
HAL Id: tel-01863297
https://pastel.hal.science/tel-01863297

Submitted on 28 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Absolute Localization by Mono-camera for a Vehicle in
Urban Area using Street View

Li Yu

To cite this version:
Li Yu. Absolute Localization by Mono-camera for a Vehicle in Urban Area using Street View. Auto-
matic. Université Paris sciences et lettres, 2018. English. �NNT : 2018PSLEM003�. �tel-01863297�

https://pastel.hal.science/tel-01863297
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT  

de l’Université de recherche Paris Sciences et Lettres 
PSL Research University

Préparée à MINES ParisTech

Localisation Absolue par Mono-caméra d’un Véhicule en Milieu Urbain
via l’utilisation de Street View

COMPOSITION DU JURY :  

M. Patrick RIVES
INRIA Sophia Antipolis, Rapporteur 

M. Paul CHECCHIN
Institut Pascal, UCA, Rapporteur 

Mme. Samia BOUCHAFA
Univ. Evry Val d’Essonne, Présidente du jury

M. Fabien MOUTARDE
MINES ParisTech, Examinateur

M. Cyril JOLY
MINES ParisTech, Examinateur

M. Guillaume BRESSON
Institut VEDECOM, Examinateur

Soutenue par Li YU
le 06/04/2018

Ecole doctorale n°432  
 
SCIENCE DES METIERS DE L’INGENIEUR

 
Spécialité Informatique temps-réel, robotique et automatique

Dirigée par Fabien MOUTARDE
Encadrée par Cyril JOLY

庄子曰：天地有大美而不言，四时有明法而不议，万物有成理而不说。

Nature has its own great beauty, yet does not speak of it; The
four seasons have their clear-marked regularity, yet utter

nothing of it; All things have their principles of growth, yet
explain nothing of them.

Zhuangzi (369 BC - 286 BC)

Acknowledgements

I am going to present my “remerciements” in French as most people involved are
French-speaking.

Ces trois années de doctorant ont étés énormément enrichissantes pour ma part,
que ce soit dans la recherche scientifique ou dans ma vie. Ils m’ont permis d’aborder
une thématique profondément et d’échanger avec des personnes interculturellement.

Je tiens tout d’abord à remercier mon directeur de thèse Dr Fabien Moutarde
pour m’avoir permis d’effectuer cette thèse au Centre de Robotique (CAOR) et pour
sa grande expérience et disponibilité. Ces travaux de thèse n’auraient pas le succès
sans l’implication de mon encadrant Dr Cyril Joly, qui m’a fourni beaucoup d’aides
précieuses et idées innovantes tout au long de ma thèse. Le temps passé dans V005,
notre salle de discussion, sera un souvenir inoubliable dans ma vie.

Je tiens également à remercier mon responsable à l’Institut VEDECOM, Dr
Guillaume Bresson, pour m’a guidé dans la recherche et m’intégré dans l’équipe,
ainsi que pour ses relectures d’articles qui m’ont permis de progresser. Peu de
doctorants ont eu la possibilité comme moi de mettre en relation la théorie avec les
applications industrielles dans un cadre de travail excellent.

Je remercie le jury de thèse, sans qui la conclusion de ces travaux aurait été im-
possible. Je remercie les rapporteurs de thèse, Dr Patrick Rives et Dr Paul Checchin.
Ils ont lu mon écrit en détail attentivement et formulé des critiques constructives. Je
remercie également Dr Samia Bouchafa pour sa présence au jury de ma soutenance
de thèse.

J’aimerai aussi remercier tous mes collègues et anciens collègues côtoyés au
CAOR et à VEDECOM. Ce sont ces personnes que je vais essayer de remercier plus
personnellement : Zayed Alsayed, Laurene Claussmann, Xiangjun Qian, Housem
Nouira, Marc Revilloud, Xuanpeng Li, Fernando Garrido, Xavier Roynard, Mohamed-
Cherif Rahal, Arthur Gaudron, Florent Chiaroni, Daniele Sportillo et Mathieu
Nowakowski. Les trois ans sont passés très vite et très agréable grâce à eux.

Enfin je souhaiterais exprimer ma gratitude à China Scholarship Council (CSC)
pour la bourse de Master-PhD de 5 ans en France. Je remercie mes parents et mes
soeurs, vous êtes loin de France, mais je sens toujours vos soutiens et vos amours
sans conditions (谢谢你们一直以来对我无私的爱与支持). Enfin, je remercie mes
aims en général, pour m’avoir toujours encouragé à poursuivre mon rêve.

Abstract

In a work made at Centre de Robotique and Institut VEDECOM, we stud-
ied robust visual urban localization systems for self-driving cars. Obtaining an
exact pose from a monocular camera is difficult and cannot be applied to the cur-
rent autonomous cars. Rather than using approaches like Global Navigation Satel-
lite Systems, Simultaneous Localization And Mapping, and data fusion techniques,
we mainly focused on fully leveraging Geographical Information Systems (GIS) to
achieve a low-cost, robust, accurate and global urban localization.

The development of public GIS’s has brought us a new horizon to address the
localization problem but their tremendous amount of information, such as topologi-
cal, semantic, metric maps, Street Views, depth maps, 3D cadastral maps and High
Definition maps, has to be well analyzed and organized to extract relevant infor-
mation for self-driving cars. Our first task was to design a robotic accessible offline
database from a dense public GIS, namely Google Maps, which has the advantage
to propose a worldwide coverage. We make a compact topometric representation
for the dynamic urban environment by extracting four useful data from the GIS,
including topologies, geo-coordinates, panoramic Street Views, and associated depth
maps. At the same time, an online dataset was acquired with a low-cost camera
equipped on VEDECOM vehicles. In order to make spheric Street Views compatible
with the online imagery, an image warping and interpolation based transformation
is introduced to render rectilinear images from Street Views.

We proposed two localization methods: one is a handcrafted-feature-based com-
puter vision approach, the other is a convolutional neural network (convnet) based
learning technique. In computer vision, extracting handcrafted features is a popular
way to solve the image based positioning. We take advantages of the abundant
sources from Google Maps and benefit from the topometric offline data structure
to build a coarse-to-fine positioning, namely a topological place recognition pro-
cess and then a metric pose estimation by a graph optimization. The only input
of this approach is an image sequence from a monocular camera and the database
constructed from Google Maps. Moreover, it is not necessary to establish frame to
frame correspondences, nor odometry estimates. The method is tested on an urban
environment and demonstrates both sub-meter accuracy and robustness to view-
point changes, illumination and occlusion. Moreover, we demonstrate that sparse
Street View locations produce a significant error in the metric pose estimation phase.
Thus our former framework is refined by synthesizing more artificial Street Views
to compensate the sparsity of original Street Views and improve the precision.

The handcrafted-feature-based framework requires the image retrieval and graph
optimization. It is hard to achieve in a real-time application. Since the GIS offers
us a global scale geotagged database, it motivates us to regress global localizations
from convnet features in an end-to-end manner. The previously constructed offline
database is still insufficient for a convnet training. We hereby augment the originally
constructed database by a thousand factor and take advantage of the transfer learn-
ing method to make our convnet regressor converge and have a good performance.
In our test, the regressor can also give a global localization of an input camera image
in real time.

The results obtained by the two approaches provide us insights on the compari-
son and connection between handcrafted feature-based and convnet based methods.
After analyzing and comparing the localization performances of both methods, we
also talked about some perspectives to improve the localization robustness and pre-
cision towards the GIS-aided urban localization problem.

Résumé

Dans un travail réalisé au Centre de Robotique et à l’Institut VEDECOM, nous
nous sommes intéressés aux systèmes robustes de localisation visuelle en milieu ur-
bain pour la voiture autonome. Obtenir une pose exacte à partir d’une caméra
monoculaire est difficile et insuffisant en terme de précision pour la voiture autonome
actuelle. Plutôt que d’utiliser des approches comme la navigation par satellites, la
Cartographie et Localisation Simultanées (SLAM), et les techniques de fusion de
données, nous nous sommes concentrés sur l’utilisation de Systèmes d’Information
Géographiques (SIG) pour concevoir une approche fiable, précise et absolue de lo-
calisation en milieu urbain.

Le développement de SIG publics nous a apporté un nouvel horizon pour résoudre
le problème de la localisation, mais ses informations, telles que les cartes topologiques,
sémantiques, métriques, les Street Views, les cartes de profondeur, les cartes cadas-
trales 3D et les cartes en haute définition, doivent être bien analysées et orga-
nisées pour extraire les informations pertinentes pour une voiture autonome. Notre
première tâche consistait à concevoir une base de données hors ligne accessible par un
robot à partir d’un SIG public dense, à savoir Google Maps, qui a l’avantage d’avoir
une couverture mondiale. Nous générons une représentation topométrique compacte
de l’environnement urbain dynamique en extrayant quatre données utiles du SIG,
y compris : les topologies, les géo-coordonnées, les Street Views panoramiques et
les cartes de profondeur associées. Dans le même temps, un ensemble de données
en ligne a été acquis par une caméra à bas prix équipée sur les véhicules de VEDE-
COM. Afin de rendre les Street View sphériques compatibles avec l’imagerie en ligne,
une transformation basée sur l’interpolation d’image est introduite pour obtenir des
images rectilignes à partir de Street Views.

Nous proposons deux méthodes de localisation : l’une est une approche de vision
par ordinateur basée sur l’extraction de caractéristiques, l’autre est une méthode
d’apprentissage basée sur les réseaux de neurones convolutionnels (convnet). En
vision par ordinateur, l’extraction de caractéristiques est un moyen populaire de
résoudre le positionnement à partir d’images. Nous tirons parti de Google Maps et
utilisons ses données topo-métriques hors ligne pour construire un positionnement
grossier à fin, à savoir un processus de reconnaissance de lieu topologique puis une
estimation métrique de pose par optimisation de graphe. La seule entrée de cet algo-
rithme est une séquence d’images provenant d’une caméra monoculaire et la base de
données construite à partir de Google Maps. De plus, il n’est pas nécessaire d’établir
des correspondances d’image à image, ni d’utiliser l’odométrie. La méthode a été
testée en environnement urbain et démontre à la fois une précision sous-métrique et
une robustesse aux changements de point de vue, à l’illumination et à l’occlusion.
Aussi, les résultats montrent que les emplacements éloignés de Street Views pro-
duisent une erreur significative dans la phase d’estimation métrique. Ainsi, nous
proposons de synthétiser des Street Views artificielles pour compenser la densité des
Street View originales et améliorer la précision.

Cette méthode souffre malheureusement d’un temps de calcul important. Étant
donné que le SIG nous offre une base de données géolocalisée à l’échelle mondiale,
cela nous motive à régresser des localisations globales directement à partir d’un
convnet de bout en bout. La base de données hors ligne précédemment construite

est encore insuffisante pour l’apprentissage d’un convnet. Pour compenser cela nous
densifions la base d’origine d’un facteur mille et utilisons la méthode d’apprentissage
par transfert pour faire converger notre régresseur convnet et avoir une bonne per-
formance. Le régresseur permet également d’obtenir une localisation globale à partir
d’une seule image et en temps réel.

Les résultats obtenus par ces deux approches nous fournissent des informations
sur la comparaison et la relation entre les méthodes basées sur des caractéristiques
et celles basées sur le convnet. Après avoir analysé et comparé les performances
de localisation des deux méthodes, nous avons également abordé des perspectives
pour améliorer la robustesse et la précision de la localisation face au problème de
localisation urbaine assistée par SIG.

List of Abbreviations

AI Artificial Intelligence

SAE Society of Automotive Engineers

LIDAR Light Detection and Ranging

RADAR Radio Detection And Ranging

GNSS Global Navigation Satellite System

V2V Vehicle to Vehicle

V2I Vehicle to Infrastructure

GPS Global Position System

IMU Inertial Measurement Unit

SLAM Simultaneous Localization And Mapping

CNN Convolutional Neural Network

GIS Geographic Information System

HD High Definition

BOW Bag of (visual) Words

ECEF Earth-Centered Earth-Fixed

UTM Universal Transverse Mercator

WGS World Geodetic System

DoF Degree of Freedom

DoG Difference of Gaussian

MSER Maximally Stable Extreme Region

PnP n Point Pose problem

GT Ground Truth

RTK Real Time Kinematics

OSRM Open Source Routing Machine

Relu Rectified Linear Unit

PCA Principle Component Analysis

SGD Stochastic Gradient Descent

Adam Adaptive moment estimation

AWS Amazon WebService

LSTM Long Short-Term Meomery

Contents

1 Introduction 3
1.1 Background and Motivation . 3

1.1.1 Autonomous Vehicle . 3
1.1.2 Current Localization Systems 4
1.1.3 Geographic Information Systems 6
1.1.4 Objectives and Problematics of the Thesis 8

1.2 Context of the Thesis . 8
1.3 Contributions of the Thesis . 9
1.4 Thesis Outline . 10

I State of the Art 11

2 Preliminaries 13
2.1 Coordinate Systems . 13
2.2 Geometry Notions . 14

2.2.1 Rigid Transformation . 14
2.2.2 Pose Representations . 15

2.3 Camera Geometry . 16
2.3.1 Perspective Projection . 16
2.3.2 Undistorsion . 18

2.4 Conclusion . 19

3 Review of Visual Localization 21
3.1 Introduction . 21
3.2 Place Recognition . 21

3.2.1 Handcrafted-feature-based Place Recognition 24
3.2.2 Learning-based Place Recognition 26
3.2.3 Summary . 28

3.3 Metric Visual Localization . 28
3.3.1 Handcrafted-feature-based Metric Localization 29

SLAM . 30
Visual Odometry . 34

3.3.2 Learning-based Metric Localization 36
3.4 GIS-aided Visual Localization . 37
3.5 Conclusion . 39

II Online Data Acquisition and Offline Database Con-
struction from Geographic Information System 41

4 Online Data Acquisition 43
4.1 Introduction . 43
4.2 Review of current online dataset . 43
4.3 Experimental Setup . 44

4.3.1 System Platform . 44
4.3.2 Test Area . 46

4.4 Conclusion . 49

5 Offline Database Construction and Urban Environment Modeling 51
5.1 Geographic Information System . 51
5.2 Google Street View . 53

5.2.1 Data Extraction . 54
5.2.2 Assumptions and Challenges 60
5.2.3 Panorama Transformation . 62

Warping function and Interpolation 64
Panorama Backprojection . 66

5.3 Topometric Representations . 69
5.4 Conclusion . 71

III Localization using Handcrafted Features 73

6 Handcrafted Features for Urban Localization 75
6.1 Introduction . 75
6.2 Formal Problem Description . 75
6.3 Challenges in Image Search and Localization 76
6.4 Handcrafted Features Correspondences 78

6.4.1 Feature Extraction and Description 78
6.4.2 Robust Feature Matching . 81
6.4.3 Discussion . 86
6.4.4 Virtual Line Descriptor kVLD 93

6.5 Conclusion . 97

7 Topological and Metric Localization 99
7.1 Introduction . 99
7.2 Localization with Street View . 100

7.2.1 Overview . 100
7.2.2 Place Recognition . 100

Evaluation of State-of-the-Art Approaches 100
Combined Bag of Words . 104

7.2.3 Database Construction . 108
7.2.4 Image based Metric Localization 110

Pose Estimation and Optimization 110
Evaluation and Discussion . 112

7.3 Localization with augmented Street Views 117
7.3.1 Database Augmentation . 117

7.3.2 Refined Result and Discussion 120
Translation Distance Evaluation 120
Robustness & Accuracy of Localization 123

7.4 Generalization to the whole Test Area 125
7.5 Conclusion . 129

IV Localization using Convolutional Neural Network 131

8 Convolutional Neural Networks 133
8.1 Introduction . 133
8.2 Deep Learning . 133

8.2.1 From Machine Learning to Deep Learning 133
8.2.2 Convolutional Neural Networks 139

8.3 Transfer Learning . 142
8.3.1 Application Scenarios . 142
8.3.2 Pretrained Neural Network . 143

8.4 Conclusion . 145

9 Metric Localization using Deep Learning 147
9.1 Evaluation of Existing Convnet Localization Model 148

9.1.1 PoseNet Principle . 148
9.1.2 The Set-up of Evaluation . 149

Training datasets . 149
PoseNet applied to Original and Augmented Street Views . . 151
PoseNet applied to Very Augmented Street Views 154

9.2 Adapted PoseNet on Very Augmented Street Views 160
Regressor outputs simplification 161

9.2.1 Architecture Modification . 161
Training Procedure . 162

9.2.2 Result and Discussion . 162
9.2.3 Perspectives . 165

9.3 Generalization to Test Area . 167
9.4 Comparison of Handcrafted and CNN Feature based Methods 171
9.5 Conclusion . 172

V Conclusions of the Thesis 175

10 Conclusions and Perspectives 177

List of Figures

1.1 Examples of autonomous vehicles: Stanley (left) and Waymo (right). 3

1.2 A typical self-driving car system with hardware and software settings
and its interactions. 5

1.3 Diverse data provided by existing GIS: (a) Metric and topological
maps of Google Maps; (b) HD live maps created by HERE Maps;
(c) 3D city models in Flyover project of Apple Maps; (d) Pixel-wise,
instance-specific annotations for 130 million street-level images of the
Mapillary Dataset; (e) A Street View from Google Maps; (f) A depth
map of Street View from Google Maps. 7

2.1 Illustration of coordinates: the geodetic coordinates on left and the
local-level Cartesian coordinates obtained from the map projection on
right. Latitude and Longitude are denoted by φ and λ respectively
with the aid of the earth-centered earth-fixed (ECEF) coordinates. . . 13

2.2 The rigid transformation between frame F1 and F2. 14

2.3 The relationships among SO(3), SE(3), so(3) and se(3). 17

2.4 Illustration of the camera geometry: w is the world coordinate system,
c is the camera coordinate system and i is the image plane. 17

2.5 Points in a distorted and undistorted (corrected) image. 19

3.1 Taxonomy of visual localization problem. 22

3.2 The image retrieval problem: Given a number of dataset images from
visited places and a query image, we use an encoding function f to
map all images in a new location space and decide the query image’s
position. 23

3.3 Milestones of image retrieval in place recognition. 23

3.4 Milestones of metric visual localization. 28

3.5 Three representations of Optimization based SLAM: (a) Transition
graph and corresponding constraints; (b) Graph model of SLAM;
(c) General mathematical representation of Graph optimization [108].
Image (a),(b) courtesy of [194]. 33

3.6 Illustration of general representations of map: (a) Metric feature
based map contains only coordinates of distinctive features; (b) In
2D occupancy grid map, black regions are occupied, white are free of
obstacles and gray are unobserved; (c) In pose graph, nodes contain
orientation and position while edges contain relative relationship; (d)
Hybrid map usually combines occupancy gird map with pose graph;
Images (a),(b), (c) and (d) are coming from [195] and [20] respectively. 35

4.1 Platforms for online data capturing: (a) the autonomous vehicle Re-
nault Zoé at VEDECOM; (b) the inner front stereo camera on the Zoé
car; (c) the vehicle Renault Scénic at VEDECOM; (d) two cameras
mounted on roof of the Scénic car. 45

4.2 RTMaps 4.0 is used to record and preprocess the captured datasets.
Besides the RTK GPS, we can also obtain many other parameters,
like true heading, roll and pitch. 46

4.3 Illustration of online image examples and the capturing system: (a)
online image captured by the left ego-camera on the vehicle Zoé; (b)
birdview of the camera configuration on the vehicle Scénic; (c) a left
image recorded by the Scénic; (d) a right image recorded by the Scénic. 47

4.4 Illustration of the test area of two vehicles: the trajectory of Zoé and
Scénic in red and blue respectively. Please notice some overlapping
test areas are covered. 48

4.5 Image examples captured by Zoé with good urban appearance in blue
spots and with noise in red spots. Since the camera is installed behind
the windscreen inside the car, the captured image are all affected a
lot by parasite reflections. The noise data lacks urban features due
to big vegetations and they look similar even if they are captured in
totally different places. It is very difficult to realize visual localization
as stated in the Chapter 3 since the depth quality is low. We will
overlook this scenario in the test area. 50

5.1 Google Street View capturing equipments: (a) From left to right de-
picts Street View Trekker, Street View Trolley for indoor acquisition,
Street View Trike and Street View Car; (b) Google’s R7 panoramic
camera system. 53

5.2 An extracted Street View of the Arc de Triomphe by setting param-
eters as 640 × 320 resolution, latitude= 48.8738, longitude= 2.2950,
0◦ heading, 0◦ pitch and 120◦ field of view. 54

5.3 An extracted XML source file of the Street View and associated depth
map around latitude= 48.8738 and longitude= 2.2950. 56

5.4 Illustration of the parameters in the depth map. 58
5.5 An example of extracted Street View panorama at location [48.801516, 2.131556]

in the test area. 59
5.6 A depth map is associated with Figure 5.5 computed by Algorithm 1. 59
5.7 86 different depth planes of Figure 5.6 are illustrated in colormap. . . 59
5.8 The point cloud with a 88, 604, 672 size is generated from the panorama

of Figure 5.5 and its associated depth map. Note that for depth with
value zero, we multiply by a fixed depth 250 to visualize the point
cloud. 60

5.9 Illustration of the coverage of Google Street View in the test area. . . 61

5.10 The Street View panoramas are distributed with a nearly uniform
distance in the test area. 62

5.11 A Street View panorama at location [48.80056, 2.136449] is extracted
in summer in the test area. 63

5.12 Example of the discrepancy between panorama and depth map of
Figure 5.5. The red area illustrates the coverage of depth map without
value 0. 63

5.13 Transformation of camera in the scene. I1 is an augmented image in
the frame F1 with depth information. We are able to synthesize a
new image I2 in the frame F2 by bilinear interpolation. 65

5.14 Back-projection model: virtual cameras are constructed at the point
O and pixels in the image plane I are bilinearly interpolated from
the panorama sphere. The local yaw offset changes according to the
direction of θ. 67

5.15 Rectilinear images are back projected from the panorama in Fig-
ure 5.11 with local yaw angle η changing by [0◦, 60◦, ..., 360◦]. The
virtual cameras’ FoV, focal length and resolution are all the same as
the online camera MIPSEE. 68

5.16 Rectilinear depth maps are associated with Figure 5.15. 68

5.17 Rectilinear images are back projected from the panorama in Fig-
ure 5.11 with local yaw angle ηlocal changing by [0◦, 30◦, ..., 360◦]. . . . 69

5.18 Rectilinear depth maps are associated with Figure 5.17. 70

5.19 Useful information extracted from Google Street View: map topology
and augmented spherical image. 71

5.20 Google Street View data are used to model a given environment:
consecutive panoramas and depth maps are constructed as geo-tagged
augmented spheres with dense visual and metric information; the
global yaw angle is used to represent the topology of trajectory. . . . 72

6.1 Example of noises in the Google Street View dataset: vegetation
coverage, moving cars, temporary constructions and privacy blurs. . 77

6.2 Over-season imagery is mixed in the Google Street View dataset. . . 78

6.3 Example of repetitive windows from different Street Views. 79

6.4 Intra-similarity of three different Street Views in the offline dataset. . 80

6.5 Google Street View on the left and online image from Zoé / Scénic
on the right. Note that: the two images describe the same scene
existing lots of repetitive facade windows under normal point views in
Scenario #1; the two images describe the same scene with big different
viewpoints in Scenario #2; the two images describe two completely
different scenes in Scenario #3, where no correspondences should be
found normally; the two images describe the same scene with big
illumination changes in Scenario #4. 83

6.6 FLANN matching with SIFT-SIFT features before the ratio test and
symmetric check. 84

6.7 FLANN matching with SIFT-SIFT features after the ratio test and
symmetric check. 84

6.9 The average detected feature numbers of both images in 4 scenarios
by the methods of Table 6.2. All the features are able to extract
enough keypoints for all scenarios. FAST based features can detect
more local keypoints than others for its simple template. 86

6.8 FLANN matching with SIFT features after ratio test, symmetric
check and 8-point RANSAC selection. 86

6.10 The detected inliers after the ratio test, symmetric check and RANSAC
rejection using the features listed in Table 6.2. Please note the “in-
liers” mentioned here are just the matches after the conventional
checks, not the real good matches. 87

6.11 Time cost in second for detection, description, matching and inlier
selection for different features in Table 6.2. Please notice when the
inlier selection does not work, the time is noted as infinity. 87

6.12 (a) and (b) illustrate the local and overall intensity ordinal informa-
tion of the local patch which are captured by the LIOP descriptor
with the VLFeat library [207]. (c) displays the matched inliers after
the ratio test, symmetric and RANSAC check. We can see there are
still lots of false correspondences. 89

6.13 The concepts of histogram equalization to improve the contrast of
matched images. The right image is equalized from the middle orig-
inal image according to the intensity distribution of the left Street
View image. 90

6.14 Final inliers detected by the SURF-SIFT feature in Scenario #1. As
the matches are correct and enough, SURF-SIFT works well in normal
point view. 90

6.15 Final inliers detected by the SURF-SIFT feature in Scenario #2.
SURF-SIFT still performs well for big different viewpoint but the
detected number is small. 91

6.16 Final inliers detected by the SURF-SIFT feature in Scenario #4. The
feature can still extract good matches under the big illumination change. 91

6.17 Final inliers detected by the SURF-SURF feature in Scenario #1.
SURF feature works in normal point view but some wrong matches
exist due to the repetitive elements in the urban environment. 91

6.18 Final inliers detected by the SURF-SURF feature in Scenario #2. A
lot of matches are detected but there are still false matches. 92

6.19 Final inliers detected by the SURF-SURF feature in Scenario #3. In
fact, no correspondences should be calculated in this case. These false
matches are probably caused by the similar urban appearances. . . . 92

6.20 Final inliers detected by the SURF-SURF feature in Scenario #4.
Here SURF feature does not work for big illumination changes. . . . 92

6.21 Intuition of the kVLD descriptor: for any two detected points Pi, Pj

in the image I, and P
′
i , P

′
j in the image I

′
, the lines l(Pi, Pj) and

l(P
′
i , P

′
j) are unlikely to be similar unless both matches (Pi, P

′
i) and

(Pj, P
′
j) are correct. Image credit of [123] 94

6.22 Initial features detected by the kVLD in Scenario #1. 94
6.23 Initial features detected by the kVLD in Scenario #2. 94
6.24 Initial features detected by the kVLD in Scenario #3. 95
6.25 Initial features detected by the kVLD in Scenario #4. 95

6.26 Final inliers detected by the kVLD feature in Scenario #1. Please
note that the matches obtained by graph matching are displayed in
blue lines and the final matches verified by ORSA in green. Final
valid VLDs are in magenta. In this scenario, kVLD doest not work
well due to too many repetitive facade windows. 95

6.27 Final inliers detected by the kVLD feature in Scenario #2. Many
valid kVLDs are kept by ORSA. 96

6.28 Final inliers detected by the kVLD feature in Scenario #3. In fact,
no correspondences should be calculated in this case. 96

6.29 Final inliers detected by the kVLD feature in Scenario #4. Many
valid kVLDs are kept by ORSA even with a big illumination change. 96

7.1 Flowchart illustrates workflows between different modules. 101

7.2 The confusion matrix of ground truth for 892 query images and 29×
8 Street Views: this data is estimated according to the positions
and yaws between Street Views and online images. Without manual
labeling, we cannot guarantee it exists scene overlapping between two
images. 102

7.3 The confusion matrix is computed by a classic SIFT BoW for 892
query images and 29× 8 Street Views. As observed, this method can
detect several correct matchings but there are still many false positives.103

7.4 The confusion matrix is computed by the openFABMAP algorithm
for 892 query images and 29 × 8 Street Views. As observed, this
method can detect several correct matchings but there are still many
false positives. 105

7.5 The confusion matrix is obtained by our proposed combined BoW for
892 query images and 29× 8 Street Views. Results are closer to the
ground truth than openFABMAP and the classic SIFT Bow. 106

7.6 An example of the extraction of SIFT (colorful circles) and MSER
features (blue ellipses). 107

7.7 Procedure of the combined bag of words and its setup of parameters. 108

7.8 Illustration of distance matrices and intra-relations: a) The intra-
database symmetric matrix DDB×DB. The rows and columns repre-
sent 232 rectilinear views generated from 29 panoramas in a 350m
urban route, and the matrix intensity is computed by mapping the
cosine similarity from [0, 1] to [0, 255], therein, the darker pixels de-
pict the higher similarities and diagonal values are always equal to
255. b) The above matrix is a close-up view w.r.t the blue rectangle
in a), it shows two obvious yellow lines with high intensity, that are
parallel to the diagonal line indicating a location regularity for similar
images in the matrix. c) The distance matrix DDB×Q rows represent
the 232 database images and columns represent a query sequence with
only 100 frames. We only display 100 frames instead of a whole se-
quence with 892 frames. Several darkest vertical lines are highlighted
by purple marks, meaning that a short query sequence can find its
most similar database images only in few range of the database as
shown by the purple arrow. Let us consider the candidate locations
when teh query time steps equal to t = 2, 6, 10. The close-up of these
timestamps is shown in b). We can find that the successive or close
frames have the similar referenced panorama, but the best similar
referenced image would be different certain yaw offsets even in the
same panorama. The red cycles and rectangles represent top similar
candidates from the same panorama. d) The panoramas are searched
at the time steps of b). 109

7.9 Illustration of Local Bundle Adjustment to estimate the global po-
sition of the vehicle. The vehicle, the best similar database image
and other top k− 1 similar database images are the triangles respec-
tively colored in black, orange and blue. The red stars represent good
matching features between the query and database images. 111

7.10 Bird’s-eye view of the metric global localization. The red points rep-
resent the locations of the Street View cameras. The red and blue
lines mark RTK-GPS ground truth and the estimated positions of the
monocular camera respectively. 113

7.11 An example of 2 pairs of validated matches between a monocular
image and its retrieved Street View images by kVLD descriptors. The
positions of Street Views and the estimated localization are displayed
in red and green circles respectively. kVLAD matches verified by
ORSA are the green lines and those verified by graph matching are
the blue lines. 114

7.12 Metric error analysis with respect to inlier-match numbers and the
topological distance: (a) The number of feature matchings does not
affect the error a lot in the metric localization when place recognition
works well. (b) The error of the metric localization depends a lot
on the topological distance between the query images and their ref-
erenced Street Views, as shown by the red curve. The further away
a query image is located from its referenced Street View, the less
accuracy our system obtains. The blue curve illustrates that there
is no obvious relationship between the topological distance and the
number of matchings. 116

7.13 Flowchart illustrates workflows for the localization with augmented
Street Views. 118

7.14 A virtual panorama at centre point O
′
is constructed from the original

panorama at point O. 119

7.15 Recall the Figure 5.11: a Street View panorama at location [48.80056, 2.136449]
is extracted in summer in the test area. 120

7.16 Rectilinear synthesized views from the panorama of Figure 5.11. The
black pixels lack the depth information. 121

7.17 The output from a single localization run using original Street Views
and synthesizing virtual views: The trajectories obtained with/without
virtual views are plotted in green/ blue respectively. The ground
truth in red line is recorded by a centimeter-level RTK GPS. 122

7.18 The close-up views from the localization result. 123

7.19 The same query image is matched with highly similar Street View
retrieved by the BoW and with corresponding virtual view. The
FLANN based matches are displayed in red and geometrically ver-
ified matches are shown in green. The inlier ratio is measured by
proportion of geometrically verified matches. 124

7.20 Some scenarios during localization: (a) Some big brightness blur
frames were often captured in the initial step and they are ignored by
our algorithms. (b) Noise from moving objects appears frequently in
the urban environment. 126

7.21 The localization output from sequences No.1, 2 and 5 using original
Street Views and synthesized virtual views. The positions of original
panorama, virtual views and ground truth are noted in red points,
blue points and red line respectively. The results from original Street
Views and augmented virtual street views are in blue and green lines. 127

7.22 The localization output from sequences No.6, 12 and 13 using original
Street Views and synthesized virtual views. The positions of original
panorama, virtual views and ground truth are noted in red points,
blue points and red line respectively. The results from original Street
Views and augmented virtual street views are in blue and green lines. 127

7.23 The localization output from sequences No.14, 15 and 16 using origi-
nal Street Views and synthesizedvirtual views. The positions of origi-
nal panorama, virtual views and ground truth are noted in red points,
blue points and red line respectively. The results from original Street
Views and augmented virtual street views are in blue and green lines. 128

7.24 The localization output from sequences No.17 and 18 using original
Street Views and synthesized virtual views. The positions of original
panorama, virtual views and ground truth are noted in red points,
blue points and red line respectively. The results from original Street
Views and augmented virtual street views are in blue and green lines. 128

7.25 Result of the combined BoW working on the sequence No.1 (left) from
Zoé and the sequence No.3 (right) from Scénic. Similar to the state-
of-the-art evaluation, we find the maximum of the cosine similarity
and visualize all values above 0.8 ∗maximum. 129

8.1 A linear classifier to recognize handwriting letters. Image credit of
the Udacity Deep Learning online course. 134

8.2 A two-layer neural network from the softmax linear classifier of Fig-
ure 8.1. The forward process is the linear or non-linear computation
among neurons while the backward pass indicates the parameter up-
date (weights and bias) based on the gradient descent. 137

8.3 Illustration of the convolutional operation: a [3×3×1] filter K slides
on a [7 × 7 × 1] image I and do dot products. The obtained image
after the convolution (also called a feature map) has a reduced size
[5× 5× 1]. How to compute the changed size after the convolutions
has been well defined according to [54]. 139

8.4 Example of a classical convnet architecture with 3 filters and its pos-
sible semantic output from every layers. 141

8.5 Architecture of LeNet-5 as (Conv1-Pool-Conv2-Pool-FC1-FC2), im-
age credit [113]. 141

8.6 The 4 scenarios to use transfer learning. 143

8.7 History and tendency of the Neural Networks in image recognition field.144

9.1 A simplified architecture of PoseNet. 148

9.2 Example of training dataset: an original image of King College dataset
on the left and a central-cropped input image for PoseNet on the right.150

9.3 Exploration of the King college datasets used in PoseNet: (a) illus-
trates the spatial distribution of position for 1223 training images; (b)
explains the various clusters with regard to orientations using PCA
method. 150

9.4 PoseNet applied on Original Street Views: the evolution of position
and angular average errors on the training and validation datasets
with Original Street Views in PoseNet during 500 epochs. 152

9.5 PoseNet applied on Augmented Street Views: the evolution of posi-
tion and angular average errors on the training and validation datasets
with Augmented Street Views in PoseNet during 500 epochs. 153

9.6 Recall the Figrure 5.11: a Street View panorama at location [48.80056, 2.136449]
is extracted in summer in the test area. 155

9.7 Images synthesized from 8 virtual cameras at the same location as
the original Street View panorama of Figure 5.11. The white lines
reflect the misalignment and poor accuracy of the depth map when
projected on perspective images. 155

9.8 Images synthesized from 12 virtual cameras at 1m forward location of
Figure 9.6 along the trajectory, namely at [436228.694944, 5405753.37194]
UTM coordinates w.r.t the original panorama of Figure 5.11. 156

9.9 Images synthesized from 15 virtual cameras at 4m forward location
of Figure 9.6, namely at [436231.656811, 5405745.94043] UTM coor-
dinates w.r.t the original panorama of Figure 5.11. 156

9.10 For an original Street View image, we resize this image to meet the
requirement of PoseNet. It is more suitable to use central-cropping
but here we adopted resizing to preserve more scene possible. 157

9.11 Example of 50 augmented images by random brightness from the
image of Figure 9.10. 158

9.12 Example of 50 augmented images by random shadows from the image
of Figure 9.10. 159

9.13 PoseNet applied on Very Augmented Street Views: the evolution of
position and angular average errors on the training and validation
datasets with Very Augmented Street Views in PoseNet during 500
epochs. 160

9.14 Adapted PoseNet applied on Very Augmented Street Views: the evo-
lution of position and angular average errors on the training and
validation datasets with Original Street Views in PoseNet during 500
epochs. 163

9.15 The visualization of the final convolutional layer obtained by reducing
the high dimension to 2D space. This reduced visualization probably
suggests that it is possible to compute the pose information by a non
linear function with the higher-level CNN features. 163

9.16 Preprocessed test images #1 (left) and #545 (right) in the sequence
No.11. 164

9.17 Visualization of the feature maps for Figure 9.16 after the first con-
volutional layer: some edges of building facades are detected. 164

9.18 Visualization of the feature maps for Figure 9.16 after the last con-
volutional layer: some high-level objects are detected 165

9.19 The output from a single localization run using the modified con-
vnet. The red points represent the locations of the Street View cam-
eras. The red and blue lines mark RTK-GPS ground truth and the
estimated positions of the monocular camera respectively. 166

9.20 2 close-up views of the localization result in Figure 9.21. 167
9.21 The localization output from sequence No. 0, 1 and 2 obtained by the

convnet method. The original panorama position, the ground truth
and the convnet results are noted in red point, red line and blue line
respectively. 169

9.22 The localization output from sequence No. 5, 6 and 12 obtained by
the convnet method. The original panorama position, the ground
truth and the convnet results are noted in red point, red line and
blue line respectively. 169

9.23 The localization output from sequence No. 13, 14 and 15 obtained
by the convnet method. The original panorama position, the ground
truth and the convnet results are noted in red point, red line and blue
line respectively. 170

9.24 The localization output from sequence No. 16, 17 and 18 obtained
by the convnet method. The original panorama position, the ground
truth and the convnet results are noted in red point, red line and blue
line respectively. 170

9.25 Comparison of Handcrafted and CNN feature based methods. 171

List of Tables

3.1 Different probabilistic estimation . 32

4.1 A comparison of some datasets regarding the presence (+) or not (-
) of GPS sensors, ground truth (GT), the Street View, the kind of
cameras on the vehicle, the captured environments and the dataset
path lengths. 44

5.1 A synthesis of current popular GIS. 52

6.1 Some representative feature detection methods and their categories.. . 80

6.2 A comparison of some classic handcrafted features in the literature.
We calculate the number of detected features in two images of differ-
ent scenarios, the matched value after the ratio test and symmetric
check, the final matching inliers after a following RANSAC check and
the time cost for each scenario. These values are registered in a vec-
tor, e.g. [7386, 6292, 2, 0, 2.16]. For the work of Forster et al. and
Minshkin et al., we use their codes on Github directly. Note that
if the RANSAC check cannot be conducted, the time cost is noted
as ∞. Some bad and good results are highlighted in red and blue
respectively. 85

7.1 Evaluation of the translation distance. 124

7.2 Evaluation of the localization performance. 124

7.3 Details of the captured sequences in the test area: the spatial extent
is roughly measured by the localizing ruler tool in Google Maps (lane
width×length). Average errors are computed respectively from the
original approach (using original Street Views) and the extended one
(using virtual views). 126

8.1 A comparison of commonly used activation functions. 138

8.2 Some typical frameworks to train deep learning models. 141

8.3 Pre-trained CNN architectures. 144

9.1 Comparison of the average position and angular error obtained by 3
different scales of training datasets in 2 convent architectures. Note
that errors in the training and validation process are recorded at the
500th epoch. 162

9.2 Localization results for test segments are obtained by the convnet
with a fixed β value in the loss function. In order to compare eas-
ily, we also display the average spatial errors obtained by the ex-
tended handcrafted-feature-based method. Notice that the sequences
where the adapted PoseNet fails are also the sequences for which the
handcrafted-feature-based method does not work well. 168

List of Algorithms

1 Depth Map Computing & Visualization Algorithm 58
2 Input & Output of Handcrafted-feature-based Localization Algorithm 76
3 Metric global localization in the urban area 115

1

2

Chapter 1
Introduction

1.1 Background and Motivation

1.1.1 Autonomous Vehicle

From a desert self-driving car Stanley [196] winning in 2006 DARPA Grand Chal-
lenge till Google’s Waymo car cruising 2.5 million miles autonomously on complex
city streets in 2017, the autonomous vehicle industry has been rapidly evolving
with the technology on the cutting-edge of mobile robotics, computer vision, arti-
ficial intelligence (AI), control systems and mechanical engineering. The arrival of
a self-driving car is regarded as a tremendous upcoming robotics-driven social and
economic change in this century. Its influence will go beyond transportation (the
potential reduction of traffic collisions), beyond urban planning (the management of
traffic flow) and even change our human’s future in incredible fields. Autonomous
car projects not only attract traditional car manufacturers, academic institutions,
and giant technical companies, but also trigger a boom of start-ups oriented in
machine learning, vision and perception area.

A self-driving car is able to sense its environment and navigate without any
human intervention. According to the Society of Automotive Engineers’ (SAE)
classification, this is the highest autonomous level (Level 5). Most currently de-
veloped intelligent vehicles still stay at Level 4 (excluding some shuttles that reach
Level 5 in restricted areas), namely the high automation with limited human inter-

Figure 1.1: Examples of autonomous vehicles: Stanley (left) and Waymo (right).

3

4 1.1. BACKGROUND AND MOTIVATION

vention. There are still many tasks for us to accomplish before self-driving vehicles
take over. A fully autonomous car must integrate advanced technologies together,
including perception, trajectory planning and dynamic control systems [150]. All
these modules help an autonomous car to answer its “own ultimate philosophical
questions”: “where am I”, “where am I going” and “How am I going”.

• Where am I? An autonomous car must understand its surrounding envi-
ronment profoundly and perception makes a difference. Perception refers to
the ability of a self-driving car to collect information from the environment.
The information is a contextual understanding of the environment, such as
drivable areas, obstacles’ locations, traffic signs and objects’ semantic classifi-
cation. This task is achieved by integrating and fusing a large number of di-
verse sensors, like cameras, LiDARs (Light Detection and Ranging), RADARs
(Radio Detection And Ranging), ultrasonics, GNSS (Global Navigation Satel-
lite System), etc. Different sensors have different pros and cons, thus fusion
techniques can make full use of the complementary merits of each sensor. Af-
ter understanding the environment, the autonomous vehicle should determine
its pose (position and orientation). Localization is one of the fundamental
capabilities to enable the self-driving.

• Where am I going? To decide where to go is also a main task for self-
driving vehicles. The car needs to process a series of decision-makings to
achieve its goals, which is known as path planning. Path planning typically
aims to follow a given itinerary in a dynamic environment while avoiding any
obstacles and optimizing time costs and other constraints. It is usually divided
into the mission planner (searching route in the path network), motion planner
(setting a sequence of actions) and behavioral planner (making decisions based
on road rules).

• How am I going? Control is the competence for a self-driving car to ex-
ecute the planned goals by generating necessary commands to the actuators
and using feedback to evaluate and improve its motion. Feedback control is
a very classic controller, which processes the measured system responses and
compensates any deviations from the desired purpose. Owing to the feedback,
a car is able to react and adapt the planned path. The major tasks of the con-
trol are composed of path tracking (a geometric moving from a start to a goal)
and trajectory tracking (a moving with the velocity and steering information).

Perception, planning and control work and interact with each other to construct
the core software system in the self-driving car. Also, the communications such as
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) are also new preva-
lences in intelligent transportation systems. Then with the modules depicted in
Figure 1.2, the car is able to interact with the dynamic environment.

1.1.2 Current Localization Systems

In this thesis, we mainly focus on the vehicle’s perception and localization in urban
environment. As mentioned before, localization refers to the problem to determine
the pose of a vehicle with respect to the environment, also known as a pose estimation

CHAPTER 1. INTRODUCTION 5

E
n
v
ir
o
n
m
en
t

Sensors

Communication

Actuators

Perception

Planning

Control

SoftwareHardware

Figure 1.2: A typical self-driving car system with hardware and software settings
and its interactions.

problem. Compared to other environment, there are more complexity and dynamic
changes in urban environments. Obtaining an exact pose in urban environments is
still difficult and unfeasible for the current self-driving car in every situation. Here
we give a brief review of recent urban localization systems.

Using the GNSS, e.g. Galileo, GPS (Global Position System) and Beidou, and
some proprioceptive sensors, like Inertial Measurement Unit (IMU), is one of the
most popular ways to localize a vehicle. The precision varies from a few millimeters
to ten meters depending on the signal strength, the post processing, the weather
and the product quality. In urban area, a common IMU based GPS suffers a lot
from the “canyon degradation” [45] and cannot reach the high accuracy required by
an autonomous driving car.

The past two decades have seen a substantial progress of another localization
method, namely Simultaneous Localization And Mapping (SLAM) [14, 55]. The
principle of SLAM is to keep track of a mobile object and concurrently build up
a map of the unknown explored environment. It estimates the pose in a map by
using the observed environmental landmarks, such as visual features or laser scans,
and locates new coming measurements. In most case, the localization is based on
the exploring environment and it thereby is not possible to determine the absolute
position directly. Generally, SLAM algorithms also leverage the vehicle’s odometry
to keep the consistency between where the features are predicted and where they
are measured by sensors. To some extent, SLAM is more complex and versatile
than it appears. Using different sensors will capture different types of features that
are likely to open up totally different worlds. It ranges from monocular, stereo,
omni-directional camera to 2D or 3D laser scanners. The advantages and limits of
different sensors have been a major driver of new algorithms. The Bayes’ filtering
and optimization/smoothing are two major methods for a SLAM problem. The
main issue in SLAM is the loop closure problem, which means previously visited
places are observed again by sensors. A detected loop closure can correct the incre-
mental odometry error and update the map. In the urban environment, the dynamic
changes make this problem more challenging.

6 1.1. BACKGROUND AND MOTIVATION

It has also been shown that recent learning based methods, such as random
forests and convolutional neural network (convnet or CNN), are capable to regress
the pose from images directly without complex feature extraction, inlier matching
process and graph optimization [175]. The convnet achieves visual localization in
an end-to-end manner. Thus, after an offline training procedure, these algorithms
can be run in real time with an embedded computer in a vehicle. It shows a great
promise in future real-time localization systems but it asks for large scale training
data to realize a suitable model.

Modern autonomous vehicles generally use data fusion techniques to realize local-
ization, that is, optimization based SLAM algorithms fusing proprioceptive and ex-
teroceptive sensors with a previously built map. Typical used sensors include stereo
cameras, LiDAR, IMU and GPS. LiDAR can provide 3D depth features without the
illumination influence and camera is able to produce rich appearance features with-
out 3D measurements. Their fusion with SLAM algorithms can make full use of the
advantages of each other and construct a robust perception system for a self-driving
car. Localization can finally achieve a decimetric accuracy after merging data from
proprioceptive sensors and map matching. However, it is still tricky to evaluate the
confidence of different data sources in the fusion mechanism and the localization
quality depends a lot on sensors’ price. It is not possible to use all expensive sen-
sors for industrialization. Moreover, a mapping building process seems arduous and
redundant if a world-wide map already exists.

1.1.3 Geographic Information Systems

Map-aided or map-building algorithms take advantage of local features to achieve
centimeter accurate localization, particularly in the SLAM problem. However, a
sparse representation of captured features in a map built from SLAM is not suffi-
cient to model the real urban environment and dense 3D point clouds are expen-
sive to obtain. In our daily life, the environment has been already explored and
represented by the Geographical Information Systems (GIS), which is a temporal
and spatial database to display, analyze and manage many different kinds of data
related to geodetic positions on earth’s surface [31]. We have seen tremendous
advances in the GIS field, see Figure 1.3, in particular from some high-tech com-
panies such as Google Maps, Apple’s 3D Maps, Bing maps and so on. They can
provide but do not limit to the metric, topological and semantic maps, High Defi-
nition (HD) maps1, Street Views, depth maps, 3D urban cadastral models, etc. All
these visual, topological, spatial, geographic and real-time traffic information are
combined and projected according to their positions. Nowadays GIS have become
more and more precise in a unified global representation due to the constant boost
from companies in autonomous field. For example, more and more pixel-accurately,
instance-specifically and location-precisely annotated street-level imagery datasets
are released and shared in public to empower the global autonomous transportation.

1Strictly speaking, a HD map is also GIS with a highly precise 3D road network data features
including painted lanes, traffics signals and infrastructures, 3D building models, etc.

CHAPTER 1. INTRODUCTION 7

Figure 1.3: Diverse data provided by existing GIS: (a) Metric and topological maps
of Google Maps; (b) HD live maps created by HERE Maps; (c) 3D city models in
Flyover project of Apple Maps; (d) Pixel-wise, instance-specific annotations for 130
million street-level images of the Mapillary Dataset; (e) A Street View from Google
Maps; (f) A depth map of Street View from Google Maps.

8 1.2. CONTEXT OF THE THESIS

1.1.4 Objectives and Problematics of the Thesis

The state of the art and the development of GIS have brought us a novel horizon
to address the urban localization. An intuitive idea for localization is that, rather
than SLAM, we do not need to build and update map if a GIS is integrated. This
motivates us to re-think how to use the GIS as an alternative to simplify and improve
the SLAM for industrialization. The objective of this thesis is to achieve a metric
and robust urban localization system that is easy to deploy and affordable to apply
in an autonomous car with the aid of GIS at a global level. That means the urban
environment will be given and represented a priori by the current GIS. It is not
a complementary fusion part like the mentioned road map matching, we only and
fully leverage a given GIS to estimate a vehicle pose. It opens a new picture and
also produces two major aspects to deal with.

• GIS aims to offer people various information and specific demands, such as
positioning, path planning, live traffic situation and satellite images. How-
ever, all information are not directly accessible for a mobile robot. Which GIS
database is adopted, how to extract useful information from the dense GIS and
how to represent them in a robotic readable and efficient way should be our
primary task to cope with. Hereafter we call it as an offline database construc-
tion. The extraction and representation will not only affect the localization
accuracy but also determine the sensor choices and data fusion process.

To our best knowledge, there is few research available in this field. In this
thesis, Google Maps is chosen as our GIS database for its planet-scale coverage
with billions of publicly accessible panoramic imagery, depth maps and other
data. Then a monocular camera is determined as a single input sensor for two
reasons: a) immense street-level images are available and constantly updated
in Google Maps; b) a monocular camera is a low-cost but fully informative
sensor, that makes our algorithms affordable and easy to be deployed in real
urban localization as long as a GIS is provided.

• Rather than a classic SLAM problem supposing an origin to estimate the
relative pose, our case is to localize a vehicle in a given human map with the
absolute reference. The constructed GIS database enables a vehicle to reduce
the time cost of map building and a visit of the environment beforehand. Our
localization performance largely depends on the association between captured
features and the offline database. The data association and loop closure are
still tricky to deal within a SLAM problem even if all features are generated
inherently by a same robot. In our case, features are from two different sources
and the consistent data association requires more subtle algorithms.

1.2 Context of the Thesis

This thesis is jointly supervised by the Centre for Robotics (CAOR) at MINES Paris-
Tech and Institut VEDECOM. CAOR has devoted its efforts to robotic autonomy,
perception, multi-sensor fusion, analysis and comprehension of scenes, geometric and
photometric reconstruction in the context of mobile robotics. The Institut VEDE-
COM, namely “Véhicule Décarboné Communicant et sa Mobilité” in French, is one

CHAPTER 1. INTRODUCTION 9

of the institutes for the Energy Transition within “Plan d’Investissement d’Avenir”
organized by the French government, which is dedicated to researches and develop-
ments on carbon-free, sustainable and communicating individual mobility.

1.3 Contributions of the Thesis

As stated in above sections, the objective of this dissertation is to develop a metric
global localization in urban environment with only a monocular camera and the
Google Maps data. Contributions to this purpose are summarized below. We will
detail the relevant contributions in the end of every chapter, and present a consoli-
dated summary in Part V.

• A robotic accessible database from a dense GIS is designed. In Part II,
we present a topometric representation of the dynamic urban environment
from the well-known Google Maps. We extract 4 useful data from this dense
GIS including topologies, geo-coordinates, panoramic Street Views and asso-
ciated depth maps as stated in Chapter 5. According to different methods, we
represent all these data in a compact way of the Bag of visual Words (BOW)
as stated in Chapter 7, or as high-level CNN features in Chapter 9. The
constructed database is then used for the online localization system.

• A simple two-level localization system using handcrafted features is
proposed. In computer vision, extracting points of interest as handcrafted
features is a popular way to solve data association in images. We fully lever-
age the abundant sources from Google Map and benefits from topometric
data structure to build a coarse-to-fine positioning, namely a topological place
recognition process and then a metric pose estimation by graph optimiza-
tion. The only input of this approach is an image sequence from a monocular
camera and the database constructed from Google Maps. Moreover, it is
not necessary to establish frame to frame correspondences, nor odometry esti-
mates [221]. The method is tested on an urban environment and demonstrates
both sub-meter accuracy and robustness to viewpoint changes, illumination
and occlusion.

Although a considerable proportion of localization estimates achieve a 2m
accuracy, the discontinuity still disturbs the robustness of the system. We show
that the sparsity of Street View locations tends to induce significant errors in
the metric pose estimation phase. Thus our former framework is refined with
the construction of augmented Street Views database that compensates the
sparsity of Street Views [220] and improves the localization precision (detailed
in Chapter 7).

• A convnet is trained with the augmented database from Google
Maps to regress continuous poses from monocular images.

Convnets are very powerful and becoming a dominant method in computer
vision. Many learning based localization methods obtain effective results in
the literature. Considering the GIS offers us a global geotagged database,
it motivates us to leverage this large data to train a localization convnet in
an end-to-end manner. The previously constructed database for handcrafted

10 1.4. THESIS OUTLINE

feature approaches is full of rich information but still insufficient for a convnet
training. We hereby augment the originally constructed database by a factor
of a thousand and make use of transfer learning methods to train our convnet
regressor. In our test (detailed in Chapter 9), the regressor can also give
a global localization of an input camera image in real time, which provides
insights on the comparison and connection between handcrafted feature based
and CNN based methods. After analyzing and comparing the localization
performance of the two methods, we discuss promising directions towards the
GIS-aided urban localization problem.

1.4 Thesis Outline

The thesis is organized in 5 main parts as follows:

• Part I: Some preliminaries about pose estimation, rigid transformation and
optimization pipelines are illustrated. State-of-the-art concerning the visual
localization is reviewed, specially the GIS-aided localization systems.

• Part II: We introduce some typical GIS and the extraction of useful information
from Google Maps. A topometric representation is designed based on the
extracted information. We also demonstrate how to rectify panoramic imagery
to perspective image by image transformation. Due to the discrete distribution
and the limited number of GIS dataset, image synthesis is used to augment
the database.

• Part III: This part describes our first localization system based on handcrafted
features. After analyzing its accuracy and robustness, a refined algorithm is
proposed to improve the accuracy and smoothness of localization by augment-
ing the set of geo-tagged images using image synthesis.

• Part IV: A convnet based pose regressor algorithm is proposed. We show
how to largely augment proper training data by image synthesis from existing
GIS data and how to benefit from the power of transfer learning to make the
model converge. Then, a comparison of handcrafted and convnet methods is
discussed. We also give an overall summary of the visual urban localization
and some future perspectives on the GIS -aided localization systems.

Part I

State of the Art

11

Chapter 2
Preliminaries

In this chapter, we introduce some preliminary geometric notions used in the remain-
der of this thesis. Visual localization studies the geometric relationship between a
3D scene and the images captured from a moving camera, which is the interplay
between two fundamental transformations: the rigid body motion which models the
camera motion, and the perspective projection that involves in image formation.
We first present the coordinates systems used throughout the thesis. Then some
foundations of rigid transformation, image formation and projective geometry are
summarized.

2.1 Coordinate Systems

We can use different coordinate systems to present the localization. In autonomous
mobility, two common used systems are the geodetic coordinate system and the
Cartesian coordinate system, as depicted in Figure 2.1.

A geodetic coordinate system, is a coordinate system in geography that repre-
sents every absolute location on the earth by a set of geodetic datum as latitude,
longitude and elevation. Latitude of a location is the angle between the equatorial
plane and the straight line linking this location to the center of the earth. Longitude
of a location is the angle east or west of a referenced meridian to a meridian passing

Earth

O

φ

λ

car

Xecef

Zecef

Yecef

PrimeMeridian
MapProjection

XCartesian

YCartesian

ZCartesian

Figure 2.1: Illustration of coordinates: the geodetic coordinates on left and the local-
level Cartesian coordinates obtained from the map projection on right. Latitude and
Longitude are denoted by φ and λ respectively with the aid of the earth-centered
earth-fixed (ECEF) coordinates.

13

14 2.2. GEOMETRY NOTIONS

F�

F2

R� t

�

Figure 2.2: The rigid transformation between frame F1 and F2.

through this location. According to the datum system, the elevation is measured
as a dynamic height relative to a known reference height. In the World Geodetic
System (WGS84) [83], a default datum in the GPS, the elevation is measured from
the mean sea level. We often use the combination of latitude and longitude to fix a
vehicle’s global position on the earth face.

In the driving scenario, Cartesian coordinates are often used for the reason of
mathematical simplification and road-following convenience. In the Cartesian frame,
we introduce x, y and z as the position coordinates. The origin of the frame is a
reference to be set freely. We can convert the geodetic coordinates to the Cartesian
coordinates by a map projection, like the Universal Transverse Mercator (UTM)
and Lambert conformal conic projection [70, 83].

2.2 Geometry Notions

2.2.1 Rigid Transformation

A rigid transformation of a vector space includes translations, rotations, reflections,
or their combination, which preserves distances between every pair of points. Rigid
transformations of n-dimensional space form the basis of Euclidean geometry. We
call the set of all n-dimensional rigid transformations as the Euclidean group denoted
as E(n). A rigid transformation group excluding reflections, that is to say transfor-
mation preserves both distances and orientations, is called Special Euclidean space
denoted as SE(n).

For two orthonormal frames F1 and F2 in the 3-dimensional Euclidean space, the
rigid transformation from F1 to F2 can be represented by the homogenous matrix
T ∈ SE(3) ⊂ R4×4 such as,

T =

[
R t
0 1

]
(2.1)

where R ∈ SO(3) ⊂ R3×3 is a rotation matrix in the Special Orthogonal group and
t ∈ R3 is a translation vector.

CHAPTER 2. PRELIMINARIES 15

Normally this matrix also defines the transformation between two frames. For a
3D point P1 in frame F1 as P1 = [x, y, z]T ∈ R3, it can be transferred into frame F2

by the transformation matrix T:

P2 = TP1 or P2 = RP1 + t (2.2)

where P1 = [x, y, z, 1]T is the homogeneous coordinates of the point P1 for the linear
transformation. In the Special Orthogonal group, the rotation matrix has following
property:

RTR = R−1R = I det(R) = 1 (2.3)

As such, the inverse transformation matrix can be represented as:

T−1 =

[
RT −RT t
0 1

]
(2.4)

2.2.2 Pose Representations

Pose is composed by rotation and translation. As we can see, the transformation
matrix above with 16 parameters is not a compact representation. Since the rota-
tional motion in SO(3) can be represented by various ways, such as rotation matrix,
axis-angle, Euler angles, quaternions, we will have different pose representations as
well [15, 127].

The axis-angle method parameterizes a rotation by a unit vector n indicating the
direction of a rotation axis, and an angle θ describing the magnitude of the rotation
about the axis. Rodrigues’ formula is frequently used to convert the axis-angle to
the rotation matrix, as stated in Equation 2.5:

R = cos θI + (1− cos θ)nnT + sin θ[n]× (2.5)

where [n]× is a skew symmetric matrix of a vector n as:

[n]× =

 0 −nz ny

nz 0 −nx

−ny nx 0

 (2.6)

Then the transformation can be presented by only 6 parameters by adding 3
elements. Actually, Rodrigues’ formula is a compact form to express the rotational
relationships between the Lie group and Lie algebra as will be exposed later in this
section [186].

Both rotation matrix and axis-angle representation are not intuitive. Instead,
Euler angles is a familiar way to describe the orientation of a rigid body by three
angles. A well known convention is the Tait-Bryan angles that introduces yaw, pitch
and roll for a moving body. The disadvantage of this representation is the gimbal
lock problem where a singularity (losing one degree of freedom) occurs when pitch
approaches 90◦ or −90◦. This situation appears to be rare in an autonomous car as
the car usually does not pitch up to these angles.

Compared with Euler angles, a unit quaternion q = {q0, q1, q2, q3} with ‖q‖ = 1
is used to represent rotation and avoid the singularity. Since it is compact with only
4 parameters, this representation is widely used in the pose estimation. Conversion
between different representations is possible excluding the singular case.

16 2.3. CAMERA GEOMETRY

In the pose estimation problem like SLAM, we often construct an optimization
model to estimate the optimal R and t. However, the inner properties as depicted
in Equation 2.3 make it difficult to solve the model. Thus Lie theory is used to
transfer the pose estimation as an optimization problem without constraints.

Consider a continuously moving rigid body with a twist motion vector ξ ∈ R6

with instantaneous speed (assuming in a timestamp of ∆t) in translation v =
[vx, vy, vz]

T and in rotation ω = [ωx, ωy, ωz]
T .

As we known, SO(3) and SE(3) are Lie groups. Every Lie group has an associated
Lie algebra, which is the tangent space around the identity element of the group. The
Lie algebra is a vector space generated by differentiating the group transformations
along the chosen directions in the space at the identity transformation. Such that,
we have

ξ =

∫ ∆t

0

(v,ω)dt ∈ se(3) (2.7)

The exponential map from se(3) to SE(3) is the exponential matrix. Thus the
pose related to the vector ξ can be represented as follows with the Taylor expansion:

T(ξ) = exp([ξ]∧) =
∞∑
i=0

1

i!
([ξ]∧) (2.8)

where the operation [·]∧ is defined as:

[ξ]∧ =

[
[ω]× v

0 0

]
(2.9)

We summarize the above equations and their relationships in the Figure 2.3. We
will use these representations in the remainder of the thesis and they are also helpful
to explain the state-of-the-art algorithms.

2.3 Camera Geometry

2.3.1 Perspective Projection

In this section, we discuss the process of the image formation in terms of geometry.
The ideal perspective projection by a pinhole model has been well studied [75].
What matters in the thesis is to understand the geometry and projection process in
three coordinate systems: the world coordinate system (w) , the camera coordinate
system (c) and the image plane (i), see in Figure 2.4. Instead of giving a rigorous
introduction, here we only summarize the overall geometric relationships.

Consider a generic point in the world frame as Pw = [Xw, Y w, Zw]T and its
corresponding coordinates in the camera frame as Pc = [Xc, Y c, Zc]T and in the
image plane as pi = [xi, yi]T . The geometry of the image formation model depends
on the rigid transformation between the camera and world frame (also known as
extrinsic parameters) and the camera intrinsic parameters, as illustrated by the

CHAPTER 2. PRELIMINARIES 17

Lie Group Lie Algebra

SO(3)

R 2 R
3×3

R
T
R = I; det(R) = 1

SE(3)

T 2 R
4×4

so(3)

! 2 R
3×1

[!]× 2 R
3×3

se(3)

ξ 2 R
6×1

[ξ]^ 2 R
4×4

exp(!) = exp(θn×) = Equation (2:5)

exp(ξ) = Equation (2:8)

log(R)

log(T)

Figure 2.3: The relationships among SO(3), SE(3), so(3) and se(3).

w

c

Z

X

Y

X

Y

Z
i

X

Y

P

p
R, T

Figure 2.4: Illustration of the camera geometry: w is the world coordinate system,
c is the camera coordinate system and i is the image plane.

18 2.3. CAMERA GEOMETRY

following equation:

λ

xiyi
1

 =

fx s u0

0 fy v0

0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

[R t
0 1

]
Xw

Y w

Zw

1

 (2.10)

where the parameters fx, fy, s ,u0 and v0 are intrinsic parameters that can be
obtained by well-developed calibration algorithms [24, 172]. (fx, fy) are two scalars
of focal length along the two image axes, (u0, v0) are the coordinates of the principal
point, and s describes the skewness of the two image axes. We call R and t extrinsic
parameters, which present the coordinate transformation between the camera and
the world coordinates. λ ∈ R+ is a positive (non-zero) scale factor and the depth
of the point along the optical axis Zc. The equation above can be also expressed in
the homogenous matrix form1.

λpi = MPw = K[I3×3, 03×1]P
c = K[I3×3, 03×1]TPw (2.11)

where M is the perspective projection matrix, K and T describe the matrix of the
camera intrinsic and extrinsic parameters respectively.

Notice that the projection from the camera frame to the pixel image plane has two
stages for convenience: first the matrix [I3×3,03×1] is used to introduce a normalized
image plane located at the focal length f = 1, where the pinhole is mapped to the
origin of the image plane; then an additional transformation is realized from the
normalized coordinates to the pixel coordinate system.

2.3.2 Undistorsion

The pinhole camera is not sufficient to model the real image formation process.
Real cameras use curved lenses that are fixed with offset to form an image. Image
distortion tend to be introduced in the transformation with such cameras. Distortion
will change both the shape and size of 3D objects. Therefore, it is necessary to
analyze camera images and undo the distorsion.

There are two main types of distortion. One is the radial distortion, which is
caused by the curved lenses where light rays will bend more or less at edges of
lenses. In this way, the lines or objects in images appear more or less curved than
they actually are. The other is the tangential distortion that makes an image look
tilted or the objects seem further or closer. It occurs when a camera’s lens is not
fixed perfectly parallel to the image plane.

Radial distortion can be well measured by a n-order polynomial function as
follows [211].

pcorrected = (1 + k1r
2 + k2r

4 + k3r
6 + ...)p (2.12)

where r is the pixel distance with respect to the projection center (see Figure 2.5),
ki are the distorsion coefficients and pcorrected are the corrected positions of raw dis-
torted pixels p. All these parameters can be obtained during the camera calibration
[172].

1Note that in the remainder of this thesis, the homogenous form is denoted by (·).

CHAPTER 2. PRELIMINARIES 19

Figure 2.5: Points in a distorted and undistorted (corrected) image.

The tangential distortion can be modeled in a similar way. Here we will not dive
into details for a better readability. In practice, we choose OpenCV five distortion
coefficients [k1, k2, p1, p2, k3] [24] to correct both radial and tangential distortion as
a pre-processing for all images obtained online from the camera.

2.4 Conclusion

In this chapter, we briefly introduced three major preliminaries: basic coordinate
systems, the pose representations, rigid transformations and image formation. The
global visual localization in urban area relies on both the global geodetic and local
Cartesian coordinate systems. Pose transformation and image formation are the
basic theory to understand our algorithms. All the notions in this chapter will be
employed frequently in the continuation of the thesis.

20 2.4. CONCLUSION

Chapter 3
Review of Visual Localization

3.1 Introduction

Keeping in mind the previous foundations of the pose estimation, we will talk about
the state-of-the-art in visual localization. Accurate localization is a prerequisite
for most autonomous navigation and intelligent driving systems. The problem of
visual localization is an old problem in both mobile robotics and computer vision.
Cameras are low cost sensors and easy to use making them the focus of an active
research community. However, visual localization is a very versatile problem, which
constantly evolves, taking new techniques from various research fields, ranging from
probability theory, computer vision, artificial neural network to even biology1.

According to different criteria, we can divide current visual localization into
several classes. We can distinguish different methods by the sensors they use, the
precision they obtain, or simply by the environments they are applied in Figure 3.1
illustrates a taxonomy of the visual localization problem, without claiming to involve
all.

In this chapter, we mainly focus on the mathematical algorithms behind the
subclass of place recognition and metric visual localization. Due to the context of the
thesis, the GIS-aided visual localization approaches are also presented particularly.
We give a global introduction of relevant methods in visual localization and propose
some inspiration to realize the objective of the thesis.

3.2 Place Recognition

Place recognition, also known as appearance-based localization [224], is a very com-
mon problem in visual localization. It asks the mobile object to recognize known
places in the environment. The known places can have been perceived by the same
camera in the past or be given by a set of geotagged images. In general, the preci-
sion of place recognition remains at a topological level. Nowadays, the photo sharing
communities, like Fliker [153] and Instagram, generates thousands of geotagged im-
ages everyday and the Google Street View covers nearly every urban street in the
world [223].

1Moser et al. won the 2014 Nobel Prize in Physiology and Medicine for the discovery of place
and positioning grid cells.

21

22 3.2. PLACE RECOGNITION

Figure 3.1: Taxonomy of visual localization problem.

As a consequence, the place recognition, as a method to map and organize photos
on the globe, is undergoing intense study in computer vision. Major challenges in
this area are caused by:

• Temporal changes due to lighting, weather, season, structures and moving
objects [95, 187];

• Spatial changes [103] due to viewpoints or occlusions;

• Perceptual aliasing by inter or intra repetitions (e.g. chain stores with uniform
decorations) structures, also known as saturations of features [202].

As illustrated in the taxonomy, we can solve place recognition by two broad ways:
handcrafted-feature-based and leaning based algorithms. These are two different
methods for representing images, but the typical pipeline in place recognition in
the two cases follows the image retrieval idea [205] as shown in Figure 3.2. That is
to say, we define an “image representation extractor” f to encode a query2 image
Q as f(Q). The known places are represented by a set of geotagged images as
D = [V1,V2, · · · ,Vi]. All query and database images are described by the same
extractor f in the image representation space. Then we use a similarity function s
to find the best matching database image for a given query image and transfer its
geotag to localize the query image.

i∗ = argmax
i∈1···N

s(f(Q), f(Vi)) (3.1)

The performance of this pipeline primarily depends on the extractor and the
similarity function. The image retrieval started in the early 1990s in the computer
vision society and was inspired from the text retrieval. Till now many different ex-
tractors are proposed, ranging from image texture, color, object, scene, various local
or global descriptors to CNN features (cf. Figure 3.3). Before 2012, the bag of words
(BoW) model [44, 179] with SIFT [125] was a very successful and predominantly
studied feature based method. In recent years, it seems to be overtaken by the CNN
methods, especially when dealing with a massive scale of dataset [231].

2Normally, a “query” image is captured online with respect to the offline image in a database.

CHAPTER 3. REVIEW OF VISUAL LOCALIZATION 23

V1

V2

V3

Vi

Q

f (V1) f (V2)

f (V3)

f (Vi)

f (Q)

f

Figure 3.2: The image retrieval problem: Given a number of dataset images from
visited places and a query image, we use an encoding function f to map all images
in a new location space and decide the query image’s position.

2002 2004 2006 2008 2010 2012 2014 2016

Video Google

Sivic et al:

VLAD

Jegou et al:

Hamming Embedding

Jegou et al:

FABMAP

Cummins et al:

Hierachical k-Means

Stewenius et al

ImageNet AlexNet

VLAD-CNN

R-MAC

Arandjelovic et al

Tolias et al:

Krizhevsky et al:Li et al:

H
a
n
d
cr
a
ft
ed

F
ea
tu
re

L
ea
rn
in
g

Approximate k-Means

Philbin et al:

CNN off-the-shelf

Razavian et al:

Figure 3.3: Milestones of image retrieval in place recognition.

24 3.2. PLACE RECOGNITION

3.2.1 Handcrafted-feature-based Place Recognition

The term “handcrafted” means a method designed by human instead of being the
result of a machine-learning algorithm. In computer vision, it focuses on the feature
detectors or descriptors designed according to the computer vision theory, such as
SIFT, SURF [17], BRIEF [27], FAST [161] and CenSurE [3]. Each detector and
descriptor has its own advantages and disadvantages. Most detectors are keypoint
centric, including Harris, Hessian [140] and FAST detector, some are regional, like
the Difference of Gaussian (DoG), the Maximally Stable Extreme Region (MSER)
detector and the affine Harris-Laplace detector. With a set of detected regions,
descriptors are used to encode the local contents. Apart from SIFT, we can also use
PCA-SIFT to speed up matching by reducing the dimension. RootSIFT [8], SURF,
BRIEF, DenseSIFT and PHOW [207] are also tested in image retrieval as well. We
will compare these handcrafted features profoundly in the Chapter 6.

The handcrafted-feature-based place recognition consists in three phases: local
feature extraction, dictionary training and parameterization. In the local feature
extraction, we often use one type of feature detector like DoG, Hessian-Afine or
dense patch to extract keypoints and one type of descriptor, e.g., SIFT, SURF
or BRIEF, to represent a large set of database images [138, 207]. Then a large
collection of descriptor vectors are clustered by employing the flat k-means [74] or
the hierarchical k-means [208]. This stage is a combination of dictionary training
and parameterization. The centroids of the clusters are registered as the visual
words and they form a compact and discriminative set of descriptor values called
the dictionary, or codebook. The k-means method encodes features according to its
distances to K visual words. K is a hyper parameter set up by ourselves. Each
visual word is partitioned in the center of a subspace of the dictionary like the
“Voronoi cell”. For a query image, the same detectors and descriptors are used
and the extracted feature vectors are classified within the dictionary. As such,
every observed descriptor will be assigned to a similar visual word in the dictionary.
Then the query image is described by a K-dimensional histogram vector about the
occurrence of visual words, by counting how often individual visual words occur.
There are several variations to normalize the distribution, e.g. L2 norm distance.
In order to distinguish the importance of every visual word, the vector components
are often weighted by the overall occurrence of the word. One of the most popular
weighting schemes is the term frequency-inverse document frequency (TF-IDF). The
TF-IDF weight increases proportionally to the number of times a visual word appears
in the database, but is often offset by the frequency of the word, which is able to
adjust for the fact that some words appear more frequently in general. After this
weighting, we can use inverted file indexing to map the query image to the indices of
candidate images in the database with similar visual worlds. Please note that both
query and database images can be represented according to the obtained dictionary.

Suppose we have N images in the database D = {d1, · · · , dN}, we use DoG and
SIFT to extract features with 128 dimensions and then cluster them into K centroids
by the K-means method. So the dictionary is denoted by C = {c1, · · · , cK} with
K visual words (centroids). The ith database image di, with i ∈ [1, · · · , N] can
be described by a descriptor set as X i = {x1, · · · , xL}. The size L represents the
total number of detected features in this image. Each local descriptor xl, with l ∈
[1, · · · , L], is assigned to its nearest visual word as cj = NN(xl), with j ∈ [1, · · · , K].
The NN means the nearest neighbor assignment algorithm. Thus the occurrence

CHAPTER 3. REVIEW OF VISUAL LOCALIZATION 25

of the jth visual word cj in ith image is the sum over all 0/1 assignment (by an
indicator function 1), denoted as:

TF(cj, di) = odij =
∑
l

1(cj = NN(xl)) (3.2)

To simplify, we use (cj, di) to describe the jth visual word cj in ith image (di) in
the database D. The obtained occurence is also known as the TF (term frequency)
of a visual world in one image. The TF thereby is a local weight.

The raw K−dimensional histogram vector of this image is computed by,

H(di) = [odi1 , · · · , o
di
K] (3.3)

Alternatively, IDF measures the rarity of a given visual word through the whole
database, which is computed by:

IDF(cj) = log
N

nj

,wherenj =
∑
di∈D

1(odij > 0) (3.4)

where N is the total number of images in the database as we stated before.
Thus, the TF-IDF weight for a visual word cj in image di is calculated by:

ω(cdij) = TF(cdij)IDF(cj) (3.5)

Then the final histogram vector is weighted by multiplying the TF-IDF value.
This is a simple pipeline of the feature-based method, known as bag of word (BoW).
Main open issues about this paradigm include:

• how to decide the size of the dictionary;

• how to generate the visual words efficiently;

• how to deal with the tradeoff between feature reduction and information loss;

• how to identity the false-positives, which means two places appear very similar
but they are in totally different positions in the environment. False-positives
occur a lot due to feature saturations in large scale urban environments.

BoW can be improved in many aspects. Geometric verification with RANSAC
[152], by generating tentative feature correspondances, can be introduced to reject
false-positives. RANSAC is used to calculate the affine transformation for each
matching repeatedly by verifying the number of inliers that fit this transformation.
RANSAC has efficiency problems thus some effective strategies are proposed to refine
the matchings in terms of geometric angle and scale, such the weak geometrical
consistency (WGC) [89], Hough pyramid matching (HPM) [11] and WGC with
Hamming Embedding [89], etc. In FABMAP [46, 47], authors tried to explore
the mutual dependencies among the visual words and take the correlations as an
advantage to prevent the false-positives. Also, if a query image has weak GPS tags,
the tags can provide a weak supervision to filter out definite negatives [171, 223].
In order to manage a large database of visual words, some tree structures are also
developed to precisely model the mutual information in a dictionary, such as Chow-
Liu tree [35]. Angeli et al. [5] also proposed to train a dictionary online by adding
visual words incrementally.

26 3.2. PLACE RECOGNITION

As we stated before, when a dictionary is generated, region descriptors are “hard-
assigned” (by the NN algorithm) to the nearest visual word in terms of Euclidean
distance of k-Means, see Equation 3.2. The hard assignment only takes account of
the closest visual words but ignores the uncertain visual word (i.e. when two or
more candidate visual words are all close to xl) or the plausible word (i.e. when
all visual words are too far away from xl but the NN algorithm still assigns one
unrepresentative visual word to xl). To avoid this, soft-assignment [32, 153] is
proposed to pay attention to these two types of visual words with a frequency
smoothing process.

The technique of BoW represents the set of features by a sparse histogram. Jégou
et al. [90] designed a low-dimensional but dense descriptor called the Vector of Lo-
cally Aggregated Descriptors (VLAD), which enables a common memory to process
place recognition in large image datasets. VLAD [49] also uses a local descriptor
(SIFT) at the beginning to do clustering work. Rather than BoW recording a sparse
vector of word occurence counts, VLAD accumulates the residuals (vector differences
between query features and visual words). Thus each image can be represented by
an aggregation of residual vectors assigned to each visual word. Mathematically, the
VLAD can be represented by

vj,l =
∑

j∈K, l∈L

(cj − xl), only when cj = NN(xl) (3.6)

where indices j = 1, · · · , K and l = 1, · · · , L index the visual word and the local
descriptor component.

Rather than a rough binary assignment in the BoW, VLAD use the normalized
distance vector vj,l to represent the relationship between every visual word j to
each descriptor xl. Then, VLAD aggregates all vectors into one vector with a small
dimension by principal component analysis (PCA) to represent one database image.
This approach is a simplification of the Fisher vector representation [165]. Achieving
the same accuracy as BoW, it outperforms in terms of memory usage and rotation
or scale invariance.

3.2.2 Learning-based Place Recognition

Here, the learning-based methods are only limited to CNN-based retrieval tech-
niques, overlooking the typical machine learning classifiers like support vector ma-
chines. We cannot deny that CNN-based retrieval methods are replacing the hand-
crafted detectors and descriptors gradually in the computer vision community. Re-
cent results show that CNN features are more generic, discriminative and powerful
than handcrafted features in the image recognition, scene classification and seman-
tic segmentation tasks [19]. Since the thesis focuses on a metric visual localization
while CNN methods in place recognition yield topological results by an end-to-end
way, we will not dive deep into the learning-based place recognition.

In a simple way, a CNN model can be regarded as a set of non-linear functions
involving series of hierarchical layers of convolution, pooling and non-linearities3.
Each layer is able to capture a different level in the hierarchy of a scene. For
instance, the first layer as the bottom one in the hierarchy can learn simple shape

3These terms will be explained insightfully in Chapter 8, in brief, pooling is used to reduce the
spatial size of the feature representations.

CHAPTER 3. REVIEW OF VISUAL LOCALIZATION 27

features like lines, edges and blobs and the subsequent layers tend to learn more
complex shapes like combinations of lines, and eventually CNN discovers the high-
level characteristics of the object. Therefore, the top-level layers are less general-
purpose than the layers before it. Each convolution+pooling layer is composed of a
set of CNN filters that split an image into very small patches at multiple scale levels,
and then max-pools these patches within neighborhoods. Filters and max-poolings
serve respectively as the detectors and descriptors in the handcrafted feature [231].
We will come back to explain this scheme elaborately in the Chapter 8. For now it
suffices to understand that CNN features preserve hierarchical characteristics from
an image.

The CNN-based image retrieval can be divided into two parts: using pre-trained
CNN models and using fine-tuned CNN models. Since 2012, many successful CNN
architectures are pre-trained on the ImageNet (containing 1.2 million images with
1, 000 categories) [50] for a classification task. Currently popular CNN architec-
tures are proposed to extract features, such as VGG [178], GoogleNet [190] and
ResNet [78]. These models are pre-trained on large-scale recognition database, in-
cluding Places [232] and ImageNet. With the help of these models, we can extract
different types of features for place recognition. We can use the descriptors from the
fully connected layer (FC)4 layer of the network, or rely on the low-level descriptors
from the intermediate layers. Recent studies [107, 230] show that the top-level de-
scriptors underperform in place recognition and image retrieval due to the fact that
they are more specific to the particular image classification task they have trained
for.

As we stated before, the descriptors are extracted by filtering small patches at
multiple scale levels. They can be regarded as a set of SIFT features. Therefore,
the previously introduced encoding methods can be conducted as well, for instance,
Arandjelović et al. [9, 222] encoded all CNN features into VLAD representation and
instead Kulkarni et al. [107] adopted the BoW encoding. Apart from the encoding
way, pooling is another way to create global discriminative features to represent
images. Well known work includes the Maximum activations of convolutions (MAC)
descriptors that and its evolution proposed by Toliaset al. [198].

Although many impressive image retrievals have been produced by pre-trained
CNN architectures, fine tuning a CNN model for a specific training dataset is still
a popular method. In the pre-trained CNN methods, extracted features are mainly
for a classification task and these features are able to distinguish between different
semantic categories but are not robust to intra-class variability. They are lack of
geometric invariance compared with handcrafted features. However, in the image
retrieval or place recognition, we need to identify and discriminate particular objects
even if they are of the same semantic type [67].

Without employing pre-trained deep networks as a black box to generate features,
we can produce image-level descriptors by leveraging a deep architecture trained for
the image retrieval in an end-to-end manner, such as the PlaNet [212]. For the fine
tuning methods, instead of using ImageNet with various class labels, we are able to
learn a CNN model from some instance-oriented datasets, including Oxford5k [152],
Holidays [89], Tokyo 24/7 dataset [9] and Multiview RGBD dataset [110]. Please
note that clean training data is the key to the success of the fine-tuning methods.

4A fully connected layer is a standard, non-convolutional layer, where all inputs are connected
to all output neurons. In some deep learning libraries, it is also referred as dense layer.

28 3.3. METRIC VISUAL LOCALIZATION

2002 2004 2006 2008 2010 2012 2014 2016

ImageNet AlexNet

Krizhevsky et al:Li et al:

H
a
n
d
cr
a
ft
ed

F
ea
tu
re

L
ea
rn
in
g

ScoRe Forest

Shotton et al:

PoseNet

Kendall et al:

VidLoc

Clark et al:

LSTM Pose

Walch et al:

MonoSLAM

Civera et al:

SVO

Forster et al:

PnP RANSAC

Lepetit et al:

Active Search

Sattler et al:

FLANN

Muja et al:

GraphSLAM

Thrun et al:

P4P without focal length

Kukelova et al:

GIS aided localization

Agarwal et al:

Figure 3.4: Milestones of metric visual localization.

CNN Siamese model [157] is also an option by leveraging matching or not-matching
image pairs into a CNN model to learn positive matching in the place recognition.
Moreover, Gordo et al. [68] proposed a global feature representation for image search
by aggregating many region-wise descriptors.

3.2.3 Summary

In this section, we described handcrafted-feature-based and CNN-feature-based meth-
ods to solve the place recognition problem. It seems they are two distinct approaches
but they share the same paradigm: extracting distinctive local features, aggregating
features into an image-level vector and indexing or compressing vectors for compu-
tational efficiency. Some work [92] also prove that geometric matching with local
features is an effective way to improve CNN training.

3.3 Metric Visual Localization

Instead of determining which place is visible in a query image as the place recog-
nition problem, metric visual localization techniques, also known as image-based or
structure-based, aim at computing the exact position and orientation of a query im-
age. Similar to place recognition, metric visual based localization approaches can
also be divided into handcrafted-feature-based and deep-learning-based methods.
Figure 3.4 illustrates the milestone studies in the field. Since obtaining an accurate
pose is the objective of the whole thesis, we will take a close look at 2D-3D matching
approaches, particularly in the big aspect of current localization techniques, such
as SLAM and visual odometry. The deep-learning localization approaches are also
a big part in this section as they completely forego the handcrafted feature match-
ing and try to regress the camera pose directly. Thereby we will discuss different
representations of deep learning localization and introduce their advantages and
disadvantages compared with traditional feature matching methods.

CHAPTER 3. REVIEW OF VISUAL LOCALIZATION 29

3.3.1 Handcrafted-feature-based Metric Localization

A simple handcrafted-feature matching method for image-based localization is usu-
ally done by the following pipeline:

• the scene is represented by a 3D structure-from-motion model;

• a set of keypoints are extracted in both query and database images, e.g. SIFT;

• their descriptors are matched by nearest neighbor search algorithms, e.g.
FLANN [144];

• matching outliers are rejected by the ratio test [125] and geometric verifica-
tion using constraints from the homography or the fundamental matrix, e.g.
RANSAC.

Many state-of-the-art methods estimate the pose from 2D-3D matching between
2D features in the query image and 3D points in the database. Thus, the descriptor
matching plays a vital role in the pose accuracy. Handcrafted features are nor-
mally high-dimensional which makes it time consuming to compute nearest neigh-
bor matching. In fact, searching the reliable matches in high-dimensional vectors
is always the most computationally expensive part in computer vision algorithms,
especially when the dataset is large scale. Multiple nearest neighbor search algo-
rithms are available, including kd-trees [144, 145], hierachical k-means trees [145],
product quantization [91, 96] and inverted multi-index techniques [13]. Muja et
al. [144] proposed automatic configurations to determine the fastest approximate
nearest neighbor algorithm for specific dataset. They released this research as an
open source library called FLANN incorporated in OpenCV. Apart from nearest
neighbor algorithms, Lowe’s ratio test [125] can also be used to reject wrong or am-
biguous match. After establishing 2D-3D matching, we estimate the camera pose
by solving the n-Point Pose problem (PnP). Assuming we have n 2D-3D correspon-
dences noted as (xi,Xi), the PnP problem aims at recovering the pose [R, t] with
the relationship as stated in the Equation 2.10:

K[R, t]Xi = λxi (3.7)

Please note that the PnP problem can be divided into two categories depending
on whether the camera intrinsic matrix K is known or not. If the camera is well cal-
ibrated, three correspondences are sufficient to estimate the pose efficiently by solv-
ing a fourth degree polynomial by a 3-point pose (P3P) solver. The P3P-RANSAC
solver has been extensively studied in the state of the art [57, 72, 102, 115]. However,
for images in photo-sharing community, intrinsic parameters are usually missing and
the pose estimation turns to be difficult and inefficient, which requires solving mul-
tivariate polynomials with at least four 2D-3D correspondences [26, 75, 106, 170].

Concerning RANSAC, there are many different variants to improve the perfor-
mance of the standard one. Torr et al. proposed MLESAC [204] which adopts
the sampling solutions to maximize the likelihood rather than the number of in-
liers. Chum et al. [37] presented a Td,d test to reject bad putative solutions gener-
ated randomly by a standard RANSAC. They also introduced a locally optimized
RANSAC that speeds up the process by reducing the number of samples according
to inlier probability. Other alternatives leveraging state-of-the-art algorithms for

30 3.3. METRIC VISUAL LOCALIZATION

various modules, such as PROSAC [36], Randomized RANSAC [37], USAC [159]
and SCRAMSAC [166], have also better performance than a standard RANSAC.

Actually, the above pipeline is just a classic pipeline [144] for a 2D-3D matching
method. In recent years extensive studies have been conducted with a focus on
how to determine descriptor matching for large scale data structures [34, 119, 120,
167, 168, 189], how to enable mobile devices, including tablets and smartphones, to
process these highly consumptional localization algorithms [121, 126, 136]. Thereby,
datasets and benchmarks with millions of 3D points are generated for test, for exam-
ple Landmark 1K dataset [120], and some city datasets including Dubrovinik [120],
Vienna [88], Rome [120], Aachen [169] and San Francisco [32]. To deal with large
scale datasets efficiently and effectively, some remarkable matching schemes are pro-
posed, including kd-tree search [167], prioritized point to feature matching with
existing visibility graph [119], vocabulary based prioritized search [167] and active
search [168].

It is impossible not to talk about SLAM and visual odometry, which are two
primary techniques in handcrafted based visual localization systems. Thereby some
details about those two techniques are discussed below.

SLAM

SLAM plays such an important role in the localization and mapping system for
autonomous car, that it requires to be presented here. Since the birth of modern
SLAM at the 1986 IEEE ICRA conference [183], various forms of techniques have
been used to solve it, ranging from Bayesian probability theory to computer vision,
and even biological science. We can divide the SLAM problem by the sort of map it
creates, by the mathematical algorithms adopted, or even by the sensor employed.
Yet, considering the context of our thesis, we will only talk about visual SLAM.
Actually, 2D-3D matching visual localization is the foundation for the handcrafted-
feature-based pose estimation problem. A pure 2D-2D feature matching without the
depth information or scale factor cannot recover the pose. In many visual SLAM,
depth can not be directly inferred from a single camera. Instead, it can be computed
through optical flow [155] between successive image frames. So strictly speaking,
it is still a 2D-3D matching pipeline. The optical flow is well studied: given an
image sequence of a rigid 3D scene taken from a moving camera, it is possible to
compute both a scene structure and a camera motion up to a scale factor. The
moving camera observes every scene feature repeatedly and captures a ray of view
from the feature to its optic center. The parallax angle [229] of the captured rays is
measured to estimate the depth.

As we mentioned, we will make use of a given pre-existing map to develop our
urban localization system instead of building a map by ourselves. The idea appears
to deviate from the conception of SLAM in the following aspects: rather than the
classic SLAM problem supposing an origin to approximate the pose, our case is
to localize a vehicle in a GIS dataset with absolute references. The vehicle is not
required to visit all the environment beforehand. Moreover, we have to consider
how to represent the GIS dataset in a robotic accessible way: namely in a metric,
topological or hybrid type. However, if we adopt handcrafted-feature-based method
to solve the urban localization, it is meaningful to bring some inspirations from
current successful SLAM algorithms. Here we give an introduction to the state-of-
the-art of SLAM and then we discuss some related methods that are useful in our

CHAPTER 3. REVIEW OF VISUAL LOCALIZATION 31

case.
Given a mobile state vector x, its interaction with the environment or the map

m is measured by sensors as z and a control action as u.
Then we characterize the evolution of the state and the process of measurement

at timestep t as two parts.

• State transition probability: p(xt|xt−1,ut)

• Measurement probability : p(zt|xt,mt)

This temporal generative model is also known as a hidden Markov model or
dynamic Bayesian network. The motion models describe the state transition part
between poses and the corresponding odometry measurement. The odometry along
the whole time is denoted by u1:T .

u1:T = u1, . . . ,ut, . . . ,uT (3.8)

A nonlinear motion model f is defined as:

xt+1 = f(xt,ut) + wt, (3.9)

where wt is the Gaussian noises in the motion model represented by wt ∼
N (0,

∑
t).

In the same way, the sensor measurements are written as,

z1:T = z1, . . . , zt, . . . , zT (3.10)

A nonlinear measurement model h is denoted as:

zt+1 = h(xt,mt) + λt (3.11)

where λt is the measurement error with λt ∼ N (0, Λt).
The SLAM framework is constructed by motion model, sensor model as well as

data association process. Based on above models, there are various SLAM algo-
rithms developed due to different quantities estimated, summarized in Table 3.1.
In filter based SLAM,5 we only estimate the single pose at current time t, that
is p(xt,mt|u1:t, z1:t); while optimization based SLAM 6 calculates a posteriori es-
timation over the full trajectory, namely p(x1:T ,mt|u1:t, z1:t). The full SLAM es-
timates x1:T and map structure mt during the whole path all at once. However,
currently we also encounter incremental smoothing SLAM approaches that realize
online estimation of x1:t during the full trajectory up to the current time t. In
fact, filter-based approaches, such as Extended Kalman Filter (EKF) or Particle
Filter [195], have dominated SLAM community for a long time. However, due to
the inherent sparsity of the SLAM problem in a nonlinear least square optimization,
smoothing SLAM problem can be solved as efficiently as the one based on filters.
SLAM researchers prefer to express optimization-based SLAM problem by a graph
representation known as GraphSLAM [195].

EKF-monoSLAM [38, 39, 48] is one of famous filter-based visual SLAM, which
adopts the inverse depth algorithms to estimate the 3D scene. Considering the depth

5Also known as online SLAM
6Also known as full or smoothing SLAM

32 3.3. METRIC VISUAL LOCALIZATION

Estimated Quantity Algorithm
p(xt,mt|u1:t, z1:t) Filtering
p(x1:T ,mT |u1:T , z1:T) Smoothing
p(x1:t,mt|u1:t, z1:t) Incremental Smoothing

Table 3.1: Different probabilistic estimation

information is available in the GIS, it is not necessary for us to follow this scheme.
Optimization-based SLAM is also called GraphSLAM, because this technique is of-
ten represented as node-edge graph, see Figure 3.5. Nodes in sequence are linked by
edges that encode the movement of the robot given by odometry and corresponding
observations. As the optimization is a frequent method in the localization problem,
here a detailed state of the art is introduced. Optimization based SLAM typically
consists of front-end and back-end subsystems. The front-end identifies the con-
straints based on sensor data that is referred to as data association problem; the
back-end corrects the poses of the robot to obtain a map of the environment con-
sistent with the given constraints. In robotics, many problems can be modeled as a
spring-mass system in Figure 3.5(c) and solved by finding the minimum of a general
cost function in the following form:

F(x) = Σ
〈i,j〉∈c

e(xi,xj, zij)
>Ωij e(xi,xj, zij)︸ ︷︷ ︸
Fij

(3.12)

In above function, e(xi,xj, zij) is an error function that computes the difference
between the expected observation xj−xi and the real observation zij; Ωij represents
the inverse covariance matrix. Note that xi and xj are generic parameter blocks that
represent every node in Figure 3.5(c).

The optimal value x∗ will be calculated by:

x∗ = argmin
x

F(x) (3.13)

In general, the function F(x) can be simplified by local approximation using
popular Gauss-Newton or Levenberg-Maraquart algorithms. With derivation to the
modified F(x), we can acquire the solution by adding the increments to the initial
guess. To apply this general model into GraphSLAM, we can determine the most
likely pose and map:

(x∗,m∗) = argmin Σ
i
‖f(xi,ui)− xi+1‖2

Σi︸ ︷︷ ︸
Odometric Constraints

+ Σ
ij
‖h(xi, zij)− xj‖2

Λij
)︸ ︷︷ ︸

Close Loop Constraints

(3.14)

The typical approximation methods like Gaussian-Netwon, Levenberg-Maraquart,
Gauss-Seidel relaxation or gradient descent provide acceptable results to minimize
non-linear error problem. But they suffer from registration errors during loop closure
and tend to fail in large environments due to a greedy maximization step. From the
formulations of the GraphSLAM paradigm, each parameter xi consists of a trans-
lation vector ti and a rotation component Ri. The translation ti clearly forms an
Euclidean space, in contrast, the rotational vector spans over the non-Euclidean 2D
or 3D rotation group SO(2) or SO(3). To avoid singularities, the spaces are usually

CHAPTER 3. REVIEW OF VISUAL LOCALIZATION 33

(a)

(b)

(c)

Figure 3.5: Three representations of Optimization based SLAM: (a) Transition
graph and corresponding constraints; (b) Graph model of SLAM; (c) General math-
ematical representation of Graph optimization [108]. Image (a),(b) courtesy of [194].

described in an over-parameterized way, e.g. by rotation matrices or quaternions as
mentioned in Chapter 2. Another idea is to consider the underlying space as a man-
ifold : HOG-MAN algorithm [69] proposed a new hierarchical optimization solution
on manifolds. It constructs different levels of the hierarchy to represent the original
problem at different levels of abstraction. The bottom corresponds to the original
input, while higher levels capture the structural information of the environment. In
the g2o algorithm [108], a similar representation is adopted to avoid the singularities.
Moreover it takes advantage of the special structure of the Hessian matrix to reduce
the system complexity by using Schur complement. COP-SLAM [52] optimizes pose
graph by constructing a novel pose-chains system by employing an extended version
of trajectory bending with respect to the pose graph, pose chain system considers
the relative pose displacement and corresponding transformation uncertainty. From
a fundamental perspective, the chain can consist of transformations belonging to a
Lie group whose exponential and logarithmic mappings are computable for all its
elements.

Moreover, we can draw inspiration from the various map representations in
SLAM to represent our GIS data. Different sensors used in SLAM algorithms will
build up quite different map types. Generally speaking, the representation of robotic
maps is divided into metric, topological and hybrid forms. The metric framework
is created on 2 or 3 dimensional space with precise coordinates of objects. This
representation is useful but noise prone. The topological framework is a node-edge
graph that only describes objects and their distance. This representation is of low
space complexity but difficult to construct in a large-scale environment.

34 3.3. METRIC VISUAL LOCALIZATION

Feature map represents the environment only with the positions of salient fea-
tures or landmarks in the scene, c.f. Figure 3.6(a). In monocular visual SLAM, a
feature map can be stored in a single vector as m = [f1, f2, . . .]T , that only con-
tains coordinates of features fi. Although this approach is a sparse representation of
the environment, newly discovered features will instantly augment the dimensions
of the map vector.

Occupancy grid map is another way to model the environment as an array of
cells, as depicted in Figure 3.6(b). Each cell holds a value to measure the probability
that this region is occupied by an obstacle. It is widely used in obstacle avoidance
and path planning algorithm. Also, it is suitable to represent dense structure of
environment and can be generated and updated from sonar or laser scan finder
data. Although it can achieve good results, this approach is difficult to apply in
a wide and dense environment due to the resolution requirement and calculation
burden.

Pose graph (see Figure 3.6(c)), is a representation of the robot’s trajectory as a
graph structure in which nodes represent robot poses and the edges between poses
represent the spatial constraints. In contrast with the feature or grid map, this
map is ego-centered and hardly concerns landmark or obstacle information outside.
Yet, we can attach outside information into nodes and integrate odometry informa-
tion or loop closure into edges. Since this data structure is close to the concept of
GraphSLAM, we can find its applications in many optimization based algorithms.
Moreover, this map is widely combined with occupancy grid map as a hybrid rep-
resentation. The size of the pose graph should be accounted likewise due to its big
influence on computational cost.

A hybrid map is often referred to as a metric topological representation7. This
kind of map is often used to manage large-scale environments. The insight is that
local metric maps are stored in the nodes of a global pose graph map. The difficulty
of hybrid map is to achieve good scaling properties at a global level. Meanwhile,
fusion between metric and topological information must be accordant with geometry
constraints [20].

Visual Odometry

Apart from the SLAM paradigm, visual odometry [148] can also estimate the struc-
ture and motion directly from raw images. In visual odometry, the local or global
intensity features are used to render the pose transformation instead of the geome-
try of handcrafted features. Visual odometry outperforms feature-based methods in
robustness and less-structured environment, or in camera defocus and motion blur
situations. However, it is influenced by the accumulated errors introduced during
every frame-to-frame motion. Instead of minimizing re-projection error in the vi-
sual SLAM, the photometric error is computed and optimized in visual odometry
algorithms. As for the pipeline of visual odometry, we denote I0:t = {I0, . . . , It} to
represent a set of images taken up to step k. The rigid body transformation between
two adjacent time k − 1 and k is defined as,

Tk =

[
Rk,k−1 tk,k−1

0 1

]
(3.15)

7Also known as the combination of at least two different maps.

CHAPTER 3. REVIEW OF VISUAL LOCALIZATION 35

(a) (b)

(c) (d)

Figure 3.6: Illustration of general representations of map: (a) Metric feature based
map contains only coordinates of distinctive features; (b) In 2D occupancy grid map,
black regions are occupied, white are free of obstacles and gray are unobserved; (c)
In pose graph, nodes contain orientation and position while edges contain relative
relationship; (d) Hybrid map usually combines occupancy gird map with pose graph;
Images (a),(b), (c) and (d) are coming from [195] and [20] respectively.

36 3.3. METRIC VISUAL LOCALIZATION

Rk,k−1 and tk,k−1 describe the rotation matrix and translation vector respectively.
We can use optimization technique to compute the relative motion Tk, using either
the intensity information of all pixels or only salient and repeatable feature across
images I. Therefore, if initial camera pose C0 is given, we can recover the full
trajectory of camera C0,...,t pose after pose according to the equation below:

Cn = Cn−1Tn (3.16)

Visual odometry method is applied a lot to deal with a stream of image sequences
captured by a camera. Most current visual odometry methods fail or cannot work
effectively in outdoor environments with big illumination changes. They are more
susceptible to the shadows and directional sunlight [7]. In our case, the GIS dataset
was captured long time ago and in a cross season way, visual odometry thereby
would not be a good option for our thesis.

3.3.2 Learning-based Metric Localization

Similar to place recognition, we now see more and more algorithms based on deep
learning methods in the metric visual based localization. learning-based methods
usually require a long-time training process but once models are generated, localiza-
tion is often obtained in an end-to-end fashion with a low memory demand. Deep
learning is a data oriented method which requires huge training dataset. Although
many training dataset are labeled by SLAM methods, we believe a comparison be-
tween the handcrafted feature and CNN feature are meaningful.

Shotton et al. [177] employed a regression forest to estimate the camera pose from
a single RGB-D image relative to a known 3D scene. A scene coordinate regression
forest (ScoRe Forest) is trained to learn 2D-3D correspondence using RGB-D im-
ages with known camera poses. Every image pixel is labeled by scene coordinates
inferred from depth and camera pose information. Once the correspondences be-
tween pixel coordinates and the 3D scene are learned, a pool of pose hypotheses
is generated based on the correspondances and the RANSAC is used to refine a
pose from the pool. This work avoids the traditional pipeline like feature detection,
description and matching. Brachmann et al. [23] improved this approach with a
single RGB image by modeling and reducing the uncertainty during the learning
processing, by formulating the problem using a conditional random field to generate
pose [134], and by changing the hypothesis selection of RANSAC to be differentiable
and learnable [22].

PoseNet [100] is another impressive approach to train a naive end-to-end model
to regress camera position and orientation with the single input of pose-tagged RGB
images. It relocalizes query images with a 2m and 3◦ accuracy in outdoor scenes.
It is able to learn CNN features with large context and contours invariant to poses
and tolerate indoor/outdoor environment, motion blur, unknown camera intrinsics,
weather changes, dynamic objects, etc. However, authors found it is difficult to
learn both position and orientation at the same time and a large number of training
dataset is required to obtain a good performance. Furthermore, geometric [99] and
probabilistic [98] extensions to this algorithm are also explored. The experiments
of [131] show that, traditional CNN architectures work better in scene coordinate
regression and slightly less accurately in pose estimation compared to the test-time
efficient Random Forests and ForestNets.

CHAPTER 3. REVIEW OF VISUAL LOCALIZATION 37

Walch et al. [43] leveraged the Long-Short Term Memory (LSTM) [82] units on
the fully connected (FC) output in PoseNet to reduce the overfitting effects. This
technique is capable of selecting the most useful context of feature correlations for the
pose estimation and improves the previous accuracy by 5-50% depending on different
datasets. Inspired by PoseNet, VidLoc [40] presented a bidirectional CNN-Recurrent
Neural Network (RNN) model to perform pose estimation of a video clip, which
outperforms PoseNet regarding the temporal consistency and the smoothness of the
localization. Other improvements are also proposed, including RGB-D camera pose
regression [118] with a dual PoseNet stream on RGB image and depth respectively
and CNN map compression [43].

In the metric visual based localization, deep-learning-based methods are still
pioneers and the localization inferred from dense context CNN features still remains
coarse precision compared to the traditional handcrafted feature approaches. For
the handcrafted-feature-based methods, the limitation mainly lies in the sparse scene
representation: the number of correctly matched features primarily impacts the
accuracy of the pose estimation.

3.4 GIS-aided Visual Localization

After introducing the two main categories of visual localization, we will give a par-
ticular focus on the GIS-aided visual localization since it is very close to our mo-
tivations. We are interested in the representations of GIS in the state-of-the-art
which enable the urban navigation of a vehicle without exploring the environment
beforehand. Our aim is to leverage the GIS to replace the consistent map building
process in current urban localization systems.

As far as we know, there is few literature about GIS-aided localization systems.
We also find that Google Street View is the most frequent used GIS database.
In [128], a ground-air localization system is realized by matching images acquired
from a MAV (Micro Aerial Vehicle) with Street View images. This system aims
at solving the urban place recognition problem from aerial vehicles without GPS
signals. The localization works at place recognition level and is able to deal with
extreme changes caused by viewpoint, illumination, perceptual aliasing and over-
season variations. Google Street View is converted into an image-feature-based
representation by a virtual-view generation method called ASIFT 8. Further they
improved the accuracy using precise 3D cadastral models of buildings in [128]. Vaca-
Castano et al. [206] estimated the geo-localized trajectory of a camera in an urban
environment with the similar feature matching scheme as [128], but they smoothed
the whole trajectory using a MST9 to eliminate noisy results. Taneja et al. [193]
employed a recursive Bayesian framework on the matching scheme to perform con-
tinuous positioning of a vehicle inside the discrete structure of Street View. Instead
of matching, in [223], query images are localized by an indexed tree which is con-
structed by SIFT descriptors of 100, 000 geotagged Google Street View images and
the GPS location of a query image is searched by a voting method. Since common
feature detectors and descriptors fail to realize robust city-scale matching between
query images and Street View, invariant or informative descriptors are extensively

8Affine Scale-Invariant Feature Transform
9Minimum Spanning Trees

38 3.4. GIS-AIDED VISUAL LOCALIZATION

studied, see [12, 60, 174, 201, 218].

However, all above approaches make use of Street View to formulate a place
recognition problem instead of a metric localization. In a city environment, Street
View imagery is able to serve as a reference database for the metric visual localiza-
tion. For example, Zhang et al. [227] proposed a position estimation by triangulating
the current image and matching features with two or more geo-tagged images from
the Street View database. In [88], the vehicle position is calculated by applying a
structure from motion algorithm with the accurate 3D urban models from Google
Earth. Agarwal et al. [2] utilized Google Street View as a source of accurate geo-
tagged imagery to allow robots to localize with a global reference. The localization
problem is modeled as a non-linear least square estimation in two offline stages.
The first estimates the 3D position of tracked feature points from short monocular
camera sequences. The second computes the rigid body transformation between the
Street View panoramas and the estimated points. The algorithm is validated in
real urban scenario by using data from a Google Tango tablet. The accuracy of the
localization is significant, about 40% within 1m and 60% within 1.5m lower than
the mobile devices (5 to 8.5m) [225] from a cellular network and GPS.

The second frequently used GIS is OpenStreetMap, a free community-driven
map. A prior information in OpenStreetMap, such as aerial images [109, 117], map
networks [25, 58, 149], geo-referenced semantic objects [156, 158] are interoperated
into a SLAM or visual odometry procedure to realize the localization. As such, map
building is still essential and GIS only serves as a drift corrector for existing SLAM
algorithms.

Recent approaches leverage Street View or OpenStreetMap in two ways: either
place recognition or epipolar localization. The former focuses on fast retrieval and
robust matching with the Street View database using invariant descriptors or ap-
propriate data structures. The latter appears complex but metric results are often
promising. They are all based on the hypothesis that the geo-referencing of Street
View imagery is correct as a ground truth. The Street View database is widely used
for semantic classification and recognition in the machine-learning field as the train-
ing dataset [215, 216]. With respect to learning-based localization, Street Views are
often used as query images to test instead of training, such as in PoseNet and the
Tokyo 24/7 dataset. It is probably caused by the discrete distribution and limited
quantity of Street View. Moreover, only the geo-reference and Street View imagery
are used in these algorithms. A well known city environment should also contain
topological information as well. Is it possible to combine topological information
with Street View to improve localization performance?

Meilland et al. [10, 42, 132, 133] realized an urban navigation using the visual
odometry with a pre-processed spherical imagery. The spherical imagery is con-
structed using consecutive images associated with 3D points and tagged with precise
positions along the trajectory. The consecutive images are also well calibrated with
the fixed transformation relationship, especially the orientations between them. It
serves as a reference to render the global localization and reduce the incremental
error of visual odometry. Even though they constructed a global reference imagery
by themselves, their node-edge representation of the spherical images and the topo-
logical information denoted by consecutive orientations inspire us a lot.

Inspired from the GIS-aided localization systems, our idea is to utilize GIS’s ac-
curate geotagged imagery to develop a rapid and precise localization system. Instead

CHAPTER 3. REVIEW OF VISUAL LOCALIZATION 39

of GIS-aided SLAM methods, we tend to make full use of depth information, topo-
logical information and imagery to localize a vehicle on a GIS map directly instead
of building a map. From the handcrafted-feature-based methods, we can leverage
the BoW scheme to obtain a coarse positioning for a query image from vehicle and
refine the localization by the epipolar geometry. On the other hand, we will explore
the use of geotagged GIS imagery as a training data to infer the pose directly.

3.5 Conclusion

This chapter addressed two main categories in the visual localization problem: place
recognition and metric visual localization. Place recognition is a topological localiza-
tion task while structure based localization aims at estimating the accurate metric
pose. However, from the algorithmic point of view, they both can be solved by two
aspects: classic handcrafted-feature-based and recent deep learning-based methods.
Then many state-of-the-art techniques have been introduced and their advantages
and disadvantages have been described. In particular, SLAM and visual odometry
methods are presented due to their important roles in current autonomous vehicle
field. We also reviewed some GIS-aided localization systems. They often leverage
one single source of the GIS as a complement for their positioning. It inspires us to
fully make use of the abundant GIS database.

After this literature review, we have a clearer view to propose solutions to our
problems, such as how to represent GIS data in a robotic way from the SLAM meth-
ods; how to choose localization schemes, such as optimization or filtering methods;
how to extract interesting features, including local point of interest or CNN high-
level features.

Current visual localization approaches open up a big picture to guide us to
design localization algorithms. In the following chapters, we will firstly present
the system for the experimental test and the construction of an adapted GIS, then
a traditional handcrafted-feature-based and CNN feature based algorithms will be
proposed respectively.

40 3.5. CONCLUSION

Part II

Online Data Acquisition and
Offline Database Construction
from Geographic Information

System

41

Chapter 4
Online Data Acquisition

4.1 Introduction

The main objective of this thesis is to realize a metric global visual localization in
the urban area with an existing map data. According to the state-of-the-art pre-
sented in Chapter 3, we know that query images and database images are required.
Thereby, we divide the data acquisition part into the online data1 captured by a
camera equipped on our own vehicle platform, and the offline data collection and
reconstruction from Google Street View. Images acquired online are compared to
database images from Street View with the aim of finding the relative pose trans-
formation.

4.2 Review of current online dataset

At the beginning of the thesis, we favored existing online datasets so as to have a
comparison with other methods. We did a survey2 of the popular datasets, such
as New college and Oxford city center datasets [46, 182], Rawseeds datasets [30],
Malaga urban datasets [21] , Marulan datasets [151], Karlsruhe urban sequences [62],
KITTI datasets [63] and MIT DARPA datasets [84]. According to the objective, our
online dataset should be monocular image sequences with ground truth captured in
urban environments where Street View data is available. Throughout the research
(see in Table 4.1), we hardly found an ideal dataset, for example, the city of the
KITTI dataset has no Street View; the MIT DARPA datasets mainly captured
highway scenes; the Oxford city center and Malaga urban datasets have no ground
truth for the image sequence. As a consequence, we constructed our own platform
for the online dataset acquisition. Here we introduce the platform and sensors used,
available data captured, and the test area respectively, then we illustrate some data
examples.

1Readers might be confused about the concept of “online” since our following test is actually
conducted offline but as close as possible to the real-time conditions. The term “online” serves as
a contrast to the “offline” database construction from GIS.

2This survey was done in November, 2014 and now some suitable datasets are released, like
Udacity urban datasets in 2016.

43

44 4.3. EXPERIMENTAL SETUP

Dataset GPS GT Street View Urban Area Path length Images

New College (2008) + - + + 2km Monocular RGB: 640*480
Oxford City + - + + 28km Monocular RGB: 640*480

New College (2009) + - + - 2.2km Stereo RGB: 512*384
Rawseeds datasets + + + - 1.9km Monocular RGB: 320*240

Malaga urban datasets + - + - 36.8km Stereo RGB: 1024*768
KITTI + + - + >50km Stereo RGB: 1392*512

Ford campus + + + - >6km Omni RGB: 1600*600
Karlsruhe sequences + + - + 6.9km Stereo B/W: 1344*391

MIT DARPA + + + + 90km Monocular RGB: 376*240

Table 4.1: A comparison of some datasets regarding the presence (+) or not (-)
of GPS sensors, ground truth (GT), the Street View, the kind of cameras on the
vehicle, the captured environments and the dataset path lengths.

4.3 Experimental Setup

Concerning the objective of the thesis, only image sequences captured in urban
environment are used as input for our localization algorithm. In order to evaluate
our algorithm, every image should be geo-tagged with precise position as ground
truth. Thus a camera and a positioning system are mandatory in the experimental
setup.

4.3.1 System Platform

In practice, we use two vehicles developed by VEDECOM as test platforms (see
Figure 4.1), one is based on a Renault Zoé model and the other on a Renault
Scénic. Both vehicles are equipped with laser sensors, front and rear cameras, RTK
(Real Time Kinematics) GPS, 6 DoF IMU, IEEE 802.11p communication devices,
as well as integrated processors and computers.

The only difference between them is the front camera setup. In the Zoé model,
a stereo camera is embedded at the position of the front rear-view mirror. After
the calibration, we can use either left or right eye image as an input captured by
a monocular camera. In the Scénic model, we configured two monocular cameras
manually in order to face street facades. Similarly, images filmed by either left or
right camera can be regarded as an input. All sensor data are recorded, collected,
processed, and fused into “Socket Atlans.output” CAN (Controller Area Network)
in RTMaps 4 (cf. Figure 4.2). The configuration can be measured during the
calibration process. In the review of GIS-aided visual localization systems, we find
that the online capturing cameras are usually set in the front of the car for place
recognition tasks, while for metric structure based localization, they are often set
to face street facades. Owing to the two platforms, we are able to explore the most
suitable set-up in our case.

The autonomous car based on Zoé is the most recent model designed by VEDE-
COM. All sensors are reassembled together and hard to modify manually. Its inner
stereo camera is strongly affected by illumination reflections, which is mainly used
to detect the road or other vehicles according to VEDECOM. On the other hand,
the capturing cameras on the Scénic are fixed to look sidewards (i.e. recording the
building facades) in order to capture sufficient urban features.

All query images are captured in grayscale by the modular MIPSEE camera for

CHAPTER 4. ONLINE DATA ACQUISITION 45

Figure 4.1: Platforms for online data capturing: (a) the autonomous vehicle Renault
Zoé at VEDECOM; (b) the inner front stereo camera on the Zoé car; (c) the vehicle
Renault Scénic at VEDECOM; (d) two cameras mounted on roof of the Scénic car.

46 4.3. EXPERIMENTAL SETUP

Figure 4.2: RTMaps 4.0 is used to record and preprocess the captured datasets.
Besides the RTK GPS, we can also obtain many other parameters, like true heading,
roll and pitch.

both vehicles, see Figure 4.3. It is a low-cost camera with 640 × 480 resolution,
a 57.6◦ field of view (FoV) and a 20 frame-per-second frequency3. The localiza-
tion ground truth is recorded by a RTK-GPS coupled with a highly accurate IMU.
The global position can achieve a centimetric accuracy. However, the precision is
strongly affected in urban environments where indirect measurements or non-line-
of-sight phenomenon can occur [111]. Moreover, as illustrated in Figure 4.3(b), the
position of the RTK-GPS is different from that of the camera. Thus, a rigid body
transformation is necessary to transfer the RTK-GPS to the camera frame. We do
this transformation according to the calibration and it is expected that the ground
truth is the pose of the camera frame since the pose annotations of Google Street
View correspond to the panorama point of view.

The camera and RTK-GPS have totally different frequencies. RTMaps just
records all data in an asynchronous way. We synchronize the RTK-GPS on im-
ages based on timestamps and a simple interpolation.

4.3.2 Test Area

After preparing the platform, the online dataset has been recorded on several ur-
ban streets in the city center of Versailles in France, and covers a total length of
roughly 5 km for each vehicle. The area was primarily chosen because of its good
urban appearance (see Figure 4.5), high performance of RTK GPS and the traffic
accessibility. Figure 4.4 shows a roughly processed test area describing the running
trajectory.

Notice that not every recorded images are tested in our algorithm. Trajectory
segments are selected carefully according to the following criteria:

3http://www.advansee.com/products

CHAPTER 4. ONLINE DATA ACQUISITION 47

Figure 4.3: Illustration of online image examples and the capturing system: (a)
online image captured by the left ego-camera on the vehicle Zoé; (b) birdview of the
camera configuration on the vehicle Scénic; (c) a left image recorded by the Scénic;
(d) a right image recorded by the Scénic.

48 4.3. EXPERIMENTAL SETUP

2.1 2.11 2.12 2.13 2.14 2.15 2.16 2.17

48.775

48.78

48.785

48.79

48.795

48.8

48.805

48.81

48.815

48.82

48.825 Trajectory of Zoe
Trajectory of Scenic

Figure 4.4: Illustration of the test area of two vehicles: the trajectory of Zoé and
Scénic in red and blue respectively. Please notice some overlapping test areas are
covered.

CHAPTER 4. ONLINE DATA ACQUISITION 49

• The test area has an urban or at least a sub-urban appearance without the
noise caused by broad vegetations4. For example, segments without urban
features in the test area will no be tackled, cf. Figure 4.5;

• The RTK GPS should have a sufficient accuracy (good satellite visibility, low
standard deviation, etc.).

• The coverage and depth quality of Google Street View should remain good in
the same area, see next chapter.

4.4 Conclusion

In this chapter, we presented the online data collection in urban environment. Com-
pared with the offline database construction presented in next chapter, the online
data acquisition is simple to employ. We recorded image sequences from a well
calibrated monocular camera and each image is geotagged by a precise RTK GPS.
Then we filter out some trajectory segments with big noises or low quality.

4Vegetation is common in urban environment but if an scene is covered by tall trees extensively
and this scene lasts for a long time, it is very tricky and even impossible for navigation by simple
visual localization methods.

50 4.4. CONCLUSION

Figure 4.5: Image examples captured by Zoé with good urban appearance in blue
spots and with noise in red spots. Since the camera is installed behind the windscreen
inside the car, the captured image are all affected a lot by parasite reflections. The
noise data lacks urban features due to big vegetations and they look similar even
if they are captured in totally different places. It is very difficult to realize visual
localization as stated in the Chapter 3 since the depth quality is low. We will
overlook this scenario in the test area.

Chapter 5
Offline Database Construction and Urban
Environment Modeling

In most current visual localization algorithms, the explored environment is rep-
resented by online captured data directly. However, in this thesis, we decide to
represent and model the environment from the existing (offline) data, and then
leverage this constructed model to localize the online data. If the existing data is at
a world-wide scale, like a standard GIS, it is likely to realize a global visual localiza-
tion. However, the urban environment is usually complicated, dynamic and full of
illumination changes and moving objects. Therefore, we should carefully design the
offline database construction, especially to decide how to represent this environment
and from which type of data in the GIS.

Although the GIS generally records important data and filter out other useless
information, the datasets are still too dense and various to deal with. Modeling the
urban environment with the aid of the existing data is an important task for this
thesis. In this chapter, we are going to explain how to choose an ideal existing GIS,
how to extract useful data from it, how to make the data compatible with the online
datasets and finally how to represent the urban environment in a compact way.

5.1 Geographic Information System

The term “Geographic Information System” was introduced by Roger Tomlinson in
1968 [199] when the computer hardware made digital topography and cartography
possible. He also created the first operational GIS in Canada. The past decades have
seen a big development in GIS. Now GIS’s have become integrated representations
of various captured spatial and geographic data, such as geodetic positions, 2D
maps, panoramic images, depth maps and 3D cadastral models, etc. It is also an
interactive platform to capture, store, represent, manage, update and process all
geo-information.

GIS’s play an essential role in our daily life with their public services from compa-
nies like Google Maps, Bing Maps, HERE, OpenStreetMap, Baidu Maps, TomTom
and Mappy. Some more accurate GIS services are also accessible from national map-
ping organizations like the IGN (Institut National de l’Information Géographique
et Forestière) in France. A good GIS asks for sophisticated hardware, software,
comprehensive algorithms, precise capturing and frequent updates. We will not go

51

52 5.1. GEOGRAPHIC INFORMATION SYSTEM

GoogleMaps HERE Bing Maps OpenStreetMap Baidu Maps TomTom Mappy

Geo-data + + + + + + +
Depth + + - - + + -

2D Maps + + - - + + -
HD Maps - + - - - + -
3D Models + + - - - - -
Live Maps + + + - + + +

Street Imagery + - - - + - -
Public Access + + + + - - -
Route Planer + + + + + + +

Table 5.1: A synthesis of current popular GIS.

further on how to design a qualified GIS at global level. But a survey is conducted
as follows to understand pros and cons of current world-wide and precise GIS’s to-
wards the applications on the autonomous vehicle domain. We discuss the following
items in various GIS’s and analyze their coverage degree and accuracy. Note that
“+” denotes the presence of elements, while “−” is the absence.

• Geo-data is the precise geodetic coordinates annotated to the captured imagery
or laser scans;

• Depth provides 3D information of interesting points or surfaces in the scene;

• 2D map is a well-projected topological and metrically scaled description;

• HD map is a highly-defined machine-readable combined with a precise sub-lane
level representation of road network,e.g. HERE HD Map.

• 3D Models are the cadastral landscape composed by 3D buildings;

• Live map is the dynamic traffic conditions and hazard warnings delivered by
the real-time transportation statistics, which is widely used in motion plan-
ning;

• Street imagery provides urban scenes from positions along urban or rural
streets, e.g. Google Street View;

• Public access is very important for our thesis but not all GIS’s are free to
access, for example, HERE is only for commercial clients;

• Route planner is designed to give one or several optimal trajectories from
the starting point to destination considering time costs or other subjective
requirements.

In GIS’s, all information are normally organized and visualized according to
its geo-data. The geo-data is frequently expressed according to its latitudes and
longitudes in WGS84 system, which acts as key index variables to link other spatial
or geographic information together [71, 160]. Considering the public access, accuracy
and coverage, we choose Google Maps as our GIS data sources. As illustrated in
Table 5.1, Google Maps nearly offers us all kind of useful information except HD
maps. Nowadays, HD maps turn to be a powerful and even an essential mapping
asset to support connected ADAS (Advanced Driver Assistance Systems) and highly

CHAPTER 5. OFFLINE DATABASE CONSTRUCTION AND URBAN
ENVIRONMENT MODELING 53

Figure 5.1: Google Street View capturing equipments: (a) From left to right depicts
Street View Trekker, Street View Trolley for indoor acquisition, Street View Trike
and Street View Car; (b) Google’s R7 panoramic camera system.

automated driving use cases. Taking HERE as an example, its HD Live Map is self-
maintained and built up by map layer, activity layer and analytics layer. Activity
and analytics layers enhance the dynamic motion planner and comfortable control
for automated vehicle. Its map layer is a well-designed street representation for
positioning, localization and autonomous maneuvering, including slope, curvature,
lane markings, roadside objets. However, the solution of HERE is not available at
global level. Moreover, it will not furnish enough low level information to allow
us to build a compact representation of the environment, since the main aim of
HERE HD map is to realize the lane level localization. After the review, we found
sufficient information in Google Maps to enable us to construct a global and light
representation. As we focus on the vision-based localization, the main data source
resides in the Street View of Google Maps.

5.2 Google Street View

Street View has been launched as a part of Google Maps since May 2007 and aims
to gather global-scale street-level imagery with accurate geo-locations [6]. Till now
Street View has expanded to over 3, 000 cities worldwide. Numerous data-collection
platforms are developed, such as trekker, trolley, walking and vehicle apparatus
(see Figure 5.1(a)) and the on-hand capturing camera system which are regularly
updated. All the imagery of urban environment is collected from a car-mounted
panoramic camera system dubbed R7 accompanied by Laser scanners. The R7
system is a ruggedized rosette of 15 identical, outward-looking cameras with 5-
megapixel CMOS image sensors and low-flare, controlled-distortion lenses. All cus-
tom cameras are synchronized to increase the field of view and enable to collect
fully-explored images even capturing the side-walks of a narrow street. The image
set at the same timestamp is processed as a panorama by end-to-end stitching and
privacy removal algorithms.

Then an accurate position estimate of the vehicle is associated to the panorama
along a street map. The pose estimate is obtained by sensor fusion: GPS, wheel
encoder and IMU data are logged to obtain raw pose estimates; then a offline Kalman

54 5.2. GOOGLE STREET VIEW

Figure 5.2: An extracted Street View of the Arc de Triomphe by setting parameters
as 640× 320 resolution, latitude= 48.8738, longitude= 2.2950, 0◦ heading, 0◦ pitch
and 120◦ field of view.

filter algorithm and a batch optimization algorithm called GPO [6] are used to render
a smoother and locally accurate pose. The final pose is transformed into a road-
positioning data by a probabilistic graphical model of the road network [6].

The laser range data is aggregated and simply recorded by fitting it into a coarse
mesh to model the dominant façades in the scene. This mesh is used to render a
panoramic depth map by tracing rays from each panorama positon. Each pixel in
the depth map represents a lookup into a table of 3D plane equations that allows
us to reconstruct the real depth value. This data is also used to determine the
consistent 3D cadastral models in Google Earth by fusion and filtering techniques
[200]. The Street View team compacts panoramas and depth maps using lossless
compression which allows a quick transportation over the network and a real-time
representation at the frontend APIs.

5.2.1 Data Extraction

Till now, we know the main data of Google Street View consists in geodetic data,
spheric images and associated depth maps. However, when we access one location at
Google Street View web API, we normally get perspective images and their positions.
In this way, our first task is to figure out how Google stores and represents all the
information. In fact, once the R7 system has captured several rectified images in one
location. These images are reorganized (segmented) in several units (a small image
of 512×512 resolution called “tile”), these tiles are well placed in grids of a spherical
bitmap and are stitched into a high resolutional panorama. In the visualization, we
only access the tiles but in the backend of Street View, all the geodetic data, depth
information and panorama are encoded and stored into a compact XML source file1,
as shown in Figure 5.3. In this way, we can access the Street View data by two
methods, one is to download directly from the API, the other is to obtain the source
file and decode the XML data.

In the literature, most researchers [129, 147, 164, 215] downloaded perspective
Street Views (tiles) from the API directly, which provides an interface to access

1 This XML file is Base64-encoded and zlib-compressed.

CHAPTER 5. OFFLINE DATABASE CONSTRUCTION AND URBAN
ENVIRONMENT MODELING 55

images for certain coordinates. We need to specify some parameters beforehand:

• Latitude and longitude;

• Vehicle heading, also known as global yaw;

• Vehicle pitch, a up-down angle;

• Field of view (up to 120◦);

• Resolution (up to 640× 640 pixels).

Take the location of the Arc de Triomphe as an example. We fix random parame-
ters into the following API access link and get a perpective Google Street View shown
as Figure 5.2: https://maps.googleapis.com/maps/api/streetview?size=640x320&
location=48.8738,2.2950&fov=120&heading=0]&pitch=0

As we mentioned, this perspective image is one tile projected in the spherical grid
of Street View panorama. Regardless of the copyright watermark, this acquisition
method is still not suitable since Google APIs prohibit consecutive downloads and
will block the user’s IP-address if excessive accessing is detected. Therefore, we parse
the available XML files behind the API with a Python script to extract and calculate
the raw data. We can retrieve this raw data by requesting one of the following
URLs: http://maps.google.com/cbk or http://cbk0.google.com/cbk. In the
same way, we add some parameters to the URL: “output” is the format of output
in XML or json; “ll” means latitude and longitude; “dm” is a boolean value to access
depth map data or not and “pm” is a boolean value to include panorama data or
not. Take the same location of the Arc de Triomphe as an instance to obtain its
corresponding raw data as illustrated in Figure 5.3. Please note that the coordinates
of the Street View are just the closest position to the input coordinates, namely,
they will not be consistent.

http://maps.google.com/cbk?output=xml&ll=48.8738,2.2950&dm=1&pm=1

From the Figure 5.3, we can extract a lot of useful information about this Street
View, for instance:

• Panorama pixel resolution, 13, 312× 6, 656;

• Panorama identity no., BbTzlrUC13Cuq2B Eluleg;

• Capturing global yaw, 286.62◦;

• Optimized latitude and longitude, 48.874192, 2.295204;

• Capturing date, 2014− 8;

• Elevation angles in different formats;

• Original latitude and longitude;

• Neighboring panorama ids and their yaw angles;

• Encoded panorama pixel and its depth map.

https://maps.googleapis.com/maps/api/streetview?size=640x320&location=48.8738,2.2950&fov=120&heading=0]&pitch=0
https://maps.googleapis.com/maps/api/streetview?size=640x320&location=48.8738,2.2950&fov=120&heading=0]&pitch=0
http://maps.google.com/cbk
http://cbk0.google.com/cbk
http://maps.google.com/cbk?output=xml&ll=48.8738,2.2950&dm=1&pm=1

56 5.2. GOOGLE STREET VIEW

Figure 5.3: An extracted XML source file of the Street View and associated depth
map around latitude= 48.8738 and longitude= 2.2950.

CHAPTER 5. OFFLINE DATABASE CONSTRUCTION AND URBAN
ENVIRONMENT MODELING 57

However, the chunk of the panoramic image and its associated depth map are
still encoded. After decoding and uncompressing according the Base 64 rule, we
can obtain a panorama directly but the depth map should be reconstructed. The
interpreted panorama has a very high pixel resolution by capturing a 360◦ horizontal
and 180◦ vertical field-of-view in a spherical projection [135, 215]. More importantly,
all panoramas are geotagged with optimized GPS coordinates and cover the street in
a nearly uniform successive way. The topological information of a panorama is given
by the global yaw angle, which measures the rotation angle in clockwise direction
around the R7 system locus relative to the true north. In fact, the GPS position of
Street View is highly precise due to a careful global optimization.

As we stated, we can not retrieve a depth map directly after decoding. Actually,
we only obtain some organized values, including:

• The depth map image size, the default value is 512× 2562 ;

• The total number of planes in a panorama;

• An integer list is assigned to every plane, know as the plane normal vector n;

• The plane index to every pixel in the panorama;

• The distance plane.d from every plane to the camera center O, see more in
Figure 5.4.

At first, we were confused about these parameters and their meaning. After
analyzing the capturing system, we found that the associated depth map stores the
distance denoted as plane.d and the orientation of various points denoted as n in
the scene coming from laser range scans [135]. It only encodes the scene’s structural
surfaces (known as the planes) by their normal directions and distances, allowing to
map building facades and roads while ignoring smaller dynamic entities. With the
geometry of the planes, the index of the plane of each pixel and the distances, we
can compute the real depth of every pixel. Algorithm 1 illustrates the pipeline for
the depth map extraction and visualization. It is clear that the number of planes
differs for each panorama.

Consider a pixel p = [x, y] in the depth map, with x ∈ [0, w − 1], y ∈ [0, h− 1],
where w and h being the width and height of the depth map, namely 512 × 256.
We normalize the image pixel into [0, 1] space and then turn it to the yaw and
pitch in the spherical coordinate system. In order to recover the ray direction s in
Figure 5.4, we convert the spherical coordinates to Cartesian coordinates. With the
plane distance and the directional vector, the dot product is used to calculate the
absolute depth. Notice that all values with a depth of zero are considered as points
at infinity. To visualize, we simply normalize the depth between 0 and 1 and map
it to grayscale by multiplying with 255.

2The size is smaller than its panorama.

58 5.2. GOOGLE STREET VIEW

s

�

sphere

pl�ne

plane�d

depth

�

p

Figure 5.4: Illustration of the parameters in the depth map.

Algorithm 1 Depth Map Computing & Visualization Algorithm

Require: x, y, w: customized width; h: customized height; Indices; planes
Ensure: depthMap, Intensity

1: for all x, y, indices do
2: planeIndex←Indices[y ∗ w/512 + x/256]
3: yaw : θ ← w−x−1

w−1
∗ 2π

4: pitch : φ← h−y−1
h−1

∗ π
5: spherical vector : s← [cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)]T cf. Equation. 5.5
6: if planeIndex > 0 then
7: plane← planes[planeIndex]
8: depth = plane.d

s·plane.n
9: depthMap[y ∗ w + (w − x− 1)]← abs(depth)

10: else
11: depthMap[y ∗ w + (w − x− 1)]←∞
12: end if
13: end for
14: for all x, y,pixels do
15: depth← depthMap[x+ y ∗ w]
16: Intensity[x+ y ∗ w]← depthMap[x+ y ∗ w]/100 ∗ 255
17: end for

CHAPTER 5. OFFLINE DATABASE CONSTRUCTION AND URBAN
ENVIRONMENT MODELING 59

Figure 5.5: An example of extracted Street View panorama at location
[48.801516, 2.131556] in the test area.

Figure 5.6: A depth map is associated with Figure 5.5 computed by Algorithm 1.

Figure 5.7: 86 different depth planes of Figure 5.6 are illustrated in colormap.

60 5.2. GOOGLE STREET VIEW

Figure 5.8: The point cloud with a 88, 604, 672 size is generated from the panorama
of Figure 5.5 and its associated depth map. Note that for depth with value zero, we
multiply by a fixed depth 250 to visualize the point cloud.

Figure 5.5, 5.6 , 5.7 and 5.8 depict the extracted panorama, depth map, depth
plane and point cloud respectively at the location [48.801516, 2.131556]3 in the test
area. For the sake of bandwidth saving, the depth map is sampled down to 512×256
pixels but recovering similar size to the panorama is easy. The depth map provides
a coarse 3D structure of the scene with a relatively low accuracy (see more in [203]).
For this reason, we neglect ineffective pixels with depth > 200m.

According to the test area of the online data acquisition, we use OSRM (Open
Source Routing Machine) [85] to simulate a high-level planning of the test trajectory.
Then we are able to use the planed coordinates to download all panoramic images
and associated depth maps along the test trajectory. Moreover, we add a searching
radius (12m in practice) to ensure all Street Views are detected in a fixed trajectory.
The test area are covered by 478 useful Google Street Views in total, see Figure 5.9.
Every blue blob stands for a discrete location where a Street View is available.

5.2.2 Assumptions and Challenges

The quality of the offline database construction strongly depends on the Street View
GIS. As such, some assumptions on the GIS must be fulfilled.

• Adequate spatial availability of Street View image is required. According to
our work, the average distance between consecutive panoramas is around 6 to
16m in Google Street View. It may differ a lot in one-way, two-way lanes or
at traffic corners. Indeed, the Google car can pass several times and record

3Please note in the remainder of the thesis, all geodetic locations are represented in a form
[latitude, longitude] with decimal units.

CHAPTER 5. OFFLINE DATABASE CONSTRUCTION AND URBAN
ENVIRONMENT MODELING 61

Figure 5.9: Illustration of the coverage of Google Street View in the test area.

62 5.2. GOOGLE STREET VIEW

Figure 5.10: The Street View panoramas are distributed with a nearly uniform
distance in the test area.

more panoramas in two-way lanes or at intersections. In the city of Versailles,
we suppose that this assumption is satisfied, as shown in Figure 5.10.

• The most recent Street View data are used in our experiment. During the test,
we found out that Google updates its Street View frequently (at least once
a year) at Versailles. Google also combines panoramic images with different
capturing dates together, for example Figure 5.5 was captured in November
of 2016 but its neighboring panorama at location [48.80056, 2.136449] in Fig-
ure 5.11 was recorded in July.

• We consider the geo-reference of the Street View as accurate enough to be used
for localization. We verified the geo-position of Street View with the RTK-
GPS and confirm that the global position of Street View is precise as Google
stated in [6], while it exists slight deviations between the depth map and
panorama, as illustrated in Figure 5.12. This phenomena appears particularly
in the sub-urban or broad area.

5.2.3 Panorama Transformation

After obtaining the raw dataset from the GIS, it is necessary to make sure that the
dataset is compatible with the online acquired data. It is obvious that panoramas
differ from our online mono-camera images in both size and visual appearance.
According to the state-of-the-art in Chapter 3, a direct way to estimate the pose from
different types of imagery exists neither in handcrafted-feature-based nor learning-
based methods. A pre-processing of the raw data is thereby necessary to construct
an offline database compatible with the online dataset. To succeed in the metric
localization, panoramas can be transformed into a set of overlapping or unrelated

CHAPTER 5. OFFLINE DATABASE CONSTRUCTION AND URBAN
ENVIRONMENT MODELING 63

Figure 5.11: A Street View panorama at location [48.80056, 2.136449] is extracted
in summer in the test area.

Figure 5.12: Example of the discrepancy between panorama and depth map of
Figure 5.5. The red area illustrates the coverage of depth map without value 0.

64 5.2. GOOGLE STREET VIEW

cutouts (rectilinear images) to remove the large angle distortion, coming from the
generation of the panorama.

Street View, as a panoramic image in the spherical coordinates, is stitched from
plenty of small perspective images as mentioned before. Our task is to recover
customized perspective images from the panorama. This pipeline is often referred
as image transformation.

Before diving into the details of various projection and coordinate changes, we
firstly introduce some foundations used in the image transformation, specially about
warping function and interpolation.

Warping function and Interpolation

Let us consider an image I1 with a m× n pixel resolution in the camera frame F1.
The pixel position p1 = (u, v), with u ∈ [0;m[and v ∈ [0;n[, is associated to the
image’s intensity function, denoted as I1(p1). Suppose that for every pixel p1, the
depth along the optical axis (λ in the Equation 2.10) is well known. As such, the 3D
point in this frame P1 can be defined as P1 = f(p1, λ) when given camera intrinsic
parameters. Hence the set S = (I1,λ) is called the augmented image, including both
image intensity and depth map λ.

Now we have another camera that observes the same scene from a user fixed
point of view in the camera frame F2, with a transformation matrix as T ∈ SE(3)
relative to the frame F1, as shown in Figure 5.13. If the pose T is given, it is
possible to synthesize a new image I2 from the image I1 in the frame F2 with a
warping function [181], denoted as:

p2 = w(T; S) : SE(3)× R3 → R2 (5.1)

The function w(·) transfers the pixel p1, associated with the 3D point P1, to
the synthesized image I2 with a rigid transformation T(R, t), and then followed by
the corresponding projection, such as the perspective (cf. Equation 2.10), conic,
spheric, cylindric model. Indeed, the given image I1 can also be projected from
these different models. Please note that for the simplification, we do not define the
projection in the warping function but it is obligatory. The process to render a
new image from an augmented image is called “image synthesis”, the new image
is known as the “virtual image”. There is a special case when T(R, t = 0). It
means that the camera in the frame F2 stays in the same position of the camera of
the frame F1 but the rotation is changed. This special case is also known as “back
projection”.

In general, the point coordinates p2 hardly lies into a pixel directly, in other
words p2 /∈ N2. The intensity of the synthesized image ought to be interpolated
from the corresponding intensity of p1, as follows.

I2(p2) = I1(p1) (5.2)

There are many ways to interpolate image pixels in the literature, like the fast
nearest, bilinear and bicubic algorithms. In our work, we adopt the bilinear inter-
polation for its smooth performance and fast computation.

The bilinear interpolation [154] looks for a pixel’s intensity with its 4 nearest
pixel values that are located in diagonal directions (see Figue 5.13). We define a
function to render the integer value from a real number as, int(·) : R2 → N2. A

CHAPTER 5. OFFLINE DATABASE CONSTRUCTION AND URBAN
ENVIRONMENT MODELING 65

T
F1 F2

I1

I2

P

Scene

−!u

−!u
−!v

−!v

w(T;P)

p2

pN
i+1;j pN

i+1;j+1

pN
i;j pN

i;j+1

Figure 5.13: Transformation of camera in the scene. I1 is an augmented image in
the frame F1 with depth information. We are able to synthesize a new image I2 in
the frame F2 by bilinear interpolation.

66 5.2. GOOGLE STREET VIEW

supposed pixel position is defined by pN = floor(p2) 4. The coefficients of the
bilinear interpolation are defined as:

α = p2 − pN = [αu, αv] ∈ [0; 1] (5.3)

The pixel value interpolated from the coordinates p2 is defined pN
i,j as:

I(p2) =
[
1− αv, αv

] [I(pN
i,j) I(pN

i,j+1)
I(pN

i+1,j) I(pN
i+1,j+1)

] [
1− αu

αu

]
(5.4)

Panorama Backprojection

In our case, the image I1 is a Street View panorama with a spheric projection. We
aim at transforming this panorama into a set of overlapping or unrelated cutouts
(rectilinear images) at the same position. Hence, it is the special case in the image
warping. As such, we build a back projection model by standard ray tracing with
bilinear interpolation to extract perspective images. With this model, all panoramas
are .

We assume several virtual pinhole cameras, for instance 6 cameras, with the in-
trinsic calibration matrix K, mounted at the centre of the spherical coordinates S
with a user fixed pitch δ and roll ζ, local yaw angle ηlocal

5 changing by [0◦, 60◦, ..., 360◦].
The number of virtual cameras, intrinsic matrices and heading, pitch, yaw angles
are free to select, yet empirically the more identical they are to the actual on-board
monocular camera, the better performance expected.

Suppose a 3D point P ∈ R3 defined in the sphere coordinates S at point O (cf.
Figure 5.14). The projection of this 3D point on the unit sphere is represented by
p∗. It can also be projected directly on a virtual camera image plane I(p) with a
pixel value interpolated from p∗.

The 3D point P in homogeneous coordinates using spherical parametrization
(θ, φ, ρ) with θ ∈ [0, 2π] and φ ∈ [0, π], is denoted as:

P =

xS
yS
zS
1

 =

ρ cos(θ) sin(φ)
ρ sin(θ) sin(φ)
ρ cos(φ)

1

 (5.5)

It is easy to deduce the conversion relationship between the Cartesian and the
defined spherical coordinates, as follows.

θφ
ρ

 =

 arctan 2(yS
xS

)

arctan(

√
x2
S+y2S
zS

)√
x2
S + y2

S + z2
S

 (5.6)

4For example, given p2 = [50.11, 60.99], pN
i,j = floor([50.11, 60.99]) = [50, 60]. p2 will not lie

on the edges of a panoramra since the back projection is a centering downsample.
5Please distinguish: the local yaw angle ηlocal is the angle from which we extract an image from

the panoramic image and the global yaw angle ηglobal in the remainder is the orientation of the
vehicle when taking the panorama.

CHAPTER 5. OFFLINE DATABASE CONSTRUCTION AND URBAN
ENVIRONMENT MODELING 67

S

Oi
j

k

φ

θ

[R1; t1 = 0]−1

P

I

K[R1; t1 = 0]

p∗

p

O

Figure 5.14: Back-projection model: virtual cameras are constructed at the point
O and pixels in the image plane I are bilinearly interpolated from the panorama
sphere. The local yaw offset changes according to the direction of θ.

Therefore, the projection in a unit sphere is represented as,

p∗ =
P

‖P‖
=

cos(θ) sin(φ)
sin(θ) sin(φ)

cos(φ)
1

 (5.7)

According to the Equation 2.10, the perspective projection is represented as:

p = K
R1(δ, ζ, ηlocal)P

z(R1(δ, ζ, ηlocal)P)
=

fx 0 u0

0 fy v0

0 0 1

 R1(δ, ζ, ηlocal)P

z(R1(δ, ζ, ηlocal)P)
(5.8)

with the focal length f and the principal point (u0, v0). We choose the convention
that the z axis is the optical axis and normalize rotated 3D points to the unit plan
(z = 1). These intrinsic parameters are fixed according to our on-board camera. The
camera extrinsic matrix is deduced from the above configuration, namely the local
heading, pitch and yaw setup. R1 returns a rotation matrix through the Rodrigues’
formula.

As stated in the Equation 5.2, the intensity of virtual images can be sampled

68 5.2. GOOGLE STREET VIEW

from the warping function with

S(p∗)
w−→ I(p) (5.9)

Due to the high resolution of the Street View panorama, we can interpolate values
of intensity in virtual images perfectly, as illustrated in Figure 5.15 and Figure 5.17.
The corresponding perspective depth map can be addressed likewise, see Figure 5.16
and Figure 5.18. It is obvious that the more rectilinear images are back projected,
more overlapping views and detailed scenes appears in the result.

Figure 5.15: Rectilinear images are back projected from the panorama in Figure 5.11
with local yaw angle η changing by [0◦, 60◦, ..., 360◦]. The virtual cameras’ FoV, focal
length and resolution are all the same as the online camera MIPSEE.

Figure 5.16: Rectilinear depth maps are associated with Figure 5.15.

As we known, most of related researches rely on Google API to generate perspec-
tive images by setting a virtual camera’s parameters, such as FoV, pitch and yaw.
Compared with the provided API, this method works in a more robust and flexible
way, since we can set the intrinsic parameters of the visual camera as exactly those
of the monocular camera employed for online dataset acquisition.

CHAPTER 5. OFFLINE DATABASE CONSTRUCTION AND URBAN
ENVIRONMENT MODELING 69

Figure 5.17: Rectilinear images are back projected from the panorama in Figure 5.11
with local yaw angle ηlocal changing by [0◦, 30◦, ..., 360◦].

5.3 Topometric Representations

So far, we have discussed how to choose our GIS, how to extract useful data from it
and how to make the data fit to our online datasets. Now we will answer the final
question in the offline database construction: how to use the data to represent the
urban environment.

In the Chapter 3, we reviewed localization approaches taking advantages of Street
Views and some robot-accessible representations of the environment from the SLAM.
Inspired by the learning phase in [132], the given environment can be modeled as a
database learned in advance. We propose a compact topometric representations of a
given urban environment: all Street Views are represented by nodes, whose connect-
ing edges contain the topological information by the global yaws (see Figure 5.19).
Moreover, the geo-references of Street Views act as supplementary information to
enhance the robustness of the localization. Through this model, three forms of
information are extracted from the dense environment:

• Dense image information from Street View: some popular algorithms, such as
the structure from motion, enable us to obtain the pose of a vehicle; the prob-
lem turns to realize matching between the nonstandard Street View imagery
and image sequence acquired by an online vehicle.

70 5.3. TOPOMETRIC REPRESENTATIONS

Figure 5.18: Rectilinear depth maps are associated with Figure 5.17.

• Direct geo-reference of Street View: namely latitude and longitude coor-
dinates, its precision is expressed in decimal degree6. Google Street View
achieves a very high precision (6 decimal places and 111.32 mm error at the
equator, and normally in urban city such precision can be guaranteed.)7. For
a vehicle urban localization, such precision is completely sufficient.

• Topology information: edges can represent the topology of urban streets if
nodes are set up appropriately. The global yaw degree ηglobal plays an impor-
tant role in the topological representation. Because in city-like environment
the topology limits the vehicle’s motion boundary and thus allows to predict
and prepare the next Street View reference. In this way, we only need to
download local environment information instead of global cities.

An interesting aspect will emerge according to our proposed model, we call it
as the triangular error consistency problem (see Figure 5.20). It is understandable
that our own vehicle can find several Street View nodes around it. Hence, we are
able to obtain several rigid transformations [Ri, ti] among the triangular relation-
ships. Thus, how to leverage several Street Views and find the coherence from this

6Decimal Degree: http://www.wikipedia.org/wiki/Decimal degrees
7Ibid.

http://www.wikipedia.org/wiki/Decimal_degrees

CHAPTER 5. OFFLINE DATABASE CONSTRUCTION AND URBAN
ENVIRONMENT MODELING 71

ηglobal

Figure 5.19: Useful information extracted from Google Street View: map topology
and augmented spherical image.

triangular relationships to determine the final pose, will also be an important task
in the following sections.

5.4 Conclusion

Using an existing database to represent a given urban environment is a highlight of
innovation of our thesis. We described why we choose Google Street View as our
database, what major data structure it contains, how the datasets are extracted
and augmented, how we adapt the data for our online acquisition and what kind
of representation we construct in a given environment. These proposed methods
are not only based on the state-of-the-art but also our own trial and error. Once
the online and offline data are well prepared, we are going to deal with the pose
estimation problem from two main aspects: handcrafted-feature-based and learning-
based methods.

72 5.4. CONCLUSION

[Ri; ti]

i

Figure 5.20: Google Street View data are used to model a given environment: consec-
utive panoramas and depth maps are constructed as geo-tagged augmented spheres
with dense visual and metric information; the global yaw angle is used to represent
the topology of trajectory.

Part III

Localization using Handcrafted
Features

73

Chapter 6
Handcrafted Features for Urban
Localization

6.1 Introduction

Handcrafted features refer to interesting image primitives (e.g. points, curves, edges
and small image patches) and image structures (e.g. color, intensity and textures).
The image primitives, also known as local features or keypoints, are not only used to
find correspondences between images with important changes in viewpoints, occlu-
sions and wide baseline matching, but also offer image-patch representations in the
image retrieval. The image structures, also called global features, allow to describe
the image content as an entire object instead of compact patches. Normally, global
features are often used for lower level applications, such as object detection, while
local features are widely applied in object recognition1 and also play a key role in
our following localization systems.

Research on local feature extraction and description has started since 1954 [125]
and till now we have various feature detectors and descriptors in the literature. They
focus on different primitives, invariances, accuracy, efficiency and robustness. How to
choose suitable feature detectors and descriptors remains the top priority for a pose
estimation task. Thereby, in Chapter 6, we first clarify our localization problem and
objectives, then we analyze several challenging scenarios by testing some handcrafted
features. These scenarios are useful to evaluate the performance of various features
and select the potential ones. After choosing the feature extraction method, the
details about the positioning system will be carried out in the Chapter 7.

6.2 Formal Problem Description

As we stated in Part II, we captured online data along a 5km trajectory with 478
Street View panoramas. The main goal is to find an algorithm to map each captured
image (query image) to its corresponding Google Street View images (referenced im-
ages) and then estimate the pose from these correspondences. We call this process a

1 “Object detection” and “Object recognition” are often mistaken to be the same thing but
there is a distinct difference between them: “object detection” refers to detecting the presence of
a particular object (probably unknown) in a given image while “object recognition” is a process
of identifying an object in a given image.

75

76 6.3. CHALLENGES IN IMAGE SEARCH AND LOCALIZATION

corse-to-fine localization system with a combination of place recognition and struc-
ture based image localization. The formal problem is described as a prototype in
Algorithm 2.

Algorithm 2 Input & Output of Handcrafted-feature-based Localization Algorithm

Input: Rectified images from Street View R = {R1,R2, . . . ,Rn} and
their depth maps D = {D1,D2, . . . ,Dn}

Input: Query images Q = {Q1,Q2, . . . ,Qm} captured by a
vehicle driving in the city

Output: For a query images Qi, the good matches f(Qi) ∈ R is find, where f is a
surjective mapping function, like the description in Figure 3.2.

Output: Global pose of the query image: solvePnP (Qi, f(Qi),D(f(Qi))

In this method, a query image captured by our camera equipped on the vehicle is
associated with geotagged Street View images sharing high appearance similarities.
As such, the vehicle’s position is restricted around an intersected area geotagged
by a matched Street View. At this stage, an efficient and robust retrieval method
should be developed, which should work well even if high intra-similarities exist in
Street View imagery. As we stated before, our goal is to identify, for a given query
image, Street View images with a similar appearance. Since this stage does not
require a metric accuracy, but only to identify the closest Street View images, the
mapping function (namely f(Qi) ∈ R in the Algorithm 2) should render several
proper candidates. Thus, classic place recognition methods like SIFT-BoW, VLAD
or Fisher Vectors, FabMap will be good options as the mapping function as we
stated in Chapter 3.

Secondly, since the depth maps are integrated in Street Views, we can refine
the before-mentioned location by computing the vehicle’s pose transformation w.r.t
Street View images by solving the PnP problem2. With the pose transformation,
the query image can be localized from the geo-reference of Street View directly.
According to the distribution of Street View panoramas, we can deduce that many
query images will share the same Street View. If we can extract sufficient correct
feature correspondences, the function solvePnP (Qi, f(Qi),D(f(Qi)) should be able
to compute consistent poses for query images sharing the same referenced Street
View.

6.3 Challenges in Image Search and Localization

In the data acquisition process, we have already ignored some trajectories with-
out important urban appearances. Yet, difficulties still exist for both coarse place
recognition and structure based localization. The core idea of our method is to find
detectable and discriminable locations of handcrafted feature in both query and ref-
erenced images. Before giving further insights in feature extraction and matching,
we explore both online and offline data to outline the challenges of the underlying
image-search between two databases.

2Recall the “Solving the n-Point Perspective problem” in Chapter 3: given a set of n (n ≥ 3)
3D points in a world reference frame and their corresponding 2D image projections as well as the
calibrated intrinsic camera parameters, determine the 6 DOF pose of the camera in the form of its
rotation and translation with respect to the world.

CHAPTER 6. HANDCRAFTED FEATURES FOR URBAN LOCALIZATION77

Figure 6.1: Example of noises in the Google Street View dataset: vegetation cover-
age, moving cars, temporary constructions and privacy blurs.

• Noises in Datasets. The urban environment is very dynamic and contains
a lot of noise, e.g. moving cars, pedestrians and trees, which makes a robust
searching and matching difficult. For offline data, except these dynamic ob-
jects, Google also blurs some parts of images containing car number plates,
human faces and shop names in order to protect privacy and anonymity, see
in Figure 6.1. In online data, the setup of acquisition can cause other distur-
bances. The position of the camera inside the Zoé car can capture reflections
on the front window and generate bad illumination issues, as illustrated in
Figure 4.5 in Chapter 4.

• Outdated Street Views. The Google Street View database is composed of
images recorded in different seasons and years. For instance, it exists panora-
mas captured in both summer of year 2014 and winter of 2012 for our test
area (cf. Figure 6.2), whereas the online dataset was obtained in 2015. It will
lead to the problems of over-season changes (e.g. substantial vegetation and
illumination differences) and the structural changes in the environment (e.g.
building construction and destruction).

• Self-similar and Repetitive Structures. Man-made geometric and repet-
itive structures are very common in urban environments, including the win-

78 6.4. HANDCRAFTED FEATURES CORRESPONDENCES

Figure 6.2: Over-season imagery is mixed in the Google Street View dataset.

dows, doors and even whole facades and buildings, see Figure 6.3. These
identical elements are one of the main sources that can lead to failures in im-
age searching and feature matching. If the coarse image searching fails, the
metric process of feature matching is meaningless.

• Intra-similar Street Views. Most image searching algorithms use a winner-
takes-it-all scheme meaning that the most similar referenced image is the one
with the highest number of features in common with the query image. How-
ever, identical scenes are captured by several subsequent panoramas at dif-
ferent scales, as demonstrated in Figure 6.4. This intra-similarity can break
up this kind of image searching scheme due to identical scenes. In fact, this
challenge is similar to the triangular error consistency problem as mentioned
in Chapter 5.1. We should think carefully to design the localization algo-
rithm: either by adopting the best candidate from winner-takes-it-all scheme,
or leveraging several similar offline candidate images.

6.4 Handcrafted Features Correspondences

Once the referenced images are found, the standard process for image localization
is to match query and reference images with local feature descriptors: detecting
feature points, extracting descriptors around feature points, matching descriptors
and selecting inliers (ratio test, geometric consistency check, double check). In this
section, we dive into some properties of current features and the matching process.
The global localization accuracy is obtained from the transformation matrix using
the good correspondences between the online query and Street View datasets. A
suitable feature is crucial to obtain proper correspondences. Therefore, we manu-
ally select some challenging urban scenarios as samples to evaluate state-of-the-art
features and matching techniques.

6.4.1 Feature Extraction and Description

In computer vision, keypoints are detected and extracted from two images to be
matched by characterizing distinctive and salient local patches. Then, for each

CHAPTER 6. HANDCRAFTED FEATURES FOR URBAN LOCALIZATION79

Figure 6.3: Example of repetitive windows from different Street Views.

80 6.4. HANDCRAFTED FEATURES CORRESPONDENCES

Figure 6.4: Intra-similarity of three different Street Views in the offline dataset.

Local Feature Category Methods Examples

Edge detection Differentiation based Sobel, Laplacian of Gaussian, Canny edge detector
Corner detection Differentiation/Template based Harris, Shi-Tomasi, SUSAN, FAST
Blob detection of interest point Differentiation based LoG, DoG, Hessian-Laplacian, SIFT, SURF, Cer-SURT
Blob detection of interest region Template/Segmentation based ORB, BRISK, FREAK, MSER

Table 6.1: Some representative feature detection methods and their categories..

keypoint in these two images, a descriptor is computed to represent the intensity
gradient information in the region around the keypoint.

There are three major steps in the detection process involving scale space scan-
ning, keypoint localization and orientation assignment. The main idea behind these
steps is to identify the intensity peak changes in the images at different scales. Most
classic detectors follow this principle, including Harris corner [73], Difference of
Gaussians (DoG) [130], Harris Laplacian [137], Laplacian of Gaussians (LoG) [130],
SUSAN (Smallest Univalue Segment Assimilating Nucleus) [184] corner detection,
FAST [162], etc. Table 6.1 covers some classical feature detectors in the field of
visual tracking and localization.

The local patches can be edges, corners, points or regions. The intensity changes
in the local patches can be calculated by differentiation based methods : namely the
gradient operators of intensity (first-order differentiation) or the maximal magnitude
operator (the second-order differentiation). The differentiation based methods are
one of the fundamental building blocks in handcrafted feature extraction. The most
common example is used in edge detection: once a gradient image is calculated,
pixels with large gradient values become potential edge pixels. Moreover, in order
to make a keypoint invariant to rotational changes, an orientation based on the
local image gradient direction is often assigned to a keypoint. For instance, SIFT
and SURF detectors have proven their good invariant performance across scale and
viewpoint changes.

We can also create a size-fixed template and compare its intensity with the local
patches to find keypoints, known as template based technique. This technique is often
applied to detect blobs and corners. Blobs can be regarded as compact objects of
approximately the same intensity and the corners are sharp turn of the contour.
Their shapes thereby can be modeled as templates.

Segmentation based methods generate reliable segmented regions in images based
on not only pixel intensity but also color and structure information in the image. For
example, MSER [51] can detect connected regions characterized by almost uniform
intensity, surrounded by contrast background. This kind of methods is very useful
in the blob detection.

CHAPTER 6. HANDCRAFTED FEATURES FOR URBAN LOCALIZATION81

After the keypoint detection, descriptors are used to identify a keypoint, like a
fingerprint. For example, in the implementation of SIFT, a 128-dimensional feature
vector is constructed by normalizing a 16 × 16 region around the keypoint to a
4 × 4 histograms with 8 bins of gradient orientations.This vector is served as a
description to identify this SIFT feature. While in SURF, the description vector
has be reduced to only 64 dimensions which are represented by 4× 4 neighborhood
regions with 4 bins of orientations. Different representations will lead to different
performances. Intuitively, the time consumption to compute a SIFT descriptor
is significantly higher than the one of SURF. Since binary descriptors are faster
to compute and require less memory storage, they are widely used in real time
applications, such as BRIEF [27], ORB [163], BRISK [116] and FREAK [4]. In
general, binary descriptors are generated by comparing the detected local patches
with a fixed template. The result of comparison can be described by a binary
string of the intensity difference. More sophisticated way is to construct many pairs
of points around the keypoint and adopt the pairs to do the comparison work.
It is natural that the binary computation is more efficient. There are also some
approaches in the literature that can tackle big illumination changes like LIOP
(Local Intensity Order Pattern) descriptors [210].

A so called handcrafted feature is composed of detector and descriptor. We
can have many kinds of combinations in form of “detector+descriptor”, such as
“SIFT+SIFT” (SIFT feature), “SURF+SIFT”, “SURF+SURF” (SURF feature),
“MSER+SIFT”, “FAST+BRIEF” (ORB feature), etc. The different features are
normally evaluated by their invariance to both geometric and photometric transfor-
mations, and the execution time. Here, we only reviewed the performance of the
recent handcrafted features (Table 6.2) in the context of SLAM, Visual Odometry
and Visual Tracking. Since these features are widely adopted in SLAM and visual
tracking tasks, we believe that they are capable of dealing with geometric and pho-
tometric changes to some degree. Moreover, they can be potential choices in our
case as well.

6.4.2 Robust Feature Matching

The matching between two descriptors is usually carried out by a suitable distance
metric, such as Euclidean or Hamming distance. In the literature, the brute-force
and FLANN algorithms are two most widely used approaches in the feature match-
ing: in the brute-force matching every feature of one image is compared to that of
another image, and in the FLANN algorithm the nearest neighbor search is employed
to speed up matching by reducing the searching space.

Outliers have to be removed. Several techniques exit but ratio test is the sim-
plest way. Ratio test is conducted by comparing the distance to the closest match
to that of the second-closest match. This measure works effectively because correct
matches need to have the significantly closer match than the closest incorrect match
to achieve reliable matching. According to the object recognition implementation
of Lowe et al. [125], when the ratio between the correct matches and the closest
incorrect match is greater than 0.8, 90% outliers are eliminated with less than 5%
inliers discarded. If the raw correspondences are sufficient, it is not serious to discard
inlier matches. However, since the descriptors of repetitive or similar structures in
man-made environment are close, a lot of correct correspondences will be removed

82 6.4. HANDCRAFTED FEATURES CORRESPONDENCES

by the ratio test. Secondly, a symmetric check (also known as double check or cross
check) can be used to reject the outliers. A good matching pair is obtained only
if they are best correspondences for both left-to-right and right-to-left matching3.
This alternative is not useful to cope with the repetitive problem in the urban envi-
ronment. In addition, we can obtain the reliable matches by checking the geometric
consistency. The fundamental or a homography matrix4 can be estimated using a
RANSAC to reject outliers. All inlier matches satisfying the epipolar constraint
make up a support set for the RANSAC model. This process is repeated for finite
times and the biggest support set in the model is considered as the most likely
correspondences.

We can leverage all previous schemes to ensure more robust matchings when
the number of raw correspondences is high enough. Since the number of candidate
matchings would be reduced a lot after every checking scheme, there is a risk that
we cannot obtain enough good matchings to solve the PnP problem if too many
schemes are employed.

According to the main feature matching pipeline exposed here, we use the re-
viewed features (cf. Table 6.2) to test our challenging scenarios (see Figure 6.5).
We evaluate the features by matching two scenes with normal point views (Scenario
#1), big different point views (Scenario #2), similar urban appearance (Scenario
#3) and big illumination changes (Scenario #4).

We do not put the emphasis on the basic criteria rotation, scale and affine invari-
ance. Normally such metrics should been evaluated since the birth of a handcrafted
feature5. Moreover big transformations appears very rare in the urban driving and
the reviewed features have already been proved to be capable of solving their re-
spective urban localization issues. Therefore, we put more attention on the inlier
matching performance, namely average number of detected features in two images,
remained inliers after the inlier selection and the efficiency.

In the evaluation, we calculated the number of detected features in two images of
different scenarios, the matched value after the ratio test and symmetric check, the
final matching inliers after a following RANSAC check and the time cost for each sce-
nario. The obtained values are registered in vectors, e.g. [7386, 6292, 2, 0, 2.16]. The
comparative result is illustrated in Table 6.2. In Scenario #1, features with SIFT,
SURF and Harris detectors obtain stable final matching inliers after a RANSAC
check, while most binary based features (ORB and FREAK) failed. As we know,
binary based features are often implemented in real time and they are not effective
to deal with big intensity changes caused by time or weather. In addition, when
FAST detector is combined with binary or template based descriptors, a lot of false
matchings are computed and FAST fails with the SIFT descriptor. For the test of
Scenario #1, it is observed that even if the FAST and binary based features are
able to detect a lot of keypoints but they have a poor performance to obtain inlier
matchings. In Scenario #2, features with SIFT, SURF and Harris detectors are still
invariant to the big point view changes. There should be no matchings obtained
in Scenario #3 and only “SIFT+SURF” feature rejected all false matching for this

3For example, we can swap the training and query descriptors to realize the cross check in
OpenCV.

4For example, we can use 8-point findFundamentalMat or 5-point findHomography algorithms
to apply this check.

5For example, the widely-adopted Oxford matching dataset [139] is regarded as a basic bench-
mark to evaluate the transformation invariance of a proposed feature.

CHAPTER 6. HANDCRAFTED FEATURES FOR URBAN LOCALIZATION83

Figure 6.5: Google Street View on the left and online image from Zoé / Scénic on the
right. Note that: the two images describe the same scene existing lots of repetitive
facade windows under normal point views in Scenario #1; the two images describe
the same scene with big different viewpoints in Scenario #2; the two images describe
two completely different scenes in Scenario #3, where no correspondences should
be found normally; the two images describe the same scene with big illumination
changes in Scenario #4.

84 6.4. HANDCRAFTED FEATURES CORRESPONDENCES

test. Concerning Scenario #4, LIOP descriptor does not show evident advantages
to deal with the big illumination problem. Results from the MSER feature appear
terrible since it does not work for all challenging scenarios. In summary, Table 6.2
demonstrates that differentiation based features, like SIFT and SURF, outperform
both the template and segmentation based features. However, when we illustrated
a classic feature matching pipeline with SIFT-SIFT feature on the first scenario, we
found that the ratio test, symmetric check and the 8-point RANSAC rejection are
not able to eliminate all outliers: after the ratio and symmetric check, we obtain
40 matchings and then a RANSAC finds a support set with 10 correspondences
including outliers (see Figure 6.8). It is probably caused by repetitive landmarks in
the scene and the different brightness makes the matching more difficult. In next
section, we visualize the vectors to have a better understanding of the raw results.

Figure 6.6: FLANN matching with SIFT-SIFT features before the ratio test and
symmetric check.

Figure 6.7: FLANN matching with SIFT-SIFT features after the ratio test and
symmetric check.

CHAPTER 6. HANDCRAFTED FEATURES FOR URBAN LOCALIZATION85

D
et

ec
to

r
D

es
cr

ip
to

r
R

ef
er

en
ce

Im
p

le
m

en
ta

ti
on

S
ce

n
a
ri

o
1

S
ce

n
a
ri

o
2

S
ce

n
a
ri

o
3

S
ce

n
a
ri

o
4

F
A

S
T

4×
4

p
a
tc

h
F

or
st

er
et

al
.

[5
9
]

T
ra

ck
in

g,
V

O
[7

38
6
,6

29
2,

35
,2

1,
2
.8

1]
[7

2
85
,6

18
6,

93
,6
,3
.2

4]
[7

38
6,

55
07
,4

2,
18
,2
.2

2
]

[5
4
3
0
,6

1
8
6
,4

2,
2
9,

3
.3

6
]

F
A

S
T

S
IF

T
K

on
o
li

ge
et

al
.

[1
04

]
V

O
,

S
L

A
M

[7
38

6,
62

92
,2
,0
,2
.1

6
]

[7
28

5,
61

86
,1

9,
13
,2
.1

2]
[7

38
6,

55
07
,2
,0
,2
.0

0]
[5

4
3
0
,6

1
8
6
,2

3,
1
6,

1
.8

7]
H

a
rr

is
S

U
R

F
C

a
rr

er
a

et
al

.
[2

8]
T

ra
ck

in
g

[2
89
,8

33
,2

1,
9,

0.
21

]
[2

09
,8

63
,2

5,
10
,0
.2

2]
[2

89
,9

23
,1

3
,7
,0
.2

1]
[2

6
0
,8

6
3
,2

0,
9,

0.
2
0
]

F
A

S
T

O
R

B
S

k
ry

p
n
y
k

et
a
l.

[1
80

]
V

O
[7

38
6,

62
9
2,

37
,1

6,
3
.8

3
]

[7
28

5,
61

86
,7

5
,3

0,
3.

83
]

[7
38

6,
55

0
7,

21
,8
,0
,3
.1

0
]

[3
8
6
5,

6
1
8
6,

4
0,

1
1,

2
.2

0
]

O
R

B
O

R
B

M
u

r-
A

rt
a
l

et
a
l.

[1
46

]
O

R
B

-S
L

A
M

[5
00
,5

00
,8
,0
,0
.1

6]
[5

00
,5

00
,2

0
,5
,0
.1

5
]

[5
00
,5

00
,4
,1
,0
.1

6]
[5

00
,5

0
0
,4

8,
10
,0
.1

5
]

S
U

R
F

L
IO

P
M

in
sh

k
in

et
al

.
[1

41
]

S
ce

n
e

M
at

ch
in

g
[2

51
4
,2

29
8,

13
,8
,1
.6

2
]

[2
24

0,
24

51
,3

9,
9
,1
.9

3]
[1

28
0,

11
28
,9
,7
,2
.3

7]
[9

9
4
,1

7
3
2
,3

3,
1
2,

1
.8

5]
S

IF
T

S
IF

T
K

ar
ls

so
n

et
a
l.

[9
7]

V
is

u
al

S
L

A
M

[1
28

0
,1

51
8,

40
,1

0,
1.

07
]

[1
25

0,
17

32
,4

0,
9
,1
.1

4]
[1

2
80
,1

12
8
,1

1,
7,

0.
98

]
[9

94
,1

7
3
2
,5

7,
1
2,

1
.0

6
]

S
U

R
F

B
R

IS
K

J
ia

n
g

et
a
l.

[9
4
]

V
O

[2
51

4,
22

98
,1

3,
7
,1
.5

1]
[1

25
0,

1
73

2,
15
,9
,1
.4

4]
[1

28
0,

11
28
,7
,7
,2
.0

]
[9

9
4
,1

7
3
2,

2
6,

8,
1.

09
]

S
U

R
F

B
R

IE
F

H
ei

n
ly

et
a
l.

[8
0]

S
ce

n
e

M
at

ch
in

g
[2

5
14
,2

29
8,

19
,9
,1
.2

0]
[2

24
0,

24
51
,2

5,
7
,1
.1

5]
[2

51
4,

23
70
,8
,7
,1
.5

9]
[1

5
2
0
,2

4
5
1,

2
1,

9
,0
.9

3
]

S
U

R
F

S
U

R
F

E
n

ge
lh

ar
d

et
al

.
[5

6
]

S
L

A
M

[2
51

4,
22

98
,3

0,
9
,2
.0

4]
[2

24
0,

24
51
,4

2,
10
,2
.0

0]
[2

51
4,

36
77
,1

4,
8,

2.
59

]
[1

5
0
2
,2

45
1,

5
0,

9
,1
.7

2
]

S
U

R
F

S
IF

T
G

il
et

a
l.

[6
4]

S
L

A
M

[2
51

4
,2

2
98
,1

1,
7
,4
.5

4]
[2

24
0,

24
51
,1

3,
7,

4.
40

]
[2

51
4,

36
77
,0
,0
,∞

]
[1

5
02
,2

4
5
1,

1
9,

9
,3
.7

5]
M

S
E

R
S

IF
T

L
eo

n
g

et
a
l.

[8
1]

L
o
op

cl
os

u
re

[3
85
,3

13
,1
,0
,1
.1

7]
[3

14
,4

25
,1
,0
,1
.6

1]
[3

85
,4

14
,0
,0
,1
.5

2]
[2

3
5
,4

2
5,

3,
0,

1
.4

0]
B

R
IS

K
B

R
IS

K
L

eu
te

n
eg

ge
r

et
al

.
[1

1
6]

S
L

A
M

[4
43
,6

03
,2
,0
,0
.1

6]
[4

31
,6

90
,6
,0
,0
.1

7]
[4

43
,5

76
,4
,0
,0
.1

6]
[3

9
0
,6

9
0
,5
,0
,0
.1

7
]

B
R

IS
K

F
R

E
A

K
H

a
rt

m
a
n

n
et

al
.

[7
6]

S
L

A
M

,
V

O
[4

43
,6

03
,0
,0
,∞

]
[4

31
,6

90
,1
,0
,0
.2

0]
[4

43
,5

76
,0
,0
,∞

]
[3

9
0
,6

9
0
,2
,0
,0
.2

0
]

F
A

S
T

B
R

IE
F

G
ál

ve
z-

L
ó
p

ez
et

al
.

[6
1
]

P
la

ce
re

co
gn

it
io

n
,

V
O

,
S

L
A

M
[7

38
6,

62
92
,2

9,
13
,3
.9

3]
[7

28
5,

61
86
,7

3,
28
,3
.9

1]
[7

38
6,

55
07
,1

0,
7
,3
.2

4]
[5

4
3
0
,6

1
8
6,

2
8
,1

5,
2.

2
4
]

T
ab

le
6.

2:
A

co
m

p
ar

is
on

of
so

m
e

cl
as

si
c

h
an

d
cr

af
te

d
fe

at
u
re

s
in

th
e

li
te

ra
tu

re
.

W
e

ca
lc

u
la

te
th

e
n
u
m

b
er

of
d
et

ec
te

d
fe

at
u
re

s
in

tw
o

im
ag

es
of

d
iff

er
en

t
sc

en
ar

io
s,

th
e

m
at

ch
ed

va
lu

e
af

te
r

th
e

ra
ti

o
te

st
an

d
sy

m
m

et
ri

c
ch

ec
k
,

th
e

fi
n
al

m
at

ch
in

g
in

li
er

s
af

te
r

a
fo

ll
ow

in
g

R
A

N
S
A

C
ch

ec
k

an
d

th
e

ti
m

e
co

st
fo

r
ea

ch
sc

en
ar

io
.

T
h
es

e
va

lu
es

ar
e

re
gi

st
er

ed
in

a
ve

ct
or

,
e.

g.
[7

38
6,

62
92
,2
,0
,2
.1

6]
.

F
or

th
e

w
or

k
of

F
or

st
er

et
al

.
an

d
M

in
sh

k
in

et
al

.,
w

e
u
se

th
ei

r
co

d
es

on
G

it
h
u
b

d
ir

ec
tl

y.
N

ot
e

th
at

if
th

e
R

A
N

S
A

C
ch

ec
k

ca
n
n
ot

b
e

co
n
d
u
ct

ed
,

th
e

ti
m

e
co

st
is

n
ot

ed
as
∞

.
S
om

e
b
ad

an
d

go
o
d

re
su

lt
s

ar
e

h
ig

h
li
gh

te
d

in
re

d
an

d
b
lu

e
re

sp
ec

ti
ve

ly
.

86 6.4. HANDCRAFTED FEATURES CORRESPONDENCES

Figure 6.9: The average detected feature numbers of both images in 4 scenarios by
the methods of Table 6.2. All the features are able to extract enough keypoints for
all scenarios. FAST based features can detect more local keypoints than others for
its simple template.

Figure 6.8: FLANN matching with SIFT features after ratio test, symmetric check
and 8-point RANSAC selection.

6.4.3 Discussion

We plot the results of reviewed features in the Figure 6.9-6.11. Our aim is to find a
robust handcrafted feature which is robust to big viewpoint6 and brightness changes,
able to distinguish repetitive structures at a relatively high speed. Therefore, this
potential feature should compute as many matching inliers as possible in the Sce-
nario #1, #2 and #4, but less and even no matchings in the Scenario #3. After
the comparison, we found that:

6Note that: the offline imagery is back-projected from panoramas which lead to viewpoint
changes compared to the online dataset.

CHAPTER 6. HANDCRAFTED FEATURES FOR URBAN LOCALIZATION87

Figure 6.10: The detected inliers after the ratio test, symmetric check and RANSAC
rejection using the features listed in Table 6.2. Please note the “inliers” mentioned
here are just the matches after the conventional checks, not the real good matches.

Figure 6.11: Time cost in second for detection, description, matching and inlier
selection for different features in Table 6.2. Please notice when the inlier selection
does not work, the time is noted as infinity.

88 6.4. HANDCRAFTED FEATURES CORRESPONDENCES

• FAST and Harris corner detector can extract many keypoints in a short time
but the obtained inliers are not sufficient for a pose estimation (cf. Figure 6.9
and Figure 6.10). These detectors are not invariant to the urban repetitive
structures like the Scenario #3. It would be better to adopt differentiation
based descriptors rather than binary ones to represent these detectors. Because
of the large number of detected keypoints, the time cost for the matching is
no longer an advantage for these simple detectors, see Figure 6.11.

• Template based features (binary features) are not suitable for our case due
to the substantial illumination and over-season changes, they failed to extract
good enough matchings in all four scenarios, see Figure 6.10. These features
are mainly implemented on the real time tracking and VO tasks where the
intensity can be regarded constant between consecutive camera frames. They
are not effective for the matching between the cross-date images.

• Considering the illumination problem of Scenario #4, the LIOP descriptor and
the MSER detector do not show significant superiority to deal with the severe
intensity changes. As depicted in Figure 6.12, there are still wrong matchings
with the SURF-LIOP feature after the outlier rejection process. In the urban
area, illumination and brightness changes are very common. In literature,
the histogram equalization [32, 86] is often used to enhance the contrast of
the matched images prior to feature extraction. As shown in Figure 6.13,
this technique spreads out the most frequent intensity values in the referenced
image to equalize the global contrast in the processed image.

• After the analysis, we observed that SURF-SIFT and SURF-SURF features
outperform other features, especially regarding the final correct inlier num-
bers. SIFT descriptors take a longer time to compute but more robust inliers
compared to the SURF descriptor. Moreover, SURF-SURF cannot cope with
the repetitive urban appearance (see Figure 6.19). Figure 6.14-6.20 display the
performance of the SURF-SIFT and SURF-SURF features in four scenarios7.

• SURF-SIFT or SURF-SURF features are potential choices for the metric lo-
calization algorithm since they ensure the invariance to rotation, scale and
brightness. Yet, the matching inliers are too few to adopt the solvePnP
method. It is likely that some of these matching inliers might lack the depth
information from the Street View database, e.g. traffic lights and lanes. As
such, we can not estimate pose from these inliers.

7Note that there is no final inlier matchings are obtained by the SURF-SIFT feature in Sce-
nario #3 and we thereby do not display this process.

CHAPTER 6. HANDCRAFTED FEATURES FOR URBAN LOCALIZATION89

Figure 6.12: (a) and (b) illustrate the local and overall intensity ordinal information
of the local patch which are captured by the LIOP descriptor with the VLFeat
library [207]. (c) displays the matched inliers after the ratio test, symmetric and
RANSAC check. We can see there are still lots of false correspondences.

90 6.4. HANDCRAFTED FEATURES CORRESPONDENCES

Figure 6.13: The concepts of histogram equalization to improve the contrast of
matched images. The right image is equalized from the middle original image ac-
cording to the intensity distribution of the left Street View image.

Figure 6.14: Final inliers detected by the SURF-SIFT feature in Scenario #1. As
the matches are correct and enough, SURF-SIFT works well in normal point view.

CHAPTER 6. HANDCRAFTED FEATURES FOR URBAN LOCALIZATION91

Figure 6.15: Final inliers detected by the SURF-SIFT feature in Scenario #2.
SURF-SIFT still performs well for big different viewpoint but the detected num-
ber is small.

Figure 6.16: Final inliers detected by the SURF-SIFT feature in Scenario #4. The
feature can still extract good matches under the big illumination change.

Figure 6.17: Final inliers detected by the SURF-SURF feature in Scenario #1.
SURF feature works in normal point view but some wrong matches exist due to the
repetitive elements in the urban environment.

92 6.4. HANDCRAFTED FEATURES CORRESPONDENCES

Figure 6.18: Final inliers detected by the SURF-SURF feature in Scenario #2. A
lot of matches are detected but there are still false matches.

Figure 6.19: Final inliers detected by the SURF-SURF feature in Scenario #3. In
fact, no correspondences should be calculated in this case. These false matches are
probably caused by the similar urban appearances.

Figure 6.20: Final inliers detected by the SURF-SURF feature in Scenario #4. Here
SURF feature does not work for big illumination changes.

CHAPTER 6. HANDCRAFTED FEATURES FOR URBAN LOCALIZATION93

6.4.4 Virtual Line Descriptor kVLD

As we stated, matching detected features based on the similarity of their descriptors
provides both inliers and outliers. Eliminating those outliers while preserving inliers
remains challenging for images captured in urban area, which have ambiguities and
strong transformation. Ambiguities are caused by repetitive patterns or lake of
texture and transformation arises by some occlusions. A RANSAC based feature
matching is usually capable enough to deal with these problems in the context of
SLAM and VO (see in Table 6.2). Yet it works well only when the inlier rate is
high. In our challenging scenarios, the inlier rate is often low which may degrade
the RANSAC based check. Even some better alternatives like PROSAC [36] or
USAC [159] can not well suited for inlier rates lower than 50%. Only a few methods
like ORSA (Optimal Random Sampling Algorithm) [142] can treat an inlier rate of
10%. Moreover, the geometric check with RANSAC often suffers from a limitation
to estimate the fundamental matrix: it cannot remove outliers corresponding to
points that have matches near their epipolar line but far from the correct location.

Therefore, we get out of the context of SLAM or VO, we choose a more well-
performing handcrafted feature which is a graph based feature matcher, which is
called k-Virtual Line Descriptor (kVLD) [123]. With this feature, a graph matching
method is conducted rather than the standard pipeline. In a graph matching, several
graphs are constructed where their vertices are feature points and the edges are
the pairwise relations. Then a vertex correspondences between the two graphs are
sought according to certain matching criteria. Usually, a second order photometric
graph matching is applied where the matching constraints are the relative distance
between two points combined with the relative orientation.

kVLD is a geometric and photometric consistent descriptor. Several salient key-
points are detected by SIFT detector at first. The idea of kVLD relies on the fact
that, given a potential match (Pi, P

′
i), see in Figure 6.21, if there are at least K

paires (Pjk, P
′

jk), k ∈ {1, ·, K} are geometric virtual-line consistent with the (Pi, P
′
i),

(Pi, P
′
i) is considered as a correct match. In the experiment, authors proved that

K = 3 is able to guaratee a good performance. To be more robust, the kVLD algo-
rithm use a RANSAC invariant ORSA to reject iteratively matches which have less
than K geometric consistences in all potential virtual line matches. One important
thing in kVLD is to represent every virtual line, such as (Pi, Pj). We can simply
regard the virtual line as a concatenation of all SIFT descriptors. The line is de-
scribed by the covering strip between two points, where the strip is represented by
connected SIFT patches. The final strip descriptor includes a small-size histogram
of gradients and an orientation. Virtual line descriptors are then matched by a sec-
ond order graph matching technique. In the end, an ORSA is added to select more
robust virtual line matches.

Figure 6.22-6.25 display the initial SIFT-like features detected by the kVLD and
Figure 6.26-6.29 illustrate some robust matching examples using the kVLD graph
matching and a ORSA in the four scenarios. We found that kVLD descriptor outper-
form all the previously reviewed features. It is not necessary to use the histogram
equalization to counter the illumination effect in the Zoé dataset with kVLD de-
scriptor. kVLD seems to be not perfect as illustrated in Figure ??. However, as we
stated in the problem description, we can render several Street View candidates for
an online VEDECOM image. In this way, we believe kVLD can work robustly to

94 6.4. HANDCRAFTED FEATURES CORRESPONDENCES

Figure 6.21: Intuition of the kVLD descriptor: for any two detected points Pi, Pj in
the image I, and P

′
i , P

′
j in the image I

′
, the lines l(Pi, Pj) and l(P

′
i , P

′
j) are unlikely

to be similar unless both matches (Pi, P
′
i) and (Pj, P

′
j) are correct. Image credit of

[123]
.

detect enough 2D-3D correspondences to solve the PnP problem in the next stage.

Figure 6.22: Initial features detected by the kVLD in Scenario #1.

Figure 6.23: Initial features detected by the kVLD in Scenario #2.

CHAPTER 6. HANDCRAFTED FEATURES FOR URBAN LOCALIZATION95

Figure 6.24: Initial features detected by the kVLD in Scenario #3.

Figure 6.25: Initial features detected by the kVLD in Scenario #4.

Figure 6.26: Final inliers detected by the kVLD feature in Scenario #1. Please note
that the matches obtained by graph matching are displayed in blue lines and the
final matches verified by ORSA in green. Final valid VLDs are in magenta. In this
scenario, kVLD doest not work well due to too many repetitive facade windows.

96 6.4. HANDCRAFTED FEATURES CORRESPONDENCES

Figure 6.27: Final inliers detected by the kVLD feature in Scenario #2. Many valid
kVLDs are kept by ORSA.

Figure 6.28: Final inliers detected by the kVLD feature in Scenario #3. In fact, no
correspondences should be calculated in this case.

Figure 6.29: Final inliers detected by the kVLD feature in Scenario #4. Many valid
kVLDs are kept by ORSA even with a big illumination change.

CHAPTER 6. HANDCRAFTED FEATURES FOR URBAN LOCALIZATION97

6.5 Conclusion

In this chapter, we described the formal problem and proposed to solve this problem
by the handcrafted-feature-based methods. We briefly described that a coarse to fine
localization would be a potential localization algorithm. We outlined the challenges
to realize image search and image matching by going through our captured online
and offline datasets. Since feature matching is a crucial part for this algorithm,
it is necessary to adopt well-performed handcrafted features and robust matching
algorithms. Therefore, we focused on studying the current used handcrafted features
in the state-of-the-art of SLAM, VO and tracking. We manually selected some
difficult matching scenarios to evaluate the performance of these features. We put
the emphasis on the inlier correspondences and the robustness to the image noise,
illumination and baseline. Only some differentiation based features, SURF-SURF
and SURF-SIFT, outperformed in these scenarios but they seem to lack an adequate
number of matchings for the solvePnP techniques. Finally, we tested a combined
feature (SIFT detector with Virtual Line descriptor kVLD) and it demonstrated
good performances to obtain robust matchings for the pose estimation.

98 6.5. CONCLUSION

Chapter 7
Topological and Metric Localization

7.1 Introduction

In this chapter, we present a handcrafted feature based metric global localization in
the urban environment only with a monocular camera and the Google Street View
database. As we stated in the Chapter 6, our algorithm is able to leverage the
abundant sources from the Street View and benefit from its topometric structure
to build a coarse-to-fine positioning, namely a topological place recognition process
and then a metric pose estimation by local bundle adjustment (LBA).

In the place recognition process, we first evaluate the popular image retrieval
methods with our Street View datasets, namely the simple Bag of Words (BoW)
and FABMAP. It demonstrates that the current state-of-the-art approaches fail on
the sparsely distributed Street Views. Hence we introduce a SIFT-MESR combined
BoW method which outperforms the previously described algorithms. In this phase,
all offline imagery is trained as a combined BoW database. On the online stage,
we extract top similar Street View images from the BoW by comparing with the
query image1 and then estimate relative poses between each other. Moreover, a
LBA is employed to obtain the global metric localization from all estimated poses
and corresponding 2D-to-3D matching constraints. The feature extraction and cor-
respondences are realized by the kVLD descriptor.

The method is implemented on the urban test area and demonstrates both sub-
meter accuracy and robustness to viewpoint changes, illumination and occlusion.
Although a considerable proportion of the localization achieves a 2m accuracy, the
discontinuity of Street Views still affects the robustness of the system. We observe
that a Street View located far away from the query image (> 8m in the test) gen-
erates a significant error in the metric pose estimation phase. Thus, we extend this
framework with the construction of an augmented Street Views database in order
to compensate the sparsity of Street Views and improve the localization precision.
Due to this augmentation, easy handcrafted features, such as SIFT or SURF, are
able to obtain robust matchings. We also demonstrate that this approach signifi-
cantly improves the submeter accuracy and the robustness to important viewpoint
changes, illumination and occlusion.

1To clarify, the query image is also known as the input image or online image from the VEDE-
COM cars. Street View image is known as the database image, offline image or referenced image
in this thesis.

99

100 7.2. LOCALIZATION WITH STREET VIEW

7.2 Localization with Street View

7.2.1 Overview

Our localization system is divided into two phases, as described in the flowchart of
Figure 7.1. The Street View panoramas are prepared and their rectilinear views are
generated and represented offline before an actual online vehicle localization.

As we stated in Chapter 5.1, the panorama should be transformed into a set of
overlapping or unrelated cutouts to reduce the large angle distortion. Therefore, we
assume 8 virtual pinhole cameras, with an intrinsic camera matrix K, mounted in
the centre of a unit sphere S with a user fixed pitch and heading, local yaw angle
changing by [0◦, 45◦, ..., 360◦]. The number of virtual cameras, intrinsic matrix and
pitch/yaw/roll degree are free to select, yet empirically the more identical they are
to the actual on-board camera, the better performance expected. Thus in practice,
our virtual camera shares the same intrinsic parameters as the on-board camera.
After this artificial generation, the Street View database becomes 8 times larger in
quantity. Other extracted GIS data, such as topology, geodetic data, depth maps
are organized according to Chapter 5.1. After this offline stage, we can dive into
our coarse to fine localization systems, namely a place recognition and then a metric
pose estimation.

7.2.2 Place Recognition

In this phase, all generated imagery is trained as a compact database for the im-
age retrieval. As we know, there are many algorithms to realize this task. We
thereby evaluate the classic SIFT-based BoW and FABMAP algorithms, which are
successfully used in traditional street-level localization cases.

Evaluation of State-of-the-Art Approaches

Since the image retrieval training is a time consuming process, we only select a
trajectory segment in the test area for evaluation: 892 online images captured from
the Scénic right camera. In this urban segment, there are 29 discrete Street View
panoramas covering this area. After the back projection, 29 × 8 = 232 rectified
images are rendered from panoramas, which are all labeled by the geo-localizations
and global yaw angles. All the online images should have a corresponding Google
Street View image with a close geo-position and a similar global yaw angle. In our
test, we use these parameters to generate our ground truth. We assume that if a
query image is located close to a rectified Street View and they share a close global
yaw angle, these two images can capture the same scene. This rectified Street View is
thereby regarded as the ground-truth matching of the query image2. In practice, we
set the neighborhood of the position and yaw angle between two matched images to
15m and 10◦ respectively. Therefore, one query image might have several referenced
Street Views in such neighborhood boundary, see Figure 7.2.

2To simplify, our ground truth is roughly estimated based on yaw angles and position labels.
As we know, even if the yaw angles and positions are close, a query image might not share similar
visual scene with the Street View due to dynamic traffic. A proper ground truth should be verified
manually.

CHAPTER 7. TOPOLOGICAL AND METRIC LOCALIZATION 101

Figure 7.1: Flowchart illustrates workflows between different modules.

102 7.2. LOCALIZATION WITH STREET VIEW

Figure 7.2: The confusion matrix of ground truth for 892 query images and 29× 8
Street Views: this data is estimated according to the positions and yaws between
Street Views and online images. Without manual labeling, we cannot guarantee it
exists scene overlapping between two images.

CHAPTER 7. TOPOLOGICAL AND METRIC LOCALIZATION 103

Figure 7.3: The confusion matrix is computed by a classic SIFT BoW for 892 query
images and 29×8 Street Views. As observed, this method can detect several correct
matchings but there are still many false positives.

104 7.2. LOCALIZATION WITH STREET VIEW

The state-of-the-art algorithms have been evaluated in the form of confusion
maps, colored as heat maps where a dark blue represents no visual similarity while
a dark red is a complete similarity. An ideal place recognition algorithm would have
a coincident confusion matrix to the ground truth matrix. In this evaluation, we
use the classic SIFT based BoW and openFABMAP [66] algorithms. We also test
different configuration parameters to improve the results. In the BoW, we use a
hierarchical vocabulary tree by training a total of 10000 visual words in the dictio-
nary. The Term Frequency-Inverse Document Frequency (TF-IDF) (cf. Chapter 3)
and cosine distance are used for the weighting and the metric evaluation. Cosine
distance is denoted by Equation 7.1.

cos(x,y) =
x · y
‖x‖‖y‖

(7.1)

where x and y are two vectors. This metric is based on the judgment of orientation
and not magnitude: two vectors with the same orientation have a cosine similarity
of 1, two vectors at 90◦ have a similarity of 0, and two vectors diametrically opposed
have a similarity of −1, independently of their magnitude. It is often normalized
in positive space bounded between [0, 1]. In openFABMAP, the trained vocabulary
is also set to 10000 and the other parameters follow the default settings of the
authors. In BoW, the cosine metric can compute very small values and it affects a
clear visualization of the confusion matrix. We thereby find the maximum of the
cosine similarity and only visualize all values above 0.8 ∗maximum, cf. Figure 7.3.
In the openFABMAP, the matching similarity is based on probability theory and
it only preserves big likelihoods. Thus we visualize the result directly as shown in
Figure 7.4.

As observed, openFABMAP is able to detect more potential candidates com-
pared to the classic BoW method. It is an improved version of BoW where the
co-appearance probability of certain visual words is modeled in a probabilistic frame-
work. However, compared to the ground truth, they both have a poor performance
in our cases when the training data is limited but the test data is relatively enormous.
In many classic applications of FABMAP, their training datasets are usually video
sequences with a high frame frequency, which makes it possible to detect enough
distinctive visual words. Instead, here only 29 discretely distributed panoramas are
used to train the vocabulary. This training dataset is too few to deal with a relative
large scale area and construct co-appearance probability for the test procedure. In
some panoramas, main scenes would be occluded by mobile vehicles and vegeta-
tions and it leads to a loss of important visual words. The next paragraph hence
introduces a new approach as displayed in Figure 7.5, outperforming the previously
described algorithms.

Combined Bag of Words

As we stated before, we tested different configuration parameters during the evalu-
ation of the BoW, but the result did not improve a lot. We thought that a simple
BoW can not learn enough distinctive visual words from a small training dataset.
An ideal visual vocabulary must be built up in both BoW and FABMAP. In this
building process, we can improve the performance from two aspects: one is to change
the feature types to detect more invariant and distinctive visual words, the other

CHAPTER 7. TOPOLOGICAL AND METRIC LOCALIZATION 105

Figure 7.4: The confusion matrix is computed by the openFABMAP algorithm for
892 query images and 29 × 8 Street Views. As observed, this method can detect
several correct matchings but there are still many false positives.

106 7.2. LOCALIZATION WITH STREET VIEW

Figure 7.5: The confusion matrix is obtained by our proposed combined BoW for
892 query images and 29 × 8 Street Views. Results are closer to the ground truth
than openFABMAP and the classic SIFT Bow.

CHAPTER 7. TOPOLOGICAL AND METRIC LOCALIZATION 107

Figure 7.6: An example of the extraction of SIFT (colorful circles) and MSER
features (blue ellipses).

is to determine an optimal number of visual words to control the trade-off between
being distinctive and being robust.

Considering the changes in viewpoint, illumination and occlusion, we construct
two independent dictionaries generated from the SIFT and MSER features, and
then normalize them into one dictionary. Figure 7.6 illustrates an example of the
extraction of both SIFT and MSER features. The final dictionary can thus take into
account both local and regional feature descriptors. Our combined BoW outperforms
the previously evaluated algorithms. We follow the typical BoW retrieval techniques
to represent database images as numerical vectors quantized by feature descriptors,
and to perform a hierarchical clustering (K-means) of the image descriptors as a
classic BoW algorithm, see Figure 7.7. After the weighing strategies, all images are
represented by the visual words. A topological localization is estimated according
to a distance criterion based on the vectors similarity. In our test, we also use the
classic TF-IDF reweighing and the efficient cosine similarity distance metric. As
shown in Figure 7.5, the combined BoW outperforms the simple SIFT BoW when
some regional visual words are integrated with keypoint visual words. Presumably,
the regional visual words help to add more constraints to select better corresponding
images.

However, there is still several false positives in this method and in practice, we
adopt the geometric consistency (the performance of matching features) to check
that the referenced image is matched with the query image, especially for the ini-
tialization. Moreover, in the online step, we also check the distance between two

108 7.2. LOCALIZATION WITH STREET VIEW

Figure 7.7: Procedure of the combined bag of words and its setup of parameters.

referenced images corresponding to consecutive online frames to avoid outliers.

7.2.3 Database Construction

As a rule of thumb, the bigger the database is, the slower will be the information
retrieval from it. The aim now is to facilitate the run-time search even if a metropo-
lis database is constructed. In a natural manner, we explore the intra database
similarities and integrate the potential topological information to reduce the com-
putational cost. More importantly, even if our place recognition does not detect the
optimal similar referenced image, we can leverage the intra database similarities to
avoid missing the correct one.

Figure 7.8 shows the intra-similarity between images within the whole database
DDB×DB as well as the relationship between the database and query images DDB×Q.
The results, detailed in the figure caption, show a certain regularity to locate top
similar images w.r.t a query image. To some degree, these regularities reflect the
topology and inner connections in the GIS, e.g. all database images are downloaded
successively according to the Street View route planner. Intuitively, neighboring
panoramas share similar appearances. Their similar rectilinear images also share
an analogous global yaw angle regarding the north direction. We denote these high
similarities by yellow parallel lines and vertical dark lines in DDB×DB and DDB×Q
respectively.

All these regularities make our database a sparse “searching map”, which is
advantageous to significantly reduce the number of image comparisons in the online
phase. It is summarized as follows:

• In a piecewise route database DDB×DB, for each database image Ir we register
its top k similar database images’ location I0...k in an array DDB×r.

• A maximum appearance distance distmax is defined as the farthest radius
around a panorama where its neighboring panoramas share an overlapping
view. Normally, 6 to 8 nearest panoramas share a common scene around 50

CHAPTER 7. TOPOLOGICAL AND METRIC LOCALIZATION 109

DB

DB

DB

Q

Qt=2

Qt=6

Qt=10

...

a) b)

c) d)

...

...

...

Figure 7.8: Illustration of distance matrices and intra-relations: a) The intra-
database symmetric matrix DDB×DB. The rows and columns represent 232 rec-
tilinear views generated from 29 panoramas in a 350m urban route, and the matrix
intensity is computed by mapping the cosine similarity from [0, 1] to [0, 255], therein,
the darker pixels depict the higher similarities and diagonal values are always equal
to 255. b) The above matrix is a close-up view w.r.t the blue rectangle in a), it
shows two obvious yellow lines with high intensity, that are parallel to the diagonal
line indicating a location regularity for similar images in the matrix. c) The dis-
tance matrix DDB×Q rows represent the 232 database images and columns represent
a query sequence with only 100 frames. We only display 100 frames instead of a
whole sequence with 892 frames. Several darkest vertical lines are highlighted by
purple marks, meaning that a short query sequence can find its most similar database
images only in few range of the database as shown by the purple arrow. Let us con-
sider the candidate locations when teh query time steps equal to t = 2, 6, 10. The
close-up of these timestamps is shown in b). We can find that the successive or close
frames have the similar referenced panorama, but the best similar referenced image
would be different certain yaw offsets even in the same panorama. The red cycles
and rectangles represent top similar candidates from the same panorama. d) The
panoramas are searched at the time steps of b).

110 7.2. LOCALIZATION WITH STREET VIEW

to 70 meters. In DDB×DB, the distmax can be fixed as 48 or 64 matrix index
steps.

• At the beginning, we can localize the first incoming query image by searching
all the database images. Then for an ordinary query image, its searching range
can be narrowed to all DDB×r within the threshold distmax.

According to our experiment, the above approach can avoid nearly 90% of the
comparisons without any retrieval loss compared to a whole database search. A
symmetric comparison matrix is computed from the database in order to reduce
the retrieval time in the online phase. It also serves as an index reference in the
optimization step. In the online stage, for every vehicle query image, we extract top
similar images from the database as the topological localization and then estimate
relative poses between each other. Finally, a LBA is employed to obtain the global
metric localization from all estimated poses and corresponding 2D-to-3D matching
constraints.

7.2.4 Image based Metric Localization

In the previous sections, a candidate set of images has been retrieved from the
database and an intra similarity matrix of the database is computed. In order
to realize a metric localization, high-inlier feature correspondence between camera
images and the candidate set should be guaranteed. Other than a statistic compar-
ison with the BoW, the conventional perspective matching is done by the follow-
ing pipeline [75]: (a) a set of keypoints are extracted in both query and database
images, e.g. SIFT; (b) their descriptors are matched by nearest neighbor search
algorithms, e.g. FLANN; (c) matching outliers are rejected by the ratio test and
geometric verification using constraints from the homograhy or the fundamental
matrix, e.g. 8-point RANSAC algorithm. As stated in Chapter 7, we choose a
more well-performing handcrafted feature, KVLD, to construct 2D-3D matchings
and then use them to compute poses between referenced images and the current
one.

Pose Estimation and Optimization

Once true positive referenced images are searched for the query image, the 2D-3D
matching and PnP problem can be easily solved. The PnP problem has been well
studied in computer vision. Since we also take advantage of the intra cosimilarity
matrix to find several referenced images, a local graph optimization can be adopted
to estimate an optimal pose. In this way, the referenced Street Views act as the
“keyframe ” in the visual-inertial SLAM to compute a consistent trajectory.

Figure 7.9 depicts our pose estimation and global metric localization process.
The vehicle captures images at camera states xt−1 and xt consecutively. No odomet-
ric input is integrated between successive states. At the state xt, the best database
image r1 associated to the query image is retrieved through the topological local-
ization. As mentioned before, via the database DDB×r, the top k − 1 analogous
database images to the best one can be found, denoted as [r2, r3, . . . , rk]. We sup-
pose the query image shares an overlapping view with these k − 1 images as well.
The constraints between them are found by the accurate matching features. With

CHAPTER 7. TOPOLOGICAL AND METRIC LOCALIZATION 111

r1

r2

r3

m1

m2

m3 rk
xt

xt+1

...
xt−1

Figure 7.9: Illustration of Local Bundle Adjustment to estimate the global position
of the vehicle. The vehicle, the best similar database image and other top k −
1 similar database images are the triangles respectively colored in black, orange
and blue. The red stars represent good matching features between the query and
database images.

the help of depth maps in the database, the 6 DoF pose of the vehicle Θ = (R, t),
parametrized in Lie algebra SE (3), is computed by minimizing the reprojection error
between each pair of images, i.e.:

Θ? = arg min
Θ

∑
i

π (‖mi −P (Mi,Θ)‖) (7.2)

where P (Mi,Θ) is the image projection from the 3D point Mi. In our case, Mi

comes from Street View and mi is the corresponding 2D point from the query image.
The 2D-to-3D correspondence is improved by applying an invariant RANSAC (an
ORSA in the kVLD feature). π is s a M-estimator based on the Tukey Biweight
function [228]. We use the function π to substitute the squared-error of the residuals.
It is more immune to the noise caused by imperfect correspondences because it
increases less steeply than quadratic functions [124]. Moreover, the Tukey Biweight
function can also suppress the outliers. 95% of the outliers can be suppressed when
tuning the constant t = 4.68 [217]. In practice, we use this M-estimator based
algorithm in an existing Library of CoSLAM proposed in [233] and the parameter
t = 3. After this process, we can obtain k poses between the query image and its k
similar reference images from Street View.

π (x) =

t2 / 6

(
1−

[
1−

(
x
t

)2
]3
)

if |x| ≤ t

t2 / 6 if |x| > t
(7.3)

As we stated in Chapter 5.1, there are estimation errors for every pair 2D-3D
matchings and it causes the triangular error consistency problem (see Figure 5.20).
In order to get a consistent result, we put all the k poses and 2D-to-3D correspon-
dences into a LBA to refine the vehicle’s pose and its global position. We use the
Levenberg-Marquart algorithm in the optimization framework g2o [108] as our non-
linear least square solver. The error regarding the feature detection is assumed to
follow a Gaussian distribution. The k geotagged views extracted from panoramas
forms the constraints in an optimization problem as shown in Figure 7.9 and their

112 7.2. LOCALIZATION WITH STREET VIEW

camera configurations are given as before. This process is realized in the cartesian
coordinates with the UTM projection. Since UTM values are very big, we select
a starting point as a reference and normalize all the large UTM positions (in both
online and Street View datasets) by subtracting this reference. The final pose is
converted back to the real UTM and its geo-coordinates in WGS84.

We use many techniques to obtain a good final pose estimate: an invariant
RANSAC to remove the outliers in 2D-3D matchings; a M-estimator based RANSAC
to estimate k poses, and a LBA to optimize the final pose estimation. As mentioned,
the PnP problem requires n ≥ 3 correspondences. Since we adopt several optimiza-
tion schemes, it is clear that the more inlier matchings we obtain, the better our
algorithm performs. In the experiment, we set the minimum number of feature
matchings (validated by ORSA) as 3. The estimated pose remains until a new
localization is computed based on this threshold. Moreover, before employing the
LBA algorithm, we compute the topological distance between the estimated pose to
its most similar Street View (referred as the“the estimated topological distance”).
If the estimated topological distance is larger than 12m, we keep the pose calcu-
lated before. These two thresholds are fixed according to our experiments and the
following evaluation will demonstrate the reason.

Figure 7.10 shows a metric global localization in the tested segment where 892
query images and 29 panoramic Street Views are detected. According to our criteria,
there are 153 metric positions obtained with an average error of 3.37m w.r.t the
RTK-GPS (78.5% of them within a 2m accuracy). An example of matches between
the query and the retrieved Street Views is depicted in Figure 7.11. As observed, our
algorithm can retrieve 3 Street Views for an online image but only the Street Views
from the “pano2” and “pano3” can extract validated matchings with it (namely
k = 2 in a LBA). We can thereby compute 2 initial poses from them and then
optimize the final pose by a LBA.

To conclude, we summarize this coarse to fine localization system in Algorithm 3.

Evaluation and Discussion

The performance of our coarse-to-fine algorithm depends closely on both the topo-
logical and the metric localization part. In fact, if the coarse topological localization
fails, the further metric part based on it works in vain. However, in the city sce-
nario, it is difficult to construct a strict ground truth to evaluate the topological
localization. As expected, the visual overlap must exist between the query and
database image for the BoW algorithm to work well. Therefore we can evaluate the
topological localization based on the geometric consistency. We assume that the
topological localization works only if a query image lies in a 20m3 radius around the
Street View and there are also at least 3 matchings between them. The boundary
radius distance (referred as “the real topological distance”) is calculated between the
RTK-GPS corresponding to the query images and the geodetic data of the retrieved
Street View. After verifying the pairs matches along a street with 29 panoramic
Street Views, our combined BoW method is able to recognize 100% visually similar
database images corresponding to query images.

Regarding the metric localization performance, although the accuracy is higher

3In the Google Map API, 20m is a default searching boundary to find a closest Street View for
a customized position input.

CHAPTER 7. TOPOLOGICAL AND METRIC LOCALIZATION 113

Figure 7.10: Bird’s-eye view of the metric global localization. The red points rep-
resent the locations of the Street View cameras. The red and blue lines mark
RTK-GPS ground truth and the estimated positions of the monocular camera re-
spectively.

114 7.2. LOCALIZATION WITH STREET VIEW

pano1

pano2

pano3

Figure 7.11: An example of 2 pairs of validated matches between a monocular
image and its retrieved Street View images by kVLD descriptors. The positions of
Street Views and the estimated localization are displayed in red and green circles
respectively. kVLAD matches verified by ORSA are the green lines and those verified
by graph matching are the blue lines.

CHAPTER 7. TOPOLOGICAL AND METRIC LOCALIZATION 115

Algorithm 3 Metric global localization in the urban area

Input: Street View panoramas S = {S1, S2, . . . , Sn} and
their depth maps D = {D1, D2, . . . , Dn}

Input: Query images Iq = {I1, I2, . . . , Im} captured by a
vehicle driving in the city

Output: Global location of the vehicle
1: for i← 1 to n do
2: Rectilinear processing of S and D
3: Feature extraction and BoW training
4: Construction of DB as the final BoW dictionary
5: end for
6: Calculation of the intra-distance matrix DDB×DB and speed-up matrix DDB×r
. cf. Section 7.2.3

7: Up to here the algorithm is implemented offline.
8: for t← 1 to n do
9: Parametrize Iq by BoW

10: Search Iq’s best similar image Ir in DB
11: Get the top k similar database images of Ir in DDB×r
12: Histogram Equalization if possible: I

′

t/r = E
(
It/r
)

13: for j ← 1 to k do
14: Feature matching
15: Pose estimation Θj . cf. Equation 7.2
16: end for
17: Θ? = LBA {Θj}
18: Recover the global position at step t
19: end for

116 7.2. LOCALIZATION WITH STREET VIEW

Figure 7.12: Metric error analysis with respect to inlier-match numbers and the
topological distance: (a) The number of feature matchings does not affect the error
a lot in the metric localization when place recognition works well. (b) The error of
the metric localization depends a lot on the topological distance between the query
images and their referenced Street Views, as shown by the red curve. The further
away a query image is located from its referenced Street View, the less accuracy
our system obtains. The blue curve illustrates that there is no obvious relationship
between the topological distance and the number of matchings.

than the ordinary autonomous GPS (average error of 8m) [213], readers may still
wonder about the discontinuity (only 153/892 frames localized). We analyze the
cause of errors of the metric localization in two aspects: the topological distance
between the chosen Street View and the position of the query image, and the number
of inlier matches between the query and Street View image. The inlier-match number
reflects the feature quantity that is used in the 2D-to-3D pose estimation process,
and the real topological distance between the query and Street View image can
describe the feature quality. Commonly, the less the further the features are tracked,
the less accurate the localization is. We select all query images that retrieve the
same Street View located at the coordinates [48.801631, 2.131509] (namely “pano2”
in Figure 7.11) and obtain the relationships in Figure 7.12. Our effective BoW
algorithm guarantees the visual overlaps between query images and retrieved Street
Views inside a 20m neighborhood. In this way, the inlier-match number does not
affect much the error in the metric localization. However, the errors appear in a
cumulative trend when the real topological distance increases between the query
and the Street View. Despite the fact that the optimization improves the accuracy,
many further away features only show small motions and can cause disastrous errors
(even going past the bound of the topological localization). As a result, we set up
the criteria of “the estimated topological distance” to eliminate lots of localization
like this. We can make our localization more accurate by setting this distance to a
small value but it will cause big jitters and provided less location estimates. In the
test, we found 12m is a good compromise, which is also close to the average spatial
distance between two successive panoramas.

CHAPTER 7. TOPOLOGICAL AND METRIC LOCALIZATION 117

7.3 Localization with augmented Street Views

As observed in the Figures 7.10 and 7.12, many online frames cannot be localized
because of the discontinuity in the Street View dataset. The topological distance can
affect the accuracy of the metric localization. It motivates us to make the topological
distance smaller by augmenting the number of Street Views. Since there are both
panoramas and associated depth maps (i.e. massive 3D points) in the constructed
GIS dataset, we can generate artificial images by reprojecting the original panorama
and depth map to arbitrary locations, see the image warping in Chapter 5.2.3. In
order to reduce the sparse localization of Street View, we can synthesize virtual
views along the trajectories.

In this section, we describe our refined localization algorithm in detail. As illus-
trated in Figure 7.13, the system is divided in two phases: in the offline stage, 4 useful
types of data are extracted from Street View, including topology, geo-coordinate,
panorama and associated depth map. We pre-process every panorama by rendering
rectilinear images from its camera locus and at same time by generating virtual
views deviating away from that locus. All rectilinear images are used to build a dic-
tionary by a BoW algorithm. In the online stage, for every query image, we retrieve
its most similar rectilinear images (namely referenced images in Figure 7.13) from
the dictionary. Once referenced images are found, their neighboring virtual views
are also used to construct 2D-to-3D transformation constraints. The global metric
localization is also obtained by a LBA on all the constraints. More technical details
are given in the following sections.

7.3.1 Database Augmentation

A city-scale Street View database is already too immense to deal with. Therefore,
a reasonable way to augment virtual views is required and we should also consider
how to efficiently render virtual views from the original GIS database, how to encode
and index the whole database, and how many virtual views to be generated.

For the image synthesis, the depth map ought to be precise. In fact, we lose a
large amount of the depth information in sub-urban, or highly-vegetation covered
areas. Hence, this method should be strictly used in urban environment.

Instead of fixing virtual cameras in the centre of a unit sphere to get rectilin-
ear images, the camera position of new virtual views is translated on the segments
where VEDECOM vehicles were driven, see Figure 7.14. We are able to generate
virtual views from a panorama in any position. Since vehicles are evolving along
the road in urban areas, we only generate virtual images both forth and back along
the trajectory. Inaccurate or missing depth information naturally causes artifacts
and absent pixels, for example, sky pixels often disappear. Rendering virtual views
from multiple panoramas can potentially improve the quality of the virtual views.
However, here we only use a simple synthesizing process since a lot of artifacts are
usually located in moving objects, such as vehicles or pedestrians, which are not the
same to those that appear in our own query images. Our compact preprocessing
enables every panorama to have suitable synthesized virtual panoramas in its neigh-
borhood. Then rectilinear virtual views can be obtained from virtual panoramas via
our backprojection model.

The rendering pipeline is as follows: for every pixel in a virtual panorama, a ray

118 7.3. LOCALIZATION WITH AUGMENTED STREET VIEWS

GIS Extracted Data

Query Image Referenced ImagesBag of Words

3D Features

Depth

Topology

Virtual Views

Image Features

Global Position

offline

online

Geo-data

Panorama

Augmented Images

Synthesizing

Rectilinearizing

Optimization

Figure 7.13: Flowchart illustrates workflows for the localization with augmented
Street Views.

CHAPTER 7. TOPOLOGICAL AND METRIC LOCALIZATION 119

p�

S

� S
�

�
�

�

�

p
�

Fworl�

�2 � t2

��

Figure 7.14: A virtual panorama at centre point O
′

is constructed from the original
panorama at point O.

is cast from the centre of a virtual camera and intersects the planar 3D structure
of its closest panorama. The intersection is then projected back to the spheric
panorama and then the depth map is updated according to the transformation.
Next, using the back-projection model, we extract rectilinear virtual views from the
virtual panorama. Pixel values are still rendered by the bilinear interpolation. For
more detail, please refer to the depth image based rendering algorithm [143].

As illustrated in Figure 7.14, we translate an original panorama S located at a
point O to form the virtual panorama S

′
at point O

′
. The translation t2 is realized

along the trajectory direction, which is defined by a global yaw angle α in our GIS
data. Here, t2 is denoted in an East-North-Up world coordinates Fworld by:

t2 =

l sin(α)
l cos(α)

1

 (7.4)

with l as the distance between two panoramas as OO
′
. l is a parameter customized

by ourselves. A 3D point P is the intersection between the virtual ray and the
planar 3D structure of its closest panorama. Thus it can be defined in the sphere
coordinates at point S with a depth information ρ in a homogenous form as:

P =

ρ cos(θ) sin(φ)
ρ sin(θ) sin(φ)
ρ cos(φ)

1

 (7.5)

Therefore, the point P can be projected to p
′

on the virtual unit sphere S
′
by

transforming to the coordinates of S (at center O):

p
′
=

P + R2(α)t2

‖P + R2(α)t2‖
(7.6)

120 7.3. LOCALIZATION WITH AUGMENTED STREET VIEWS

Figure 7.15: Recall the Figure 5.11: a Street View panorama at location
[48.80056, 2.136449] is extracted in summer in the test area.

where ‖P + R2(α)t2‖ is the updated depth ρ
′

and R2 is the rotation matrix de-
duced from the global yaw angle α. Thus, R2(α)t2 describes the relative translation
between two panoramas. The intensity value at p

′
will be interpolated from p∗

if satisfying ρ
′
> 0. Then, rectilinear virtual views are registered by the former

back-projection model.
In order to lessen the influence of absent pixels, we create more virtual pinhole

cameras (12 in practice) to capture more details in virtual views for a good matching.
Figure 7.16 shows a generation example of 12 virtual views from the panorama
of Figure 5.11 (recalled in Figure 7.15)at location [48.80056, 2.136449] by moving
forward 1m to [48.801499, 2.131564] along its topology.

7.3.2 Refined Result and Discussion

The intrinsic parameters of the virtual cameras are also fixed according to our own
MIPSEE camera, which is similar to our backprojection model in Chapter 5.1. In
order to qualify the metric accuracy, we only selected localization runs where the
RTK-GPS reached a below-to-20cm precision. The same urban trajectory example
of Section 7.2 is tested, see Figure 7.17. For every panorama, we generated its virtual
views both forward and backward. In the experiment, virtual views with too much
missing pixels (due to the limit of the synthesizing process) are rarely selected as
referenced images for a query image. Yet in an indirect way, the augmented intra
cosimilarity matrix helps to find more potential top matching referenced images for a
query image, namely some much closer virtual views are used in the PnP procedure.

Translation Distance Evaluation

The localization accuracy decreases with the increase of the distance to its referenced
Street View. Thus, the translation distance l must be chosen carefully. The main
criteria to fix the distance between a panorama and the virtual views depends on
the following aspects:

• Null pixels and artifacts will be produced if the synthesized views are far away
from the rendered panorama. Normally, the farther they are, the more pixels

CHAPTER 7. TOPOLOGICAL AND METRIC LOCALIZATION 121

Figure 7.16: Rectilinear synthesized views from the panorama of Figure 5.11. The
black pixels lack the depth information.

122 7.3. LOCALIZATION WITH AUGMENTED STREET VIEWS

Figure 7.17: The output from a single localization run using original Street Views
and synthesizing virtual views: The trajectories obtained with/without virtual views
are plotted in green/ blue respectively. The ground truth in red line is recorded by
a centimeter-level RTK GPS.

CHAPTER 7. TOPOLOGICAL AND METRIC LOCALIZATION 123

Figure 7.18: The close-up views from the localization result.

are lost. Consequently, our following metric localization will be influenced
significantly.

• We use the global yaw angle to determine the segment we are traveling on in
the topology. Nevertheless, a long translation distance will generate virtual
views out of the current street, especially on narrow crossroads where multiple
panoramas meet together. Synthesizing views in such cases is not useful.

• Also, we expect that the final augmented Street View can achieve a uniform
distance between every consecutive views’ positions. If the translation distance
is too small, uniformity can hardly be realized.

We tried several translation distances along the same trajectory in order to find
an ideal choice. The geodetic locations were visualized to measure their unifor-
mity. Table 7.1 shows the evaluation results. When the translation was fixed to
4m, as shown in Figure 7.17 and Figure 7.18, we acquired a compact and uniform
distribution of geo-tagged virtual views. After discarding virtual cameras located in
buildings4 , we synthesized 53 virtual panoramas in total. Finally, 53 × 12 synthe-
sized views were added to the Street View database.

Robustness & Accuracy of Localization

Once the augmented database is constructed, the global urban localization can be
realized according to our proposed method. Figure 7.17 shows an overview of two
localizations estimated respectively by the original and the augmented Street Views,
and their close-up views from Figure 7.17 are provided in Figure 7.18. As we can
see, the performance of the metric localization depends on the distance between the
query image and the Street View retrieved in the topological localization. Along the

4It appears seldom only at traffic intersections.

124 7.3. LOCALIZATION WITH AUGMENTED STREET VIEWS

Street ViewQuery Image Query Image Virtual View

SIFT SIFTInlier Ratio = 0.58 (540/926) Inlier Ratio = 0.74 (781/1053)

Figure 7.19: The same query image is matched with highly similar Street View
retrieved by the BoW and with corresponding virtual view. The FLANN based
matches are displayed in red and geometrically verified matches are shown in green.
The inlier ratio is measured by proportion of geometrically verified matches.

whole trajectory, we only plotted the localization when the topological localization
reached a 4m accuracy.

Translation distance 2m 4m 6m 8m
Invalid camera positions 0 4 4 6
Uniform distribution N Y Y N
Ratio of virtual views with more than 50% null pixels 0.52 0.657 0.78 1

Table 7.1: Evaluation of the translation distance.

Original Street View Augmented Street View
Continuity 116/892 272/892
Average Error 3.96m 3.43m
Ratio in [0m, 1m[19.68% 38.57%
Ratio in [1m, 2m[32.70% 21.82%
Ratio in [2m, 3m[25.13% 22.86%
Ratio in [3m, 4m] 22.49% 16.75%

Table 7.2: Evaluation of the localization performance.

As can be seen from Figure 7.17, our approach generally works more smoothly
and accurately than the localization without virtual views. The path estimated by
augmented Street Views is much closer to the ground truth. Virtual Street Views
can reduce the accumulative drifts effectively when the vehicle is far away from the
original panorama, prevent that the localization jumps back while the vehicle is
moving forward, make the localization path smoother, see Figure 7.18.

We quantify the performance by using several statistic terms as calculated in Ta-
ble 7.2. First, we define the continuity as a term to evaluate how many query images
can be located within a 4m accuracy after the metric localization. We calculated
their average error regarding the ground truth during the whole run. The average er-
ror means the total error in distance with respect to the number of localized frames.

CHAPTER 7. TOPOLOGICAL AND METRIC LOCALIZATION 125

As seen from the table, the average accuracy of the localization improves consider-
ably and 60.39% of the used query images can reach an error between [0m, 2m[. In
contrast, most of the localization precision stays between [2m, 4m[using the original
Street View.

We also analyzed the 2D-3D matches between these localized query images w.r.t
their Street View and virtual views in the work of [220], see Figure 7.19. In the
literature, virtual views are often used to improve matching under extreme viewpoint
changes. In our former work, we adopted a complex Virtual Line Descriptor (kVLD)
to determine the inlier feature point correspondences when the query image was far
away from the Street View. We also demonstrated that augmented virtual views can
reduce the influence of viewpoint changes and increase inlier matches between query
and referenced images as well. After using virtual views, inlier matchings increase
significantly. Simpler features, like SIFT, can be used instead of kVLD.

In summary, the main contribution of this algorithm is thus an extension of our
former framework. We can compensate the sparsity of Street Views and improve the
localization precision with the construction of augmented Street Views database.

7.4 Generalization to the whole Test Area

In the previous sections, we only selected a relatively short urban segment (the se-
quence No.11 in Table 7.3) to do the experiment. When using this sequence, we
verified that there are good urban appearances in this segment, namely with urban
buildings without heavy vegetation or moving objects. Moreover, online captured
frames are also free of illumination and other dynamic noise. In such an ideal sce-
nario, all these frames are well recognized and localized by their corresponding Street
Views. Now, we will test whether the results of our algorithms can be generalized to
the whole test area. Before doing that, we add the following modifications to refine
our algorithms:

• If the first online frame is not localized by the combined BoW process, our
algorithms skip to the next frame until finding a localized frame as a starting
point. This strategy contributes to ignoring some initial online frames captured
with blur or important illumination. It is common in our online datasets, see
Figure 7.20(a).

• In the localization process, if one query frame is considered as a wrongly
referenced image by the combined BoW5, it is ignored.

• During the localization process, if one frame is not localized due to insufficient
2D-3D matchings, the position stays unchanged and our algorithms would
skip to the next frame until a localization can be computed. It appears very
often when some moving vehicles block the scene to the online cameras, like
in Figure 7.20(b).

5As we stated before, a referenced image should be checked with the previously detected refer-
ence image and be verified if it is a good match according to the distance between them. If the
distance is too important, it is a wrong match. In the experiment, we set this threshold to 12m
which is also the search radius in the Google Street View extraction. Above this threshold, two
panorama would not share a similar scene.

126 7.4. GENERALIZATION TO THE WHOLE TEST AREA

Figure 7.20: Some scenarios during localization: (a) Some big brightness blur frames
were often captured in the initial step and they are ignored by our algorithms. (b)
Noise from moving objects appears frequently in the urban environment.

Sequence Vehicle Number of Frame Spatial Extent Number of Street View Original approach Extended with Virtual Views

Seq0 Zoé 554 11× 265 29 Fail Fail

Seq1 Scénic 250 11× 79 11 3.76m 3.06m

Seq2 Scénic 898 11× 271 29 3.29m 2.63m

Seq3 Scénic 895 11× 222 29 Fail Fail

Seq4 Scénic 291 11× 128 12 Fail Fail

Seq5 Scénic 841 11× 317 33 3.88m 2.54m

Seq6 Scénic 901 11× 216 34 3.72m 2.82m

Seq7 Scénic 306 11× 184 16 Fail Fail

Seq8 Scénic 141 11× 69 8 Fail Fail

Seq9 Scénic 422 11× 198 19 Fail Fail

Seq10 Scénic 899 11× 382 36 Fail Fail

Seq11 Scénic 892 11× 265 29 3.37m 2.85m

Seq12 Scénic 290 11× 56 4 3.59m 2.92m

Seq13 Scénic 899 11× 361 36 3.84m 2.49m

Seq14 Scénic 348 11× 131 13 3.26m 2.67m

Seq15 Scénic 625 11× 196 17 3.34m 2.58m

Seq16 Scénic 896 11× 145 32 3.06m 2.44m

Seq17 Scénic 172 11× 93 15 2.98m 1.56m

Seq18 Scénic 897 11× 234 29 2.51m 2.13m

Table 7.3: Details of the captured sequences in the test area: the spatial extent is
roughly measured by the localizing ruler tool in Google Maps (lane width×length).
Average errors are computed respectively from the original approach (using original
Street Views) and the extended one (using virtual views).

After these refinements, we tested our algorithms in the other sequences of the
test area and the results are illustrated in Table 7.3 and Figure 7.21 to Figure 7.24.
According to the table and figures, our algorithms can both achieve submeter level
precision and using augmented Street Views can improve the smoothness and ac-
curacy as well. Moreover, we observed that the more panoramas are located in the
trajectory, the more accurate the localization is. Taking the sequence No.17 (see
Figure 7.24) as an example, in a two-lane trajectory, we can extract more panoramas
compared to one lane and it helps to improve the localization. In our algorithms,
when a frame is not localized we do not change the position until a subsequent frame
is well localized. Another example is that the vehicle can stop while the scene is
still being recorded. Thus the same scene can be captured into frames and these
repeated frames could be localized by our optimization process and rendered at dif-
ferent positions as shown in the sequence No.12 (see Figure 7.22). There is no doubt
that tracking schemes could be used to eliminate these jittered estimates.

CHAPTER 7. TOPOLOGICAL AND METRIC LOCALIZATION 127

Figure 7.21: The localization output from sequences No.1, 2 and 5 using original
Street Views and synthesized virtual views. The positions of original panorama,
virtual views and ground truth are noted in red points, blue points and red line
respectively. The results from original Street Views and augmented virtual street
views are in blue and green lines.

Figure 7.22: The localization output from sequences No.6, 12 and 13 using original
Street Views and synthesized virtual views. The positions of original panorama,
virtual views and ground truth are noted in red points, blue points and red line
respectively. The results from original Street Views and augmented virtual street
views are in blue and green lines.

128 7.4. GENERALIZATION TO THE WHOLE TEST AREA

Figure 7.23: The localization output from sequences No.14, 15 and 16 using original
Street Views and synthesizedvirtual views. The positions of original panorama,
virtual views and ground truth are noted in red points, blue points and red line
respectively. The results from original Street Views and augmented virtual street
views are in blue and green lines.

Figure 7.24: The localization output from sequences No.17 and 18 using original
Street Views and synthesized virtual views. The positions of original panorama,
virtual views and ground truth are noted in red points, blue points and red line
respectively. The results from original Street Views and augmented virtual street
views are in blue and green lines.

CHAPTER 7. TOPOLOGICAL AND METRIC LOCALIZATION 129

Figure 7.25: Result of the combined BoW working on the sequence No.1 (left)
from Zoé and the sequence No.3 (right) from Scénic. Similar to the state-of-the-art
evaluation, we find the maximum of the cosine similarity and visualize all values
above 0.8 ∗maximum.

At the same time we also find there are certain sequences in the test area that
are not well localized by our algorithms. The main reason is that we cannot get
a proper result in the coarse place recognition process, see Figure 7.25. After the
analysis, there are two aspects causing this failure:

• In the online dataset of Zoé, the front camera captures many similar scene
at different scales. These frames are separated by 40m but are matched to
the same Street View with the combined BoW. The frames from Zoé lack
distinctive features. The setting with the camera facing forward is not as
favorable as the one of the Scenic with a camera facing the building facades.

• The second cause comes from the disturbance of long distance vegetation. The
vegetation is a very negative element for visual localization systems. It covers
most of the useful features on the urban facades, and also makes the scenes
look similar. In addition, it can also lead to a degradation of the RTK GPS
and as such generate a big offset for the ground truth. In the sequences No.3,
4, 7, 8 and 9, most of urban features are covered by the trees, which leads to
difficulties to recognize places.

In general, our algorithms are capable of realizing a submeter level localization
in most urban environments but they are limited to areas with strong urban appear-
ances. Otherwise, the positioning error increases a lot when these distinctive urban
features reduce.

7.5 Conclusion

In this chapter, we have presented two monocular urban localization systems that
use a GIS. We pushed the conventional appearance-based localization forward to
the metric pose estimation by a graph optimization process. Firstly, we evaluated
current state-of-the-art algorithms, such as DBoW and FABMAP, and proposed a
more robust place recognition algorithm to our case, called combined BoW. In the
online stage, the kVLD descriptor was used to establish 2D-3D correspondences.

130 7.5. CONCLUSION

Then the pose was estimated by solving the PnP problem and the result was opti-
mized by a standard LBA pipeline. This approach requires neither the construction
of a consistent map nor the prior visit of the environment. A simple camera set-up
makes this algorithm affordable and easy to be deployed in real urban localization.
In order to realize a reliable localization, we thoroughly explore multiple information
in the GIS and strictly respect their intra relationships. Our technique demonstrates
both a high accuracy w.r.t the Street View and robustness in complicated urban
environments.

Although a considerable proportion of the former localization system achieves a
2m accuracy, the discontinuity still affect the robustness of the system. Thus, we
extended this method by using Google Street View imagery to augment the GIS
with synthesized views. Instead of densely sampling the images, we take advantage
of the topological information to render useful virtual views in a very sparse way,
which enables to lighten the optimization burden and to use simpler descriptors to
extract the constraints. These augmented virtual views also allow the system to be
more robust to illumination, occlusion and viewpoint changes. We experimentally
showed that an augmented Street View based monocular localization system works
more accurately, smoothly and compactly than using the original database. In our
handcrafted-feature-based localization system, the only input of this approach is
an image sequence from a monocular camera and Google Street View. In future
works, we can also improve our system by tracking frame to frame correspondences
or adding the odometry.

Part IV

Localization using Convolutional
Neural Network

131

Chapter 8
Convolutional Neural Networks

8.1 Introduction

In the previous part, we aimed to develop a coarse to fine metric localization sys-
tem using handcrafted features. The real-time performance is limited due to the
image querying process within thousands of Street Views and the bundle optimiza-
tion. Since we deal with global scale GIS, it motivates us to leverage deep learning
methods to develop an online end-to-end localization system. Deep learning has
emerged as a central tool to solve perception problems in recent years [114]. It takes
advantage of massively collected data to teach a computer how to execute things
only human beings were capable of. The convolutional neural network (convnet),
as an active branch of deep learning, plays a dominant role in the current computer
vision community [114].

Before diving into the convnet based localization systems in the next chapter,
we use this chapter to lay down the foundations of convnets1. As we know, the
classification problem is a central and basic task in machine learning. We introduce
a simple multinomial logistic classifier (also known as “softmax” regressor) and
transform it into a neural network step by step. In this phase, some core ideas in deep
learning like stochastic gradient descent, the back propagation, overfitting avoidance
techniques and activation functions are discussed in details. Then the main building
blocks of convnets, namely convolution and pooling layers are reviewed, as well as
recently used convnets models and training libraries. We also talk about transfer
learning and its applications in the end.

8.2 Deep Learning

8.2.1 From Machine Learning to Deep Learning

In the machine learning field, the classification problem is the foundation for other
algorithms, such as regression, reinforcement learning, ranking, etc. Therefore, we
take the linear classification as an example and transfer it to a neural network. A

1The localization work with convnet was conducted in the very end of the PhD study, therefore
instead of providing a comprehensive state-of-the-art, we propose here only a short introduction
to principles of deep-learning with Convolutional Neural Network. Readers knowing well deep
learning can overlook this chapter.

133

134 8.2. DEEP LEARNING

xi yi S(yi) Ti

Input Linear regressions Softmax 1-hot encoding

Wxi + b S(y) L(S(yi);T)

Vector

A [1; 0; 0; :::]T

B [0; 1; 0; :::]T
:::

1

0

0

:::

0:7

0:2

0:1

2:0

1:0

0:1

:::

:::

ith

Figure 8.1: A linear classifier to recognize handwriting letters. Image credit of the
Udacity Deep Learning online course.

linear classifier makes the classification decision based on the values Y calculated
by a linear combination function f of the input vector X, as stated in Equation 8.1,
where W is the weight matrix and b is the bias matrix. The linear function is
actually a giant matrix multiplier. It takes all the inputs as a big vector denoted as
X and multiplies them with a weight matrix to generate its predictions Y.

Y = f(X,W,b) = WX + b (8.1)

Assume we have a concrete task to recognize and classify handwritten letter
images (e.g. MNIST dataset [114]) to their correct letter classes. That is, we need
to recognize N examples of the inputs X (each with a dimensionality D) to K
distinct classes. For example, in MNIST dataset, we need to classify N = 30000
written letters (each with D = 20×20×1 pixels) into K = 26 classes (e.g. A,B,C,D
...). As shown in Figure 8.1, a handwritten image should be classified as the letter
“A”. This example has all its pixels flattened out as a single column vector xi with
xi ∈ X, i ∈ [1, · · · , N]. The vector xi thus has a shape of [D × 1]. According to
Equation 8.1, we apply a linear function Wxi + b to compute the linear regression
of input, denoted as yi. We can find that the weight matrix W has the size [K×D]
and the bias vector b has a shape of [K × 1]. The bias vector influences the output
Y but without interacting with the input xi. With a single matrix multiplication
and addition, we realize a linear mapping. The function f maps the input to class
scores: it evaluates K separate classifiers in parallel, where each classifier is a row of
W. As such, each row of yi is a predicted value with respect to the corresponding
class.

Training the model consists in tuning the parameters W and b so as to obtain,
for any input image, an output close enough to the ground truth labels T (with
a shape of [K × N]). In our example, the output of the linear classifier is yi =
[2.0, 1.0, 0.1, · · ·]. For the ground truth T(yi) (with a shape of [26 × 1]), we can
set the class score of the letter “A” by a vector [1.0, 0, 0, · · ·], the letter “B” as
[0, 1.0, 0, · · ·], until the letter “Z”. This method is called one-hot encoding. Each
label is represented by a vector of dimension equal to the number of classes and in
the vector 1 indicates the correct class and 0 for everywhere else.

We find the output of the linear classifier is different from the ground truth. An
easy transformation is to provide probability of 1.0 for the maximum value in the
vector of yi and the rest considered as zero. Thus, a softmax function S(yi) (cf.
Equation 8.2) is applied to yi. This function allows us to estimate a “probability”
of all classes: the prediction probability for the correct class is close to 1 and others

CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS 135

to 0, such as S([2.0, 1.0, 0.1, · · ·]) = [0.7, 0.2, 0.1, · · ·].

S(yi) =
[ey1 , ey2 , · · · , eyK]T∑K

k=1 e
yk

(8.2)

After obtaining S(yi), we need a loss function to quantify the agreement between
the softmax output and the ground truth labels. An optimization is then used to
minimize the loss function with respect to the parameters in the linear function,
namely W and b. This optimization process is trained with plenty of training data.
The whole process is known as “softmax regression”, which is also a simple neural
network. Once optimal W and b obtained, we can use this classifier to estimate
other data (test data).

Then we need to design the loss function L between the prediction S(yi) and
its ground truth label Ti. For our example, a natural way to measure the distance
between two probability vectors is called the cross entropy (cf. Equation 8.3). The
cross entropy is a sum over all classes, namely through M dimensions. It renders
high distance for the incorrect class but low distance for the correct class. In our
example, L(S(y),T) = −(1 ∗ ln(0.7) + 0 ∗ ln(0.2) + 0 ∗ ln(0.1)) = 0.35.

L(S,T) = −
∑

m∈[1,··· ,M]

Tm log(Sm) (8.3)

We train the model with all well-labeled training data X to find the values for
the weights and bias which are good at performing predictions. Using this distance
representation, the cost function can be defined by the average cross entropy of the
entire training set as illustrated in Equation 8.4.

C =
1

N

∑
i∈[1,··· ,N]

L(S(Wxi + b),Ti) (8.4)

The cost to minimize is a function of the weights and the biases. In machine
learning, this classical numerical optimization problem can be solved by the gradient
descent. That is, we compute the gradient (∇) of the cost with respect to the
parameters W and b, denoted as: ∇C(W,b). Then we follow that derivative by
taking a proportional step backwards −λ∇C(W,b) and repeat until some stopping
criteria are reached (e.g. cost below a predefined threshold, or cost not decreasing
anymore, etc.). Here λ is a proportional value known as the learning rate. The
parameters are updated by Equation 8.5.

Wt+1 = Wt − λ
∂C
∂W

bt+1 = bt − λ
∂C
∂b

(8.5)

For image data, the pixel values often lie in the [0, 255] range. Feeding these
values directly into a learning process may lead to overflows. In the machine learning
literature, we have four common forms of data preprocessing [114]: mean subtraction
refers to subtract the mean across every individual feature in the data and has a
geometric interpretation of centering the data around the origin along all dimensions.
Normalization is to normalize the data dimensions to have a approximately same
scale, for example once the data is zero centered, we can divide each dimension

136 8.2. DEEP LEARNING

by the standard deviation PCA (Principle Component Analysis) can transform the
data into a compressed space with less dimensions. The whitening takes the data in
the eigenbasis and divides every dimension by the eigenvalue to normalize the scale.
In practice we often preprocess the input data to have a 0 mean (zero-centered) and
equal variances [188].

Moreover, the weights and biases should be initialized at a good starting point
for the gradient descent to proceed. There are various initialization techniques and a
simple general method is to use small random numbers drawn from a gaussian with 0
mean and 10−2 standard deviation [114]. To avoid that the classifier memorizes the
training set and fails to generalize the model, we also divide the training dataset into
three parts: training (to estimate weights and biases), validation (to fine-tune hyper
parameters2) and test dataset (to evaluate the final model) as stated in machine
learning theory.

When dealing with a large scale of training data, instead of computing the update
over the whole training dataset, we often randomly select a small fraction of the
training data and use the sample derivative to do gradient descend. This sample
gradient is not the right direction to do gradient descent and at times the cost might
increase. But if we compensate this by many iterative updates, the training would
finally converges to a minimum. This technique is called the stochastic gradient
descent (SGD) [114]. The SGD is vastly efficient by computing small samples and
also scalable with the data and model.

The technique of SGD is the core of the logistic regression, even in deep learning
algorithms. There are many variants originated from SGD, such as Adagrad [53],
AdaDelta [226], RMSProp [197], Adam (adaptive moment estimation) [101], etc.
We will not dive into these different optimization techniques and it is sufficient to
know they mainly improve the SGD update rules from two aspects: one is to take
advantage of the momentum (the knowledge accumulated from previous update
steps); the other is to use learning rate decay (make learning slower). According to
the unit tests for stochastic optimization carried out by [173], Adam can serve as a
default SGD scheme in most of neural network training. Adam is computationally
efficient and is well adaptive for problems that are large in terms of data and/or
parameters.

The softmax regression is a nonlinear model with simple matrix multiplications.
These linear operations are very stable and the derivative of a linear model is al-
ways constant. However, most problems in reality can only be solved by training
more complex models. Therefore, we would like to take advantages of simple linear
operations but also require the entire model to be non-linear. Take the previous
classifier as an example: instead of having a single matrix multiplication, we can
separate the matrix multiplications into two parts (layers) due to the linearity (see
in Figure 8.2). Between two parts, we insert some ReLUs (Rectified Linear Units
whose equation is denoted in Table 8.1) [105] to add non-linearity. From its equa-
tion, ReLU is simply thresholded at zero but it is nonlinear in nature. In fact, any
function can be approximated with combinations of ReLUs [114]. After inserting
ReLUs, the output would be a simple linear combination of weights and inputs.

The model then becomes a two-layer neural network, where the first layer consists

2Hyper parameters refer to all parameters of the learning model (e.g. the number of convolution
filters in a given convnet layer) or of the training algorithm (e.g. the learning rate and the number
of gradient iterations).

CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS 137

X
Y

Input

×W1 +b1

×W2 +b2

ReLU

::: C

forward

backward

Figure 8.2: A two-layer neural network from the softmax linear classifier of Fig-
ure 8.1. The forward process is the linear or non-linear computation among neurons
while the backward pass indicates the parameter update (weights and bias) based
on the gradient descent.

of the weight multipliers applied to inputs and the hidden layers3 of ReLUs, and
the second layer is the multipliers to the intermediate outputs, then followed by the
softmax function. We can change this network to be more complex by increasing
the size of the activation layers (much wider), or adding more layers to make the
model deeper. Usually, training a neural network in a deeper way can be more tricky
(due to many non-linearities), but is able to capture a hierarchical structure of the
training data [214].

The deep learning network can be very large and it is not possible to write the
gradient formula by hand for all parameters. In this way, back propogation is in-
troduced to compute the gradients of every inputs and intermediates by recursively
applying the chain rule along a computational graph [112]. Similar to the neural
network, we can use a graph structure to implement forward and backward to per-
form updates. In the forward stage, we compute the result of matrix multiplications
and nonlinear activations from layer to layer; in the backward stage, we employ
back propagation4 to compute the gradients of the loss function with respect to the
inputs. In deep learning process, there are some conventional terms: one epoch is
one forward and one backward pass of all the training dataset; the batch size is the
training number in the small samples of SGD during an epoch; and the number of
iterations is the number of the passes.

As we know, the neural network was originally inspired by the biological neural
model. Even though the current deep learning goes further than the biological
interpretations, we still give a brief description from this point of view. One input
from the X is a basic computational unit called as a neuron, and the weights W
and the biases b serve as the synapses around this neuron. Once the sum of the

3A hidden layer refers to a layer connected between input and output neurons.
4The backward pass begins with the loss and computes the gradients with respect to the output.

The gradient with respect to the rest of the model is computed layer-by-layer through the chain
rule.

138 8.2. DEEP LEARNING

Function Expression Pros Cons Variants

Sigmoid S(x) = 1/(1 + e−x) Active interperation with a range [0, 1]
Staturation at tails causes zero gradients

SoftmaxNon-zero centered output
Computational cost

Tanh tanh(x) = 2S(2x)− 1 Zero centered output with the range [−1, 1]
Staturation at tails causes zero gradients
Computational cost

ReLU relu(x) = max(0, x)
No saturation when x is positive Non-zero centered ouput Leaky ReLU
Computational efficiency Zero gradients when x is negative PReLU
6× fast converging ELU

Maxout max(wT
1 x+ b1,max(wT

2 x+ b2) No saturation and zero gradients Double paramters

Table 8.1: A comparison of commonly used activation functions.

synaptic strength arrives a certain threshold, the neuron will fire a spike (output)
along its corresponding axon. We model the firing rate of the neuron as an activation
function. Table 8.1 depicts the commonly used activation functions in the state of
the art.

The most common challenge to training a neural network is overfitting [114],
where the error on the training data is small but the error on the test data is large.
The model has not learned to generalize to new situations. Here we introduce some
frequently adopted techniques to prevent overfitting:

• Terminate training early as long as the performance on the validation set
stops improving. After recording the model training curves, the gap between
the training and validation accuracy indicates the rate of overfitting;

• Add more training dataset or use data augmentation5[209];

• Reduce the network architecture complexity and use architectures that gener-
alize well;

• Add some penalty terms (artificial constraints) on large weights in the cost
function, so as to bound the model complexity, in order to achieve a better
generalization (L1 or L2 regularization, for instance);

• Use dropout layer [185] that deletes a random sample of the activations (makes
them zero) in training. For example, we can add a drop out layer with a 50%
probability before the hidden layer ReLU in Fig 8.2. It thereby randomly
makes 50% of the outputs calculated from the first layer be zero. Dropout
forces the networks to learn much more times than before. The final trained
parameters would be a convinced consensus from these redundant learnings.

Neural network training is a process full of numerous trials and errors. The
design of the network is an open choice, ranging from layer width to model depth
and varying from different layer and activation function selection. Moreover, we
have a lot of hyper parameters to test, including initializations, learning rate decay,
momentum, batch size, etc. However, a popular strategy to train neural networks
in the literature is to learning the model in a slower (i.e. small learning rate) and
deeper (i.e. a deep architecture) way.

5Data augmentation is mainly used in image datasets. We can generate artificial datasets by
simple techniques, such as cropping, rotating, and flipping input images.

CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS 139

Figure 8.3: Illustration of the convolutional operation: a [3×3×1] filter K slides on
a [7×7×1] image I and do dot products. The obtained image after the convolution
(also called a feature map) has a reduced size [5 × 5 × 1]. How to compute the
changed size after the convolutions has been well defined according to [54].

8.2.2 Convolutional Neural Networks

Deep learning is a data driven method. The boom of massive data in recent year
and of powerful parallel data processing of the GPU make deep learning possible.
Understanding the data structure, such as images or voice sequences, helps a lot
to improve the training. Convnets are very similar to ordinary Neural Networks
stated in previous sections: they are made up neurons that have learnable weights
and biases. One important difference is that convnets only deal with grid-organized
inputs such as images (or temporal sequences), which allows us to encodes the
structural properties of input data into the architecture. For using ordinary machine-
learning on images, input is either a vector of handcrafted features extracted from
the image, or the pixel values flattened into a 1D vector (like the previous linear
classifier). As shown in previous one-layer softmax regression classifier (applied
on flattened 20 × 20 grayscale images with 26 possible classes), there are already
26× 20× 20× 1 = 10400 weights to learn. This amount still seems manageable, but
clearly it cannot scale to larger images. For example, for RGB images with more
respectable size, e.g. [256× 256× 3], it will lead to 196608× 26 parameters to learn
for a one-layer ordinary neural network.

In the convnet, instead of computing global weighted sums of all pixels, each
neuron computes a linear filter applied only on a small rectangular patch the image.
In order to analyze the whole image, each filter is applied to every possible patch
location. Therefore, for a given filter there is one neuron for each location, and all
these neurons should have the same weights because they compute the same filter.
This technique is called weight sharing, which reduces the learnable parameters and
makes networks easier to train. The weights sharing is realized by convolutional
operations of image processing, see in Figure 8.3. The small filter, (also known
as kernel) works as a sharing weight, and the dot products serves as the matrix
multiplications in linear regression. In this way, training a model is to learn the
parameters in the kernels.

In the convnet, all layers contain 3 dimensions as an image: height, width and
depth6. Suppose we need to recognize handwritten letters from input images with

6Here, the depth means image channels and differs from the network depth, e.g. a RGB image
has a depth of 3.

140 8.2. DEEP LEARNING

size of [256×256×3]. For the first layer of the convnet, if we introduce, for instance
16 filters with small spatial size ([3 × 3 × 3]), we obtain (256 × 256) × 16 neurons,
but only (3× 3× 3 + 1)× 16 = 448 independent parameters to learn, which is way
smaller than for a fully-connected layer used in ordinary Neural Networks. Each
filter extends the full depth of the inputs and is shared over the image space. Then
after the convolutions, a non-linear activation function (see Table 8.1) is usually
applied to the output of each neuron. Furthermore, the convolution layer is gen-
erally followed by a pooling layer which reduces dimension by computing the max
or average over neighboring neurons. This computation is called the pooling layer7.
After the (convolution+pooling) layer, we finally get 16 feature maps stacked to-
gether like pancakes along the new depth, in this example, the output turns to be
[128 × 128 × 16], see Figure 8.4. Then we can connect the obtained feature maps
with a fully connected layer8 with a size of 26 output (one for each class of letter),
and therefore 26 × (128 × 128 × 16 × 1) weights to learn. Regarding the loss func-
tion design and the weights update, they follow the same pipeline of the traditional
Neural Networks.

However, a one layer convnet is very rare. The popular strategy is to stack several
successive layers of (convolution+pooling) to extract more semantic CNN features
(i.e. the visualization of the output feature maps), as depicted in Figure 8.4. We
can see the convolutional and pooling operations reduce the spatial dimensionality
layer after layer. On the other hand, it is commonplace to increase the number of
filters (hence the depth) from one layer to the next[219]. As we stated in Chapter 3,
the low CNN features extract basic geometries, like edges or lines, but the high level
features are combinations of these geometries. In summary, convnet aims to repre-
sent the training data in semantic representations (in depthwise) instead of spatial
representations (hight×width). Once deep and narrow-spatial representations are
obtained, we can connect it to the fully connected layers and train our classifier or
regressor.

A typical architecture for a convnet is a few layers alternating convolutions and
max pooling, followed by a few fully-connected layers at the top. The first famous
model to apply this architecture was the LeNet-5 (see Figure 8.6) in 1998 [113]. The
successful AlexNet [105] is also an extended form of the LeNet-5.

Nowadays, we have a lot of frameworks to train deep learning models, as listed in
Table 8.2. They are all multi-GPU supported and adaptive to the forward /backward
computational pass graph of Neural Networks. In our experiment, we mainly use
TensorFlow as the primary framework and Keras as an interface with high-level
model definition. As we know, training a convnet consists of numerous convolution
operations that are computationally heavy for a single core CPU. Leveraging multi-
core GPU to train is a common way, for example, by using multi-GPU card under
the CUDA framework of NVIDIA. Moreover, some specific cloud services such as
Amazon WebService (AWS), Azure or Google Cloud also provide efficient platforms
to train convnet models.

7The pooling layer is very important to reduce the spatial size of the feature maps by using
the max or mean function to summarize subregions, namely the maximum (Max pooling) or the
average value (Mean pooling).

8Recall: fully connected (FC) layers connect every neuron in one layer to every neuron in
another layer.

CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS 141

25
6×

25
6×

R
G
B

12
8×

12
8×

16

64
×
64
×
64

32
×
32
×
25
6

edges, lines blobs, shapes objects combination of objects FC layers classifier/ regressor

Figure 8.4: Example of a classical convnet architecture with 3 filters and its possible
semantic output from every layers.

Figure 8.5: Architecture of LeNet-5 as (Conv1-Pool-Conv2-Pool-FC1-FC2), image
credit [113].

Framworks Sponsor Time Languages

TensorFlow [1] Google Brain 2015 C++/Python/Java
Theano [16] Univ. Montréal 2009 Python
Keras [33] Google 2015 Python
Torch [41] Facebook AI, Google DeepMind 2002 Lua/C
Caffe [93] Berkeley 2013 C++/Python/Matlab

Table 8.2: Some typical frameworks to train deep learning models.

142 8.3. TRANSFER LEARNING

8.3 Transfer Learning

This is actually rare to train an entire convnet with random initializations since it
is nearly impossible to have a training dataset of a suitable size. As such, transfer
learning [18, 29] is proposed to use the gained knowledge in one domain to solve a
new problem in another even if the relationships between them are limited. Neural
networks often take days or weeks to train, transfer learning can greatly shorten
training time.

In practice, we can train a base network on a base dataset by ourselves or take a
pretrained convnet directly, and then transfer the learned features to a new target
network and train it on a new target dataset. Transfer learning works only when
the base features are general enough to both base and target tasks. Modern base
convnets are pretrained on large datasets for several weeks, such as ImageNet.

The pretrained or base network usually behaves as a feature extractor for the
target convnet or as an initialization that needs to be fine-tuned. As a feature
extractor (namely only extract CNN features), the base network removes the final
fully-connected layer to connect the target network but fixes all pretrained weights.
When using as an initialization (that is to say, the task is not changed and we benefit
from the pretrained weights to speed up a new training.), we only need to fine-tune
the pretrained weights during the back propagation. Since the lower layers capture
more generic features than the higher layers [219], we can only fine-tune the last
layers rather than all the layers of the pretrained convnet.

8.3.1 Application Scenarios

There are four main scenarios when using transfer learning and every scenario has
its specific training scheme. The four scenarios depend on the size of the target
dataset and the similarity between the target and base dataset. A large dataset is
one million images at least while the small can be 2000 images.

• Target dataset is small and different from the base dataset.

When the model is trained with a small dataset, overfitting is the main concern.
In this case, the weights of the base convnet remain constant to avoid overfit-
ting. As the base and target datasets are different, they will not share similar
high level features (high lever features are more data-specific representations).
It is likely to only use the low level features from the base network (i.e. feature
maps from the start of convnet in Fig 8.6). Therefore, we keep only several
layers at the beginning, add a few FC layers with random initializations and
train these weights. In such cases, training a simple linear regression computed
on the output of the truncated convnet can often be sufficient.

• Target dataset is small and similar to the base dataset.

Rather than retraining the weights of the base network, we keep them un-
changed (or frozen in Tensorflow) to avoid overfitting as in the first scenario.
Since the datasets are similar, both base and target datasets share similar
high-level features (i.e. feature maps from the end of convnet in Figure 8.6).
As such, it is not necessary to change the base network. We just cut off the
end of the convnet, add a few FC layers with random initializations and train
these weights.

CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS 143

Size of target dataset

Similarity

small

large

similar

FineTuningFineTuning

orRetrain

End of ConvnetStart of Convnet

different

Figure 8.6: The 4 scenarios to use transfer learning.

• Target dataset is large and different from the base dataset. When
the target dataset is large, overfitting is no longer a dominant issue. Even if
two datasets are different, using the pretrained weights to do finetune helps to
speed up the training to some degree. Another option is to retrain the whole
network if it is possible.

• Target dataset is large and similar to the base dataset. When the
target dataset is large and also similar to the base dataset, the only work is
to replace the last FC layer with an output matching FC layer and fine tune
the target network. During the fine tuning, it is important to use a smaller
learning rate for the target network.

8.3.2 Pretrained Neural Network

The history of neural network can be traced back to the birth of the perceptron
conception in 1957, see Figure 8.7. Then neocognitron in the1980s served as the
inspiration for the convnets. After LeNet proposed in 1998, there has not been a
big breakthrough until the last years with the availability of massive labeled data
and powerful computational processors. The ILSVRC (ImageNet Large Scale Visual
Recognition Competition) [105] provided numerous well-labeled training dataset to
attract both industry and academia to produce successful networks. As shown in
Figure 8.7, deep neural networks can be improved from two aspects: optimizing
the layer design and increasing the depth of models. In practical applications, we
take into account the accuracy, inference time, power consumption, model complex-
ity, number of operations, etc. We also illustrate some milestone winners of this
competition during the last five years in Table 8.3.

AlexNet, as the winner of ILSVRC 2012, was a pioneer in using the ReLU ac-
tivation functions, dropout layers, maxpooling and image augmentation to avoid
the overfitting. It was also first time that massive parallelism of GPUs are used to
accelerate convnet training.

144 8.3. TRANSFER LEARNING

Perceptron

Neocognitron

LeNet-5

AlexNet

NIN VGG

GoogleNet MSRANet

Inception V2

Inception V3

ResNet

ResNet V2

Inception V4

Improve the layer design Increase the layer depth

Figure 8.7: History and tendency of the Neural Networks in image recognition field.

Models Year Layer Training Set Training Parameters Top-5 error in ILSVRC

AlexNet[105] 2012 5+3 ImageNet 60 million 15%
VGG16/VGG19[178] 2014 13/16+3 ImageNet 138/143 million 7.6/7.3%

GoogleNet[190] 2014 21+1 ImageNet 5 million 6.7%
Inception V2[87] 2015 21+1 ImageNet 5 million 4.8%
Inception V3[191] 2015 21+1 ImageNet 23 million 3.5%

ResNet 152[78] 2015 151+1 ImageNet 78 million 3.6%
Wide ResNet 50[79] 2016 49+1 ImageNet 25 million 5.79%
Inception V4[192] 2016 21+1 ImageNet 55 million 3.08%

Table 8.3: Pre-trained CNN architectures.

CHAPTER 8. CONVOLUTIONAL NEURAL NETWORKS 145

VGG, as the second prize of ILSVRC 2014, extended to deeper networks with
16 to 19 layers. The model followed the basic idea of AlexNet but constructs a
long sequence of convolutional layers with [3 × 3] filters and pooling layers. The
use of smaller filters can reduce the number of training parameters but increase
non-linearities.

GoogleNet (also called Inception V1), as the 1st prize of ILSVRC 2014, was
famous for its computational efficiency with 22 layers but only 5 million of parame-
ters. Inspired by NIN (network in network) [122], an inception module was created:
rather than making the choice of which size of filter to use in one convolutional
layer, the inception module applied parallel filter operations (using filters with sizes
of [1 × 1], [3 × 3] and [5 × 5]) on the input and concatenate all filter outputs to-
gether. There are several versions developed from GoogleNet: Inception V2 took use
of batch normalization to reduce internal covariate of output; Inception V3 added
factorization into small convolutions on the basis of V2; Inception V4 (also known
as Inception ResNet V2) combined the advantages of inception modules with the
residual units of ResNet together and achieves the highest accuracy in ILSVRC.

Current work reveals that training a neural network deeper works better than
wider. Yet it is not just as simple as to stack more layers. Too deep models will lead
to the vanishing gradient problem and the training error degradation [65]. ResNet,
winner of ILSVRC 2015, designed residual units to reconstruct the optimization.
Instead of fitting the input to a desired mapping, the residual units as in MSRANet
[77] make the raw input passing through and overleaping the convolutional layers
to obtain two outputs (residuals and identity). The summation of both outputs is
our desired mapping but the model only optimizes the residual part. Nowadays,
invariants from GoogleNet and ResNet are widely used in the autonomous vehicle
area for their high efficiency and accuracy, such as Inception V, wide ResNet and
ResNeXt.

8.4 Conclusion

In this chapter, we introduced the main ideas of deep neural networks from a simple
softmax regression classifier. Since deep learning is a theory based on practice, we
reviewed current developments and some important techniques to avoid overfitting.
Then we talked about the convnets and how they handle image datasets. We detailed
the architectures of a convnet and the semantic representation of CNN features.
Training a convnet from scratch is rare and transfer learning is a primary strategy
to design our own network. We discussed the existing pretrained networks as well
as their advantages and disadvantages. In the chapter, we only addressed the neural
networks in the classification tasks. In following chapter, we will deep into the
localization regression with convnets.

146 8.4. CONCLUSION

Chapter 9
Metric Localization using Deep Learning

Convolutional Neural Network (convnet or CNN) is becoming a powerful and domi-
nant method in computer vision. Recent research shows that the hierarchy of CNN
features can be successfully applied in scene classification, semantic representation
and visual localization. In the work of Overfeat [175], CNN features trained on
ImageNet work better than both global and local visual descriptors. CNN includes
a hierarchy of features with some that are low-level enough to represent a lot of sim-
ple concepts and other features (those in final layer) that are high-level enough to
combine these concepts to be recognized by a classifier [176]. Moreover, pretrained
CNN image classifiers can be used as a basis for building and training other CNNs
that can successfully perform other tasks, using the transfer learning approach (See
Chapter 8). In particular, the classifier can be replaced by a regressor to realize
place recognition (e.g. VLADNet [9] and PlaceNet [212]) or pose estimation (e.g.
PoseNet [100] and VidLoc [40]). Rather than establishing reliable frame-to-frame
feature correspondences, place labels (pose estimates) can be classified (regressed)
from the CNN features.

Since we deal with a global size dataset, we look forward to a scale-adaptive
model to localize in real time even if the training itself is very computer-intensive
and must therefore be conducted offline. In this chapter, we present a metric and
real-time global localization system by training a convnet with Street Views. Our
pose regressor convnet is then tested on the online dataset, and continuous poses are
regressed in an end-to-end fashion. Labeled training images are also complemented
by virtually synthesizing additional images from few Street Views. Starting from
a small trajectory in the test area, we design several convnets to evaluate their
performances with respect to the quantity/quality of augmented data and the spatial
distribution of Street Views. These convnets are built via transfer learning on base
networks pretrained on ImageNet image classification dataset like GoogleNet and
ResNet.

147

148 9.1. EVALUATION OF EXISTING CONVNET LOCALIZATION MODEL

Input RGB image
GoogleNet

without softmax

FC

2048

1024

FC

3

FC

4

x

q

Figure 9.1: A simplified architecture of PoseNet.

9.1 Evaluation of Existing Convnet Localization

Model

9.1.1 PoseNet Principle

From metric localization, PoseNet is the first convnet that regresses from a monoc-
ular image directly to its 6 DoF pose for both indoor and outdoor scenes. Another
impressive work is the VidLoc convnet, which benefits from the temporal continu-
ity of an image sequence by adding LSTM (Long Short-Term Memory) modes to
PoseNet. The GIS dataset lacks the temporal constraints in large scale, as such, the
RNN (Recurrent Neural Network) based localization models are not involved in our
method.

In PoseNet, the training datasets are generated and labeled by a structure from
motion reconstruction. Therefore, the test area is covered by many densely dis-
tributed images rather than few Street Views. In the training dataset, RGB images
and their pose labels are collected. The pose label is composed of the precise camera
position x and orientation (normalized unit quaternion) q in a 7-dimensional vector
as:

p = [x,q] = [x, y, z, q0, q1, q2, q4] (9.1)

The quaternion of q is normalized by a legitimate rotation angle θ along a normal
vector v by:

q

‖q‖
= [cos

θ

2
,v sin

θ

2
] (9.2)

As for the architecture, PoseNet is slightly modified from GoogleNet by replacing
all three softmax classifiers by affine regressors (see Figure 9.1). GoogleNet is a
22 layer convnet with 6 inception modules and 2 intermediate classifiers that are
only used in training and discarded during the testing. PoseNet slightly modified
GoogleNet by replacing all softmax classifiers with their own regressors. A FC layer
of size 2048 is added before the final regressors. The SDG (Stochastic Gradient
Descent) is adopted to train the convnet by a designed Euclidean loss function

CHAPTER 9. METRIC LOCALIZATION USING DEEP LEARNING 149

defined in Equation 9.3.

L = ‖x̂− x‖2 + β

∥∥∥∥q̂− q

‖q‖

∥∥∥∥2

(9.3)

In the equation, (x,q) and (x̂, q̂) are the ground truth label and pose estimation
respectively. All pose labels are defined relative to an arbitrary global reference
frame. Since units and error levels may be quite different for the position and
orientation estimations, a scale parameter β is used to balance the positon and
orientation errors. The optimal β can be observed and fine-tuned by grid search. In
the implementation, the scale factor β varies according to the spatial extend of the
test area. Naturally β is greater for outdoor scenes as position errors tended to be
relatively greater.

9.1.2 The Set-up of Evaluation

As we know, data preparation is an essential part in deep learning. The performance
of convnets depends on how the training datasets are organized. In order to well
prepare the training datasets from Street View, we first analyzed the original train-
ing datasets of PoseNet and draw the inspiration from them. Then, we arranged
three types of training datasets from Street View: “Original Street Views”, “Aug-
mented Street Views” and “Very Augmented Street Views”. “Original Street Views”
are the datasets that we used in our first handcrafted feature based method where
8 rectified images are backprojected from each panorama (see Chapter 7.2). “Aug-
mented Street Views” contains “Original Street Views” and the synthesized virtual
views 4m forward and backward, which is implemented in our extended handcrafted
feature based method (see Chapter 7.3). However, PoseNet performs badly with
these two datasets due to overfitting. We therefore also construct “Very Augmented
Street Views” to test its performance.

Training datasets

As stated before, we explored the original training datasets in PoseNet (i.e. King
College datasets) to understand the underlying structure of training datasets. We
found that the King College datasets contain 1223 RGB images with a 1920× 1080
resolution in a 140× 40 m2 space, which means that they have 0.22 training image
per square meter. They used central cropping to obtain 224×224 pixel image inputs
as required by GoogleNet, as illustrated in Figure 9.2.

Moreover, we visualized the King college dataset labels to discover their data
space and structure in Figure 9.3. The pose label has 7 dimensions and a PCA
(Principal Component Analysis) method is used to capture the data structure and
preserve the pairwise distances in each dimension. In the figure, we can see that
various trajectories were captured in various orientations and positions. In addition,
the distance between two consecutive training images is about 0.4m, which is much
smaller than the distance between two adjacent Street Views.

Compared to the King College datasets, our Street View datasets seems sparsely
distributed and considerably insufficient. However, we still applied PoseNet on the
“Original Street Views” and “Augmented Street Views” of the sequence No.11 (cf.
Chapter 7) respectively. We would like to figure out how this pose regression ap-
proach performs when trained on a limited Street View dataset and whether the

150 9.1. EVALUATION OF EXISTING CONVNET LOCALIZATION MODEL

Figure 9.2: Example of training dataset: an original image of King College dataset
on the left and a central-cropped input image for PoseNet on the right.

Figure 9.3: Exploration of the King college datasets used in PoseNet: (a) illustrates
the spatial distribution of position for 1223 training images; (b) explains the various
clusters with regard to orientations using PCA method.

CHAPTER 9. METRIC LOCALIZATION USING DEEP LEARNING 151

virtual views can contribute to the model training. For the labels in the “Original
Street Views” and “Augmented Street Views”, we transformed the geometric local-
izations to UTM form and then normalized into a spatial extend. The orientation
of Euler Angles were also converted into a unit quaternion form to meet PoseNet
requirements.

PoseNet applied to Original and Augmented Street Views

In the training test, we followed the settings recommended by PoseNet, for example:
the convnet was trained by the stochastic gradient descent (i.e. Adam mentioned in
Chapter 8) with a learning rate of 10−5. The batch size and the number of epochs are
fixed to 75 and 500 respectively1. All the training images are cropped to 224× 224
pixels input as in PoseNet. The scale factor in the loss function and other settings
follow the outdoor scene settings of PoseNet. For the pose labels of Street Views, we
calculated a mean value of all UTM positions in the training dataset and normalized
all the large UTM positions (in both training and test dataset) by subtracting this
mean value. This is an effective way to balance the value scale between the transla-
tion and orientation. In the test process, the mean value should be added to recover
the real predicted value. In PoseNet, GoogleNet is trained by ImageNet and Place
datasets, which are RGB image datasets. Our two Street View datasets are RGB
images but the online captured dataset from VEDECOM vehicles are grayscale.
The idea of transfer learning is to use the well-trained GoogleNet weights as an ini-
tialization to speed up the training process. Thereby, we convert the grayscale test
images into RGB by the standard OpenCV functions before the prediction process.
Actually, we tested several grayscale images on GoogleNet classification task and
found there was no degradation for the prediction performance.

We also use 20% of the training datasets for validation purposes so as to ob-
serve whether overfitting happens according to the loss function. The training took
8 hours on a AWS EC2 g2.2xlarge instance (with 8 virtual2 NVIDIA GRID K520
GPUs). The history of the training process is visible on Figure 9.4 (Original Street
Views) and Figure 9.5 (Augmented Street Views). As observed from the two figures,
the errors in PoseNet models are reduced quickly on both datasets. The validation
errors are higher than the training error. In the training on Original Street Views,
position is still not converged but it seems there is angle overfitting3. In the training
on Augmented Street Views, convergence is finished after about 100 epochs where
the position and angular error are reduced to about 10m and 0◦ respectively. Al-
though there is no clear sign of overfitting, the training should be stopped when the
validation error is the minimum. This means that the convent can generalize to the
unseen data. It appears that with augmented virtual views, the model can converge
more quickly. This evaluation help us to make a hypothesis that the Augmented
Street Views can improve the model training and reduce the error.

It is clear that there are big gaps between training and validation training curves
for both tests. The most common causes of this bad quality include: the low quality

1In PoseNet, a good model can be trained after nearly 100 epochs but here we chose 500 for a
good observation.

2NVIDIA virtual GPU (vGPU) is the industry’s most advanced technology for sharing the
power of NVIDIA GPUs across virtual machines (VMs) and virtual applications.

3The sign of overfitting is here that the training error continue to decrease while the validation
error remains constant.

152 9.1. EVALUATION OF EXISTING CONVNET LOCALIZATION MODEL

Figure 9.4: PoseNet applied on Original Street Views: the evolution of position and
angular average errors on the training and validation datasets with Original Street
Views in PoseNet during 500 epochs.

CHAPTER 9. METRIC LOCALIZATION USING DEEP LEARNING 153

Figure 9.5: PoseNet applied on Augmented Street Views: the evolution of position
and angular average errors on the training and validation datasets with Augmented
Street Views in PoseNet during 500 epochs.

154 9.1. EVALUATION OF EXISTING CONVNET LOCALIZATION MODEL

or the small size of the training data; inadequate model structure and badly setups
of hyper parameters. PoseNet has been tested successfully in several urban environ-
ments. The hyper parameter β is a balance coefficient to keep the expected value of
position and orientation errors to be approximately equal. In our model, we adopted
the recommended value according to the spatial extent. Therefore, we believe the
main cause of the poor performance on the two datasets is the low quality (a sparse
distribution) and the small size of the training data. Intuitively, a training with
only 29 × 8 Street Views in the sequence No.11 is too small to make a regressor
work well. Even if transfer learning is implemented in PoseNet, overfitting appears
easily when a small training dataset is used. In order to improve the performance,
the priority is to augment the training dataset.

Note that we only used a sequence of small spatial extent to train our convnet
instead of training a model that works for the whole test area or even for the city. Ac-
cording to PoseNet [100] (see Figure 9.3) and VidLoc [40], the model error increases
a lot when the spatial extent is enlarged. They demonstrated that the prediction
accuracy is much better in indoor scenes than outdoor.

PoseNet applied to Very Augmented Street Views

As stated before, using panoramic imagery and depth maps of Google Street View,
we can place several virtual cameras in the centre of every unit sphere to get rectilin-
ear images. Moreover, we can also render virtual views by moving virtual cameras
in other positions. From the results obtained by image based localization methods,
we can learn that the vehicle’s trajectory is normally around the trajectories of the
Street View. It is clear that the camera equipped vehicle usually runs along the
street lane without a big lateral bias. Therefore, we only generate various virtual
views in forth and back directions along the trajectory of Street Views.

In the data preparation, we should synthesize as many images with high quality
as possible. As introduced in the pipeline of the image synthesis, we are able to
generate different virtual views, by translating the virtual cameras and changing
the local yaw degree (in back projection) of the virtual camera. For example, using
the same panorama of Figure 5.11 (Recalled in Figure 9.6) and its corresponding
depth map, we test to synthesize virtual views at different locations and with various
camera yaw settings, as illustrated in Figure 9.7, 9.8 and 9.9.

As shown in Chapter 5.1, there are no missing pixels when the image is recti-
fied from the panorama without translation. Moreover, more details can be back-
projected from panorama when more virtual cameras are created. However, when
we set the virtual location far away from the original panorama, skewed objects and
spurious artifacts quickly appear in virtual views. Null pixels will be produced if
the synthesized views are far away from the panorama. Normally, the farther they
are, the more pixels are lost. Consequently, our training convnet model will be sig-
nificantly influenced because the null pixels can not well initialize weights of filters
in the convnet. It even can result in the divergence of the trained model. In order
to loosen this influence, two simple but useful approaches are employed:

• We only select useful synthesized images as those having a proportion of null
pixels less than half;

CHAPTER 9. METRIC LOCALIZATION USING DEEP LEARNING 155

Figure 9.6: Recall the Figrure 5.11: a Street View panorama at location
[48.80056, 2.136449] is extracted in summer in the test area.

Figure 9.7: Images synthesized from 8 virtual cameras at the same location as the
original Street View panorama of Figure 5.11. The white lines reflect the misalign-
ment and poor accuracy of the depth map when projected on perspective images.

156 9.1. EVALUATION OF EXISTING CONVNET LOCALIZATION MODEL

Figure 9.8: Images synthesized from 12 virtual cameras at 1m forward location
of Figure 9.6 along the trajectory, namely at [436228.694944, 5405753.37194] UTM
coordinates w.r.t the original panorama of Figure 5.11.

Figure 9.9: Images synthesized from 15 virtual cameras at 4m forward location of
Figure 9.6, namely at [436231.656811, 5405745.94043] UTM coordinates w.r.t the
original panorama of Figure 5.11.

CHAPTER 9. METRIC LOCALIZATION USING DEEP LEARNING 157

Figure 9.10: For an original Street View image, we resize this image to meet the
requirement of PoseNet. It is more suitable to use central-cropping but here we
adopted resizing to preserve more scene possible.

• The translation of the virtual camera should be within a maximum 4m4 forth
or back from the original panorama along the trajectories.

In the experiment, we change the virtual camera positions with a 0.2m step
within a forward and backward 4m limitation around the input panorama. By
setting different yaw angles, we generate [8, 12, 15, 18, 24, 36] virtual cameras respec-
tively in the centre of a same orignal and virtual panorama. We demonstrated that
4m is the maximum distance for an ideal forward and backward synthesis. Then we
tested several translation steps within this maximum distance and found out 0.2m
is also a good trade-off to render both distinctive and large virtual views.

In order to train a brightness-invariant CNN features, we generate artificial
brightness changes as well, see Figure 9.11. Following a classical pipeline in the
literature, we convert the color format RGB to HSV and add a small random value
to change the V channel value in the training dataset. Moreover, in real urban envi-
ronment, we also generate random shadows for the training images to simulate the
changes of sunlight in 24 hours, see Figure 9.12. It is realized by a random-shape
mask whose pixel values equal to 0 but alpha value follows a uniform distribution be-
tween 0.4 and 0.6. For each original Street View, we perform 50 random brightness
changes and 50 shadow generations, while the pose label remains the same. Please
note that the brightness changes are only applied on the original Street Views im-
ages as the artificial rendered images have already missing pixels. After this artificial
generation, the obtained Very Augmented Street View database is expanded by a
nearly 1500 factor.

After this augmentation, we adopted the same training pipelines and setups and
Figure 9.13 depicts the history of this training process. As observed, the error gaps
between the training and validation datasets decrease considerably when PoseNet
was applied to Very Augmented Street Views. In addition, the curves of the training

4As we shown in Chapter 7, when the translation is large than 4m, more missing pixels appear.

158 9.1. EVALUATION OF EXISTING CONVNET LOCALIZATION MODEL

Figure 9.11: Example of 50 augmented images by random brightness from the image
of Figure 9.10.

CHAPTER 9. METRIC LOCALIZATION USING DEEP LEARNING 159

Figure 9.12: Example of 50 augmented images by random shadows from the image
of Figure 9.10.

160 9.2. ADAPTED POSENET ON VERY AUGMENTED STREET VIEWS

Figure 9.13: PoseNet applied on Very Augmented Street Views: the evolution of
position and angular average errors on the training and validation datasets with
Very Augmented Street Views in PoseNet during 500 epochs.

error still seem to decrease after the 500th epoch, and the final validation position
error is much lower.

9.2 Adapted PoseNet on Very Augmented Street

Views

In the previous section, we demonstrated that the insufficient Street View training
dataset is the major cause of too large error gap between training and valid datasets
in PoseNet. Adding more synthesized images is helpful to improve the performance
of the regressor. According to Chapter 8, we can still improve the performance of a
pose regressor on the following aspects:

• Change the convnet architecture from GoogleNet to ResNet. The
choice of the base network is also critical for transfer learning. The inception
model in GoogleNet is a big advantage but it is not as deep as ResNet to
discover the distinctive features. The residual module in ResNet can explore
more distinctive CNN features without model degradation. Also, there are
indicators [78] that ResNet is better at training a model without overfitting
when dealing with a rather small training dataset.

• Modify the regressor outputs. We observe no big changes among the

CHAPTER 9. METRIC LOCALIZATION USING DEEP LEARNING 161

parameters such as pitch, roll and altitude in both training and test datasets.
In our experimental set-up, because the camera is not handheld as PoseNet
but fixed on a vehicle, and the ground is essentially flat and horizontal in our
test area. Absolute camera position and orientation are significantly varying,
and therefore there is no need to regress other pose DoF.

Regressor outputs simplification

As stated before, it is not necessary to render a 6 DoF pose by regressing extra
parameters. The training dataset depends mainly on the camera positions and
orientations, thereby the convnet model should be able to output a pose vector with
only 2D position and camera yaw angle. We labeled all Street Views and their
virtual views by geodetic positions x and global yaw angles θ w.r.t the true north.
This pose vector p can be represented by:

p = [x, θ] (9.4)

Note that the locations x should be converted in UTM cartesian coordinates
during the training process. We also use mean-value subtraction to reduce the ordre
of magnitude for geodetic position values. Of course, for each test image the same
mean position has to be added to the position output by our convnet in order to
obtain an estimated absolute position. The yaw angle θ within [0, 2π], which is
computed by the panorama’s yaw α and the virtual camera’s yaw η, is normalized
to [0, 1]. Therefore, the labels for every image in the training and test dataset are
also modified according to the scheme explained above.

In order to train the convnet, we use the sum of the Euclidean error of both
the translation and orientation can be seen in Equation. 9.5. In a similar fashion
as [100] and [40], a scale factor β is used to balance the error magnitude of the
position and angular components. The optimal penalty weight is obtained by grid
search during the fine tuning phase. In PoseNet architecture, the recommendation
for the scale factor in outdoor scenarios ranges from 200 to 2000. This scale fac-
tor is for positions and quaternions. In the test, we set the scale values in a grid
as [10, 100, 150, 200, 300, 400] and found that when β = 200, the loss curve demon-
strates the best regression result for the sequence No.11.

L = ‖x̂− x‖2 + β‖θ̂ − θ‖2 (9.5)

9.2.1 Architecture Modification

We build our network upon the existing ResNet 50 architecture which is pre-trained
on the ImageNet dataset5. ResNet takes a 224 × 224 pixels RGB image as input
and in the high level the input is converted to a 7 × 7 × 2, 048 feature maps by
several convolutions and max-pooling layers. Through the average pooling and a
fully-connected layer, the features maps output as a 1, 000-dimensional vector as
a classifier in the end. We modified this model as follows: The final classifier is
replaced by the pose regressor. Instead of directly adding the final 3-dimension

5At the beginning we used ResNet 152 and a memory problem occurred on the AWS platform.
Since the accuracy of ResNet 50 and 152 are similar, we use a small ResNet block to train our
system.

162 9.2. ADAPTED POSENET ON VERY AUGMENTED STREET VIEWS

PoseNet Adapted PoseNet
Original Street Views Augmented Street Views Very Augmented Street Views Very Augmented Street Views

Valid
Position error (m) 13.65 9.41 3.59 1.61

Angular error (deg) 16.79 1.83 3.24 8.57

Train
Position error (m) 8.54 0.56 0.73 0.08

Angular error (deg) 1.28 0.50 1.28 0.94

Test
Position error (m) 48.13 36.72 9.86 7.62

Angular error (deg) 3.34 2.43 3.79 3.55

Table 9.1: Comparison of the average position and angular error obtained by 3
different scales of training datasets in 2 convent architectures. Note that errors in
the training and validation process are recorded at the 500th epoch.

pose output layer, we add the 2-dimensional position and 1-dimensional angle layers
separately from the final FC layer. As inspired by the PoseNet architecture, this
setting is meaningful to improve the accuracy and generalize the model.

Training Procedure

The modified network (called Adapted PoseNet) is trained using the Keras and
TensorFlow library. Every input image is resized into 224× 224 pixels. The Adam
optimizer with a learning rate of 10−5 is employed to realize gradient descent. Batch
size is 80, and training is conducted during 500 epoch. We also split 20% for the
training dataset to form the validation dataset in order to observe whether overfitting
happens according to the loss function. All the augmented images are trained by
the AWS EC2 g2.2xlarge instance (with 8 virtual NVIDIA GRID K520 GPUs).

The history of training process with Very Augmented Street Views can be seen
in Figure 9.14. As illustrated, the loss curves of the training and validation datasets
achieve a suitable error range in terms of position and global yaw angle. Actually,
our model converges considerably after 100 epochs, which is later than the results
to evaluate PoseNet. The reason is that ResNet 50 only provides weights pretrained
with ImageNet while PoseNet uses the well-trained weights in Place datasets which
would speed up the training process for the pose estimation task. Table 9.1 illustrates
a comparison of all the experiments that we have done . From this table, our adapted
PoseNet outperforms others in all types of errors.

9.2.2 Result and Discussion

It would be interesting to visualize and interpret the CNN features from this model.
To do so, we extract high CNN features from the final convolutional layers. For this
test sequence, we have a total of 43268 training images (instances) and the output
from the final convolutional layer of ResNet 50 is of in an enormous dimension:
[43268× 7× 7× 2048]. In deep learning, t-SNE (t-distributed Stochastic Neighbor
Embedding) is a very popular tool to visualize the high dimensional vectors, which is
able to reduce a high dimensional vector to a low dimensional space while preserving
the Euclidean distance among them. Yet it does not scale very well with features
that are bigger than a few thousand instances. Thereby, we first use PCA to reduce
the dimension to 2000 instances and then apply the t-SNE to project high CNN
features to a 2D space. As depicted in Figure 9.15, it indicates that the learnt CNN
features have captured some generic information between geometry, scene, camera
and topology, regardless of whether it is expressed in the final localization output.

CHAPTER 9. METRIC LOCALIZATION USING DEEP LEARNING 163

Figure 9.14: Adapted PoseNet applied on Very Augmented Street Views: the evo-
lution of position and angular average errors on the training and validation datasets
with Original Street Views in PoseNet during 500 epochs.

Figure 9.15: The visualization of the final convolutional layer obtained by reducing
the high dimension to 2D space. This reduced visualization probably suggests that
it is possible to compute the pose information by a non linear function with the
higher-level CNN features.

164 9.2. ADAPTED POSENET ON VERY AUGMENTED STREET VIEWS

Figure 9.16: Preprocessed test images #1 (left) and #545 (right) in the sequence
No.11.

Figure 9.17: Visualization of the feature maps for Figure 9.16 after the first convo-
lutional layer: some edges of building facades are detected.

After verifying this model, we save the customized training weights for the test
dataset. The pose regressor should be able to predict the pose for each test image
in an end-to-end manner. Taking the test images of Figure 9.16 as an example, we
also illustrate the CNN feature learning process by visualizing its high and low level
feature maps. In ResNet 50, the feature maps size in the first convolutional layer is
[112 × 112 × 64] and the final convolutional layer [7 × 7 × 1028]. Figure 9.17 and
Figure 9.18 illustrate the feature learning procedure in our designed model: after the
low layer, some geometric elements, such as the building shapes, are detected; yet,
after the high level, we only detect some blobs and areas that are useful to the pose
estimation. For convenience purposes, we only display the first 128 features maps
instead of 1028 for the final layer. If we go through the high level feature maps
from the last convolutional layer, we find that most detected “objects” (or CNN
features) lie in the horizon of the scene. It is interesting that in the handcrafted
feature method, we mostly detect interesting points in the nearer part of the scene
while the pose related CNN features seem more generic and focus more on the scene
around the point at infinity.

The localization result of the sequence No.11 is illustrated in Figure 9.21. In

CHAPTER 9. METRIC LOCALIZATION USING DEEP LEARNING 165

Figure 9.18: Visualization of the feature maps for Figure 9.16 after the last convo-
lutional layer: some high-level objects are detected

the test process, the computation cost is about 75ms for estimation by our trained
convnet of the global position and yaw from one monocular image. As shown in
Figure 9.21, the convnet can produce all pose estimates along the trajectories from
the input monocular image and achieve an average error 7.62m in position accuracy.
Compared to the ground truth and the handcrafted feature based methods, the
convnet positioning is not very metric and more severe jumps appear occasionally
around the trajectory, see more in Figure 9.20. We infer that the lateral offset and
jumps are mainly caused by the imbalanced quantity of two-side street images in
the training process. Reviewing the augmentation process, we selected potential
useful virtual images with few null pixels, as such, in Figure 9.7, 9.8 and 9.9, only
the images with a yaw around [150◦, 270◦[meet our requirements as training data
to be used in training process. This imbalance of selection process is probably a
reason for the jitters in localization. In essence, this discontinuity come from the
lack of training data with good urban appearance. To eliminate these phenomena,
our model can be further improved by storing the prior estimates to have a good
smoothness. Although the accuracy seems to be unpersuadable to display the metric
performance of our model, when compared with PoseNet’s 0.48m average error on
the Microsoft 7-Scenes dataset (captured in a 2.5m × 1m × 1m area in a dense
sequence [178]), our convnet arrives a relatively high precision with few training
datasets in a wider urban environment.

9.2.3 Perspectives

The localization work with the convnet was started in the very end of the PhD
study. There are still further works to study.

One important refinement should be done in Equation 9.5. Strictly speaking,
this loss function is not very suitable, for example, when θ̂ = 1◦ and θ = 350◦, the
error would be 349◦ according to this formula instead of the true value 11◦. A good
way to improve the function should be use sin θ or cos θ instead of θ but it will

166 9.2. ADAPTED POSENET ON VERY AUGMENTED STREET VIEWS

Figure 9.19: The output from a single localization run using the modified convnet.
The red points represent the locations of the Street View cameras. The red and blue
lines mark RTK-GPS ground truth and the estimated positions of the monocular
camera respectively.

CHAPTER 9. METRIC LOCALIZATION USING DEEP LEARNING 167

Figure 9.20: 2 close-up views of the localization result in Figure 9.21.

make the gradient descent complicated. After verifying the maximum angular error
is always less than 180◦ in our case, we still adopted this simple formula to train the
convnet.

Moreover, it is also very interesting to study the influence of β to the convnet
performance as conducted in PoseNet. We believe that β is a core parameter to gen-
eralize our convnet to be used in much larger scale urban areas (with more sequences
like the sequence No.11). Regarding the metric accuracy and the smoothness of lo-
calization, it might be also improved a lot by a simple filter algorithm. All these
further works will make the convent be more potential localization in the urban
area.

9.3 Generalization to Test Area

In the previous sections, we selected the sequence No.11 in Table 9.2 to do the
experiment, for its good urban appearance. Similar to the handcrafted feature
method, we test whether this convnet based localization method is capable to be
generalized to the whole test area. The convnet training for the sequence No.11
requires nearly 8 hours for each single trial. If we test the grid search to find all
best scale factors β for every sequence, it becomes intractable. In fact, PoseNet
has already proved that the convnet is a good tool to apply in outdoor localization.
Thereby, in our thesis, we will focus on the comparison between the handcrafted and
CNN features instead of searching an optimal β value. For saving time, we fix the
scale factor β = 200 (the optimal value for sequence No.11)for all rest sequences.
If overfitting or under-fitting occurs in a test segment, we suppose that our method
can not be applied in this test segment. We test our algorithms in the rest of the
test area and the results are illustrated in Table 9.2 and Figure 9.21 to 9.24.

Observed from the table and figures, the average spatial accuracy is not as precise
as the handcrafted feature based method and the metric level is similar to a raw
GPS in the urban environment. The position trajectories are not as smooth as the
handcrafted feature methods as well but they are close to the locations of original

168 9.3. GENERALIZATION TO TEST AREA

Sequence Vehicle Number of Frame Spatial Extent Number of Street View Number of Training images Error of Adapted PoseNet Error of Extended Handcrafted Feature

Seq0 Zoé 554 11× 265 29 43577 7.87m Fail

Seq1 Scénic 250 11× 79 11 16489 7.46m 3.06m

Seq2 Scénic 898 11× 271 29 42980 7.93m 2.63m

Seq3 Scénic 895 11× 222 29 36760 Fail Fail

Seq4 Scénic 291 11× 128 12 17592 Fail Fail

Seq5 Scénic 841 11× 317 33 50556 8.38m 2.54m

Seq6 Scénic 901 11× 216 34 50864 7.55m 2.82m

Seq7 Scénic 306 11× 184 16 21120 Fail Fail

Seq8 Scénic 141 11× 69 8 12249 Fail Fail

Seq9 Scénic 422 11× 198 19 26581 Fail Fail

Seq10 Scénic 899 11× 382 36 46455 Fail Fail

Seq11 Scénic 897 11× 234 29 43268 7.62m 2.85m

Seq12 Scénic 290 11× 56 4 5946 7.20m 2.92m

Seq13 Scénic 899 11× 361 36 53892 7.69m 2.49m

Seq14 Scénic 348 11× 131 13 19357 7.37m 2.67m

Seq15 Scénic 625 11× 196 17 25382 8.42m 2.58m

Seq16 Scénic 896 11× 145 32 47532 7.17m 2.44m

Seq17 Scénic 172 11× 93 15 22185 6.89m 1.56m

Seq18 Scénic 897 11× 234 29 41633 7.45m 2.13m

Table 9.2: Localization results for test segments are obtained by the convnet with
a fixed β value in the loss function. In order to compare easily, we also display the
average spatial errors obtained by the extended handcrafted-feature-based method.
Notice that the sequences where the adapted PoseNet fails are also the sequences
for which the handcrafted-feature-based method does not work well.

panoramas. There is no obvious relationship between the accuracy and the spatial
extent in all these sequences.

One interesting point is that the convnet model does not converge well in the
same sequences that are unsuccessful for the handcrafted feature approach. We be-
lieve that some distinctive urban appearance is indispensable for both the traditional
and CNN features to estimate poses. Long distance vegetation along the trajectory
will degrade the extraction for both handcrafted and CNN features.

As stated in Chapter 7.4, the Zoé dataset captures many similar scenes at differ-
ent scales and it affects a good performance of the place recognition approach while
our convnet is able to render good localizations for this dataset, see the sequence
No.0. We deduce that the pose-orientated CNN features ignore the scale problem
and to some degree the scale helps the model to decide where the vehicle is located.
According to our visualization, the high level CNN features pay close attention on
the scene near the horizon (or around the point at infinity).

In addition, for the Scénic dataset, we only tested the right camera as in Chap-
ter 7. All the results in the Scénic dataset show a slight right shift compared to
the ground truth. We also evaluated the test images from the left camera from the
Scénic and a left shift appears. As we mentioned before, we can regard the regressed
pose as an output by computing a series of non-linear functions from the high layer
CNN features. We infer that this shift mainly depends on the weights generated
by the similar training datasets (namely, the original or virtual Street Views in the
right direction). It is true that we can get mean positions from both the left and
right side (to get a better positioning but this is against our monocular localization
goal. Also, the principle behind this technique is not well-founded.

When capturing the sequence No.6 and No.12, the car was stopped at a traffic
cross and the camera registered many similar images6. Comparing the results from
Fig 9.22 and Fig 7.22, we found that our convnet is able to regress the same position
for these similar images which is not the case with the handcrafted feature method.
In this aspect, the CNN features are more generic than the handcrafted features.

6In urban environments, other mobile bodies can still change the scene to some degree, which
only influences the traditional feature extraction.

CHAPTER 9. METRIC LOCALIZATION USING DEEP LEARNING 169

Figure 9.21: The localization output from sequence No. 0, 1 and 2 obtained by the
convnet method. The original panorama position, the ground truth and the convnet
results are noted in red point, red line and blue line respectively.

Figure 9.22: The localization output from sequence No. 5, 6 and 12 obtained by the
convnet method. The original panorama position, the ground truth and the convnet
results are noted in red point, red line and blue line respectively.

170 9.3. GENERALIZATION TO TEST AREA

Figure 9.23: The localization output from sequence No. 13, 14 and 15 obtained
by the convnet method. The original panorama position, the ground truth and the
convnet results are noted in red point, red line and blue line respectively.

Figure 9.24: The localization output from sequence No. 16, 17 and 18 obtained
by the convnet method. The original panorama position, the ground truth and the
convnet results are noted in red point, red line and blue line respectively.

CHAPTER 9. METRIC LOCALIZATION USING DEEP LEARNING 171

Figure 9.25: Comparison of Handcrafted and CNN feature based methods.

9.4 Comparison of Handcrafted and CNN Fea-

ture based Methods

To our best knowledge, there are few state-of-the-art approaches that consider the
visual localization problem with only GIS data. Naturally, our two methods pro-
vide a way to compare between the traditional handcrafted feature based and CNN
feature based methods. According the results from the same test area, it is clear
that the handcrafted feature based method works better in accuracy than the CNN
feature based, see Fig 9.25. However, it is incautious to make a final conclusion
that one method is superior than the other. Currently, learning methods appear
to be dominant in the computer vision community but handcrafted features with
the sophisticated theory are still advantageous in many aspects. Few years ago, we
had the idea that maps are Euclidean and the pose could naturally be presented in
6 DoF within the map. However, the birth of PoseNet opens a new window that
the map and the pose might be a low dimensional representations from high dimen-
sional CNN features. In visual localization, we normally have three processes for
the handcrafted feature methods, namely feature extraction, feature association and
pose estimation. But recently more and more learning oriented researches appear,
including learning based local feature selection, learning based outlier rejection and
till now learning based pose estimation. Definitely, handcrafted feature methods
are the foundation on which learning methods are build upon and they enhance
each other as well. Here we give a general discussion only based on the results we
obtained.

• Accuracy: comparing the results in Table 7.3 and Table 9.2, it is clear that

172 9.5. CONCLUSION

the handcrafted feature based method achieves more accurate and smooth
positions. There is no doubt that kVLD descriptor is able to extract robust
features regardless of big changes in viewpoints, illumination and rotations.
With the sophisticated design and a RANSAC, this handcrafted descriptor is
the propre (specific) choice to our task. Then the pose is estimated on a PnP
optimization and then a local bundle adjustment. These two optimization
schemes contribute to a high precision. Instead, in the convnet method, the
artifacts and missing pixels in the virtual images are the main cause to train
a well performed regressor. As we mentioned before, this is because CNN
features are more general than the local handcrafted features.

• Efficiency: the average time cost to localize one single online image is more
than 3s with the handcrafted based methods. Most of the time is spent on
the place recognition and optimization process. Compared to the 20 frame-
per-second frequency of the MIPSEE camera, it is hard to realize a real time
positioning task. However, if we do not consider the training process, the con-
vnet regressor is able to predict the global position for one image within 75ms
in average. This end-to-end way is advantageous for the real time implemen-
tation with the right hardware.

• Simplicity: in the convnet method, we used a hyper parameter β in the loss
function to balance the scale magnitude. A grid search method is used to test
the loss curves for different values of β. Once this parameter is well selected, we
can generalize the same value to other sequences with a similar spatial extent.
Yet, in the handcrafted feature based approach, the dictionary sizes in the
BoW should be chosen differently according to each sequence by grid search.
This is because the different sequences would have various quantities of visual
words. Moreover, in the handcrafted feature based approches, we fixed the
camera towards the facades to make sure our place recognition would operate
properly. Instead, our convnet method does not focus on these beforehanded
settings too much and can be employed for both the Zoé and Scénic dataset.

• Compatibility: we must consider the camera intrinsic parameters to estimate
the pose with handcrafted features. The convnet method can overlook these
details and learns high dimensional CNN features which contain the relation-
ship between the camera, geometry and pose. As we can seen, the sequence
No.0 and sequence No.11 were captured in the same area but by different
VEDECOM vehicles. However, once a regressor is well trained in this test
area, no matter what kind of capturing vehicles are used, we can render the
global pose directly. To this degree, the convnet method is much easier.

9.5 Conclusion

In this chapter, we have presented a learning based method to use few Google Street
View imagery to train an end-to-end convnet pose regressor. We tested the state-
of-the-art algorithms and based on the evaluation, we proposed several ways to deal
with overfitting due to our limited training dataset. We augmented the training
datasets by a thousand factor using a few panoramas. All the synthesized images
are derivative from a small number of the original images, which are still the real

CHAPTER 9. METRIC LOCALIZATION USING DEEP LEARNING 173

training datasets. However, the transfer learning based convnet still demonstrates
its power to learn good CNN features to represent the pose. The generic representa-
tions are obtained by learning the multiple scenarios, including different geometries,
topologies, illuminations and camera settings. Thus they are robust to illumina-
tion and important view point changes. Compared to the image-based localization
method, there is a precision degradation but this data driven method can be a
potential solution in the GIS-based localization.

174 9.5. CONCLUSION

Part V

Conclusions of the Thesis

175

Chapter 10
Conclusions and Perspectives

Autonomous driving has become more and more attractive to both industrial and
academic sectors in recent years. Determining a precise localization for a self driv-
ing car is one of the crucial problems. This thesis investigated the current visual
localization systems from handcrafted feature based methods to learning based ap-
proaches. Since GIS’s have been well studied in this decade, we proposed to rely on
the abundant information from available GIS’s to simplify and improve the current
visual localization systems in two major aspects: rendering a metric global positions
directly and avoiding the mapping building process as studied in SLAM.

The first task we conducted is to make the offline commercial GIS data (Google
Street View) compatible with our captured data. We explored and analyzed tremen-
dous information in the current GIS, including topological/semantic/metric maps,
Street Views, depth maps, 3D cadastral maps and High Definition maps. We se-
lected position-oriented information from them to design a compact topo-metric
representation for a good accessibility in a self-driving vehicle. This representation
contains topologies, geo-coordinates, panoramic Street Views and associated depth
maps. These selected data are organized as an offline dataset. Meanwhile, we cap-
tured online datasets with low-cost cameras equipped on the VEDECOM vehicles.
In order to make spheric Street Views compatible to the online imagery, we adopted
an image warping and interpolation based transformation to render rectilinear im-
ages from Street Views.

Based on the prepared online and offline datasets, we developed two localization
methods, one is a handcrafted features based computer vision approach, the other
is a convolutional neural network based learning technique. In computer vision,
extracting points of interest as handcrafted features is a dominant approach to solve
the image based positioning. We fully leveraged the topo-metric representation
to build a coarse-to-fine localization system, namely a topological place recognition
process and then a metric pose estimation by a graph optimization. The only input of
this approach is an image sequence from a monocular camera and an offline prepared
database. The method was tested in an urban environment and demonstrated both
sub-meter accuracy and robustness to viewpoint changes, illumination and occlusion.
We also refined this framework by the construction of the augmented Street Views
database to compensate the sparse distribution of Street Views and improve the
localization precision and smoothness.

The handcrafted feature method obtained a good accuracy but is hard to employ
in real time due to the heavy process in the image retrieval and graph optimization.

177

178

Since the GIS is a global scale geotagged database, it motivates us to regress global
localization from the trained convnet features in an end-to-end manner. We analyzed
the current convnet pose regressors with the original offline database. The weak
performance was caused by insufficient training data. We therefore augmented the
original database by a factor of a thousand and take use of the transfer learning
method to avoid overfitting and have a good performance. In the experiment, the
regressor can also give a global localization of an input camera image in real time but
the accuracy is less than the handcrafted feature based method. Results obtained by
the two approaches provide us insights on the comparison and connection between
handcrafted feature-based and convnet based methods.

Through the thesis, we proposed a method to deal with the urban localization
problem with only a low-cost camera and an offline database from Google Street
View. We believe that relying on existing databases to enhance and advance the
development of self-driving will be a very hot topic in the future. Our work is a
small step for initial exploration and there are many aspects that can be refined.
In both proposed methods, we only used a simple image synthesis approach thus
missing many information. In fact, a higher quality synthesis could be potentially
obtained by combining information from multiple panoramas and depth maps.

Furthermore, we mostly focused on improving the smoothness of the localization
by adding virtual views. Actually, fusing some ego information like odometry can
solve this problem easily. Our localization accuracy depends on the precision of the
GIS data, some more accurate and dense GIS database could help. For example,
the depth information in Google Earth 3D model is more trustable than Street View
depth maps. It is beneficial for a reliable localization system by matching online
captured 3D points with the accurate geo-registrated point clouds from Google Earth
3D model.

In addition, in the test of the learning model, we focused on the overfitting
problem and the parameter analysis is overlooked. Some parameter settings, such
as the maximum distance 4m to synthesize virtual images, were referred from the
handcrafted feature methods directly. As such, there are lots of directions to be
further studied, for example, to evaluate the method performance with the scale
of the environment, to research the influence of various parameter settings in the
training model, including the number of required pixels in training images, the
optimal spatial density of panoramas for a good training, etc.

Finally, the urban environment is very dynamic and the street appearance often
changes due to building construction and destruction. How to update the GIS
dataset with our online captured images is also a profound subject to study in the
future.

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[2] P. Agarwal, W. Burgard, and L. Spinello. Metric localization using google
street view. arXiv preprint arXiv:1503.04287, 2015.

[3] M. Agrawal, K. Konolige, and M. R. Blas. Censure: Center surround ex-
tremas for realtime feature detection and matching. In European Conference
on Computer Vision, pages 102–115. Springer, 2008.

[4] A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast retina keypoint. In
Computer vision and pattern recognition (CVPR), 2012 IEEE conference on,
pages 510–517. Ieee, 2012.

[5] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer. Fast and incremental
method for loop-closure detection using bags of visual words. IEEE Transac-
tions on Robotics, 24(5):1027–1037, 2008.

[6] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon, A. Ogale,
L. Vincent, and J. Weaver. Google street view: Capturing the world at street
level. Computer, 43(6):32–38, 2010.

[7] M. O. Aqel, M. H. Marhaban, M. I. Saripan, and N. B. Ismail. Review of visual
odometry: types, approaches, challenges, and applications. SpringerPlus, 5(1):
1897, 2016.

[8] R. Arandjelović and A. Zisserman. Three things everyone should know to im-
prove object retrieval. In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, pages 2911–2918. IEEE, 2012.

[9] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. Netvlad: Cnn
architecture for weakly supervised place recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 5297–
5307, 2016.

[10] C. Audras, A. Comport, M. Meilland, and P. Rives. Real-time dense
appearance-based slam for rgb-d sensors. In Australasian Conf. on Robotics
and Automation, 2011.

179

180 BIBLIOGRAPHY

[11] Y. Avrithis and G. Tolias. Hough pyramid matching: Speeded-up geometry
re-ranking for large scale image retrieval. International journal of computer
vision, 107(1):1–19, 2014.

[12] G. Baatz, K. Köser, D. Chen, R. Grzeszczuk, and M. Pollefeys. Leveraging 3d
city models for rotation invariant place-of-interest recognition. International
journal of computer vision, 96(3):315–334, 2012.

[13] A. Babenko and V. Lempitsky. The inverted multi-index. In Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 3069–
3076. IEEE, 2012.

[14] T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping
(slam): Part ii. IEEE Robotics & Automation Magazine, 13(3):108–117, 2006.

[15] T. D. Barfoot. State estimation for robotics, 2017.

[16] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Berg-
eron, N. Bouchard, and Y. Bengio. Theano: new features and speed im-
provements. Deep Learning and Unsupervised Feature Learning NIPS 2012
Workshop, 2012.

[17] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features.
Computer vision–ECCV 2006, pages 404–417, 2006.

[18] Y. Bengio. Deep learning of representations for unsupervised and transfer
learning. In Proceedings of ICML Workshop on Unsupervised and Transfer
Learning, pages 17–36, 2012.

[19] Y. Bengio, I. J. Goodfellow, and A. Courville. Deep learning. Nature, 521:
436–444, 2015.

[20] J.-L. Blanco, J.-A. Fernandez-Madrigal, and J. Gonzalez. A new approach
for large-scale localization and mapping: Hybrid metric-topological slam. In
Robotics and Automation, 2007 IEEE International Conference on, pages
2061–2067. IEEE, 2007.

[21] J.-L. Blanco, F.-A. Moreno, and J. González. A collection of outdoor robotic
datasets with centimeter-accuracy ground truth. Autonomous Robots, 27(4):
327–351, November 2009. ISSN 0929-5593. doi: 10.1007/s10514-009-9138-7.
URL http://www.mrpt.org/Paper:Malaga_Dataset_2009.

[22] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel, S. Gumhold, and
C. Rother. Dsac-differentiable ransac for camera localization. arXiv preprint
arXiv:1611.05705, 2016.

[23] E. Brachmann, F. Michel, A. Krull, M. Ying Yang, S. Gumhold, et al.
Uncertainty-driven 6d pose estimation of objects and scenes from a single
rgb image. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3364–3372, 2016.

[24] G. Bradski and A. Kaehler. Learning OpenCV: Computer vision with the
OpenCV library. ” O’Reilly Media, Inc.”, 2008.

http://www.mrpt.org/Paper:Malaga_Dataset_2009

BIBLIOGRAPHY 181

[25] M. A. Brubaker, A. Geiger, and R. Urtasun. Lost! leveraging the crowd for
probabilistic visual self-localization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3057–3064, 2013.

[26] M. Bujnak, Z. Kukelova, and T. Pajdla. A general solution to the p4p prob-
lem for camera with unknown focal length. In Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[27] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust inde-
pendent elementary features. Computer Vision–ECCV 2010, pages 778–792,
2010.

[28] G. Carrera, J. Savage, and W. Mayol-Cuevas. Robust feature descriptors
for efficient vision-based tracking. Progress in Pattern Recognition, Image
Analysis and Applications, pages 251–260, 2007.

[29] R. Caruana. Learning many related tasks at the same time with backpropa-
gation. In Advances in neural information processing systems, pages 657–664,
1995.

[30] S. Ceriani, G. Fontana, A. Giusti, D. Marzorati, M. Matteucci, D. Migliore,
D. Rizzi, D. G. Sorrenti, and P. Taddei. Rawseeds ground truth collection
systems for indoor self-localization and mapping. Autonomous Robots, 27(4):
353, 2009.

[31] K.-T. Chang. Geographic information system. Wiley Online Library, 2006.

[32] D. M. Chen, G. Baatz, K. Köser, S. S. Tsai, R. Vedantham, T. Pylvänäinen,
K. Roimela, X. Chen, J. Bach, M. Pollefeys, et al. City-scale landmark iden-
tification on mobile devices. In Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, pages 737–744. IEEE, 2011.

[33] F. Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[34] S. Choudhary and P. Narayanan. Visibility probability structure from sfm
datasets and applications. In European conference on computer vision, pages
130–143. Springer, 2012.

[35] C. Chow and C. Liu. Approximating discrete probability distributions with
dependence trees. IEEE transactions on Information Theory, 14(3):462–467,
1968.

[36] O. Chum and J. Matas. Matching with prosac-progressive sample consen-
sus. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages 220–226. IEEE, 2005.

[37] O. Chum and J. Matas. Optimal randomized ransac. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 30(8):1472–1482, 2008.

[38] J. Civera, A. J. Davison, and J. Montiel. Inverse depth parametrization for
monocular slam. Robotics, IEEE Transactions on, 24(5):932–945, 2008.

https://github.com/fchollet/keras

182 BIBLIOGRAPHY

[39] J. Civera, O. G. Grasa, A. J. Davison, and J. Montiel. 1-point ransac for
extended kalman filtering: Application to real-time structure from motion
and visual odometry. Journal of Field Robotics, 27(5):609–631, 2010.

[40] R. Clark, S. Wang, A. Markham, N. Trigoni, and H. Wen. Vidloc: 6-dof
video-clip relocalization. arXiv preprint arXiv:1702.06521, 2017.

[41] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like envi-
ronment for machine learning. In BigLearn, NIPS Workshop, 2011.

[42] A. I. Comport, M. Meilland, and P. Rives. An asymmetric real-time dense vi-
sual localisation and mapping system. In Computer Vision Workshops (ICCV
Workshops), 2011 IEEE International Conference on, pages 700–703. IEEE,
2011.

[43] L. Contreras and W. Mayol-Cuevas. Towards cnn map compression for camera
relocalisation. arXiv preprint arXiv:1703.00845, 2017.

[44] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categoriza-
tion with bags of keypoints. In Workshop on statistical learning in computer
vision, ECCV, volume 1, pages 1–2. Prague, 2004.

[45] Y. Cui and S. S. Ge. Autonomous vehicle positioning with gps in urban
canyon environments. IEEE transactions on robotics and automation, 19(1):
15–25, 2003.

[46] M. Cummins and P. Newman. Fab-map: Probabilistic localization and map-
ping in the space of appearance. The International Journal of Robotics Re-
search, 27(6):647–665, 2008.

[47] M. Cummins and P. Newman. Appearance-only slam at large scale with fab-
map 2.0. The International Journal of Robotics Research, 30(9):1100–1123,
2011.

[48] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. Monoslam: Real-
time single camera slam. IEEE transactions on pattern analysis and machine
intelligence, 29(6):1052–1067, 2007.

[49] J. Delhumeau, P.-H. Gosselin, H. Jégou, and P. Pérez. Revisiting the vlad
image representation. In Proceedings of the 21st ACM international conference
on Multimedia, pages 653–656. ACM, 2013.

[50] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:
A large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE,
2009.

[51] M. Donoser and H. Bischof. Efficient maximally stable extremal region (mser)
tracking. In Computer Vision and Pattern Recognition, 2006 IEEE Computer
Society Conference on, volume 1, pages 553–560. IEEE, 2006.

BIBLIOGRAPHY 183

[52] G. Dubbelman and B. Browning. Closed-form online pose-chain slam. In
Robotics and Automation (ICRA), 2013 IEEE International Conference on,
pages 5190–5197. IEEE, 2013.

[53] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

[54] V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning.
arXiv preprint arXiv:1603.07285, 2016.

[55] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping:
part i. IEEE robotics & automation magazine, 13(2):99–110, 2006.

[56] N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard. Real-time 3d
visual slam with a hand-held rgb-d camera. In Proc. of the RGB-D Work-
shop on 3D Perception in Robotics at the European Robotics Forum, Vasteras,
Sweden, volume 180, pages 1–15, 2011.

[57] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[58] G. Floros, B. van der Zander, and B. Leibe. Openstreetslam: Global vehicle
localization using openstreetmaps. In Robotics and Automation (ICRA), 2013
IEEE International Conference on, pages 1054–1059. IEEE, 2013.

[59] C. Forster, M. Pizzoli, and D. Scaramuzza. Svo: Fast semi-direct monocular
visual odometry. In Robotics and Automation (ICRA), 2014 IEEE Interna-
tional Conference on, pages 15–22. IEEE, 2014.

[60] G. Fritz, C. Seifert, M. Kumar, and L. Paletta. Building detection from mobile
imagery using informative sift descriptors. In Image Analysis, pages 629–638.
Springer, 2005.

[61] D. Gálvez-López and J. D. Tardos. Bags of binary words for fast place recog-
nition in image sequences. IEEE Transactions on Robotics, 28(5):1188–1197,
2012.

[62] A. Geiger, J. Ziegler, and C. Stiller. Stereoscan: Dense 3d reconstruction in
real-time. In Intelligent Vehicles Symposium (IV), 2011.

[63] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The
kitti dataset. International Journal of Robotics Research (IJRR), 2013.

[64] A. Gil, O. M. Mozos, M. Ballesta, and O. Reinoso. A comparative evaluation of
interest point detectors and local descriptors for visual slam. Machine Vision
and Applications, 21(6):905–920, 2010.

[65] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics, pages 249–256, 2010.

184 BIBLIOGRAPHY

[66] A. Glover, W. Maddern, M. Warren, S. Reid, M. Milford, and G. Wyeth.
Openfabmap: An open source toolbox for appearance-based loop closure de-
tection. In Robotics and Automation (ICRA), 2012 IEEE International Con-
ference on, pages 4730–4735. IEEE, 2012.

[67] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of
deep convolutional activation features. In European conference on computer
vision, pages 392–407. Springer, 2014.

[68] A. Gordo, J. Almazán, J. Revaud, and D. Larlus. Deep image retrieval: Learn-
ing global representations for image search. In European Conference on Com-
puter Vision, pages 241–257. Springer, 2016.

[69] G. Grisetti, R. Kummerle, C. Stachniss, U. Frese, and C. Hertzberg. Hierarchi-
cal optimization on manifolds for online 2d and 3d mapping. In Robotics and
Automation (ICRA), 2010 IEEE International Conference on, pages 273–278,
May 2010. doi: 10.1109/ROBOT.2010.5509407.

[70] J. W. Hager, J. F. Behensky, and B. W. Drew. The universal grids: Universal
transverse mercator (utm) and universal polar stereographic (ups). DMA
technical manual, 8358, 1989.

[71] M. Haklay and P. Weber. Openstreetmap: User-generated street maps. IEEE
Pervasive Computing, 7(4):12–18, 2008.

[72] B. M. Haralick, C.-N. Lee, K. Ottenberg, and M. Nölle. Review and analysis of
solutions of the three point perspective pose estimation problem. International
journal of computer vision, 13(3):331–356, 1994.

[73] C. Harris and M. Stephens. A combined corner and edge detector. In Alvey
vision conference, volume 15, pages 10–5244. Citeseer, 1988.

[74] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algo-
rithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108, 1979.

[75] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[76] J. Hartmann, J. H. Klussendorff, and E. Maehle. A comparison of feature
descriptors for visual slam. In Mobile Robots (ECMR), 2013 European Con-
ference on, pages 56–61. IEEE, 2013.

[77] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

[78] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

BIBLIOGRAPHY 185

[79] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual net-
works. In European Conference on Computer Vision, pages 630–645. Springer,
2016.

[80] J. Heinly, E. Dunn, and J.-M. Frahm. Comparative evaluation of binary fea-
tures. In Computer Vision–ECCV 2012, pages 759–773. Springer, 2012.

[81] K. L. Ho and P. Newman. Loop closure detection in slam by combining visual
and spatial appearance. Robotics and Autonomous Systems, 54(9):740–749,
2006.

[82] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[83] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. Global positioning
system: theory and practice. Springer Science & Business Media, 2012.

[84] A. S. Huang, M. Antone, E. Olson, L. Fletcher, D. Moore, S. Teller, and
J. Leonard. A high-rate, heterogeneous data set from the darpa urban chal-
lenge. The International Journal of Robotics Research, 29(13):1595–1601,
2010.

[85] S. Huber and C. Rust. osrmtime: Calculate travel time and distance with
openstreetmap data using the open source routing machine (osrm). 2016.

[86] R. A. Hummel. Histogram modification techniques. Computer Graphics and
Image Processing, 4(3):209–224, 1975.

[87] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on
Machine Learning, pages 448–456, 2015.

[88] A. Irschara, C. Zach, J.-M. Frahm, and H. Bischof. From structure-from-
motion point clouds to fast location recognition. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 2599–
2606. IEEE, 2009.

[89] H. Jegou, M. Douze, and C. Schmid. Hamming embedding and weak geometric
consistency for large scale image search. Computer Vision–ECCV 2008, pages
304–317, 2008.

[90] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors
into a compact image representation. In Computer Vision and Pattern Recog-
nition (CVPR), 2010 IEEE Conference on, pages 3304–3311. IEEE, 2010.

[91] H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence, 33
(1):117–128, 2011.

[92] H. Jegou, F. Perronnin, M. Douze, J. Sánchez, P. Perez, and C. Schmid.
Aggregating local image descriptors into compact codes. IEEE transactions
on pattern analysis and machine intelligence, 34(9):1704–1716, 2012.

186 BIBLIOGRAPHY

[93] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell. Caffe: Convolutional architecture for fast feature em-
bedding. arXiv preprint arXiv:1408.5093, 2014.

[94] Y. Jiang, Y. Xu, and Y. Liu. Performance evaluation of feature detection and
matching in stereo visual odometry. Neurocomputing, 120:380–390, 2013.

[95] E. Johns and G.-Z. Yang. Generative methods for long-term place recognition
in dynamic scenes. International Journal of Computer Vision, 106(3):297–314,
2014.

[96] Y. Kalantidis and Y. Avrithis. Locally optimized product quantization for
approximate nearest neighbor search. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2321–2328, 2014.

[97] N. Karlsson, E. Di Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and
M. E. Munich. The vslam algorithm for robust localization and mapping. In
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on, pages 24–29. IEEE, 2005.

[98] A. Kendall and R. Cipolla. Modelling uncertainty in deep learning for camera
relocalization. Proceedings of the International Conference on Robotics and
Automation (ICRA), 2016.

[99] A. Kendall and R. Cipolla. Geometric loss functions for camera pose regression
with deep learning. arXiv preprint arXiv:1704.00390, 2017.

[100] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolutional network for
real-time 6-dof camera relocalization. In Proceedings of the IEEE international
conference on computer vision, pages 2938–2946, 2015.

[101] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[102] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel parametrization of the
perspective-three-point problem for a direct computation of absolute cam-
era position and orientation. In Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, pages 2969–2976. IEEE, 2011.

[103] J. Knopp, J. Sivic, and T. Pajdla. Avoiding confusing features in place recog-
nition. Computer Vision–ECCV 2010, pages 748–761, 2010.

[104] K. Konolige, M. Agrawal, and J. Sola. Large-scale visual odometry for rough
terrain. In Robotics research, pages 201–212. Springer, 2010.

[105] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information pro-
cessing systems, pages 1097–1105, 2012.

[106] Z. Kukelova, M. Bujnak, and T. Pajdla. Real-time solution to the absolute
pose problem with unknown radial distortion and focal length. In Proceedings
of the IEEE International Conference on Computer Vision, pages 2816–2823,
2013.

BIBLIOGRAPHY 187

[107] P. Kulkarni, J. Zepeda, F. Jurie, P. Perez, and L. Chevallier. Hybrid multi-
layer deep cnn/aggregator feature for image classification. In Acoustics, Speech
and Signal Processing (ICASSP), 2015 IEEE International Conference on,
pages 1379–1383. IEEE, 2015.

[108] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g 2
o: A general framework for graph optimization. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 3607–3613. IEEE,
2011.

[109] R. Kümmerle, B. Steder, C. Dornhege, A. Kleiner, G. Grisetti, and W. Bur-
gard. Large scale graph-based slam using aerial images as prior information.
Autonomous Robots, 30(1):25–39, 2011.

[110] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-view rgb-d
object dataset. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 1817–1824. IEEE, 2011.

[111] R. B. Langley. Rtk gps. GPS World, 9(9):70–76, 1998.

[112] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hub-
bard, and L. D. Jackel. Handwritten digit recognition with a back-propagation
network. In Advances in neural information processing systems, pages 396–
404, 1990.

[113] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[114] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436,
2015.

[115] V. Lepetit, F. Moreno-Noguer, and P. Fua. Epnp: An accurate o (n) solution
to the pnp problem. International journal of computer vision, 81(2):155–166,
2009.

[116] S. Leutenegger, M. Chli, and R. Y. Siegwart. Brisk: Binary robust invariant
scalable keypoints. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 2548–2555. IEEE, 2011.

[117] J. Levinson, M. Montemerlo, and S. Thrun. Map-based precision vehicle local-
ization in urban environments. In Robotics: Science and Systems, volume 4,
page 1, 2007.

[118] R. Li, Q. Liu, J. Gui, D. Gu, and H. Hu. Indoor relocalization in challenging
environments with dual-stream convolutional neural networks. IEEE Trans-
actions on Automation Science and Engineering, 2017.

[119] Y. Li, N. Snavely, and D. P. Huttenlocher. Location recognition using pri-
oritized feature matching. In European conference on computer vision, pages
791–804. Springer, 2010.

188 BIBLIOGRAPHY

[120] Y. Li, N. Snavely, D. P. Huttenlocher, and P. Fua. Worldwide pose estimation
using 3d point clouds. In Large-Scale Visual Geo-Localization, pages 147–163.
Springer, 2016.

[121] H. Lim, S. N. Sinha, M. F. Cohen, and M. Uyttendaele. Real-time image-
based 6-dof localization in large-scale environments. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 1043–1050.
IEEE, 2012.

[122] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

[123] Z. Liu and R. Marlet. Virtual line descriptor and semi-local matching method
for reliable feature correspondence. In British Machine Vision Conference
2012, pages 16–1, 2012.

[124] M. Lourakis and X. Zabulis. Model-based pose estimation for rigid objects. In
International Conference on Computer Vision Systems, pages 83–92. Springer,
2013.

[125] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national journal of computer vision, 60(2):91–110, 2004.

[126] S. Lynen, T. Sattler, M. Bosse, J. A. Hesch, M. Pollefeys, and R. Siegwart. Get
out of my lab: Large-scale, real-time visual-inertial localization. In Robotics:
Science and Systems, 2015.

[127] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry. An invitation to 3-d vision:
from images to geometric models, volume 26. Springer Science & Business
Media, 2012.

[128] A. Majdik, Y. Albers-Schoenberg, and D. Scaramuzza. Mav urban localization
from google street view data. In Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on, pages 3979–3986, Nov 2013. doi:
10.1109/IROS.2013.6696925.

[129] A. L. Majdik, Y. Albers-Schoenberg, and D. Scaramuzza. Mav urban localiza-
tion from google street view data. In Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on, pages 3979–3986. IEEE, 2013.

[130] D. Marr and E. Hildreth. Theory of edge detection. In Proc. R. Soc. Lond.
B, volume 207, pages 187–217. The Royal Society, 1980.

[131] D. Massiceti, A. Krull, E. Brachmann, C. Rother, and P. H. Torr. Ran-
dom forests versus neural networks—what’s best for camera localization? In
Robotics and Automation (ICRA), 2017 IEEE International Conference on,
pages 5118–5125. IEEE, 2017.

[132] M. Meilland. Dense RGB-D mapping for real-time localisation and au-
tonomous navigation. Theses, Ecole Nationale Supérieure des Mines de Paris,
Mar. 2012. URL https://tel.archives-ouvertes.fr/tel-00686803.

https://tel.archives-ouvertes.fr/tel-00686803

BIBLIOGRAPHY 189

[133] M. Meilland, A. Comport, P. Rives, and I. S. A. Méditerranée. Real-time
dense visual tracking under large lighting variations. In British Machine Vision
Conference, University of Dundee, volume 29, 2011.

[134] F. Michel, A. Kirillov, E. Brachmann, A. Krull, S. Gumhold, B. Savchynskyy,
and C. Rother. Global hypothesis generation for 6d object pose estimation.
arXiv preprint arXiv:1612.02287, 2016.

[135] B. Micusik and J. Kosecka. Piecewise planar city 3d modeling from street view
panoramic sequences. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 2906–2912. IEEE, 2009.

[136] S. Middelberg, T. Sattler, O. Untzelmann, and L. Kobbelt. Scalable 6-dof
localization on mobile devices. In European conference on computer vision,
pages 268–283. Springer, 2014.

[137] K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. In
European conference on computer vision, pages 128–142. Springer, 2002.

[138] K. Mikolajczyk and C. Schmid. Comparison of affine-invariant local detectors
and descriptors. In Signal Processing Conference, 2004 12th European, pages
1729–1732. IEEE, 2004.

[139] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors.
IEEE transactions on pattern analysis and machine intelligence, 27(10):1615–
1630, 2005.

[140] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaf-
falitzky, T. Kadir, and L. Van Gool. A comparison of affine region detectors.
International journal of computer vision, 65(1-2):43–72, 2005.

[141] D. Mishkin, J. Matas, and M. Perdoch. Mods: Fast and robust method for
two-view matching. Computer Vision and Image Understanding, 141:81–93,
2015.

[142] L. Moisan, P. Moulon, and P. Monasse. Automatic homographic registration
of a pair of images, with a contrario elimination of outliers. Image Processing
On Line, 2:56–73, 2012.

[143] Y. Y. Morvan. Acquisition, compression and rendering of depth and texture
for multi-view video. PhD thesis, Technische Universiteit Eindhoven, 2009.

[144] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. VISAPP (1), 2(331-340):2, 2009.

[145] M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms for high dimen-
sional data. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(11):2227–2240, 2014.

[146] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam: a versatile
and accurate monocular slam system. IEEE Transactions on Robotics, 31(5):
1147–1163, 2015.

190 BIBLIOGRAPHY

[147] L. Neumann and J. Matas. Real-time scene text localization and recognition.
In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on, pages 3538–3545. IEEE, 2012.

[148] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry. In Computer
Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004
IEEE Computer Society Conference on, volume 1, pages I–652. IEEE, 2004.

[149] M. P. Parsley and S. J. Julier. Towards the exploitation of prior information
in slam. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ Interna-
tional Conference on, pages 2991–2996. IEEE, 2010.

[150] S. D. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. H. Eng,
D. Rus, and M. H. Ang. Perception, planning, control, and coordination for
autonomous vehicles. Machines, 5(1):6, 2017.

[151] T. Peynot, S. Scheding, and S. Terho. The marulan data sets: Multi-sensor
perception in a natural environment with challenging conditions. The Inter-
national Journal of Robotics Research, 29(13):1602–1607, 2010.

[152] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval
with large vocabularies and fast spatial matching. In Computer Vision and
Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE,
2007.

[153] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantiza-
tion: Improving particular object retrieval in large scale image databases. In
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Confer-
ence on, pages 1–8. IEEE, 2008.

[154] H. Prashanth, H. Shashidhara, and B. M. KN. Image scaling comparison
using universal image quality index. In Advances in Computing, Control, &
Telecommunication Technologies, 2009. ACT’09. International Conference on,
pages 859–863. IEEE, 2009.

[155] K. Prazdny. Egomotion and relative depth map from optical flow. Biological
cybernetics, 36(2):87–102, 1980.

[156] X. Qu, B. Soheilian, and N. Paparoditis. Vehicle localization using mono-
camera and geo-referenced traffic signs. In Intelligent Vehicles Symposium
(IV), 2015 IEEE, pages 605–610. IEEE, 2015.

[157] F. Radenović, G. Tolias, and O. Chum. Cnn image retrieval learns from bow:
Unsupervised fine-tuning with hard examples. In European Conference on
Computer Vision, pages 3–20. Springer, 2016.

[158] N. Radwan, G. D. Tipaldi, L. Spinello, and W. Burgard. Do you see the
bakery? leveraging geo-referenced texts for global localization in public maps.
In Robotics and Automation (ICRA), 2016 IEEE International Conference on,
pages 4837–4842. IEEE, 2016.

BIBLIOGRAPHY 191

[159] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J.-M. Frahm. Usac:
a universal framework for random sample consensus. IEEE transactions on
pattern analysis and machine intelligence, 35(8):2022–2038, 2013.

[160] F. Ramm, J. Topf, and S. Chilton. OpenStreetMap: using and enhancing the
free map of the world. UIT Cambridge Cambridge, 2011.

[161] E. Rosten and T. Drummond. Fusing points and lines for high performance
tracking. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International
Conference on, volume 2, pages 1508–1515. IEEE, 2005.

[162] E. Rosten, R. Porter, and T. Drummond. Faster and better: A machine
learning approach to corner detection. IEEE transactions on pattern analysis
and machine intelligence, 32(1):105–119, 2010.

[163] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alter-
native to sift or surf. In Computer Vision (ICCV), 2011 IEEE international
conference on, pages 2564–2571. IEEE, 2011.

[164] A. G. Rundle, M. D. Bader, C. A. Richards, K. M. Neckerman, and J. O.
Teitler. Using google street view to audit neighborhood environments. Amer-
ican journal of preventive medicine, 40(1):94–100, 2011.

[165] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification
with the fisher vector: Theory and practice. International journal of computer
vision, 105(3):222–245, 2013.

[166] T. Sattler, B. Leibe, and L. Kobbelt. Scramsac: Improving ransac’s efficiency
with a spatial consistency filter. In Computer vision, 2009 ieee 12th interna-
tional conference on, pages 2090–2097. IEEE, 2009.

[167] T. Sattler, B. Leibe, and L. Kobbelt. Fast image-based localization using direct
2d-to-3d matching. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 667–674. IEEE, 2011.

[168] T. Sattler, B. Leibe, and L. Kobbelt. Improving image-based localization by
active correspondence search. In European conference on computer vision,
pages 752–765. Springer, 2012.

[169] T. Sattler, T. Weyand, B. Leibe, and L. Kobbelt. Image retrieval for image-
based localization revisited. In BMVC, volume 1, page 4, 2012.

[170] T. Sattler, C. Sweeney, and M. Pollefeys. On sampling focal length values
to solve the absolute pose problem. In European Conference on Computer
Vision, pages 828–843. Springer, 2014.

[171] T. Sattler, M. Havlena, F. Radenovic, K. Schindler, and M. Pollefeys. Hyper-
points and fine vocabularies for large-scale location recognition. In Proceedings
of the IEEE International Conference on Computer Vision, pages 2102–2110,
2015.

192 BIBLIOGRAPHY

[172] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms. International journal of computer vision,
47(1-3):7–42, 2002.

[173] T. Schaul, I. Antonoglou, and D. Silver. Unit tests for stochastic optimization.
arXiv preprint arXiv:1312.6055, 2013.

[174] G. Schindler, M. Brown, and R. Szeliski. City-scale location recognition. In
Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference
on, pages 1–7. IEEE, 2007.

[175] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun.
Overfeat: Integrated recognition, localization and detection using convolu-
tional networks. arXiv preprint arXiv:1312.6229, 2013.

[176] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features
off-the-shelf: an astounding baseline for recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition workshops, pages
806–813, 2014.

[177] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgibbon.
Scene coordinate regression forests for camera relocalization in rgb-d images.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2930–2937, 2013.

[178] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[179] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object
matching in videos. In null, page 1470. IEEE, 2003.

[180] I. Skrypnyk and D. G. Lowe. Scene modelling, recognition and tracking with
invariant image features. In Mixed and Augmented Reality, 2004. ISMAR
2004. Third IEEE and ACM International Symposium on, pages 110–119.
IEEE, 2004.

[181] C. C. Slama, C. Theurer, and S. W. Henriksen. Manual of photogrammetry.
American Society of photogrammetry, 1980.

[182] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman. The new college
vision and laser data set. The International Journal of Robotics Research, 28
(5):595–599, 2009.

[183] R. C. Smith and P. Cheeseman. On the representation and estimation of
spatial uncertainty. The international journal of Robotics Research, 5(4):56–
68, 1986.

[184] S. M. Smith and J. M. Brady. Susan—a new approach to low level image
processing. International journal of computer vision, 23(1):45–78, 1997.

[185] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of machine learning research, 15(1):1929–1958, 2014.

BIBLIOGRAPHY 193

[186] J. Stillwell. Naive lie theory. Springer, 2008.

[187] N. Sunderhauf, S. Shirazi, A. Jacobson, F. Dayoub, E. Pepperell, B. Upcroft,
and M. Milford. Place recognition with convnet landmarks: Viewpoint-robust,
condition-robust, training-free. Proceedings of Robotics: Science and Systems
XII, 2015.

[188] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of
initialization and momentum in deep learning. In International conference on
machine learning, pages 1139–1147, 2013.

[189] L. Svarm, O. Enqvist, M. Oskarsson, and F. Kahl. Accurate localization and
pose estimation for large 3d models. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 532–539, 2014.

[190] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 1–9, 2015.

[191] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2818–2826,
2016.

[192] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In AAAI, pages
4278–4284, 2017.

[193] A. Taneja, L. Ballan, and M. Pollefeys. Never get lost again: Vision based
navigation using streetview images. In Asian Conference on Computer Vision,
pages 99–114. Springer, 2014.

[194] S. Thrun and J. J. Leonard. Simultaneous localization and mapping. In
Springer handbook of robotics, pages 871–889. Springer, 2008.

[195] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005.

[196] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, et al. Stanley: The robot that
won the darpa grand challenge. Journal of field Robotics, 23(9):661–692, 2006.

[197] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for
machine learning, 4(2):26–31, 2012.

[198] G. Tolias, R. Sicre, and H. Jégou. Particular object retrieval with integral
max-pooling of cnn activations. arXiv preprint arXiv:1511.05879, 2015.

[199] R. F. Tomlinson. Thinking about GIS: geographic information system planning
for managers. ESRI, Inc., 2007.

194 BIBLIOGRAPHY

[200] A. Torii, M. Havlena, et al. From google street view to 3d city models. In
Computer vision workshops (ICCV Workshops), 2009 IEEE 12th international
conference on, pages 2188–2195. IEEE, 2009.

[201] A. Torii, J. Sivic, and T. Pajdla. Visual localization by linear combination of
image descriptors. In Computer Vision Workshops (ICCV Workshops), 2011
IEEE International Conference on, pages 102–109. IEEE, 2011.

[202] A. Torii, J. Sivic, T. Pajdla, and M. Okutomi. Visual place recognition with
repetitive structures. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 883–890, 2013.

[203] A. Torii, R. Arandjelović, J. Sivic, M. Okutomi, and T. Pajdla. 24/7 place
recognition by view synthesis. In CVPR, 2015.

[204] P. H. Torr and A. Zisserman. Mlesac: A new robust estimator with application
to estimating image geometry. Computer Vision and Image Understanding,
78(1):138–156, 2000.

[205] L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient object category recog-
nition using classemes. Computer Vision–ECCV 2010, pages 776–789, 2010.

[206] G. Vaca-Castano, A. R. Zamir, and M. Shah. City scale geo-spatial trajectory
estimation of a moving camera. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, pages 1186–1193. IEEE, 2012.

[207] A. Vedaldi and B. Fulkerson. Vlfeat: An open and portable library of computer
vision algorithms. In Proceedings of the 18th ACM international conference
on Multimedia, pages 1469–1472. ACM, 2010.

[208] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, et al. Constrained k-means
clustering with background knowledge. In ICML, volume 1, pages 577–584,
2001.

[209] J. Wang and L. Perez. The effectiveness of data augmentation in image clas-
sification using deep learning. Technical report, Technical report, 2017.

[210] Z. Wang, B. Fan, and F. Wu. Local intensity order pattern for feature de-
scription. In Computer Vision (ICCV), 2011 IEEE International Conference
on, pages 603–610. IEEE, 2011.

[211] J. Weng, P. Cohen, M. Herniou, et al. Camera calibration with distortion
models and accuracy evaluation. IEEE Transactions on pattern analysis and
machine intelligence, 14(10):965–980, 1992.

[212] T. Weyand, I. Kostrikov, and J. Philbin. Planet-photo geolocation with convo-
lutional neural networks. In European Conference on Computer Vision, pages
37–55. Springer, 2016.

[213] M. G. Wing, A. Eklund, and L. D. Kellogg. Consumer-grade global positioning
system (gps) accuracy and reliability. Journal of forestry, 103(4):169–173,
2005.

BIBLIOGRAPHY 195

[214] Z. Wu, C. Shen, and A. v. d. Hengel. Wider or deeper: Revisiting the resnet
model for visual recognition. arXiv preprint arXiv:1611.10080, 2016.

[215] J. Xiao and L. Quan. Multiple view semantic segmentation for street view
images. In Computer Vision, 2009 IEEE 12th International Conference on,
pages 686–693. IEEE, 2009.

[216] J. Xie, M. Kiefel, M.-T. Sun, and A. Geiger. Semantic instance annotation of
street scenes by 3d to 2d label transfer. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3688–3697, 2016.

[217] G. Xu and Z. Zhang. Epipolar geometry in stereo, motion and object recog-
nition: a unified approach, volume 6. Springer Science & Business Media,
2013.

[218] T. Yeh, K. Tollmar, and T. Darrell. Searching the web with mobile images
for location recognition. In Computer Vision and Pattern Recognition, 2004.
CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on,
volume 2, pages II–76. IEEE, 2004.

[219] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are fea-
tures in deep neural networks? In Advances in neural information processing
systems, pages 3320–3328, 2014.

[220] L. Yu, C. Joly, G. Bresson, and F. Moutarde. Improving robustness of monocu-
lar urban localization using augmented street view. In Intelligent Transporta-
tion Systems (ITSC), 2016 IEEE 19th International Conference on, pages
513–519. IEEE, 2016.

[221] L. Yu, C. Joly, G. Bresson, and F. Moutarde. Monocular urban localization
using street view. arXiv preprint arXiv:1605.05157, 2016.

[222] J. Yue-Hei Ng, F. Yang, and L. S. Davis. Exploiting local features from
deep networks for image retrieval. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages 53–61, 2015.

[223] A. R. Zamir and M. Shah. Accurate image localization based on google maps
street view. In European Conference on Computer Vision, pages 255–268.
Springer, 2010.

[224] A. R. Zamir, A. Hakeem, L. Van Gool, M. Shah, and R. Szeliski. Large-scale
visual geo-localization. Springer, 2016.

[225] P. A. Zandbergen. Accuracy of iphone locations: A comparison of assisted
gps, wifi and cellular positioning. Transactions in GIS, 13(s1):5–25, 2009.

[226] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[227] W. Zhang and J. Kosecka. Image based localization in urban environments.
In 3D Data Processing, Visualization, and Transmission, Third International
Symposium on, pages 33–40. IEEE, 2006.

196 BIBLIOGRAPHY

[228] Z. Zhang. Parameter estimation techniques: A tutorial with application to
conic fitting. Image and vision Computing, 15(1):59–76, 1997.

[229] L. Zhao, S. Huang, L. Yan, and G. Dissanayake. Parallax angle parametriza-
tion for monocular slam. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 3117–3124. IEEE, 2011.

[230] L. Zheng, Y. Zhao, S. Wang, J. Wang, and Q. Tian. Good practice in cnn
feature transfer. arXiv preprint arXiv:1604.00133, 2016.

[231] L. Zheng, Y. Yang, and Q. Tian. Sift meets cnn: A decade survey of instance
retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2017.

[232] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep
features for scene recognition using places database. In Advances in neural
information processing systems, pages 487–495, 2014.

[233] D. Zou and P. Tan. Coslam: Collaborative visual slam in dynamic environ-
ments. IEEE transactions on pattern analysis and machine intelligence, 35
(2):354–366, 2013.

Résumé
Dans un travail réalisé au Centre de Robotique et à l'Institut
VEDECOM, nous nous sommes intéressés aux systèmes robustes de
localisation visuelle en milieu urbain pour la voiture autonome.
Obtenir une pose exacte à partir d'une caméra monoculaire est
difficile et insuffisant en terme de précision pour la voiture autonome
actuelle. Plutôt que d'utiliser des approches comme la navigation par
satellites, la Cartographie et Localisation Simultanées (SLAM), et les
techniques de fusion de données, nous nous sommes concentrés sur
l'utilisation de Systèmes d'Information Géographiques (SIG) pour
concevoir une approche fiable, précise et absolue de localisation en
milieu urbain.

Le développement de SIG publics nous a apporté un nouvel horizon
pour résoudre le problème de la localisation, mais ses informations,
telles que les cartes topologiques, sémantiques, métriques, les Street
Views, les cartes de profondeur, les cartes cadastrales 3D et les
cartes en haute définition, doivent être bien analysées et organisées
pour extraire les informations pertinentes pour une voiture autonome.
Notre première tâche consistait à concevoir une base de données
hors ligne accessible par un robot à partir d'un SIG public dense, à
savoir Google Maps, qui a l'avantage d'avoir une couverture
mondiale. Nous générons une représentation topométrique compacte
de l'environnement urbain dynamique en extrayant quatre données
utiles du SIG, y compris : les topologies, les géo-coordonnées, les
Street Views panoramiques et les cartes de profondeur associées.
Dans le même temps, un ensemble de données en ligne a été acquis
par une caméra à bas prix équipée sur les véhicules de VEDECOM.
Afin de rendre les Street View sphériques compatibles avec l'imagerie
en ligne, une transformation basée sur l'interpolation d'image est
introduite pour obtenir des images rectilignes à partir de Street Views.

Nous proposons deux méthodes de localisation : l'une est une
approche de vision par ordinateur basée sur l'extraction de
caractéristiques, l'autre est une méthode d'apprentissage basée sur
les réseaux de neurones convolutionnels (convnet). En vision par
ordinateur, l'extraction de caractéristiques est un moyen populaire de
résoudre le positionnement à partir d'images. Nous tirons parti de
Google Maps et utilisons ses données topo-métriques hors ligne pour
construire un positionnement grossier à fin, à savoir un processus de
reconnaissance de lieu topologique puis une estimation métrique de
pose par optimisation de graphe. La seule entrée de cet algorithme
est une séquence d'images provenant d'une caméra monoculaire et
la base de données construite à partir de Google Maps. De plus, il
n'est pas nécessaire d'établir des correspondances d'image à image,
ni d'utiliser l'odométrie. La méthode a été testée en environnement
urbain et démontre à la fois une précision sous-métrique et une
robustesse aux changements de point de vue, à l'illumination et à
l'occlusion. Aussi, les résultats montrent que les emplacements
éloignés de Street Views produisent une erreur significative dans la
phase d'estimation métrique. Ainsi, nous proposons de synthétiser
des Street Views artificielles pour compenser la densité des Street
View originales et améliorer la précision.

Cette méthode souffre malheureusement d'un temps de calcul
important. Étant donné que le SIG nous offre une base de données
géolocalisée à l'échelle mondiale, cela nous motive à régresser des
localisations globales directement à partir d'un convnet de bout en
bout. La base de données hors ligne précédemment construite est
encore insuffisante pour l 'apprentissage d'un convnet. Pour
compenser cela nous densifions la base d'origine d'un facteur mille et
utilisons la méthode d'apprentissage par transfert pour faire
converger notre régresseur convnet et avoir une bonne performance.
Le régresseur permet également d'obtenir une localisation globale à
partir d'une seule image et en temps réel.

Les résultats obtenus par ces deux approches nous fournissent des
informations sur la comparaison et la relation entre les méthodes
basées sur des caractéristiques et celles basées sur le convnet.
Après avoir analysé et comparé les performances de localisation des
deux méthodes, nous avons également abordé des perspectives pour
améliorer la robustesse et la précision de la localisation face au
problème de localisation urbaine assistée par SIG.

Mots Clés
Localisation absolue, Street View, GIS, Handcrafted features,
Convnet, Mono-caméra

Abstract
In a work made at Centre de Robotique and Institut VEDECOM, we
studied robust visual urban localization systems for self-driving cars.
Obtaining an exact pose from a monocular camera is difficult and
cannot be applied to the current autonomous cars. Rather than using
approaches like Global Navigation Satellite Systems, Simultaneous
Localization And Mapping, and data fusion techniques, we mainly
focused on fully leveraging Geographical Information Systems (GIS)
to achieve a low-cost, robust, accurate and global urban localization.

The development of public GIS's has brought us a new horizon to
address the localization problem but their tremendous amount of
information, such as topological, semantic, metric maps, Street Views,
depth maps, 3D cadastral maps and High Definition maps, has to be
well analyzed and organized to extract relevant information for self-
driving cars. Our first task was to design a robotic accessible offline
database from a dense public GIS, namely Google Maps, which has
the advantage to propose a worldwide coverage. We make a compact
topometric representation for the dynamic urban environment by
extracting four useful data from the GIS, including topologies, geo-
coordinates, panoramic Street Views, and associated depth maps. At
the same time, an online dataset was acquired with a low-cost
camera equipped on VEDECOM vehicles. In order to make spheric
Street Views compatible with the online imagery, an image warping
and interpolation based transformation is introduced to render
rectilinear images from Street Views.

We proposed two localization methods: one is a handcrafted features
based computer vision approach, the other is a convolutional neural
network (convnet) based learning technique. In computer vision,
extracting handcrafted features is a popular way to solve the image
based positioning. We take advantages of the abundant sources from
Google Maps and benefit from the topo-metric offline data structure to
build a coarse-to-fine positioning, namely a topological place
recognition process and then a metric pose estimation by a graph
optimization. The only input of this approach is an image sequence
from a monocular camera and the database constructed from Google
Maps. Moreover, it is not necessary to establish frame to frame
correspondences, nor odometry estimates. The method is tested on
an urban environment and demonstrates both sub-meter accuracy
and robustness to viewpoint changes, illumination and occlusion.
Moreover, we demonstrate that sparse Street View locations produce
a significant error in the metric pose estimation phase. Thus our
former framework is refined by synthesizing more artificial Street
Views to compensate the sparsity of original Street Views and
improve the precision.

The handcrafted feature based framework requires the image retrieval
and graph optimization. It is hard to achieve in a real-time application.
Since the GIS offers us a global scale geotagged database, it
motivates us to regress global localizations from convnet features in
an end-to-end manner. The previously constructed offline database is
still insufficient for a convnet training. We hereby augment the
originally constructed database by a thousand factor and take
advantage of the transfer learning method to make our convnet
regressor converge and have a good performance. In our test, the
regressor can also give a global localization of an input camera image
in real time.

The results obtained by the two approaches provide us insights on the
comparison and connection between handcrafted feature-based and
convnet based methods. After analyzing and comparing the
localization performances of both methods, we also talked about
some perspectives to improve the localization robustness and
precision towards the GIS-aided urban localization problem.

Keywords
Absolute localization, Street Views, GiS, Handcrafted features,
Convnet, Mono-camera

	Introduction
	Background and Motivation
	Autonomous Vehicle
	Current Localization Systems
	Geographic Information Systems
	Objectives and Problematics of the Thesis

	Context of the Thesis
	Contributions of the Thesis
	Thesis Outline

	I State of the Art
	Preliminaries
	Coordinate Systems
	Geometry Notions
	Rigid Transformation
	Pose Representations

	Camera Geometry
	Perspective Projection
	Undistorsion

	Conclusion

	Review of Visual Localization
	Introduction
	Place Recognition
	Handcrafted-feature-based Place Recognition
	Learning-based Place Recognition
	Summary

	Metric Visual Localization
	Handcrafted-feature-based Metric Localization
	SLAM
	Visual Odometry

	Learning-based Metric Localization

	GIS-aided Visual Localization
	Conclusion

	II Online Data Acquisition and Offline Database Construction from Geographic Information System
	Online Data Acquisition
	Introduction
	Review of current online dataset
	Experimental Setup
	System Platform
	Test Area

	Conclusion

	Offline Database Construction and Urban Environment Modeling
	Geographic Information System
	Google Street View
	Data Extraction
	Assumptions and Challenges
	Panorama Transformation
	Warping function and Interpolation
	Panorama Backprojection

	Topometric Representations
	Conclusion

	III Localization using Handcrafted Features
	Handcrafted Features for Urban Localization
	Introduction
	Formal Problem Description
	Challenges in Image Search and Localization
	Handcrafted Features Correspondences
	Feature Extraction and Description
	Robust Feature Matching
	Discussion
	Virtual Line Descriptor kVLD

	Conclusion

	Topological and Metric Localization
	Introduction
	Localization with Street View
	Overview
	Place Recognition
	Evaluation of State-of-the-Art Approaches
	Combined Bag of Words

	Database Construction
	Image based Metric Localization
	Pose Estimation and Optimization
	Evaluation and Discussion

	Localization with augmented Street Views
	Database Augmentation
	Refined Result and Discussion
	Translation Distance Evaluation
	Robustness & Accuracy of Localization

	Generalization to the whole Test Area
	Conclusion

	IV Localization using Convolutional Neural Network
	Convolutional Neural Networks
	Introduction
	Deep Learning
	From Machine Learning to Deep Learning
	Convolutional Neural Networks

	Transfer Learning
	Application Scenarios
	Pretrained Neural Network

	Conclusion

	Metric Localization using Deep Learning
	Evaluation of Existing Convnet Localization Model
	PoseNet Principle
	The Set-up of Evaluation
	Training datasets
	PoseNet applied to Original and Augmented Street Views
	PoseNet applied to Very Augmented Street Views

	Adapted PoseNet on Very Augmented Street Views
	Regressor outputs simplification
	Architecture Modification
	Training Procedure

	Result and Discussion
	Perspectives

	Generalization to Test Area
	Comparison of Handcrafted and CNN Feature based Methods
	Conclusion

	V Conclusions of the Thesis
	Conclusions and Perspectives

