R. Blossey, Self-cleaning surfaces ??? virtual realities, Nature Materials, vol.34, issue.5, pp.301-306, 2003.
DOI : 10.1109/MEMSYS.2001.906582

Y. Cheng and D. E. Rodak, Is the lotus leaf superhydrophobic?, Applied Physics Letters, vol.86, issue.14, p.144101, 2005.
DOI : 10.1007/978-0-387-21656-0

Y. Cheng, D. E. Rodak, A. Angelopoulos, and T. Gacek, Microscopic observations of condensation of water on lotus leaves, Applied Physics Letters, vol.87, issue.19, p.194112, 2005.
DOI : 10.1039/tf9444000546

K. A. Wier and T. J. Mccarthy, Condensation on Ultrahydrophobic Surfaces and Its Effect on Droplet Mobility:?? Ultrahydrophobic Surfaces Are Not Always Water Repellant, Langmuir, vol.22, issue.6, pp.2433-2436, 2006.
DOI : 10.1021/la0525877

C. Chen, Q. Cai, C. Tsai, C. Chen, G. Xiong et al., Dropwise condensation on superhydrophobic surfaces with two-tier roughness, Applied Physics Letters, vol.90, issue.17, p.173108, 2007.
DOI : 10.1088/0957-4484/17/5/032

C. Dorrer and J. Ruehe, Wetting of Silicon Nanograss: From Superhydrophilic to Superhydrophobic Surfaces, Advanced Materials, vol.37, issue.1, pp.159-163, 2008.
DOI : 10.1007/s007060170142

J. B. Boreyko and C. Chen, Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces, Physical Review Letters, vol.1, issue.18, p.184501, 2009.
DOI : 10.1209/epl/i2004-10206-6

K. Rykaczewski, W. A. Osborn, J. Chinn, M. L. Walker, J. H. Scott et al., How nanorough is rough enough to make a surface superhydrophobic during water condensation?, Soft Matter, vol.24, issue.33, pp.8786-8794, 2012.
DOI : 10.1021/la701900f

R. Enright, N. Miljkovic, A. Al-obeidi, C. V. Thompson, and E. N. Wang, Condensation on Superhydrophobic Surfaces: The Role of Local Energy Barriers and Structure Length Scale, Langmuir, vol.28, issue.40, pp.14424-14432, 2012.
DOI : 10.1021/la302599n

J. Liu, H. Guo, B. Zhang, S. Qiao, M. Shao et al., Guided self-propelled leaping of droplets on a micro-anisotropic superhydrophobic surface, Angewandte Chemie International Edition, 2016.
DOI : 10.1002/ange.201600224

T. Mouterde, G. Lehoucq, S. Xavier, A. Checco, C. T. Black et al., Antifogging abilities of model nanotextures, Nature Materials, vol.28, issue.6, 2017.
DOI : 10.1063/1.4940213

F. Liu, G. Ghigliotti, J. J. Feng, and C. Chen, Self-propelled jumping upon drop coalescence on Leidenfrost surfaces, Journal of Fluid Mechanics, vol.102, pp.22-38, 2014.
DOI : 10.1115/1.2826080

F. Liu, G. Ghigliotti, J. J. Feng, and C. Chen, Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces, Journal of Fluid Mechanics, vol.24, pp.39-65, 2014.
DOI : 10.1103/PhysRevLett.109.184502

C. Lv, P. Hao, Z. Yao, Y. Song, X. Zhang et al., Condensation and jumping relay of droplets on lotus leaf, Applied Physics Letters, vol.103, issue.2, p.21601, 2013.
DOI : 10.1098/rspa.1991.0002

URL : http://arxiv.org/pdf/1305.2032

F. Wang, F. Yang, and Y. Zhao, Size effect on the coalescence-induced self-propelled droplet, Applied Physics Letters, vol.98, issue.5, p.53112, 2011.
DOI : 10.1016/S0029-5493(03)00137-7

URL : http://dspace.imech.ac.cn/bitstream/311007/44948/1/SCI-J2011073.pdf

R. Enright, N. Miljkovic, J. Sprittles, K. Nolan, R. Mitchell et al., How Coalescing Droplets Jump, ACS Nano, vol.8, issue.10, pp.10352-10362, 2014.
DOI : 10.1021/nn503643m

URL : https://www.researchgate.net/profile/Nenad_Miljkovic/publication/265177293_How_Coalescing_Droplets_Jump/links/541b04e80cf2218008c0024c.pdf

N. Thanh-vinh, N. Binh-khiem, H. Takahashi, K. Matsumoto, and I. Shimoyama, High-sensitivity triaxial tactile sensor with elastic microstructures pressing on piezoresistive cantilevers, Sensors and Actuators A: Physical, vol.215, pp.167-175, 2014.
DOI : 10.1016/j.sna.2013.09.002

M. Gel and I. Shimoyama, Force sensing submicrometer thick cantilevers with ultra-thin piezoresistors by rapid thermal diffusion, Journal of Micromechanics and Microengineering, vol.14, issue.3, p.423, 2003.
DOI : 10.1088/0960-1317/14/3/016

M. Kim, H. Cha, P. Birbarah, S. Chavan, C. Zhong et al., Enhanced Jumping-Droplet Departure, Langmuir, vol.31, issue.49, pp.13452-13466, 2015.
DOI : 10.1021/acs.langmuir.5b03778

A. H. Buller, Researches on Fungi, 1909.

J. Turner and J. Webster, Mass and momentum transfer on the small scale: how do mushrooms shed their spores?, Chemical Engineering Science, vol.46, issue.4, pp.1145-1149, 1991.
DOI : 10.1016/0009-2509(91)85107-9

A. Pringle, S. N. Patek, M. Fischer, J. Stolze, and N. P. Money, The captured launch of a ballistospore, Mycologia, vol.97, issue.4, pp.866-871, 2005.
DOI : 10.1016/S0953-7562(09)80737-5

X. Noblin, S. Yang, and J. Dumais, Surface tension propulsion of fungal spores, Journal of Experimental Biology, vol.212, issue.17, pp.2835-2843, 2009.
DOI : 10.1242/jeb.029975

URL : https://hal.archives-ouvertes.fr/hal-00455014

J. B. Boreyko and C. Chen, Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces, Physical Review Letters, vol.1, issue.18, p.184501, 2009.
DOI : 10.1209/epl/i2004-10206-6

C. Lv, P. Hao, Z. Yao, Y. Song, X. Zhang et al., Condensation and jumping relay of droplets on lotus leaf, Applied Physics Letters, vol.103, issue.2, p.21601, 2013.
DOI : 10.1098/rspa.1991.0002

URL : http://arxiv.org/pdf/1305.2032

F. Liu, G. Ghigliotti, J. J. Feng, and C. Chen, Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces, Journal of Fluid Mechanics, vol.24, pp.39-65, 2014.
DOI : 10.1103/PhysRevLett.109.184502

F. Wang, F. Yang, and Y. Zhao, Size effect on the coalescence-induced self-propelled droplet, Applied Physics Letters, vol.98, issue.5, p.53112, 2011.
DOI : 10.1016/S0029-5493(03)00137-7

URL : http://dspace.imech.ac.cn/bitstream/311007/44948/1/SCI-J2011073.pdf

R. Enright, N. Miljkovic, J. Sprittles, K. Nolan, R. Mitchell et al., How Coalescing Droplets Jump, ACS Nano, vol.8, issue.10, pp.10352-10362, 2014.
DOI : 10.1021/nn503643m

URL : https://www.researchgate.net/profile/Nenad_Miljkovic/publication/265177293_How_Coalescing_Droplets_Jump/links/541b04e80cf2218008c0024c.pdf

F. Liu, G. Ghigliotti, J. J. Feng, and C. Chen, Self-propelled jumping upon drop coalescence on Leidenfrost surfaces, Journal of Fluid Mechanics, vol.102, pp.22-38, 2014.
DOI : 10.1115/1.2826080

Z. Liang and P. Keblinski, Coalescence-induced jumping of nanoscale droplets on super-hydrophobic surfaces, Applied Physics Letters, vol.107, issue.14, p.143105, 2015.
DOI : 10.1103/PhysRevLett.82.4671

H. Cha, C. Xu, J. Sotelo, J. M. Chun, Y. Yokoyama et al., Coalescence-induced nanodroplet jumping, Physical Review Fluids, vol.3, issue.6, p.64102, 2016.
DOI : 10.1021/acs.langmuir.5b03778

URL : https://doi.org/10.1103/physrevfluids.1.064102

G. S. Watson, M. Gellender, and J. A. Watson, Self-propulsion of dew drops on lotus leaves: a potential mechanism for self cleaning, Biofouling, vol.86, issue.4, pp.427-434, 2014.
DOI : 10.1063/1.2887899

A. Checco, A. Rahman, and C. T. Black, Robust Superhydrophobicity in Large-Area Nanostructured Surfaces Defined by Block-Copolymer Self Assembly, Advanced Materials, vol.105, issue.6, pp.886-891, 2014.
DOI : 10.1073/pnas.0804872105

T. Mouterde, G. Lehoucq, S. Xavier, A. Checco, C. T. Black et al., Antifogging abilities of model nanotextures, Nature Materials, vol.28, issue.6, p.pp. xxxx?xxxx, 2017.
DOI : 10.1063/1.4940213

T. Mouterde, T. Nguyen, C. Clanet, I. Shimoyama, and D. Quéré, On the physics of jumping droplets, Physical Review Letters, 2017.

A. Checco, B. M. Ocko, A. Rahman, C. T. Black, M. Tasinkevych et al., Collapse and Reversibility of the Superhydrophobic State on Nanotextured Surfaces, Physical Review Letters, vol.112, issue.21, p.216101, 2014.
DOI : 10.1073/pnas.1207658109

S. Chandra and C. Avedisian, On the collision of a droplet with a solid surface, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp.13-41, 1991.

N. Miljkovic, D. J. Preston, R. Enright, and E. N. Wang, Electrostatic charging of jumping droplets, Nature Communications, vol.697, issue.1, 2013.
DOI : 10.1073/pnas.0611285104

URL : http://www.nature.com/articles/ncomms3517.pdf

W. Bai and C. Ross, Abstract, MRS Bulletin, vol.728, issue.02, pp.41100-107, 2016.
DOI : 10.1021/nl2013554

W. Barthlott and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, vol.202, issue.1, pp.1-8, 1997.
DOI : 10.1007/s004250050096

D. Bartolo, F. Bouamrirene, É. Verneuil, A. Buguin, P. Silberzan et al., Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces, Europhysics Letters (EPL), vol.74, issue.2, p.299, 2006.
DOI : 10.1209/epl/i2005-10522-3

URL : http://arxiv.org/pdf/cond-mat/0510773

R. Becker and W. Döring, Kinetische Behandlung der Keimbildung in ??bers??ttigten D??mpfen, Annalen der Physik, vol.163, issue.8, pp.719-752, 1935.
DOI : 10.1002/andp.19354160806

D. Beysens, The formation of dew Atmospheric research, pp.215-237, 1995.

D. Beysens, . Steyer, . Guenoun, C. Fritter, and . Knobler, How does dew form ? Phase Transitions : A Multinational Journal, pp.219-246, 1991.

B. Jonathan, C. Boreyko, and . Chen, Self-propelled dropwise condensate on superhydrophobic surfaces, Physical Review Letters, vol.103, p.184501, 2009.

B. Jonathan, . Boreyko, R. Ryan, . Hansen, R. Kevin et al., Controlling condensation and frost growth with chemical micropatterns, 2016.

P. Bourrianne, Non-mouillant et température, 2016.

A. H. Buller, Researches on Fungi, Longmans, vol.1, 1909.
DOI : 10.5962/bhl.title.5397

A. Cassie and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society, pp.546-551, 1944.
DOI : 10.1039/tf9444000546

A. Checco, M. Benjamin, A. Ocko, . Rahman, T. Charles et al., Collapse and Reversibility of the Superhydrophobic State on Nanotextured Surfaces, Physical Review Letters, vol.112, issue.21, p.112216101, 2014.
DOI : 10.1073/pnas.1207658109

A. Checco, A. Rahman, T. Charles, and . Black, Robust Superhydrophobicity in Large-Area Nanostructured Surfaces Defined by Block-Copolymer Self Assembly, Advanced Materials, vol.105, issue.6, pp.886-891, 2014.
DOI : 10.1073/pnas.0804872105

Y. Cheng, E. Daniel, and . Rodak, Is the lotus leaf superhydrophobic ? Applied Physics Letters, p.144101, 2005.
DOI : 10.1063/1.1895487

Y. Cheng, E. Daniel, A. Rodak, T. Angelopoulos, and . Gacek, Microscopic observations of condensation of water on lotus leaves, Applied Physics Letters, vol.87, issue.19, p.151, 2005.
DOI : 10.1039/tf9444000546

Y. Stephen, . Chou, R. Peter, . Krauss, J. Preston et al., Imprint lithography with 25-nanometer resolution, Science, issue.5258, p.27285, 1996.

P. Simon-de-laplace,

. Uvres-complètes-de-laplace,

A. Del, C. , and E. Arzt, Fabrication approaches for generating complex micro-and nanopatterns on polymeric surfaces, Chemical reviews, vol.108, issue.3, pp.911-945, 2008.

L. Dellieu, M. Sarrazin, P. Simonis, O. Deparis, and J. P. Vigneron, (Hemiptera), Journal of Applied Physics, vol.32, issue.2, p.24701, 2014.
DOI : 10.1021/ie50320a024

X. Deng and L. Mammen, Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating, Science, vol.23, issue.6, pp.67-70, 2012.
DOI : 10.1021/la062301d

C. Dorrer and J. Rühe, Wetting of Silicon Nanograss: From Superhydrophilic to Superhydrophobic Surfaces, Advanced Materials, vol.37, issue.1, pp.159-163, 2008.
DOI : 10.1007/s007060170142

R. Dufour, G. Perry, M. Harnois, Y. Coffinier, V. Thomy et al., From micro to nano reentrant structures: hysteresis on superomniphobic surfaces, Colloid and Polymer Science, vol.53, issue.2, pp.409-415, 2013.
DOI : 10.1021/j150474a015

URL : https://hal.archives-ouvertes.fr/hal-00796451

R. Enright, N. Miljkovic, A. Al-obeidi, V. Carl, E. N. Thompson et al., Condensation on Superhydrophobic Surfaces: The Role of Local Energy Barriers and Structure Length Scale, Langmuir, vol.28, issue.40, pp.2814424-14432, 2012.
DOI : 10.1021/la302599n

J. Frenkel, A General Theory of Heterophase Fluctuations and Pretransition Phenomena, The Journal of Chemical Physics, vol.1, issue.7, pp.538-547, 1939.
DOI : 10.1002/andp.19384240115

C. Frick, . Clark, . Orso, E. Schneider, and . Arzt, Size effect on strength and strain hardening of small-scale [111] nickel compression pillars, Materials Science and Engineering: A, vol.489, issue.1-2, pp.319-329, 2008.
DOI : 10.1016/j.msea.2007.12.038

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang et al., The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography, Advanced Materials, vol.11, issue.17, pp.2213-2217, 2007.
DOI : 10.1007/s007060170142

R. Julia, J. Greer, M. Th, and . De-hosson, Plasticity in small-sized metallic systems : Intrinsic versus extrinsic size effect, Progress in Materials Science, pp.654-724, 2011.

Y. Huang, S. Chattopadhyay, Y. Jen, C. Peng, T. Liu et al., Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures, Nature Nanotechnology, vol.15, issue.12, pp.770-774, 2007.
DOI : 10.1007/s00542-004-0412-5

, Dimo Kashchiev. Nucleation. Butterworth-Heinemann, 2000.

S. Khandekar and K. Muralidhar, Dropwise condensation on inclined textured surfaces, 2014.
DOI : 10.1007/978-1-4614-8447-9

M. Kim, H. Cha, P. Birbarah, S. Chavan, C. Zhong et al., Enhanced Jumping-Droplet Departure, Langmuir, vol.31, issue.49, pp.3113452-13466, 2015.
DOI : 10.1021/acs.langmuir.5b03778

X. Li, D. Reinhoudt, and M. Crego-calama, What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces, Chemical Society Reviews, vol.23, issue.8, pp.1350-1368, 2007.
DOI : 10.1557/mrs2004.253

F. Liu, G. Ghigliotti, J. James, C. Feng, and . Chen, Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces, Journal of Fluid Mechanics, vol.24, pp.39-65, 2014.
DOI : 10.1103/PhysRevLett.109.184502

URL : https://hal.archives-ouvertes.fr/hal-02064667

F. Liu, G. Ghigliotti, J. James, C. Feng, and . Chen, Self-propelled jumping upon drop coalescence on Leidenfrost surfaces, Journal of Fluid Mechanics, vol.102, pp.22-38, 2014.
DOI : 10.1115/1.2826080

URL : https://hal.archives-ouvertes.fr/hal-02064673

H. Lorenz, . Despont, . Fahrni, . Labianca, P. Renaud et al., SU-8: a low-cost negative resist for MEMS, Journal of Micromechanics and Microengineering, vol.7, issue.3, p.121, 1997.
DOI : 10.1088/0960-1317/7/3/010

L. Mahadevan and Y. Pomeau, Rolling droplets, Physics of Fluids, vol.11, issue.9, pp.2449-2453, 1999.
DOI : 10.1016/0020-7225(95)00141-7

N. Miljkovic, J. Daniel, R. Preston, E. N. Enright, and . Wang, Electrostatic charging of jumping droplets, Nature Communications, vol.697, issue.1, 2013.
DOI : 10.1073/pnas.0611285104

URL : https://www.nature.com/articles/ncomms3517.pdf

M. R. , R. Niño, and J. Patino, Surface tension of bovine serum albumin and tween 20 at the air-aqueous interface, Journal of the American Oil Chemists' Society, issue.10, pp.751241-1248, 1998.

X. Noblin, S. Yang, and J. Dumais, Surface tension propulsion of fungal spores, Journal of Experimental Biology, vol.212, issue.17, pp.2835-2843, 2009.
DOI : 10.1242/jeb.029975

URL : https://hal.archives-ouvertes.fr/hal-00455014

C. W. Oatley, W. C. Nixon, and R. F. Pease, Scanning electron microscopy, of Advances in Electronics and Electron Physics, pp.181-247, 1966.

P. Papadopoulos, L. Mammen, X. Deng, D. Vollmer, and H. Butt, How superhydrophobicity breaks down, Proceedings of the National Academy of Sciences, pp.3254-3258, 2013.
DOI : 10.1021/la200697k

URL : http://www.pnas.org/content/110/9/3254.full.pdf

K. Park, J. Hyungryul, C. Choi, . Chang, E. Robert et al., Nanotextured Silica Surfaces with Robust Superhydrophobicity and Omnidirectional Broadband Supertransmissivity, ACS Nano, vol.6, issue.5, pp.3789-3799, 2012.
DOI : 10.1021/nn301112t

T. Adam, . Paxson, K. Kripa, and . Varanasi, Self-similarity of contact line depinning from textured surfaces, Nature communications, vol.4, p.1492, 2013.

A. Pringle, N. Sheila, M. Patek, J. Fischer, . Stolze et al., The captured launch of a ballistospore, Mycologia, vol.97, issue.4, pp.866-871, 2005.
DOI : 10.1016/S0953-7562(09)80737-5

D. Richard and D. Quéré, Bouncing water drops, Europhysics Letters (EPL), vol.50, issue.6, p.769, 2000.
DOI : 10.1209/epl/i2000-00547-6

URL : https://hal.archives-ouvertes.fr/hal-00014836

D. Richard, C. Clanet, and D. Quéré, Contact time of a bouncing drop, Nature, vol.47, issue.6891, pp.811-811, 2002.
DOI : 10.1209/epl/i1999-00371-6

K. Rykaczewski, A. William, J. Osborn, . Chinn, L. Marlon et al., How nanorough is rough enough to make a surface superhydrophobic during water condensation?, Soft Matter, vol.24, issue.33, pp.8786-8794, 2012.
DOI : 10.1021/la701900f

J. Seiwert, C. Clanet, and D. Quéré, Coating of a textured solid, Journal of Fluid Mechanics, vol.39, pp.55-63, 2011.
DOI : 10.1021/la961020a

URL : https://hal.archives-ouvertes.fr/hal-00997969

D. Stavenga, . Foletti, K. Palasantzas, and . Arikawa, Light on the moth-eye corneal nipple array of butterflies, Proceedings of the Royal Society B: Biological Sciences, vol.14, issue.6767, pp.273661-667, 1587.
DOI : 10.1038/35002247

URL : http://europepmc.org/articles/pmc1560070?pdf=render

C. Ming-tan, W. Yu, and J. Wei, Comparison of medium-vacuum and plasmaactivated low-temperature wafer bonding, Applied physics letters, vol.88, issue.11, p.4102, 2006.

J. Turner and J. Webster, Mass and momentum transfer on the small scale: how do mushrooms shed their spores?, Chemical Engineering Science, vol.46, issue.4, pp.1145-1149, 1991.
DOI : 10.1016/0009-2509(91)85107-9

K. Kripa, M. Varanasi, N. Hsu, W. Bhate, T. Yang et al., Spatial control in the heterogeneous nucleation of water, Applied Physics Letters, vol.95, issue.9, p.94101, 2009.

M. Fátima, V. , and M. Fortes, Grain size distribution : The lognormal and the gamma distribution functions. Scripta metallurgica, pp.35-40, 1988.

J. L. Viovy, D. Beysens, M. Charles, and . Knobler, Scaling description for the growth of condensation patterns on surfaces, Physical Review A, vol.39, issue.12, p.4965, 1988.
DOI : 10.1063/1.1655923

M. Volmer and A. Weber, Keimbildung in übersättigten gebilden (nucleation of supersaturated structures), Z. Physikal. Chemie, vol.119, pp.277-301, 1926.
DOI : 10.1515/zpch-1926-11927

N. Robert and . Wenzel, Resistance of solid surfaces to wetting by water, Industrial & Engineering Chemistry, vol.28, issue.8, pp.988-994, 1936.

N. Robert and . Wenzel, Surface roughness and contact angle, The Journal of Physical Chemistry, vol.53, issue.9, pp.1466-1467, 1949.

A. Kevin, . Wier, J. Thomas, and . Mccarthy, Condensation on ultrahydrophobic surfaces and its effect on droplet mobility : ultrahydrophobic surfaces are not always water repellant, Langmuir, vol.22, pp.2433-2436, 2006.

S. Wilson and M. Hutley, The optical properties of'moth eye'antireflection surfaces, Journal of Modern Optics, vol.29, issue.7, pp.993-1009, 1982.
DOI : 10.1080/713820946

W. Xu, . Lan, . Peng, X. Wen, and . Ma, Effect of nano structures on the nucleus wetting modes during water vapour condensation: from individual groove to nano-array surface, RSC Advances, vol.97, issue.10, pp.7923-7932, 2016.
DOI : 10.1063/1.3460275

W. Xu, Z. Lan, B. Peng, R. Wen, and X. Ma, Heterogeneous nucleation capability of conical microstructures for water droplets, RSC Advances, vol.19, issue.2, pp.812-818, 2015.
DOI : 10.1016/0017-9310(76)90064-8

E. Bulent, . Yoldas, P. Deborah, and . Partlow, Formation of broad band antireflective coatings on fused silica for high power laser applications, Thin Solid Films, vol.129, issue.1 2, pp.1-14, 1985.

T. Young, An Essay on the Cohesion of Fluids, Philosophical Transactions of the Royal Society of London, vol.95, issue.0, pp.65-87
DOI : 10.1098/rstl.1805.0005

B. Ja and . Zeldovich, On the theory of new phase formation : cavitation. Acta physicochim, URSS, vol.18, issue.1, pp.1-22, 1943.