M. A. Fischler and R. C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, vol.24, issue.6, pp.381-395, 1981.
DOI : 10.1145/358669.358692

URL : http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA460585&Location=U2&doc=GetTRDoc.pdf

G. Floros, B. Van-der-zander, and B. Leibe, OpenStreetSLAM: Global vehicle localization using OpenStreetMaps, 2013 IEEE International Conference on Robotics and Automation, pp.1054-1059, 2013.
DOI : 10.1109/ICRA.2013.6630703

URL : http://www.vision.rwth-aachen.de/publications/pdf/floros-icra13.pdf

C. Forster, M. Pizzoli, and D. Scaramuzza, SVO: Fast semi-direct monocular visual odometry, 2014 IEEE International Conference on Robotics and Automation (ICRA), pp.15-22, 2014.
DOI : 10.1109/ICRA.2014.6906584

URL : http://www.zora.uzh.ch/id/eprint/125453/1/ICRA14_Forster.pdf

G. Fritz, C. Seifert, M. Kumar, and L. Paletta, Building Detection from Mobile Imagery Using Informative SIFT Descriptors, Image Analysis, pp.629-638
DOI : 10.1007/11499145_64

URL : https://link.springer.com/content/pdf/10.1007%2F11499145_64.pdf

D. Gálvez-lópez and J. D. Tardos, Bags of Binary Words for Fast Place Recognition in Image Sequences, IEEE Transactions on Robotics, vol.28, issue.5, pp.1188-1197, 2012.
DOI : 10.1109/TRO.2012.2197158

A. Geiger, J. Ziegler, and C. Stiller, StereoScan: Dense 3d reconstruction in real-time, 2011 IEEE Intelligent Vehicles Symposium (IV), 2011.
DOI : 10.1109/IVS.2011.5940405

URL : http://rainsoft.de/publications/iv11.pdf

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, Vision meets robotics: The KITTI dataset, The International Journal of Robotics Research, vol.32, issue.11, p.2013
DOI : 10.1109/ICRA.2012.6225282

URL : http://journals.sagepub.com/doi/pdf/10.1177/0278364913491297

A. Gil, O. M. Mozos, M. Ballesta, and O. Reinoso, A comparative evaluation of interest point detectors and local descriptors for visual SLAM, Machine Vision and Applications, pp.905-920, 2010.
DOI : 10.1007/s00138-009-0195-x

X. Glorot, Y. Bengio, A. Glover, W. Maddern, M. Warren et al., Understanding the difficulty of training deep feedforward neural networks Openfabmap: An open source toolbox for appearance-based loop closure detection, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics Robotics and Automation (ICRA), 2012 IEEE International Conference on, pp.249-256, 2010.

Y. Gong, L. Wang, R. Guo, and S. Lazebnik, Multi-scale Orderless Pooling of Deep Convolutional Activation Features, European conference on computer vision, pp.392-407, 2014.
DOI : 10.1007/978-3-319-10584-0_26

URL : http://arxiv.org/pdf/1403.1840

A. Gordo, J. Almazán, J. Revaud, and D. Larlus, Deep Image Retrieval: Learning Global Representations for Image Search, European Conference on Computer Vision, pp.241-257, 2016.
DOI : 10.1109/CVPR.2014.180

URL : http://arxiv.org/pdf/1604.01325

G. Grisetti, R. Kummerle, C. Stachniss, U. Frese, and C. Hertzberg, Hierarchical optimization on manifolds for online 2D and 3D mapping, 2010 IEEE International Conference on Robotics and Automation, pp.273-278, 2010.
DOI : 10.1109/ROBOT.2010.5509407

URL : http://www.informatik.uni-bremen.de/agebv/downloads/published/grisetti10icra.pdf

J. W. Hager, J. F. Behensky, and B. W. Drew, The universal grids: Universal transverse mercator (utm) and universal polar stereographic (ups). DMA technical manual, 1989.

M. Haklay and P. Weber, OpenStreetMap: User-Generated Street Maps, IEEE Pervasive Computing, vol.7, issue.4, pp.12-18, 2008.
DOI : 10.1109/MPRV.2008.80

URL : http://discovery.ucl.ac.uk/13849/1/13849.pdf

B. M. Haralick, C. Lee, K. Ottenberg, and M. Nölle, Review and analysis of solutions of the three point perspective pose estimation problem, International Journal of Computer Vision, vol.13, issue.1, pp.331-356, 1994.
DOI : 10.1007/BF02028352

C. Harris and M. Stephens, A Combined Corner and Edge Detector, Procedings of the Alvey Vision Conference 1988, pp.10-5244, 1988.
DOI : 10.5244/C.2.23

URL : http://www.bmva.org/bmvc/1988/avc-88-023.pdf

J. A. Hartigan and M. A. Wong, Algorithm AS 136: A K-Means Clustering Algorithm, Applied Statistics, vol.28, issue.1, pp.100-108, 1979.
DOI : 10.2307/2346830

R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2004.
DOI : 10.1017/CBO9780511811685

URL : http://cds.cern.ch/record/1598612/files/0521540518_TOC.pdf

J. Hartmann, J. H. Klussendorff, and E. Maehle, A comparison of feature descriptors for visual SLAM, 2013 European Conference on Mobile Robots, pp.56-61, 2013.
DOI : 10.1109/ECMR.2013.6698820

K. He, X. Zhang, S. Ren, and J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, 2015 IEEE International Conference on Computer Vision (ICCV), pp.1026-1034, 2015.
DOI : 10.1109/ICCV.2015.123

URL : http://arxiv.org/pdf/1502.01852

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.770-778, 2016.
DOI : 10.1109/CVPR.2016.90

URL : http://arxiv.org/pdf/1512.03385

K. He, X. Zhang, S. Ren, and J. Sun, Identity Mappings in Deep Residual Networks, European Conference on Computer Vision, pp.630-645, 2016.
DOI : 10.1109/CVPR.2015.7298594

URL : http://arxiv.org/pdf/1603.05027

J. Heinly, E. Dunn, and J. Frahm, Comparative Evaluation of Binary Features, Computer Vision?ECCV 2012, pp.759-773, 2012.
DOI : 10.1007/978-3-642-33709-3_54

K. L. Ho and P. Newman, Loop closure detection in SLAM by combining visual and spatial appearance, Robotics and Autonomous Systems, vol.54, issue.9, pp.740-749, 2006.
DOI : 10.1016/j.robot.2006.04.016

S. Hochreiter and J. Schmidhuber, Long Short-Term Memory, Neural Computation, vol.4, issue.8, pp.1735-1780, 1997.
DOI : 10.1016/0893-6080(88)90007-X

B. Hofmann-wellenhof, H. Lichtenegger, and J. Collins, Global positioning system: theory and practice, 2012.

A. S. Huang, M. Antone, E. Olson, L. Fletcher, D. Moore et al., A High-rate, Heterogeneous Data Set From The DARPA Urban Challenge, The International Journal of Robotics Research, vol.29, issue.13, pp.1595-1601, 2010.
DOI : 10.1109/34.888718

URL : http://people.csail.mit.edu/seth/pubs/HuangEtAl_IJRR2010.pdf

S. Huber and C. Rust, osrmtime: Calculate Travel Time and Distance with OpenStreetMap Data Using the Open Source Routing Machine (OSRM), SSRN Electronic Journal, 2016.
DOI : 10.2139/ssrn.2691551

R. A. Hummel, Histogram modification techniques, Computer Graphics and Image Processing, vol.4, issue.3, pp.209-224, 1975.
DOI : 10.1016/0146-664X(75)90009-X

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, International Conference on Machine Learning, pp.448-456, 2015.

A. Irschara, C. Zach, J. Frahm, and H. Bischof, From structure-frommotion point clouds to fast location recognition, Computer Vision and Pattern Recognition CVPR 2009. IEEE Conference on, pp.2599-2606, 2009.
DOI : 10.1109/cvpr.2009.5206587

URL : http://www.icg.tugraz.at/pub/pdf/cvpr2009localization.pdf

H. Jegou, M. Douze, and C. Schmid, Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search, Computer Vision?ECCV, vol.60, issue.1, pp.304-317, 2008.
DOI : 10.1109/CVPR.2007.383150

URL : https://hal.archives-ouvertes.fr/inria-00316866

H. Jégou, M. Douze, C. Schmid, and P. Pérez, Aggregating local descriptors into a compact image representation, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.3304-3311, 2010.
DOI : 10.1109/CVPR.2010.5540039

H. Jegou, M. Douze, and C. Schmid, Product Quantization for Nearest Neighbor Search, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.1, pp.117-128, 2011.
DOI : 10.1109/TPAMI.2010.57

URL : https://hal.archives-ouvertes.fr/inria-00514462

H. Jegou, F. Perronnin, M. Douze, J. Sánchez, P. Perez et al., Aggregating local image descriptors into compact codes IEEE transactions on pattern analysis and machine intelligence, Caffe: Convolutional architecture for fast feature embedding . arXiv preprint arXiv, pp.1704-17161408, 2012.
DOI : 10.1109/tpami.2011.235

URL : https://hal.inria.fr/inria-00633013/file/jegou_aggregate.pdf

Y. Jiang, Y. Xu, and Y. Liu, Performance evaluation of feature detection and matching in stereo visual odometry, Neurocomputing, vol.120, pp.380-390, 2013.
DOI : 10.1016/j.neucom.2012.06.055

E. Johns and G. Yang, Generative Methods for Long-Term Place Recognition in Dynamic Scenes, International Journal of Computer Vision, vol.95, issue.3, pp.297-314, 2014.
DOI : 10.1007/s11263-011-0445-z

Y. Kalantidis and Y. Avrithis, Locally Optimized Product Quantization for Approximate Nearest Neighbor Search, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.2321-2328, 2014.
DOI : 10.1109/CVPR.2014.298

N. Karlsson, E. D. Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian et al., The vSLAM Algorithm for Robust Localization and Mapping, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp.24-29, 2005.
DOI : 10.1109/ROBOT.2005.1570091

A. Kendall and R. Cipolla, Modelling uncertainty in deep learning for camera relocalization, 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016.
DOI : 10.1109/ICRA.2016.7487679

URL : http://arxiv.org/pdf/1509.05909

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas et al., A Comparison of Affine Region Detectors, International Journal of Computer Vision, vol.65, issue.1-2, pp.43-72, 2005.
DOI : 10.1007/s11263-005-3848-x

URL : https://hal.archives-ouvertes.fr/inria-00548528

D. Mishkin, J. Matas, and M. Perdoch, MODS: Fast and robust method for two-view matching, Computer Vision and Image Understanding, vol.141, pp.81-93, 2015.
DOI : 10.1016/j.cviu.2015.08.005

URL : http://arxiv.org/pdf/1503.02619

L. Moisan, P. Moulon, and P. Monasse, Automatic Homographic Registration of a Pair of Images, with A Contrario Elimination of Outliers, Image Processing On Line, vol.2, pp.56-73, 2012.
DOI : 10.5201/ipol.2012.mmm-oh

URL : https://hal.archives-ouvertes.fr/hal-00711852

Y. Y. Morvan, Acquisition, compression and rendering of depth and texture for multi-view video, 2009.

M. Muja and D. G. Lowe, Fast approximate nearest neighbors with automatic algorithm configuration, pp.331-340, 2009.

M. Muja and D. G. Lowe, Scalable Nearest Neighbor Algorithms for High Dimensional Data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.11, pp.2227-2240, 2014.
DOI : 10.1109/TPAMI.2014.2321376

URL : http://ieeexplore.ieee.org:80/stamp/stamp.jsp?tp=&arnumber=6809191

R. Mur-artal, J. M. Montiel, J. D. Tardos, L. Neumann, and J. Matas, ORB-SLAM: A Versatile and Accurate Monocular SLAM System, Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp.1147-1163, 2012.
DOI : 10.1109/TRO.2015.2463671

URL : http://ieeexplore.ieee.org:80/stamp/stamp.jsp?tp=&arnumber=7219438

D. Nistér, O. Naroditsky, and J. Bergen, Visual odometry. In Computer Vision and Pattern Recognition, Proceedings of the 2004 IEEE Computer Society Conference on, p.652, 2004.

M. P. Parsley and S. J. Julier, Towards the exploitation of prior information in SLAM, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2991-2996, 2010.
DOI : 10.1109/IROS.2010.5650662

S. D. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani et al., Perception, Planning, Control, and Coordination for Autonomous Vehicles, Machines, vol.302, issue.1, p.6, 2017.
DOI : 10.1109/70.736775

URL : http://www.mdpi.com/2075-1702/5/1/6/pdf

T. Peynot, S. Scheding, and S. Terho, The Marulan Data Sets: Multi-sensor Perception in a Natural Environment with Challenging Conditions, The International Journal of Robotics Research, vol.29, issue.13, pp.1602-1607, 2010.
DOI : 10.1002/rob.20255

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, Object retrieval with large vocabularies and fast spatial matching, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
DOI : 10.1109/CVPR.2007.383172

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, Lost in quantization: Improving particular object retrieval in large scale image databases, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2008.
DOI : 10.1109/CVPR.2008.4587635

URL : http://www.di.ens.fr/willow/pdfs/philbin08.pdf

H. Prashanth, H. Shashidhara, and B. M. Kn, Image scaling comparison using universal image quality index, Advances in Computing, Control, & Telecommunication Technologies, 2009. ACT'09. International Conference on, pp.859-863, 2009.

K. Prazdny, Egomotion and relative depth map from optical flow, Biological Cybernetics, vol.4, issue.2, pp.87-102, 1980.
DOI : 10.1007/BF00361077

X. Qu, B. Soheilian, and N. Paparoditis, Vehicle localization using monocamera and geo-referenced traffic signs, Intelligent Vehicles Symposium (IV), 2015 IEEE, pp.605-610, 2015.
DOI : 10.1109/ivs.2015.7225751

F. Radenovi´cradenovi´c, G. Tolias, and O. Chum, Cnn image retrieval learns from bow: Unsupervised fine-tuning with hard examples, European Conference on Computer Vision, pp.3-20, 2016.

N. Radwan, G. D. Tipaldi, L. Spinello, and W. Burgard, Do you see the bakery? Leveraging geo-referenced texts for global localization in public maps, 2016 IEEE International Conference on Robotics and Automation (ICRA), pp.4837-4842, 2016.
DOI : 10.1109/ICRA.2016.7487688

R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J. Frahm, USAC: A Universal Framework for Random Sample Consensus, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.8, pp.2022-2038, 2013.
DOI : 10.1109/TPAMI.2012.257

F. Ramm, J. Topf, and S. Chilton, OpenStreetMap: using and enhancing the free map of the world, 2011.

E. Rosten and T. Drummond, Fusing points and lines for high performance tracking, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, pp.1508-1515, 2005.
DOI : 10.1109/ICCV.2005.104

URL : http://mi.eng.cam.ac.uk/~er258/work/rosten_2005_tracking.ps.gz

E. Rosten, R. Porter, and T. Drummond, Faster and Better: A Machine Learning Approach to Corner Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.1, pp.105-119, 2010.
DOI : 10.1109/TPAMI.2008.275

URL : http://arxiv.org/pdf/0810.2434

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, ORB: An efficient alternative to SIFT or SURF, 2011 International Conference on Computer Vision, pp.2564-2571, 2011.
DOI : 10.1109/ICCV.2011.6126544

URL : http://www.willowgarage.com/sites/default/files/orb_final.pdf

A. G. Rundle, M. D. Bader, C. A. Richards, K. M. Neckerman, and J. O. Teitler, Using Google Street View to Audit Neighborhood Environments, American Journal of Preventive Medicine, vol.40, issue.1, pp.94-100, 2011.
DOI : 10.1016/j.amepre.2010.09.034

URL : http://europepmc.org/articles/pmc3031144?pdf=render

J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, Image Classification with the Fisher Vector: Theory and Practice, International Journal of Computer Vision, vol.73, issue.2, pp.222-245, 2013.
DOI : 10.1007/s11263-006-9794-4

T. Sattler, B. Leibe, and L. Kobbelt, SCRAMSAC: Improving RANSAC's efficiency with a spatial consistency filter, 2009 IEEE 12th International Conference on Computer Vision, pp.2090-2097, 2009.
DOI : 10.1109/ICCV.2009.5459459

URL : http://www.graphics.rwth-aachen.de/media/papers/sattler_2009_iccv1.pdf

T. Sattler, B. Leibe, and L. Kobbelt, Fast image-based localization using direct 2D-to-3D matching, 2011 International Conference on Computer Vision, pp.667-674, 2011.
DOI : 10.1109/ICCV.2011.6126302

URL : http://www.vision.rwth-aachen.de/publications/pdf/sattler_iccv11_preprint.pdf

T. Sattler, B. Leibe, and L. Kobbelt, Improving Image-Based Localization by Active Correspondence Search, European conference on computer vision, pp.752-765, 2012.
DOI : 10.1007/978-3-642-33718-5_54

URL : http://www.vision.rwth-aachen.de/publications/pdf/sattler-eccv12.pdf

T. Sattler, T. Weyand, B. Leibe, and L. Kobbelt, Image retrieval for imagebased localization revisited, BMVC, p.4, 2012.
DOI : 10.5244/c.26.76

URL : http://www.bmva.org/bmvc/2012/BMVC/paper076/paper076.pdf

T. Sattler, C. Sweeney, and M. Pollefeys, On Sampling Focal Length Values to Solve the Absolute Pose Problem, European Conference on Computer Vision, pp.828-843, 2014.
DOI : 10.1007/978-3-319-10593-2_54

URL : http://cs.ucsb.edu/~cmsweeney/papers/p3pf_eccv14.pdf

T. Sattler, M. Havlena, F. Radenovic, K. Schindler, and M. Pollefeys, Hyperpoints and Fine Vocabularies for Large-Scale Location Recognition, 2015 IEEE International Conference on Computer Vision (ICCV), pp.2102-2110, 2015.
DOI : 10.1109/ICCV.2015.243

D. Scharstein and R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001), pp.7-42, 2002.
DOI : 10.1109/SMBV.2001.988771

URL : http://www.cs.ucsb.edu/~mturk/595/papers/ScharsteinSzeliski.pdf

T. Schaul, I. Antonoglou, and D. Silver, Unit tests for stochastic optimization. arXiv preprint, 2013.

G. Schindler, M. Brown, and R. Szeliski, City-Scale Location Recognition, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-7, 2007.
DOI : 10.1109/CVPR.2007.383150

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus et al., Overfeat: Integrated recognition, localization and detection using convolutional networks, 2013.

A. Sharif-razavian, H. Azizpour, J. Sullivan, and S. Carlsson, Cnn features off-the-shelf: an astounding baseline for recognition, Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp.806-813, 2014.

J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi et al., Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.2930-2937, 2013.
DOI : 10.1109/CVPR.2013.377

URL : http://research.microsoft.com/pubs/184826/RelocForests.pdf

K. Simonyan and A. Zisserman, Very deep convolutional networks for largescale image recognition. arXiv preprint, 2014.

J. Sivic and A. Zisserman, Video Google: a text retrieval approach to object matching in videos, Proceedings Ninth IEEE International Conference on Computer Vision, p.1470, 2003.
DOI : 10.1109/ICCV.2003.1238663

URL : http://www.cise.ufl.edu/class/cis6930fa07atc/Papers/Sivic03.pdf

I. Skrypnyk and D. G. Lowe, Scene Modelling, Recognition and Tracking with Invariant Image Features, Third IEEE and ACM International Symposium on Mixed and Augmented Reality, pp.110-119, 2004.
DOI : 10.1109/ISMAR.2004.53

URL : http://www.cs.ubc.ca/~lowe/papers/gordon04.pdf

A. Torii, J. Sivic, T. Pajdla, and M. Okutomi, Visual place recognition with repetitive structures, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.883-890, 2013.
DOI : 10.1109/cvpr.2013.119

URL : https://hal.archives-ouvertes.fr/hal-00934288

A. Torii, R. Arandjelovi´carandjelovi´c, J. Sivic, M. Okutomi, and T. Pajdla, 24/7 place recognition by view synthesis, CVPR, 2015.
DOI : 10.1109/cvpr.2015.7298790

URL : https://hal.archives-ouvertes.fr/hal-01147212

P. H. Torr and A. Zisserman, MLESAC: A New Robust Estimator with Application to Estimating Image Geometry, Computer Vision and Image Understanding, vol.78, issue.1, pp.138-156, 2000.
DOI : 10.1006/cviu.1999.0832

URL : http://www.cs.cmu.edu/~misc-read/talks-2003/torr_mlesac.pdf

L. Torresani, M. Szummer, and A. Fitzgibbon, Efficient Object Category Recognition Using Classemes, Computer Vision?ECCV 2010, pp.776-789, 2010.
DOI : 10.1007/978-3-642-15549-9_56

G. Vaca-castano, A. R. Zamir, and M. Shah, City scale geo-spatial trajectory estimation of a moving camera, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.1186-1193, 2012.
DOI : 10.1109/CVPR.2012.6247800

URL : http://www.cs.ucf.edu/~gvaca/cvpr2012AuthorKit/egpaper_final.pdf

A. Vedaldi and B. Fulkerson, Vlfeat, Proceedings of the international conference on Multimedia, MM '10, pp.1469-1472, 2010.
DOI : 10.1145/1873951.1874249

K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl, Constrained k-means clustering with background knowledge, ICML, pp.577-584, 2001.

J. Wang and L. Perez, The effectiveness of data augmentation in image classification using deep learning, 2017.

Z. Wang, B. Fan, and F. Wu, Local intensity order pattern for feature description, Computer Vision (ICCV), 2011 IEEE International Conference on, pp.603-610, 2011.

J. Weng, P. Cohen, and M. Herniou, Camera calibration with distortion models and accuracy evaluation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.14, issue.10, pp.965-980, 1992.
DOI : 10.1109/34.159901

T. Weyand, I. Kostrikov, and J. Philbin, PlaNet - Photo Geolocation with Convolutional Neural Networks, European Conference on Computer Vision, pp.37-55, 2016.
DOI : 10.1145/1631272.1631468

URL : http://arxiv.org/pdf/1602.05314

M. G. Wing, A. Eklund, and L. D. Kellogg, Consumer-Grade Global Positioning System (GPS) Accuracy and Reliability, Journal of Forestry, vol.103, issue.4, pp.169-173, 2005.
DOI : 10.1093/jof/103.4.169

Z. Wu, C. Shen, and A. V. , Wider or deeper: Revisiting the resnet model for visual recognition, 2016.

J. Xiao and L. Quan, Multiple view semantic segmentation for street view images, Computer Vision IEEE 12th International Conference on, pp.686-693, 2009.

J. Xie, M. Kiefel, M. Sun, and A. Geiger, Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.3688-3697, 2016.
DOI : 10.1109/CVPR.2016.401

URL : http://arxiv.org/pdf/1511.03240

G. Xu and Z. Zhang, Epipolar geometry in stereo, motion and object recognition: a unified approach, 2013.
DOI : 10.1007/978-94-015-8668-9

T. Yeh, K. Tollmar, and T. Darrell, Searching the web with mobile images for location recognition, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., p.76, 2004.
DOI : 10.1109/CVPR.2004.1315147

URL : http://www.cim.mcgill.ca/~dudek/417/notes/yeh_cvpr04.pdf

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, How transferable are features in deep neural networks? In Advances in neural information processing systems, pp.3320-3328, 2014.

L. Yu, C. Joly, G. Bresson, and F. Moutarde, Improving robustness of monocular urban localization using augmented Street View, 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp.513-519, 2016.
DOI : 10.1109/ITSC.2016.7795603

URL : https://hal.archives-ouvertes.fr/hal-01425632

L. Yu, C. Joly, G. Bresson, and F. Moutarde, Monocular urban localization using street view, 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), 2016.
DOI : 10.1109/ICARCV.2016.7838744

URL : https://hal.archives-ouvertes.fr/hal-01425639

J. Yue-hei-ng, F. Yang, and L. S. Davis, Exploiting local features from deep networks for image retrieval, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.53-61, 2015.

A. R. Zamir and M. Shah, Accurate Image Localization Based on Google Maps Street View, European Conference on Computer Vision, pp.255-268
DOI : 10.1007/978-3-642-15561-1_19

A. R. Zamir, A. Hakeem, L. Van-gool, M. Shah, and R. Szeliski, Large-scale visual geo-localization, 2016.
DOI : 10.1007/978-3-319-25781-5

P. A. Zandbergen, Accuracy of iPhone Locations: A Comparison of Assisted GPS, WiFi and Cellular Positioning, Transactions in GIS, vol.12, issue.3, pp.5-25, 2009.
DOI : 10.1201/9781420005004

M. D. Zeiler, Adadelta: an adaptive learning rate method. arXiv preprint, 2012.

W. Zhang and J. Kosecka, Image Based Localization in Urban Environments, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06), pp.33-40, 2006.
DOI : 10.1109/3DPVT.2006.80