M. E. Davis, Ordered porous materials for emerging applications, Nature, vol.417, issue.6891, p.813, 2002.

K. D. Mondale, R. M. Carland, and F. F. Aplan, The comparative ion exchange capacities of natural sedimentary and synthetic zeolites, Miner. Eng, vol.8, issue.4-5, pp.535-548, 1995.

M. Suzuki, Activated carbon fiber: fundamentals and applications, Carbon, vol.32, issue.4, pp.577-586, 1994.

S. Kitagawa, Future Porous Materials, Acc. Chem. Res, vol.50, issue.3, pp.514-516, 2017.

N. Eroglu, M. Emekci, and C. G. Athanassiou, Applications of natural zeolites on agriculture and food production, J. Sci. Food Agric, vol.97, issue.11, pp.3487-3499, 2017.

B. Yilmaz, N. Trukhan, and U. Müller, Industrial Outlook on Zeolites and Metal Organic Frameworks, Chin. J. Catal, vol.33, issue.1, pp.3-10, 2012.

P. Silva, S. M. Vilela, J. P. Tomé, and F. A. Paz, Multifunctional metal-organic frameworks: from academia to industrial applications, Chem. Soc. Rev, vol.44, pp.6774-6803, 2015.

R. Research, World Activated Carbon Market to Reach 1.733 Million Tons by 2017, Says a New Research Report at RnRMarketResearch

R. Geyer, J. R. Jambeck, and K. L. Law, Production, use, and fate of all plastics ever made, Sci. Adv, vol.3, issue.7, p.1700782, 2017.

D. Das, D. P. Samal, and M. Bc, Preparation of Activated Carbon from Green Coconut Shell and its Characterization, Journal of Chemical Engineering & Process Technology, vol.06, issue.05, p.1000248, 2015.

K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst, vol.44, issue.6, pp.1272-1276, 2011.

R. J. Pellenq, B. Rousseau, and P. E. Levitz, A Grand Canonical Monte Carlo study of argon adsorption/condensation in mesoporous silica glasses, Phys. Chem. Chem. Phys, vol.3, issue.7, pp.1207-1212, 2001.

H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr, vol.2, issue.2, pp.65-71, 1969.

F. Mouhat and F. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B, vol.90, issue.22, p.224104, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02310188

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, vol.13, issue.12, p.5188, 1976.

T. D. Bennett and A. K. Cheetham, Amorphous Metal-Organic Frameworks, Acc. Chem. Res, vol.47, issue.5, pp.1555-1562, 2014.

C. Colella and A. F. Gualtieri, Cronstedt's zeolite, Micropor. Mesopor. Mat, vol.105, issue.3, pp.213-221, 2007.

M. D. Foster and M. M. Treacy, A Database of Hypothetical Zeolite Structures

B. F. Hoskins and R. Robson, Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments, J. Am. Chem. Soc, vol.111, issue.15, pp.5962-5964, 1989.

H. Li, M. Eddaoudi, M. O'keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, vol.402, issue.6759, pp.276-279, 1999.

H. Furukawa, K. E. Cordova, M. O'keeffe, and O. M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks, Science, vol.341, issue.6149, p.1230444, 2013.

J. C. Tan and A. K. Cheetham, Mechanical properties of hybrid inorganic-organic framework materials: establishing fundamental structure-property relationships, Chem. Soc. Rev, vol.40, issue.2, p.1059, 2011.

J. Urquhart, World's first commercial MOF keeps fruit, 2016.

F. Coudert, Responsive Metal-Organic Frameworks and Framework Materials: Under Pressure, Taking the Heat, in the Spotlight, with Friends, Chem. Mater, vol.27, issue.6, pp.1905-1916, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02269625

T. D. Bennett, A. K. Cheetham, A. H. Fuchs, and F. Coudert, Interplay between defects, disorder and flexibility in metal-organic frameworks, Nat. Chem, vol.9, issue.1, pp.11-16, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02310194

F. Coudert and A. H. Fuchs, Computational characterization and prediction of metal-organic framework properties, Coord. Chem. Rev, vol.307, issue.2, pp.211-236, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02310161

G. Fraux and F. Coudert, Recent advances in the computational chemistry of soft porous crystals, vol.53, pp.7211-7221, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02310158

T. Tian, Z. Zeng, D. Vulpe, M. E. Casco, G. Divitini et al., A sol-gel monolithic metal-organic framework with enhanced methane uptake, Nat. Mater, vol.17, issue.2, pp.174-179, 2017.

H. Oh, S. Maurer, R. Balderas-xicohtencatl, L. Arnold, O. V. Magdysyuk et al., Efficient synthesis for large-scale production and characterization for hydrogen storage of ligand exchanged MOF-74/174/184-M (M = Mg 2+ , Ni 2+ ), Int. J. Hydrog. Energy, vol.42, issue.2, pp.1027-1035, 2017.

M. Witman, S. Ling, A. Gladysiak, K. C. Stylianou, B. Smit et al., Rational Design of a Low-Cost, High-Performance Metal-Organic Framework for Hydrogen Storage and Carbon Capture, J. Phys. Chem. C, vol.121, issue.2, pp.1171-1181, 2017.

T. J. Strathmann and S. C. Myneni, Speciation of aqueous Ni(II)-carboxylate and Ni(II)-fulvic acid solutions: Combined ATR-FTIR and XAFS analysis, Geochim. Cosmochim. Acta, vol.68, issue.17, pp.3441-3458, 2004.

M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter et al., Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage, Science, vol.295, pp.469-472, 2002.

O. M. Yaghi, M. O'keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi et al., Reticular synthesis and the design of new materials, Nature, vol.423, issue.6941, p.705, 2003.

D. J. Tranchemontagne, J. L. Mendoza-cortés, M. O'keeffe, and O. M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal-organic frameworks, Chem. Soc. Rev, vol.38, issue.5, p.1257, 2009.

M. Jahan, Q. Bao, and K. P. Loh, Electrocatalytically Active Graphene-Porphyrin MOF Composite for Oxygen Reduction Reaction, J. Am. Chem. Soc, vol.134, issue.15, pp.6707-6713, 2012.

H. Fei and S. M. Cohen, A robust, catalytic metal-organic framework with open 2,2'-bipyridine sites, Chem. Commun, vol.50, issue.37, pp.4810-4812, 2014.

K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. U.S.A, vol.103, issue.27, pp.10186-10191, 2006.

Z. Ni and R. I. Masel, Rapid Production of Metal-Organic Frameworks via Microwave-Assisted Solvothermal Synthesis, J. Am. Chem. Soc, vol.128, issue.38, pp.12394-12395, 2006.

N. Stock and S. Biswas, Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites, Chem. Rev, vol.112, issue.2, pp.933-969, 2012.

U. Müller, H. Pütter, M. Hesse, H. Wessel, M. Schubert et al., Method for Electrochemical Production of a Crystalline Porous Metal Organic Skeleton Material, 2005.

S. M. Cohen, The Postsynthetic Renaissance in Porous Solids, J. Am. Chem. Soc, vol.139, issue.8, pp.2855-2863, 2017.

K. M. Taylor-pashow, J. Della-rocca, Z. Xie, S. Tran, and W. Lin, Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal-Organic Frameworks for Imaging and Drug Delivery, J. Am. Chem. Soc, vol.131, issue.40, pp.14261-14263, 2009.

O. Karagiaridi, M. B. Lalonde, W. Bury, A. A. Sarjeant, O. K. Farha et al., Opening ZIF-8: A Catalytically Active Zeolitic Imidazolate Framework of Sodalite Topology with Unsubstituted Linkers, J. Am. Chem. Soc, vol.134, issue.45, pp.18790-18796, 2012.

M. B-panella, H. Hirscher, U. Pütter, and . Müller, Hydrogen Adsorption in Metal-Organic Frameworks: Cu-MOFs and Zn-MOFs Compared, Adv. Funct. Mater, vol.16, issue.4, pp.520-524, 2006.

O. I. Lebedev, F. Millange, C. Serre, G. Van-tendeloo, and G. Férey, First Direct Imaging of Giant Pores of the Metal-Organic Framework MIL-101, Chem. Mater, vol.17, issue.26, pp.6525-6527, 2005.

J. Moellmer, E. B. Celer, R. Luebke, A. J. Cairns, R. Staudt et al., Insights on Adsorption Characterization of Metal-Organic Frameworks: A Benchmark Study on the Novel soc-MOF, Micropor. Mesopor. Mat, vol.129, issue.3, pp.345-353, 2010.

N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim et al., Hydrogen Storage in Microporous Metal-Organic Frameworks, Science, vol.300, pp.1127-1129, 2003.

H. K. Chae, D. Y. Siberio-pérez, J. Kim, Y. Go, M. Eddaoudi et al., A route to high surface area, porosity and inclusion of large molecules in crystals, Nature, vol.427, issue.6974, pp.523-527, 2004.

Y. Zhao, S. Lee, N. Becknell, O. M. Yaghi, and C. A. Angell, Nanoporous Transparent MOF Glasses with Accessible Internal Surface, J. Am. Chem. Soc, vol.138, issue.34, pp.10818-10821, 2016.

T. D. Bennett, J. Tan, Y. Yue, E. Baxter, C. Ducati et al., Hybrid glasses from strong and fragile metal-organic framework liquids, Nat. Commun, vol.6, p.8079, 2015.

T. D. Bennett, P. J. Saines, D. A. Keen, J. Tan, and A. K. Cheetham, Ball-Milling-Induced Amorphization of Zeolitic Imidazolate Frameworks (ZIFs) for the Irreversible Trapping of Iodine, Chem. Eur. J, vol.19, issue.22, pp.7049-7055, 2013.

D. Xu, Y. Liu, Y. Tian, and L. Wang, Communication: Enthalpy relaxation in a metalorganic zeolite imidazole framework (ZIF-4) glass-former, J. Chem. Phys, vol.146, issue.12, p.121101, 2017.

M. R. Ryder, T. D. Bennett, C. S. Kelley, M. D. Frogley, G. Cinque et al., Tracking thermal-induced amorphization of a zeolitic imidazolate framework via synchrotron in situ farinfrared spectroscopy, ChemComm, vol.53, issue.52, pp.7041-7044, 2017.

T. D. Bennett, Y. Yue, P. Li, A. Qiao, H. Tao et al., Melt-Quenched Glasses of Metal-Organic Frameworks, J. Am. Chem. Soc, vol.138, issue.10, pp.3484-3492, 2016.

T. D. Bennett, D. A. Keen, J. Tan, E. R. Barney, A. L. Goodwin et al., Thermal amorphization of zeolitic imidazolate frameworks, Angew. Chem, vol.123, issue.13, pp.3123-3127, 2011.

T. D. Bennett, T. Todorova, E. Baxter, D. G. Reid, C. Gervais et al., Connecting Defects and Amorphization in UiO-66 and MIL-140 Metal-organic Frameworks: A Combined Experimental and Computational Study, Phys. Chem. Chem. Phys, vol.18, pp.2192-2201, 2015.

C. Orellana-tavra, E. F. Baxter, T. Tian, T. D. Bennett, N. K. Slater et al., Amorphous metal-organic frameworks for drug delivery, ChemComm, vol.51, issue.73, pp.13878-13881, 2015.

T. D. Bennett, S. Cao, J. C. Tan, D. A. Keen, E. G. Bithell et al., Facile Mechanosynthesis of Amorphous Zeolitic Imidazolate Frameworks, J. Am. Chem. Soc, vol.133, issue.37, pp.14546-14549, 2011.

S. Tominaka, H. Hamoudi, T. Suga, T. D. Bennett, A. B. Cairns et al., Topochemical conversion of a dense metal-organic framework from a crystalline insulator to an amorphous semiconductor, Chem. Sci, vol.6, issue.2, pp.1465-1473, 2015.

R. Gaillac, P. Pullumbi, K. A. Beyer, K. W. Chapman, D. A. Keen et al., Liquid metal-organic frameworks, Nat. Mater, vol.16, pp.1149-1154, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02310155

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, J. Chem. Phys, vol.21, issue.6, pp.1087-1092, 1953.

I. E. Fermi, P. Pasta, S. Ulam, and M. Tsingou, Studies of the nonlinear problems, 1955.

B. J. Alder and T. E. Wainwright, Phase Transition for a Hard Sphere System, J. Chem. Phys, vol.27, issue.5, pp.1208-1209, 1957.

F. Sterpone and S. Melchionna, Thermophilic proteins: insight and perspective from in silico experiments, Chem. Soc. Rev, vol.41, issue.5, pp.1665-1676, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01498109

J. L. Jenkins, A. Bender, and J. W. Davies, In silico target fishing: Predicting biological targets from chemical structure, Drug. Discov. Today. Technol, vol.3, issue.4, pp.413-421, 2006.

A. Boutin and R. Vuilleumier, De Boltzmann aux expériences " in silico, pp.61-65, 2011.

M. Chebbi, S. Chibani, J. Paul, L. Cantrel, and M. Badawi, Evaluation of volatile iodine trapping in presence of contaminants: A periodic DFT study on cation exchanged-faujasite, Micropor. Mesopor. Mat, vol.239, pp.111-122, 2017.

G. G. , Angilella and A. La Magna, editors, Correlations in Condensed Matter under Extreme Conditions, 2017.

D. S. Sholl and J. A. Steckel, Density functional theory: a practical introduction, 2009.

P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev, vol.136, issue.3B, p.864, 1964.

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev, vol.140, issue.4A, p.1133, 1965.

R. G. Parr, Aspects of density functional theory, Philos. Mag. B, vol.69, issue.5, pp.737-743, 1994.

K. Lejaeghere, G. Bihlmayer, T. Bjorkman, P. Blaha, S. Blugel et al., Science, vol.351, issue.6280, p.3000, 2016.

J. P. Perdew, Jacob's ladder of density functional approximations for the exchange-correlation energy, AIP Conf. Proc, vol.577, issue.1, pp.1-20, 2001.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria et al., Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett, vol.100, issue.13, p.136406, 2008.

A. W. Thornton, R. Babarao, A. Jain, F. Trousselet, and F. Coudert, Defects in metal-organic frameworks: a compromise between adsorption and stability?, Dalton Trans, vol.45, issue.10, pp.4352-4359, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02310166

S. J. Lee, C. Doussot, A. Baux, L. Liu, G. B. Jameson et al., Multicomponent Metal-Organic Frameworks as Defect-Tolerant Materials, Chem. Mater, vol.28, issue.1, pp.368-375, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02264343

A. U. Ortiz, A. Boutin, A. H. Fuchs, and F. Coudert, Metal-organic frameworks with winerack motif: What determines their flexibility and elastic properties?, J. Chem. Phys, vol.138, issue.17, p.174703, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02116910

J. Heyd and G. E. Scuseria, Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional, J. Chem. Phys, vol.121, issue.3, pp.1187-1192, 2004.

S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem, vol.27, issue.15, pp.1787-1799, 2006.

S. Grimme, A. Hansen, J. G. Brandenburg, and C. Bannwarth, Dispersion-Corrected Mean-Field Electronic Structure Methods, vol.116, pp.5105-5154, 2016.

J. Moellmann and S. Grimme, DFT-D3 Study of Some Molecular Crystals, J. Phys. Chem. C, vol.118, issue.14, pp.7615-7621, 2014.

A. Tkatchenko, R. A. Distasio, R. Car, and M. Scheffler, Accurate and Efficient Method for Many-Body van der Waals Interactions, Phys. Rev. Lett, vol.108, issue.23, p.236402, 2012.

D. E. Vanpoucke, K. Lejaeghere, V. Van-speybroeck, M. Waroquier, and A. Ghysels, Mechanical Properties from Periodic Plane Wave Quantum Mechanical Codes: The Challenge of the Flexible Nanoporous MIL-47(V) Framework, J. Phys. Chem. C, vol.119, issue.41, pp.23752-23766, 2015.

K. Barthelet, J. Marrot, D. Riou, and G. Férey, A Breathing Hybrid Organic-Inorganic Solid with Very Large Pores and High Magnetic Characteristics, Angew. Chem. Int. Ed, vol.41, issue.2, pp.281-284, 2002.

C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math. Comput, vol.19, issue.92, pp.577-593, 1965.

D. D. Johnson, Modified Broyden's method for accelerating convergence in self-consistent calculations, Phys. Rev. B, vol.38, issue.18, p.12807, 1988.

A. E. Reed, R. B. Weinstock, and F. Weinhold, Natural population analysis, J. Chem. Phys, vol.83, issue.2, pp.735-746, 1985.

T. A. Manz and D. S. Sholl, Chemically Meaningful Atomic Charges That Reproduce the Electrostatic Potential in Periodic and Nonperiodic Materials, J. Chem. Theory Comput, vol.6, issue.8, pp.2455-2468, 2010.

D. Corradini, F. Coudert, and R. Vuilleumier, Carbon dioxide transport in molten calcium carbonate occurs through an oxo-Grotthuss mechanism via a pyrocarbonate anion, Nat. Chem, vol.8, issue.5, pp.454-460, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02113318

E. Deumens, A. Diz, R. Longo, and Y. Öhrn, Time-dependent theoretical treatments of the dynamics of electrons and nuclei in molecular systems, Rev. Mod. Phys, vol.66, issue.3, pp.917-983, 1994.

R. Car and M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory, Phys. Rev. Lett, vol.55, issue.22, pp.2471-2474, 1985.

G. Lippert, J. Hutter, and M. Parrinello, The Gaussian and augmented-plane-wave density functional method for ab initio molecular dynamics simulations, Theor. Chem. Acc, vol.103, issue.2, pp.124-140, 1999.

J. Vandevondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing et al., Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Comput. Phys. Commun, vol.167, issue.2, pp.103-128, 2005.

J. Vandevondele and J. Hutter, Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases, J. Chem. Phys, vol.127, issue.11, p.114105, 2007.

F. Mouhat, S. Sorella, R. Vuilleumier, A. M. Saitta, and M. Casula, Fully Quantum Description of the Zundel Ion: Combining Variational Quantum Monte Carlo with Path Integral Langevin Dynamics, J. Chem. Theory Comput, vol.13, issue.6, pp.2400-2417, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01886270

F. Coudert and D. Kohen, Molecular Insight into CO 2 "Trapdoor" Adsorption in Zeolite Na-RHO, Chem. Mater, vol.29, issue.7, pp.2724-2730, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02116949

K. De-wispelaere, B. Ensing, A. Ghysels, E. J. Meijer, and V. Van-speybroeck, Complex Reaction Environments and Competing Reaction Mechanisms in Zeolite Catalysis: Insights from Advanced Molecular Dynamics, Chem. Eur. J, vol.21, issue.26, pp.9385-9396, 2015.

V. Haigis, F. Coudert, R. Vuilleumier, A. Boutin, and A. H. Fuchs, Hydrothermal Breakdown of Flexible Metal-Organic Frameworks: A Study by First-Principles Molecular Dynamics, J. Phys. Chem. Lett, vol.6, issue.21, pp.4365-4370, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02116205

M. Martinez, M. Gaigeot, D. Borgis, and R. Vuilleumier, Extracting effective normal modes from equilibrium dynamics at finite temperature, J. Chem. Phys, vol.125, issue.14, p.144106, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00157618

E. A. Carter, G. Ciccotti, J. T. Hynes, and R. , Constrained reaction coordinate dynamics for the simulation of rare events, Chem. Phys. Lett, vol.156, issue.5, pp.472-477, 1989.

M. Sprik and G. Ciccotti, Free energy from constrained molecular dynamics, J. Chem. Phys, vol.109, issue.18, pp.7737-7744, 1998.

V. Haigis, Y. Belkhodja, F. Coudert, R. Vuilleumier, and A. Boutin, Challenges in firstprinciples NPT molecular dynamics of soft porous crystals: A case study on MIL-53(Ga), J. Chem. Phys, vol.141, issue.6, p.64703, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02310202

J. D. Evans, D. M. Huang, M. R. Hill, C. J. Sumby, D. S. Sholl et al., Molecular Design of Amorphous Porous Organic Cages for Enhanced Gas Storage, J. Phys. Chem. C, vol.119, issue.14, pp.7746-7754, 2015.

J. D. Evans and F. Coudert, Microscopic Mechanism of Chiral Induction in a Metal-Organic Framework, J. Am. Chem. Soc, vol.138, pp.6131-6134, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02142936

J. D. Evans, D. M. Huang, M. R. Hill, C. J. Sumby, A. W. Thornton et al., Feasibility of Mixed Matrix Membrane Gas Separations Employing Porous Organic Cages, J. Phys. Chem. C, vol.118, issue.3, pp.1523-1529, 2014.

F. Trousselet, A. Boutin, and F. Coudert, Novel Porous Polymorphs of Zinc Cyanide with Rich Thermal and Mechanical Behavior, Chem. Mater, vol.27, issue.12, pp.4422-4430, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02310244

J. D. Evans, G. Fraux, R. Gaillac, D. Kohen, F. Trousselet et al., Computational Chemistry Methods for Nanoporous Materials, Chem. Mater, vol.29, issue.1, pp.199-212, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02310153

N. L. Allinger, K. Chen, and J. Lii, An improved force field (MM4) for saturated hydrocarbons, J. Comput. Chem, vol.17, pp.642-668, 1996.

A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard-iii, and W. M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc, vol.114, issue.25, pp.10024-10035, 1992.

W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules, J. Am. Chem. Soc, vol.117, pp.5179-5197, 1995.

H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds, J. Phys. Chem. B, vol.102, issue.38, pp.7338-7364, 1998.

R. B. Getman, Y. Bae, C. E. Wilmer, and R. Q. Snurr, Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal-Organic Frameworks, Chem. Rev, vol.112, issue.2, pp.703-723, 2012.

L. Vanduyfhuys, S. Vandenbrande, T. Verstraelen, R. Schmid, M. Waroquier et al., QuickFF: A program for a quick and easy derivation of force fields for metal-organic frameworks from ab initio input, J. Comput. Chem, vol.36, issue.13, pp.1015-1027, 2015.

J. Wieme, L. Vanduyfhuys, S. M. Rogge, M. Waroquier, and V. Van-speybroeck, Exploring the Flexibility of MIL-47(V)-Type Materials Using Force Field Molecular Dynamics Simulations, J. Phys. Chem. C, vol.120, issue.27, pp.14934-14947, 2016.

M. A. Addicoat, N. Vankova, I. F. Akter, and T. Heine, Extension of the Universal Force Field to Metal-Organic Frameworks, J. Chem. Theory Comput, vol.10, issue.2, pp.880-891, 2014.

A. C. Fogarty, F. Coudert, A. Boutin, and D. Laage, Reorientational Dynamics of Water Confined in Zeolites, ChemPhysChem, vol.15, issue.3, pp.521-529, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02113178

D. Fincham, Choice of timestep in molecular dynamics simulation, Comput. Phys. Commun, vol.40, issue.2-3, pp.263-269, 1986.

P. H. Hünenberger, Thermostat Algorithms for Molecular Dynamics Simulations, Thermostat Algorithms for Molecular Dynamics Simulations, pp.105-149, 2005.

S. M. Rogge, L. Vanduyfhuys, A. Ghysels, M. Waroquier, T. Verstraelen et al., A Comparison of Barostats for the Mechanical Characterization of Metal-Organic Frameworks, J. Chem. Theory Comput, vol.11, issue.12, pp.5583-5597, 2015.

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys, vol.81, issue.1, pp.511-519, 1984.

W. G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A, vol.31, issue.3, p.1695, 1985.

G. J. Martyna, D. J. Tobias, and M. L. Klein, Constant pressure molecular dynamics algorithms, J. Chem. Phys, vol.101, issue.5, pp.4177-4189, 1994.

D. Dubbeldam, A. Torres-knoop, and K. S. Walton, On the inner workings of Monte Carlo codes, Mol. Simul, vol.39, pp.1253-1292, 2013.

W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, pp.97-109, 1970.

A. Kundu, K. Sillar, and J. Sauer, Ab Initio Prediction of Adsorption Isotherms for Gas Mixtures by Grand Canonical Monte Carlo Simulations on a Lattice of Sites, J. Phys. Chem. Lett, vol.8, issue.12, pp.2713-2718, 2017.

S. De-gironcoli, P. Giannozzi, and S. Baroni, Structure and thermodynamics of Si x Ge 1-x alloys from ab initio Monte Carlo simulations, Phys. Rev. Lett, vol.66, issue.16, p.2116, 1991.

W. M. Foulkes, L. Mitas, R. J. Needs, and G. , Quantum Monte Carlo simulations of solids, Rev. Mod. Phys, vol.73, issue.1, p.33, 2001.

A. Zen, J. G. Brandenburg, J. Klimes, A. Tkatchenko, D. Alfè et al., Fast and accurate quantum Monte Carlo for molecular crystals, Proc. Natl. Acad. Sci. U.S.A, vol.115, issue.8, pp.1724-1729, 2018.

M. M. Treacy, K. H. Randall, S. Rao, J. A. Perry, and D. J. Chadi, Enumeration of periodic tetrahedral frameworks, Z. Kristall, vol.212, issue.11, pp.768-791, 1997.

S. M. Woodley and R. Catlow, Crystal structure prediction from first principles, Nat. Mater, vol.7, issue.12, pp.937-946, 2008.

O. D. Friedrichs, A. W. Dress, D. H. Huson, J. Klinowski, and A. L. Mackay, Systematic enumeration of crystalline networks, Nature, vol.400, issue.6745, pp.644-647, 1999.

M. M. Treacy, I. Rivin, E. Balkovsky, K. H. Randall, and M. D. Foster, Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs, Micropor. Mesopor. Mat, vol.74, issue.1-3, pp.121-132, 2004.

E. G. Derouane and J. G. Fripiat, Quantum mechanical calculations on molecular sieves. 1. Properties of the Si-OT (T= Si, Al, B) bridge in zeolites, J. Phys. Chem, vol.91, issue.1, pp.145-148, 1987.

C. Kosanovi?, J. Broni?, A. Cizmek, B. Suboti?, I. Smit et al., Mechanochemistry of zeolites: Part 2. Change in particulate properties of zeolites during ball milling, Zeolites, vol.15, issue.3, pp.247-252, 1995.

J. O'brien-abraham, M. Kanezashi, and Y. S. Lin, A comparative study on permeation and mechanical properties of random and oriented MFI-type zeolite membranes, Micropor. Mesopor. Mat, vol.105, issue.1-2, pp.140-148, 2007.

R. Astala, S. M. Auerbach, P. A. Monson, ;. Lta, M. Cha et al., Density Functional Theory Study of Silica Zeolite Structures: Stabilities and Mechanical Properties of SOD, J. Phys. Chem. B, vol.108, issue.26, pp.9208-9215, 2004.

Z. Li, M. C. Johnson, M. Sun, E. T. Ryan, D. J. Earl et al., Mechanical and Dielectric Properties of Pure-Silica-Zeolite Low-k Materials, Angew. Chem. Int. Ed, vol.45, issue.38, pp.6329-6332, 2006.

B. Coasne, J. Haines, C. Levelut, O. Cambon, M. Santoro et al., Enhanced mechanical strength of zeolites by adsorption of guest molecules, Phys. Chem. Chem. Phys, vol.13, issue.45, p.20096, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00656823

I. A. Bryukhanov, A. A. Rybakov, V. L. Kovalev, A. V. Larin, and G. M. Zhidomirov, Chemical reduction of the elastic properties of zeolites: a comparison of the formation of carbonate species versus dealumination, Dalton Trans, vol.44, issue.6, pp.2703-2711, 2015.

I. A. Bryukhanov, A. A. Rybakov, A. V. Larin, D. N. Trubnikov, and D. P. Vercauteren, The role of water in the elastic properties of aluminosilicate zeolites: DFT investigation, J. Mol. Model, vol.23, issue.3, 2017.

F. Coudert, Systematic investigation of the mechanical properties of pure silica zeolites: stiffness, anisotropy, and negative linear compressibility, Phys. Chem. Chem. Phys, vol.15, issue.38, p.16012, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02116883

A. B. Cairns and A. L. Goodwin, Negative linear compressibility, Phys. Chem. Chem. Phys, vol.17, issue.32, pp.20449-20465, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01899684

M. Siddorn, F. Coudert, K. E. Evans, and A. Marmier, A systematic typology for negative Poisson's ratio materials and the prediction of complete auxeticity in pure silica zeolite JST, Phys. Chem. Chem. Phys, vol.17, issue.27, pp.17927-17933, 2015.

R. Pophale, P. A. Cheeseman, and M. W. Deem, A database of new zeolite-like materials, Phys. Chem. Chem. Phys, vol.13, issue.27, p.12407, 2011.

A. Marmier, Z. A. Lethbridge, R. I. Walton, C. W. Smith, S. C. Parker et al., ElAM: A computer program for the analysis and representation of anisotropic elastic properties, Comput. Phys. Commun, vol.181, issue.12, pp.2102-2115, 2010.

W. Voigt, Handbook of Crystal Physics, 1928.

A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, Z. Angew. Math. Mech, vol.9, issue.1, pp.49-58, 1929.

R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc., Sec. A, vol.65, issue.5, pp.349-354, 1952.

A. L. Goodwin, D. A. Keen, and M. G. Tucker, Large negative linear compressibility of Ag3 [Co (CN) 6], Proc. Natl. Acad. Sci. 105(48), pp.18708-18713, 2008.

L. Wang, C. Wang, H. Luo, and Y. Sun, Correlation between Uniaxial Negative Thermal Expansion and Negative Linear Compressibility in Ag 3 [Co(CN) 6 ], J. Phys. Chem. C, vol.121, issue.1, pp.333-341, 2017.

Q. Zeng, K. Wang, Y. Qiao, X. Li, and B. Zou, Negative Linear Compressibility Due to Layer Sliding in a Layered Metal-Organic Framework, J. Phys. Chem. Lett, vol.8, issue.7, pp.1436-1441, 2017.

J. Dagdelen, J. Montoya, M. Jong, and K. Persson, Computational prediction of new auxetic materials, Nat. Commun, vol.8, p.323, 2017.

O. H. Nielsen and R. M. Martin, First-Principles Calculation of Stress, Phys. Rev. Lett, vol.50, issue.9, pp.697-700, 1983.

O. H. Nielsen and R. M. Martin, Quantum-mechanical theory of stress and force, Phys. Rev. B, vol.32, issue.6, pp.3780-3791, 1985.

J. R. Ray, Fluctuations and thermodynamic properties of anisotropic solids, J. Appl. Phys, vol.53, issue.9, pp.6441-6443, 1982.

M. Parrinello and A. Rahman, Strain fluctuations and elastic constants, J. Chem. Phys, vol.76, issue.5, pp.2662-2666, 1982.

A. U. Ortiz, A. Boutin, A. H. Fuchs, and F. Coudert, Investigating the Pressure-Induced Amorphization of Zeolitic Imidazolate Framework ZIF-8: Mechanical Instability Due to Shear Mode Softening, J. Phys. Chem. Lett, vol.4, issue.11, pp.1861-1865, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02116930

R. Gaillac, P. Pullumbi, and F. Coudert, ELATE: an open-source online application for analysis and visualization of elastic tensors, J. Phys.: Condens. Matter, vol.28, issue.27, p.275201, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02310193

K. Schriider, J. Sauer, M. Leslie, C. R. Catlow, and J. M. Thomas, Bridging hydroxyl groups in zeolitic catalysts: a computer simulation of their structure, vibrational properties and acidity in protonated faujasites (H-Y zeolites), Chem. Phys. Lett, vol.188, issue.3, p.6, 1992.

B. W. Van-beest, G. J. Kramer, and R. A. Van-santen, Force fields for silicas and aluminophosphates based on ab initio calculations, Phys. Rev. Lett, vol.64, issue.16, pp.1955-1958, 1990.

J. D. Gale and A. L. Rohl, The General Utility Lattice Program (GULP), Mol. Simul, vol.29, issue.5, pp.291-341, 2003.

J. D. Evans and F. Coudert, Predicting the Mechanical Properties of Zeolite Frameworks by Machine Learning, Chem. Mater, vol.29, pp.7833-7839, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02264216

T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, and M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials, Micropor. Mesopor. Mat, vol.149, issue.1, pp.134-141, 2012.

R. L. Martin, B. Smit, and M. Haranczyk, Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials, J. Chem. Inf. Model, vol.52, issue.2, pp.308-318, 2012.

R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-wilson, B. Civalleri et al., CRYSTAL14: A program for the ab initio investigation of crystalline solids, Int. J. Quantum Chem, vol.114, issue.19, pp.1287-1317, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01404047

E. I. Román-román and C. M. Zicovich-wilson, The role of long-range van der Waals forces in the relative stability of SiO2-zeolites, vol.619, pp.109-114, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res, issue.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

J. H. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, Ann. Stat, vol.29, issue.5, pp.1189-1232, 2001.

J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, Springer series in statistics, vol.1, 2001.

A. Mohan, Z. Chen, and K. Weinberger, Web-Search Ranking with Initialized Gradient Boosted Regression Trees, Proceedings of the Learning to Rank Challenge, vol.14, pp.77-89, 2011.

H. Li, Y. Liang, and Q. Xu, Support vector machines and its applications in chemistry, Chemom. Intell. Lab. Syst, vol.95, issue.2, pp.188-198, 2009.

R. Caruana and A. Niculescu-mizil, An empirical comparison of supervised learning algorithms, Proceedings of the 23 rd International Conference on Machine Learning, pp.161-168, 2006.

K. W. Chapman, G. J. Halder, and P. J. Chupas, Pressure-Induced Amorphization and Porosity Modification in a Metal-Organic Framework, J. Am. Chem. Soc, vol.131, issue.48, pp.17546-17547, 2009.

W. Yuan, J. O'connor, and S. L. James, Mechanochemical synthesis of homo-and hetero-rareearth(iii) metal-organic frameworks by ball milling, CrystEngComm, vol.12, issue.11, p.3515, 2010.

Y. H. Hu and L. Zhang, Amorphization of metal-organic framework MOF-5 at unusually low applied pressure, Phys. Rev. B, vol.81, issue.17, p.174103, 2010.

K. J. Gagnon, C. M. Beavers, and A. Clearfield, MOFs Under Pressure: The Reversible Compression of a Single Crystal, J. Am. Chem. Soc, vol.135, issue.4, pp.1252-1255, 2013.

T. D. Bennett, P. Simoncic, S. A. Moggach, F. Gozzo, P. Macchi et al., Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4), ChemComm, vol.47, issue.28, p.7983, 2011.

K. W. Chapman, D. F. Sava, G. J. Halder, P. J. Chupas, and T. M. Nenoff, Trapping Guests within a Nanoporous Metal-Organic Framework through Pressure-Induced Amorphization, J. Am. Chem. Soc, vol.133, issue.46, pp.18583-18585, 2011.

F. Yang, W. Li, and B. Tang, Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application, J. Alloys Compd, vol.733, pp.8-14, 2018.

S. Cao, T. D. Bennett, D. A. Keen, A. L. Goodwin, and A. K. Cheetham, Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling, ChemComm, vol.48, issue.63, p.7805, 2012.

A. Kertik, L. H. Wee, M. Pfannmöller, S. Bals, J. A. Martens et al., Highly selective gas separation membrane using in situ amorphised metal-organic frameworks, Energy Environ. Sci, vol.10, issue.11, pp.2342-2351, 2017.

C. Orellana-tavra, R. J. Marshall, E. F. Baxter, I. A. Lázaro, A. Tao et al., Drug delivery and controlled release from biocompatible metal-organic frameworks using mechanical amorphization, J. Mater. Chem. B, vol.4, issue.47, pp.7697-7707, 2016.

E. F. Baxter, T. D. Bennett, A. B. Cairns, N. J. Brownbill, A. L. Goodwin et al., A comparison of the amorphization of zeolitic imidazolate frameworks (ZIFs) and aluminosilicate zeolites by ball-milling, Dalton Trans, vol.45, issue.10, pp.4258-4268, 2016.

G. N. Greaves, F. Meneau, A. Sapelkin, L. M. Colyer, I. Gwynn et al., The rheology of collapsing zeolites amorphized by temperature and pressure, Nat. Mater, vol.2, issue.9, pp.622-629, 2003.

M. Colligan, P. M. Forster, A. K. Cheetham, Y. Lee, T. Vogt et al., Synchrotron X-ray Powder Diffraction and Computational Investigation of Purely Siliceous Zeolite Y under Pressure, J. Am. Chem. Soc, vol.126, issue.38, pp.12015-12022, 2004.

J. Haines, C. Levelut, A. Isambert, P. Hébert, S. Kohara et al., Topologically Ordered Amorphous Silica Obtained from the Collapsed Siliceous Zeolite, Silicalite-1-F: A Step toward "Perfect" Glasses, J. Am. Chem. Soc, vol.131, issue.34, pp.12333-12338, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00434413

T. D. Bennett, A. L. Goodwin, M. T. Dove, D. A. Keen, M. G. Tucker et al., Structure and Properties of an Amorphous Metal-Organic Framework, Phys. Rev. Lett, vol.104, issue.11, p.115503, 2010.

D. W. Lewis, A. R. Ruiz-salvador, A. Gómez, L. M. Rodriguez-albelo, F. Coudert et al., Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues, CrystEngComm, vol.11, issue.11, p.2272, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02142934

S. Komarneni and R. Roy, Anomalous microwave melting of zeolites, Mater. Lett, vol.4, issue.2, pp.107-110, 1986.

M. K. Song, J. M. Shin, H. Chon, and M. S. Jhon, Molecular dynamics study on the collapse of A-type zeolite framework. 1. Temperature dependence and prediction of melting phenomena, J. Phys. Chem, vol.93, issue.17, pp.6463-6468, 1989.

K. Yamahara, K. Okazaki, and K. Kawamura, Molecular dynamics study of the thermal behaviour of silica glass/melt and cristobalite, J. Non-Cryst. Solids, vol.291, issue.1, pp.32-42, 2001.

R. A. Robie, B. S. Hemingway, and J. R. Fisher, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10 5 pascals) pressure and at higher temperatures, Geological Survey, 1978.

G. N. Greaves and S. Sen, Inorganic glasses, glass-forming liquids and amorphizing solids, Adv. Phys, vol.56, issue.1, pp.1-166, 2007.

D. Umeyama, S. Horike, M. Inukai, T. Itakura, and S. Kitagawa, Reversible Solid-to-Liquid Phase Transition of Coordination Polymer Crystals, J. Am. Chem. Soc, vol.137, issue.2, pp.864-870, 2015.

D. Umeyama, N. P. Funnell, M. J. Cliffe, J. A. Hill, A. L. Goodwin et al., Glass formation via structural fragmentation of a 2D coordination network, Chem. Commun, vol.51, issue.64, pp.12728-12731, 2015.

J. C. Tan, T. D. Bennett, and A. K. Cheetham, Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks, Proc. Natl. Acad. Sci. U.S.A, vol.107, issue.22, pp.9938-9943, 2010.

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys, vol.126, p.14101, 2007.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys, vol.132, p.154104, 2010.

V. Haigis, F. Coudert, R. Vuilleumier, and A. Boutin, Investigation of structure and dynamics of the hydrated metal-organic framework MIL-53(Cr) using first-principles molecular dynamics, Phys. Chem. Chem. Phys, vol.15, pp.19049-19056, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02116940

S. Goedecker, M. Teter, and J. Hutter, Separable dual-space Gaussian pseudopotentials, Phys. Rev. B, vol.54, pp.1703-1710, 1996.

Q. Mei, C. J. Benmore, and J. K. Weber, Structure of Liquid SiO 2 : A Measurement by High-Energy X-Ray Diffraction, Phys. Rev. Lett, vol.98, issue.5, p.57802, 2007.

C. Chakravarty, P. G. Debenedetti, and F. H. Stillinger, Lindemann measures for the solid-liquid phase transition, J. Chem. Phys, vol.126, issue.20, p.204508, 2007.

K. K. Kelly, Heats of Fusion of Inorganic Compounds, US Bur. Mines Bull, vol.393, p.152, 1936.

A. Samanta, M. E. Tuckerman, T. Yu, and W. E. , Microscopic mechanisms of equilibrium melting of a solid, Science, vol.346, pp.729-732, 2014.

D. Laage and J. T. Hynes, A Molecular Jump Mechanism of Water Reorientation, Science, vol.311, issue.5762, pp.832-835, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00143095

D. Laage and J. T. Hynes, On the Molecular Mechanism of Water Reorientation, J. Phys. Chem. B, vol.112, issue.45, pp.14230-14242, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00338489

M. Pinheiro, R. L. Martin, C. H. Rycroft, A. Jones, E. Iglesia et al., Characterization and comparison of pore landscapes in crystalline porous materials, J. Mol. Graph. Model, vol.44, pp.208-219

N. Giri, M. G. Del-pópolo, G. Melaugh, R. L. Greenaway, K. Rätzke et al., Liquids with permanent porosity, Nature, vol.527, issue.7577, pp.216-220, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01227883

N. O'reilly, N. Giri, and S. L. James, Porous Liquids, Chem. Eur. J, vol.13, pp.3020-3025, 2007.

T. Hasell and A. I. Cooper, Porous organic cages: soluble, modular and molecular pores, Nat. Rev. Mater, vol.1, p.16053, 2016.

A. W. Thornton, K. E. Jelfs, K. Konstas, C. M. Doherty, A. J. Hill et al., Porosity in metal-organic framework glasses, Chem. Commun, vol.52, pp.3750-3753, 2016.

N. C. Forero-martinez, R. Cortes-huerto, and P. Ballone, The glass transition and the distribution of voids in room-temperature ionic liquids: A molecular dynamics study, J. Chem. Phys, vol.136, p.204510, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00773461

J. Deschamps, M. F. Costa-gomes, and A. A. Pádua, Study of Interactions of Carbon Dioxide and Water with Ionic Liquids, ChemPhysChem, vol.5, pp.1049-1052, 2004.

B. D. Freeman, Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes, Macromolecules, vol.32, pp.375-380, 1999.

B. R. Pimentel, A. Parulkar, E. Zhou, N. A. Brunelli, and R. P. Lively, Zeolitic Imidazolate Frameworks: Next-Generation Materials for Energy-Efficient Gas Separations, ChemSusChem, vol.7, pp.3202-3240, 2014.

J. B. James and Y. S. Lin, Kinetics of ZIF-8 Thermal Decomposition in Inert, Oxidizing, and Reducing Environments, J. Phys. Chem. C, vol.120, pp.14015-14026, 2016.

T. F. Soules, A molecular dynamic calculation of the structure of sodium silicate glasses, J. Chem. Phys, vol.71, issue.11, pp.4570-4578, 1979.

K. Robinson, G. V. Gibbs, and P. H. Ribbe, Quadratic Elongation: A Quantitative Measure of Distortion in Coordination Polyhedra, Science, vol.172, issue.3983, pp.567-570, 1971.

, Gibbs code User's guide

L. Zhang, Z. Hu, and J. Jiang, Sorption-Induced Structural Transition of Zeolitic Imidazolate Framework-8: A Hybrid Molecular Simulation Study, J. Am. Chem. Soc, vol.135, issue.9, pp.3722-3728, 2013.

M. Mazur, P. S. Wheatley, M. Navarro, W. J. Roth, M. Polozij et al., Synthesis of 'unfeasible' zeolites, Nat. Chem, vol.8, issue.1, pp.58-62, 2016.

P. Eliásová, M. Opanasenko, P. S. Wheatley, M. Shamzhy, M. Mazur et al., The ADOR mechanism for the synthesis of new zeolites, Chem. Soc. Rev, vol.44, issue.20, pp.7177-7206, 2015.

M. Trachta, P. Nachtigall, and O. Bludský, The ADOR synthesis of new zeolites: In silico investigation, Catalysis Today, vol.243, pp.32-38, 2015.

, Résumé V H contient une interaction non-physique d'un électron avec lui-même

V. Xc-caractérise-les-interactions-d'échange and . Corrélations, Il s'agit d'une dérivée fonctionnelle de l'énergie d'échange-corrélation (E XC ) qui n'est pas connue exactement, sauf pour un gaz d'électrons libres. Néanmoins, de nombreuses approximations existent et permettent de calculer

. V-h-dépend-de-n, qui dépend des ? i , qui sont les solutions de l'équation de Kohn-Sham, dépendant donc de V H . On utilise donc un procédé itératif pour obtenir une solution

, Une version simplifiée de l'algorithme employé est donnée ci-dessous : 1. Définir une densité initiale

V. Calculer-les-potentiels-correspondant, V. , and V. Xc,

, Résoudre les équation de Kohn-Sham pour obtenir les ? i

, Calculer la densité électronique, n KS , à partir des ? i obtenues à l'étape 3

, Si les deux densités sont identiques, alors il s'agit de la densité de l'état fondamental et elle peut être utilisée pour calculer l'énergie totale. Si les deux densités diffèrent on revient à l'étape 2 avec la nouvelle densité, Comparer n KS (r) avec n(r)

, La taille de la base doit être choisie pour avoir le meilleur compromis en coût numérique et précision. J'ai essentiellement utilisé des bases de type DZVP (double-? valence polarized) ou TZVP (triple-? valence polarized) lorsque la précision l'exigeait. Le choix de la fonctionnelle d'échange-corrélation (E XC ) est également crucial. Pendant toute ma thèse, j'ai utilisé des fonctionnelles de type GGA (generalized gradient approximation) qui prennent en compte l'échange non-local et la corrélation. En particulier, j'ai utilisé les fonctionnelles PBE et sa version adaptée pour les solides (PBE-SOL), Les fonctions d'onde monoélectroniques sont représentés par une superposition de fonctions de base, rassemblées en bases de différentes tailles

, La dynamique moléculaire ab initio est un outil essentiel pour sonder les propriétés dynamiques sub-nanosecondes. J'utilise la dynamique moléculaire ab initio telle qu'implémentée dans le logiciel CP2K -un logiciel open source de simulation pour la chimie quantique et la physique du solide, La dynamique à température finie de systèmes peut être étudiée au niveau quantique en utilisant la dynamique moléculaire ab initio (ab initio molecular dynamics ou AIMD en anglais)

, ZIF-69 et ZIF-mnIm. [51] Pour ZIF-8 et ZIF-mnIm, l'amorphisation permet d'augmenter la température jusqu'à laquelle I 2 est adsorbé de 200 ? C

, Une configuration instantanée de la topologie de type modèle continu aléatoire (continuous random network ou CRN en anglais) de ZIF amorphe obtenue par modélisation de type reverse Monte-Carlo (RMC). c) Mailles unitaires étendues de ZIF-1 (à gauche), Amorphisation sous température Figure 14 : a) Les liaisons similaires Si-O-Si et Zn-Im-Zn des zéolithes et des ZIFs respectivement. b), p.4

, Figure 14) peuvent s'amorphiser sous température, tandis que ZIF-8, ZIF-9, ZIF-11, ZIF-14 and ZIF-?qtz se décomposent avant toute transition structurale. [55] Le seul point commun entre ces dernières structures est le fait que leurs ligands sont substitués alors que les précédentes sont basées sur des imidazolates non substitués. Plus précisément, ZIF-4, ZIF-1 and ZIF-3, qui ont pour formule Zn(Im) 2 (Im=C 3 N 2 H 3 ), s'amorphise atour de 300 ? C. La structure résultante est appelée a-ZIF et est structurellement similaire aux verres de silice, Comme rapporté depuis 15 ans, les zéolithes inorganiques peuvent s'amorphiser grâce à une élévation de la température, vol.188