F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow et al., Theano: new features and speed improvements . Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

H. Bay, T. Tuytelaars, and L. Van-gool, Surf: Speeded up robust features. Computer vision?ECCV, pp.404-417, 2006.
DOI : 10.1007/11744023_32

Y. Bengio, Deep learning of representations for unsupervised and transfer learning, Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp.17-36, 2012.

Y. Bengio, I. J. Goodfellow, and A. Courville, Deep learning, Nature, vol.521, pp.436-444, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01820431

J. Blanco, J. Fernandez-madrigal, and J. Gonzalez, A New Approach for Large-Scale Localization and Mapping: Hybrid Metric-Topological SLAM, Proceedings 2007 IEEE International Conference on Robotics and Automation, pp.2061-2067, 2007.
DOI : 10.1109/ROBOT.2007.363625

J. Blanco, F. Moreno, and J. González, A collection of outdoor robotic datasets with centimeter-accuracy ground truth, Autonomous Robots, vol.22, issue.11, pp.327-351, 2009.
DOI : 10.1007/s10514-009-9138-7

E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel et al., Dsac-differentiable ransac for camera localization. arXiv preprint, 2016.

E. Brachmann, F. Michel, A. Krull, M. Y. Yang, and S. Gumhold, Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.3364-3372, 2016.
DOI : 10.1109/CVPR.2016.366

G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV library, 2008.

M. A. Brubaker, A. Geiger, and R. Urtasun, Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.3057-3064, 2013.
DOI : 10.1109/CVPR.2013.393

M. Bujnak, Z. Kukelova, and T. Pajdla, A general solution to the P4P problem for camera with unknown focal length, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2008.
DOI : 10.1109/CVPR.2008.4587793

M. Calonder, V. Lepetit, C. Strecha, and P. Fua, BRIEF: Binary Robust Independent Elementary Features, Computer Vision?ECCV 2010, pp.778-792, 2010.
DOI : 10.1007/978-3-642-15561-1_56

G. Carrera, J. Savage, and W. Mayol-cuevas, Robust Feature Descriptors for Efficient Vision-Based Tracking, Progress in Pattern Recognition, Image Analysis and Applications, pp.251-260, 2007.
DOI : 10.1007/978-3-540-76725-1_27

R. Caruana, Learning many related tasks at the same time with backpropagation, Advances in neural information processing systems, pp.657-664, 1995.

S. Ceriani, G. Fontana, A. Giusti, D. Marzorati, M. Matteucci et al., Rawseeds ground truth collection systems for indoor self-localization and mapping, Autonomous Robots, vol.4, issue.4, p.353, 2009.
DOI : 10.1007/978-1-4613-2009-8

K. Chang, Geographic Information System, 2006.
DOI : 10.1007/s00267-003-2989-3

D. M. Chen, G. Baatz, K. Köser, S. S. Tsai, R. Vedantham et al., City-scale landmark identification on mobile devices, CVPR 2011, pp.737-744, 2011.
DOI : 10.1109/CVPR.2011.5995610

F. Chollet, , 2015.

S. Choudhary and P. Narayanan, Visibility Probability Structure from SfM Datasets and Applications, European conference on computer vision, pp.130-143, 2012.
DOI : 10.1007/978-3-642-33715-4_10

C. Chow and C. Liu, Approximating discrete probability distributions with dependence trees, IEEE Transactions on Information Theory, vol.14, issue.3, pp.462-467, 1968.
DOI : 10.1109/TIT.1968.1054142

URL : http://www.cs.iastate.edu/~honavar/chou-liu.pdf

O. Chum and J. Matas, Matching with PROSAC ??? Progressive Sample Consensus, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.220-226, 2005.
DOI : 10.1109/CVPR.2005.221

O. Chum and J. Matas, Optimal Randomized RANSAC, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.8, pp.1472-1482, 2008.
DOI : 10.1109/TPAMI.2007.70787

J. Civera, A. J. Davison, J. Montiel, J. Civera, O. G. Grasa et al., Inverse Depth Parametrization for Monocular SLAM, IEEE Transactions on Robotics, vol.24, issue.5, pp.932-945609, 2008.
DOI : 10.1109/TRO.2008.2003276

R. Clark, S. Wang, A. Markham, N. Trigoni, and H. Wen, Vidloc: 6-dof video-clip relocalization. arXiv preprint, 2017.

R. Collobert, K. Kavukcuoglu, and C. Farabet, Torch7: A matlab-like environment for machine learning, BigLearn, NIPS Workshop, 2011.

A. I. Comport, M. Meilland, and P. Rives, An asymmetric real-time dense visual localisation and mapping system, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp.700-703, 2011.
DOI : 10.1109/ICCVW.2011.6130316

URL : https://hal.archives-ouvertes.fr/hal-01357371

L. Contreras and W. Mayol-cuevas, Towards cnn map compression for camera relocalisation. arXiv preprint, 2017.

G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, Visual categorization with bags of keypoints, Workshop on statistical learning in computer vision, ECCV, pp.1-2, 2004.

Y. Cui and S. S. Ge, Autonomous vehicle positioning with GPS in urban canyon environments, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), pp.15-25, 2003.
DOI : 10.1109/ROBOT.2001.932759

M. Cummins and P. Newman, FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance, The International Journal of Robotics Research, vol.2, issue.6, pp.647-665, 2008.
DOI : 10.1109/TRO.2004.835453

M. Cummins and P. Newman, Appearance-only SLAM at large scale with FAB-MAP 2.0, The International Journal of Robotics Research, vol.30, issue.9, pp.1100-1123, 2011.
DOI : 10.1109/ICCV.2007.4409062

A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, MonoSLAM: Real-Time Single Camera SLAM, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.6, pp.1052-1067, 2007.
DOI : 10.1109/TPAMI.2007.1049

J. Delhumeau, P. Gosselin, H. Jégou, and P. Pérez, Revisiting the VLAD image representation, Proceedings of the 21st ACM international conference on Multimedia, MM '13, pp.653-656, 2013.
DOI : 10.1145/2502081.2502171

URL : https://hal.archives-ouvertes.fr/hal-00840653

J. Deng, W. Dong, R. Socher, L. Li, K. Li et al., ImageNet: A large-scale hierarchical image database, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.248-255, 2009.
DOI : 10.1109/CVPR.2009.5206848

M. Donoser and H. Bischof, Efficient Maximally Stable Extremal Region (MSER) Tracking, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 1 (CVPR'06), pp.553-560, 2006.
DOI : 10.1109/CVPR.2006.107

G. Dubbelman and B. Browning, Closed-form Online Pose-chain SLAM, 2013 IEEE International Conference on Robotics and Automation, pp.5190-5197, 2013.
DOI : 10.1109/ICRA.2013.6631319

J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, Journal of Machine Learning Research, vol.12, pp.2121-2159, 2011.

V. Dumoulin and F. Visin, A guide to convolution arithmetic for deep learning. arXiv preprint, 2016.

H. Durrant-whyte and T. Bailey, Simultaneous localization and mapping: part I, IEEE Robotics & Automation Magazine, vol.13, issue.2, pp.99-110, 2006.
DOI : 10.1109/MRA.2006.1638022

N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard, Real-time 3d visual slam with a hand-held rgb-d camera, Proc. of the RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum, pp.1-15, 2011.

M. A. Fischler and R. C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, vol.24, issue.6, pp.381-395, 1981.
DOI : 10.1145/358669.358692

URL : http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA460585&Location=U2&doc=GetTRDoc.pdf

G. Floros, B. Van-der-zander, and B. Leibe, OpenStreetSLAM: Global vehicle localization using OpenStreetMaps, 2013 IEEE International Conference on Robotics and Automation, pp.1054-1059, 2013.
DOI : 10.1109/ICRA.2013.6630703

URL : http://www.vision.rwth-aachen.de/publications/pdf/floros-icra13.pdf

C. Forster, M. Pizzoli, and D. Scaramuzza, SVO: Fast semi-direct monocular visual odometry, 2014 IEEE International Conference on Robotics and Automation (ICRA), pp.15-22, 2014.
DOI : 10.1109/ICRA.2014.6906584

URL : http://www.zora.uzh.ch/id/eprint/125453/1/ICRA14_Forster.pdf

G. Fritz, C. Seifert, M. Kumar, and L. Paletta, Building Detection from Mobile Imagery Using Informative SIFT Descriptors, Image Analysis, pp.629-638
DOI : 10.1007/11499145_64

URL : https://link.springer.com/content/pdf/10.1007%2F11499145_64.pdf

D. Gálvez-lópez and J. D. Tardos, Bags of Binary Words for Fast Place Recognition in Image Sequences, IEEE Transactions on Robotics, vol.28, issue.5, pp.1188-1197, 2012.
DOI : 10.1109/TRO.2012.2197158

A. Geiger, J. Ziegler, and C. Stiller, StereoScan: Dense 3d reconstruction in real-time, 2011 IEEE Intelligent Vehicles Symposium (IV), 2011.
DOI : 10.1109/IVS.2011.5940405

URL : http://rainsoft.de/publications/iv11.pdf

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, Vision meets robotics: The KITTI dataset, The International Journal of Robotics Research, vol.32, issue.11, p.2013
DOI : 10.1109/ICRA.2012.6225282

URL : http://journals.sagepub.com/doi/pdf/10.1177/0278364913491297

A. Gil, O. M. Mozos, M. Ballesta, and O. Reinoso, A comparative evaluation of interest point detectors and local descriptors for visual SLAM, Machine Vision and Applications, pp.905-920, 2010.
DOI : 10.1007/s00138-009-0195-x

X. Glorot, Y. Bengio, A. Glover, W. Maddern, M. Warren et al., Understanding the difficulty of training deep feedforward neural networks Openfabmap: An open source toolbox for appearance-based loop closure detection, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics Robotics and Automation (ICRA), 2012 IEEE International Conference on, pp.249-256, 2010.

Y. Gong, L. Wang, R. Guo, and S. Lazebnik, Multi-scale Orderless Pooling of Deep Convolutional Activation Features, European conference on computer vision, pp.392-407, 2014.
DOI : 10.1007/978-3-319-10584-0_26

URL : http://arxiv.org/pdf/1403.1840

A. Gordo, J. Almazán, J. Revaud, and D. Larlus, Deep Image Retrieval: Learning Global Representations for Image Search, European Conference on Computer Vision, pp.241-257, 2016.
DOI : 10.1109/CVPR.2014.180

URL : http://arxiv.org/pdf/1604.01325

G. Grisetti, R. Kummerle, C. Stachniss, U. Frese, and C. Hertzberg, Hierarchical optimization on manifolds for online 2D and 3D mapping, 2010 IEEE International Conference on Robotics and Automation, pp.273-278, 2010.
DOI : 10.1109/ROBOT.2010.5509407

URL : http://www.informatik.uni-bremen.de/agebv/downloads/published/grisetti10icra.pdf

J. W. Hager, J. F. Behensky, and B. W. Drew, The universal grids: Universal transverse mercator (utm) and universal polar stereographic (ups). DMA technical manual, 1989.

M. Haklay and P. Weber, OpenStreetMap: User-Generated Street Maps, IEEE Pervasive Computing, vol.7, issue.4, pp.12-18, 2008.
DOI : 10.1109/MPRV.2008.80

URL : http://discovery.ucl.ac.uk/13849/1/13849.pdf

B. M. Haralick, C. Lee, K. Ottenberg, and M. Nölle, Review and analysis of solutions of the three point perspective pose estimation problem, International Journal of Computer Vision, vol.13, issue.1, pp.331-356, 1994.
DOI : 10.1007/BF02028352

C. Harris and M. Stephens, A Combined Corner and Edge Detector, Procedings of the Alvey Vision Conference 1988, pp.10-5244, 1988.
DOI : 10.5244/C.2.23

URL : http://www.bmva.org/bmvc/1988/avc-88-023.pdf

J. A. Hartigan and M. A. Wong, Algorithm AS 136: A K-Means Clustering Algorithm, Applied Statistics, vol.28, issue.1, pp.100-108, 1979.
DOI : 10.2307/2346830

R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2004.
DOI : 10.1017/CBO9780511811685

URL : http://cds.cern.ch/record/1598612/files/0521540518_TOC.pdf

J. Hartmann, J. H. Klussendorff, and E. Maehle, A comparison of feature descriptors for visual SLAM, 2013 European Conference on Mobile Robots, pp.56-61, 2013.
DOI : 10.1109/ECMR.2013.6698820

K. He, X. Zhang, S. Ren, and J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, 2015 IEEE International Conference on Computer Vision (ICCV), pp.1026-1034, 2015.
DOI : 10.1109/ICCV.2015.123

URL : http://arxiv.org/pdf/1502.01852

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.770-778, 2016.
DOI : 10.1109/CVPR.2016.90

URL : http://arxiv.org/pdf/1512.03385

K. He, X. Zhang, S. Ren, and J. Sun, Identity Mappings in Deep Residual Networks, European Conference on Computer Vision, pp.630-645, 2016.
DOI : 10.1109/CVPR.2015.7298594

URL : http://arxiv.org/pdf/1603.05027

J. Heinly, E. Dunn, and J. Frahm, Comparative Evaluation of Binary Features, Computer Vision?ECCV 2012, pp.759-773, 2012.
DOI : 10.1007/978-3-642-33709-3_54

K. L. Ho and P. Newman, Loop closure detection in SLAM by combining visual and spatial appearance, Robotics and Autonomous Systems, vol.54, issue.9, pp.740-749, 2006.
DOI : 10.1016/j.robot.2006.04.016

S. Hochreiter and J. Schmidhuber, Long Short-Term Memory, Neural Computation, vol.4, issue.8, pp.1735-1780, 1997.
DOI : 10.1016/0893-6080(88)90007-X

B. Hofmann-wellenhof, H. Lichtenegger, and J. Collins, Global positioning system: theory and practice, 2012.

A. S. Huang, M. Antone, E. Olson, L. Fletcher, D. Moore et al., A High-rate, Heterogeneous Data Set From The DARPA Urban Challenge, The International Journal of Robotics Research, vol.29, issue.13, pp.1595-1601, 2010.
DOI : 10.1109/34.888718

URL : http://people.csail.mit.edu/seth/pubs/HuangEtAl_IJRR2010.pdf

S. Huber and C. Rust, osrmtime: Calculate Travel Time and Distance with OpenStreetMap Data Using the Open Source Routing Machine (OSRM), SSRN Electronic Journal, 2016.
DOI : 10.2139/ssrn.2691551

R. A. Hummel, Histogram modification techniques, Computer Graphics and Image Processing, vol.4, issue.3, pp.209-224, 1975.
DOI : 10.1016/0146-664X(75)90009-X

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, International Conference on Machine Learning, pp.448-456, 2015.

A. Irschara, C. Zach, J. Frahm, and H. Bischof, From structure-frommotion point clouds to fast location recognition, Computer Vision and Pattern Recognition CVPR 2009. IEEE Conference on, pp.2599-2606, 2009.
DOI : 10.1109/cvpr.2009.5206587

URL : http://www.icg.tugraz.at/pub/pdf/cvpr2009localization.pdf

H. Jegou, M. Douze, and C. Schmid, Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search, Computer Vision?ECCV, vol.60, issue.1, pp.304-317, 2008.
DOI : 10.1109/CVPR.2007.383150

URL : https://hal.archives-ouvertes.fr/inria-00316866

H. Jégou, M. Douze, C. Schmid, and P. Pérez, Aggregating local descriptors into a compact image representation, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.3304-3311, 2010.
DOI : 10.1109/CVPR.2010.5540039

H. Jegou, M. Douze, and C. Schmid, Product Quantization for Nearest Neighbor Search, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.1, pp.117-128, 2011.
DOI : 10.1109/TPAMI.2010.57

URL : https://hal.archives-ouvertes.fr/inria-00514462

H. Jegou, F. Perronnin, M. Douze, J. Sánchez, P. Perez et al., Aggregating local image descriptors into compact codes IEEE transactions on pattern analysis and machine intelligence, Caffe: Convolutional architecture for fast feature embedding . arXiv preprint arXiv, pp.1704-17161408, 2012.
DOI : 10.1109/tpami.2011.235

URL : https://hal.inria.fr/inria-00633013/file/jegou_aggregate.pdf

Y. Jiang, Y. Xu, and Y. Liu, Performance evaluation of feature detection and matching in stereo visual odometry, Neurocomputing, vol.120, pp.380-390, 2013.
DOI : 10.1016/j.neucom.2012.06.055

E. Johns and G. Yang, Generative Methods for Long-Term Place Recognition in Dynamic Scenes, International Journal of Computer Vision, vol.95, issue.3, pp.297-314, 2014.
DOI : 10.1007/s11263-011-0445-z

Y. Kalantidis and Y. Avrithis, Locally Optimized Product Quantization for Approximate Nearest Neighbor Search, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.2321-2328, 2014.
DOI : 10.1109/CVPR.2014.298

N. Karlsson, E. D. Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian et al., The vSLAM Algorithm for Robust Localization and Mapping, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp.24-29, 2005.
DOI : 10.1109/ROBOT.2005.1570091

A. Kendall and R. Cipolla, Modelling uncertainty in deep learning for camera relocalization, 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016.
DOI : 10.1109/ICRA.2016.7487679

URL : http://arxiv.org/pdf/1509.05909

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas et al., A Comparison of Affine Region Detectors, International Journal of Computer Vision, vol.65, issue.1-2, pp.43-72, 2005.
DOI : 10.1007/s11263-005-3848-x

URL : https://hal.archives-ouvertes.fr/inria-00548528

D. Mishkin, J. Matas, and M. Perdoch, MODS: Fast and robust method for two-view matching, Computer Vision and Image Understanding, vol.141, pp.81-93, 2015.
DOI : 10.1016/j.cviu.2015.08.005

URL : http://arxiv.org/pdf/1503.02619

L. Moisan, P. Moulon, and P. Monasse, Automatic Homographic Registration of a Pair of Images, with A Contrario Elimination of Outliers, Image Processing On Line, vol.2, pp.56-73, 2012.
DOI : 10.5201/ipol.2012.mmm-oh

URL : https://hal.archives-ouvertes.fr/hal-00711852

Y. Y. Morvan, Acquisition, compression and rendering of depth and texture for multi-view video, 2009.

M. Muja and D. G. Lowe, Fast approximate nearest neighbors with automatic algorithm configuration, pp.331-340, 2009.

M. Muja and D. G. Lowe, Scalable Nearest Neighbor Algorithms for High Dimensional Data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.11, pp.2227-2240, 2014.
DOI : 10.1109/TPAMI.2014.2321376

URL : http://ieeexplore.ieee.org:80/stamp/stamp.jsp?tp=&arnumber=6809191

R. Mur-artal, J. M. Montiel, J. D. Tardos, L. Neumann, and J. Matas, ORB-SLAM: A Versatile and Accurate Monocular SLAM System, Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp.1147-1163, 2012.
DOI : 10.1109/TRO.2015.2463671

URL : http://ieeexplore.ieee.org:80/stamp/stamp.jsp?tp=&arnumber=7219438

D. Nistér, O. Naroditsky, and J. Bergen, Visual odometry. In Computer Vision and Pattern Recognition, Proceedings of the 2004 IEEE Computer Society Conference on, p.652, 2004.

M. P. Parsley and S. J. Julier, Towards the exploitation of prior information in SLAM, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2991-2996, 2010.
DOI : 10.1109/IROS.2010.5650662

S. D. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani et al., Perception, Planning, Control, and Coordination for Autonomous Vehicles, Machines, vol.302, issue.1, p.6, 2017.
DOI : 10.1109/70.736775

URL : http://www.mdpi.com/2075-1702/5/1/6/pdf

T. Peynot, S. Scheding, and S. Terho, The Marulan Data Sets: Multi-sensor Perception in a Natural Environment with Challenging Conditions, The International Journal of Robotics Research, vol.29, issue.13, pp.1602-1607, 2010.
DOI : 10.1002/rob.20255

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, Object retrieval with large vocabularies and fast spatial matching, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
DOI : 10.1109/CVPR.2007.383172

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, Lost in quantization: Improving particular object retrieval in large scale image databases, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2008.
DOI : 10.1109/CVPR.2008.4587635

URL : http://www.di.ens.fr/willow/pdfs/philbin08.pdf

H. Prashanth, H. Shashidhara, and B. M. Kn, Image scaling comparison using universal image quality index, Advances in Computing, Control, & Telecommunication Technologies, 2009. ACT'09. International Conference on, pp.859-863, 2009.

K. Prazdny, Egomotion and relative depth map from optical flow, Biological Cybernetics, vol.4, issue.2, pp.87-102, 1980.
DOI : 10.1007/BF00361077

X. Qu, B. Soheilian, and N. Paparoditis, Vehicle localization using monocamera and geo-referenced traffic signs, Intelligent Vehicles Symposium (IV), 2015 IEEE, pp.605-610, 2015.
DOI : 10.1109/ivs.2015.7225751

F. Radenovi´cradenovi´c, G. Tolias, and O. Chum, Cnn image retrieval learns from bow: Unsupervised fine-tuning with hard examples, European Conference on Computer Vision, pp.3-20, 2016.

N. Radwan, G. D. Tipaldi, L. Spinello, and W. Burgard, Do you see the bakery? Leveraging geo-referenced texts for global localization in public maps, 2016 IEEE International Conference on Robotics and Automation (ICRA), pp.4837-4842, 2016.
DOI : 10.1109/ICRA.2016.7487688

R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J. Frahm, USAC: A Universal Framework for Random Sample Consensus, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.8, pp.2022-2038, 2013.
DOI : 10.1109/TPAMI.2012.257

F. Ramm, J. Topf, and S. Chilton, OpenStreetMap: using and enhancing the free map of the world, 2011.

E. Rosten and T. Drummond, Fusing points and lines for high performance tracking, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, pp.1508-1515, 2005.
DOI : 10.1109/ICCV.2005.104

URL : http://mi.eng.cam.ac.uk/~er258/work/rosten_2005_tracking.ps.gz

E. Rosten, R. Porter, and T. Drummond, Faster and Better: A Machine Learning Approach to Corner Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.1, pp.105-119, 2010.
DOI : 10.1109/TPAMI.2008.275

URL : http://arxiv.org/pdf/0810.2434

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, ORB: An efficient alternative to SIFT or SURF, 2011 International Conference on Computer Vision, pp.2564-2571, 2011.
DOI : 10.1109/ICCV.2011.6126544

URL : http://www.willowgarage.com/sites/default/files/orb_final.pdf

A. G. Rundle, M. D. Bader, C. A. Richards, K. M. Neckerman, and J. O. Teitler, Using Google Street View to Audit Neighborhood Environments, American Journal of Preventive Medicine, vol.40, issue.1, pp.94-100, 2011.
DOI : 10.1016/j.amepre.2010.09.034

URL : http://europepmc.org/articles/pmc3031144?pdf=render

J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, Image Classification with the Fisher Vector: Theory and Practice, International Journal of Computer Vision, vol.73, issue.2, pp.222-245, 2013.
DOI : 10.1007/s11263-006-9794-4

T. Sattler, B. Leibe, and L. Kobbelt, SCRAMSAC: Improving RANSAC's efficiency with a spatial consistency filter, 2009 IEEE 12th International Conference on Computer Vision, pp.2090-2097, 2009.
DOI : 10.1109/ICCV.2009.5459459

URL : http://www.graphics.rwth-aachen.de/media/papers/sattler_2009_iccv1.pdf

T. Sattler, B. Leibe, and L. Kobbelt, Fast image-based localization using direct 2D-to-3D matching, 2011 International Conference on Computer Vision, pp.667-674, 2011.
DOI : 10.1109/ICCV.2011.6126302

URL : http://www.vision.rwth-aachen.de/publications/pdf/sattler_iccv11_preprint.pdf

T. Sattler, B. Leibe, and L. Kobbelt, Improving Image-Based Localization by Active Correspondence Search, European conference on computer vision, pp.752-765, 2012.
DOI : 10.1007/978-3-642-33718-5_54

URL : http://www.vision.rwth-aachen.de/publications/pdf/sattler-eccv12.pdf

T. Sattler, T. Weyand, B. Leibe, and L. Kobbelt, Image retrieval for imagebased localization revisited, BMVC, p.4, 2012.
DOI : 10.5244/c.26.76

URL : http://www.bmva.org/bmvc/2012/BMVC/paper076/paper076.pdf

T. Sattler, C. Sweeney, and M. Pollefeys, On Sampling Focal Length Values to Solve the Absolute Pose Problem, European Conference on Computer Vision, pp.828-843, 2014.
DOI : 10.1007/978-3-319-10593-2_54

URL : http://cs.ucsb.edu/~cmsweeney/papers/p3pf_eccv14.pdf

T. Sattler, M. Havlena, F. Radenovic, K. Schindler, and M. Pollefeys, Hyperpoints and Fine Vocabularies for Large-Scale Location Recognition, 2015 IEEE International Conference on Computer Vision (ICCV), pp.2102-2110, 2015.
DOI : 10.1109/ICCV.2015.243

D. Scharstein and R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001), pp.7-42, 2002.
DOI : 10.1109/SMBV.2001.988771

URL : http://www.cs.ucsb.edu/~mturk/595/papers/ScharsteinSzeliski.pdf

T. Schaul, I. Antonoglou, and D. Silver, Unit tests for stochastic optimization. arXiv preprint, 2013.

G. Schindler, M. Brown, and R. Szeliski, City-Scale Location Recognition, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-7, 2007.
DOI : 10.1109/CVPR.2007.383150

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus et al., Overfeat: Integrated recognition, localization and detection using convolutional networks, 2013.

A. Sharif-razavian, H. Azizpour, J. Sullivan, and S. Carlsson, Cnn features off-the-shelf: an astounding baseline for recognition, Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp.806-813, 2014.

J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi et al., Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.2930-2937, 2013.
DOI : 10.1109/CVPR.2013.377

URL : http://research.microsoft.com/pubs/184826/RelocForests.pdf

K. Simonyan and A. Zisserman, Very deep convolutional networks for largescale image recognition. arXiv preprint, 2014.

J. Sivic and A. Zisserman, Video Google: a text retrieval approach to object matching in videos, Proceedings Ninth IEEE International Conference on Computer Vision, p.1470, 2003.
DOI : 10.1109/ICCV.2003.1238663

URL : http://www.cise.ufl.edu/class/cis6930fa07atc/Papers/Sivic03.pdf

I. Skrypnyk and D. G. Lowe, Scene Modelling, Recognition and Tracking with Invariant Image Features, Third IEEE and ACM International Symposium on Mixed and Augmented Reality, pp.110-119, 2004.
DOI : 10.1109/ISMAR.2004.53

URL : http://www.cs.ubc.ca/~lowe/papers/gordon04.pdf

C. C. Slama, C. Theurer, and S. W. Henriksen, , 1980.

M. Smith, W. Baldwin, R. Churchill, P. Paul, and . Newman, The New College Vision and Laser Data Set, The International Journal of Robotics Research, vol.28, issue.5, pp.595-599, 2009.
DOI : 10.1177/0278364909103911

R. C. Smith and P. Cheeseman, On the Representation and Estimation of Spatial Uncertainty, The International Journal of Robotics Research, vol.5, issue.4, pp.56-68, 1986.
DOI : 10.1109/ROBOT.1985.1087373

S. M. Smith and J. M. Brady, Susan?a new approach to low level image processing, International Journal of Computer Vision, vol.23, issue.1, pp.45-78, 1997.
DOI : 10.1023/A:1007963824710

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, Journal of machine learning research, vol.15, issue.1, pp.1929-1958, 2014.

J. Stillwell, Naive lie theory, 2008.
DOI : 10.1007/978-0-387-78214-0

N. Sunderhauf, S. Shirazi, A. Jacobson, F. Dayoub, E. Pepperell et al., Place Recognition with ConvNet Landmarks: Viewpoint-Robust, Condition-Robust, Training-Free, Robotics: Science and Systems XI, 2015.
DOI : 10.15607/RSS.2015.XI.022

I. Sutskever, J. Martens, G. Dahl, and G. Hinton, On the importance of initialization and momentum in deep learning, International conference on machine learning, pp.1139-1147, 2013.

L. Svarm, O. Enqvist, M. Oskarsson, and F. Kahl, Accurate Localization and Pose Estimation for Large 3D Models, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.532-539, 2014.
DOI : 10.1109/CVPR.2014.75

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed et al., Going deeper with convolutions, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1-9, 2015.
DOI : 10.1109/CVPR.2015.7298594

URL : http://arxiv.org/pdf/1409.4842

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethinking the Inception Architecture for Computer Vision, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.2818-2826, 2016.
DOI : 10.1109/CVPR.2016.308

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, Inception-v4, inceptionresnet and the impact of residual connections on learning, AAAI, pp.4278-4284, 2017.

A. Taneja, L. Ballan, and M. Pollefeys, Never Get Lost Again: Vision Based Navigation Using StreetView Images, Asian Conference on Computer Vision, pp.99-114, 2014.
DOI : 10.1007/978-3-319-16814-2_7

S. Thrun and J. J. Leonard, Simultaneous localization and mapping, Springer handbook of robotics, pp.871-889, 2008.

S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics, 2005.

S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron et al., Stanley: The robot that won the DARPA Grand Challenge, Journal of Field Robotics, vol.11, issue.9, pp.661-692, 2006.
DOI : 10.1007/978-1-4615-3184-5_2

T. Tieleman and G. Hinton, Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude, COURSERA: Neural networks for machine learning, pp.26-31, 2012.

G. Tolias, R. Sicre, and H. Jégou, Particular object retrieval with integral max-pooling of cnn activations, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01842218

R. F. Tomlinson, ]. A. Torii, and M. Havlena, Thinking about GIS: geographic information system planning for managers From google street view to 3d city models, Computer vision workshops IEEE 12th international conference on, pp.2188-2195, 2007.

A. Torii, J. Sivic, and T. Pajdla, Visual localization by linear combination of image descriptors, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp.102-109, 2011.
DOI : 10.1109/ICCVW.2011.6130230

URL : https://hal.archives-ouvertes.fr/hal-01053880

A. Torii, J. Sivic, T. Pajdla, and M. Okutomi, Visual place recognition with repetitive structures, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.883-890, 2013.
DOI : 10.1109/cvpr.2013.119

URL : https://hal.archives-ouvertes.fr/hal-00934288

A. Torii, R. Arandjelovi´carandjelovi´c, J. Sivic, M. Okutomi, and T. Pajdla, 24/7 place recognition by view synthesis, CVPR, 2015.
DOI : 10.1109/cvpr.2015.7298790

URL : https://hal.archives-ouvertes.fr/hal-01147212

P. H. Torr and A. Zisserman, MLESAC: A New Robust Estimator with Application to Estimating Image Geometry, Computer Vision and Image Understanding, vol.78, issue.1, pp.138-156, 2000.
DOI : 10.1006/cviu.1999.0832

URL : http://www.cs.cmu.edu/~misc-read/talks-2003/torr_mlesac.pdf

L. Torresani, M. Szummer, and A. Fitzgibbon, Efficient Object Category Recognition Using Classemes, Computer Vision?ECCV 2010, pp.776-789, 2010.
DOI : 10.1007/978-3-642-15549-9_56

G. Vaca-castano, A. R. Zamir, and M. Shah, City scale geo-spatial trajectory estimation of a moving camera, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.1186-1193, 2012.
DOI : 10.1109/CVPR.2012.6247800

URL : http://www.cs.ucf.edu/~gvaca/cvpr2012AuthorKit/egpaper_final.pdf

A. Vedaldi and B. Fulkerson, Vlfeat, Proceedings of the international conference on Multimedia, MM '10, pp.1469-1472, 2010.
DOI : 10.1145/1873951.1874249

K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl, Constrained k-means clustering with background knowledge, ICML, pp.577-584, 2001.

J. Wang and L. Perez, The effectiveness of data augmentation in image classification using deep learning, 2017.

Z. Wang, B. Fan, and F. Wu, Local intensity order pattern for feature description, Computer Vision (ICCV), 2011 IEEE International Conference on, pp.603-610, 2011.

J. Weng, P. Cohen, and M. Herniou, Camera calibration with distortion models and accuracy evaluation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.14, issue.10, pp.965-980, 1992.
DOI : 10.1109/34.159901

T. Weyand, I. Kostrikov, and J. Philbin, PlaNet - Photo Geolocation with Convolutional Neural Networks, European Conference on Computer Vision, pp.37-55, 2016.
DOI : 10.1145/1631272.1631468

URL : http://arxiv.org/pdf/1602.05314

M. G. Wing, A. Eklund, and L. D. Kellogg, Consumer-Grade Global Positioning System (GPS) Accuracy and Reliability, Journal of Forestry, vol.103, issue.4, pp.169-173, 2005.
DOI : 10.1093/jof/103.4.169

Z. Wu, C. Shen, and A. V. , Wider or deeper: Revisiting the resnet model for visual recognition, 2016.

J. Xiao and L. Quan, Multiple view semantic segmentation for street view images, Computer Vision IEEE 12th International Conference on, pp.686-693, 2009.

J. Xie, M. Kiefel, M. Sun, and A. Geiger, Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.3688-3697, 2016.
DOI : 10.1109/CVPR.2016.401

URL : http://arxiv.org/pdf/1511.03240

G. Xu and Z. Zhang, Epipolar geometry in stereo, motion and object recognition: a unified approach, 2013.
DOI : 10.1007/978-94-015-8668-9

T. Yeh, K. Tollmar, and T. Darrell, Searching the web with mobile images for location recognition, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., p.76, 2004.
DOI : 10.1109/CVPR.2004.1315147

URL : http://www.cim.mcgill.ca/~dudek/417/notes/yeh_cvpr04.pdf

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, How transferable are features in deep neural networks? In Advances in neural information processing systems, pp.3320-3328, 2014.

L. Yu, C. Joly, G. Bresson, and F. Moutarde, Improving robustness of monocular urban localization using augmented Street View, 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp.513-519, 2016.
DOI : 10.1109/ITSC.2016.7795603

URL : https://hal.archives-ouvertes.fr/hal-01425632

L. Yu, C. Joly, G. Bresson, and F. Moutarde, Monocular urban localization using street view, 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), 2016.
DOI : 10.1109/ICARCV.2016.7838744

URL : https://hal.archives-ouvertes.fr/hal-01425639

J. Yue-hei-ng, F. Yang, and L. S. Davis, Exploiting local features from deep networks for image retrieval, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.53-61, 2015.

A. R. Zamir and M. Shah, Accurate Image Localization Based on Google Maps Street View, European Conference on Computer Vision, pp.255-268
DOI : 10.1007/978-3-642-15561-1_19

A. R. Zamir, A. Hakeem, L. Van-gool, M. Shah, and R. Szeliski, Large-scale visual geo-localization, 2016.
DOI : 10.1007/978-3-319-25781-5

P. A. Zandbergen, Accuracy of iPhone Locations: A Comparison of Assisted GPS, WiFi and Cellular Positioning, Transactions in GIS, vol.12, issue.3, pp.5-25, 2009.
DOI : 10.1201/9781420005004

M. D. Zeiler, Adadelta: an adaptive learning rate method. arXiv preprint, 2012.

W. Zhang and J. Kosecka, Image Based Localization in Urban Environments, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06), pp.33-40, 2006.
DOI : 10.1109/3DPVT.2006.80


Z. Zhang, Parameter estimation techniques: a tutorial with application to conic fitting, Image and Vision Computing, vol.15, issue.1, pp.59-76, 1997.
DOI : 10.1016/S0262-8856(96)01112-2

URL : https://hal.archives-ouvertes.fr/inria-00074015

L. Zhao, S. Huang, L. Yan, and G. Dissanayake, Parallax angle parametrization for monocular SLAM, 2011 IEEE International Conference on Robotics and Automation, pp.3117-3124, 2011.
DOI : 10.1109/ICRA.2011.5979934

L. Zheng, Y. Zhao, S. Wang, J. Wang, and Q. Tian, Good practice in cnn feature transfer, 2016.

L. Zheng, Y. Yang, and Q. Tian, SIFT Meets CNN: A Decade Survey of Instance Retrieval, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.40, issue.5, 2017.
DOI : 10.1109/TPAMI.2017.2709749

B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, Learning deep features for scene recognition using places database, Advances in neural information processing systems, pp.487-495, 2014.

D. Zou and P. Tan, CoSLAM: Collaborative Visual SLAM in Dynamic Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.2, pp.354-366, 2013.
DOI : 10.1109/TPAMI.2012.104