, Image-domain versus data-domain Chapter, Chapter

.. , Conclusions and Perspectives Contents 5.1 Conclusions 171 5.1.1 Common-shot Inversion Velocity Analysis . . . . . . . . . . 171

, 1.2 Links between image-domain and data-domain methods, p.172

P. , , p.173

.. , 5.2.2 Introduction of more physics, p.173

3. , , p.174

.. , , p.175

, Conclusions and Perspectives Bibliography, Chapter

K. Aki and P. G. Richards, Quantitative seismology, University Science Books, 2002.

K. Al-yahya, Velocity analysis by iterative profile migration, GEOPHYSICS, vol.54, issue.6, pp.718-729, 1989.
DOI : 10.1190/1.1442699

R. Alford, K. Kelly, and D. M. Boore, ACCURACY OF FINITE???DIFFERENCE MODELING OF THE ACOUSTIC WAVE EQUATION, GEOPHYSICS, vol.39, issue.6, pp.834-842, 1974.
DOI : 10.1190/1.1440470

T. Alkhalifah, tau-migration and velocity analysis: application to data from the Red Sea, Geophysical Prospecting, vol.53, issue.5, pp.643-653, 2005.
DOI : 10.1046/j.1365-246x.2001.00300.x

T. Alkhalifah, Scattering-angle based filtering of the waveform inversion gradients, Geophysical Journal International, vol.52, issue.1, pp.363-373, 2014.
DOI : 10.1190/1.1442237

T. Alkhalifah and R. É. Plessix, A recipe for practical full-waveform inversion in anisotropic media: An analytical parameter resolution study, R91?R101. (cit. on pp. xi, 13, 14, and 122, 2014.
DOI : 10.1190/1.1441934

T. Alkhalifah and Z. Wu, The natural combination of full and image-based waveform inversion, Geophysical Prospecting, vol.32, issue.1, pp.19-30, 2016.
DOI : 10.1190/tle32091030.1

T. Alkhalifah and Z. Wu, Migration velocity analysis using pre-stack wave fields, Geophysical Prospecting, vol.22, issue.3, pp.639-649, 2017.
DOI : 10.1029/92JB01304

A. Almomin and B. Biondi, Tomographic Full Waveform Inversion: Practical and Computationally Feasible Approach In: SEG Technical Program Expanded Abstracts 2012, pp.1-5, 2012.

A. Asnaashari, R. Brossier, S. Garambois, F. Audebert, P. Thore et al., Regularized seismic full waveform inversion with prior model information, GEOPHYSICS, vol.78, issue.2, pp.25-36, 2013.
DOI : 10.1190/1.3238367

A. H. Balch and M. W. Lee, Vertical seismic profiling: technique, applications, and case histories, 1984.

A. Bamberger, B. Engquist, L. Halpern, and P. Joly, Higher Order Paraxial Wave Equation Approximations in Heterogeneous Media, SIAM Journal on Applied Mathematics, vol.48, issue.1, pp.129-154, 1988.
DOI : 10.1137/0148006

URL : https://hal.archives-ouvertes.fr/inria-00075996

E. Baysal, D. D. Kosloff, and J. W. Sherwood, Reverse time migration. Geo- 178 Bibliography physics, pp.1514-1524, 1983.

J. P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, issue.2, pp.185-200, 1994.
DOI : 10.1006/jcph.1994.1159

A. J. Berkhout, Combining full wavefield migration and full waveform inversion, a glance into the future of seismic imaging, GEOPHYSICS, vol.77, issue.2, pp.43-50, 2012.
DOI : 10.1190/1.3238367

W. B. Beydoun and M. Mendes, -Migration/Inversion, Geophysical Journal International, vol.50, issue.1, pp.151-160, 1989.
DOI : 10.1111/j.1365-246X.1985.tb05113.x

W. B. Beydoun and A. Tarantola, First Born and Rytov approximations: Modeling and inversion conditions in a canonical example, The Journal of the Acoustical Society of America, vol.83, issue.3, pp.1045-1055, 1988.
DOI : 10.1121/1.396537

G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform, Journal of Mathematical Physics, vol.21, issue.1, pp.99-67, 1985.
DOI : 10.1090/S0002-9904-1978-14505-4

P. Bharadwaj, W. Mulder, and G. Drijkoningen, An Auxiliary Bump Functional to Overcome Cycle Skipping in Waveform Inversion, 77th EAGE Conference and Exhibition, Workshops, 2015.
DOI : 10.3997/2214-4609.201413503

P. Bharadwaj, W. Mulder, and G. Drijkoningen, Full waveform inversion with an auxiliary bump functional, Geophysical Journal International, vol.56, issue.6, pp.1076-1092, 2016.
DOI : 10.1190/1.3243073

F. Billette, S. L. Bégat, P. Podvin, and G. Lambaré, Practical aspects and applications of 2D stereotomography, GEOPHYSICS, vol.58, issue.3, pp.1008-1021, 2003.
DOI : 10.1190/1.1441574

F. Billette and G. Lambaré, Velocity macro-model estimation from seismic reflection data by stereotomography, Geophysical Journal International, vol.135, issue.2, pp.671-690, 1998.
DOI : 10.1007/BF00882065

B. Biondi and A. Almomin, Tomographic full waveform inversion (TFWI) by combining full waveform inversion with wave-equation migration velocity anaylisis, SEG Technical Program Expanded Abstracts 2012, pp.31-123, 2012.
DOI : 10.1111/gpr.2008.56.issue-6

B. Biondi and A. Almomin, Simultaneous inversion of full data bandwidth by tomographic full-waveform inversion, WA129?WA140. (cit. on pp. 29, pp.76-123, 2014.
DOI : 10.1190/1.3460296

B. Biondi and P. Sava, Wave???equation migration velocity analysis, SEG Technical Program Expanded Abstracts 1999, pp.1723-1726, 1999.
DOI : 10.1190/1.1888865

B. Biondi and G. Shan, Prestack imaging of overturned reflections by reverse time migration, SEG Technical Program Expanded Abstracts 2002, pp.1284-1287, 2002.
DOI : 10.1190/1.1816733

B. Biondi and W. W. Symes, Angle???domain common???image gathers for migration velocity analysis by wavefield???continuation imaging, GEOPHYSICS, vol.69, issue.5, pp.1283-1298, 2004.
DOI : 10.1190/1.1487131

N. Bleistein, On the imaging of reflectors in the earth, GEOPHYSICS, vol.52, issue.7, pp.931-942, 1987.
DOI : 10.1190/1.1442363

N. Bleistein, Y. Zhang, S. Xu, G. Zhang, and S. H. Gray, Migration/inversion: think image point coordinates, process in acquisition surface coordinates, Inverse Problems, vol.21, issue.5, p.1715, 2005.
DOI : 10.1088/0266-5611/21/5/013

E. Bozda?-g, J. Trampert, and J. Tromp, Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements, Geophysical Journal International, vol.158, issue.6, pp.845-870, 2011.
DOI : 10.1111/j.1365-246X.2004.02324.x

R. Brossier, S. Operto, and J. Virieux, Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion, GEOPHYSICS, vol.64, issue.6, pp.105-118, 2009.
DOI : 10.1190/1.1442237

URL : https://hal.archives-ouvertes.fr/insu-00418640

R. Brossier, S. Operto, and J. Virieux, Velocity model building from seismic reflection data by full-waveform inversion, Geophysical Prospecting, vol.76, issue.5, pp.354-367, 2015.
DOI : 10.1190/geo2011-0065.1

URL : https://hal.archives-ouvertes.fr/hal-01230440

C. Bunks, F. M. Saleck, S. Zaleski, and G. Chavent, Multiscale seismic waveform inversion, GEOPHYSICS, vol.60, issue.5, pp.1457-1473, 1995.
DOI : 10.1190/1.1443880

C. Castellanos-lopez, Speed-up and regularization techniques for seismic full waveform inversion, p.45, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01064412

C. Cerjan, D. Kosloff, R. Kosloff, and M. Reshef, A nonreflecting boundary condition for discrete acoustic and elastic wave equations, GEOPHYSICS, vol.50, issue.4, pp.705-708, 1985.
DOI : 10.1190/1.1441945

V. Cerven-`-cerven-`-y, Ray tracing algorithms in three-dimensional laterally varying layered structures, Seismic Tomography, pp.99-133, 1987.

C. Chapman, Fundamentals of seismic wave propagation, 2004.
DOI : 10.1017/CBO9780511616877

H. Chauris, Analyse de vitesse par migration pour l'imagerie des structures complexes en sismique réflexion, 2000.

H. Chauris and E. Cocher, From migration to inversion velocity analysis, GEOPHYSICS, vol.82, issue.3, pp.207-223, 2017.
DOI : 10.1190/1.1988182

URL : https://hal.archives-ouvertes.fr/hal-01518944

H. Chauris, D. Donno, and H. Calandra, Velocity Estimation with the Normalized Integration Method, 74th EAGE Conference and Exhibition incorporating EUROPEC 2012, p.51, 2012.
DOI : 10.3997/2214-4609.20148721

URL : https://hal.archives-ouvertes.fr/hal-00723385

H. Chauris, C. Lameloise, and E. Cocher, Inversion Velocity Analysis - The Importance of Regularisation, 77th EAGE Conference and Exhibition, Workshops, pp.69-77, 2015.
DOI : 10.3997/2214-4609.201413493

URL : https://hal.archives-ouvertes.fr/hal-01261401

H. Chauris and C. A. Lameloise, Removing Spurious Oscillations in the Gradient of the Differential Semblance Optimization Functional, Proceedings 76th EAGE Conference and Exhibition 2014, 2014.
DOI : 10.3997/2214-4609.20141579

URL : https://hal.archives-ouvertes.fr/hal-01407295

H. Chauris, C. A. Lameloise, and D. Donno, Migration Velocity Analysis with Bibliography Reflected and Transmitted Waves, 75th EAGE Conference & Exhibition. We P01 01. (cit. on pp. 29, 65, and 76, 2013.
DOI : 10.3997/2214-4609.20130936

H. Chauris, Y. Li, and E. Cocher, Image-domain versus data-domain velocity analysis based on true-amplitude subsurface extended migration, 79th EAGE Conference and Exhibition 2017, Workshops, 2017.
DOI : 10.3997/2214-4609.201701719

URL : https://hal.archives-ouvertes.fr/hal-01543523

H. Chauris and M. Noble, Two-dimensional velocity macro model estimation from seismic reflection data by local differential semblance optimization: applications to synthetic and real data sets, Geophysical Journal International, vol.46, issue.1, pp.14-26, 2001.
DOI : 10.1046/j.1365-2478.1998.720308.x

URL : https://hal.archives-ouvertes.fr/hal-01113389

H. Chauris, M. S. Noble, G. Lambaré, and P. Podvin, Migration velocity analysis from locally coherent events in 2???D laterally heterogeneous media, Part I: Theoretical aspects, GEOPHYSICS, vol.1, issue.4, pp.1202-1212, 2002.
DOI : 10.1190/1.1487131

URL : https://hal.archives-ouvertes.fr/hal-01113380

H. Chauris, M. S. Noble, G. Lambaré, and P. Podvin, Migration velocity analysis from locally coherent events in 2???D laterally heterogeneous media, Part II: Applications on synthetic and real data, GEOPHYSICS, vol.58, issue.4, pp.1213-1224, 2002.
DOI : 10.1190/1.1441574

URL : https://hal.archives-ouvertes.fr/hal-01113383

H. Chauris and R. É. Plessix, Investigating the Differential Waveform Inversion, 74th EAGE Conference and Exhibition, Workshops, pp.124-149, 2012.
DOI : 10.3997/2214-4609.20149790

URL : https://hal.archives-ouvertes.fr/hal-00771987

H. Chauris and R. É. Plessix, Differential Waveform Inversion - A Way to Cope with Multiples?, London 2013, 75th eage conference en exhibition incorporating SPE Europec, pp.31-60, 2013.
DOI : 10.3997/2214-4609.20131203

URL : https://hal.archives-ouvertes.fr/hal-00850179

G. Chavent, Identification of functional parameters in partial differential equations, In: Joint Automatic Control Conference, vol.12, issue.127, pp.155-156, 1974.

G. Chavent, F. Clément, and S. Gómez, Automatic determination of velocities via migration-based traveltime waveform inversion: A synthetic data example In: SEG Technical Program Expanded Abstracts 1994, pp.1179-1182, 1994.
DOI : 10.1190/1.1822731

G. Chavent and C. Jacewitz, Determination of background velocities by multiple migration fitting, GEOPHYSICS, vol.60, issue.2, pp.476-490, 1995.
DOI : 10.1190/1.1443785

B. Chi, L. Dong, and Y. Liu, Full waveform inversion method using envelope objective function without low frequency data, Journal of Applied Geophysics, vol.109, pp.36-46, 2014.
DOI : 10.1016/j.jappgeo.2014.07.010

B. Chi, L. Dong, and Y. Liu, Correlation-based reflection full-waveform inversion, R189?R202. (cit. on pp. xiii, p.48, 2015.
DOI : 10.1785/0120050081

J. F. Claerbout, TOWARD A UNIFIED THEORY OF REFLECTOR MAPPING, GEOPHYSICS, vol.36, issue.3, pp.467-481, 1971.
DOI : 10.1190/1.1440185

J. F. Claerbout, Imaging the earth's interior, Blackwell scientific publications Oxford, vol.8, issue.122, p.34, 1985.

J. F. Claerbout, Earth soundings analysis: Processing versus inversion, Blackwell Scientific Publications London, 1992.

M. L. Clapp, R. G. Clapp, and B. L. Biondi, Regularized least???squares inversion for 3???D subsalt imaging, SEG Technical Program Expanded Abstracts 2005, pp.1814-1817, 2005.
DOI : 10.1190/1.1567228

URL : http://sepwww.stanford.edu/data/media/public/abstracts/seg04/marie.pdf

E. Cocher, Iterative Migration Velocity Analysis: extension to surface-related multiple reflection, pp.45-69, 2017.

E. Cocher, H. Chauris, and C. A. Lameloise, Imaging with Surface-related Multiples in the Subsurface-offset Domain, 77th EAGE Conference and Exhibition 2015, pp.17-65, 2015.
DOI : 10.3997/2214-4609.201412876

URL : https://hal.archives-ouvertes.fr/hal-01261404

E. Cocher, H. Chauris, and R. É. Plessix, Robust Iterative Migration Velocity Analysis - Benefits for Imaging with Primaries and with First-order Surface Multiples, 79th EAGE Conference and Exhibition 2017, p.76, 2017.
DOI : 10.3997/2214-4609.201700601

URL : https://hal.archives-ouvertes.fr/hal-01543527

E. Cocher, H. Chauris, and R. É. Plessix, Seismic iterative migration velocity analysis: two strategies to update the velocity model, Computational Geosciences, vol.79, issue.1, pp.1-22, 2017.
DOI : 10.1190/geo2013-0156.1

URL : https://hal.archives-ouvertes.fr/hal-01518958

D. A. Cooke and W. A. Schneider, Generalized linear inversion of reflection seismic data, GEOPHYSICS, vol.48, issue.6, pp.665-676, 1983.
DOI : 10.1190/1.1441497

F. Dahlen and J. Tromp, Theoretical global seismology. Princeton university press, 1998.
DOI : 10.1063/1.882788

W. Dai, P. Fowler, and G. T. Schuster, Multi-source least-squares reverse time migration, Geophysical Prospecting, vol.71, issue.4, pp.681-695, 2012.
DOI : 10.1190/1.2187783

URL : http://repository.kaust.edu.sa/kaust/bitstream/10754/263775/1/Wei%20Dai%20-%20Dissertation%20-%20Final%20Draft.pdf

D. Bruin, C. Wapenaar, C. Berkhout, and A. , Angle???dependent reflectivity by means of prestack migration, GEOPHYSICS, vol.55, issue.9, pp.1223-1234, 1990.
DOI : 10.1190/1.1442938

A. J. Devaney, A Filtered Backpropagation Algorithm for Diffraction Tomography, Ultrasonic Imaging, vol.4, issue.4, pp.336-350, 1982.
DOI : 10.1016/0375-9601(82)90850-7

E. Díaz, Y. Duan, P. Sava, and G. Pratt, Image-domain and data-domain waveform tomography: A case study. In: SEG Technical Program Expanded Abstracts 2014, pp.1243-1248, 2014.

D. Donno, H. Chauris, and H. Calandra, Estimating the Background Velocity Model with the Normalized Integration Method, London 2013, 75th eage conference en exhibition incorporating SPE Europec, 2013.
DOI : 10.3997/2214-4609.20130411

URL : https://hal.archives-ouvertes.fr/hal-00848304

V. Duprat and R. Baina, An Efficient Least-squares Reverse-time Migration Using True-amplitude Imaging Condition as an Optimal Preconditioner, 78th EAGE Conference and Exhibition 2016, pp.77-82, 2016.
DOI : 10.3997/2214-4609.201601199

B. Duquet, Improving seismic imaging in complex geologic structures, 1996.

B. Duquet, K. J. Marfurt, and J. A. Dellinger, Kirchhoff modeling, inversion for reflectivity, and subsurface illumination, GEOPHYSICS, vol.65, issue.4, pp.1195-1209, 2000.
DOI : 10.1190/1.1442046

G. Dutta and G. T. Schuster, Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation, GEOPHYSICS, vol.51, issue.6, pp.251-262, 2014.
DOI : 10.1190/1.1443815

URL : http://repository.kaust.edu.sa/kaust/bitstream/10754/346971/1/geo2013-04141.pdf

A. Ehinger, P. Lailly, and K. J. Marfurt, Green???s function implementation of common???offset, wave???equation migration, GEOPHYSICS, vol.61, issue.6, pp.61-1813, 1996.
DOI : 10.1190/1.1444097

H. W. Engl and J. Zou, A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction, Inverse Problems, vol.16, issue.6, p.45, 1907.
DOI : 10.1088/0266-5611/16/6/319

J. T. Etgen, O. Brien, and M. J. , Computational methods for large-scale 3D acoustic finite-difference modeling: A tutorial, GEOPHYSICS, vol.83, issue.5, pp.223-230, 2007.
DOI : 10.1190/1.1442147

J. S. Farnbach, The complex envelope in seismic signal analysis, Bulletin of the Seismological Society of America, vol.65, issue.4, pp.951-962, 1975.

J. P. Faye and J. P. Jeannot, Prestack migration velocities from focusing depth analysis, SEG Technical Program Expanded Abstracts 1986, pp.438-440, 1986.
DOI : 10.1190/1.1441574

W. Fei and P. Williamson, On the gradient artifacts in migration velocity analysis based on differential semblance optimization, SEG Technical Program Expanded Abstracts 2010, pp.4071-4076, 2010.
DOI : 10.1190/1.3063987

A. Fichtner, Full Seismic Waveform Modelling and Inversion, (cit. on pp. 9, 13, and 43, 2011.
DOI : 10.1007/978-3-642-15807-0

URL : https://academic.oup.com/gji/article-pdf/187/3/1604/1701986/187-3-1604.pdf

R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, The Computer Journal, vol.7, issue.2, pp.149-154, 1964.
DOI : 10.1093/comjnl/7.2.149

URL : https://academic.oup.com/comjnl/article-pdf/7/2/149/959725/070149.pdf

S. Fomel, Shaping regularization in geophysical-estimation problems, Geophysics, vol.72, issue.2, pp.29-36, 2007.
DOI : 10.1190/1.2433716

URL : http://www.reproducibility.org/RSF/book/jsg/shape/paper.pdf

E. Forgues and G. Lambaré, Parameterization study for acoustic and elastic ray plus born inversion, Journal of Seismic Exploration, vol.6, issue.23, pp.253-277, 1997.

B. Fornberg, Generation of finite difference formulas on arbitrarily spaced grids, Mathematics of Computation, vol.51, issue.184, pp.699-706, 1988.
DOI : 10.1090/S0025-5718-1988-0935077-0

URL : https://www.ams.org/mcom/1988-51-184/S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf

DOI : 10.1190/1.1440591

L. Fu and W. W. Symes, Reducing the cost of extended waveform inversion by multiscale adaptive methods, SEG Technical Program Expanded Abstracts 2015, pp.1127-1131, 2015.
DOI : 10.1190/1.1441754

K. Gallagher, M. Sambridge, and G. Drijkoningen, Genetic algorithms: An evolution from Monte Carlo Methods for strongly non-linear geophysical optimization problems, Geophysical Research Letters, vol.20, issue.12, pp.2177-2180, 1991.
DOI : 10.1029/RG020i002p00219

F. Gao and W. Symes, Differential semblance velocity analysis by reverse time migration: Image gathers and theory. In: SEG Technical Program Expanded Abstracts, pp.2317-2321, 2009.
DOI : 10.1190/1.3255323

O. Gauthier, J. Virieux, and A. Tarantola, Two???dimensional nonlinear inversion of seismic waveforms: Numerical results, GEOPHYSICS, vol.51, issue.7, pp.1387-1403, 1986.
DOI : 10.1190/1.1442188

S. H. Gray, . Frequency-selective, . Design, . The-kirchhoff-mi-gration, and . Operator, FREQUENCY-SELECTIVE DESIGN OF THE KIRCHHOFF MIGRATION OPERATOR1, Geophysical Prospecting, vol.40, issue.5, pp.565-571, 1992.
DOI : 10.1190/1.1443097

L. Guasch and M. Warner, Adaptive Waveform Inversion - FWI Without Cycle Skipping - Applications, Proceedings 76th EAGE Conference and Exhibition 2014, 2014.
DOI : 10.3997/2214-4609.20141093

A. Guitton, Shot???profile migration of multiple reflections, SEG Technical Program Expanded Abstracts 2002, pp.1296-1299, 2002.
DOI : 10.1190/1.1816558

A. Guitton and W. W. Symes, Robust inversion of seismic data using the Huber norm, GEOPHYSICS, vol.95, issue.4, pp.1310-1319, 2003.
DOI : 10.1190/1.1444727

Q. Guo and T. Alkhalifah, Elastic Reflection Based Waveform Inversion in Isotropic Media, 78th EAGE Conference and Exhibition 2016, p.24, 2016.
DOI : 10.3997/2214-4609.201601194

B. Hak and W. A. Mulder, Migration for velocity and attenuation perturbations, Geophysical Prospecting, vol.52, issue.6, pp.939-952, 2010.
DOI : 10.1111/j.1365-2478.2010.00866.x

P. C. Hansen, The L-Curve and its Use in the Numerical Treatment of Inverse Problems, Computational Inverse Problems in Electrocardiology, pp.119-142, 2000.

B. A. Hardage, Vertical seismic profiling. The Leading Edge, pp.59-59, 1985.

W. He and R. É. Plessix, Analysis of different parameterisations of waveform inversion of compressional body waves in an elastic transverse isotropic Earth with a vertical axis of symmetry, Geophysical Prospecting, vol.202, issue.4, pp.1004-1024, 2017.
DOI : 10.1093/gji/ggv228

J. Hou and W. Symes, Inversion velocity analysis via approximate born inversion, SEG Technical Program Expanded Abstracts 2016, pp.5274-5279, 2016.
DOI : 10.1190/1.1441574

J. Hou and W. Symes, True amplitude imaging for incomplete seismic data, SEG Technical Program Expanded Abstracts 2017, pp.4534-4539, 2017.
DOI : 10.1190/geo2014-0524.1

J. Hou and W. W. Symes, An approximate inverse to the extended Born modeling operator, R331?R349. (cit, pp.81-99, 2015.

J. Hou and W. W. Symes, Accelerating extended least-squares migration with weighted conjugate gradient iteration, GEOPHYSICS, vol.81, issue.4, pp.165-179, 2016.
DOI : 10.1088/0266-5611/19/5/307

Y. Huang and W. W. Symes, Born Waveform Inversion via Variable Projection and Shot Record Model Extension, SEG Technical Program Expanded Abstracts 2015, 2015.
DOI : 10.1190/geo2013-0108.1

L. Ingber, Very fast simulated re-annealing, Mathematical and Computer Modelling, vol.12, issue.8, pp.967-973, 1989.
DOI : 10.1016/0895-7177(89)90202-1

M. Jannane, W. Beydoun, E. Crase, D. Cao, Z. Koren et al., Wavelengths of earth structures that can be resolved from seismic reflection data, GEOPHYSICS, vol.54, issue.7, pp.54-906, 1989.
DOI : 10.1190/1.1442719

URL : https://hal.archives-ouvertes.fr/hal-01113158

Z. Jiang, J. Sheng, J. Yu, G. T. Schuster, and B. E. Hornby, Migration methods for imaging different-order multiples, Geophysical Prospecting, vol.71, issue.1, pp.1-19, 2007.
DOI : 10.1111/j.1365-246X.2003.02152.x

Z. Jiang, J. Yu, G. T. Schuster, and B. E. Hornby, Migration of Multiples. The Leading Edge, pp.315-318, 2005.

S. Jin and R. Madariaga, Background velocity inversion with a genetic algorithm, Geophysical Research Letters, vol.49, issue.2, pp.93-96, 1993.
DOI : 10.1190/1.1441574

S. Jin and R. Madariaga, Nonlinear velocity inversion by a two???step Monte Carlo method., GEOPHYSICS, vol.59, issue.4, pp.577-590, 1994.
DOI : 10.1190/1.1443618

F. Joncour, G. Lambaré, and J. Svay-lucas, Preserved-amplitude angle domain migration by shot-receiver wavefield continuation, Geophysical Prospecting, vol.72, issue.2, pp.256-268, 2011.
DOI : 10.1190/1.2399371

URL : https://hal.archives-ouvertes.fr/hal-00507084

I. Jones, Tutorial: migration imaging conditions. First Break, pp.45-55, 2014.

B. Julian, Three-dimensional seismic ray tracing, Journal of Geophysics, vol.43, pp.95-113, 1977.

D. Komatitsch and R. Martin, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation, SM155?SM167. (cit. on pp. 34, p.43, 2007.
DOI : 10.1109/22.554601

URL : https://hal.archives-ouvertes.fr/inria-00528418

D. Komatitsch and J. Tromp, Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophysical Journal International, vol.88, issue.3, pp.806-822, 1999.
DOI : 10.4294/jpe1952.44.489

D. Komatitsch and J. Tromp, A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation, Geophysical Journal International, vol.66, issue.1, pp.146-153, 2003.
DOI : 10.1109/22.554601

URL : https://hal.archives-ouvertes.fr/hal-00669060

D. Komatitsch and J. P. Vilotte, The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures, Bulletin of the seismological society of America, vol.88, issue.2, pp.368-392, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00669068

H. Kreiss, H. O. Kreiss, J. Oliger, A. Kroode, D. J. Smit et al., Methods for the approximate solution of time dependent problems A microlocal analysis of migration (cit. on p. 153.) ten Kroode, F. [2012] A wave-equation-based Kirchhoff operator, World Meteorological Organization. (cit. on p. 40.) ten, pp.149-172, 1973.

H. Kühl and M. D. Sacchi, Least???squares wave???equation migration for AVP/AVA inversion, GEOPHYSICS, vol.68, issue.1, pp.262-273, 2003.
DOI : 10.1190/1.1487131

P. Lailly, The seismic inverse problem as a sequence of before stack migrations, Inverse Scattering: Theory and Application. SIAM, pp.206-220, 1983.

G. Lambaré, VE25?VE34. (cit, 2008.

G. Lambaré, M. Alerini, R. Baina, and P. Podvin, Stereotomography, GEOPHYSICS, vol.73, issue.5, pp.671-681, 2004.
DOI : 10.1190/1.1443742

G. Lambaré, P. Guillaume, and J. P. Montel, Recent Advances in Ray-based Tomography, Proceedings 76th EAGE Conference and Exhibition 2014, p.12, 2014.
DOI : 10.3997/2214-4609.20141151

G. Lambaré, S. Operto, P. Podvin, and P. Thierry, , pp.1348-1356, 2003.

G. Lambaré, J. Virieux, R. Madariaga, and S. Jin, Iterative asymptotic inversion in the acoustic approximation, GEOPHYSICS, vol.57, issue.9, pp.1138-1154, 1992.
DOI : 10.1190/1.1443328

C. Lameloise, Quantitative migration for velocity analysis and introduction of transmitted waves, pp.29-66, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01306287

C. A. Lameloise and H. Chauris, Quantitative Migration for a More Robust Migration Velocity Analysis, Proceedings 76th EAGE Conference and Exhibition 2014, 2014.
DOI : 10.3997/2214-4609.20141496

URL : https://hal.archives-ouvertes.fr/hal-01407291

C. A. Lameloise and H. Chauris, Extension of migration velocity analysis to transmitted wavefields, Geophysical Journal International, vol.63, issue.11, pp.343-356, 2016.
DOI : 10.1093/gji/ggv228

URL : https://hal.archives-ouvertes.fr/hal-01407153

C. A. Lameloise, H. Chauris, and M. Noble, Improving the gradient of the image-domain objective function using quantitative migration for a more robust migration velocity analysis, Geophysical Prospecting, vol.78, issue.2, pp.391-404, 2015.
DOI : 10.1190/geo2012-0278.1

URL : https://hal.archives-ouvertes.fr/hal-01143751

T. Lay, T. C. Wallace, T. Van-leeuwen, R. Kumar, and F. Herrmann, Modern global seismology Academic Press. (cit. on p. 3 Affordable Full Subsurface Image Volume -An Application to WEMVA, 77th EAGE Conference & Exhibition. WS05?C01. (cit. on pp. 66, 76, and 123, 1995.

A. R. Levander, seismograms, GEOPHYSICS, vol.53, issue.11, pp.1425-1436, 1988.
DOI : 10.1190/1.1442422

Y. Li and H. Chauris, An Alternative True-amplitude Common-shot Reverse Time Migration, 79th EAGE Conference and Exhibition 2017, 2017.
DOI : 10.3997/2214-4609.201701364

URL : https://hal.archives-ouvertes.fr/hal-01543526

L. Lines and S. Treitel, A REVIEW OF LEAST-SQUARES INVERSION AND ITS APPLICATION TO GEOPHYSICAL PROBLEMS*, Geophysical Prospecting, vol.10, issue.2, pp.159-186, 1984.
DOI : 10.1190/1.1440672

F. Liu, G. Zhang, S. A. Morton, and J. P. Leveille, An effective imaging condition for reverse-time migration using wavefield decomposition, GEOPHYSICS, vol.26, issue.1, pp.29-39, 2011.
DOI : 10.1071/EG06102

J. Liu, H. Chauris, and H. Calandra, The Normalized Integration Method - An Alternative to Full Waveform Inversion?, Near Surface 2011, 17th EAGE European Meeting of Environmental and Engineering Geophysics, pp.51-52, 2011.
DOI : 10.3997/2214-4609.20144373

URL : https://hal.archives-ouvertes.fr/hal-00678406

Y. Liu, Z. Li, and W. W. Symes, Extended reflection waveform inversion via differential semblance optimization, SEG Technical Program Expanded Abstracts 2014, pp.1232-1237, 2014.
DOI : 10.1190/1.3238367

Y. Liu, W. Symes, and Z. Li, Inversion Velocity Analysis Via Differential Semblance Optimization, Proceedings 76th EAGE Conference and Exhibition 2014, pp.77-78, 2014.
DOI : 10.3997/2214-4609.20141578

Y. Liu, W. W. Symes, and Z. Li, Multisource least-squares extended reverse time migration with preconditioning guided gradient method, SEG Technical Program Expanded Abstracts 2013, pp.3709-3715, 2013.
DOI : 10.1190/1.2146078

J. Luo and R. S. Wu, Seismic envelope inversion: reduction of local minima and noise resistance, Geophysical Prospecting, vol.62, issue.3, pp.597-614, 2015.
DOI : 10.1190/1.1444194

S. Luo and P. Sava, A deconvolution???based objective function for wave???equation inversion, SEG Technical Program Expanded Abstracts 2011, pp.2788-2792, 2011.
DOI : 10.1190/1.3243073

Y. Luo, S. Al-dossary, M. Marhoon, and M. Alfaraj, Generalized Hilbert transform and its applications in geophysics. The Leading Edge, pp.198-202, 2003.
DOI : 10.1190/1.1564522

Y. Luo, Y. Ma, Y. Wu, H. Liu, and L. Cao, Full-traveltime inversion, GEOPHYSICS, vol.81, issue.5, pp.261-274, 2016.
DOI : 10.1190/1.3243073

Y. Luo and G. T. Schuster, Wave???equation traveltime inversion, GEOPHYSICS, vol.56, issue.5, pp.645-653, 1991.
DOI : 10.1190/1.1443081

Y. Luo, J. Tromp, B. Denel, and H. Calandra, 3D coupled acoustic-elastic migration with topography and bathymetry based on spectral-element and adjoint methods, GEOPHYSICS, vol.78, issue.4, pp.193-202, 2013.
DOI : 10.1190/1.3261747

Y. Luo, H. Zhu, T. Nissen-meyer, C. Morency, and J. Tromp, Seismic modeling and imaging based upon spectral-element and adjoint methods. The Leading Edge, pp.568-574, 2009.
DOI : 10.1190/1.3124932

M. Macleod, R. Hanson, C. Bell, and S. Mchugo, The Alba Field ocean bottom cable seismic survey: Impact on development. The Leading Edge, pp.1306-1312, 1999.

K. J. Marfurt, Accuracy of finite???difference and finite???element modeling of the scalar and elastic wave equations, GEOPHYSICS, vol.49, issue.5, pp.533-549, 1984.
DOI : 10.1190/1.1441689

G. Mcmechan, MIGRATION BY EXTRAPOLATION OF TIME-DEPENDENT BOUNDARY VALUES*, Geophysical Prospecting, vol.71, issue.3, pp.413-420, 1983.
DOI : 10.1190/1.1440826

J. M. Mendel, Optimal seismic deconvolution: an estimation-based approach, 2013.

W. Menke, The resolving power of cross-borehole tomography, Geophysical Research Letters, vol.10, issue.2, pp.105-108, 1984.
DOI : 10.1029/GL010i008p00686

L. Métivier, R. Brossier, Q. Mérigot, E. Oudet, and J. Virieux, Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion, Geophysical Journal International, vol.114, issue.6, pp.345-377, 2016.
DOI : 10.1038/ngeo1501

L. Métivier, R. Brossier, J. Virieux, and S. Operto, Full Waveform Inversion and the Truncated Newton Method, SIAM Journal on Scientific Computing, vol.35, issue.2, pp.401-437, 2013.
DOI : 10.1137/120877854

D. Miller, M. Oristaglio, and G. Beylkin, A new slant on seismic imaging: Migration and integral geometry, GEOPHYSICS, vol.52, issue.7, pp.943-964, 1987.
DOI : 10.1190/1.1442364

S. Misra and M. D. Sacchi, Global optimization with model-space preconditioning: Application to AVO inversion, GEOPHYSICS, vol.73, issue.5, pp.71-82, 2008.
DOI : 10.1029/JB074i012p03171

P. Moczo, J. Kristek, M. Galis, E. Chaljub, and V. Etienne, 3-D finite-difference, finite-element, discontinuous-Galerkin and spectral-element schemes analysed for their accuracy with respect to P-wave to S-wave speed ratio, Geophysical Journal International, vol.45, issue.3, pp.1645-1667, 2011.
DOI : 10.1016/j.wavemoti.2007.11.007

URL : https://hal.archives-ouvertes.fr/hal-00650304

P. Moczo, J. Kristek, M. Galis, and P. Pazak, On accuracy of the finite-difference and finite-element schemes with respect to P-wave to S-wave speed ratio, Geophysical Journal International, vol.1, issue.1, pp.493-510, 2010.
DOI : 10.1111/j.1365-246X.1983.tb02803.x

J. Montel and G. Lambaré, Asymptotic Analysis of ADCIG from Slant Stacked Subsurface Offset Gather, London 2013, 75th eage conference en exhibition incorporating SPE Europec, 2013.
DOI : 10.3997/2214-4609.20130615

P. Mora, Inversion = migration + tomography, GEOPHYSICS, vol.54, issue.12, pp.1575-1586, 1989.
DOI : 10.1190/1.1442625

URL : https://link.springer.com/content/pdf/10.1007%2F3-540-51604-2_6.pdf

K. Mosegaard and P. D. Vestergaard, A SIMULATED ANNEALING APPROACH TO SEISMIC MODEL OPTIMIZATION WITH SPARSE PRIOR INFORMATION1, Geophysical Prospecting, vol.37, issue.5, pp.599-611, 1991.
DOI : 10.1016/0010-4655(88)90003-3

T. Moser, Shortest path calculation of seismic rays, GEOPHYSICS, vol.56, issue.1, pp.59-67, 1991.
DOI : 10.1190/1.1442958

R. Muijs, J. O. Robertsson, and K. Holliger, Prestack depth migration of primary and surface-related multiple reflections: Part I ??? Imaging, GEOPHYSICS, vol.8, issue.2, pp.59-69, 2007.
DOI : 10.1046/j.1365-2478.1999.00165.x

, Bibliography

W. Mulder, Automatic Velocity Analysis with the Two-way Wave Equation, 70th EAGE Conference and Exhibition incorporating SPE EUROPEC 2008, 2008.
DOI : 10.3997/2214-4609.20147941

W. Mulder, Subsurface offset behaviour in velocity analysis with extended reflectivity images, Geophysical Prospecting, vol.97, issue.1, pp.17-33, 2014.
DOI : 10.1007/BF01447872

W. Mulder and B. Hak, An ambiguity in attenuation scattering imaging, Geophysical Journal International, vol.28, issue.2, pp.1614-1624, 2009.
DOI : 10.1111/j.1365-246X.2009.04253.x

W. Mulder and A. Ten-kroode, Automatic velocity analysis by differential semblance optimization, GEOPHYSICS, vol.67, issue.4, pp.1184-1191, 2002.
DOI : 10.1190/1.1443499

W. A. Mulder and R. E. Plessix, A comparison between one???way and two???way wave???equation migration, GEOPHYSICS, vol.69, issue.6, pp.1491-1504, 2004.
DOI : 10.1088/0266-5611/19/5/307

S. G. Nash and J. Nocedal, A Numerical Study of the Limited Memory BFGS Method and the Truncated-Newton Method for Large Scale Optimization, SIAM Journal on Optimization, vol.1, issue.3, pp.358-372, 1991.
DOI : 10.1137/0801023

T. Nemeth, C. Wu, and G. T. Schuster, Least???squares migration of incomplete reflection data, GEOPHYSICS, vol.64, issue.1, pp.208-221, 1999.
DOI : 10.1111/j.1365-246X.1996.tb01535.x

D. Nichols, Resolution in Seismic Inversion- Spectral Gap or Spectral Overlap, Which is Harder to Handle?, 74th EAGE Conference and Exhibition, Workshops, 2012.
DOI : 10.3997/2214-4609.20149794

J. Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of Computation, vol.35, issue.151, pp.773-782, 1980.
DOI : 10.1090/S0025-5718-1980-0572855-7

URL : https://www.ams.org/mcom/1980-35-151/S0025-5718-1980-0572855-7/S0025-5718-1980-0572855-7.pdf

C. J. Nolan and W. W. Symes, Imaging and coherency in complex structures, SEG Technical Program Expanded Abstracts 1996, pp.359-362, 1996.
DOI : 10.1080/03605308808820553

M. S. Operto, S. Xu, and G. Lambaré, Can we quantitatively image complex structures with rays? Geophysics, pp.1223-1238, 2000.

S. Operto, Y. Gholami, V. Prieux, A. Ribodetti, R. Brossier et al., A guided tour of multiparameter full-waveform inversion with multicomponent data: From theory to practice, The Leading Edge, vol.6, issue.9, pp.1040-1054, 2013.
DOI : 10.1190/segam2012-1473.1

URL : https://hal.archives-ouvertes.fr/hal-00935445

S. Operto, G. Lambaré, P. Podvin, and P. Thierry, 3D ray+Born migration/inversion???Part 2: Application to the SEG/EAGE overthrust experiment, GEOPHYSICS, vol.68, issue.4, pp.1357-1370, 2003.
DOI : 10.1190/1.1487131

URL : https://hal.archives-ouvertes.fr/hal-00407041

S. Operto, J. Virieux, P. Amestoy, J. L-'excellent, L. Giraud et al., 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study, GEOPHYSICS, vol.119, issue.5, pp.195-211, 2007.
DOI : 10.1016/S0165-2125(96)00030-3

URL : https://hal.archives-ouvertes.fr/insu-00355256

T. J. Op-'t-root, C. C. Stolk, and V. Maarten, Linearized inverse scattering based on seismic reverse time migration, Journal de mathématiques pures et appliquées, pp.211-238, 2012.

S. Østmo, W. Mulder, and R. E. Plessix, Finite-difference iterative migration by linearized waveform inversion in the frequency domain In: SEG Technical Program Expanded Abstracts, pp.1384-1387, 2002.

P. Solano and C. A. , Two-dimensional near-surface seismic imaging with surface waves: alternative methodology for waveform inversion, 2013.
URL : https://hal.archives-ouvertes.fr/pastel-00932790

R. E. Plessix, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophysical Journal International, vol.58, issue.3, pp.495-503, 2006.
DOI : 10.1017/CBO9780511529399

R. E. Plessix, G. Baeten, J. W. De-maag, M. Klaassen, Z. Rujie et al., Application of acoustic full waveform inversion to a low???frequency large???offset land data set, SEG Technical Program Expanded Abstracts 2010, pp.930-934, 2010.
DOI : 10.1111/j.1365-246X.2004.02442.x

R. É. Plessix, Y. H. De-roeck, and G. Chavent, Automatic and simultaneous migration velocity analysis and waveform inversion of real data using a MBTT/WKB J formulation, SEG Technical Program Expanded Abstracts 1995, pp.1099-1102, 1995.
DOI : 10.1190/1.1887624

R. E. Plessix, Y. H. De-roeck, and G. Chavent, Waveform Inversion of Reflection Seismic Data for Kinematic Parameters by Local Optimization, SIAM Journal on Scientific Computing, vol.20, issue.3, pp.1033-1052, 1998.
DOI : 10.1137/S1064827596311980

R. E. Plessix, W. Mulder, and A. Ten-kroode, Automatic cross-well tomography by semblance and differential semblance optimization: theory and gradient computation, Geophysical Prospecting, vol.125, issue.6, pp.913-935, 2000.
DOI : 10.1190/1.1443815

R. E. Plessix and C. Perkins, Thematic Set: Full waveform inversion of a deep water ocean bottom seismometer dataset, First Break, vol.28, issue.1728, pp.71-78, 2010.
DOI : 10.3997/1365-2397.2010013

P. Podvin and I. Lecomte, Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools, Geophysical Journal International, vol.100, issue.B10, pp.271-284, 1991.
DOI : 10.1190/1.1889891

O. Portniaguine and M. S. Zhdanov, Focusing geophysical inversion images, GEOPHYSICS, vol.64, issue.3, pp.874-887, 1999.
DOI : 10.1029/96RS00719

URL : https://www.gt-crust.ru/jour/article/download/682/417

R. Pratt, L. Sirgue, B. Hornby, and J. Wolfe, Crosswell Waveform Tomography in Fine-layered Sediments - Meeting the Challenges of Anisotropy, 70th EAGE Conference and Exhibition incorporating SPE EUROPEC 2008, pp.12-46, 2008.
DOI : 10.3997/2214-4609.20147681

R. Pratt, Z. M. Song, P. Williamson, and M. Warner, Two-dimensional velocity models from wide-angle seismic data by wavefield inversion, Geophysical Journal International, vol.52, issue.1, pp.323-340, 1996.
DOI : 10.3997/1365-2397.1991024

URL : https://academic.oup.com/gji/article-pdf/124/2/323/5979761/124-2-323.pdf

R. G. Pratt, C. Shin, and G. Hick, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion, Geophysical Journal International, vol.60, issue.2, pp.341-362, 1998.
DOI : 10.1190/1.1443815

R. G. Pratt and M. Worthington, Inverse theory applied to multi-source crosshole tomography. Part 1: Acoustic wave-equation method. Geophysical prospecting, Bibliography, vol.38, issue.3, pp.287-310, 1990.

V. Prieux, R. Brossier, S. Operto, and J. Virieux, Multiparameter full waveform inversion of multicomponent ocean-bottom-cable data from the Valhall field. Part 1: imaging compressional wave speed, density and attenuation, Geophysical Journal International, vol.52, issue.1, pp.1640-1664, 2013.
DOI : 10.1190/1.1442237

V. Prieux, G. Lambaré, S. Operto, and J. Virieux, Building starting models for full waveform inversion from wide-aperture data by stereotomography, Geophysical Prospecting, issue.s1, pp.61-109, 2013.
DOI : 10.1111/j.1365-2478.2012.01099.x

URL : https://hal.archives-ouvertes.fr/hal-00875796

E. Priolo and C. Chiaruttini, Analytical and numerical analysis of tomographic resolution with band???limited signals, GEOPHYSICS, vol.68, issue.2, pp.600-613, 2003.
DOI : 10.1190/1.1443179

M. L. Prucha, B. L. Biondi, and W. W. Symes, Angle???domain common image gathers by wave???equation migration, SEG Technical Program Expanded Abstracts 1999, pp.824-827, 1999.
DOI : 10.1190/1.1441656

S. Pyun and C. Shin, Evaluation of Kirchhoff hyperbola in terms of partial derivative wavefield and virtual source, Journal of Applied Geophysics, vol.65, issue.1, pp.50-55, 2008.
DOI : 10.1016/j.jappgeo.2008.02.001

B. Qin, T. Allemand, and G. Lambaré, Full waveform inversion using preserved amplitude reverse time migration, SEG Technical Program Expanded Abstracts 2015, pp.1252-1257, 2015.
DOI : 10.1190/1.2399371

B. Qin and G. Lambaré, Joint inversion of velocity and density in preservedamplitude full-waveform inversion. In: SEG Technical Program Expanded Abstracts 2016, pp.1325-1330, 2016.

F. Qin, Y. Luo, K. B. Olsen, W. Cai, and G. T. Schuster, Finite???difference solution of the eikonal equation along expanding wavefronts, GEOPHYSICS, vol.57, issue.3, pp.478-487, 1992.
DOI : 10.1190/1.1443263

J. W. Rector, Crosswell methods: Where are we, where are we going? Geophysics, pp.629-630, 1995.
DOI : 10.1190/1.1443802

A. Ribodetti and J. Virieux, GEOPHYSICS, vol.47, issue.5, pp.1767-1778, 1998.
DOI : 10.1007/BF00876266

J. E. Rickett and P. C. Sava, Offset and angle???domain common image???point gathers for shot???profile migration, GEOPHYSICS, vol.67, issue.3, pp.883-889, 2002.
DOI : 10.1190/1.1443282

J. O. Robertsson, J. O. Blanch, and W. W. Symes, Viscoelastic finite???difference modeling, GEOPHYSICS, vol.59, issue.9, pp.1444-1456, 1994.
DOI : 10.1190/1.1443701

D. Rocha, N. Tanushev, and P. Sava, Acoustic wavefield imaging using the energy norm, GEOPHYSICS, vol.81, issue.4, pp.151-163, 2016.
DOI : 10.3997/1365-2397.2009002

S. Ronen and C. L. Liner, Least???squares DMO and migration, GEOPHYSICS, vol.21, issue.5, pp.1364-1371, 2000.
DOI : 10.1190/1.1441064

P. Routh, J. Krebs, S. Lazaratos, A. Baumstein, I. Chikichev et al., Full-Wavefield Inversion of Marine Streamer Data with the Encoded Simultaneous Source Method, 73rd EAGE Conference and Exhibition incorporating SPE EUROPEC 2011, 2011.
DOI : 10.3997/2214-4609.20149730

M. Sambridge and G. Drijkoningen, Genetic algorithms in seismic waveform inversion, Geophysical Journal International, vol.122, issue.2, pp.323-342, 1992.
DOI : 10.1007/978-94-015-7744-1

M. Sambridge and K. Mosegaard, Monte Carlo methods in geophysical inverse problems, Reviews of Geophysics, vol.85, issue.2, 2002.
DOI : 10.1029/94GL03345

F. Santosa, W. Symes, and G. Raggio, Inversion of band-limited reflection seismograms using stacking velocities as constraints, Inverse Problems, vol.3, issue.3, p.477, 1987.
DOI : 10.1088/0266-5611/3/3/015

P. Sava and B. Biondi, Wave-equation migration velocity analysis. I. Theory. Geophysical Prospecting, pp.593-606, 2004.

P. Sava and S. Fomel, Time-shift imaging condition in seismic migration, S209?S217. (cit. on pp. 28, pp.76-123, 2006.
DOI : 10.1190/1.1707076

P. Sava and I. Vasconcelos, Extended imaging conditions for wave-equation migration, Geophysical Prospecting, vol.57, issue.1, pp.35-55, 2011.
DOI : 10.1111/j.1365-2478.2010.00888.x

P. C. Sava and S. Fomel, Angle???domain common???image gathers by wavefield continuation methods, GEOPHYSICS, vol.68, issue.3, pp.1065-1074, 2003.
DOI : 10.1190/1.1438416

J. A. Scales, P. Docherty, and A. Gersztenkorn, Regularisation of nonlinear inverse problems: imaging the near-surface weathering layer, Inverse Problems, vol.6, issue.1, p.115, 1990.
DOI : 10.1088/0266-5611/6/1/011

J. A. Scales, M. L. Smith, and T. L. Fischer, Global optimization methods for multimodal inverse problems, Journal of Computational Physics, vol.103, issue.2, pp.258-268, 1992.
DOI : 10.1016/0021-9991(92)90400-S

J. Schleicher, J. C. Costa, and A. Novais, A comparison of imaging conditions for wave-equation shot-profile migration, GEOPHYSICS, vol.73, issue.6, pp.219-227, 2008.
DOI : 10.1190/1.1988182

DOI : 10.1190/1.1440828

G. T. Schuster, Seismic interferometry In: Encyclopedia of Exploration Geophysics, pp.1-1, 2016.
DOI : 10.1017/CBO9780511581557

G. T. Schuster, J. Yu, J. Sheng, and J. Rickett, Interferometric/daylight seismic imaging, Geophysical Journal International, vol.68, issue.12, pp.838-852, 2004.
DOI : 10.1190/1.1543215

M. K. Sen and P. L. Stoffa, Global optimization methods in geophysical inversion, 2013.
DOI : 10.1017/CBO9780511997570

N. M. Shapiro, M. Campillo, L. Stehly, and M. H. Ritzwoller, High-Resolution Surface-Wave Tomography from Ambient Seismic Noise, Science, vol.307, issue.5715, pp.1615-1618, 2005.
DOI : 10.1126/science.1108339

URL : https://hal.archives-ouvertes.fr/hal-00107913

P. Shen and W. W. Symes, Automatic velocity analysis via shot profile migration, VE49?VE59. (cit. on pp. 26, pp.30-61, 2008.
DOI : 10.1190/1.1443471

URL : http://www.trip.caam.rice.edu/reports/2007/amva2.pdf

P. Shen and W. W. Symes, Subsurface Domain Image Warping by Horizontal Bibliography Contraction and Its Application to Wave-Equation Migration Velocity Analysis In: SEG Technical Program Expanded Abstracts 2013, pp.4715-4719, 2013.

P. Shen and W. W. Symes, Horizontal contraction in image domain for velocity inversion, R95?R110. (cit. on pp. 61, pp.77-78, 2015.
DOI : 10.1190/1.1487131

P. Shen, W. W. Symes, S. Morton, A. Hess, and H. Calandra, Differential semblance velocity analysis via shot profile migration, SEG Technical Program Expanded Abstracts 2005, pp.2249-2252, 2005.
DOI : 10.1190/1.1443471

URL : http://www.trip.caam.rice.edu/reports/2005/ShenSEG05.pdf

R. E. Sheriff and L. P. Geldart, Exploration seismology, 1995.
DOI : 10.1017/CBO9781139168359

C. Shin, Nonlinear elastic wave inversion by blocky representations, 1988.

R. M. Shipp and S. C. Singh, Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data, Geophysical Journal International, vol.51, issue.2, pp.325-344, 2002.
DOI : 10.1111/j.1365-246X.1992.tb00836.x

I. Silvestrov, R. Baina, and E. Landa, Poststack diffraction imaging using reverse-time migration, Geophysical Prospecting, vol.75, issue.1, pp.129-142, 2016.
DOI : 10.1190/1.3277252

L. Sirgue, The Importance of Low Frequency and Large Offset in Waveform Inversion, 68th EAGE Conference and Exhibition incorporating SPE EUROPEC 2006, 2006.
DOI : 10.3997/2214-4609.201402146

L. Sirgue, O. Barkved, J. Van-gestel, O. Askim, and J. Kommedal, 3D waveform inversion on Valhall wide-azimuth OBC. In: 71st EAGE Conference & Exhibition . U038. (cit, p.15, 2009.

L. Sirgue and R. G. Pratt, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies, GEOPHYSICS, vol.56, issue.1, pp.231-248, 2004.
DOI : 10.1029/97JB03536

W. D. Smith, The Application of Finite Element Analysis to Body Wave Propagation Problems, Geophysical Journal of the Royal Astronomical Society, vol.242, issue.EM3, pp.747-768, 1975.
DOI : 10.1080/00288306.1970.10431342

L. Socco and C. Strobbia, Surface-wave method for near-surface characterization: a tutorial, Near Surface Geophysics, pp.165-185, 2004.
DOI : 10.3997/1873-0604.2004015

A. Soni, Full Wavefield Migration of Vertical Seismic Profiling Data, 2014.

X. Staal and D. Verschuur, Velocity estimation using internal multiples, SEG Technical Program Expanded Abstracts 2012, 2012.
DOI : 10.1190/1.2969907

X. R. Staal, Combined imaging and velocity estimation by Joint Migration Inversion, 2015.
DOI : 10.3997/2214-4609.20141157

C. C. Stolk and M. V. De-hoop, Modeling of Seismic Data in the Downward Continuation Approach, SIAM Journal on Applied Mathematics, vol.65, issue.4, pp.1388-1406, 2005.
DOI : 10.1137/S0036139904439545

C. C. Stolk, M. V. De-hoop, and W. W. Symes, Kinematics of shot-geophone migration, GEOPHYSICS, vol.74, issue.6, pp.19-34, 2009.
DOI : 10.1190/1.2399371

C. C. Stolk and W. W. Symes, Smooth objective functionals for seismic velocity inversion, Inverse Problems, vol.19, issue.1, p.73, 2002.
DOI : 10.1088/0266-5611/19/1/305

C. C. Stolk and W. W. Symes, Kinematic artifacts in prestack depth migration, GEOPHYSICS, vol.69, issue.2, pp.562-575, 2004.
DOI : 10.1190/1.1487131

B. Symes, Extended Waveform Inversion, 79th EAGE Conference and Exhibition 2017, Workshops, p.31, 2017.
DOI : 10.3997/2214-4609.201701711

W. W. Symes, Migration velocity analysis and waveform inversion, Geophysical Prospecting, vol.66, issue.6, pp.765-790, 2008.
DOI : 10.1190/1.9781560802488

W. W. Symes and J. J. Carazzone, Velocity inversion by differential semblance optimization, GEOPHYSICS, vol.56, issue.5, pp.654-663, 1991.
DOI : 10.1190/1.1443082

URL : https://hal.archives-ouvertes.fr/hal-01315596

W. W. Symes and M. Kern, Inversion of reflection seismograms by differential semblance analysis: algorithm structure and synthetic examples1, Geophysical Prospecting, vol.98, issue.6, pp.565-614, 1994.
DOI : 10.1190/1.1442046

URL : https://hal.archives-ouvertes.fr/hal-01111969

A. Tarantola, Inversion of seismic reflection data in the acoustic approximation, GEOPHYSICS, vol.49, issue.8, pp.49-1259, 1984.
DOI : 10.1190/1.1441754

A. Tarantola, Linearized inversion of seismic reflection data. Geophysical prospecting, pp.998-1015, 1984.

A. Tarantola, Inverse problem theory and methods for model parameter estimation, SIAM. (cit. on pp, vol.4, issue.12, 2005.
DOI : 10.1137/1.9780898717921

P. Thierry, S. Operto, and G. Lambaré, Fast 2-D ray+Born migration/inversion in complex media, GEOPHYSICS, vol.78, issue.1, pp.162-181, 1998.
DOI : 10.1190/1.1443499

J. Thorbecke, 2D Finite-Difference Wavefield Modelling. (cit. on pp. xii, 41, and 42, 2015.

A. Tikhonov, V. Arsenin, and F. John, Solutions of ill-posed problems, 1977.

D. Touati-ahmed and C. Storey, Efficient hybrid conjugate gradient techniques, Journal of Optimization Theory and Applications, vol.33, issue.2, pp.379-397, 1990.
DOI : 10.1007/BF00939455

T. Van-leeuwen and W. Mulder, A comparison of seismic velocity inversion methods for layered acoustics, Inverse Problems, vol.26, issue.1, p.15008, 2009.
DOI : 10.1088/0266-5611/26/1/015008

T. Van-leeuwen and W. Mulder, A correlation-based misfit criterion for wave-equation traveltime tomography, Geophysical Journal International, vol.26, issue.1, pp.1383-1394, 2010.
DOI : 10.1137/1.9780898717570

V. Cervený, Seismic ray theory, 2005.

V. Cervený, I. A. Molotkov, I. A. Molotkov, and I. P?en?ík, Ray method in seismology, Univerzita Karlova, 1977.

D. J. Verschuur, Seismic multiple removal techniques: Past, present and future, Bibliography EAGE Publications bv, 2006.
DOI : 10.3997/9789073834569

D. J. Verschuur, A. Berkhout, and C. Wapenaar, Adaptive surface???related multiple elimination, GEOPHYSICS, vol.57, issue.9, pp.1166-1177, 1992.
DOI : 10.1190/1.1443330

D. J. Verschuur and A. J. Berkhout, From Removing to Using Multiples in Closed-Loop Imaging. The Leading Edge, pp.744-759, 2015.

R. Versteeg, The Marmousi experience: Velocity model determination on a synthetic complex data set, The Leading Edge, vol.13, issue.9, pp.927-936, 1994.
DOI : 10.1190/1.1437051

J. Vidale, Finite-difference calculation of travel times, Bulletin of the Seismological Society of America, vol.78, issue.6, pp.2062-2076, 1988.

J. Virieux, wave propagation in heterogeneous media: Velocity???stress finite???difference method, GEOPHYSICS, vol.51, issue.4, pp.889-901, 1986.
DOI : 10.1190/1.1442147

J. Virieux, H. Calandra, and R. É. Plessix, A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging, Geophysical Prospecting, vol.136, issue.5, pp.794-813, 2011.
DOI : 10.1111/j.1365-246X.1999.tb07129.x

URL : https://hal.archives-ouvertes.fr/insu-00681794

J. Virieux and S. Operto, An overview of full-waveform inversion in exploration geophysics, WCC1?WCC26. (cit, pp.31-46, 2009.
DOI : 10.1190/1.1598125

URL : https://hal.archives-ouvertes.fr/hal-00457989

M. Vyas, W. Geco, and Y. Tang, Gradients for wave-equation migration velocity analysis. In: SEG Technical Program Expanded Abstracts 2010, pp.4077-4081, 2010.

H. Wang, S. C. Singh, F. Audebert, and H. Calandra, Inversion of seismic refraction and reflection data for building long-wavelength velocity models, GEOPHYSICS, vol.72, issue.2, pp.81-93, 2015.
DOI : 10.1190/1.1444194

H. Wang, S. C. Singh, and H. Calandra, Integrated inversion using combined wave-equation tomography and full waveform inversion, Geophysical Journal International, vol.163, issue.3, pp.430-446, 2014.
DOI : 10.1111/j.1365-246X.2005.02780.x

M. Warner and L. Guasch, Adaptive Waveform Inversion - FWI Without Cycle Skipping - Theory, Proceedings 76th EAGE Conference and Exhibition 2014, 2014.
DOI : 10.3997/2214-4609.20141092

M. Warner and L. Guasch, Robust Adaptive Waveform Inversion, SEG Technical Program Expanded Abstracts 2015, pp.1059-1063, 2015.
DOI : 10.1190/segam2015-5853026.1

M. Warner and L. Guasch, Adaptive waveform inversion: Theory, R429?R445. (cit. on pp. 10, 22, and 49, 2016.

M. Warner, T. Nangoo, N. Shah, A. Umpleby, and J. Morgan, Full-waveform inversion of cycle-skipped seismic data by frequency down-shifting, SEG Technical Program Expanded Abstracts 2013, pp.903-907, 2013.
DOI : 10.1190/geo2012-0338.1

M. Woodward, P. Farmer, D. Nichols, and S. Charles, Automated 3D tomographic velocity analysis of residual moveout in prestack depth migrated common image point gathers, SEG Technical Program Expanded Abstracts 1998, pp.1218-1221, 1998.
DOI : 10.1190/1.1443282

M. J. Woodward, Wave???equation tomography, GEOPHYSICS, vol.57, issue.1, pp.15-26, 1992.
DOI : 10.1190/1.1443179

M. J. Woodward, D. Nichols, O. Zdraveva, P. Whitfield, and T. Johns, A decade of tomography, GEOPHYSICS, vol.73, issue.5, pp.5-11, 2008.
DOI : 10.1190/1.1443179

R. S. Wu, J. Luo, and B. Wu, Seismic envelope inversion and modulation signal model, WA13?WA24. (cit. on pp. 22, 51, and 122, 2014.
DOI : 10.1007/PL00012548

Z. Wu and T. Alkhalifah, Simultaneous inversion of the background velocity and the perturbation in full-waveform inversion, GEOPHYSICS, vol.80, issue.6, pp.317-329, 2015.
DOI : 10.1093/gji/ggv228

J. Xia, R. D. Miller, and C. B. Park, Estimation of near???surface shear???wave velocity by inversion of Rayleigh waves, GEOPHYSICS, vol.1196, issue.3, pp.691-700, 1999.
DOI : 10.1112/plms/s1-17.1.4

X. B. Xie, R. S. Wu, M. Fehler, and L. Huang, Seismic resolution and illumination: A wave-equation-based analysis. In: SEG Technical Program Expanded Abstracts, pp.1862-1865, 2005.

X. B. Xie and H. Yang, The finite-frequency sensitivity kernel for migration residual moveout and its applications in migration velocity analysis, GEOPHYSICS, vol.73, issue.6, pp.241-249, 2008.
DOI : 10.1046/j.1365-246x.2000.00085.x

S. Xu, H. Chauris, G. Lambaré, and M. Noble, Common???angle migration: A strategy for imaging complex media, GEOPHYSICS, vol.58, issue.6, pp.1877-1894, 2001.
DOI : 10.1190/1.1443471

URL : https://hal.archives-ouvertes.fr/hal-01113385

S. Xu, F. Chen, G. Lambaré, and Y. Zhang, Full Waveform Inversion for Reflected Seismic Data, 74th EAGE Conference and Exhibition incorporating EUROPEC 2012, pp.449-462, 2013.
DOI : 10.3997/2214-4609.20148725

S. Xu and G. Lambaré, Fast migration/inversion with multivalued ray fields: Part 1???Method, validation test, and application in 2D to Marmousi, GEOPHYSICS, vol.58, issue.5, pp.1311-1319, 2004.
DOI : 10.1190/1.1487131

S. Xu, D. Wang, F. Chen, G. Lambaré, and Y. Zhang, Inversion on Reflected Seismic Wave, SEG Technical Program Expanded Abstracts 2012, pp.58-83, 2012.
DOI : 10.1190/1.3243073

Z. Xue, Y. Chen, S. Fomel, and J. Sun, Imaging incomplete data and simultaneous-source data using least-squares reverse-time migration with shaping regularization. In: SEG Technical Program Expanded Abstracts 2014, pp.3991-3996, 2014.

J. Yan and P. Sava, Isotropic angle-domain elastic reverse-time migration, GEOPHYSICS, vol.60, issue.6, pp.229-239, 2008.
DOI : 10.1190/1.1438200

T. Yang and P. Sava, Wave-equation migration velocity analysis with time-shift imaging. Geophysical prospecting, pp.635-650, 2011.

T. Yang and P. Sava, Image-domain wavefield tomography with extended common-image-point gathers, Geophysical Prospecting, vol.57, issue.5, pp.1086-1096, 2015.
DOI : 10.1190/1.1443179

T. Yang, J. Shragge, and P. Sava, Illumination compensation for image-domain wavefield tomography, GEOPHYSICS, vol.78, issue.5, pp.65-76, 2013.
DOI : 10.1190/1.3460296

, Bibliography

Ö. Yilmaz, Seismic data analysis: Processing, inversion, and interpretation of seismic data, Society of Exploration Geophysicists, 2001.
DOI : 10.1190/1.9781560801580

C. Zeng, S. Dong, and B. Wang, A guide to least-squares reverse time migration for subsalt imaging: Challenges and solutions, SN1?SN11. (cit. on pp. xii, 20, and 21, 2017.
DOI : 10.1190/geo2013-0461.1

Y. Zhang, L. Duan, and Y. Xie, A stable and practical implementation of leastsquares reverse time migration, V23?V31. (cit. on pp. 20, 22, and 48, 2014.

Y. Zhang, A. Ratcliffe, G. Roberts, and L. Duan, Amplitude-preserving reverse time migration: From reflectivity to velocity and impedance inversion, GEOPHYSICS, vol.26, issue.6, pp.271-283, 2014.
DOI : 10.1190/1.2399371

Y. Zhang and J. Sun, Practical issues in reverse time migration: true amplitude gathers, noise removal and harmonic source encoding. First Break, pp.204-204, 1295.

Y. Zhang, S. Xu, N. Bleistein, and G. Zhang, True-amplitude, angle-domain, common-image gathers from one-way wave-equation migrations, GEOPHYSICS, vol.16, issue.1, pp.49-58, 2007.
DOI : 10.1190/1.1988182

Y. Zhang, G. Zhang, and N. Bleistein, Theory of true-amplitude one-way wave equations and true-amplitude common-shot migration, E1?E10. (cit, pp.20-77, 2005.

L. Zhao, T. H. Jordan, and C. H. Chapman, Three-dimensional Frechet differential kernels for seismicdelay times, Geophysical Journal International, vol.101, issue.3, pp.558-576, 2000.
DOI : 10.1029/96JB02487

C. Zhou, W. Cai, Y. Luo, G. T. Schuster, and S. Hassanzadeh, Acoustic wave???equation traveltime and waveform inversion of crosshole seismic data, GEOPHYSICS, vol.60, issue.3, pp.765-773, 1995.
DOI : 10.1190/1.1443815

W. Zhou, Velocity model building by full waveform inversion of early arrivals & reflections and case study with gas cloud effect, pp.56-122, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01556584

W. Zhou, R. Brossier, S. Operto, and J. Virieux, Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation, Geophysical Journal International, vol.59, issue.4, pp.1535-1554, 2015.
DOI : 10.1111/j.1365-2478.2011.00954.x

URL : https://hal.archives-ouvertes.fr/hal-01385090