B. Bibliography, R. Bibliography, A. Achanta, K. Shaji, . Smith et al., SLIC superpixels compared to state-of-the-art superpixel methods, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.11, pp.2274-2282, 2012.

B. Andres, U. Köthe, M. Helmstaedter, W. Denk, and F. Hamprecht, Segmentation of SBFSEM Volume Data of Neural Tissue by Hierarchical Classification, Pattern Recognition, pp.142-152, 2008.
DOI : 10.1007/978-3-540-69321-5_15

B. Andres, U. Koethe, T. Kroeger, M. Helmstaedter, and K. L. Briggman, 3D segmentation of SBFSEM images of neuropil by a graphical model over supervoxel boundaries, Medical Image Analysis, vol.16, issue.4, pp.796-805, 2012.
DOI : 10.1016/j.media.2011.11.004

D. Ascher, P. F. Dubois, K. Hinsen, J. Hugunin, and T. Oliphant, edition, p.128569, 1999.

W. Benesova and M. Kottman, Fast superpixel segmentation using morphological processing, Proceedings of the International Conference of Machine Vision and Machine Learning, p.2014

S. Beucher, Watershed, Hierarchical Segmentation and Waterfall Algorithm, Mathematical Morphology and its applications to signal processing (Proceedings ISMM'94), pp.69-76, 1994.
DOI : 10.1007/978-94-011-1040-2_10

L. Breiman, Random forests, Machine Learning, pp.5-32, 2001.

Y. Chai, V. Lempitsky, and A. Zisserman, Bicos: A bi-level co-segmentation method for image classification, IEEE International Conference on Computer Vision, 2011.

P. Luís and . Coelho, Mahotas: Open source software for scriptable computer vision. CoRR, abs, 1211.

A. Luís-pedro-coelho, . Shariff, F. Robert, and . Murphy, Nuclear segmentation in microscope cell images: a hand-segmented dataset and comparison of algorithms, Biomedical Imaging: From Nano to Macro, 2009. ISBI'09. IEEE International Symposium on, pp.518-521, 2009.

D. Comaniciu and P. Meer, Mean shift: a robust approach toward feature space analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.5, pp.603-619, 2002.
DOI : 10.1109/34.1000236

P. Conze, F. Rousseau, V. Noblet, F. Heitz, R. Memeo et al., Semi-automatic Liver Tumor Segmentation in Dynamic Contrast-Enhanced CT Scans Using Random Forests and Supervoxels, pp.212-219, 2015.
DOI : 10.1109/TMI.2004.828354

URL : https://hal.archives-ouvertes.fr/hal-01214060

P. Conze, V. Noblet, F. Rousseau, F. Heitz, R. Memeo et al., Random forests on hierarchical multi-scale supervoxels for liver tumor segmentation in dynamic contrast-enhanced CT scans, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp.416-419, 2016.
DOI : 10.1109/ISBI.2016.7493296

URL : https://hal.archives-ouvertes.fr/hal-01284631

L. Duan and F. Lafarge, Image partitioning into convex polygons, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.3119-3127, 2015.
DOI : 10.1109/CVPR.2015.7298931

URL : https://hal.archives-ouvertes.fr/hal-01140320

F. Paul, K. Dubois, J. Hinsen, and . Hugunin, Numerical python, Computers in Physics, vol.10, issue.3, 1996.

E. Erkut, The discrete p-dispersion problem, European Journal of Operational Research, vol.46, issue.1, pp.48-60, 1990.
DOI : 10.1016/0377-2217(90)90297-O

M. Faessel and M. Bilodeau, Smil: Simple morphological image library, Séminaire Performance et Généricité, LRDE, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00836117

F. Pedro, D. P. Felzenszwalb, and . Huttenlocher, Efficient graph-based image segmentation, International Journal of Computer Vision, vol.59, issue.2, pp.167-181, 2004.

E. Geremia, H. Bjoern, N. Menze, and . Ayache, Spatially Adaptive Random Forests, 2013 IEEE 10th International Symposium on Biomedical Imaging, pp.1332-1367, 2013.
DOI : 10.1109/ISBI.2013.6556781

C. Gini, Variabilità e mutabilità: contributo allo studio delle distribuzioni e delle relazioni statistiche, 1912.

A. Hanbury, How Do Superpixels Affect Image Segmentation?, pp.178-186, 2008.
DOI : 10.1109/TPAMI.2004.1273918

R. M. Haralick and K. , Sam Shanmugam, and Its'hak Dinstein Textural features for image classification, IEEE Trans. Systems, Man, and Cybernetics, vol.3, issue.6, pp.610-621, 1973.

Z. Hu, Q. Zu, and Q. Li, Watershed superpixel. IEEE International Conference on Image Processing, 2015.

P. Jaccard, Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines, Bulletin de la Société Vaudoise des Sciences Naturelles, vol.37, pp.241-272, 1901.

P. Kalinin and A. Sirota, A graph based approach to hierarchical image over-segmentation, Computer Vision and Image Understanding, vol.130, pp.80-86, 2015.
DOI : 10.1016/j.cviu.2014.09.007

J. Kamarainen, Feature Extraction Using Gabor Filters, 2003.

S. Koudoro, M. Faessel, and M. Bilodeau, Morph-m: Image processing library specialized in mathematical morphology, Image Processing On Line Journal, 2012.

U. Köthe, Generische Programmierung für die Bildverarbeitung, 2000.

A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson et al., TurboPixels: Fast Superpixels Using Geometric Flows, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.12, pp.312290-2297, 2009.
DOI : 10.1109/TPAMI.2009.96

URL : http://www.cim.mcgill.ca/~shape/publications/pami09.pdf

A. Levinshtein, C. Sminchisescu, and S. Dickinson, Optimal Contour Closure by Superpixel Grouping, pp.480-493, 2010.
DOI : 10.1007/978-3-642-15552-9_35

URL : http://www.cs.toronto.edu/%7Esven/Papers/eccv2010-closure.pdf

A. Lucchi, K. Smith, R. Achanta, G. Knott, and P. Fua, Supervoxel-Based Segmentation of Mitochondria in EM Image Stacks With Learned Shape Features, IEEE Transactions on Medical Imaging, vol.31, issue.2, pp.31474-486, 2012.
DOI : 10.1109/TMI.2011.2171705

V. Machairas, E. Decencière, and T. Walter, Waterpixels: Superpixels based on the watershed transformation, 2014 IEEE International Conference on Image Processing (ICIP), pp.4343-4347, 2014.
DOI : 10.1109/ICIP.2014.7025882

URL : https://hal.archives-ouvertes.fr/hal-01139797

V. Machairas, M. Faessel, D. Cárdenas-peña, T. Chabardes, T. Walter et al., Waterpixels, IEEE Transactions on Image Processing, vol.24, issue.11, pp.3707-3716, 2015.
DOI : 10.1109/TIP.2015.2451011

URL : https://hal.archives-ouvertes.fr/hal-01212760

V. Machairas, T. Baldeweck, T. Walter, and E. Decencière, New general features based on superpixels for image segmentation learning, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp.1409-1413, 2016.
DOI : 10.1109/ISBI.2016.7493531

URL : https://hal.archives-ouvertes.fr/hal-01276132

M. Manfredi, C. Grana, and R. Cucchiara, Learning superpixel relations for supervised image segmentation, 2014 IEEE International Conference on Image Processing (ICIP), pp.4437-4441, 2014.
DOI : 10.1109/ICIP.2014.7025900

B. Marcotegui and F. Meyer, Bottom-up segmentation of image sequences for coding, Annales Des Télécommunications, vol.52, issue.78, pp.397-407, 1997.

D. Martin, C. Fowlkes, D. Tal, and J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, pp.416-423, 2001.
DOI : 10.1109/ICCV.2001.937655

J. Matas, O. Chum, M. Urban, and T. Pajdla, Robust wide baseline stereo from maximally stable extremal regions, Proceedings of the British Machine Vision Conference, pp.36-37, 2002.
DOI : 10.1016/j.imavis.2004.02.006

F. Meyer, Minimal spanning forests for morphological segmentation, Mathematical Morphology and its applications to signal processing (Proceedings ISMM'94), pp.13-14, 1994.
DOI : 10.1007/978-94-011-1040-2_11

F. Meyer, AN OVERVIEW OF MORPHOLOGICAL SEGMENTATION, International Journal of Pattern Recognition and Artificial Intelligence, vol.52, issue.07, pp.1089-1118, 2001.
DOI : 10.1109/83.217222

B. Micusik and J. Kosecka, Semantic segmentation of street scenes by superpixel cooccurrence and 3d geometry, IEEE 12th International Conference on Computer Vision Workshops , ICCV Workshops, 2009.
DOI : 10.1109/iccvw.2009.5457645

O. Monga, AN OPTIMAL REGION GROWING ALGORITHM FOR IMAGE SEGMENTATION, International Journal of Pattern Recognition and Artificial Intelligence, vol.01, issue.03n04, pp.351-375, 1987.
DOI : 10.1142/S0218001487000242

P. Neubert and P. Protzel, Compact Watershed and Preemptive SLIC: On Improving Trade-offs of Superpixel Segmentation Algorithms, 2014 22nd International Conference on Pattern Recognition, pp.996-1001, 2014.
DOI : 10.1109/ICPR.2014.181

E. Travis and . Oliphant, Guide to NumPy, 2006.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

L. Peter, O. Pauly, P. Chatelain, D. Mateus, and N. Navab, Scale-Adaptive Forest Training via an Efficient Feature Sampling Scheme, Lecture Notes in Computer Science, vol.18, issue.8, pp.637-644, 2015.
DOI : 10.1007/978-3-319-10404-1_1

URL : https://hal.archives-ouvertes.fr/hal-01241978

X. Ren and J. Malik, Learning a classification model for segmentation, Proceedings Ninth IEEE International Conference on Computer Vision, pp.10-17, 2003.
DOI : 10.1109/ICCV.2003.1238308

A. Schick, M. Fischer, and R. Stiefelhagen, An evaluation of the compactness of superpixels, Pattern Recognition Letters, vol.43, issue.0, pp.71-80, 2014.
DOI : 10.1016/j.patrec.2013.09.013

A. Serna, B. Marcotegui, E. Decencière, T. Baldeweck, A. Pena et al., Segmentation of elongated objects using attribute profiles and area stability: Application to melanocyte segmentation in engineered skin, Pattern Recognition Letters, vol.47, pp.172-182, 2014.
DOI : 10.1016/j.patrec.2014.03.014

J. Shen, Y. Du, W. Wang, and X. Li, Lazy Random Walks for Superpixel Segmentation, IEEE Transactions on Image Processing, vol.23, issue.4, pp.1451-1462, 2014.
DOI : 10.1109/TIP.2014.2302892

J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell, vol.22, issue.8, pp.888-905, 2000.

P. Soille, Morphological image analysis: principles and applications, 2003.

C. Sommer, C. Strähle, U. Köthe, and F. A. Hamprecht, Ilastik: Interactive learning and segmentation toolkit, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.230-233, 2011.
DOI : 10.1109/ISBI.2011.5872394

J. Stawiaski and E. Decencière, Interactive liver tumor segmentation using watershed and graph cuts, Segmentation in the clinic : A grand Challenge II (MICCAI 2008 workshop), 2008.
URL : https://hal.archives-ouvertes.fr/hal-01445751

N. J. Strachan, P. Nesvadba, and A. R. Allen, Fish species recognition by shape analysis of images, Pattern Recognition, vol.23, issue.5, pp.539-544, 1990.
DOI : 10.1016/0031-3203(90)90074-U

N. Meng-tan, Y. Xu, W. Goh, and J. Liu, Robust multi-scale superpixel classification for optic cup localization, Comp. Med. Imag. and Graph, vol.40, pp.182-193, 2015.

V. Morard, E. Decencière, and P. Dokladal, Region growing structuring elements and new operators based on their shape, Signal and Image Processing Etats-Unis, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00834502

C. Vachier and F. Meyer, Extinction values: A new measurement of persistence, IEEE Workshop on Non Linear Signal/Image Processing, pp.254-257, 1995.

J. L. Stéfan-van-der-walt, J. Schönberger, F. Nunez-iglesias, J. D. Boulogne, N. Warner et al., scikit-image: image processing in Python, PeerJ, vol.13, issue.2, pp.453-459
DOI : 10.7717/peerj.453/fig-5

O. Veksler, Y. Boykov, and P. Mehrani, Superpixels and Supervoxels in an Energy Optimization Framework, Eur. Conf. on Computer Vision, pp.211-224, 2010.
DOI : 10.1007/978-3-642-15555-0_16

J. Wang and X. Wang, VCells: Simple and Efficient Superpixels Using Edge-Weighted Centroidal Voronoi Tessellations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.6, pp.1241-1247, 2012.
DOI : 10.1109/TPAMI.2012.47

W. Wu, A. Y. Chen, L. Zhao, and J. J. Corso, Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features, International Journal of Computer Assisted Radiology and Surgery, vol.432, issue.7015, pp.241-253, 2014.
DOI : 10.1038/nature03128

Y. Xu and J. Liu, Efficient optic cup localization based on superpixel classification for glaucoma diagnosis in digital fundus images, Proceedings of the 21st International Conference on Pattern Recognition, ICPR 2012, pp.49-52, 2012.

G. Zeng, P. Wang, J. Wang, R. Gan, and H. Zha, Structure-sensitive superpixels via geodesic distance, 2011 International Conference on Computer Vision, pp.447-454, 2011.
DOI : 10.1109/ICCV.2011.6126274

G. Zhou, Y. Liu, and Z. Tian, Scene text detection with superpixels and hierarchical model, 2012 19th IEEE International Conference on Image Processing, 2012.
DOI : 10.1109/ICIP.2012.6467031