R. Gicquel and M. Gicquel, Introduction aux problèmes énergétiques globaux

C. Rozain and P. Millet, Electrochemical characterization of Polymer Electrolyte Membrane Water Electrolysis Cells, Electrochimica Acta, vol.131, issue.131, pp.160-167, 2014.
DOI : 10.1016/j.electacta.2014.01.099

A. and G. D. , information sur la sécurité des véhicules à hydrogène et des stations-service de distribution d'hydrogène. 2015. 4, Fuel Cell Technologies Market Report Fuel Cell Technologies Market Report, issue.5, 2013.

A. Rabis, P. Rodriguez, and T. J. Schmidt, Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges, ACS Catalysis, vol.2, issue.5, pp.864-890, 2012.
DOI : 10.1021/cs3000864

S. M. Haile, Fuel cell materials and components, Acta Materialia, pp.51-5981, 2003.

J. C. Amphlett, MECHANISTIC MODEL DEVELOPMENT. Journal of the Electrochemical Society, vol.1, issue.1421, pp.1-8, 1995.

J. L. Zhang, PEM fuel cell open circuit voltage (OCV) in the temperature range of 23??C to 120??C, Journal of Power Sources, vol.163, issue.1, pp.532-537, 2006.
DOI : 10.1016/j.jpowsour.2006.09.026

Z. Zhao, Carbon corrosion and platinum nanoparticles ripening under open circuit potential conditions, Journal of Power Sources, vol.230, pp.236-243, 2013.
DOI : 10.1016/j.jpowsour.2012.12.053

URL : https://hal.archives-ouvertes.fr/hal-00839675

X. Z. Yuan, AC impedance technique in PEM fuel cell diagnosis???A review, International Journal of Hydrogen Energy, vol.32, issue.17, pp.32-4365, 2007.
DOI : 10.1016/j.ijhydene.2007.05.036

M. A. Damjanov, J. O. Genshaw, D. Bockris, . Between, I. Produced et al., Journal of Chemical Physics, issue.11, pp.45-4057, 1966.

A. Damjanovic, V. Brusic, E. Kinetics, . Oxygen, . On-oxide-free et al., Electrode kinetics of oxygen reduction on oxide-free platinum electrodes, Electrochimica Acta, vol.12, issue.6, p.615, 1967.
DOI : 10.1016/0013-4686(67)85030-8

O. Antoine, Y. Bultel, and R. Durand, Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion??, Journal of Electroanalytical Chemistry, vol.499, issue.1, pp.85-94, 2001.
DOI : 10.1016/S0022-0728(00)00492-7

A. Schneider, Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes, Physical Chemistry Chemical Physics, vol.149, issue.539, pp.10-1931, 2008.
DOI : 10.1016/S0022-0728(75)80279-8

U. A. Paulus, Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study, Journal of Electroanalytical Chemistry, vol.495, issue.2, pp.134-145, 2001.
DOI : 10.1016/S0022-0728(00)00407-1

N. M. Markovic, Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review, exchange materials. 19. Zawodzinski, pp.105-1161, 1993.
DOI : 10.1002/1615-6854(200107)1:2<105::AID-FUCE105>3.0.CO;2-9

V. Mehta and J. S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, Journal of Power Sources, vol.114, issue.1, pp.32-53, 2003.
DOI : 10.1016/S0378-7753(02)00542-6

J. Brian, 3 Fuel Cell Vehicle and Bus Cost Analysis. 2015, DOE Hydrogen and Fuel Cells Program. 22. Rikukawa, M. and K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Progress in Polymer Science, issue.10, pp.25-1463, 2000.

P. X. Xing, Synthesis and characterization of poly(aryl ether ketone) copolymers containing (hexafluoroisopropylidene)-diphenol moiety as proton exchange membrane materials, Polymer, vol.46, issue.10, pp.46-3257, 2005.
DOI : 10.1016/j.polymer.2005.03.003

X. P. Zhang, S. Z. Liu, J. Yin, and H. B. , Modified sulfonated poly(arylene ether sulfone)-bpolybutadiene (SPAES-b-PB) membrane for fuel cell applications Effect of crosslinked chain length in sulfonated polyimide membranes on water sorption, proton conduction, and methanol permeation properties, Journal of Membrane Science Journal of Membrane Science, vol.275, issue.28512, pp.432-443, 2006.

H. Q. Zhang, Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance, Journal of Membrane Science, vol.308, issue.1-2, pp.66-74, 2008.
DOI : 10.1016/j.memsci.2007.09.045

K. M. Nouel and P. S. Fedkiw, Nafion??-based composite polymer electrolyte membranes, Electrochimica Acta, vol.43, issue.16-17, pp.16-17, 1998.
DOI : 10.1016/S0013-4686(97)10151-7

H. A. Gasteiger, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental, vol.56, issue.1-2, pp.9-35, 2005.
DOI : 10.1016/j.apcatb.2004.06.021

K. Yahikozawa, Electrochimica Acta, vol.36, pp.5-6, 1991.

Y. Takasu, Size effects of platinum particles on the electroreduction of oxygen, Electrochimica Acta, vol.41, issue.16, pp.41-2595, 1996.
DOI : 10.1016/0013-4686(96)00081-3

M. Peuckert, Oxygen Reduction on Small Supported Platinum Particles, Journal of The Electrochemical Society, vol.133, issue.5, pp.944-947, 1986.
DOI : 10.1149/1.2108769

A. Kabbabi, Particle size effect for oxygen reduction and methanol oxidation on Pt/C inside a proton exchange membrane, Journal of Electroanalytical Chemistry, vol.373, issue.1-2, pp.251-254, 1994.
DOI : 10.1016/0022-0728(94)03503-2

A. Gamez, Oxygen reduction on well-defined platinum nanoparticles inside recast ionomer, Electrochimica Acta, vol.41, issue.2, pp.307-314, 1996.
DOI : 10.1016/0013-4686(95)00305-X

URL : https://hal.archives-ouvertes.fr/hal-00006371

Q. Zhou, Nanoparticle-based crystal growth via multistep self-assembly, CrystEngComm, vol.22, issue.25, pp.5114-5118, 2013.
DOI : 10.1021/cm101648y

S. Mukerjee, R. Of, and . Electrochemistry, PARTICLE-SIZE AND STRUCTURAL EFFECTS IN PLATINUM ELECTROCATALYSIS. Journal of Applied Electrochemistry, vol.23, issue.204, pp.537-548, 1990.

X. W. Yu and S. Y. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC, Journal of Power Sources, vol.172, issue.1, pp.133-144, 2007.
DOI : 10.1016/j.jpowsour.2007.07.049

A. Esmaeilifar, Synthesis methods of low-Pt-loading electrocatalysts for proton exchange membrane fuel cell systems. Energy Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems, Journal of Power Sources, vol.35, issue.92, pp.3941-3957, 2007.

M. S. Wilson, S. Gottesfeld, H. Loadings, . Polymer, and . Fuel-cells, High Performance Catalyzed Membranes of Ultra-low Pt Loadings for Polymer Electrolyte Fuel Cells, Journal of The Electrochemical Society, vol.139, issue.2, pp.28-30, 1992.
DOI : 10.1149/1.2069277

U. A. Paulus, Oxygen Reduction on Carbon-Supported Pt???Ni and Pt???Co Alloy Catalysts, The Journal of Physical Chemistry B, vol.106, issue.16, pp.106-4181, 2002.
DOI : 10.1021/jp013442l

S. Mukerjee, S. Srinivasan, E. Electrocatalysis, . Oxygen, . On et al., Development and Scale Up of Enhanced ORR Pt-based Catalysts for PEMFCs, Journal of Electroanalytical Chemistry Fuel Cells, vol.357, issue.164, pp.414-427, 1993.

F. Maillard, Durability of Pt3Co/C nanoparticles in a proton-exchange membrane fuel cell: Direct evidence of bulk Co segregation to the surface, Electrochemistry Communications, vol.12, issue.9, pp.1161-1164, 2010.
DOI : 10.1016/j.elecom.2010.06.007

L. Dubau, Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchange membrane fuel cell operation, Electrochimica Acta, vol.56, issue.2, pp.776-783, 2008.
DOI : 10.1016/j.electacta.2010.09.038

M. Lei, A highly ordered Fe-N-C nanoarray as a non-precious oxygenreduction catalyst for proton exchange membrane fuel cells, Journal of Power Sources, issue.7, pp.196-3548, 2011.

J. W. Lee and B. N. Popov, Ruthenium-based electrocatalysts for oxygen reduction reaction???a review, Journal of Solid State Electrochemistry, vol.109, issue.10, pp.1355-1364, 2007.
DOI : 10.1021/jp056715b

J. L. Fernandez, Pd???Ti and Pd???Co???Au Electrocatalysts as a Replacement for Platinum for Oxygen Reduction in Proton Exchange Membrane Fuel Cells, Journal of the American Chemical Society, vol.127, issue.38, pp.13100-13101, 2005.
DOI : 10.1021/ja0534710

. Heidenre, W. M. Rd, L. L. Hess, A. Ban, . Test et al., Journal of Applied Crystallography, issue.1, p.1, 1968.

A. E. Witt, A preliminary investigation of the formation of carbon black by the pyrolysis of residual fuel oil, 1968.

E. Antolini, Carbon supports for low-temperature fuel cell catalysts, Applied Catalysis B: Environmental, vol.88, issue.1-2, pp.1-24, 2009.
DOI : 10.1016/j.apcatb.2008.09.030

A. L. Dicks, The role of carbon in fuel cells, Journal of Power Sources, vol.156, issue.2, pp.128-141, 2006.
DOI : 10.1016/j.jpowsour.2006.02.054

Y. Devrim, H. Devrim, and I. Eroglu, Development of 500??W PEM fuel cell stack for portable power generators, International Journal of Hydrogen Energy, vol.40, issue.24, pp.7707-7719, 2015.
DOI : 10.1016/j.ijhydene.2015.02.005

J. F. Wu, A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies, Journal of Power Sources, vol.184, issue.1, pp.104-119, 2008.
DOI : 10.1016/j.jpowsour.2008.06.006

R. Borup, Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation, Chemical Reviews, vol.107, issue.10, pp.3904-3951, 2007.
DOI : 10.1021/cr050182l

X. Cheng, A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation, IEEE Vehicle Power and Propulsion Conference (VPPC), pp.739-756, 2005.
DOI : 10.1016/j.jpowsour.2006.12.012

W. K. Lee, J. W. Van-zee, and M. Murthy, A Method for Characterizing CO Transients in a PEMFC, Fuel Cells, vol.3, issue.12, pp.52-58, 2003.
DOI : 10.1002/fuce.200331102

Z. G. Qi, C. Z. He, and A. Kaufman, Effect of CO in the anode fuel on the performance of PEM fuel cell cathode, Journal of Power Sources, vol.111, issue.2, pp.239-247, 2002.
DOI : 10.1016/S0378-7753(02)00300-2

Z. G. Qi and A. Kaufman, CO-tolerance of low-loaded Pt/Ru anodes for PEM fuel cells, Journal of Power Sources, vol.113, issue.1, pp.115-123, 1971.
DOI : 10.1016/S0378-7753(02)00489-5

T. Lopes, V. A. Paganin, and E. R. Gonzalez, The effects of hydrogen sulfide on the polymer electrolyte membrane fuel cell anode catalyst: H2S???Pt/C interaction products, Journal of Power Sources, vol.196, issue.15, pp.196-6256, 2011.
DOI : 10.1016/j.jpowsour.2011.04.017

B. K. Kakati and A. R. Kucernak, Gas phase recovery of hydrogen sulfide contaminated polymer electrolyte membrane fuel cells, Journal of Power Sources, vol.252, pp.317-326, 2014.
DOI : 10.1016/j.jpowsour.2013.11.077

K. Hongsirikarn, Effect of ammonium ion distribution on Nafion?? conductivity, Journal of Power Sources, vol.196, issue.2, pp.644-651, 2011.
DOI : 10.1016/j.jpowsour.2010.07.080

K. Hongsirikarn, Influence of ammonia on the conductivity of Nafion membranes, Journal of Power Sources, vol.195, issue.1, pp.30-38, 2010.
DOI : 10.1016/j.jpowsour.2009.07.013

N. Rajalakshmi, T. T. Jayanth, and K. S. Dhathathreyan, Effect of Carbon Dioxide and Ammonia on Polymer Electrolyte Membrane Fuel Cell Stack Performance, Fuel Cells, vol.3, issue.4, pp.177-180, 2004.
DOI : 10.1002/fuce.200330107

F. N. Jing, The effect of ambient contamination on PEMFC performance, Journal of Power Sources, vol.166, issue.1, pp.172-176, 2007.
DOI : 10.1016/j.jpowsour.2006.12.103

R. Mohtadi, W. K. Lee, and J. W. Van-zee, Assessing durability of cathodes exposed to common air impurities, Journal of Power Sources, vol.138, issue.1-2, pp.216-225, 2004.
DOI : 10.1016/j.jpowsour.2004.06.036

R. L. Borup, VII.I.3 PEM Fuel Cell Durability DOE Hydrogen Program. 74 Cell Component Accelerated Stress Test and Polarization Curve Protocols for PEM Fuel Cells Impacts of air bleeding on membrane degradation in polymer electrolyte fuel cells, PEM fuel cell electrocatalyst durability measurements 77. Inaba, M., et al., Gas crossover and membrane degradation in polymer electrolyte fuel cells, pp.76-81, 2005.

T. Kinumoto, Durability of perfluorinated ionomer membrane against hydrogen peroxide, Journal of Power Sources, vol.158, issue.2, pp.1222-1228, 2006.
DOI : 10.1016/j.jpowsour.2005.10.043

D. E. Curtin, Advanced materials for improved PEMFC performance and life, Journal of Power Sources, vol.131, issue.1-2, pp.41-48, 2004.
DOI : 10.1016/j.jpowsour.2004.01.023

F. A. De-bruijn, V. A. Dam, and G. J. Janssen, Review: Durability and Degradation Issues of PEM Fuel Cell Components, Fuel Cells, vol.127, issue.446, pp.3-22, 2008.
DOI : 10.1016/j.msea.2006.09.098

Y. Shao-horn, Instability of supported platinum nanoparticles in lowtemperature fuel cells, Topics in Catalysis, vol.46, pp.3-4, 2007.

M. Pourbaix and P. J. Ferreira, Atlas of electrochemical equilibria in aqueous solutions Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells -A mechanistic investigation, Journal of the Electrochemical Society Journal of the Electrochemical Society, vol.152, issue.119, pp.126-1631, 1966.

X. P. Wang, R. Kumar, and D. J. Myers, Effect of voltage on platinum dissolution relevance to polymer electrolyte fuel cells, Electrochemical and Solid State Letters, issue.95, pp.225-227, 2006.

A. Honji, Agglomeration of Platinum Particles Supported on Carbon in Phosphoric Acid, Journal of The Electrochemical Society, vol.135, issue.2, pp.355-359, 1988.
DOI : 10.1149/1.2095614

C. A. Reiser, A Reverse-Current Decay Mechanism for Fuel Cells, Electrochemical and Solid-State Letters, vol.8, issue.6, pp.273-276, 2005.
DOI : 10.1149/1.1613669

G. Jerkiewicz, Surface-oxide growth at platinum electrodes in aqueous H2SO4 Reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and Auger electron spectroscopy measurements, Electrochimica Acta, vol.49, pp.9-10, 2004.

M. Alsabet, M. Grden, and G. Jerkiewicz, Comprehensive study of the growth of thin oxide layers on Pt electrodes under well-defined temperature, potential, and time conditions, Journal of Electroanalytical Chemistry, vol.589, issue.1, pp.120-127, 2006.
DOI : 10.1016/j.jelechem.2006.01.022

B. H. Angerste, W. B. Conway, and . Sharp, REAL CONDITION OF ELECTROCHEMICALLY OXIDIZED PLATINUM SURFACES .1. RESOLUTION OF COMPONENT PROCESSES. Journal of Electroanalytical Chemistry, vol.43, issue.1, pp.9-36, 1973.

B. E. Conway, . Electrochemical, . Oxide, . Formation, . Noble-metals et al., Progress in Surface Science Journal of Electroanalytical Chemistry Voorhees, P.W., THE THEORY OF OSTWALD RIPENING. Journal of Statistical Physics, vol.49, issue.3812, pp.331-452, 1985.

I. M. Lifshitz, V. V. Slyozov, T. Kinetics, . Precipitation, . Supersaturated et al., The kinetics of precipitation from supersaturated solid solutions, Journal of Physics and Chemistry of Solids, vol.19, issue.1-2, pp.35-50, 1961.
DOI : 10.1016/0022-3697(61)90054-3

T. Akita, Analytical TEM study of Pt particle deposition in the proton-exchange membrane of a membrane-electrode-assembly, Journal of Power Sources, vol.159, issue.1, pp.461-467, 2006.
DOI : 10.1016/j.jpowsour.2005.10.111

K. Yasuda, Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling, Phys. Chem. Chem. Phys., vol.29, issue.6, pp.746-752, 2006.
DOI : 10.1016/0378-7753(90)85013-3

E. Guilminot, Detection of Pt[sup z+] Ions and Pt Nanoparticles Inside the Membrane of a Used PEMFC, Journal of The Electrochemical Society, vol.589, issue.1, pp.96-105, 2007.
DOI : 10.1021/jp981030f

W. Bi, G. E. Gray, T. F. Fuller, K. , and P. Ekdunge, PEM fuel cell Pt/C dissolution and deposition in nafion electrolyte Electrochemical and Solid State Letters Oxygen and hydrogen permeation properties and water uptake of Nafion(R) 117 membrane and recast film for PEM fuel cell, Journal of Applied Electrochemistry, vol.10, issue.52, pp.27-117, 1997.

M. S. Wilson, Journal of the Electrochemical Society, issue.10, pp.140-2872, 1993.

J. A. Bett, . K. Kinoshit, C. P. Stonehar, . Growth, . Platinum et al., Crystallite growth of platinum dispersed on graphitized carbon black, Journal of Catalysis, vol.35, issue.2, pp.307-316, 1974.
DOI : 10.1016/0021-9517(74)90209-7

Y. Shao, G. Yin, and Y. Gao, Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell, Journal of Power Sources, vol.171, issue.2, pp.558-566, 2007.
DOI : 10.1016/j.jpowsour.2007.07.004

O. V. Cherstiouk, Microstructure effects on the electrochemical corrosion of carbon materials and carbon-supported Pt catalysts, Electrochimica Acta, vol.55, issue.28, pp.55-8453, 2010.
DOI : 10.1016/j.electacta.2010.07.047

S. C. Ball, An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2V potentiostatic hold regimes at a range of temperatures, Journal of Power Sources, vol.171, issue.1, pp.18-25, 2007.
DOI : 10.1016/j.jpowsour.2006.11.004

L. M. Roen, C. H. Paik, and T. D. Jarvic, Electrocatalytic Corrosion of Carbon Support in PEMFC Cathodes, Electrochemical and Solid-State Letters, vol.97, issue.1, pp.19-22, 2004.
DOI : 10.1021/j100148a030

S. Maass, Carbon support oxidation in PEM fuel cell cathodes, Journal of Power Sources, vol.176, issue.2, pp.444-451, 2008.
DOI : 10.1016/j.jpowsour.2007.08.053

N. Linse, The effect of platinum on carbon corrosion behavior in polymer electrolyte fuel cells, Electrochimica Acta, vol.56, issue.22, pp.7541-7549, 2011.
DOI : 10.1016/j.electacta.2011.06.093

J. Willsau, J. Heitbaum, T. Influence, . Pt-activation, . On et al., The influence of Pt-activation on the corrosion of carbon in gas diffusion electrodes???A dems study, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.161, issue.1, pp.93-101, 1984.
DOI : 10.1016/S0022-0728(84)80252-1

L. Castanheira, Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: From Model Experiments to Real-Life Operation in Membrane Electrode Assemblies, ACS Catalysis, vol.4, issue.7
DOI : 10.1021/cs500449q

URL : https://hal.archives-ouvertes.fr/hal-01923898

, Acs Catalysis, issue.47, pp.2258-2267, 2014.

L. Castanheira, Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: Effect of the Carbon Structure, the Degradation Protocol, and the Gas Atmosphere

, Acs Catalysis, vol.5, issue.4, pp.2184-2194, 2015.

J. K. Kinoshit, P. Bett, . Analysis, . Surface, . Oxides et al., Potentiodynamic analysis of surface oxides on carbon blacks, Carbon, vol.11, issue.4, pp.403-411, 1973.
DOI : 10.1016/0008-6223(73)90080-8

J. K. Kinoshit, E. Bett, . Oxidation, . Carbon-black, . In et al., , pp.237-247, 1973.

K. Artyushkova, Structure-to-property relationships in fuel cell catalyst supports: Correlation of surface chemistry and morphology with oxidation resistance of carbon blacks, Journal of Power Sources, vol.214, pp.303-313, 2012.
DOI : 10.1016/j.jpowsour.2012.04.095

J. M. Thomas, . Reactivity, . Carbon-some, . Current, . Problems et al., , p.413, 1970.

E. Endoh, Degradation Study of MEA for PEMFCs under Low Humidity Conditions, Electrochemical and Solid-State Letters, vol.12, issue.7, pp.209-211, 2004.
DOI : 10.1016/0968-0004(87)90145-9

R. Satija, In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells, Journal of Power Sources, vol.129, issue.2, pp.238-245, 2004.
DOI : 10.1016/j.jpowsour.2003.11.068

B. and H. , On the impact of water activity on reversal tolerant fuel cell anode performance and durability, Journal of Power Sources, pp.280-288, 2016.

G. Maranzana, About internal currents during start-up in proton exchange membrane fuel cell, Journal of Power Sources, vol.195, issue.18, pp.195-5990, 2010.
DOI : 10.1016/j.jpowsour.2009.10.093

A. Taniguchi, Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation, Journal of Power Sources, vol.130, issue.1-2, pp.42-49, 2004.
DOI : 10.1016/j.jpowsour.2003.12.035

P. Mike, L. Patterson-timothy, W. , and R. Carl, Systems Strategies to Mitigate Carbon Corrosion in Fuel Cells, pp.783-795, 2006.

K. Sasaki, S. H. , K. Kanda, Y. Takabatake, T. Tsukatsune et al., Alternative Electrocatalyst Support Materials for Polymer Electrolyte Fuel Cells, 2012.
DOI : 10.1149/1.3484545

D. S. Kim, E. F. Zeid, and Y. T. Kim, Additive treatment effect of TiO2 as supports for Pt-based electrocatalysts on oxygen reduction reaction activity, Electrochimica Acta, vol.55, issue.11, pp.55-3628, 2010.
DOI : 10.1016/j.electacta.2010.01.055

S. L. Gojkovic, Nb-doped TiO2 as a support of Pt and Pt???Ru anode catalyst for PEMFCs, Journal of Electroanalytical Chemistry, vol.639, issue.1-2, pp.161-166, 2010.
DOI : 10.1016/j.jelechem.2009.12.004

D. H. Lim, Electrochemical Durability Investigation of Pt/TiO[sub 2] Nanotube Catalysts for Polymer Electrolyte Membrane Fuel Cells, Electrochemical and Solid-State Letters, vol.12, issue.9, pp.123-125, 2009.
DOI : 10.1016/j.jcat.2008.06.007

F. Micoud, Unique CO-tolerance of Pt???WOx materials, Electrochemistry Communications, vol.11, issue.3, pp.651-654, 2009.
DOI : 10.1016/j.elecom.2009.01.007

URL : https://hal.archives-ouvertes.fr/hal-00417322

B. Wickman, Tungsten oxide in polymer electrolyte fuel cell electrodes-A thinfilm model electrode study, Electrochimica Acta, issue.25, pp.56-9496, 2011.

S. J. Tauster, S. C. Fung, S. Among, . Oxides, and . Groups-iia-vb, Strong metal-support interactions: Occurrence among the binary oxides of groups IIA?VB, Journal of Catalysis, vol.55, issue.1, pp.29-35, 1978.
DOI : 10.1016/0021-9517(78)90182-3

M. S. Spencer, . Models, . Strong, . Support, . Interaction et al., Models of strong metal-support interaction (SMSI) in Pt on TiO2 catalysts, Journal of Catalysis, vol.93, issue.2, pp.216-223, 1985.
DOI : 10.1016/0021-9517(85)90169-1

A. Masao, Carbon-Free Pt Electrocatalysts Supported on SnO[sub 2] for Polymer Electrolyte Fuel Cells, Electrochemical and Solid-State Letters, vol.835, issue.9, pp.119-122, 2009.
DOI : 10.1063/1.371541

Y. Takabatake, Cycle durability of metal oxide supports for PEFC electrocatalysts, International Journal of Hydrogen Energy, vol.39, issue.10, pp.5074-5082, 2014.
DOI : 10.1016/j.ijhydene.2014.01.094

P. Zhang, S. Huang, and B. N. Popov, Mesoporous Tin Oxide as an Oxidation-Resistant Catalyst Support for Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society, vol.155, issue.8, pp.157-1163, 2010.
DOI : 10.1016/j.ijhydene.2007.05.036

T. Matsui, Electrochemical oxidation of CO over tin oxide supported platinum catalysts, Journal of Power Sources, vol.155, issue.2, pp.152-156, 2006.
DOI : 10.1016/j.jpowsour.2005.05.003

T. Matsui, Effect of reduction???oxidation treatment on the catalytic activity over tin oxide supported platinum catalysts, Science and Technology of Advanced Materials, vol.245, issue.6, pp.524-530, 2006.
DOI : 10.1021/ja0214781

T. Okanishi, Chemical interaction between Pt and SnO2 and influence on adsorptive properties of carbon monoxide Applied Catalysis a-General, pp.181-187, 2006.

M. Arenz, Carbon-supported Pt???Sn electrocatalysts for the anodic oxidation of H2, CO, and H2/CO mixtures.Part II: The structure???activity relationship, Journal of Catalysis, vol.232, issue.2, pp.402-410, 2005.
DOI : 10.1016/j.jcat.2005.03.022

S. M. Andersen, Tin Dioxide as an Effective Antioxidant for Proton Exchange Membrane Fuel Cells, Journal of Power Sources, vol.273, pp.158-161, 2015.
DOI : 10.1016/j.jpowsour.2014.09.051

F. Takasaki, Carbon-Free Pt Electrocatalysts Supported on SnO2 for Polymer Electrolyte Fuel Cells: Electrocatalytic Activity and Durability, Journal of The Electrochemical Society, vol.158, issue.10, pp.158-1270, 2011.
DOI : 10.1016/j.jpowsour.2008.06.006

K. Kakinuma, Characterization of Pt catalysts on Nb-doped and Sb-doped SnO2-delta support materials with aggregated structure by rotating disk electrode and fuel cell measurements, Electrochimica Acta, issue.110, pp.316-324, 2013.

S. Cavaliere, Architectures: Alternative Electrocatalyst Supports for Proton Exchange Membrane Fuel Cells, The Journal of Physical Chemistry C, vol.117, issue.36, pp.117-18298, 2013.
DOI : 10.1021/jp404570d

URL : https://hal.archives-ouvertes.fr/hal-00903703

K. Kakinuma, Synthesis and electrochemical characterization of Pt catalyst supported on Sn0.96Sb0.04O2-delta with a network structure, Electrochimica Acta, issue.7, pp.56-2881, 2011.

M. P. Gurrola, High surface electrochemical support based on Sb-doped SnO 2, Journal of Power Sources, vol.243, pp.826-830, 2013.
DOI : 10.1016/j.jpowsour.2013.06.078

D. J. You, Platinum???antimony tin oxide nanoparticle as cathode catalyst for direct methanol fuel cell, Catalysis Today, vol.146, issue.1-2, pp.15-19, 2009.
DOI : 10.1016/j.cattod.2008.12.004

M. Yin, Highly active and stable Pt electrocatalysts promoted by antimony-doped SnO2 supports for oxygen reduction reactions, Applied Catalysis B: Environmental, vol.144, pp.112-120, 2014.
DOI : 10.1016/j.apcatb.2013.07.007

M. P. Gurrola, Evaluation of the corrosion of Sb-doped SnO2 supports for electrolysis systems, International Journal of Hydrogen Energy, issue.29, pp.39-16763, 2014.

S. Cavaliere, ChemElectroChem, vol.47, issue.12, pp.1966-1973, 2015.
DOI : 10.1039/c1cc11716e

E. R. Leite, A New Method to Control Particle Size and Particle Size Distribution of SnO2 Nanoparticles for Gas Sensor Applications, Advanced Materials, vol.12, issue.13, pp.12-965, 2000.
DOI : 10.1002/1521-4095(200006)12:13<965::AID-ADMA965>3.0.CO;2-7

J. P. Baena and A. G. Agrios, Transparent Conducting Aerogels of Antimony-Doped Tin Oxide, Acs Applied Materials & Interfaces, issue.621, pp.19127-19134, 2014.

Y. Senoo, Cathodic performance and high potential durability of Ta-SnO2- delta-supported Pt catalysts for PEFC cathodes, Electrochemistry Communications, issue.51, pp.37-40, 2015.

N. Kamiuchi, Nanoscopic Observation of Strong Chemical Interaction between Pt and Tin Oxide, The Journal of Physical Chemistry C, vol.111, issue.44, pp.16470-16476, 2007.
DOI : 10.1021/jp0745337

T. Daio, Lattice Strain Mapping of Platinum Nanoparticles on Carbon and SnO2 Supports, Scientific Reports, vol.50, issue.1, p.10, 2015.
DOI : 10.1103/PhysRevB.50.17953

M. Batzill and U. Diebold, The surface and materials science of tin oxide, Progress in Surface Science, vol.79, issue.2-4, pp.47-154, 2005.
DOI : 10.1016/j.progsurf.2005.09.002

C. J. Damaschio, Sn3O4 single crystal nanobelts grown by carbothermal reduction process, Journal of Crystal Growth, vol.312, issue.20, pp.312-2881, 2010.
DOI : 10.1016/j.jcrysgro.2010.07.022

C. Kilic and A. Zunger, Origins of coexistence of conductivity and transparency in SnO2, Physical Review Letters, issue.9, p.88, 2002.

V. Gokulakrishnan, Investigations on the structural, optical and electrical properties of Nb-doped SnO2 thin films, Journal of Materials Science, vol.12, issue.16, pp.46-5553, 2011.
DOI : 10.1002/pip.541

D. Szczuko, XPS investigations of surface segregation of doping elements in SnO2, Applied Surface Science, vol.179, issue.1-4, pp.301-306, 2001.
DOI : 10.1016/S0169-4332(01)00298-7

S. D. Han, Preparation and properties of vanadium-doped SnO2 nanocrystallites, Sensors and Actuators B: Chemical, vol.66, issue.1-3, pp.112-115, 2000.
DOI : 10.1016/S0925-4005(00)00325-7

E. Bressand, J. G. , B. Royer, D. Électrochrome-À-réflexion-infrarouge-contrôlée, and S. , , 2009.

D. Ginley, Handbook of transparent conductors, 2010.
DOI : 10.1007/978-1-4419-1638-9

S. Megahed, W. Ebner, L. Battery, . For, and . Applications, Lithium-ion battery for electronic applications, Journal of Power Sources, vol.54, issue.1, pp.155-162, 1995.
DOI : 10.1016/0378-7753(94)02059-C

J. H. Harreld, J. Sakamoto, and B. Dunn, Non-hydrolytic sol???gel synthesis and electrochemical characterization of tin-based oxide aerogels, Journal of Power Sources, vol.115, issue.1, pp.19-26, 2003.
DOI : 10.1016/S0378-7753(02)00626-2

I. A. Courtney, R. A. Dunlap, and J. R. Dahn, In-situ 119Sn M??ssbauer effect studies of the reaction of lithium with SnO and SnO:0.25 B2O3:0.25 P2O5 glass, Electrochimica Acta, vol.45, issue.1-2, pp.51-58, 1999.
DOI : 10.1016/S0013-4686(99)00192-9

M. Fuller and M. W. , The catalytic oxidation of carbon monoxide on SnO2$z.sbnd;CuO gels, Journal of Catalysis, vol.34, issue.3, pp.445-453, 1974.
DOI : 10.1016/0021-9517(74)90058-X

M. Fuller and M. W. , The Catalytic Oxidation of Carbon Monoxide on Tin(lV) Oxide, JOURNAL OF CATALYSIB, pp.441-450, 1972.

H. Herniman, D. P. , and R. Reid, An investigation of the relationship between the bulk and surface composition of tin and antimony mixed oxide catalysts and the oxidative dehydrogenation of 1-butene to butadiene, Journal of Catalysis, vol.58, issue.1, pp.8-73, 1979.
DOI : 10.1016/0021-9517(79)90245-8

H. Y. Zhao, Fabrication of novel SnO2-Sb/carbon aerogel electrode for ultrasonic electrochemical oxidation of perfluorooctanoate with high catalytic efficiency, Applied Catalysis B: Environmental, vol.136, issue.137, pp.278-286, 2013.
DOI : 10.1016/j.apcatb.2013.02.013

J. Fan, Fabrication and application of mesoporous Sb-doped SnO2 electrode with high specific surface in electrochemical degradation of ketoprofen, Electrochimica Acta, vol.94, pp.21-29, 2013.
DOI : 10.1016/j.electacta.2013.01.129

S. Bordoni, NATURE Journal of the Chemical Society-Faraday Transactions, pp.90-2981, 1994.

C. T. Wang, M. T. Chen, and D. L. Lai, Surface characterization and reactivity of vanadium???tin oxide nanoparticles, Applied Surface Science, vol.257, issue.11, pp.257-5109, 2011.
DOI : 10.1016/j.apsusc.2011.01.031

J. Haber and M. Witko, Oxidation catalysis???electronic theory revisited, Journal of Catalysis, vol.216, issue.1-2, pp.416-424, 2003.
DOI : 10.1016/S0021-9517(02)00037-4

J. P. Viricelle, Gas Sensors Based on Tin Dioxide for Exhaust Gas Application, Modeling of Response for Pure Gases and for Mixtures, 26th European Conference on Solid-State Transducers, pp.47-655, 2012.
DOI : 10.1016/j.proeng.2012.09.232

URL : https://hal.archives-ouvertes.fr/hal-00773735

S. Shukla, Synthesis and characterization of sol???gel derived nanocrystalline tin oxide thin film as hydrogen sensor, Sensors and Actuators B: Chemical, vol.96, issue.1-2, pp.343-353, 2003.
DOI : 10.1016/S0925-4005(03)00568-9

D. 'arienzo and M. , One-Step Preparation of SnO2 and Pt-Doped SnO2 As Inverse Opal Thin Films for Gas Sensing, Chemistry of Materials, issue.13, pp.22-4083, 2010.

A. Gaddari, A novel way for the synthesis of tin dioxide sol???gel derived thin films: Application to O3 detection at ambient temperature, Sensors and Actuators B: Chemical, vol.176, issue.176, pp.811-817, 2013.
DOI : 10.1016/j.snb.2012.10.049

H. , F. O. Couches-minces-d-'oxydes, . Spinelles, . De, A. Spinelle-cuo et al., , 2009.

N. Barsan, D. Koziej, and U. Weimar, Metal oxide-based gas sensor research: How to?, Sensors and Actuators B: Chemical, vol.121, issue.1, pp.18-35, 2007.
DOI : 10.1016/j.snb.2006.09.047

G. Tournier, Sensors and Actuators B-Chemical, vol.26, pp.1-3, 1995.

N. Yamazoe, Y. Kurokawa, T. Seiyama, E. Of, . On et al., Effects of additives on semiconductor gas sensors, Sensors and Actuators, vol.4, issue.2, pp.283-289, 1983.
DOI : 10.1016/0250-6874(83)85034-3

F. Collignon, Cahier technologique Sol-Gel, 2008.

F. Perrin, Films inorganiques et hybrides protecteurs obtenus par voie sol-gel, 2007.

T. F. Baumann, Facile Synthesis of a Crystalline, High-Surface-Area SnO2 Aerogel, Advanced Materials, vol.331, issue.12, pp.17-1546, 2005.
DOI : 10.1557/mrs2000.256

A. S. Chizhov, M. N. Rumyantseva, and A. M. Gaskov, Frequency-dependent electrical conductivity of nanocrystalline SnO2, Inorganic Materials, vol.40, issue.1, pp.49-1000, 2013.
DOI : 10.1134/S1063782606010180

S. Y. Wang and N. L. Wu, Tin oxide gel shrinkage during CO2 supercritical drying, Journal of Non-Crystalline Solids, vol.224, issue.3, pp.259-266, 1998.
DOI : 10.1016/S0022-3093(97)00484-5

U. Pal, M. Pal, and R. Sanchez-zeferino, Gram-scale synthesis of highly crystalline, 0-D and 1-D SnO2 nanostructures through surfactant-free hydrothermal process, Journal of Nanoparticle Research, vol.138, issue.95, p.14, 2012.
DOI : 10.1016/j.ssc.2006.03.007

S. S. Lekshmy, G. P. Daniel, and K. Joy, Microstructure and physical properties of sol gel derived SnO2:Sb thin films for optoelectronic applications, Applied Surface Science, vol.274, pp.95-100, 2013.
DOI : 10.1016/j.apsusc.2013.02.109

N. B. Ibrahim, Structural and optical characterisation of undoped and chromium doped tin oxide prepared by sol???gel method, Applied Surface Science, vol.271, pp.260-264, 2013.
DOI : 10.1016/j.apsusc.2013.01.171

M. Aziz, S. S. Abbas, and W. R. Baharom, Size-controlled synthesis of SnO2 nanoparticles by sol???gel method, Materials Letters, vol.91, issue.91, pp.31-34, 2013.
DOI : 10.1016/j.matlet.2012.09.079

M. Aziz, Structure of SnO2 nanoparticles by sol???gel method, Materials Letters, vol.74, pp.62-64, 2012.
DOI : 10.1016/j.matlet.2012.01.073

H. Kose, A. O. Aydin, and H. Akbulut, Sol???gel preparation and electrochemical characterization of SnO2/MWCNTs anode materials for Li-ion batteries, Applied Surface Science, vol.275, pp.160-167, 2013.
DOI : 10.1016/j.apsusc.2013.01.055

A. S. Ahmed, Temperature dependent structural and optical properties of tin oxide nanoparticles, Journal of Physics and Chemistry of Solids, vol.73, issue.7, pp.73-943, 2012.
DOI : 10.1016/j.jpcs.2012.02.030

R. Huang, Formation and characterization of tin oxide aerogel derived from sol???gel process based on Tetra(n-butoxy)tin(IV), Journal of Non-Crystalline Solids, vol.351, issue.1, pp.23-28, 2005.
DOI : 10.1016/j.jnoncrysol.2004.09.023

S. Mihaiu, L. Marta, and M. Zaharescu, SnO2 and CeO2-doped SnO2 materials obtained by sol???gel alkoxide route, Journal of the European Ceramic Society, vol.27, issue.2-3, pp.551-555, 2007.
DOI : 10.1016/j.jeurceramsoc.2006.04.070

S. C. Lee, Fabrication of tin oxide film by sol???gel method for photovoltaic solar cell system, Solar Energy Materials and Solar Cells, vol.75, issue.3-4, pp.75-78, 2003.
DOI : 10.1016/S0927-0248(02)00201-5

S. De-monredon, Synthesis and characterization of crystalline tin oxide nanoparticles, Journal of Materials Chemistry, vol.12, issue.8, pp.2396-2400, 2002.
DOI : 10.1039/b203049g

K. G. Severin, T. M. Abdel-fattah, and T. J. Pinnavaia, Supramolecular assembly of mesostructured tin oxide, Chemical Communications, issue.14, pp.1471-1472, 1998.
DOI : 10.1039/a709067f

A. Kumar, Hydrogen selective gas sensor in humid environment based on polymer coated nanostructured-doped tin oxide, Sensors and Actuators B: Chemical, vol.155, issue.2, pp.884-892, 2011.
DOI : 10.1016/j.snb.2011.01.065

C. Sanchez, Chemical modification of alkoxide precursors, Journal of Non-Crystalline Solids, vol.100, issue.1-3, pp.65-76, 1988.
DOI : 10.1016/0022-3093(88)90007-5

W. Hamd, A new way to prepare tin oxide precursor polymeric gels, Journal of Sol-Gel Science and Technology, vol.15, issue.1, pp.15-18, 2010.
DOI : 10.1016/S0928-4931(02)00092-9

URL : https://hal.archives-ouvertes.fr/hal-00496733

M. J. Hampdensmith, T. A. Wark, C. J. Brinker, T. Solid-state, . And et al., The solid state and solution structures of tin(IV) alkoxide compounds and their use as precursors to form tin oxide ceramics via sol-gel-type hydrolysis and condensation, Coordination Chemistry Reviews, vol.112, pp.81-116, 1992.
DOI : 10.1016/0010-8545(92)80006-D

, Dossier Technique : Le Procédé Sol-Gel

S. S. Kistler, Coherent Expanded Aerogels and Jellies, Nature, vol.127, issue.3211, pp.741-741, 1931.
DOI : 10.1038/127741a0

D. B. Mahadik, Effect of water ethanol solvents mixture on textural and gas sensing properties of tin oxide prepared using epoxide-assisted sol???gel process and dried at ambient pressure, Solid State Sciences, vol.50, pp.1-8, 2015.
DOI : 10.1016/j.solidstatesciences.2015.10.003

N. M. Markovic, B. N. Grgur, and P. N. Ross, Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions, The Journal of Physical Chemistry B, vol.101, issue.27, pp.5405-5413, 1997.
DOI : 10.1021/jp970930d

T. Biegler, D. A. Rand, R. Woods, L. Oxygen, . On et al., Limiting oxygen coverage on platinized platinum; Relevance to determination of real platinum area by hydrogen adsorption, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.29, issue.2, p.269, 1971.
DOI : 10.1016/S0022-0728(71)80089-X

S. Trasatti, O. A. Petrii, R. Surface-area, . Measurements, and . Electrochemistry, Real surface area measurements in electrochemistry, Journal of Electroanalytical Chemistry, vol.327, issue.1-2, pp.353-376, 1992.
DOI : 10.1016/0022-0728(92)80162-W

T. Binninger, Determination of the Electrochemically Active Surface Area of Metal-Oxide Supported Platinum Catalyst, Journal of the Electrochemical Society, vol.161, issue.3, pp.121-128, 2014.
DOI : 10.1149/2.055403jes

S. Treimer, A. Tang, and D. C. Johnson, A Consideration of the Application of Kouteck??-Levich Plots in the Diagnoses of Charge-Transfer Mechanisms at Rotated Disk Electrodes, Electroanalysis, vol.14, issue.3, pp.165-171, 2002.
DOI : 10.1002/1521-4109(200202)14:3<165::AID-ELAN165>3.0.CO;2-6

M. Ouattara-brigaudet, Influence of the carbon texture of platinum/carbon aerogel electrocatalysts on their behavior in a proton exchange membrane fuel cell cathode, International Journal of Hydrogen Energy, vol.37, issue.12, pp.37-9742, 2012.
DOI : 10.1016/j.ijhydene.2012.03.085

URL : https://hal.archives-ouvertes.fr/hal-00699512

E. Fabbri, porous structures: developments and issues, Phys. Chem. Chem. Phys., vol.115, issue.324, pp.16-13672, 2014.
DOI : 10.1021/jp2068446

A. Rabis, Thin Films: Theoretical and Experimental Insights into Fabrication and Electrocatalytic Properties, The Journal of Physical Chemistry C, vol.118, issue.21, pp.11292-11302, 2014.
DOI : 10.1021/jp4120139

V. Muller, Highly Conducting Nanosized Monodispersed Antimony-Doped Tin Oxide Particles Synthesized via Nonaqueous Sol???Gel Procedure, Chemistry of Materials, vol.21, issue.21, pp.5229-5236, 2009.
DOI : 10.1021/cm902189r

I. S. Mulla, Deposition of improved optically selective conductive tin oxide films by spray pyrolysis, Journal of Materials Science, vol.122, issue.4, pp.1280-1288, 1986.
DOI : 10.1007/BF00553263

V. Avila-vazquez, Electrochemical performance of a Sb-doped SnO2 support synthesized by coprecipitation for oxygen reactions, Journal of Applied Electrochemistry, vol.13, issue.15, pp.45-1175, 2015.
DOI : 10.1016/j.ijhydene.2003.10.011

J. Bruneaux, Electrochimica Acta, vol.3989, pp.1251-1257, 1994.

K. G. Godinho, A. Walsh, and G. W. Watson, The Journal of Physical Chemistry C, vol.113, issue.1, pp.439-448, 2009.
DOI : 10.1021/jp807753t

C. Terrier, Sb-doped SnO2 transparent conducting oxide from the sol-gel dip-coating technique, Thin Solid Films, vol.263, issue.1, pp.37-41, 1995.
DOI : 10.1016/0040-6090(95)06543-1

C. Terrier, J. P. Chatelon, and J. A. Roger, Electrical and optical properties of Sb:SnO2 thin films obtained by the sol-gel method. Thin Solid Films, pp.95-100, 1997.

W. C. Las, Journal of Applied Physics, issue.10, pp.74-6191, 1993.

M. Caldararu, Redox processes in Sb-containing mixed oxides used in oxidation catalysis, Applied Catalysis A: General, vol.209, issue.1-2, pp.383-390, 2001.
DOI : 10.1016/S0926-860X(00)00776-6

K. S. Lee, Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells, Journal of Catalysis, vol.258, issue.1, pp.143-152, 2008.
DOI : 10.1016/j.jcat.2008.06.007

H. S. Oh, H. N. Nong, and P. Strasser, Preparation of Mesoporous Sb-, F-, and In- Doped SnO2 Bulk Powder with High Surface Area for Use as Catalyst Supports in Electrolytic Cells, Advanced Functional Materials, issue.7, pp.25-1074, 2015.

E. Oakton, Structural differences between Sb- and Nb-doped tin oxides and consequences for electrical conductivity, New Journal of Chemistry, vol.28, issue.3, pp.40-2655, 2016.
DOI : 10.1016/0920-5861(95)00230-8

N. Barsan and U. Weimar, Conduction model of metal oxide gas sensors, Journal of Electroceramics, vol.7, issue.3, pp.143-167, 2001.
DOI : 10.1023/A:1014405811371

Y. Senoo, Improvements in electrical and electrochemical properties of Nbdoped SnO2-delta supports for fuel cell cathodes due to aggregation and Pt loading, Rsc Advances, pp.32180-32188, 2014.

F. Fievet, Solid State Ionics, pp.32-35, 1989.

Z. L. Liu, Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells, Journal of Power Sources, vol.139, issue.1-2, pp.73-78, 2005.
DOI : 10.1016/j.jpowsour.2004.07.012

O. Neto and A. , The performance of Pt nanoparticles supported on Sb(2)O(5 center dot)Sno(2), on carbon and on physical mixtures of Sb2O5 center dot SnO2 and carbon for ethanol electro-oxidation, International Journal of Hydrogen Energy, issue.17, pp.35-9177, 2010.

C. Q. Pan, Platinum???antimony doped tin oxide nanoparticles supported on carbon black as anode catalysts for direct methanol fuel cells, Journal of Power Sources, vol.196, issue.15, pp.196-6228, 2011.
DOI : 10.1016/j.jpowsour.2011.03.027

D. J. Guo, Electrooxidation of ethanol on novel multi-walled carbon nanotube supported platinum???antimony tin oxide nanoparticle catalysts, Journal of Power Sources, vol.196, issue.2, pp.679-682, 2011.
DOI : 10.1016/j.jpowsour.2010.07.075

J. M. Orts, J. M. Feliu, A. Aldaz, V. Study, . The-electrochemical-behavior et al., Voltammetric study of the electrochemical behaviour of glycolic acid solutions in sulphuric acid on platinum single-crystal electrodes with basal orientations, Journal of Electroanalytical Chemistry, vol.323, issue.1-2, pp.303-318, 1992.
DOI : 10.1016/0022-0728(92)80018-Y

J. C. Yang, Characterization of photoreduced Pt/TiO 2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO 2 catalysts, pp.525-529, 1997.

J. Durst, M. Chatenet, and F. Maillard, Impact of metal cations on the electrocatalytic properties of Pt/C nanoparticles at multiple phase interfaces, Physical Chemistry Chemical Physics, vol.106, issue.37, pp.14-13000, 2012.
DOI : 10.1021/jp013195l

P. S. Ruvinskiy, Preparation, testing and modeling of three-dimensionally ordered catalytic layers for electrocatalysis of fuel cell reactions, Electrochimica Acta, vol.55, issue.9, pp.55-3245, 2010.
DOI : 10.1016/j.electacta.2010.01.033

Q. Dong, S. Santhanagopalan, and R. E. White, Simulation of the Oxygen Reduction Reaction at an RDE in 0.5???M H[sub 2]SO[sub 4] Including an Adsorption Mechanism, Journal of The Electrochemical Society, vol.5, issue.9, pp.888-899, 2007.
DOI : 10.1039/tf9524800796

A. B. Bose, R. Shaik, and J. Mawdsley, Optimization of the performance of polymer electrolyte fuel cell membrane-electrode assemblies: Roles of curing parameters on the catalyst and ionomer structures and morphology, Journal of Power Sources, vol.182, issue.1, pp.61-65, 2008.
DOI : 10.1016/j.jpowsour.2008.03.070

Q. P. He, D. C. Joy, and D. J. Keffer, Impact of oxidation on nanoparticle adhesion to carbon substrates, Rsc Advances, pp.15792-15804, 2013.
DOI : 10.1021/nl072617l

Q. P. He, Structure of the lonomer Film in Catalyst Layers of Proton Exchange Membrane Fuel Cells, Journal of Physical Chemistry C, issue.48, pp.117-25305, 2013.

H. Massong, On the influence of tin and bismuth UPD on Pt(111) and Pt(332) on the oxidation of CO, Electrochimica Acta, vol.44, issue.8-9, pp.44-52, 1998.
DOI : 10.1016/S0013-4686(98)00260-6

M. C. Santos and L. O. Bulhoes, The underpotential deposition of Sn on Pt in acid media. Cyclic voltarnmetric and electrochemical quartz crystal microbalance studies, Electrochimica Acta, issue.18, pp.48-2607, 2003.

J. M. Feliu, New observations of a structure sensitive electrochemical behaviour of irreversibly adsorbed arsenic and antimony from acidic solutions on Pt (111) and Pt (100) orientations, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.256, issue.1, pp.149-163, 1988.
DOI : 10.1016/0022-0728(88)85014-9

V. Climent, E. Herrero, and J. M. Feliu, Electrocatalysis of formic acid and CO oxidation on antimony-modified Pt(111) electrodes, Electrochimica Acta, vol.44, issue.8-9, pp.44-52, 1998.
DOI : 10.1016/S0013-4686(98)00263-1

, EIS): A Powerful and Cost-Effective Tool for Fuel Cell Diagnostics, Electrochemical Impedance Spectroscopy

M. Eikerling and A. A. Kornyshev, Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells, Journal of Electroanalytical Chemistry, vol.475, issue.2, pp.107-123, 1999.
DOI : 10.1016/S0022-0728(99)00335-6

I. D. Raistrick, . Impedance, . Studies, and . Porous-electrodes, Electrochimica Acta, issue.10, pp.35-1579, 1990.

Z. Xie and S. Holdcroft, Polarization-dependent mass transport parameters for orr in perfluorosulfonic acid ionomer membranes: an EIS study using microelectrodes, Journal of Electroanalytical Chemistry, vol.568, issue.12, pp.247-260, 2004.
DOI : 10.1016/j.jelechem.2004.01.019

I. M. Thomas, Method for producing stannic tertiary alkoxide, 1976.

M. J. Hampdensmith, IV) ALKOXIDE COMPOUNDS .1. SN(O-TERT- BU)4 AND SN(O-ISO-PR)4.HO-ISO-PR 2, pp.69-121, 1991.