inverse plus linéarisée que celle de 1’in-
version des formes d’onde. Il suffit d’appliquer I’opérateur de modélisation aux images
apres la multiplication par 1’annihilateur. Cette nouvelle approche est proche de I'inver-
sion des formes d’onde dans le sens que le modele optimal est obtenu lorsque la norme
des résidus est minimale. D’un autre c6té, I’approche est toujours basée sur le critere
de cohérence. Le probléme inverse est connu pour €tre plus convexe, au moins pour des
modeles simples. Je compare la nouvelle approche avec d’autres méthodes pour établir
des liens formels entre des méthodes dans le domaine des données et dans le domaine
des images.

Les méthodologies sont analysées sur les jeux de données 2D et au travers de toute
une série de méthodes de vitesse, en particulier des modeles avec la présence de zones de
vitesses plus faibles a I’origine de triplications. Ces modeles ne sont pas nécessairement
appropriés pour la migration par point de tir. J’applique aussi les méthodes au modele
Marmousi pour tester la robustesse. Les principales contributions de ce travail sont (1)
le développement de la migration par point de tir avec amplitude préservée, et surtout le
couplage avec I’analyse de vitesse ; et (2) I’extension de 1’analyse de vitesse au domaine
des données, et le lien entre les domaines données et images.
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2 Chapter 1. Introduction

Résumé du chapitre 1

L’imagerie sismique est tres utilisée pour caractériser les structures géologiques du
sous-sol au travers de 1’analyse des données sismiques, pour ainsi révéler de possibles
ressources souterraines. Le modele de sub-surface est constitué de parametres physiques
comme les vitesses des ondes de pression et de cisaillement ou encore la densité des
roches. Ces parametres controlent la propagation des ondes dans la Terre. En raison des
variations spatiales de ces parametres, les ondes sismiques sont réfractées, réfléchies et
diffractées au cours de la propagation. Des capteurs a la surface enregistrent les on-
des qui ont interagit avec la sub-surface et fournissent ainsi les données pour I’imagerie
sismique. Le traitement géophysique a pour objectif de convertir ces données en im-
ages du sous-sol. Cette étape cruciale est formulée comme un probleme inverse pour
déterminer les meilleurs parametres du modele Terre. Un bon modele sert ensuite pour
I’interprétation géologique, la détermination des forages et le positionnement des puits.
Le probleme inverse est difficulté a résoudre en pratique. Parmi plusieurs raisons, la
fort non-linéarité entre les données et les parametres du modeles joue un role impor-
tant. C’est le cas lorsque le modele correspond aux grandes longueurs d’onde de la
vitesse : un macro-modele qui augmente de 10% ne conduit pas a un champ de pression
qui change dans les mémes proportions, mais modifie le champ d’onde complet, et en
particulier les temps d’arrivées. Cette these ce focalise sur cette thématique.

En ce qui concerne la nature des ondes sismiques, la plupart des méthodes d’imagerie
considere I’approximation acoustique avec les ondes de pression, afin de simplifier les
formulations mathématiques et réduire le colit de calcul. Cette thése est une contribu-
tion a la construction du modele de vitesse dans le cadre de 1’approximation acoustique
isotrope.

Dans I’introduction, je résume brievement les principes de base autour de I’imagerie
sismique dans le contexte de 1’exploration géophysique, et regarde plus particuliere-
ment les approches classiques de la résolution du probleme inverse dans les domaines
des données et des images. Finalement, je motive les développements et j’explique les
principales limitations actuelles des méthodes dans le domaine image et I’intérét a faire
le lien entre les domaines des données et des images.
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Seismic imaging is widely used to characterize the geological structures in the sub-
surface from the analysis of seismic data, and thus to reveal possible resource bear-
ing formations. The subsurface model consists of a set of physical parameters such
as pressure and shear wave velocities or rock density that control the wave propaga-
tion in the Earth. Due to the spatial variations of model parameters, emitted seismic
waves are refracted, reflected and diffracted during propagation. Sensors deployed at
the surface record the waves traveling back to the surface after having interacted with
the subsurface, to provide the data used in seismic imaging. Geophysical processing
can convert those surface measurements into the images of the subsurface. This crucial
step is formulated as the inverse problem aiming at determining the model parameters.
An accurate subsurface model is important for subsequently interpreting the geology,
determining the drilling location, and correctly positioning the wells. The inverse prob-
lem, however, is difficult to solve. Among others, one reason is the highly nonlinear
relationship between data and model parameters. This is the case when the model cor-
responds to the large-scale part of the velocity model: a macro velocity model increased
by 10% does not scale the related pressure field by the same amount, but modifies the
total wavefields, including the arrival times. This thesis especially focuses on this issue.

Regardless of the elastic nature of waves, most seismic imaging methods are based
on acoustic assumptions and involve only pressure waves, to simplify the mathematical
formulation and greatly reduce the computational cost. This thesis is a contribution
related to the velocity model building under the isotropic acoustic approximation.

In this introduction, I first briefly summarize the basic principles behind seismic
imaging in the context of exploration geophysics, and then pay attention to the classic
approaches addressing the inverse problem defined in the data-domain or the image-
domain. Finally, I motivate the research developments by explaining the main limita-
tions of current image-domain methods and by indicating the interest of seeking the
links between image-domain and data-domain methods.

1.1 Seismic imaging principles

In exploration geophysics, seismic experiments are widely used for the subsurface imag-
ing and the reservoir management. The seismic waves can penetrate into the Earth and
thus bring information about the geological structures involved in industrial production,
located at a depth of a few kilometers in the subsurface. Conventional seismic explo-
ration mainly takes advantage of the active seismic experiments, meaning the sources
are artificially triggered, in opposition to the passive earthquake sources used in global
seismology (Lay and Wallace, 1995; Dahlen and Tromp, 1998; Aki and Richards, 2002).
The passive methods, such as interferometry have also been taken into account for ex-
ploration problems nowadays (Schuster et al., 2004; Schuster, 2016). In general, the
study of a physical system can involve three essential elements: observed data, for-
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ward modeling and inverse problem (Tarantola, 2005). In the following, I review the
principles of seismic imaging for exploration problems. Additionally, I also introduce
the concept of scale separation (Claerbout, 1985) distinguishing different wavenumber
components of the model, as it is the basis for many seismic imaging techniques. The
reader is referred to Sheriff and Geldart (1995); Yilmaz (2001) for a broad introduction
to seismic imaging.

1.1.1 Seismic data

Seismic data can be acquired in land and marine environments. In the land case, the
source is usually a truck-mounted seismic vibrator and the receivers called geophones
record the motion of particles. The receivers are typically deployed on both sides of
the source at the surface (Figure 1.1a). In a marine acquisition, the source is an air-gun
and the receivers called hydrophones measure the pressure. The receivers are located on
one side of the source, along several streamers towed by a marine seismic vessel (Fig-
ure 1.1a). Alternatively, the receivers can also be located at the sea floor in an Ocean
Bottom Cable configuration (MacLeod et al., 1999; Plessix and Perkins, 2010). In both
land and marine cases, the presence of a drilled borehole can provide a different acqui-
sition system called Vertical Seismic Profiling (VSP) (Balch and Lee, 1984; Hardage,
1985; Soni, 2014). The source is similar to the one in conventional experiments but
receivers are located within a well (Figure 1.1b). In the cross-well configuration, the
source is a shot-hole dynamite, and sources and receivers are located in two different
wells (Rector, 1995; Zhou et al., 1995; Plessix et al., 2000).

A trace of seismic data is the discrete-time signal measured at a single receiver.
A group of traces recorded for the same source is usually displayed on a panel called
common-shot gather or simply shot gather, with the time on the vertical axis and source-
receiver distance (i.e. offset) on the horizontal axis. The shot gather records various
types of structural responses to the excitated source (Figure 1.2). Particular events, for
example surface waves in land data and ghosts in marine data, are commonly considered
as noise in seismic exploration and have to be removed by preprocessing (Yilmaz, 2001),
whereas global or engineering seismology may benefit from surface waves to character-
ize the near-surface structure (Xia et al., 1999; Socco and Strobbia, 2004; Shapiro et al.,
2005; Pérez Solano, 2013). Among others, body waves are mainly considered in seismic
imaging and can be categorized according to the paths that connect the source and the
receiver. One group is labeled as transmitted waves, involving

e Direct wave — This type of wave travels across the superficial part of the model.
The associated wave path is a straight line if the very shallow zone of the model
is homogeneous;

e Diving wave — Wave-paths can be curved in the case of increasing velocities with
depth. The effect may bend the waves back to the surface and the associated
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(a) Surface acquisitions (taken from Danish Energy Agency)
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(b) VSP acquisitions (taken from Schlumburger)

Figure 1.1 — Acquisition geometries for land and marine environments.

recording is called diving waves. Consequently, this type of waves only has a
limited penetrating depth, especially for short offsets. They may arrive at the
receiver with shorter time than the direct waves at large offsets;

e Refracted wave — With sharp property contrasts existing in the medium, the prop-
agated waves can be refracted for the critical angles along these interfaces and
then later return to the surface.

The other group is identified as scattered waves, consisting of

e First-order scattered wave — The surface excitated waves can be diffracted or re-
flected when it propagates through the strong variations of medium properties.
Interfaces generate reflections and sharp edges trigger diffractions. The first-order
scattered waves are reflected or diffracted only once during propagation. They are
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directly linked to the rapid changes of model parameters. I will focus on this type
of waves in this thesis;

e High-order scattered wave — The multi-scattering is caused by strong medium
property contrasts such as the sea surface or the water bottom. The energy of up-
going first-scattered waves is partly sent back to the subsurface and can reflect or
diffract a few times before being recorded. Their contributions are commonly ei-
ther neglected or removed by the preprocessing (Verschuur et al., 1992; Verschuur,
2006). Alternatively, recent investigations propose to extend seismic imaging to
multiples (Guitton, 2002; Jiang et al., 2005, 2007; Berkhout, 2012; Verschuur and
Berkhout, 2015; Cocher, 2017).

The preprocessing step is an essentially preliminary procedure before determining
the Earth’s model parameters. It consists of selecting the interested events for the subse-
quent analysis and of attenuating noise inherent to field data (see Yilmaz, 2001 for more
details). Some developments attempt to take advantage of all information included in
the data, such as transmissions, multiples, or more generally the full wavefield (see sec-
tion 1.2.1). However, many seismic imaging techniques still rely on primary reflection
data only. In this case, the other events like multiples are considered as noise and should
be removed before the further analysis. The removal of multiples is an intense research
topic (Verschuur, 2006). Here, the thesis only relies on the primary reflected data.

1.1.2 Scale separation

It is difficulty in practice to fully reconstruct the velocity model ¢ with limited acquisi-
tions (Virieux and Operto, 2009). Conventional surface acquisition system usually pro-
vides insufficient low frequencies, limited offsets and/or restricted azimuth coverage in
the observed data. As demonstrated by Claerbout (1985), the model reconstructed from
seismic data lacks intermediate spatial frequencies (i.e. wavenumbers). The recovered
model mainly consists of two separate ranges in the spectrum (Figure 1.3), leading to
the concept of scale separation that distinguishes between perturbation (high wavenum-
bers) and background (low wavenumbers) models (Jannane et al., 1989). The velocity
model c is thus split into two parts,

c(x) = ¢o(x) + de(x), (1.1)

where dc is the reflectivity model and ¢, the macro velocity or background velocity model
(Figure 1.4), according to the associated wavenumber contents. They all depend on
the spatial coordinate x. The full model ¢ can be inverted without scale separation,
as in Full Waveform Inversion (FWI) presented in section 1.2.1. Alternatively, two
main categories of seismic imaging methods have been established aiming at recovering
different scales (Mora, 1989):
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Figure 1.2 — A synthetic example of marine seismic data acquired at the surface: (a) scat-
tered paths in the model; (b) transmitted paths in the model; (c) shot gather recorded at
the surface. The red star denotes the position of the source. Solid, dot dashed and dashed
white lines in (a) denote first-reflected, multi-reflected and multi-diffracted waves, re-
spectively. Solid, dot dashed and dashed white lines in (b) denote direct, diving and
refracted waves, respectively.

e Migration aims at recovering the reflectivity model dc (the high-wavenumber
part). Under the Born approximation, the determination of dc is a linear inverse
problem. Such approaches require an accurate background velocity model cj. 1
will review migration schemes in section 1.2.2;

e Macro velocity estimation seeks the reconstruction of the macro velocity model
co (the low-wavenumber part) that controls the kinematics of the recorded seismic
responses. The macro velocity model is determined with tomographic methods (in
a broad sense) formulated either in the data-domain or in the image-domain (i.e.

before or after migration). I will review tomographic strategies in sections 1.2.3
and 1.3.
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Figure 1.3 — In black, the classic sketch by Claerbout (1985) illustrating the spatial fre-
quencies that can be resolved from seismic data. The gap is now filled by the improved
resolution of tomography (red curve) and by the impact of broadband acquisition on
imaging (blue curve) (from Lambaré et al., 2014).
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Figure 1.4 — A synthetic example of the scale separation for the Marmousi model. The
full velocity model (left) is decomposed into a smooth background velocity model (mid-
dle) and a velocity perturbation model (right).

In seismic imaging, it is common to deal with two types of information included in
the surface measurements: the dynamic and the kinematics aspects. The dynamic aspect
has a direct impact on the amplitudes of the seismic waves. It is related to the reflec-
tion/transmission coefficient, but also depends on the source wavelet, the source and
receiver distributions, etc. On the other hand, the kinematics of wave propagation are
mainly controlled by the long-wavelength part of the velocity model, and the main con-
sequence on the seismic wave is the arrival time. It also has an impact on the amplitudes
due to the geometrical spreading, the attenuation in a dissipative media, etc.

Note that the spectrum gap is significantly filled nowadays (Nichols, 2012; Lambaré
et al., 2014) (Figure 1.3): (1) the improvement of the acquisition system allows record-
ing seismic data with longer offset, wider azimuth and broader frequency band; (2) the
advanced imaging tools can recover the background velocity model with more details.
Nevertheless, scale separation remains the theoretical basis of many conventional and
new imaging methods. This thesis explicitly uses such assumption for the parameteri-
zation of the model.
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Before discussing data-domain and image-domain methods, I first review the main
elements in forward modeling and in the resolution of the inverse problem.

1.1.3 Forward modeling

For subsequent imaging procedures, it is essential to define a physical law that allows
to properly describe the link between the chosen model parameters and the associated
data. It is mathematically formulated as a hyperbolic partial differential equation called
wave equation, which simulates the wave propagation giving a set of model parameters.
In the real Earth, the wave propagation is affected by many subsurface properties. Due
to the high computational cost of simulating the visco-elastic anisotropic wave propa-
gation, I consider only the isotropic acoustic approximation in this thesis. Anisotropy,
elasticity and attenuation are not included. The Earth’s model is thus paramterized by
the pressure wave velocity V), and the rock density p. The reflections are generated from
rapid changes of acoustic impedance I, = V,p. In the constant density case, only the
pressure wave velocity needs to be specified to solve the wave equation. Even for this
simplest assumption, one still has to input a large number of parameters since the model
parameters depend on the spatial coordinates.

The wave equation is commonly resolved by numerical modeling schemes including
finite-difference method (FDM) (Virieux, 1986; Levander, 1988; Etgen and O’Brien,
2007), finite-element method (FEM) (Smith, 1975; Marfurt, 1984), spectrum-element
method (SEM) (Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 1999), etc. In ex-
ploration geophysics, the two main forward modeling tools are FDM and FEM. Moczo
et al. (2010, 2011) compared the two schemes and concluded that the accuracy of the
two methods are comparable with fine samplings. Virieux et al. (2011) have reviewed
the efficiency and complexity of the two methods, and indicated that FDM is widely
used due to its simplicity to implement and the relatively lower computational cost. The
main advantage of FEM is its flexibility in meshing to deal with the boundary condi-
tions and irregular structures. Compared to FDM, it is more numerically expensive and
more difficult to implement. SEM is more applied for global seismology scale problems
(Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 1999; Fichtner, 2011). Some
investigations proposed to use SEM on the exploration scale (Luo et al., 2009, 2013),
but SEM is very demanding in terms of the computational cost and its grid meshing
requires a priori knowledge of the subsurface structure. This thesis will concentrate on
simulating the wavefield with FDM.

The modeling can also rely on the ray theory, which is based on the high-frequency
asymptotic approximation of the wave equation (Cerveny, 2005). The propagation of
waves in the subsurface is described by rays sharing the similar propagation laws used
in optics (Cerven)’/ et al., 1977; Chapman, 2004). For this scheme, the Green’s function
can be decomposed into three parts: one corresponding to the traveltime, one to the
amplitude and one to the source signature. In a given velocity model, the traveltime can
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be simulated either by ray-tracing strategy (Julian, 1977; Cerveny, 1987), or by solving
the Eikonal equation (Vidale, 1988; Podvin and Lecomte, 1991; Qin et al., 1992).

In this thesis, I only focus on wave-equation-based modeling methods (in particular
FDM) and ray-based modeling methods will not be considered, except for analyzing the
main effects of wave-equation operators on the data.

1.1.4 Inverse problem
Objective function

The inverse problem consists of defining a scalar objective function (also called cost
function) to evaluate the accuracy of model parameters used for modeling. It is de-
signed such that the best model corresponds to the global maximum or minimum in the
objective function. In the data-domain, the objective functions can be defined by mea-
suring the misfit between observed and modeled data, typically in the least-squares sense
(Tarantola, 1984a; Pratt et al., 1998). Alternatively, the data misfit can also be assessed
using other schemes such as crosscorrelation (Luo and Schuster, 1991; Van Leeuwen
and Mulder, 2010), deconvolution (Luo and Sava, 2011; Warner and Guasch, 2016), op-
timal transport distance (Métivier et al., 2016), Huber norm (Guitton and Symes, 2003),
etc. On the other hand, one can first migrate the data and then formulates the objective
functions in the image-domain, with semblance principle (see section 1.3 for details),
measuring the level of coherency or focusing of reconstructed reflectivity images of the
Earth (Al-Yahya, 1989; Symes and Carazzone, 1991; Sava and Biondi, 2004; Symes,
2008).

In seismic imaging, the inverse problem generally seeks a set of model parame-
ters minimizing the objective function. However, it is in practice an ill-posed problem
(Tarantola, 1984a; Scales et al., 1990; Virieux and Operto, 2009). The solution is not
unique, meaning that there are probably several models that can perfectly explain the
data for a given noise level. Some regularizations are conventionally applied to make
the inverse problem better posed (Tikhonov et al., 1977; Menke, 1984; Hansen, 2000;
Asnaashari et al., 2013). The non-uniqueness problem results from various reasons in-
cluding the imperfect acquisition and the crosstalk among different physical parameters
(Tarantola, 2005). Most of the seismic surveys are located at the surface of the Earth and
the offsets are limited, leading to insufficient illumination of the subsurface, especially
in the area with complex geological structures (e.g. salt body and gas clouds). Conse-
quently, some of the subsurface model parameters may be poorly or even not sampled,
such that they cannot be retrieved by analyzing the measurements. For example, the lo-
cal change of seismic velocity and attenuation property may produce similar reflection
coefficients (Mulder and Hak, 2009; Hak and Mulder, 2010). To reduce the crosstalk,
a proper parameterization is needed, for which the model parameters are less coupled
(Virieux and Operto, 2009; Zhou et al., 2015; He and Plessix, 2017).
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Optimization scheme

Inverse problem aims at determining a set of model parameters minimizing the objective
function through an optimization procedure. One possible solution is the global opti-
mization methods (also called the global search methods) (Sen and Stoffa, 2013), which
explore the whole model space to determine the optimum choice. Such schemes require
the ability to calculate the value of the objective function and to properly sample the
model space. For example, Monte Carlo methods (Jin and Madariaga, 1994; Sambridge
and Mosegaard, 2002), simulated annealing (Ingber, 1989; Mosegaard and Vestergaard,
1991; Scales et al., 1992; Misra and Sacchi, 2008) and generic algorithms (Gallagher
et al., 1991; Sambridge and Drijkoningen, 1992; Jin and Madariaga, 1993) have been
applied to the geophysical inverse problems. The main limitation of these schemes is
the computational cost because they require evaluating the objective functions numerous
times.

On the other hand, a realistic alternative is the local optimization methods (also
called gradient-based methods), applicable if the objective function does not contain
local minima. Examples of this family are steepest descent methods (Lines and Treitel,
1984; Tarantola, 1984a), nonlinear conjugate gradient methods (Fletcher and Reeves,
1964; Portniaguine and Zhdanov, 1999; Luo and Schuster, 1991), Gaussian-Newton
methods (Shin, 1988), quasi-Newton methods (Nocedal, 1980; Nash and Nocedal, 1991)
and Newton methods (Santosa et al., 1987; Pratt et al., 1998; Métivier et al., 2013).
For these schemes, the model is iteratively updated such that the value of the objective
function decreases with iterations (Figure 1.5). The direction of the model update at each
iteration is determined by calculating the gradient of the objective function with respect
to model parameters, and possibly the inverse of the Hessian to take into account the
local curvature of the objective function. The adjoint-state technique (Chavent, 1974;
Plessix, 2006) provides an efficient way to derive of the gradient of the objective function
with respect to model parameters.

Starting

' Gradient

cost

Global cost minimum

v

Figure 1.5 — Schematic for local optimization methods.
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The nonlinear relationship between data and model parameters is an intrinsic dif-
ficulty for the local optimization procedure: the objective function is not necessarily
convex and it may converge towards a local minimum instead of the global one (Bunks
et al., 1995). Therefore, it is important to start from an initial model close enough to
the true model (Beydoun and Tarantola, 1988; Pratt et al., 2008). The alternative is to
develop a multi-scale approach and to start with the low-frequency content of the data.
The presence of low-frequency content in the observed data can relax the requirement
for the initial model (Sirgue, 2006): for example, the classical least-squares objective
function has an enlarged basin of attraction. I will explain the nonlinear issues more in
section 1.2.1. Strategies to define the objective functions with better convex property
will be reviewed in sections 1.2.3 and 1.3.

I have reviewed the seismic imaging principle in this section. In the following sec-
tion, I review the inverse problems formulated in data-domain and image-domain, as
I will investigate the links between two families later in Chapter 4. Although mod-
eling aspects with ray theory were reviewed in section 1.1.3, I will only investigate
the wave-equation-based methods in the following Chapters, except for analyzing the
wave-equation operators. The rays can emphasize the kinematics of wave propagation
in the subsurface. However, ray-based methods poorly behave for sampling the shadow
zone (a low velocity anomaly area) (Moser, 1991). Ray-based methods have built-in
disadvantages including the limited resolution of recovered model (a ray travels trough
a infinitesimally narrow path inside the model) and the instability dealing with strong
heterogeneities (Diaz et al., 2014; Wang et al., 2014). I now detail the classic inverse
problems defined in the data-domain, and the principle of image-domain techniques will
be reviewed in section 1.3. Note that a tomographic mode corresponds to the update of
macromodel ¢, and a migration mode to the update of model perturbation dc as men-
tioned in section 1.1.2.

1.2 Data-domain methods

The data-domain methods measure the misfit between observed and modeled data to
evaluate the quality of an estimated model (Tarantola, 2005). Under the isotropic acous-
tic approximation, the model ¢ corresponds to the pressure wave velocity field. In sec-
tion 1.2.1, I first review the FWI strategy, which uses the full recorded data to recon-
struct ¢ without any scale separation. Then, in section 1.2.2, I introduce the migration
technique as a linearized waveform inversion problem. The method relies on the scale
separation assumption and is dedicated to recovering the small scale structure dc. The
reconstruction of the background model ¢y is challenging. Traveltime tomography has
becomes a standard for estimating the macro velocity model ¢ in the oil and gas industry
since last 90s (Woodward et al., 2008; Nichols, 2012; Lambaré et al., 2014). However,



1.2. Data-domain methods 13

it is a ray-based technique and will not be discussed here. I will detail alternative wave-
equation-based strategies which behave in a tomographic mode in section 1.2.3. More
technical details will be provided in Chapter 2.

1.2.1 Full Waveform Inversion
Formulation and resolution

Full Waveform Inversion (FWI) is a technique for seismic imaging which has gained
popularity with the increase of computer powers. It defines a nonlinear inverse prob-
lem in the data-domain, which seeks a set of model parameters minimizing the misfit
between observed and modeled data in the least-squares sense. Originally, Lailly et al.
(1983); Tarantola (1984a) introduced the data misfit as a similarity estimation in the
time-domain. Alternatively, the problem is formulated in the frequency-domain Pratt
and Worthington (1990). The frequency-domain FWI is equivalent to time-domain FWI
when all frequencies are considered simultaneously (Pratt et al., 1998). The reader is
referred to Virieux and Operto (2009); Fichtner (2011) for more details.

FWI considers the full wavefields, and the recovered subsurface image should in-
clude both the large and small scale structures of the velocity model. The contribution
of different types of waves in the estimation of the velocity model can be analyzed via
the following relationship (Devaney, 1982; Miller et al., 1987),

2w 0

k= ~ cos(é)n, (1.2)
linking the wavenumber k at an spatial point x to the angular frequency w and to the
opening angle 6 related to a source-receiver pair; n is the normalized vector of k (Fig-
ure 1.6). The low-frequency content in data can thus induce small-wavenumber (i.e.
long-wavelength) updates of the model, whereas the high-frequency corresponds to the
large-wavenumber (i.e. short-wavelength) updates. On the other hand, the data from
long-offset is related to large scattering angles and can result in small-wavenumber up-
dates. Hence, low frequencies and large offsets are preferred for a tomographic update
(Alkhalifah and Plessix, 2014). However, the recorded frequencies and surface offset
ranges are limited in practice. In the shallow part of the subsurface, the diving waves
correspond to large diffraction angles, allowing to retrieve small-wavenumber contents
of the subsurface model. Differently, the deep part is mainly sampled by reflected waves
with a small diffraction angle due to the limited surface offset range. Thus, only the
high-wavenumber part of the model can be recovered, meaning that FWI behaves in
a migration mode in this case (Mora, 1989). In section 1.2.3 and 1.3. I will present
some approaches that can extract the long-wavelength part of the velocity model from
the reflected data.
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Figure 1.6 — Illustration of the relationship between the wavenumber k = k; + k, and
the opening angle # (adapted from Alkhalifah and Plessix, 2014).

Multi-parameter inversion

FWI includes in principle all types of waves (both transmitted and scattered waves)
for resolving different model parameters (velocity, density, anisotropy, attenuation).
The multi-parameter estimation requires a modeling engine capable of reproducing the
physics of wave propagation as accurate as possible (Warner et al., 2013). This is a
first difficulty, since the real Earth is a complex poro-visco-elastic medium, and the
implementation is more computational demanding than for the acoustic approximation
of the wave equation. The simultaneous inversion of several parameters is a more se-
vere challenge, as different parameters may have coupling effects and sensitivities with
various orders of magnitude, making the inversion poorly conditioned. Operto et al.
(2013); Prieux et al. (2013a); He and Plessix (2017) proposed guidelines to design multi-
parameter strategies for FWI, typically by only inverting for v, in a first step. In practice,
many approaches only invert for v, with other fixed model parameters, because of the
difficulties for multi-parameter estimation (Operto et al., 2013).

Cycle skipping effects

It is well known that the FWI objective function suffers from local minima due to the
nonlinear relationship between data and model parameters (Gauthier et al., 1986). This
issue is so-called cycle-skipping effects (Bunks et al., 1995). In theory, global optimiza-
tion methods may properly deal with this problem, but this is not yet a realistic choice
for FWI due to the heavy computational cost, except recent attempts in 2D (Sambridge
and Mosegaard, 2002; Misra and Sacchi, 2008; Sen and Stoffa, 2013). local optimiza-
tion methods are less expensive but they require a starting model close enough to the
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true model (Beydoun and Tarantola, 1988; Pratt et al., 2008). More precisely, the phase
mismatch between observed and modeled data should be less than half a period recorded
in the data. For example, Figure 1.7 presents three examples with different phase shifts
in data: less than half a period, equal to zero and more than half a period. The first ex-
ample mimics the data generated from the model sufficiently close to the true model and
can converge towards the global minimum, whereas the third one is cycle skipped. The
presence of low-frequency contents in observed data can relax the requirement for the
initial model (Sirgue, 2006), as the associated objective function has an enlarged basin
of attraction around the correct velocity (Figure 1.8). In theory, the basin of attraction of
the misfit function is inversely proportional to the central frequency of the data (Bunks
et al., 1995; Pratt et al., 1996; Sirgue and Pratt, 2004).

Observed data Modeled data
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Time
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Time shift

Figure 1.7 — Illustration of the origin of cycle skipping effect. Local optimization con-
verges towards the global minimum for the modeled data with smaller time shift er-
ror (left pink circle), whereas it converges towards the local minimum for the modeled
wavelet with larger time shift error (red star). The black arrows mark the descent direc-
tions.

To deal with this issue, the multi-scale strategy can mitigate the nonlinearity, by
progressively performing the inversion on data from low-frequency to high-frequency
and from long-offset to short-offset (Bunks et al., 1995; Shipp and Singh, 2002; Sirgue,
2006; Virieux and Operto, 2009; Wang et al., 2014). As already mentioned in the reso-
lution part, data recorded with the low-frequency and large-offset allow recovering the
long-wavelength part of the velocity model, such that the attraction basin of the objec-
tive function can be enlarged. In addition, the large-offset recording introduces more
transmitted waves in data (Shipp and Singh, 2002). This multi-scale strategy has been
successfully applied to real data in marine (Sirgue et al., 2009) and land (Plessix et al.,
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Figure 1.8 — Same as for Figure 1.7, but the low-frequency content is involved in the ob-
served and modeled data. The cycle skipped case (red star) in Figure 1.7 now converges
towards the global minimum with the help of low-frequency.

2010) cases. However, the required low frequencies (< 1 Hz) for exploration problems
are very difficult to acquire during controlled-source experiments (Virieux and Operto,
2009), and the large-offset acquisition is expensive since the penetration depth of diving
waves is only one third to one sixth of the largest offset, depending on the experience
(Zhou, 2016).

Alternatively, the definition of the FWI objective function can be modified to enlarge
the basin of attraction around the correct velocity model, avoiding falling into the local
minimum. Several alternative methods will be detailed in section 1.2.3.

1.2.2 Linearized waveform inversion

I first introduce the migration technique as a linearized waveform inversion problem.
The migration approach developed later in Chapter 3 is a wave-equation-based scheme,
but I will review some ray-based migration techniques in this section, as ray theory has
played an essential role in the historical development of migration, including recently
for the derivation of direct approaches.

Classic migration

The purpose of migration techniques is to recover the reflectivity image as velocity per-
turbations of the Earth’s interior. These methods are based on the scale separation con-
cept and assume that the macro velocity model is known. They were mainly designed



1.2. Data-domain methods 17

for primary reflections, and can be extended to multiple reflections (Guitton, 2002; Jiang
et al., 2005; Muijs et al., 2007; Cocher et al., 2015).

The early migration techniques are based on ray theory. The ray-based family mainly
refers to ray+Kirchhoff (French, 1975; Schneider, 1978; Gray, 1992) or ray+Born (Bey-
doun and Mendes, 1989; Thierry et al., 1998; Operto et al., 2000) migration. The former
is an integral approximation to the wave equation, explicitly expressing how recorded
traces contribute to the reflectivity images (Figure 1.9). The ray+Born approximation
differs from ray+Kirchhoff method by the description of the perturbation components of
the model (i.e. in terms of velocity and density perturbations or in terms of specular re-
flectivity, respectively) (Lambaré et al., 2003; Operto et al., 2003). Ray-based methods
are flexible and efficient, but rays are only asymptotic solutions of the wave equation,
such that they are not always adequately effective in imaging extremely complex struc-
tures, for example in the presence of hard layers and salt bodies.
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Figure 1.9 — The principle of Born modeling: (a) calculation of traveltime; (b) Kirchhoff
hyperbola on seismogram. (adapted from Pyun and Shin, 2008)

Later, reflectivity imaging was reformulated as wave-equation-based migration tech-
niques. These approaches can be further divided into one-way wave-equation migration
(namely wavefield extrapolation migration, WEM) (Bamberger et al., 1988; Ehinger
et al.,, 1996) and two-way wave-equation reverse time migration (RTM) (McMechan,
1983; Baysal et al., 1983), depending on how the lateral variations of velocities are
introduced. WEM methods use paraxial approximation of the wave equation. WEM
is properly defined within certain angles around the main direction but fails to handle
wider angles, especially those near or beyond 90°. RTM solves the full wave equation
and shows its superiority over other methods in dealing with steep dipping angles and
complex velocity models (Mulder and Plessix, 2004). The wave propagation in the sub-

surface can be characterized more accurately using the two-way propagator compared
to the case of one-way. (Mulder, 2008; Gao and Symes, 2009). Biondi and Shan (2002)

showed the potential of RTM for imaging overturned reflections.
These wave-equation-based methods are commonly implemented through imaging
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condition concept introduced by Claerbout (1971). The reflectivity model is updated
where a downgoing incident wavefield coincides in time and space with an upgoing
receiver wavefield (Figure 1.10). The procedure consists of three steps: (1) propagate the
source wavelet from the source position to determine the downgoing source wavefield;
(2) backpropagate the observed data from the receiver position to determine the upgoing
receiver wavefield; (3) apply the imaging condition to determine the reflectivity image
of the subsurface. Many formulations exist for the imaging condition and the most
common one is the zero-lag crosscorrelation of the source and receiver wavefields. The
procedure is repeated for every shot, with a summation over sources to reduce the signal
to noise ratio, or with an image per shot. On the other hand, the consistency among
different images can also be used as information. This is the basic principle of MVA
techniques presented in section 1.3.

Source Receiver

Backward

Forward residual field

incident field

Contribution to migrated image
where the two fields coincide in
time and space

Figure 1.10 — Description of imaging condition for a simple reflector.

This migration algorithm was recognized as the first iteration of FWI, the least-
squares data-fitting inverse problem, by Lailly et al. (1983); Tarantola (1984b) (Fig-
ure 1.11). Under the first-order Born approximation, it is formulated as a linearized
waveform inversion (@stmo et al., 2002). Assuming the background velocity model
¢o is known, it aims at determining the model perturbation dc that best reproduces ob-
served data. Compared to FWI introduced in the previous section, the forward modeling
is linear in the migration case.

The conventional migration is in fact the adjoint operator of the Born modeling
(Claerbout, 1992). Although the adjoint is useful to qualitatively estimate the pertur-
bation model, it is not exactly an inverse and cannot correctly estimate the amplitudes
of migrated images. Consequently, one cannot accurately reproduce the amplitudes of
seismic data from the migrated images, even if a correct background model is given. In
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Figure 1.11 — Description of iterative migration.

practice, the reproduced data is only kinematically correct, in the sense that the major
event is located at the same position as the original data, but the amplitudes are of dif-
ferent magnitudes (Figure 1.12). Moreover, the reproduced data also suffers from artifi-
cial direct arrivals (marked by arrows in Figure 1.12c) related to the migration artifacts
(marked by arrows in Figure 1.12b). Classical migration methods lead to artifacts, such
as migration smiles, due to the limited aperture in observed data. Briefly, the migrated

images are not the solution minimizing the objective function for linearized waveform
inversion.
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Figure 1.12 — Illustration indicating that migration cannot completely reproduce the
data: (a) observed data, (b) migrated image with correct macro velocity model, and (c)
modeled data with image (b) in the correct macro velocity model. The artificial direct
arrivals in panel (c) correspond to migration artifacts in panel (b). The observed and
modeled data are in phase, but their amplitudes are different.
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True-amplitude migration: iterative migration versus direct inversion

Standard migration methods are designed to produce kinematically accurate images of
the subsurface, but are not aimed at preserving the amplitudes in migrated images. The
quantitative methods are preferred as they compensate for geometrical spreading losses,
uneven illuminations and deconvolution. The quantitative migration can be retrieved by
seeking a perturbation model in which the modeled data best fit the observed data in
the least-squares sense (Ronen and Liner, 2000). To solve the minimization problem,
a first solution is to use the inverse of the Hessian matrix, the second derivatives of the
objective function with respect to model parameters, which is prohibitively expensive
to compute and to store directly. It is more feasible, either to use a gradient-based
iterative algorithm as in the FWI approach, or to directly solve the inverse problem by
approximating the impact of the Hessian. This leads to two types of true-amplitude
migration methods: iterative migration versus direct inversion.

The initial implementation of iterative migration was carried out with ray-based mi-
gration (Lambaré et al., 1992; Nemeth et al., 1999; Duquet et al., 2000). Then, it was
developed for WEM (Duquet, 1996; Kiihl and Sacchi, 2003; Clapp et al., 2005), and
more recently for RTM (Dai et al., 2012; Liu et al., 2013; Zhang et al., 2014a; Xue et al.,
2014). Such approaches can be extended from acoustic to elastic (Forgues and Lambaré,
1997; Yan and Sava, 2008) and to visco-elastic (Ribodetti and Virieux, 1998; Dutta and
Schuster, 2014). It has been demonstrated that iterative migration significantly improves
the resolution of the migrated image and effectively attenuates migration artifacts (Fig-
ure 1.13), especially in the case of incomplete observed data (Nemeth et al., 1999; Kiihl
and Sacchi, 2003) and of complex geology Zeng et al. (2017). However, the strategy
is expensive in terms of computational cost as the optimization usually requires several
iterations to converge. Thus, it is very computationally demanding to couple iterative
migration to macro velocity estimation techniques (Zhou, 2016; Cocher et al., 2017b),
and in practice the proper regularization and preconditioner are required for a faster
convergence (Fomel, 2007; Dai et al., 2012; Cocher et al., 2017b).

Direct inversion replaces migration, the adjoint of the Born modeling operator, by an
explicit pseudo-inverse formula. Assuming an infinite recording aperture, these schemes
derive the formula represented by an integral equation similar as in the migration case.
This inverse formula makes the Hessian matrix close to a Dirac function leading to a bet-
ter conditioned problem. The quantitative weight can either be directly used (Beylkin,
1985; Bleistein, 1987; ten Kroode, 2012; Hou and Symes, 2015), or act as a precon-
ditioner in conjunction with iterative migration to boost the convergence (Qin et al.,
2015; Hou and Symes, 2016b; Duprat and Baina, 2016; Cocher, 2017), leading to a
more efficient application. Direct inversion was initially proposed for ray-based meth-
ods (Beylkin, 1985; Bleistein, 1987; Lambaré et al., 1992; Lameloise, 2015). Later, it
was developed for WEM (Zhang et al., 2005, 2007; Joncour et al., 2011), and more
recently for RTM (Op’t Root et al., 2012; ten Kroode, 2012; Zhang et al., 2014a; Hou
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(b)

Figure 1.13 — Conventional RTM (a) and least-squares RTM (b) images of the synthetic
salt model based on a GOM survey (adapted from Zeng et al., 2017).

and Symes, 2015; Lameloise, 2015; Qin et al., 2015; Duprat and Baina, 2016; Chauris
and Cocher, 2017). Table 1.1 presents a non exhaustive review of published direct in-
version approaches. Note that some of the direct inversion schemes require an accurate
background velocity model (Zhang et al., 2007; Zhang and Sun, 2009), and the others
do not (ten Kroode, 2012; Hou and Symes, 2015; Li and Chauris, 2017). For the latter,
the model space is extended with an extra parameter (e.g. shot position) such that the
dimensions for model and data spaces are equivalent.

For the works of ten Kroode (2012); Hou and Symes (2015); Qin et al. (2015);
Chauris and Cocher (2017), the asymptotic of ray theory justifies the derivation of the
inverse formula, but no ray quantities are present in the final result. Bleistein et al. (2005)
explained the remarkable fact: the calculation of Beylkin determinants (Jacobian of
transformation between model parameters and acquisition surface coordinates) produces
the reciprocal geometrical amplitudes and other ray-dependent terms. It is a way to
remove the effect of geometrical spreading. In this thesis, I develop a common-shot
direct inversion in Chapter 3 and then couple it to various velocity estimation techniques
for a better robustness in Chapters 3 and 4.

1.2.3 Alternative methods
Alternatives to FWI objective function

To get rid of the cycle-skipping effects, alternative techniques have been developed,
modifying the definition of the classic FWI least-squares objective function to enlarge
the basin of attraction around the correct velocity model. In this subsection, I con-
sider methods that do not rely on the scale separation. Many researchers have proposed
alternative functions to converge towards the global minimum in the absence of low-
frequency and long-offset information (Van Leeuwen and Mulder, 2010; Bozdag et al.,
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Table 1.1 — Non exhaustive review of published direct inversion approaches. For
subsurface-offset and common-angle domains, the reader is referred to section 1.3.2.

Subsurface-offset or Surface-offset or
common-angle domain common-shot domain
Xu and Lambaré (2004): Beylkin (1985); Bleistein

Ray-based (1987); Lambaré et al.

(1992), etc.
One-way wave- Zhang et al. (2007); Joncour
equation-based et al. (2011), etc. Zhang et al. (2005), et.
ten Kroode (2012); Zhang Op’t Root et al. (2012); Qin

Lameloise (2015), etc.

Two-way wave- et al. (2014a); Hou and et al. (2015); Duprat and
equation-based Symes (2015); Chauris and Baina (2016); Li and Chauris
Cocher (2017), etc. (2017), etc.

2011; Liuetal., 2011b; Wu et al., 2014; Warner and Guasch, 2016; Métivier et al., 2016).
There are two distinguished principles to design such an objective function (Bharadwaj
et al., 2015): (1) give more weight to the kinematic error, or (2) transfer the data to
a reduced form (e.g. envelope). Both aim at inferring a tomographic update for ve-
locity model. They allow to mitigate the cycle-skipping issues but the retrieved model
generally has a lower resolution than conventional FWI.

Van Leeuwen and Mulder (2010); Luo and Sava (2011); Chi et al. (2015) proposed
the crosscorrelation-based objective function by computing the crosscorrelation factor
between observed and modeled data. The correct velocity model is associated to fo-
cusing energy at zero temporal delay. This function does not properly handle multiple
arrivals. Bozdag et al. (2011); Wu et al. (2014); Chi et al. (2014) proposed to design
the objective function evaluating the misfit between observed and modeled data after
the application of the envelope transform. The major advantage is that the reduced seis-
mic signals are less oscillating, reducing cycle-skipping effects. But the technique is
sensitive to small amplitude noise. Warner and Guasch (2014, 2016) developed Adap-
tive Waveform Inversion (AWI), defining an objective function based on the non-causal
Wiener filter. Wiener coefficients are retrieved by deconvolving modeled data with ob-
served data. The method penalizes the Wiener coefficients with a weighting factor de-
fined as the temporal lag. Since the adjoint source of AWI is mathematically in phase
with modelled data, an immunity to cycle skipping effect is then expected. Warner and
Guasch (2016) showed that AWI can properly deal with synthetic data dominated by the
reflected arrivals. They further indicate that Wiener filter based AWI is less sensitive to
errors in the source wavelet than conventional FWI. Luo and Sava (2011) compared the
behaviors between crosscorrelation-based and deconvolution-based objective functions.
Bharadwaj et al. (2015) came up with a strategy using an auxiliary bump functional
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for inversion. The approach squares and subsequently smooths the data to enhance the
long-period content of the data. The bump function is not sensitive to the sign of data,
such that it is only used as a guide for conventional FWI to converge at a global mini-
mum. More recently, Métivier et al. (2016) introduced the optimal transport distance to
evaluate the data residual. More technical aspects about these methods will be provided
in Chapter 2.

Wave-equation traveltime tomography

Wave-equation traveltime tomography method (WETT) extends the conventional trav-
eltime tomography by taking into account the finite-frequency nature of seismic data.
The readers are referred to Woodward et al. (2008); Lambaré (2008); Lambaré et al.
(2014) for recent reviews of conventional traveltime tomography techniques, as the fo-
cus of this thesis is related to waveform inversion. Luo and Schuster (1991) proposed
to crosscorrelate the first arrival events in the observed and modeled data trace by trace,
to extract the temporal lags maximizing the crosscorrelation. Then they seek a veloc-
ity model minimizing these temporal lags in the least-squares sense. This procedure is
similar to minimizing the picked traveltime residuals, but the traveltime error might not
be equivalent to the extracted time-lag because of possible errors in the source wavelet
used for modeled data (Van Leeuwen and Mulder, 2010). WETT uses the same forward
modeling kernel and optimization scheme as FWI, whereas the objective functions are
different (time-lag versus data misfit). Although WETT behaves in a tomographic mode
similar to the conventional traveltime tomography, it is more realistic due to the wave-
equation-based modeling and the finite-frequency attribute (Zhao et al., 2000). WETT
proves to be stable in the presence of low velocity anomalies in the model (Priolo and
Chiaruttini, 2003).

Reflection Waveform Inversion

Reflection Waveform Inversion (RWI) is a technique dedicated to extract the macro ve-
locity model from reflection data (Xu et al., 2012; Brossier et al., 2015; Wu and Alkhal-
ifah, 2015; Zhou et al., 2015). It is derived from migration based traveltime tomogra-
phy (MBTT) (Chavent et al., 1994; Plessix et al., 1995). RWI either assumes the scale
separation between short-wavelength and long-wavelength parts of the velocity model
(Xu et al., 2012) or relies on the parameterization of the impedance and the velocity
models to naturally separate different scales (Zhou, 2016). The short-wavelength and
long-wavelength parts are updated with an iterative relaxation method. The reflectivity
is first inverted in a given macro velocity model with only the short-offset data. Then,
the modeled data with longer offset are produced from the inverted reflectivity. Finally,
the macro velocity model is updated by minimizing the misfit between observed and
predicted reflection data. One repeats these steps until convergence (Zhou, 2016). RWI
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aims at reproducing the data from the reflectivity model such that a true-amplitude mi-
gration scheme must be considered. The conventional migration (an adjoint operator) is
not enough as it can only reproduce the kinematics of the data without properly dealing
with the amplitudes, even if the given macro velocity model is correct.

In terms of resolution, Alkhalifah and Wu (2017) indicate that RWI is similar to
the velocity analysis scheme proposed by Symes and Carazzone (1991), behaving in
a tomographic mode. RWI retrieves the information about the macro model between
the image points and the surface, allowing to recover the long-wavelength part of the
velocity model in deep areas only reached by reflected data. RWI can be extended to
elastic (Guo and Alkhalifah, 2016) and multiple (Staal, 2015; Zhou, 2016) cases.

Differential waveform inversion

Differential Waveform Inversion (DWI) is a technique to assess the macro velocity
model quality using the reflection data (Chauris and Plessix, 2012, 2013). The approach
is formulated in the data domain and relies on the scale separation assumption. As for
RW]I, it consists of two main steps: an image section is migrated from a given shot gather
and used to calculate synthetic data for the next shot; then the macro model is updated
by minimizing the difference between the predicted shot and the observed shot at the
next shot position. These two steps formulates a nested optimization loop. This pro-
cedure is inspired by the image quality assessing criteria established for image-domain
methods presented in section 1.3. In Chapter 4, I investigate the relationship between
objective functions defined in the data-domain and the image-domain along the same
line as Chauris and Plessix (2012).

DWI is based on a combination of successive migration and demigration steps. In
that perspective, it is similar to the MBTT method (Chavent et al., 1994; Plessix et al.,
1998), to the crosscorrelation method (Van Leeuwen and Mulder, 2010) and to the ap-
proach proposed by Staal and Verschuur (2012). More importantly, it is similar to RWI
due to several reasons: (1) both methods rely on the scale separation assumption; (2)
true-amplitude migration is essential for both methods; (3) they all explicitly or im-
plicitly introduce the image domain coherency criteria into data-domain; (4) DWI is a
nested optimization procedure, whereas RWI (Xu et al., 2012) assumes the reflectivity
and macromodel are independent. The alternative of DWI will be investigated in Chap-
ter 4 to discuss the possible links between image-domain and data-domain methods. The
differences between RWI and DWI will also be discussed in Chapter 4.

1.3 Image-domain methods

I present in this section the inverse problem formulated in image-domain. This is the
class of methods which will be mainly investigated in this thesis. Image-domain meth-
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ods rely on the fact that seismic data are redundant. Given an macro velocity model, a
set of migrated images can be constructed with different subsets of the data, for exam-
ple one image corresponding to a shot gather (Al-Yahya, 1989). With a correct macro
model, the recovered reflectivity images corresponding to different shot experiments
should be kinematically coherent, in the sense that the reflectors/diffractors in different
images should be located at the same position of the subsurface if they correspond to the
same structures (Al-Yahya, 1989). Otherwise, the incoherencies among different images
are attributed to an incorrect macro velocity model. Migration Velocity Analysis (MVA)
is the family of techniques based on this principle (Symes, 2008).

Historically, MVA emerged as an extension of the Normal Move Out (NMO) correc-
tion procedure. The data set is first sorted into panels called common midpoint gathers,
depending on surface-offset and time. Assuming the Earth’s structure is horizontally
homogeneous, in a common midpoint gather, the reflection traveltimes are a function
of surface-offset following hyperbolic shapes. The process of NMO correction seeks
a 1D velocity model that best explains the hyperbolas. The reader is referred to Yil-
maz (2001) for more details. This method is limited to the case of simple models and
Al-Yahya (1989) extended it to the image-domain to handle more complex structures.

Many wave-equation based MVA approaches have been proposed (Biondi and Sava,
1999; Sava and Biondi, 2004; Biondi and Symes, 2004; Mulder, 2008, among others).
MVA aims to retrieve the macro velocity model, relying on the scale separation and the
Born approximation. According to the formalism introduced by Symes (2008), different
MVA approaches can be distinguished along these lines:

e the choice of redundant parameter: the data is migrated to the image-domain pa-
rameterized with an additional parameter representing the redundancy of seismic
data. For example in 2D, the migrated sections dc(z, z, s) are parameterized by
lateral position z, depth z, and the redundant parameter — shot position s. I discuss
in section 1.3.2 alternatives for the redundant parameters;

e the choice of a coherency or focusing criterion assessing the image quality: it
depends on the choice of the redundant parameter. For example, the coherency
principle will be considered if the redundant parameter corresponds to the shot
position, and the analysis is performed on the panel called Common Image Gather
(CIG) representing a section of the reflectivity volume a fixed lateral position as
a function of depth and the extra parameter. The observed data provide a natural
reference for assessing the quality of velocity model in the data-domain, whereas
there is no such obvious reference in the image-domain. Instead, the objective
function is defined based on the coherency or focusing criterion, and the partial
derivative of this function with respect to the image is commonly called image
residual (versus data misfit).

The technical aspects will be detailed in Chapter 2.
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In the following, I present the principle of two MVA families: the redundant param-
eter is related to the acquisition parameters in the surface-oriented approach, whereas
the extra parameter is an artificial parameter introduced during the construction of the
migrated image in the depth-oriented approach.

1.3.1 Surface-oriented MVA

A choice for the redundant parameter related to the acquisition is the shot position (Al-
Yahya, 1989; Symes and Kern, 1994; Huang and Symes, 2015) or the source-receiver
offset (distance between source and receiver) (Chauris and Noble, 2001; Rickett and
Sava, 2002; Mulder and ten Kroode, 2002). The image volume can be constructed from
different subsets of seismic data, such as common-shot or common-offset gather. The
surface-oriented CIGs are then built by collecting images upon the redundant parameter.
The idea of surface-oriented M VA is that images obtained from several experiments are
supposed to be independent of the extra parameter. Consequently, events on these CIGs
should be horizontal if they are constructed with the correct macro velocity model. An
example of this procedure for the source-receiver offset case is presented in Figure 1.14.

Events in CIGs are not horizontal any more if the macro velocity model is incorrect.
For a single horizontal reflector embedded in homogeneous background velocity model,
they curve upward for a too low velocity model and downward for a too high veloc-
ity model. Then, CIGs can be analyzed by semblance criterion (Chavent and Jacewitz,
1995), which first stacks images over the extension parameter and then defines an objec-
tive function to measure the energy of the stack. For the correct macro velocity model,
the images from different subsets of data are coherent and thus the stack energy is ex-
pected to be maximal, meaning that the best model indeed corresponds the maximum
of the objective function. This objective function has a large basin of attraction around
the correct macro velocity model. However, it may exhibit oscillations away from the
correct model (Chauris and Noble, 2001). One can also correct the Residual Move Out
(RMO) in prestack depth migrated common image point gathers for velocity analysis
(Woodward et al., 1998; Xie and Yang, 2008).

Alternatively, Symes and Carazzone (1991) proposed Differential Semblance Opti-
mization (DSO) strategy, defining an objective function that computes the derivative of
images with respect to the redundant parameter, to measure if the events on CIGs are
horizontal (Chauris and Noble, 2001). Compared to semblance criteria, the DSO ob-
jective function demonstrates a more convex behavior that allows the local optimization
scheme converging towards the global minimum, at least for simple 1D models (Stolk
and Symes, 2002; Van Leeuwen and Mulder, 2009). The DSO principle is justified by
various studies in 2D models (Chauris and Noble, 2001; Mulder and ten Kroode, 2002;
Mulder, 2008; Shen and Symes, 2008).

In practice, the coherency principle of MVA may break down due to imaging arti-
facts. For example, the migration of multiples produces artificial interfaces under the
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Figure 1.14 — Prestack common-offset data before (a) and after (b) migration. Seismic
data set computed in 2D Marmousi model (a), migrated to surface-offset domain CIGs
(b) by prestack depth migration using the true velocity model. A and C are common-
offset gather and prestack migrated image, respectively, at zero-offset. B and D are
common midpoint gather and CIG, respectively, at fixed position. Accurate velocity
model results in flatness on the CIG panel D. (from Chauris, 2000)

first-order Born approximation (Verschuur and Berkhout, 2015; Cocher, 2017). The
limited acquisition can result in uneven illuminations in migrated images, leading to
incoherent stretching shapes of events in CIGs (Xie et al., 2005). The evaluation of
the DSO objective function is sensitive to coherent noise and thus proper filtering is
required (Chauris and Noble, 2001). The characterization of coherent events over the
offset range can be tedious such that Chauris et al. (2002a) proposed to pick the slope
of locally coherent events in CIGs to evaluate the quality of velocity model, and proved
this to be equivalent to the slope tomography approaches (Billette and Lambaré, 1998;
Billette et al., 2003; Lambaré et al., 2004; Lambaré, 2008; Prieux et al., 2013b). In
surface-oriented methods, each image is constructed from only a subset of the data:
kinematic artifacts may appear when complex wavepaths such as triplicated wavefields
are involved in the problem (Nolan and Symes, 1996; Prucha et al., 1999; Xu et al.,
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2001; Stolk and Symes, 2004). This issue will be discussed and further investigated for
common-shot MVA in Chapter 3.

1.3.2 Depth-oriented MVA

In the depth-oriented formulation of MVA, the redundant parameter is not related to
the acquisition but is introduced during the construction of the migrated images. The
image space is extended by introducing, during the construction of the images, a space-
lag (Rickett and Sava, 2002; Shen et al., 2005; Sava and Vasconcelos, 2011; Lameloise
et al., 2015; Chauris and Cocher, 2017) or a time-delay (Sava and Fomel, 2006; Yang
and Sava, 2011; Sava and Vasconcelos, 2011) as the extra parameter. The space-lag is
commonly referred to as subsurface-offset. The main difference between the surface-
oriented approach is that the input data cannot be split according to acquisition param-
eters. MVA formulated in the extended domain measures the image quality via the
focusing principle, in the sense that the model is optimal when the energy of CIGs is
focused at zero spatial and temporal delay. The reason is that the image section at zero
delay corresponds to the image of the physical reflectivity obtained with classic migra-
tion after summation over all sources and 