. S. Bibliography-[-abm11-]-m, J. F. Aronna, P. Bonnans, and . Martinon, A well-posed shooting algorithm for optimial control problems with singular arcs, 2011.

P. [. Antoniades and . Christofides, Robust control of nonlinear time-delay systems, International Journal of applied mathematics and computer sciences, vol.9, issue.4, pp.811-837, 1999.

]. A. Aga10 and . Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes, 2010.

]. G. All07 and . Allaire, Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation, 2007.

R. [. Aström and . Murray, Feedback Systems: An Introduction for Scientists and Engineers, 2010.

R. [. Ascher, R. D. Mattheij, and . Russell, Numerical solution of boundary value problems for ordinary differential equations, Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), vol.13, 1995.
DOI : 10.1137/1.9781611971231

L. [. Ascher and . Petzold, The Numerical Solution of Delay-Differential-Algebraic Equations of Retarded and Neutral Type, SIAM Journal on Numerical Analysis, vol.32, issue.5, pp.1635-1657, 1995.
DOI : 10.1137/0732073

I. [. Abramowitz and . Stegun, Handbook of Mathematical Functions, American Journal of Physics, vol.34, issue.2, 1965.
DOI : 10.1119/1.1972842

]. R. Ash69 and . Asher, Optimal control of systems with state-dependent time delay, 1969.

]. H. Ban68 and . Banks, Necessary conditions for control problems with variable time lags, SIAM Journal on Control, vol.6, issue.1, pp.9-47, 1968.

]. J. Bar06 and . Barraud, Commande de procédés à paramètres variables, 2006.

J. [. Bonnard, E. Caillau, and . Trélat, Second order optimality conditions in the smooth case and applications in optimal control, ESAIM: Control, Optimisation and Calculus of Variations, vol.6, issue.2, pp.207-236, 2007.
DOI : 10.1051/cocv:2001115

URL : https://hal.archives-ouvertes.fr/hal-00086380

S. [. Betts, K. Campbell, and . Thompson, Lobatto IIIA methods, direct transcription, and DAEs with delays, Numerical Algorithms, vol.24, issue.24, pp.291-300, 2015.
DOI : 10.1016/S0168-9274(97)00024-X

]. J. Bet01 and . Betts, Practical Methods for optimal control using nonlinear programming Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), 2001.

Y. [. Bryson and . Ho, Applied Optimal Control. Ginn and Company, 1969.

. [. Bibliography, A. Bonnans, . T. Hermantbie07-]-l, and . Biegler, Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints Annales de l'Institut Henri Poincarré An overview of simultaneous strategies for dynamic optimization, Chemical Engineering and Processing: Process Intensification Special Issue on Process Optimization and Control in Chemical Engineering and Processing, pp.561-598, 2007.

]. L. Bie10 and . Biegler, Nonlinear Programming, Concepts, Algorithms, and Applications to Chemical Processes. MOS-SIAM Series on Optimization, 2010.

F. [. Banks and . Kappel, Spline approximations for functional differential equations, Journal of Differential Equations, vol.34, issue.3, pp.496-522, 1979.
DOI : 10.1016/0022-0396(79)90033-0

URL : https://doi.org/10.1016/0022-0396(79)90033-0

. [. Bekiaris-liberis, Simultaneous compensation of input and state delays for nonlinear systems, Systems & Control Letters, vol.73, issue.0, pp.96-102, 2014.
DOI : 10.1016/j.sysconle.2014.08.014

M. Krstic, Compensation of state-dependent input delay for nonlinear systems, IEEE Transactions on Automatic Control, vol.58, pp.275-289, 2013.

]. N. Blk13b, M. Bekiaris-liberis, and . Krstic, Nonlinear Control Under Nonconstant Delays Society for Industrial and Applied Mathematics, vol.25, 2013.

M. Krstic, Robustness of nonlinear predictor feedback laws to time-and state-dependent delay perturbations, Automatica, vol.49, pp.1576-1590, 2013.

]. J. Bon02 and . Bonnans, The shooting algorithm for optimal control problems: A review of some theoretical and numerical aspects, 2002.

]. J. Bon13 and . Bonnans, The shooting approach to optimal control problems, 11th IFAC Workshop on Adaptation and Learning in Control and Signal Processing, pp.281-292, 2013.

. [. Bresch-pietri, Robust control of variable time-delay systems. Theoretical contributions and applications to engine control, 2012.
URL : https://hal.archives-ouvertes.fr/pastel-00803271

J. [. Bresch-pietri, N. Chauvin, . [. Petit, J. Bresch-pietri, N. Chauvin et al., Adaptive control scheme for uncertain time-delay systems Prediction-based stabilization of linear systems subject to input-dependent input delay of integral-type, Automatica IEEE Transactions on Automatic Control, vol.59, issue.8, pp.481536-15522385, 2012.

M. [. Bresch-pietri and . Krstic, Delay-Adaptive Predictor Feedback for Systems With Unknown Long Actuator Delay $ $, IEEE Transactions on Automatic Control, vol.55, issue.9, pp.2106-2112, 2010.
DOI : 10.1109/TAC.2010.2050352

URL : https://hal.archives-ouvertes.fr/hal-00951855

J. [. Basin and . Rodriguez-gonzales, Optimal Control for Linear Systems With Multiple Time Delays in Control Input, IEEE Transactions on Automatic Control, vol.51, issue.1, pp.91-97, 2006.
DOI : 10.1109/TAC.2005.861718

R. [. Boccia and . Vinter, The maximum principle for optimal control problems with time delays. IFAC-PapersOnLine, 10th IFAC Symposium on Nonlinear Control Systems NOLCOS 2016, pp.951-955, 2016.

Y. [. Chèbre, N. Creff, and . Petit, Feedback control and optimization for the production of commercial fuels by blending, Journal of Process Control, vol.20, issue.4, pp.441-451, 2010.
DOI : 10.1016/j.jprocont.2010.01.008

B. [. Chen and . Francis, Optimal sampled-data Control Systems, 1995.
DOI : 10.1007/978-1-4471-3037-6

[. Clerget, J. Grimaldi, M. Chèbre, and N. Petit, Optimization of dynamical systems with time-varying or input-varying delays, 2016 IEEE 55th Conference on Decision and Control (CDC), 2016.
DOI : 10.1109/CDC.2016.7798603

URL : https://hal.archives-ouvertes.fr/hal-01444095

G. [. Chèbre and . Pitollat, Feed control for an hydrodesulphurization unit using Anamel blend optimizer, ERTC MaxAsset & Computing Conference, 2008.

P. [. Carravetta, P. Palumbo, and . Pepe, Quadratic Optimal control of linear systems with time-varying input delay, 49th IEEE Conference on Decision and Control (CDC), 2010.
DOI : 10.1109/CDC.2010.5718079

]. P. Csmndlpnl13, R. Christofides, D. Scattolini, J. Muñoz-de-la-peña, and . Liu, Distributed model predictive control: A tutorial review and future research directions, Computers and Chemical Engineering, vol.51, pp.21-41, 2013.

D. [. Depcik and . Assanis, One-dimensional automotive catalyst modeling, Progress in Energy and Combustion Science, pp.308-369, 2005.
DOI : 10.1016/j.pecs.2005.08.001

M. Diehl, H. G. Bock, J. P. Schölder, R. Findeisen, Z. Nagy et al., Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations, Journal of Process Control, vol.12, issue.4, pp.577-585, 2002.
DOI : 10.1016/S0959-1524(01)00023-3

]. E. Dib02, U. Dibenedettoonofrio, H. Ledzewicz, H. Maurer, . V. Schättleretta16-]-a et al., Real analysis On optimal delivery of combination therapy for tumors The aerospace vehicle control characterizing by considerable time delay, Mathematical Biosciences Bibliography [, issue.2, pp.59183-189, 2002.

F. [. Findeisen and . Allgöwer, Computational Delay in Nonlinear Model Predictive Control, IFAC Proceedings Volumes 7th International Symposium on Advanced Control of Chemical Processes, pp.427-432, 2003.
DOI : 10.1016/S1474-6670(17)38769-4

]. G. Fed09, G. P. Fiacco, and . Mccormick, A new method to estimate a first-order plus time delay model from step response Nonlinear programming: Sequential unconstrained minimization techniques, Journal of the Franklin Institute, vol.346, issue.1, pp.1-9, 1990.

B. [. François, D. Srinivasan, and . Bonvin, Convergence analysis of run-to-run control for a class of nonlinear systems, Proceedings of the 2003 American Control Conference, 2003., pp.3032-3037, 2003.
DOI : 10.1109/ACC.2003.1243993

A. [. Fridman, J. Seuret, and . Richard, Robust sampled-data stabilization of linear systems: an input delay approach, Automatica, vol.40, issue.8, pp.401441-1446, 2004.
DOI : 10.1016/j.automatica.2004.03.003

URL : https://hal.archives-ouvertes.fr/inria-00131031

D. [. Frederico and . Torres, Noether's symmetry Theorem for variational and optimal control problems with time delay, Numerical Algebra, Control and Optimization, vol.2, issue.3, pp.619-630, 2012.
DOI : 10.3934/naco.2012.2.619

URL : https://doi.org/10.3934/naco.2012.2.619

S. [. Flores-tlacuahuac, L. T. Moreno, and . Biegler, Global Optimization of Highly Nonlinear Dynamic Systems, Industrial & Engineering Chemistry Research, vol.47, issue.8, pp.2643-2655, 2008.
DOI : 10.1021/ie070379z

V. [. Gelfand and S. Fomin, Calculus of Variations, 1963.

G. [. Grimble and . Hearns, LQG Controllers for State-Space Systems with Pure Transport Delays: Application to Hot Strip Mills, Automatica, vol.34, issue.10, pp.1169-1184, 1998.
DOI : 10.1016/S0005-1098(98)00067-3

E. [. Guglielmi and . Hairer, Implementing Radau IIA Methods for Stiff Delay Differential Equations, Computing, vol.67, issue.1, pp.1-12, 2001.
DOI : 10.1007/s006070170013

D. [. Göllmann, H. Kern, and . Maurer, Optimal control problems with delays in state and control variables subject to mixed control-state constraints, Optimal Control Applications and Methods, vol.76, issue.5, pp.341-365, 2009.
DOI : 10.1002/oca.843

H. [. Göllmann and . Maurer, Theory and applications of optimal control problems with multiple time-delays, Journal of Industrial and Management Optimization, vol.10, pp.413-441, 2014.

. Gpp-+-17-]-c, B. Guardiola, P. Pla, J. Piqueras, D. Mora et al., Modelbased passive and active diagnostics strategies for diesel oxidation catalysts, Applied Thermal Engineering, vol.110, pp.962-971, 2017.

J. [. Good and . Qin, Stability analysis of double EWMA run-to-run control with metrology delay, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), pp.2156-2161, 2002.
DOI : 10.1109/ACC.2002.1023956

]. I. Gro02 and . Grossmann, Review of nonlinear mixed-integer and disjunctive programming techniques, Optimization and Engineering, vol.3, pp.227-252, 2002.

]. A. Hal66 and . Halanay, Differential equations. Stability, oscillations, time lags. Number 23 in Mathematics in Science and Engineering, 1966.

]. A. Hal68 and . Halanay, Optimal controls for systems with time lag, SIAM Journal on Control, 1968.

D. [. Harmand and . Dochain, The optimal design of two interconnected (bio)chemical reactors revisited, Computers & Chemical Engineering, vol.30, issue.1, pp.70-82, 2005.
DOI : 10.1016/j.compchemeng.2005.08.003

A. [. Hill and . Ilchmann, Exponential stability of time-varying linear systems, IMA Journal of Numerical Analysis, vol.31, issue.3, 2010.
DOI : 10.1093/imanum/drq002

]. N. Hig08, . Highamhlf94-]-g, K. Hirzinger, C. Landzettel, and . Fagerer, Functions of Matrices: Theory and Computation Telerobotics with large time delays-the rotex experience, Intelligent Robots and Systems '94. 'Advanced Robotic Systems and the Real World', IROS '94. Proceedings of the IEEE/RSJ/GI International Conference, pp.571-578, 1994.

]. T. Hos-+-16, H. Hirose, H. Ogawa, R. Shibasaki, Y. Tanaka et al., Simplified internal model control for time delay processes, Proceedings of the 35th Chinese Control Conference, pp.308-312, 2016.

]. I. Hri97 and . Hrinca, An optimal control problem for the lotka-volterra system with delay. Nonlinear Analysis: Theory, Methods & Applications, pp.247-262, 1997.

V. [. Himpe and . Theunynck, Design and advanced control of a process with variable time delay, 2006.

]. D. Hug68 and . Hughes, Variational and optimal control problems with delayed argument, Isi95] A. Isidori. Nonlinear Control Systems, pp.1-14, 1968.

I. [. Jankovic and . Kolmanovsky, Developments in Control of Time-Delay Systems for Automotive Powertrain Applications, Delay Differential Equations, recent advances and new directions, pp.55-92, 2009.
DOI : 10.1007/978-0-387-85595-0_3

. I. Bibliography-[-kg03-]-s, K. Niculescu, and . Gu, Survey on recent results in the stability and control of time-delay systems, Journal of Dynamic Systems, Measurement, and Control, vol.125, pp.158-165, 2003.

]. G. Kha61 and . Kharatishvili, The maximum principle in the theory of optimal processes with delay, 1961.

]. P. Kha93 and . Khandalekar, Control and optimization of fluid catalytic cracking process, 1993.

]. M. Krs09 and . Krstic, Delay Compensation for Nonlinear, Adaptive, and PDE Systems, 2009.

A. [. Krstic and . Smyshlyaev, Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays, Systems & Control Letters, vol.57, issue.9, pp.750-758, 2008.
DOI : 10.1016/j.sysconle.2008.02.005

R. [. Karoui and . Vaillancourt, Computer solutions of state-dependent delay differential equations, Computers & Mathematics with Applications, vol.27, issue.4, pp.37-51, 1994.
DOI : 10.1016/0898-1221(94)90053-1

URL : https://doi.org/10.1016/0898-1221(94)90053-1

Y. [. Lepreux, N. Creff, and . Petit, Warm-up strategy for a Diesel Oxidation Catalyst, 2009 European Control Conference (ECC), 2009.
DOI : 10.23919/ECC.2009.7074995

URL : https://hal.archives-ouvertes.fr/hal-00492397

Y. [. Lepreux, N. Creff, and . Petit, Model-based temperature control of a diesel oxidation catalyst, Journal of Process Control, vol.22, issue.1, pp.41-50, 2012.
DOI : 10.1016/j.jprocont.2011.10.012

URL : https://hal.archives-ouvertes.fr/hal-00661530

J. [. Leong and . Doyle, Effects of Delays, Poles, and Zeros on Time Domain Waterbed Tradeoffs and Oscillations, IEEE Control Systems Letters, vol.1, issue.1, pp.122-127, 2017.
DOI : 10.1109/LCSYS.2017.2710327

URL : https://doi.org/10.1109/lcsys.2017.2710327

]. O. Lep09 and . Lepreux, Model-based Temperature Control of a Diesel Oxidation Catalyst, 2009.

]. R. Lev04 and . Leveque, Finite Volumes Methods for Hyperbolic Problems, Cambridge texts in applied mathematics Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. Control Optim, vol.46, pp.1052-1079, 2004.

T. [. Lopes, L. Spataro, R. Lapchin, and . Arditi, Optimal release strategies for the biological control of aphids in melon greenhouses, Biological Control, vol.48, issue.1, pp.12-21, 2009.
DOI : 10.1016/j.biocontrol.2008.09.011

URL : https://hal.archives-ouvertes.fr/hal-01567026

Q. [. Liu, H. Wang, and . Huang, A tutorial review on process identification from step or relay feedback test, Journal of Process Control, vol.23, issue.10, pp.1597-1623, 2013.
DOI : 10.1016/j.jprocont.2013.08.003

, Introduction to IPOPT: A tutorial for downloading, installing, and using IPOPT, 2015.

]. J. Mdch00, E. Moyne, A. M. Castillo, and . Hurwitz, Run-to-Run Control in Semiconductor Manufacturing, 2000.

]. J. Mmndlpnca11, D. Maestre, E. F. Muñoz-de-la-peña, T. Camacho, and . Alamo, Distributed model predictive control based on agent negotiation, Journal of Process Control, vol.21, pp.685-697, 2011.

W. Michiels and S. I. Niculescu, Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach. SIAM, 2007.
DOI : 10.1137/1.9780898718645

URL : http://epubs.siam.org/doi/pdf/10.1137/1.9780898718645.fm

N. [. Magnis and . Petit, Impact of imprecise dating of measurements for bulk material flow network monitoring, Programmable Devices and Embedded Systems, pp.274-279, 2013.
DOI : 10.3182/20130925-3-CZ-3023.00070

URL : https://hal.archives-ouvertes.fr/hal-00940372

J. [. Mayne, C. V. Rawlings, P. O. Rao, and . Scokaert, Constrained model predictive control: Stability and optimality, Automatica, vol.36, issue.6, pp.789-814, 2000.
DOI : 10.1016/S0005-1098(99)00214-9

M. [. Cristea, R. Sbarciog, C. De-keyser, and . Prada, Nonlinear predictive control of processes with variable time delay. a temperature control case study, 17th IEEE International Conference on Control Applications, 2008.

. [. Malez-zavarei, Suboptimal control of systems with multiple delays, Zafiriou. Robust Process Control, pp.621-633, 1980.
DOI : 10.1007/BF01686725

]. S. Nob12 and . Noble, Loss, latency, and speed -TN0021, 2012.

A. [. Neshasteriz, H. Sedigh, . [. Sadjadian, S. J. Nocedal, and . Wright, Generalized predictive control and tuning of industrial processes with second order plus dead time models, Journal of Process Control, vol.20, issue.1, pp.63-72, 1999.
DOI : 10.1016/j.jprocont.2009.10.003

A. [. Pannocchia and . Bemporad, Combined Design of Disturbance Model and Observer for Offset-Free Model Predictive Control, IEEE Transactions on Automatic Control, vol.52, issue.6, pp.1048-1053, 2007.
DOI : 10.1109/TAC.2007.899096

V. [. Pontryagin, R. V. Boltyanskii, E. F. Gamkrelidze, and . Mishchenko, The Mathematical Theory of Optimal Processes, 1962.

Y. [. Petit, P. Creff, and . Rouchon, Motion planning for two classes of nonlinear systems with delays depending on the control Bibliography [Pet15] N. Petit. Analysis of problems induced by imprecise dating of measurements in oil and gas production, Proc. of the 37th IEEE Conf. on Decision and Control ADCHEM 2015, International Symposium on Advanced Control of Chemical Processes, pp.1007-1011, 1998.

J. [. Pannocchia and . Rawlings, Disturbance models for offset-free model-predictive control, AIChE Journal, vol.1, issue.2, pp.426-437, 2003.
DOI : 10.1007/978-1-4612-0577-7

T. [. Qin and . Badgwell, A survey of industrial model predictive control technology, Control Engineering Practice, vol.11, issue.7, pp.733-764, 2003.
DOI : 10.1016/S0967-0661(02)00186-7

M. [. Roca, L. Berenguel, D. C. Yebra, and . Alarcón-padilla, Solar field control for desalination plants, Solar Energy, vol.82, issue.9, pp.772-786, 2008.
DOI : 10.1016/j.solener.2008.03.002

R. [. Rundeil, V. Decarlo, H. Balakrishnan, and . Hogenesch, Systematic method for determining intravenous drug treatment strategies aiding the humoral immune response, IEEE Transactions on Biomedical Engineering, vol.45, issue.4, pp.429-439, 1998.
DOI : 10.1109/10.664199

]. J. [-ric93, ]. Richaletric03, and . Richard, Pratique de la commande prédictive Adersa, Hermès Time-delay systems: an overview of some recent advances and open problems, Automatica, issue.10, pp.391667-1694, 1993.

D. [. Rawlings and . Mayne, Model Predictive Control: Theory and Design, 2009.

H. H. Rosenbrock, The Stability of Linear Time-dependent Control Systems???, Journal of Electronics and Control, vol.60, issue.1, pp.73-80, 1963.
DOI : 10.1080/00207216308937556

]. M. Rou96, . [. Roussel, A. Richalet, J. L. Rault, J. Testud et al., The use of delay differential equations in chemical kinetics Model predictive heuristic control: Application to industrial processes, The Journal of Physical Chemistry Automatica, vol.100, issue.14, pp.8323-8330413, 1978.

J. [. Roberts and . Shipman, Continuation in shooting methods for two-point boundary value problems, Journal of Mathematical Analysis and Applications, vol.18, issue.1, 1972.
DOI : 10.1016/0022-247X(67)90181-3

URL : https://doi.org/10.1016/0022-247x(67)90181-3

]. W. Rud73 and . Rudin, Functional analysis, 1973.

]. W. Rug95 and . Rugh, Linear system Theory. Pearson, 1995.

]. W. Rug96, . J. Rugh-[-sbh16-], L. T. Shi, I. Biegler, and . Hamdan, Linear System Theory Optimization of grade transitions in polyethylene solution polymerization processes, AIChE Journal, vol.62, issue.4, pp.1126-1142, 1996.

R. [. Sachs, S. Guo, A. Ha, and . Hu, Process control system for VLSI fabrication. Semiconductor Manufacturing, IEEE Transactions on, vol.4, issue.2, pp.134-144, 1991.

S. [. Sabatini, M. A. Gelmini, S. Hoffman, and . Onori, Design and experimental validation of a physics-based oxygen storage ??? thermal model for three way catalyst including aging, Control Engineering Practice, vol.68, pp.6889-101, 2017.
DOI : 10.1016/j.conengprac.2017.07.007

W. [. Scheu and . Marquardt, Sensitivity-based coordination in distributed model predictive control, Journal of Process Control, vol.21, issue.5, pp.715-728, 2011.
DOI : 10.1016/j.jprocont.2011.01.013

W. [. Soliman and . Ray, Optimal control of multivariable systems with pure time delays, Automatica, vol.7, issue.6, pp.681-689, 1971.
DOI : 10.1016/0005-1098(71)90006-9

]. G. Str07 and . Strang, Computational Science and Engineering, 2007.

. T. Svr-+-10-]-b, A. N. Stewart, J. B. Venkat, S. J. Rawlings, G. Wright et al., Cooperative distributed model predictive control, Systems and Control Letters, vol.59, pp.460-469, 2010.

]. E. Tré12 and . Trélat, Optimal control and applications to aerospace: Some results and challenges, Journal of Optimization Theory and Applications, vol.154, issue.3, pp.713-758, 2012.

]. O. Von-stryk and R. Bulirsch, Direct and indirect methods for trajectory optimization, Annals of Operations Research, vol.9, issue.6, pp.357-373, 1992.
DOI : 10.1007/978-3-642-51636-8

L. [. Wächter and . Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, vol.10, issue.1, pp.25-57, 2006.
DOI : 10.1007/BFb0120945

F. [. Wang, F. Gao, and . Doyle, Survey on iterative learning control, repetitive control, and run-to-run control, Journal of Process Control, vol.19, issue.10, pp.1589-1600, 2009.
DOI : 10.1016/j.jprocont.2009.09.006

]. J. Whq-+-05, Q. P. Wang, S. J. He, C. A. Qin, M. A. Bode et al., Recursive least squares estimation for run-to-run control with metrology delay and its application to sti etch process. Semiconductor Manufacturing, IEEE Transactions on, vol.18, issue.2, pp.309-319, 2005.

T. [. Wan and . Pan, Double EWMA controller for semiconductor manufacturing processes with time-varying metrology delay, 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp.394-397, 2015.
DOI : 10.1109/CYBER.2015.7287969

Y. [. Wang, . M. Zhang-[-zb09-]-v, L. T. Zavala, and . Biegler, Robust identification of continuous systems with dead-time from step responses The advanced-step NMPC controller: Optimality, stability and robustness Minimum entropy based run-to-run control for semiconductor processes with uncertain metrology delay, Automatica Automatica Journal of Process Control, vol.37, issue.1910, pp.377-39086, 2001.

, Appendix A. IPOPT log data on a problem of Chapter

, 07e-01 5.52e-01h 1 iter objective inf_pr inf_du lg(mu) ||d|| lg(rg)

, iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr

, 1 8.39e-01 6.77e-02h 4 iter objective inf_pr inf_du lg(mu) ||d|| lg(rg)

, iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr